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Abstract
Assessment of endoscopic disease activity can be difficult in patients with inflam-
matory bowel disease (IBD) [comprises Crohn's disease (CD) and ulcerative colitis 
(UC)]. Endoscopic assessment is currently the foundation of disease evaluation 
and the grading is pivotal for the initiation of certain treatments. Yet, disharmony 
is found among experts; even when reassessed by the same expert. Some studies 
have demonstrated that the evaluation is no better than flipping a coin. In UC, the 
greatest achieved consensus between physicians when assessing endoscopic 
disease activity only reached a Kappa value of 0.77 (or 77% agreement adjustment 
for chance/accident). This is unsatisfactory when dealing with patients at risk of 
surgery or disease progression without proper care. Lately, across all medical 
specialities, computer assistance has become increasingly interesting. Especially 
after the emanation of machine learning – colloquially referred to as artificial 
intelligence (AI). Compared to other data analysis methods, the strengths of AI lie 
in its capability to derive complex models from a relatively small dataset and its 
ability to learn and optimise its predictions from new inputs. It is therefore 
evident that with such a model, one hopes to be able to remove inconsistency 
among humans and standardise the results across educational levels, nationalities 
and resources. This has manifested in a handful of studies where AI is mainly 
applied to capsule endoscopy in CD and colonoscopy in UC. However, due to its 
recent place in IBD, there is a great inconsistency between the results, as well as 
the reporting of the same. In this opinion review, we will explore and evaluate the 
method and results of the published studies utilising AI within IBD (with 
examples), and discuss the future possibilities AI can offer within IBD.

Key Words: Inflammatory bowel disease; Artificial intelligence; Deep learning; 
Endoscopy; Disease severity; Machine learning
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Core Tip: Artificial intelligence (AI) is on the rise in inflammatory bowel diseases 
(IBD). Endoscopic evaluation is so far the most studied modality with promising 
results. Studies with others or the combination of several modalities have been carried 
out with moderate results leaving room for future research. Data availability and 
standardisation of the reporting of these new models seem to be the biggest challenges 
for AI's breakthrough within IBD. International consensus in the field is required to 
optimise research in AI.

Citation: Lo B, Burisch J. Artificial intelligence assisted assessment of endoscopic disease 
activity in inflammatory bowel disease. Artif Intell Gastrointest Endosc 2021; 2(4): 95-102
URL: https://www.wjgnet.com/2689-7164/full/v2/i4/95.htm
DOI: https://dx.doi.org/10.37126/aige.v2.i4.95

INTRODUCTION
The inflammatory bowel diseases (IBD), which mainly consist of Crohn's disease (CD) 
and ulcerative colitis (UC), are idiopathic immune-mediated diseases usually affecting 
young adults[1,2].

Currently, colonoscopy is considered the gold standard in the disease assessment of 
patients with UC as well as CD located in the terminal ileum and/or colon[3,4]. 
Disease activity of UC is assessed using scoring systems such as the Mayo Endoscopic 
Subscore (MES) or UC Endoscopic Index of Severity[5]. Despite their widespread use 
and being easy to use, both indices suffer from moderate to high inter-observer 
variation which reduces the credibility of the scores[6]. This has been demonstrated in 
clinical trials where up to one-third of patients deemed eligible for inclusion based on 
the MES did not live up to the inclusion criteria after reassessment[7]. Even central 
reading is associated with noteworthy inter-observer variation[7,8].

In CD, the CD Endoscopic Index of Severity and Simple Endoscopic Score for CD 
are currently the most used indices[4]. Both have demonstrated varying observer 
variance with central reading improving the inter-observer variation[9-11]. Capsule 
endoscopy (CE) for evaluating the small bowel can be scored using the Lewis score
[12]. While widely used, the interobserver agreement between parameters in the index 
fluctuates widely (kappa 0.37-0.83)[13,14].

These interobserver variations and the risk of misclassification has led to the 
exploration of artificial intelligence (AI) assisted endoscopic assessment[15], especially 
in the field of colon cancer detection[16,17]. AI, depending on which method is used, 
mimics the human brain by having interconnected neurons that process the 
information given; however, in contrast to the human brain, AI can theoretically 
process an unlimited number of variables. In the field of IBD, the use of AI remains 
limited although it has received increasing attention. In the following review, we will 
discuss the use of AI-assisted assessment of endoscopic disease activity among CD and 
UC patients from a clinical perspective, the challenges the model faces and unexplored 
areas where AI has the potential to help patients and physicians.

CROHN’S DISEASE
CD can be examined using many modalities. Imaging has been an area of interest in 
terms of AI - especially CE[18]. A CE camera takes between 2-4 frames per second and 
has an approximate transit time of 250 min which can result in a total of approximately 
60000 images[18]. One of the challenges CE entails is that it is a time-consuming 
process whereby a trained person must subsequently review all images. New AI has 
since assisted physicians and endoscopists in filtering out non-informative images, 
thereby leaving an image series where the computer believes there is an area of 
interest. Since the year 2000, AI has been used to identify polyps/tumours, ulcers, 
celiac disease, hookworms, angioectasia, and bleeding[18]. Among CD patients, 
special focus has been on small bowel lesions, erosions and ulceration[19]. The 
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majority of recent studies that have examined the listed parameters use a convolu-
tional neural network - a deep learning method that has been shown to be effective in 
image recognition[18,20]. Overall, these studies have shown an accuracy of > 90% 
which must be considered close to perfect. However, the majority of these studies are 
conducted retrospectively and prospective results are wanted to demonstrate the 
models potential in clinical practice.

ULCERATIVE COLITIS
Due to UC only involving the colon it has been easier to categorise these patients than 
CD according to the extent and severity of inflammation[21]. Accordingly, most 
advances regarding AI in IBD has been done in UC and several clinical tools have been 
developed to assess the endoscopic disease severity. Such models have achieved an 
accuracy of 56%–77% in assessing the disease severity according to the MES or UC 
Endoscopic Index of Severity which was comparable to IBD experts[22-27]. The 
majority of studies have used methods such as the convolutional neural network to 
categorize images taken during a colonoscopy or sigmoidoscopy according to the 
MES. Recently, studies have also investigated the applicability of AI on videos; 
demonstrating a promising area under the receiver operating characteristic curve 
(AUROC or AUC) > 90%[24,26,27].

Currently, the available models are unable to distinguish between the different 
levels of the MES with sufficient accuracy. However, this is an area under great 
development and it is expected that within the coming years a model will be able to 
distinguish between the different MES levels with a satisfactory result and thereby 
eliminate the inter-observer variance, and standardize the clinical and academic 
evaluation of the endoscopic disease severity[28].

Few studies have further examined their model's MES score in relation to 
histological findings[29,30]. One study used endocytoscopy with a support vector 
machine and achieved an accuracy of approximately 90% in predicting histological 
findings which must be considered excellent results[29]. Endocytoscopy is, however, 
not an integral method in most clinics. Furthermore, although the study group utilized 
both a training and a test set, the training and optimizing process of the models is not 
described, leaving the reader with uncertainty with regard to e.g., model selection and 
tuning of. Finally, samples were divided into active inflammation vs remission which 
might be too simplified a way of considering both the endoscopic and histological 
findings. Similar results were demonstrated by Takenaka et al[30] with white-light 
endoscopy, but with the same challenges. Ultimately, none of these studies validated 
the results on an independent cohort analyzed by independent experts, in order to test 
the performance of their model when compared to another population or to the point 
of view of different experts.

POTENTIAL AND DIFFICULTIES
As previously mentioned, AI has been shown to have great potential in the evaluation 
of endoscopic severity among patients with CD and UC. The models have shown to be 
at a level with or better than physicians to classify endoscopic disease severity; 
especially among UC patients[25]. Uniformity in the approach to the endoscopic 
procedure will make new clinical tools more credible and hopefully lead to less 
discrepancy between clinical and observational studies[31]. However, it is crucial that 
new models are developed for clinical purposes, which can be implemented more 
quickly, thereby reducing the gap between research and clinical practice.

Besides endoscopic evaluation, disease prediction in IBD has also been investigated 
using AI models. Waljee et al[32,33] used two clinical trial databases to predict C-
reactive protein < 5 mg/L after 42 wk treatment with ustekinumab and steroid-free 
remission after 52 wk treatment with vedolizumab among CD patients, respectively. 
These studies used a combination of demographic, clinical, and biochemical data in a 
random forest model to predict patients' course after initiation of treatment. The 
models achieved an accuracy of 42% and 69%, respectively. Furthermore, the same 
study group investigated the treatment effect of vedolizumab in UC patients[34]. 
Using a random forest model, the model achieved an accuracy of 58% in predicting 
corticosteroid-free remission after 52 wk. When grouping UC and CD together, Biasci 
et al[35] used transcriptomics to identify a blood sample panel of 17 genes with 
sensitivity and specificity of approximately 73% to predict patients' risk of treatment 
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escalating within 1 year. A 5-year prediction study from Choi et al[36] demonstrated a 
sensitivity and specificity of 71% for predicting the risk of the use of biologics. In 
contrast to Biasci et al[35], this study utilized only demographical, clinical and 
common laboratory markers. Furthermore, Waljee et al[37,38] attempted twice to 
predict the treatment effect within 1 year, resulted in an AUC of 79% and 87% and 
accuracy of 72% and 80%, respectively. A limitation of these studies is that findings are 
only presented for IBD patients in total and not stratified according to the type of IBD. 
Despite these efforts, accuracies below at least 80% must be considered insufficient. 
Furthermore, even with accuracies above 80%, the results must be taken into 
perspective with the sensitivity, specificity and AUC to achieve an overall picture of 
the model's performance. Unfortunately, the majority of the studies have only 
reported some but not all measures of validity of which AUC is most commonly 
reported.

OTHER AREAS
It is not uncommon for some patients to undergo a lengthy diagnostic process before a 
definite diagnosis of CD or UC can be made[39]. This can be a challenge for both 
physicians and patients, and result in over or under treatments with major 
consequences for the patient. Recent studies using AI have attempted to use several 
modalities to better distinguish between these patients: endoscopy, histology, genetic 
markers, biochemical markers, clinical factors, omics, or a combination of one or more 
of these modalities[40-43]. These have shown acceptable results with AUC and 
accuracy of > 80%. It should be emphasized that these studies do not always report all 
results and many of the results are from validation data and not necessarily test data 
(unseen data) exposing the models to overfitting. However, to our knowledge, none of 
these models has been applied in clinical practice and real-life data are warranted to 
evaluate their efficacy.

To our knowledge, no other modalities explored in connection with AI have been 
published to date. In particular, the complexity of CD results in several challenges 
when developing new AI models. One area that remains untouched is the use of AI 
during colonoscopy in CD patients. This could be due to challenges in the endoscopic 
disease assessment of CD as the disease can be patchy and the severity varies between 
patches. Besides, indices for CD are difficult or time-consuming to use in clinical 
practice[4]. This could be accommodated by developing new scoring indices based on 
an evaluation from an AI model, allowing the possibility of assessing the gut as a 
whole rather than the segmented method currently being used.

In addition to endoscopies for both UC and CD, modalities such as ultrasound, 
magnetic resonance imaging, colon CE and computed tomography are obvious 
opportunities for the development of new clinical tools[44].

Unfortunately, this field is also challenged by several issues. First and foremost, a 
paradigm shift is needed; from a medical professional to a computer-aided 
assessment. This will first and foremost require doctors to accept the new technology
[45] which can be difficult to understand as the latest AI architectures use deep 
learning where a black-box appears (the process between input and output)[46]. As it 
is not 100% possible to account for what happens in this black-box, mistrust might 
arise among the clinicians toward the models. Despite different ways of explaining the 
black-box, mathematically and illustratively, it is only possible to give an estimate of 
its process[46].

Secondly, medical education may need to be reorganized in the future to have more 
focus on interpretation and critical evaluation of the results of these new models. The 
medical field has experienced a similar paradigm shift before with the introduction of 
the World Wide Web[47]. This gave patients equal access to knowledge that 
physicians had and doctors went from being the ultimate definitive truth to now 
having to explain how the symptoms and the disease are connected and which 
diagnosis and disease courses are most likely[47]. However, a new organization of the 
medical education in connection with AI may require interdisciplinary involvement 
with, among others, bioinformatics and computer scientists to better equip doctors to 
interpret and critically evaluate the models' output.

Thirdly, larger amounts of data are needed – more than previously accustomed to 
developing these new models. However, the amount of data needed varies 
significantly in relation to the outcome and the methods used and no specific number 
of required data exists. As data is resource demanding, the estimate must be adjusted 
to what is clinically possible. In recent years, cross-border collaborations have been 
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Table 1 Recommendations for reporting of studies regarding artificial intelligence

Section Requirements
Method

Origin of dataset and description of the acquisition process

Pre-processing methods

Definition of ground truth

Split of data set and should include a training, validation and test set. A clear statement that the test set is not used to tune hyperparameters 
or in the selection of the model

Method and architecture used, whether it is pretrained or not, and what dataset it is pretrained on

Full technical detail should be included in supplementary files

Statement of post-selection analyses and why these are conducted

Results

A complete report of all results including but not restricted to AUC, sensitivity, specificity, accuracy and kappa value for the overall model's 
performance and not for selected tasks

Discussion

Risks of overfitting and bias

Generalisability and cautions to take

Clinical implementation

AUC: Area under the receiver operating characteristic curve.

formed to make large amounts of data available. However, these are rarely freely 
available and the quality must also be critically evaluated when the workflow and 
equipment vary markedly between nations. We, therefore, encourage everyone to 
make their data at least partially accessible - a good example is The HyperKvasir 
dataset[48].

Finally, international reporting standards must be set within the field of IBD 
regarding AI studies. AI is still a relatively unexploited territory within IBD. This has 
led to great variation in the way the studies report both their methods and results, 
despite several calls for uniformity[49]. A good example is the endoscopic evaluation 
of disease severity in UC patients. Often, only AUC is reported, which can be 
misleading as sensitivity, specificity and accuracy may be only modest[25]. This is due 
to the fact that the AUC is a measure of how well the true positive can be separated 
from the rest, while measures of e.g., accuracy hint at the actual performance of the 
models. Even when the studies report the wanted parameters, the reporting method 
can vary. For example, calculating the sensitivity, specificity and accuracy for each 
class rather than reporting the overall sensitivity, specificity and accuracy for the entire 
index. We, therefore, encourage that future articles as a minimum must report the 
information and parameters described in Table 1.

In addition, international journals should set standards for what is required of 
future AI studies within the field. The use of previous reporting methods, e.g., STARD 
guidelines, seems outdated and should be updated to the new technological reality
[50].

CONCLUSION
AI is on the rise in IBD. Endoscopic evaluation is so far the most studied modality with 
promising results. Studies with others or the combination of several modalities have 
been carried out with moderate results leaving room for future research. Data 
availability and standardization of the reporting of these new models seem to be the 
biggest challenges for the AI's breakthrough within IBD. International consensus in the 
field is required to optimize research in AI.
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Abstract
Pancreaticoduodenectomy (PD) is a complex operation accompanied by 
significant morbidity rates. Due to this complexity, the transition to minimally 
invasive PD has lagged behind other abdominal surgical operations. The safety, 
feasibility, favorable post-operative outcomes of robotic PD have been suggested 
by multiple studies. Compared to open surgery and other minimally invasive 
techniques such as laparoscopy, robotic PD offers satisfactory outcomes, with a 
non-inferior risk of adverse events. Trends of robotic PD have been on rise with 
centers substantially increasing the number the operation performed. Although 
promising, findings on robotic PD need to be corroborated in prospective trials.
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Core Tip: The robotic Whipple procedure is a safe and technically feasible surgical 
operation. Robotic pancreaticoduodenectomy has shown favorable outcomes and is 
currently increasing in widespread implementation. Prospective trials are needed 
before this relatively new approach can be fully adopted as a standard of care in 
patients with pancreatic neoplasms.
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INTRODUCTION
Pancreaticoduodenectomy (PD) or Whipple surgery, is a complex procedure 
associated with significant morbidity rates[1]. Due to the complexity of this operation, 
PD’s move to a more minimally invasive approach has lagged behind other general 
surgery procedures[2]. Gagner and Pomp[3], pioneered the laparoscopic PD (LPD) 
back in 1994, but LPD has not successfully transitioned into routine surgical care[3]. 
This is partly due to the difficulty associated with LPD in terms of expertise needed to 
perform the operation and the complexity of teaching the approach. In addition, the 
LEOPARD-2 trial demonstrated that LPD has a higher 90-d mortality as compared to 
the open PD (OPD). This eventually led to the discontinuation of the trial[4].

Robotic PD (RPD), which was first performed by Giulianotti et al[5], was originally 
described in 2001. Later in 2003, the same team published a series of 8 robotic-assisted 
cases[6]. The preliminary results established that RPD is both safe and feasible. Their 
reported mean operative time was around 8 h (490 min) in this case series.

Following these promising results, an increasing number of surgeons started 
utilizing the RPD approach. Different than initial reports of LPD, where some showed 
that LPD does not provide benefit as compared to the open approach, RPD benefits 
and advantages have been reported with increasing rate since its launch[7,8]. 
However, the “Miami International Guideline on Minimally Invasive Pancreas 
Resection” still does not assume minimally invasive PD is equal to OPD due to 
insufficient data[9].

WHAT IS THE ROBOTIC SURGICAL TECHNIQUE AND ITS CHALLENGES? 
Robotic surgery is considered a direct advancement of laparoscopy. The most widely 
utilized surgical system to perform RPD in specific, as well as in other operations, is 
the DaVinci system developed by Intuitive Surgical Incorporated[10]. The robotic 
system provides surgeons increased dexterity employing endo-wristed instruction, 
three-dimensional stereoscopic views of the surgical field, filtering of user tremors, 
and it provides pancreatic surgeons the capability to perform extremely complex 
dissections, sutures, knots and reconstructions with unparalleled precision, 
magnification and accuracy[11,12].

Variations in robotic Whipple techniques exist between pancreatic surgeons. While 
some groups undergo the operation completely robotically, other choose to use a cross 
laparoscopic/robotic approach. Giulianotti et al[5] support a performing the operation 
entirely using the robotic approach, while other groups advocate the “hybrid” 
approach. The hybrid or cross method entails dissecting first using laparoscopy and 
then performing the reconstruction part using the robot[13,14]. At the University of 
Pittsburgh Medical Center, the surgeons employ a robotic exclusive approach, using 
four robotic ports, two assistant and one retractor port as shown in Figure 1. RPD 
follows the same steps as Whipple’s 1935 description[15]. The gastrocolic ligament is 
first dissected to gain access to the lesser sac. Then, the ascending and transverse colon 
are mobilized. This is followed by a complete Kocher maneuver. Transection of the 
jejunum and the stomach (in classic Whipple) are then performed using stapling 
devices. Then, the porta is approached to transect the gastroduodenal artery and the 
hepatic duct. This is followed by transection of the pancreas at the neck and finally 
dissecting the uncinate of the mesenteric vessels. The reconstruction phase includes 
the creation of a pancreaticojejunostomy, followed by hepaticojejunostomy and finally 
a gastrojejunostomy. Finally, a drain is left behind and the port and extraction sites are 
closed.

The challenges facing the introduction of RPD are numerous. First, robotic 
operations are known to still have long operating time as compared to open ones. 
Second, due to the complexity of the robotic approach, there an increased need of 
training (higher learning curve) than the open and other minimally invasive 
techniques (laparoscopic). Third, robotic surgeries carry a high financial burden to 
patients, covering bodies and hospitals. This helps favor the open or laparoscopic 
approach for PD by insuring bodies and patients paying out-of-pocket. Fourth, RPDs 
require high-end infrastructure, which includes larger operating rooms, more technical 
staff present (in case any issues arise), and robotic certification by faculty and trainees. 
Finally, there is an increased difficulty in making prospective randomized trials in 
robotic operations. This issue arises with the decreased apparel/enrollment into 
robotic trials due to patient preference of open or laparoscopic approaches.
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Figure 1 Port placement for robotic pancreaticoduodenectomy. R1: Robotic arm 1; R2: Robotic arm 2; R3: Robotic arm 3; C: Camera; A1: Assistant arm 
1; A2: Assistant arm 2. Camera may be inserted through an 8 mm port in the Xi System. It may be inserted through a 12 mm port in the Si System.

WHAT ARE THE TRENDS AND OUTCOMES OF THE ROBOTIC WHIPPLE 
PROCEDURE?
A recent study exploring the trends of the RPD for pancreatic cancers demonstrated an 
increasing number of RPDs over the past decade. This was accompanied by a greater 
reach of RPD where it may be found in community centers across the US, after being 
present only in a few number of academic medical facilities[16]. Robotic procedures 
increased from 150 operations/year to around 450 operation/year from 2010-2016[16]. 
This is likely owing to an increase in the number of graduates from fellowship 
programs that include robotic pancreas surgery as part of their curriculum, as well as 
greater experience and "retraining" of experienced pancreatic surgeons in the robotic 
approach[17-20].

Overall, the robotic method appears to enhance short-term outcomes over time. 
Between 2010 and 2016, there was a substantial rise in the number of lymph nodes 
harvested (from 18 to 21), as well as a drop in postoperative mortality (from 6.7 
percent to 1.8 percent)[16]. Yan et al[21] found that as compared to open PD, RPD had 
considerably longer operating time, less blood loss, shorter length of stay, and reduced 
infection rates in a recent meta-analysis comprising 2403 patients (788 robotic and 1615 
open). There was no discernible change in lymph node harvesting, reoperation, 
readmission rate, or death rate[21]. Another meta-analysis by Kamarajah et al[22] 
found that RPD had substantially lower conversion and transfusion rates than LPD, 
with 3462 participants (1025 robotic and 2437 Laparoscopic]. RPD had a substantially 
shorter hospital stay after surgery, but there was no significant difference in 
postoperative outcomes or R0 resection rates. Zureikat et al[23] demonstrated that RPD 
was linked with decreased operating time, perioperative blood loss, and postoperative 
pancreatic fistula development in the largest series of RPD comprising 500 robot-
assisted PD. These findings were described early in the group's experience and 
remained low despite growing complexity of cases. Less frequent conversion to open 
was also noted. As for long term outcomes, Nassour et al[24] identified 17831 PD from 
the National Cancer Database, of which 626 were RPDs. The median overall survival 
did not differ between the robotic (22 mo) and open (21.8 mo) approaches. Table 1 
highlights RPD findings from a variety of research. In the hands of skilled surgeons, 
RPD is a relatively safe procedure with excellent perioperative and postoperative 
results.
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Table 1 Outcomes of robotic pancreaticoduodenectomy in selected studies

Ref. n OR time 
(mean in min)

EBL (mean 
in mL)

Conversion 
(%)

R0 
(%)

LN harvest 
(mean)

Fistula 
(%)

Morbidity 
(%)

Mortality 
(%)

LOS (mean 
in days)

Giulianotti et al
[28], 2010 

60 421 394 18.3 82 18 31.6 NR 3.3 22

Narula et al[29], 
2010

5 420 NR 37.5 100 16 0 0 0 9.6

Zhou et al[30], 
2011

8 718 153 0 100 NR 25 NR 0 16.4

Lai et al[31], 2012 20 491.5 247 5 73.3 10 35 50 0 13.7

Chalikonda et al
[32], 2012

30 476 485 10 100 13.2 6.6 30 3 9.8

Bao et al[33], 2014 28 431 100 14 88 15 29 NR 2 7.4

Boone et al[34], 
2015

200 483 250 6.5 92 22 17 67.5 3.3 9

Chen et al[26], 
2015

60 410 400 1.7 97.8 13.6 13.3 35 1.7 20

Boggi et al[35], 
2016

83 527 NR 1.5 NR 37 33.7 73.5 3 17

Nassour et al[36], 
2017

193 399 NR 11.4 NR NR 20.8 54.9 1 8

Jin et al[37], 2020 17 240 100 0 NR 4 59 66.4 NR 15

Mejia et al[38], 
2020

102 352 321 12.7 73 24.2 3.9 31.3 2.9 7

Shi et al[39], 2020 187 279 297 3.7 94 16.6 10.2 35.6 2.1 22.4

Zureikat et al[23], 
2021

500 415 250 5.2 85 28 20.2 68.8 1.8 8

EBL: Estimated blood loss; LN: Lymph node; LOS: Length of stay; NR: Not reported; OR: Operation; R0: Margin negative resection.

WHAT IS THE LEARNING CURVE AND FUTURE OF ROBOTIC WHIPPLE 
PROCEDURE?
The reported learning curves for RPD are currently variable among different 
institutions. The University of Pittsburgh Medical center reported that 80 RPDs would 
be required to optimize operative time, 40 cases for an optimal pancreatic fistula rate 
and 20 cases to improved blood loss and conversion[25]. This was due to the that fact 
the surgeons at the center had no prior training, mentorship, or guidance in the 
technique as the robotics program was implemented in 2008. According to Chen et al
[26], a comparable result can be reached after 40 RPDs. At 40 patients, Zhang et al[27] 
found a comparable learning curve for RPD. The learning curve may be short if 
adequate training and guidance is performed in surgical formative years. A formal 
mastery-based curriculum which integrates complex robotic procedures into practice 
may help in shortening the learning curve.

The future directions of RPD will likely involve the use of robotics in borderline 
resectable or locally advanced pancreatic lesion cases i.e. more surgically complex 
cases. This also includes performing complex vasculature reconstructions using the 
robotic approach. However, in order to develop these surgical techniques, better 
infrastructure, increased training, and more prospective randomized clinical trials are 
required. The first step needed is to prove that RPD is noninferior to the open 
technique in PD with level 1 evidence. This entails increasing the number of 
prospective trials in order to perform meta-analyses and systematic reviews. 
Afterwards, increased funding and training can follow, which will allow for further 
developments of the RPD technique discussed. Additionally, robotic training will need 
to be introduced and integrated early into residency programs (possibly using 
simulation labs) to help with the learning curve of future robotic surgeons.
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CONCLUSION
Current evidence indicates that RPD is a safe and feasible procedure. The robotic 
approach overcomes many of technical challenges associated with the laparoscopic 
Whipple procedure. RPD, in the proper hands, can help patients and surgeons with 
periampullary lesions achieve good results. More prospective clinical trials are still 
needed to verify previously published retrospective research on RPD.
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Abstract
In the last 10 years, surgery has been developing towards minimal invasiveness; 
therefore, robotic surgery represents the consequent evolution of laparoscopic 
surgery. Worldwide, surgeons’ performances have been upgraded by the 
ergonomic developments of robotic systems, leading to several benefits for 
patients. The introduction into the market of the new Da Vinci Xi system has 
made it possible to perform all types of surgery on the colon, an in selected cases, 
to combine interventions in other organs or viscera at the same time. Optimization 
of the suprapubic surgical approach may shorten the length of hospital stay for 
patients who undergo robotic colonic resection. From this perspective, single-port 
robotic colectomy, has reduced the number of robotic ports needed, allowing a 
better anesthetic outcome and faster recovery. The introduction on the market of 
new surgical robotic systems from multiple manufacturers is bound to change the 
landscape of robotic surgery and yield high-quality surgical outcomes.
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Core Tip: Robotic surgery represents the natural evolution of laparoscopic surgery in 
the way to perform less-invasive operations. The robotic system Da Vinci Xi® with its 
technological innovations has made it possible to perform all types of interventions on 
the colon and has yielded large benefits to patients.
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INTRODUCTION
Cancer of the colon and rectum is one of the most common neoplastic diseases 
worldwide and is associated with high mortality rate[1]. Just as laparoscopic surgery 
has progressively replaced laparotomy, robotic surgery is becoming increasingly 
important in the treatment of this type of cancer. The advantages of robotic systems 
have been well known for years. Wrist flexibility, 3D vision and prevention of hand 
tremor enable surgeons to operate in reduced operative fields.

Many technological innovations have been introduced in recent years, such as a 
suprapubic approach, single port techniques and the use of tracers such as 
indocyanine green (used for the research of the sentinel lymph node and to verify 
tissues’ vascularization).

The efficiency and effectiveness of robotic colonic resection have drawn the 
attention of many surgeons. Just as laparoscopic surgery in the late 1990s was 
compared to open surgery in terms of safety and effectiveness, nowadays robot-
assisted surgery is often compared to the laparoscopic approach. From this point of 
view, robotic surgery seems to overcome the limits of laparoscopy. In fact, the proper 
value of the robot can be clearly appreciated in challenging tasks, such as performing 
intra-abdominal anastomoses in a restricted space, or in low pelvic dissection[2].

Although early results seem to encourage robot-assisted surgery, comparative 
studies investigating the effects of laparoscopic versus robotic colonic surgery are still 
ongoing and have not yet provided definitive data[3,4].

ROBOTIC VERSUS LAPAROSCOPY
The indications for robot-assisted and laparoscopic colorectal surgery are the same. 
Relative contraindications are emergency procedures, pneumoperitoneum intolerance 
and massive bleeding.

Comparison between robotic and laparoscopic surgery in terms of advantages and 
disadvantages has been considered a “hot topic” lately. Detractors of robotic surgery 
doubt its effective usefulness, citing the lack of definitive data demonstrating its 
superiority compared to the traditional laparoscopic approach[5] (many have stated 
that it is an “expensive toy” built to entertain surgeons). Nevertheless, increasing data 
about the effectiveness of robot-assisted surgery, in addition to its well-described 
technical advantages, have drawn the attention of surgeons all over the world.

Since the da Vinci System has been approved, an increasing number of robotic 
procedures has been registered worldwide. As a consequence, available data on 
robotics in colorectal surgery have increased greatly. In the international scientific 
literature, single- and multicenter studies, systemic reviews and meta-analyses can be 
easily found, focusing on the evaluation of robotic outcomes[6]. Two National 
Impatient Sample databases of laparoscopic and robotic colectomies[7,8] found no 
significant differences in overall complication rates and length of stay, while 
conversion rates were significantly lower in patients who underwent robotic resection 
(6.3% vs 10.5 %). One large study, based on the American College of Surgeons National 
Surgical Quality Improvement Program database, compared robotic and laparoscopic 
colorectal surgery in more than 11000 patients[9]. Focusing on pelvic surgery, the rate 
of conversion to open approach was lower in the robotic surgery group, while no 
significant differences in conversion rates were found in abdominal surgery. No 
differences were found in rates of wound infection, anastomotic leak, 30-day 
reoperation and 30-day readmission. When robot-assisted surgery was performed, 
mean hospital stay was significantly shorter but operating times were significantly 
longer. The reason for longer operating time is easily imagined. Robotic surgery needs 
longer preparation in terms of patient and arm positioning, moreover, being a new 
technique, the learning curve of the performing surgeon strongly affects the overall 
operating time. In our opinion, this highlights the importance of continued evaluation 
of the advances in robot-assisted surgery compared to more traditional minimally 
invasive techniques.

https://www.wjgnet.com/2689-7164/full/v2/i4/110.htm
https://dx.doi.org/10.37126/aige.v2.i4.110
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A retrospective cohort study of the Michigan Surgical Quality Collaborative registry 
compared robotic versus 2735 laparoscopy-assisted colorectal procedures in 2012–2014
[10]. Conversion rates were lower in robotic surgery, and this was significant for rectal 
resection. Also, hospital stay was significantly shorter in those operated upon with the 
robotic technique. No significant difference in rates of complications were found.

In our opinion, the most meaningful, largest and better-designed study was the 
Robotic Versus Laparoscopic Resection for Rectal Cancer (ROLARR) Trial[11] 
published in 2017. It was an international, multicenter, randomized controlled trial 
(RCT), involving 10 countries and 29 centers. Primary outcome was conversion to 
open procedure when performing total mesorectal excision (TME). Intra- and 
postoperative complications, circumferential resection margin, quality of life, bladder 
and sexual dysfunction and oncological outcomes were considered secondary 
outcomes. The results showed no differences in conversion rates or other secondary 
endpoints, demonstrating that, in expert hands, robotic colonic resection is safe and 
feasible. What deserves to be highlighted is that, once again, robotic surgery did result 
in longer operating time. Only experienced surgeons were included in the study 
(surgeons who performed at least 90 laparoscopic or at least 50 robotic procedures), 
excluding the influence of the learning curve on operating time. Therefore, we can 
conclude that, more likely, robotic operating time is more affected by its longer patient 
preparation, and instrument placement and changing. In our opinion, it is important 
to highlight that conversion rates were lower in the robotic versus laparoscopic surgery 
in men. This suggests that, when it comes to narrower pelvis, robotic surgery could be 
superior to the laparoscopic approach, bringing great benefits to patients. The authors 
concluded that robotic surgery does not confer an advantage in rectal cancer and has 
equivalent outcomes with increased costs (due to the price of robotic instruments and 
components).

A meta-analysis of five RCTs in 2018[12], including ROLARR, by Prete et al[12] 
compared laparoscopic versus robotic resection for rectal cancer. The results 
demonstrated no significant differences in circumferential radial margin positive rate, 
TME grade, postoperative leakage, number of lymph nodes harvested, mortality or 
complication rate. This meta-analysis highlighted that robotic procedures are 
connected to a decreased rate of conversion to open surgery but, at the same time, a 
significant increase in operating time.

Conversion rate is an important outcome that can influence other outcomes. The 
passage from minimally invasive to open surgery can influence postoperative 
complication rates. It can also be the cause of increased costs (due to longer hospital 
stay) and delays in chemotherapy, which can affect 5-year disease-free survival, 
leading to higher recurrence rates[9,13,14].

All the advantages and disadvantages of robotic surgery are summarized in the 
Table 1.

From the analysis of the literature, the following conclusions can be drawn 
regarding the different aspects taken into consideration.

Postoperative days until the first flatus and first oral diet
Robot-assisted colorectal surgery is associated with a shorter time to first flatus and to 
first oral intake[15-17].

Time of operation
The literature shows longer operating time for robotic surgery[15-20]. In most cases, 
the reason is probably related to the early learning phase of the surgeons. We believe 
that after an adequate learning curve, surgical times should be significantly reduced to 
be compared to laparoscopic surgery. Nevertheless, it is easy to imagine that overall 
operating time will be always slightly longer for robotic surgery due to longer time 
needed for patients’ preparation and instrument placement and changing.

Length of hospital stay
The robotic approach had a shorter hospital stay in several studies[19-25].

Mortality (perioperative or 30 d after the operation)
A few studies have demonstrated that mortality rate is significantly reduced in robotic 
surgery[20-26], but, on the contrary, other systematic reviews and meta-analysis have 
not confirmed this result[16,21-23].

Conversion to open surgery
It has been demonstrated that, compared to laparoscopy, robotic surgery is associated 
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Table 1 Advantages and disadvantages of robotic surgery

Advantages Disadvantages

High-resolution 3D view Longer operating times due to patient preparation and positioning and docking 
time

Tool and wrist flexibility (seven degrees of freedom) Lack of tactile sensation and stenic feedback

Elimination of hand tremors High acquisition and maintenance cost

Ergonomic position which benefits the surgeon

Faster learning curve

Dual console and simulation software for training

Integrated table motion

Four trocars visualization with fluorescent/optical systems

Robot-designed tools, like robotic stapler with smart-fire 
technology

with a significantly lower rate of conversion to open surgery. This is more relevant in 
high-risk patients, such as men with a narrow pelvis, obese patients with lower rectal 
tumors, or those undergoing neoadjuvant therapy[13,16-23].

Intraoperative blood loss
In terms of blood loss, some studies have reported significantly lower rates in robotic 
surgery[17,18,20,24].

Anastomotic leakage
As far as we know, no significant differences regarding anastomotic leakage have been 
found in the literature. In our opinion, in the near future the introduction of new 
automatized stapling systems and new robotic technologies will reduce the rate of 
anastomotic leakage.

Resected lymph nodes
No differences have been reported in the number of lymph nodes resected using 
robotic versus laparoscopic surgery, although some studies have shown a higher 
number of harvested lymph nodes in the robotic approach[15].

Sexual and urological outcomes
Considering rectal cancer surgery, recovery of sexual and urological function is faster 
in patients who have undergone a robot-assisted approach compared to laparoscopic 
surgery. In one retrospective cohort study, rates of erectile dysfunction 1 mo after 
surgery were similar in both laparoscopic and robotic groups. However, 1 year after 
complete recovery, physiological functions were completely restored in all sexually 
active patients who underwent robotic resection and only in 43% of patients in the 
laparoscopic group[25-27].

Surgical wound infection
Review articles and clinical trials have not shown any significant difference between 
the robotic and laparoscopic groups for surgical wound infection. There is only one 
systematic review published in 2019 by Ng et al[16] that showed a significant 
difference in favor of the robotic approach. We believe that future technological 
innovation will allow an increasing number of full robotic procedures, and 
consequently, the size of the skin incisions will progressively reduce, therefore 
decreasing surgical wound infections.

Resection margins
Simillis et al[28] in a systematic review and network meta-analysis published in Annals 
of Surgery in 2019[28] demonstrated no significant differences regarding the involved 
resection margins. A study by Nixon et al[29] focusing on high-risk patients 
(preoperative chemoradiotherapy, male sex, tumor < 8 cm from the anal verge, body 
mass index > 30, and previous abdominal surgery) demonstrated that robotic surgery 
is related to higher rates of sphincter preservation, lower conversion rates, lower blood 
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loss and operating time, and consequently it is associated with shorter length of 
hospital stay.

THE PRESENT AND THE FUTURE
With advances in engineering and technology, surgical robots are constantly being 
improved. Exploration of new surgical approaches like the suprapubic approach or 
single port technique is of interest in the surgical field. The suprapubic surgical 
approach refers to a particular robotic technique in which ports used to perform 
colonic resection are placed in a horizontal line in the suprapubic area, and it is usually 
applied in robotic right colectomy. Recently, some authors have demonstrated[30,31] 
that the suprapubic approach has more advantages than the traditional port 
placement, with less console time and shorter hospital stay. Surgeons are attempting to 
reduce the number of ports used for robotic surgery. By reducing the number of 
surgical wounds, they aim to reduce the risk of postoperative wound infections. In this 
light, single port robotic surgery has begun to be performed more often. A systemic 
review[32] revealed that single port robotic surgery for colonic cancer is safe and 
feasible, with acceptable postoperative outcomes. These new changes have demon-
strated promising potential in robotic surgery, in particular in colonic resection.

Until now, the surgical robot market has been monopolized, but it is easy to predict 
that the market for robotic platforms will rapidly grow in the near future as several 
manufactures are investing in the development of new robotic systems. For instance, 
MicroHand S is a robotic system produced in China and has recently entered clinical 
trials. Some studies have reported good performances and encouraging application 
prospects[33,34]. Senhance robotic system (TransEnterix Surgical Inc. Morrisville, NC, 
USA) has been recently introduced in Europe and approved for limited clinical use in 
the USA. Darwich et al[35] and Samalavicius et al[36] reported that procedures 
performed with this robotic system were safe and feasible and the robot could be used 
in general surgery. Versius from Cambridge Medical Robotics Ltd (Cambridge, UK), 
Hugo RAS from Medtronic Inc. (Dublin, Ireland), Meere Company (South Korea), 
Titan Medical (Toronto ON, Canada) and Virtual Incision (Pleasanton, CA, USA) have 
demonstrated potential in clinical applications. Competition between these new 
surgical robots from different manufacturers will surely change the market, leading to 
a reduction in costs with increased benefits for patients.

CONCLUSION
Robotic surgery offers a new minimally invasive approach in complex procedures or 
in anatomical areas that are difficult to reach. Robot-assisted procedures are not easier 
to perform, but robotic technology can make hard tasks feasible for less-experienced 
surgeons. In our opinion, robotic surgery could be considered the best option for rectal 
cancer surgical treatment, especially when compared to more traditional approaches 
(laparoscopic, open or transanal), since it offers the best combination of oncological, 
functional and patient recovery outcomes. Furthermore, the development of new 
approaches, like suprapubic and single port techniques, and the use of new devices, 
like the robotic stapler or vessels and lymph nodes tracers, will allow us to reach better 
results in oncological and clinical terms. The introduction of new surgical robots from 
multiple different suppliers will reduce their cost, leading to the widespread of the 
robot-assisted approach for colonic resection.
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Core Tip: Precancerous changes in the lining of the oesophagus are easily missed 
during endoscopy as these lesions usually grow flat with only subtle change in colour, 
surface pattern and microvessel structure. Many factors impair the quality of 
endoscopy and subsequently the early detection of oesophageal cancer. Artificial 
intelligence (AI) solutions provide independence from the skills and experience of the 
operator in lesion recognition. Recent developments have introduced promising AI 
systems that will support the clinician in recognising, delineating and classifying 
precancerous and early cancerous changes during the endoscopy of the oesophagus in 
real-time.

Citation: Gao X, Braden B. Artificial intelligence in endoscopy: The challenges and future 

https://www.f6publishing.com
https://dx.doi.org/10.37126/aige.v2.i4.117
http://orcid.org/0000-0002-8103-6624
http://orcid.org/0000-0002-8103-6624
http://orcid.org/0000-0002-8103-6624
http://orcid.org/0000-0002-8534-6873
http://orcid.org/0000-0002-8534-6873
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:x.gao@mdx.ac.uk


Gao X et al. AI-endoscopy of the oesophagus

AIGE https://www.wjgnet.com 118 August 28, 2021 Volume 2 Issue 4

Kingdom

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: May 22, 2021 
Peer-review started: May 22, 2021 
First decision: June 18, 2021 
Revised: June 20, 2021 
Accepted: July 15, 2021 
Article in press: July 15, 2021 
Published online: August 28, 2021

P-Reviewer: Muneer A 
S-Editor: Liu M 
L-Editor: A 
P-Editor: Zhang YL

directions. Artif Intell Gastrointest Endosc 2021; 2(4): 117-126
URL: https://www.wjgnet.com/2689-7164/full/v2/i4/117.htm
DOI: https://dx.doi.org/10.37126/aige.v2.i4.117

INTRODUCTION
AI is the artificial intelligence exhibited by computer machines, which is in opposition 
to the natural intelligence that is displayed by human being, including consciousness 
and emotionality. With the advances on both computer hardware and software 
technology, at present, we are able to model about 600 K neurons and their interlaced 
connections, leading to processing over 100 million parameters. Since the human brain 
contains about 100 billion neurons[1], there is still a long way to go to before AI 
models are close enough to a human brain. Hence machine learning (ML) techniques 
are developed to perform task specific modelling that is in part supervised by human. 
While this supervised ML process is transparent and understandable, the human’s 
ability to comprehend large amounts of parameters, e.g., in millions, is limited, from a 
calculation point of view. Hence the application areas are restricted by employing 
semi- or fully supervised ML approaches. More recently, propelled by the advances of 
computer hardware, including large memory and graphics processing unit (GPU), task 
specific learning by computer itself, i.e., deep learning (DL), is realised, forming one of 
the most promising AI branches under the ML umbrella.

DL first made the headline when DL based computer program, AlphaGo, won the 
competition when playing board game Go with human players[2]. Since then, it has 
shown that nearly all winners in major competitions apply DL led methodologies, 
achieving state-of-the-art (SOTA) performance in nearly every domain, including 
natural language translation and image segmentation and classification. For example, 
the competition organised by Kaggle on detection of diabetics based on retinopathy 
has been won by DL based approach by a large margin in comparison with the other 
methods. While DL oriented methods have become a mainstream choice of meth-
odology, there are advantaged and disadvantages, especially in the medical field. For 
example, a DL-based approach requires large amount of training datasets, better in 
millions, which is hardly met in medical domains. In addition, the training in deep 
layers demands higher computational power, leading to real-time processing a great 
challenge.

Hence this paper aims to review the latest development of application of AI to 
endoscopy realm and is organised below. Section 2 details the SOTA DL techniques 
and their application to medical domains. Section 3 explores the challenges facing 
early detection of oesophageal diseases from endoscopy and current solutions of 
computer aided systems. Section 4 points out future directions in achieving accurate 
diagnosis of oesophageal diseases with summaries provided in conclusion.

STATE OF THE ART DL TECHNIQUE AND ITS APPLICATION TO MEDICAL 
FIELD
DL neural networks refer to a class of computing algorithms that can learn a hierarchy 
of features by establishing high-level attributes from low-level ones. One of the most 
popular models remains the convolutional neural network (CNN)[3], which comprises 
several (deep) layers of processing involving learnable operators (both linear and non-
linear), by automating the process of constructing discriminative information from 
learning hierarchies. In addition, recent advances in computer hardware technology (
e.g., the GPU) have propagated the implementation of CNNs in studying images. 
Usually, training a DL system to perform a task, e.g., classification, employs an arch-
itecture in an end-to-end training fashion. As a result, by input of a raw datum, the 
trained system will output a classification label. The training activity takes place by 
processing the input data with known annotations (labels, or segmented regions) with 
a goal to establish a model to differentiate these annotated labels/region automatically 
by fine-tuning the relationship between parameters without the intervention of 
humans.

Conventionally, training a DL model requires large datasets and substantial training 
time. For example, the pre-trained CNN classifier, AlexNet[4], is built upon 7 Layers, 
simulating 500000 (K) neurons with 60 million (M) parameters and 630 M connections, 

https://www.wjgnet.com/2689-7164/full/v2/i4/117.htm
https://dx.doi.org/10.37126/aige.v2.i4.117


Gao X et al. AI-endoscopy of the oesophagus

AIGE https://www.wjgnet.com 119 August 28, 2021 Volume 2 Issue 4

and trained on a subset (1.2 M with 1 K categories) of ImageNet with 15 M 2D images 
of 22 K categories, taking up 16 d on a CPU and 1.6 d on a GPU. Usually, more data 
will lead to more accurate systems. In the development of electric cars of Tesla’s 
Autopilot, the training takes place with more than 780 million miles[5] whereas for 
playing AlphaGo[6] game using a computer, the training employed more than 100 
million games.

DL-oriented approaches have recently been applied to medical images in a range of 
domains and achieved SOTA results. Although some doubt on DL has been casted on 
the ‘black box’ status while training without the embedding of human’s knowledge in 
the middle stages (e.g., hidden layers) apart from the initial input of labelled datasets, 
the performance of AI-led approached has been widely recognised, which is evidenced 
by the approval of medical devices by authorities. Between the year 2015 and 2020, 124 
(about 15%) medical devices (mainly software) that are AL/ML/DL-based have been 
approved in Europe with Conformité Européene -marked and United States Food and 
Drug administration agency[7], highlighting the importance of AI/ML to the medical 
field, including an imaging system that uses algorithms to give diagnostic information 
for skin cancer and a smart electrocardiogram device that estimates the probability of a 
heart attack[8]. Table 1 summaries the recent achievements of DL-oriented approaches 
in medical domains.

Recently, AI or more specific DL-based approaches have won a number of compet-
itions including the Kaggle competition on detection of diabetic retinopathy, 
segmentation of brain tumors from MRI images[9], analysis of severity of tuberculosis 
(TB) from high resolution 3D CT images in Image CLEFmed Competition[10] and 
detection of endoscopic artefacts from endoscopy video images in EAD2019[11] and 
EAD2020[12].

While applying AI/ML/DL approaches in medical domain, there are several 
challenges in need of responding. Firstly, in the medical domain, the number of 
datasets is limited, usually in hundreds whereas in other application, e.g., self-driving 
cars, datasets are in millions. Secondly, images are in multiple dimensions ranging 
from 2D to 5D (e.g., a moving heart at a specific location). And thirdly, perhaps the 
most outstanding obstacle is that medical data present subtle changes between normal 
and abnormal demanding the developed systems to be more precise.

Hence progress has been made to allow additional measures to be taken into 
account in order to apply DL techniques in medical fields. For example, for classi-
fication of 3D echocardiographic video images[13], a fused CNN architecture is 
established to incorporate both unsupervised CNN and hand-crafted features. For 
classification of 3D CT brain images[14], integration of both 2D and 3D CNN networks 
is in place. In addition, patch-based DL technique is designed to analyse 3D CT images 
for classification of TB types and analysis of multiple drug resistance[15,16] to 
overcome the sparse presence of diseased regions (< 10%). Another way to address 
small dataset issue is to employ transfer ML technique that is frequently implemented 
whereby a model developed built upon one dataset (e.g., ImageNet) for a specific task 
is reused as a starting point for a model on a different task with completely different 
datasets [e.g., coronavirus disease 2019 (COVID-19) computed tomography (CT) 
images]. Subsequently, most currently developed learning systems commence with a 
pre-trained model, such as VGG16[17] that is pre-trained on ImageNet datasets to 
extract initial feature maps that are then retrained to fit the new datasets and new 
tasks[18], capitalising on the accuracy a pre-trained model sustaining whilst saving 
considerable training times.

More recently, these AI techniques have been applied to predict COVID-19 virus 
and have demonstrated significant performance. With regard to medical images for 
diagnosis of COVID-19, CT and chest X-ray (CXR) represent the most common 
imaging tools. For 3D CT images, attention-based DL networks have shown effect-
iveness in classifying COVID-19 from normal subjects[19,20]. In relation to CXR, 
patch-based CNN is applied to study chest x-ray images[21] and to differentiate 
discriminatory features of COVID-19. In addition, COVID-Net[22], one of the pioneer 
studies, classifies COVID-19 from normal and pneumonia diseases through the 
application of a tailored DL network. To overcome the shortage of datasets, a number 
of researchers[23] apply generative adversarial neural network (GAN) to augment 
data first and subsequently to classify COVID-19.

In this paper, the application of AI/ML/DL techniques is exploited to endoscopy 
video images.
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Table 1 Examples of deep learning-based approaches in application of medical tasks

Ref. Medical domain Tasks

Muehlematter et al[7] Skin Diagnosis of skin cancer

United States Food and Drug Administration[8] Electrocardiogram Detection of heart attack

Pereira et al[9] Retinopathy Detection of diabetics

Gao et al[10] Pulmonary CT 
images

Detection of tuberculosis types and severity

Sharib et al[11], Ali et al[12] Endoscopy Detection of artefact.

Gao et al[14] CT Brain images Classification of Alzheimer’s disease

Gao et al[15,16] Pulmonary CT 
images

Analysis of multi-drug resistance

Gao et al[13] Ultrasound Classification of 3D echocardiographic video images

Wang et al[19], Ouyang et al[20] Chest CT Diagnosis of COVID-19

Oh et al[21], Wang et al[22], Waheed et al[23] Chest X-Ray Diagnosis of COVID-19

Everson et al[33], Horie et al[34], Ghatwary et al[35], Ohmori et 
al[38]

Endoscopy Still image based cancer detection for 2 classes (normal vs 
abnormal)

de Groof et al[32], Everson et al[35], He et al[41], Guo et al[42] Endoscopy Video detection of SCC in real time

Gao et al[44], Tomita et al[45] Endoscopy Explainable AI for early detection of SCC

CT: Computed tomography; AI: Artificial intelligence; SCC: Squamous cell cancer; COVID-19: Coronavirus disease 2019.

ENDOSCOPY FOR DIAGNOSIS OF OESOPHAGEAL DISEASES
The oesophagus is the muscular tube that carries food and liquids from mouth to the 
stomach. The symptoms of oesophageal disorders include chest or back pain or having 
trouble swallowing. The most common problem with the oesophagus is gastroeso-
phageal reflux disease which occurs when stomach contents frequently leak back, or 
reflux, into the oesophagus. The acidity of the fluids can irritate the lining of the 
oesophagus. Treatment of these disorders depends on the problem. Some problems get 
better with over-the-counter medicines or changes in diet. Others may need prescribed 
medicines or surgery.

As the 8th most common cancer worldwide[24], one of the most serious problems 
with regard to oesophagus is oesophageal cancer that constitutes the 6th leading cause 
of cancer-related death[25]. The main cancer types include adenocarcinoma and 
squamous cell carcinoma cancer (SCC). Globally, about 87% of all oesophageal cancers 
are in the form of SCC. The highest incidence rates often take place in Asia, the Middle 
East and Africa[26,27]. Early oesophageal cancer usually does not cause symptoms. At 
later stage, the symptoms might include swallowing difficulty, weight loss or 
continuous cough. Diagnosis of oesophageal cancer relies on imaging test, an upper 
endoscopy, and a biopsy.

Optical endoscopy or endoscopy is the primary diagnostic and therapeutic tool for 
management of gastrointestinal malignancies, in particular oesophagus cancers. As 
illustrated in Figure 1A, to perform an endoscopy procedure of monitoring oesopha-
gus, an endoscopic camera along with a lighting inspection is inserted into the food 
pipe of the patient in concern, whereby the appearance inside the oesophageal tube in 
the form of video images can be visualised on a computer monitor that is linked to the 
camera image processing system, which is depicted in Figure 1B.

While Figure 1 presents the surface of oesophageal walls, it also shows the artefact 
in a number of frames. This is because the movements of the inserted camera is 
confined within the limited space of the food pipe. The most common artefacts include 
colour misalignment (C), burry (B), saturation (S), and device (D) as demonstrated in 
Figure 1B.

Challenges for detecting oesophageal squamous cancer
Commonly the five-year survival rate of oesophagus cancer is less than 20% as 
reported in[28]. However, this rate can be improved significantly to more than 90% if 
the cancer is detected in its early stages due to the fact that at this early stage, 
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Figure 1 The endoscopy procedure. A: The oesophagus camera; B: A montage display of a clip of an endoscopic video including narrow-band imaging and 
conventional white light endoscopy (e.g., top 2 rows). C: Colour misalignment; S: Saturation; B: Blurry; D: Device.

oesophageal cancer can be treated endoscopically[29], e.g., by removing diseased 
tissues or administrating (spraying) treatment drugs. The challenge lies here is that 
precancerous stages (dysplasia in the oesophageal squamous epithelium) and early 
stages of SCC display subtle changes in appearance (e.g., colour, surface structure) and 
in microvasculature, which therefore are easily missed at the time of conventional 
white light endoscopy (WLE) as illustrated in Figure 2A-D. To overcome this 
shortcoming while viewing WLE images, narrow-band imaging (NBI) can be turned 
on to display only two wavelengths [415 nm (blue) and 540 nm (green)] (Figure 2E-G) 
to improve the visibility of those suspected lesions by filtering out the rest of colour 
bands. Another approach is dye-based chromoendoscopy, i.e. Lugol’s staining 
technique, which highlights dysplastic abnormalities by spraying iodine[30] 
(Figure 2H).

While NBI technique improves the visibility of the vascular network and surface 
structure, it mainly facilitates the detection of unique vascular and pit pattern 
morphology that are present in neoplastic lesions[31], whereas precancerous stages 
can take a variety of forms. With the Lugol’s staining approach, many patients react 
uncomfortably to the spray.

It is therefore of clinical priority to have a computer assisted system to help 
clinicians to detect and highlight those potential suspected regions for further examin-
ations. Currently, a number of promising results for computer-aided recognition of 
early neoplastic oesophageal lesions from endoscopic have been achieved based still 
images[32,33]. However, fewer less algorithms are applicable to real-time endoscopy 
to allow computer-aided decision-making during endoscopy at the point of 
examination. In addition, most of the existing studies focus mainly on the classification 
of endoscopic images between normal and abnormal stages with little work providing 
bounding boxes of the suspicious regions (detection) and delineating (segmentation).

Following challenges have been identified for the development of computerised 
algorithms for early detection of oesophageal cancers, which are inconspicuous 
changes on oesophageal surfaces artefacts of video images due to movement of 
endoscopic camera entering the food pipe limited time for patients undergoing each 
session of endoscopic procedure (about 20min) to minimise discomfort and 
invasiveness real time processing of video images to be in time to prompt endoscopist 
collecting biopsy samples while undertaking endoscopy limited datasets to train DL 
systems multiple modalities, including WLE, NBI and Lugol’s multiple classes, 
including LD, GD, SCC, normal, and artefact.
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Figure 2 Examples of endoscopic images where green and blue masks refer to low and high grade dysplasia respectively and red for 
squamous cell cancer. A-D: White light endoscopy; E-G: Narrow band imaging; H: Lugol’s. Mask colours: Green = low grade dysplasia; Blue = high grade 
dysplasia; Red = Squamous cell cancer.

Progress on the development of AI-based computer assisted supporting system for 
early detection of SCC
Progress on diagnosis of oesophageal cancer through the application of AI has been 
made by several research teams, mainly focusing on three directions, classification of 
abnormal from normal images, classification taking into consideration of processing 
speed, and detection of artefacts.

AI-based classification
Horie et al[34] conducted research to distinguish oesophageal cancers from non-cancer 
patients with an aim to reproduce diagnostic accuracy. While applying conventional 
CNN architecture to classify two classes, the researchers have achieved 98% sensitivity 
for cancer detection. In the study conducted by Ghatwary et al[35], researchers have 
evaluated several SOTA CNN approaches aiming to achieve early detection of SCC 
from high-definition WLE (HD-WLE) images and come to the conclusion that the 
approaches of single shot detection[36] and Faster R-CNN[37] perform better. They 
use one image modality of WLE. Again, two classes are investigated in their study, i.e., 
cancerous and normal regions. While these studies demonstrate high accuracy of 
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classification, the main focus of those research remains on the binary classification 
distinguishing abnormal from normal. Similarly, in the study by Ohmori et al[38], 
while the authors studied oesophageal lesions on several imaging modes including 
blue-laser images, only two classes of either cancer or non-cancer are classified by 
employing a deep neural network. For detection of any potential suspected regions 
regardless how small they are, segmentation of abnormal regions also plays a key role 
in supporting clinical decisions.

Classification with near real-time processing
In addition, in order to assist clinicians in early diagnosis during endoscopic 
procedures, real-time processing of videos, i.e., with processing speed of 24+ frames 
per second (fps) or at most 41 milliseconds (ms) per frame, should be realised. Everson 
et al[33] have achieved inference time between 26 to 37ms for an image of 696 × 308 
pixels. The work conducted by de Groof et al[32] requires 240ms to process each frame 
(i.e., 4.16 fps). For processing a video clip, frame processing and video playing back 
times all need to be considered to allow processed frames being played back 
seamlessly.

In order to ensure lesion detection takes place in time while patients undertaking 
endoscopy procedure, processing speed constitutes one of the key elements. Hence, 
comparisons are made to devalue the processing speed when detecting, classifying, 
and delineating multi-class (LD, HD, SCC) on multi-modality images (WLE, NBI, 
Lugol’s)[39] employing DL architectures of YOLOv3[40] and mask-CNN[41]. In this 
study by applying YOLOv3, the average processing time is in the range of 0.064-0.101 
s per frame, which leads to 10-15 frames per second while processing frames of 
endoscopic videos with a resolution of 1920 × 1080 pixels. This work was conducted 
under Windows 10 operating system with 1 GPU (GeForce GTX 1060). The averaged 
accuracies for classification and detection can be realised to 85% and 74% respectively. 
Since YOLOv3 only provides bounding boxes without masks, the approach of mask-
RCNN is utilised to delineate lesioned regions, producing classification, segmentation 
(masks) and bounding boxes. As a result, mask-RCNN achieves better detection result 
(i.e., bounding box) with 77% accuracy whereas the classification accuracy is similar to 
that obtained using YOLOYv3 with 84%. However, the processing speed applying 
mask-RCNN appears to be more than 10 times slower with an average of 1.2 s per 
frame, which is mainly stemmed from the time spent on the creation of masks. For the 
segmentation while employing mask-RCNN, the accuracy retains 63% measured on 
the overlapping regions between predicted and ground truth regions.

More recently, a research group by Guo et al[42] has developed a CAD system to aid 
decision making for early diagnosis of precancerous lesions. Their system can realise 
video processing time at 25 frames per second while applying narrow band images 
(NBI) that present clearer lesion structures than WLE. It appears that only one 
detection is identified for each frame, hence the study does not support localisation by 
bounding boxes.

Artefact detection
Due to the confined space to film the oesophageal tube, a number of artefacts are 
present, which not only hamper clinician’s visual interpretation but also mislead 
training AI-based systems. Therefore, endoscopic artefact detection challenges were 
organised in 2019 (EAD2019)[11] and 2020 (EAD2020)[12] aiming to find solutions to 
these challenges. As expected, all top performant teams apply DL-based approaches to 
detect (bounding box), classify and segment artefacts including bubbles, saturation, 
blurry and artefacts[43].

FUTURE WORK
While significant progress has been made towards development of AI-enhanced 
systems to support clinicians’ diagnosis, especially for early detection of oesophageal 
cancer, there is a still a considerable distance to go to benefit clinical diagnosis and to 
equip these assistant systems in an operative room. The following recommendations 
might shed light on future research directions.

Firstly, detection should be based on multi-classes, especially early onset lesions 
should be included. This is because most of the currently developed systems work on 
binary classifications between cancer and normal whereas cancers present most distin-
guishable visual features. At present, in 1 in 4 patients, the diagnosis of early stage 
oesophageal cancer is missed in their first visit[30]. Hence more work should emphasis 
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on the detection of early onset of SCC. Only in this way can patients’ 5-year survival 
rates be increased to 90% from current 20%.

In addition, to circumvent data shortage, conventional data augmentation 
techniques appear to increase system accuracy by cropping, colour shifting, resizing 
and rotating. Due to the subtle change of early stages of SCC, data augmentation by 
inclusion of fake datasets generated by employing generative adversarial DL networks 
(GAN) appear to decrease the performance in this regard. Furthermore, when training 
with data that include samples with artefact, data augmentation with colour shifting 
also tend to hamper the system performance. Computational spectral imaging appears 
to benefit in this regard.

Secondly, to increase the wide acceptance by clinicians, the developed systems 
should be explainable and interpretable to a certain degree. For example, case-based 
reasoning[44] or attention-based modelling[45] are a way forward.

Lastly, real-time process should be achieved before the developed systems can make 
any real impact. This is because a collection of biopsy takes place only during the time 
of endoscopy. If those suspicious regions are overlooked, the patients in concern will 
miss the chances of correct diagnosis and appropriate treatment.

CONCLUSION
In conclusion, this paper overviews the current development of AI-based computer 
assisted systems for supporting early diagnosis of oesophageal cancers and proposes 
several future directions, expediting the clinical implementation and hence benefiting 
both patient and clinician communities.
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Abstract
Each year, hepatocellular carcinoma is diagnosed in more than half a million 
people worldwide. It is the fifth most common cancer in men and the seventh 
most common cancer in women. Its diagnosis is currently made using imaging 
techniques, such as computed tomography and magnetic resonance imaging. For 
most cirrhotic patients, these methods are enough for diagnosis, foregoing the 
necessity of a liver biopsy. In order to improve outcomes and bypass obstacles, 
many companies and clinical centers have been trying to develop deep learning 
systems that could be able to diagnose and classify liver nodules in the cirrhotic 
liver, in which the neural networks are one of the most efficient approaches to 
accurately diagnose liver nodules. Despite the advances in deep learning systems 
for the diagnosis of imaging techniques, there are many issues that need better 
development in order to make such technologies more useful in daily practice.
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cirrhotic liver. Neural networks have become one of the most efficient approaches to 
accurately diagnose liver nodules using deep learning systems. Therefore, with the 
improvement of these techniques in the long term, they could be applicable in daily 
practice, modifying outcomes.
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INTRODUCTION
Each year, hepatocellular carcinoma (HCC) is diagnosed in more than half a million 
people worldwide, and it is the fifth most common cancer in men and the seventh 
most common cancer in women[1]. The greatest burden of this disease is in developing 
countries, such as Southeast Asia and Sub-Saharan Africa, where hepatitis B is 
endemic[2,3].

The incidence of HCC has been rising, unlike many other types of neoplasms[4]. 
This is expected to change, as the worldwide incidence of viral hepatitis B and C is 
expected to subdue in the next generation via vaccination and treatment, respectively. 
Nevertheless, the acute rise in the prevalence of nonalcoholic steatohepatitis in the last 
couple of decades might become a key risk factor for HCC and could become solely 
responsible for sustaining its incidence, both in the Western and Eastern population[5,
6].

Therefore, understanding the diagnostic and therapeutic approaches to this disease 
is essential, especially if we keep in mind the quintessential basics of prevention and 
early detection to improve results[7,8].

DIAGNOSIS OF HCC
HCC diagnosis is currently made using imaging techniques, such as computed 
tomography and magnetic resonance imaging (MRI). For most cirrhotic patients, these 
methods are enough for diagnosis, foregoing the necessity of a liver biopsy[9-11]. 
Nevertheless, the precise diagnosis of a liver nodule via imaging techniques is a rather 
challenging task, requiring a highly trained and specialized multidisciplinary team of 
radiologists, hepatologists and oncologists.

In order to facilitate communication between professionals of such a team, a system 
for reporting imaging of liver nodules has been developed and adopted world-
wide–the Liver Imaging Reporting And Data System (LI-RADS)[12]. The LI-RADS 
classification[13] can be found in Table 1. Although this was an attempt into standard-
ization, a high discordance rate among radiologists has been described[14]. Inter-rater 
reliability has varied greatly in studies, with Cohen’s kappa coefficients ranging from 
0.35 to 0.73[15-19]. This is expected, since this classification requires high-quality 
imaging and radiologists with vast experience[19,20]. Another very important 
argument is that where HCC incidence is higher (developing countries), highly 
specialized radiologists are scarcest despite a high volume of patients[21]. In order to 
improve outcomes and bypass these obstacles, many companies and clinical centers 
have been trying to develop deep learning systems (DLS) intended to accurately 
diagnose liver nodules in the cirrhotic liver[22].

DLS AND HCC
There are many DLS approaches available in the literature, where neural networks are 
gaining much attention currently as one of the best approaches to accurately diagnose 
liver nodules. Particularly, a DLS based on convolutional neural networks (CNN) 
could achieve such capacities after machine learning (ML) by using examples of 
images with and without the disease in question[8]. Unlike other DLS, CNN does not 
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Table 1 Liver imaging reporting and data system classification[13]

Category Description

LR-1 Definitely benign

LR-2 Probably benign

LR-3 Intermediate probability of HCC

LR-4 High probability of HCC, not 100%

LR-5 Definitely HCC

LR-5V Definite venous invasion regardless of other imaging features 

LR treated LR-5 lesion status post-locoregional treatment

LR-M Non-HCC malignancies that may occur in cirrhosis: metastases, lymphoma, cholangiocarcinoma, PTLD

HCC: Hepatocellular carcinoma; PTLD: Post-transplant lymphoproliferative disorder.

demand a clear definition of the lesion in order to interpret the images[23], which 
might lead to discovery of additional differential characteristics that are not currently 
known by radiologists[24]. Table 2 summarizes the main characteristics about the 
studies in diagnosis of liver tumors with images and clinical data using DLS.

There are several DLS applied in the recognition of image patterns[25,26], from 
which CNN-based approaches have achieved the highest performance[25]. While 
conventional deep learning algorithms require specific features to be extracted from 
images before the learning process, the application of CNNs requires rather a simpler 
feature representation based on the original image pixel intensities, also allowing to 
use all available image information in the learning process[27]. Moreover, CNNs can 
process extracted image features by several convolution filters, which allow analysis of 
the image at different granularities. Therefore, CNN is one of the most advanced 
techniques for artificial intelligence[25], which has been implemented with success for 
imaging and clinical interpretation in many medical fields. For example, CNN has 
been validated to identify liver tumors[28], the prognosis of esophageal variceal 
bleeding in cirrhotic patients[29], to predict the mortality of liver transplantation[30,
31], to predict the prognosis of HCC[32-37] Helicobacter pylori infection[38], colonic 
polyps[39], to help classify mammary cancer, head and neck cancer and gliomas[36] 
and to focal liver disease detection[40].

In the topic of liver tumors, many studies have shown that CNNs performed the 
same or better when compared to experienced radiologists. Hamm et al[8] developed 
and validated a CNN that classified six types of common hepatic lesions on multi-
phasic MRI, achieving better sensitivity and specificity when compared to board-
certified radiologists[8]. Nevertheless, this study was developed in only one center, 
using local and typical images, with no external validation. In a follow-up to this 
study, Wang et al[41] used a pre-trained CNN in a model-agonistic approach capable 
of distinguishing among several types of lesions and developed a post-hoc algorithm 
with the purpose of standardizing the lesion features used in the diagnosis. Such a tool 
could interact with other standardized scales, such as LI-RADS, validating auxiliary 
resources and improving clinical practicality[41]. This study found a sensitivity of 
82.9% for adequate identification of imaging characteristics when analyzing lesions 
from a databank. It is expected that this type of DLS that can be transparent regarding 
its steps towards the diagnosis will have better clinical acceptance.

Yamashita et al[14] developed a DLS applied to diagnose liver carcinoma by using 
two CNNs: a pre-trained network with an input of triple-phase images (trained with 
transfer learning from other CNNs) and a custom-made network with an input of 
quadruple-phase images (trained from scratch from internal data)[14]. However, by 
using external data from other pre-trained CNNs, Zech et al[42] showed that the 
performance of the DLS worsened when compared to CNNs trained with internal 
data, showing that it is not still proved that CNNs trained on X-rays from one hospital 
or one group of hospitals will work equally well at different hospitals. This has also 
been demonstrated for the detection of pneumonia in chest X-rays, where CNN 
performed worse when exposed to external data with a wide range of diseases and 
radiological findings[42]. Besides, such CNNs could be used for the determination of 
LI-RADS category, which has been shown to be possible[14], even from a small data 
set. Nevertheless, external validation seems to be a major obstacle for the dissem-
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Table 2 Main characteristics of the studies that evaluate deep learning for liver tumor diagnosis throughout images or clinical data

Ref. Country Deep learning 
method Accuracy Sensitivity Specificity AUROC

DLS 
performance 
compared 

Multicenter 
validation Conclusion

Hamm et 
al[8], 2019

United 
States

Proof-of-concept 
validation CNN

92% 92% 98% 0.992 Better than 
radiologists

Not done DLS was feasibility 
for classifying lesions 
with typical imaging 
features from six 
common hepatic 
lesion types

Yamashita 
et al[14], 
2020

United 
States

CNN 
architectures: 
custom-made 
network and 
transfer learning-
based network

60.4% NA NA LR-1/2: 
0.85. LR-3: 
0.90. LR-4: 
0.63. LR-5: 
0.82

Transfer 
learning model 
was better

Performed There is a feasibility 
of CNN for assigning 
LI-RADS categories 
from a relatively 
small dataset but 
highlights the 
challenges of model 
development and 
validation

Shi et al
[23], 2020

China Three CDNs Model-A: 
83.3%, B: 
81.1%, C: 
85.6% 

NA NA Model-A: 
0.925; B: 
0.862; C: 
0.920

Three model 
compared, A 
and C with 
better results

Not done Three-phase CT 
protocol without 
precontrast showed 
similar diagnosis 
accuracy as four-
phase protocol in 
differentiating HCC. 
It can reduce the 
radiation dose

Yasaka et 
al[25], 2018

Japan CNN 84% Category1: 
A: 71%; B: 
33%; C: 94%; 
D: 90%; E: 
100%

NA 0.92 Not applicable Not done Deep learning with 
CNN showed high 
diagnostic 
performance in 
differentiation of 
liver masses at 
dynamic CT

Trivizakis 
et al[28], 
2019

Greece 3D and 2D CNN 83% 93% 67% 0.80 Superior 
compared with 
2D CNN model

Not done 3D CNN architecture 
can bring significant 
benefit in DW-MRI 
liver discrimination 
and potentially in 
numerous other 
tissue classification 
problems based on 
tomographic data, 
especially in size-
limited, disease 
specific clinical 
datasets

Wang et al
[41], 2019

United 
States

Proof-of-concept 
“interpretable” 
CNN

88% 82.9% NA NA Not applicable Not done This interpretable 
deep learning system 
demonstrates proof 
of principle for 
illuminating portions 
of a pre-trained deep 
neural network’s 
decision-making, by 
analyzing inner 
layers and 
automatically 
describing features 
contributing to 
predictions

Frid-Adar 
et al[45], 
2018

Israel GANs Classic 
data: 
78.6%. 
Synthetic 
data: 85.7%

Classic data: 
78.6%. 
Synthetic 
data: 85.7%

Classic data: 
88.4%. 
Synthetic 
data: 92.4%

NA Synthetic data 
augmentation 
is better than 
classic data 
augmentation

Not done This approach to 
synthetic data 
augmentation can 
generalize to other 
medical classification 
applications and thus 
support radiologists’ 
efforts to improve 
diagnosis

Wang et al CNN with Clinical Combined The AUC of the Japan NA NA NA Not done
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[47], 2019 clinical data model: 
0.723. 
Model: A: 
0.788; B: 
0.805; C: 
0825.

model C 
present with 
better results 

combined model is 
about 0.825, which is 
much better than the 
models using clinical 
data only or CT 
image only

Sato et al
[48], 2019

Japan Fully connected 
neural network 
with 4 layers of 
neurons using 
only biomarkers, 
gradient boosting 
(non-linear 
model) and 
others

DLS: 
83.54%. 
Gradient 
boosting: 
87.34%

Gradient 
boosting: 
93.27%

Gradient 
boosting: 
75.93%

DLS: 
0.884. 
Gradient 
boosting: 
0.940

Deep learning 
was not the 
optimal 
classifier in the 
current study

Not done The gradient 
boosting model 
reduced the 
misclassification rate 
by about half 
compared with a 
single tumor marker. 
The model can be 
applied to various 
kinds of data and 
thus could 
potentially become a 
translational 
mechanism between 
academic research 
and clinical practice

Naeem et 
al[49], 2020

Pakistan MLP, SVM, RF, 
and J48 using 
ten-fold cross-
validation 

MLP: 99% NA NA MLP: 
0.983. 
SVM: 
0.966. RF: 
0.964. J48: 
0.959

MLP model 
present with 
better results

Radiopaedia 
dataset

Our proposed system 
has the capability to 
verify the results on 
different MRI and CT 
scan databases, 
which could help 
radiologists to 
diagnose liver tumors

1Five categories: A: Classic hepatocellular carcinomas; B: Malignant liver tumors other than classic and early hepatocellular carcinomas; C: Indeterminate 
masses or mass like lesions (including early hepatocellular carcinomas and dysplastic nodules) and rare benign liver masses other than hemangiomas and 
cysts; D: Hemangiomas; E: Cysts. AUC: Area under the curve; AUROC: Area under the receiver operating characteristic curve; CDNs: Convolutional dense 
networks CNN: Convolutional neural network; CT: Computed tomography; DLS: Deep learning system; DW-MRI: Diffusion weighted magnetic resonance 
imaging; GANs: Generative adversarial networks; HCC: Hepatocellular carcinoma; LI-RADS: Liver Imaging Reporting and Data System; LR: LI-RADS; 
MLP: Multiplayer perceptron; MRI: Magnetic resonance imaging; NA: Not available; RF: Random forest; SVM: Support vector machine.

ination of ML tools. There are many devices that produce images, and there are many 
ways to store data from these exams.

When compared to other DLS, another advantage of the use of CNNs is that it can 
improve the diagnosis by using less images for ML, reducing the time of exam and the 
amount of exposure to radiation[23,43,44]. Moreover, by generating additional 
training samples through data augmentation, the liver lesion classification sensitivity 
and accuracy are enhanced whilst less images are required in the ML process[45]. 
Moreover, the sensitivity, specificity, and accuracy can be manually calculated with 
the confusion matrix. In Table 3, we compare the best ML algorithms for classification
[46].

A DLS has been proposed for the prediction of HCC recurrence, using data from 
computed tomography combined with clinical information[47]. The triple layer model 
including imaging studies, clinical data and a filtering of this data has had the better 
performance, with an area under the receiver operating characteristic curve (AUROC) 
of 0.825. This is way more precise than the current tools are. Furthermore, Sato et al[48] 
proposed a ML model for predicting HCC using data obtained during clinical practice
[48]. The AUROC of the optimal hyperparameter, gradient boosting model, involving 
multiple laboratories and tumor markets was 0.940. However, when compared with 
single tumor markers the AUROC to the prediction of HCC for alpha-fetoprotein, des-
gamma-carboxy prothrombin and alpha-fetoprotein-L3 were 0.766, 0.644 and 0.683, 
respectively. Accordingly, a combination of multiple data can provide a reliable 
diagnostic tool.

A preliminary study has attempted to diagnose liver masses using a CNN without 
the aid of a radiologist, achieving a high accuracy to differentiate HCC from benign 
liver masses, achieving an AUROC of 0.92[25]. In another study, a CNN was designed 
to differentiate HCC from metastatic liver masses on MRI, but this time the DLS used a 
3-D representation, with higher accuracy (83.0% of the 3-D model vs 65.2% of the 2-D 
model)[28]. Nevertheless, the authors stressed that more studies with larger databanks 
are needed to verify the accuracy of this method. Besides that, Naeem et al[49] 
performed a hybrid-feature analysis between computed tomography scans and MRI 
for differentiation of liver tumors using DLS. The accuracy of multilayer perceptron 
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Table 3 Best machine learning algorithms for classification[36]

Algorithm Pros Cons

Naïve Bayes 
Classifier

Simple, easy and fast. Not sensitive to irrelevant features. Works great in 
practice. Needs less training data. For both multi-class and binary 
classification. Works with continuous and discrete data

Accepts every feature as independent. This is not always 
the truth

Decision 
Trees

Easy to understand. Easy to generate rules. There are almost no 
hyperparameters to be tuned. Complex decision tree models can be 
significantly simplified by its visualizations

Might suffer from overfitting. Does not easily work with 
nonnumerical data. Low prediction accuracy for a dataset 
in comparison with other algorithms. When there are 
many class labels, calculations can be complex

Support 
Vector 
Machines

Fast algorithm. Effective in high dimensional spaces. Great accuracy. Power 
and flexibility from kernels. Works very well with a clear margin of 
separation. Many applications

Does not perform well with large data sets. Not so simple 
to program. Does not perform so well when the data 
comes with more noise i.e. target classes are overlapping

Random 
Forest 
Classifier

The overfitting problem does not exist. Can be used for feature engineering 
i.e. for identifying the most important features among all available features in 
the training dataset. Runs very well on large databases. Extremely flexible 
and have very high accuracy. No need for preparation of the input data

Complexity. Requires a lot of computational resources. 
Time-consuming. Need to choose the number of trees

KNN 
Algorithm

Simple to understand and easy to implement. Zero to little training time. 
Works easily with multi-class data sets. Has good predictive power. Does 
well in practice

Computationally expensive testing phase. Can have 
skewed class distributions. The accuracy can be decreased 
when it comes to high-dimension data. Needs to define a 
value for the parameter k

KNN: K-nearest neighbors.

model for hepatoblastoma, cyst, hemangioma, hepatocellular adenoma, HCC and 
metastasis were 99.67%, 99.33%, 98.33%, 99.67%, 97.33% and 99.67% respectively[49]. 
This method can be helpful to reduce human error.

Therefore, despite the advances in DLS for the diagnosis of imaging techniques, 
there are many points that need better development in order to become useful and 
common tools in daily practice. These techniques currently require comparison with 
trained radiologists and the application for many databanks with atypical images to 
achieve better results and the use of less radiation for HCC diagnosis.

We previously presented several DLS applied to liver nodule diagnosis; however, 
they are not able to segment the nodule from the liver in the analyzed images. 
Moreover, automatic nodule segmentation in an image is a challenging task since this 
kind of lesion may show a high variability in shape, appearance and localization and is 
dependent on the equipment, contrast, lesion type, lesion stage and so on[50].

There are some liver nodule segmentation methods available in the literature, and in 
one of them[50] a fully convolutional network architecture was adopted to determine 
an approximation for where the nodule was located on the image. This CNN works on 
four resolution levels, learning local and global image features. The final nodule 
segmentation is obtained by using post-processing techniques and a random forest 
classifier, achieving a quality comparable to a human expert.

However, this method uses hand-crafted features that need the supervision of an 
expert. There are also automatic approaches that can segment the nodule[51], where a 
CNN is used for ML. To refine the segmentation results, this method applies 
conditional random fields to eliminate the false segmentation points in the seg-
mentation results, improving accuracy. However, liver nodule segmentation in general 
still needs improvements to achieve a better accuracy and practical applicability. 
Furthermore, it is necessary for more research effort in DLS to at the same time detect 
the tumor in the liver and segment it on the image.

CONCLUSION
In conclusion, the goal of statistical methods is to achieve conclusions about a 
population from data that are collected from a representative sample of that 
population, such as linear and logistic regression. Therefore, the objective is to 
comprehend the associations among variables. However, as reported by Sidey-
Gibbons and Sidey-Gibbons[36], the primary concern about DLS is an accurate 
prediction. Moreover, explaining the relationship between predictors and outcomes 
when the relationship is non-linear is difficult. However, in several DLS as improving 
navigation, translating documents or recognizing objects in videos, understanding the 
relationship between features and outcomes is less important[46]. In summary, 
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enhancement of DLS features will allow more accurate diagnosis in the medical field. 
For future research, we recommend to test deep learning methods in other datasets (
e.g., other hospitals), develop an easy usable interface and introduce the tool in daily 
medical practice.
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Abstract
Capsule endoscopy (CE) is a recently developed diagnostic method for diseases of 
the small bowel that is non-invasive, safe, and highly tolerable. Its role in patients 
with inflammatory bowel disease has been widely validated in suspected and 
established Crohn’s disease (CD) due to its ability to assess superficial lesions not 
detected by cross-sectional imaging and proximal lesions of the small bowel not 
evaluable by ileocolonoscopy. Because CE is a highly sensitive but less specific 
technique, differential diagnoses that can simulate CD must be considered, and its 
interpretation should be supported by other clinical and laboratory indicators. 
The use of validated scoring systems to characterize and estimate lesion severity 
(Lewis score, Capsule Endoscopy Crohn’s Disease Activity Index), as well as the 
standardization of the language used to define the lesions (Delphi Consensus), 
have reduced the interobserver variability in CE reading observed in clinical 
practice, allowing for the optimization of diagnoses and clinical management 
strategies. The appearance of the panenteric CE, the incorporation of artificial 
intelligence, magnetically-guided capsules, and tissue biopsies are elements that 
contribute to CE being a promising, unique diagnostic tool in digestive tract 
diseases.

Key Words: Capsule endoscopy; Inflammatory bowel disease; Crohn’s disease; Artificial 
intelligence; Capsule Endoscopy Crohn’s Disease Activity Index; Lewis score
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Citation: Pérez de Arce E, Quera R, Núñez F P, Araya R. Role of capsule endoscopy in 
inflammatory bowel disease: Anything new? Artif Intell Gastrointest Endosc 2021; 2(4): 136-
148
URL: https://www.wjgnet.com/2689-7164/full/v2/i4/136.htm
DOI: https://dx.doi.org/10.37126/aige.v2.i4.136

INTRODUCTION
Capsule endoscopy (CE) is a non-invasive diagnostic method of increasing 
development in the study of small bowel diseases. Since its appearance in 2000[1], it 
has shown its greatest utility in studying obscure gastrointestinal bleeding, celiac 
disorder, polyposis syndromes, and Crohn’s disease (CD). The role of CE in inflam-
matory bowel disease (IBD), especially in CD, has been extensively investigated in the 
diagnosis of suspected CD and the management of established CD for the evaluation 
of disease severity, extent, and response to treatment[2]. The main advantage of CE 
over ileocolonoscopy is its ability to visualize the mucosa of the proximal small bowel, 
and compared to imaging studies, its ability to detect superficial mucosal ulcerations 
missed on magnetic resonance enterography (MRE)[3] and computed tomography 
enterography[4]. This point is fundamental, considering that studies report that the 
involvement of the small bowel affects up to 66% of patients diagnosed with CD[5], 
corresponding to up to 90% of lesions located in the terminal ileum accessible by 
ileocolonoscopy[6]. Before CE development, the proximal small bowel was examined 
using indirect imaging methods such as radiography, cross-sectional imaging, and 
enteroscopy. Detection of lesions in the proximal small bowel is critical due to the 
implications for managing patients with CD. Jejunal lesions visualized by CE have 
been found in up to 56% of patients with CD, and these are associated with more 
severe disease and more rapid progression[7]. Moreover, the role of CE in ulcerative 
colitis (UC) is not well established because the evidence remains limited. In recent 
years, remarkable advances in CE technology and design, and the recent use of 
artificial intelligence, have improved its diagnostic yield in CD.

This review aims to assess the role of CE in IBD and discusses advances in the field 
and their implications for clinical practice going forward.

DIAGNOSTIC YIELD OF CE IN PATIENTS WITH CD
Studies comparing the diagnostic yield of CE with other diagnostic techniques in 
patients with CD conclude that CE has a high sensitivity[4,8] and a high negative 
predictive value (NPV)[9]. However, the diagnostic accuracy of CE has not been 
determined due to the lack of a gold standard for the diagnosis of CD. A meta-analysis
[8] found that CE had a better diagnostic yield than small bowel radiography [52% vs 
16%; incremental yield (IY) 32%, P < 0.0001, 95% confidence interval (CI) = 16%-48%], 
computed tomography enterography (68 vs 21%; IY 47%, w = 47%, P < 0.00001, 95%CI 
= 31%-63%), and ileocolonoscopy (47 vs 25%; IY 22%, P = 0.009, 95%CI = 5%-39%) in 
unsuspected CD patients. Similarly, in patients with established CD, CE also outper-
formed these diagnostic tests[8]. Furthermore, CE was superior to MRE in detecting 
small bowel lesions in patients with CD, mainly superficial and proximal lesions[10]. 
A subsequent meta-analysis of 13 studies[3] compared the diagnostic performance of 
CE with MRE and small bowel contrast ultrasound imaging for the evaluation of small 
bowel CD. These authors found that the diagnostic yield of CE was similar to MRE 
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[odds ratio (OR) 1.17; 95%CI: 0.83–1.67] and small bowel contrast ultrasound (OR 0.88; 
95%CI: 0.51–1.53) when detecting lesions in the small bowel for both established and 
suspected CD. However, CE was superior to MRE in detecting proximal small bowel 
lesions (OR 2.79; 95%CI: 1.2–6.48).

In a recent study among the pediatric population, CE was as sensitive as MRE in 
identifying inflammatory activity in the terminal ileum and the proximal small bowel; 
however, the distribution of small bowel inflammation was more extensive when 
characterized by CE[11].

In summary, the diagnostic yield of CE is at least similar to MRE for established CD 
in the evaluation of the small bowel. However, the main advantage of CE is the 
detection of the most proximal and superficial lesions missed on MRE. In suspected 
CD, CE is more useful when the ileocolonoscopy results are negative.

DIAGNOSTIC SCORES IN CE
At the moment, there are no established diagnostic criteria for the diagnosis of CD by 
CE. Currently, the Lewis score (LS)[12,13] and Capsule Endoscopy Crohn’s Disease 
Activity Index (CECDAI)[14] are the two validated diagnostic indexes for the 
evaluation of CE images. Their results must be interpreted in the patient’s clinical 
setting because lesions are not pathognomonic for CD and can be found in other 
inflammatory conditions. The LS was the first and most widely used index for 
evaluating inflammatory changes in the mucosa of the small intestine, which is 
divided into three tertiles according to the transit time estimated using CE. Each 
characteristic CD finding (villous edema, ulceration, stenosis) is assigned a score for 
each tertile. The final result of the LS corresponds to the tertile with the highest score, 
in addition to the stenoses score. A score < 135 is considered normal or clinically 
insignificant inflammation; from 135 to 790 indicates mild inflammation; and > 790 
moderate to severe inflammation[12]. The CECDAI evaluates the proximal and distal 
segments of the small bowel using an inflammation score (A; 0–5), an extent score (B; 
0–3), and a stricture score (C; 0–3), which are combined using the formula A × B + C. 
The total score (from 0–26) results from adding both the proximal and distal segments. 
A higher CECDAI score reflects more severe mucosal inflammation[14]. Although 
there is a good correlation between the LS and CECDAI (Pearson’s = 0.81, P = 0.0001)
[15], a recent study of 102 patients with CD found that CECDAI was superior to LS in 
reflecting active intestinal inflammation[16]. Recently, Eliakim et al[17] published the 
Eliakim score, a quantitative measure for PillCamTM Crohn’s with excellent reliability 
that significantly correlates with LS and fecal calprotectin (FC).

CE READING METHOD
So far, manual video review is the method of choice for the detection of lesions in CE. 
However, a fast-reading method is offered by TOP100, a new software tool in RAPID 
Reader version 9.0[18]. TOP100 automatically selects the 100 best images from the 
video with relevant findings, allowing the LS to be calculated quickly. An initial study 
that compared both reading techniques found agreement in 89.6% of cases calculated 
by TOP100 as having LS > 135 and those calculated by manual review of the video. 
Despite these encouraging results, TOP100 should not replace the traditional reading 
method but rather constitutes a complementary tool for quick LS calculation[18].

DESCRIPTION OF LESIONS WITH CE
Although studies have shown the usefulness of CE in identifying small bowel lesions, 
one of the difficulties in IBD studies was the lack of nomenclature and descriptions of 
small bowel lesions. The high interobserver variability in the interpretation and 
evaluation of the severity of the lesions has both clinical and research implications. 
Published in 2005, the Capsule Endoscopy Structured Terminology (CEST)[19] is an 
international consensus on standardized terminology for the findings or lesions 
detected by CE and also contains guidelines for reporting these findings (structure and 
content). However, the description of ulcerative and inflammatory lesions in the CEST 
is ambiguous and limited and, as such, fails to inform clinicians as to which type of 
lesion is most suspicious for the diagnosis of CD. Therefore, the international Delphi 
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consensus statement established seven definitions describing the ulcerative and 
inflammatory lesions seen in CD by CE: aphthoid erosion, deep ulceration, superficial 
ulceration, stenosis, edema, hyperemia, and denudation[20]. The use of a common 
language enables standardizing the results of clinical studies and improves patients’ 
health care (Figure 1).

The use of virtual chromoendoscopy, such as flexible spectral color enhancement 
(FICE), can also be applied in the revision of CE images to improve the visualization of 
any lesions. FICE enhances mucosal surface patterns using software to convert white 
light images to certain ranges of wavelengths (red, blue, green). A systematic review 
and meta-analysis of 13 studies found that the use of FICE failed to significantly 
improve the injury detection rate in CE[21].

RETENTION OF CE
The CE retention rate (not passed in more than two weeks post-ingestion or less if 
endoscopic or surgical intervention is required)[22] in the general population ranges 
from 1.0% to 2.5%[23]. Due to the potential occurrence of stenosis in patients with CD, 
the retention rate in patients with suspected CD is 2.35%, and with established CD is 
up to 4.63%[24]. The risk of EC retention can be estimated with a patency capsule 
(PillcamTM), a capsule with a lactose body, and a barium section for follow-up by 
fluoroscopy. The disintegration that induces deformation of the capsule or non-
expulsion after 30 h suggests small bowel stenosis[23]. The NPV of the patency capsule 
to predict CE retention ranges from 98% to 100%[25,26]. Given the high risk of CE 
retention in patients with established CD, and due to the impossibility of distin-
guishing high from low-risk retention in the clinic, the use of a patency capsule is 
recommended before CE[24].

CE IN IBD: CLINICAL SCENARIOS
The main clinical scenarios for the application of EC for IBD are both suspected and 
established CD. CE studies in UC are limited.

CE and suspected CD
The European Society of Gastrointestinal Endoscopy Clinical Guideline[23] and the 
Clinical practice guidelines for the use of CE[27] recommend the use of CE in patients 
with suspected CD and negative ileocolonoscopy[23,27] and imaging results[27] as a 
diagnostic method for the evaluation of the small bowel, in the absence of obstructive 
symptoms or known stricture.

In a study with 95 patients, CE excluded the diagnosis of CD if the result was 
negative (NPV of 96%). Only 3% of the cases with negative CEs were diagnosed with 
CD after 15 mo of follow-up[9]. Moreover, minor lesions detected by CE may be 
present in more than 10% of healthy subjects[28]. Non-steroidal anti-inflammatory 
drug (NSAID)-induced enteropathy is one of the main differential diagnoses of small 
bowel lesions. In this setting, lesions can appear as early as 2 wk from the onset of 
NSAID therapy[29,30]. Other differential diagnoses include radiation enteritis, 
ischemia, Bechet’s disease, lymphoma, and gastrointestinal infections[30]. Then, the 
interpretation of the findings from CE against suspected CD must be supported for 
other clinical elements due to the impossibility of obtaining tissue samples by CE.

The use of biomarkers as a screening method for intestinal inflammation, such as 
FC, could be useful in patients with suspected CD. FC is a cytosolic protein present in 
neutrophils that is released during inflammation; as such, its elevation in stool samples 
is a good indicator of intestinal inflammation[31]. Although it is highly sensitive, it is 
not specific since its levels can increase in IBD, colon cancer, ischemic colitis, and 
NSAID-induced enteropathy, among others[31]. Although FC has shown higher 
sensitivity and a stronger correlation with inflammatory activity in UC[32], in CD, the 
usefulness of FC is less established[33,34], particularly in the small bowel. However, 
recent studies have shown that FC could be a useful tool for selecting which patients 
should undergo CE for suspected CD when the ileocolonoscopy results are negative 
due to its ability to predict inflammatory activity in CE in patients with suspected CD
[35-37]. Monteiro et al[35] found a moderate positive correlation (r = 0.56, P < 0.0019) 
between FC and the LS. FC > 100 µg/g were correlated with LS > 135 in 89% of 
patients, showing a sensitivity of 78.6%, specificity of 87.9%, positive predictive value 
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Figure 1 Capsule endoscopy findings in Crohn’s disease. A: Deep ulceration; B: Aphthoid erosion (superficial lesion).

of 89.2%, and NPV of 76.3%[35]. Similar findings for FC[27,36,38] and, to a lesser 
degree, for CRP[36,38] were described by other authors. In a subsequent meta-analysis 
of 463 patients from seven studies, FC had a significant diagnostic accuracy in 
detecting small bowel CD, and with FC values < 50 µg/g, the probability of a positive 
diagnosis was very low[39].

Considering the available evidence and due to CE’s ability to diagnose early 
disease, in patients with suspected CD (typical symptoms, elevated fecal and plasma 
biomarkers, anemia, or extraintestinal manifestations of CD), CE should be performed 
even if ileocolonoscopy results are positive due to the need to evaluate proximal 
lesions that could determine prognosis and treatment strategies (Figure 2).

CE in established CD
The American consensus guidelines for the use of CE recommends its use in patients 
with established CD when: (1) Clinical features unexplained by ileocolonoscopy or 
imaging studies are present; (2) The assessment of small bowel mucosal healing (not 
evaluable by ileocolonoscopy) is needed; and (3) Small bowel recurrence of CD after 
colectomy is suspected, undiagnosed by ileocolonoscopy or imaging studies[27]. 
Recently, the European Crohn’s and Colitis Organisation and the European Society of 
Gastrointestinal and Abdominal Radiology guidelines recommend CE along with 
intestinal ultrasound and MRE for initial evaluation and follow-up of established CD
[40] (Figure 3).

CE in patients with CD with unexplained clinical features
The persistence of irritable bowel disease-like symptoms in patients with IBD in 
remission can occur in almost one-third of patients[41,42], being more frequent in 
patients with CD[42]. In a scenario where traditional diagnostics tests (ileocolonoscopy 
and cross-sectional imaging) are normal, CE could play a role in evaluating the small 
bowel to rule out disease activity as the symptom origin. Another clinical scenario is 
the study of persistent anemia in patients with CD in remission.

CE in follow-up and prediction of relapse
Studies have shown that the clinical response to treatment does not correlate with 
mucosal healing in patients with CD of the small bowel evaluated by CE[43]. 
Therefore, objective monitoring of disease activity in the small bowel is necessary. Hall 
et al[43] conducted the first prospective study in 43 patients with CD evaluated with 
CE at baseline and after 52 wk of treatment. The authors found that 90% of the patients 
had an active CD in their small bowel at baseline, yet only 65% at week 52 of 
treatment, with 42% of the patients achieving complete mucosal healing at week 52 (P 
< 0.0001, 95%CI: 0.62-0.22). Stenosis detected by CE was a poor prognostic factor for 
the response to treatment in this study[43]. In a subsequent prospective study in 43 
patients with CD in clinical remission, fecal biomarkers (FC, lactoferrin, and S100A12) 
were good predictors of mucosal healing assessed by CE, proving useful in monitoring 
the CD progression[44]. Finally, a recent prospective observational cohort study 
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Figure 2 Diagnostic algorithm recommended for suspected Crohn’s disease. MRE: Magnetic resonance enterography; CTE: Computed tomography 
enterography; FC: Fecal calprotectin; CRP: C-reactive protein; EIM: Extraintestinal manifestations.

Figure 3 Diagnostic algorithm recommended for established Crohn’s disease. T2T: Treat to target; MRE: Magnetic resonance enterography; CTE: 
Computed tomography enterography; CD: Crohn’s disease; SB: Small bowel.

assessed the ability of MRE, FC, and CE to predict flare-ups in patients with quiescent 
CD. CE predicted both short-term (3 mo) and long-term [24 mo, area under curve 
(AUC) 0.79, 95%CI: 0.66–0.88; P = 0.0001] flares, while FC only predicted short-term 
flares within 3 mo (AUC 0.81, 95%CI: 0.76-0.85), and MRE correlated with 2-year flare 
risk (AUC 0.71, 95%CI: 0.58-0.82; P = 0.024)[45].

CE and post-surgical recurrence of CD
In a recent study, Shiga et al[46] compared the postoperative follow-up for CE in 
patients with CD who underwent intestinal resection with the appearance of clinical 
symptoms for treatment adjustment. In the CE group, 87% residual or recurrent 
lesions were found at the 3rd postoperative month. Adjusted treatment based on EC 
findings revealed a strong protective effect (0.30, 0.10–0.75)[46]. This study did not 
compare the use of CE with ileocolonoscopy in the postoperative follow-up. However, 
it included 37% of small bowel resections not evaluable by ileocolonoscopy. Previous 
studies have shown post-surgical recurrence by CE that was not detected by 
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ileocolonoscopy, which has allowed active treatment in this group of patients[47]. 
Although ileocolonoscopy continues to be the gold standard for the search for 
postoperative recurrence, CE is an excellent complementary tool, if available, that 
improves diagnostic performance in this clinical setting.

CE and “treat to target” in CD
The “treat to target” strategy in CD[48] is based on the regular assessment of disease 
activity by using validated outcome measures and the subsequent adjustment of 
treatment of disease activity, following targets, where the main target is mucosal 
healing. A recent systematic review that included 47 studies highlighted CE as an 
objective method of evaluating CD activity that enables reclassifying patients with CD, 
monitoring the effect of medical treatment through the evaluation of mucosal healing, 
and detecting postoperative recurrence[49]. Owing to its diagnostic accuracy, CE could 
be incorporated into the “treat to target” management of patients with CD[49]. 
However, larger, randomized, controlled trials are necessary to confirm these findings.

CE and IBD – undefined
CE allows the classification of patients with a diagnosis of IBD-undefined (IBD-U)[50-
53], where the inflammatory involvement of the colon cannot differentiate between UC 
and CD. IBD-U occurs in up to 10% to 15% of patients[54], and at least 15% to 30% of 
patients will be reclassified as having CD during their disease[50,55]. Establishing this 
difference is important from a surgical point of view regarding the selection of the 
type of surgery and which complications to expect in patients with CD and, from the 
medical point of view, in the selection of the type of biological therapies.

CE and UC
The role of CE in the evaluation of the colonic mucosa in UC is unclear. Colon CE 
(CCE and later CCE-2 or second-generation) was developed in 2006 and was designed 
for non-invasive visualization of the colon[56]. A systematic review showed that the 
diagnostic accuracy of CCE in the colon is comparable with ileocolonoscopy in 
assessing the severity and extent of the disease[57]. However, some studies with a 
small number of patients have found a weak correlation between the findings from 
CCE and colonoscopy, which supports the latter for the evaluation of the mucosa in 
UC[58,59].

Regarding the evaluation of the small intestine in UC, a prospective observational 
study (capcolitis) on CE in 127 patients with known UC found that only 4% of the 
diagnoses changed to CD upon evaluating the small bowel with CE[60].

PANENTERIC CE
Panenteric CE (PCE) is a new type of CE similar to PillCamTM COLON 2 (CCE-2) and is 
currently known as PillCamTM Crohn’s System (Medtronic, Dublin, Ireland)[61]. 
PillCamTM Crohn’s System is designed for the evaluation of the mucosa of patients 
with CD. This capsule has a field of view that allows for a 344º view between both 
capsule heads to provide a pan-intestinal panoramic visualization. The rate frame of 
PillCamTM Crohn’s System ranges from 4–35 frames per second depending on the 
speed of the capsule into the gut and has an operating time of more than 12 h[61]. PCE 
was first described in a multicenter prospective study where it demonstrated a better 
diagnostic yield of PCE than ileocolonoscopy in 66 patients with active CD who 
underwent both modalities[62]. The authors found that the per-subject diagnostic 
yield rate for active CD lesions was 83.3% for PCE and 69.7% for ileocolonoscopy 
(yield difference 13.6%; 95%CI: 2.6%–24.7%), and the per-segment diagnostic yield rate 
was 40.6% for PCE and 32.7% for ileocolonoscopy (yield difference 7.9%; 95%CI: 
3.3%–12.4%)[62].

In an observational cohort study performed on 93 patients (established CD: 71 and 
suspected CD: 22), the use of PCE allowed to change the treatment in 38.7% of patients
[63]. Moreover, Montreal classification was up-staged in 33.8% of patients with 
established CD, and identifying proximal small bowel disease in 12.7% predicted 
treatment intensification[63]. A recent prospective, multicenter study in patients with 
established CD found that sensitivity of PCE was superior to MRE for proximal small 
bowel inflammation (97% vs 71%, P = 0.021) and similar to MRE and/or 
ileocolonoscopy in the terminal ileum and colon[64]. However, the overall sensitivity 
for active enteric inflammation for CE vs MRE and/or ileocolonoscopy was similar 
(94% vs 100%, P = 0.125), but the specificity was 74% vs 22%, respectively (P = 0.001)
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[64]. In the pediatric population, a prospective study in 48 children with CD found that 
PCE led to a change in therapy for 71% of patients at baseline and 23% at 24 wk. A 
“treat to target” strategy in these children led to increased mucosal healing and deep 
remission from 21% at baseline to 54% at week 24 and 58% at week 52[65]. A recent 
multicenter study[66] compared the 344° panoramic-view recorded by PillCamTM 

Crohn’s System (lesions detected by cameras A and B) with the standard 172°-view 
(lesions detected by one camera only) in 41 patients who underwent CE for suspected 
or established CD. The study found that the panoramic 344º-view increased small 
bowel CE accuracy vs the standard 172º-view, detecting a greater number of relevant 
lesions (56.1% vs 39.0%; P = 0.023), resulting in higher LS (222.8 vs 185.7; P = 0.031), 
and improved clinical management (48.8% vs 31.7%, P = 0.023)[66].

PCE, as the only study modality, could reduce costs associated with the evaluation 
of patients with CD, considering the need for MRE and ileocolonoscopy for the 
complete evaluation of the intestine in these patients. Furthermore, PCE is a safe 
method preferred by patients[64] that does not require sedation, representing 
advantages for the pediatric population[65].

Table 1 presents the main characteristics of the capsules used in IBD.
In summary, based on the available literature, CE is essential in evaluating patients 

with CD. The finding of lesions in the small bowel detected by CE and not observed in 
conventional studies (cross-sectional imaging, ileo-colonoscopy) determines changes 
in the Montreal classification in patients with CD[10]. This leads to a modification of 
the therapeutic strategies, with the earlier introduction of immunomodulators and/or 
biological therapy, improving the prognosis of these patients[67].

ARTIFICIAL INTELLIGENCE IN CE AND ITS APPLICATION IN IBD
In recent years, the development of artificial intelligence (AI) in medicine has made it 
possible to apply this technology to the automated identification of images on CE. AI, 
through deep learning artificial neural network (ANN) algorithms[68], facilitates 
image recognition according to which characteristics the algorithm chooses for itself 
based on what it considers best for that task, which requires much less time than 
conventional readings by endoscopists (5.9 min vs 96.6 min)[69]. Convolutional neural 
network (CNN), a type of ANN[68] applied to CE, has shown excellent performance 
for the detection of ulcers, polyps, celiac disease, and bleeding[69].

A recent study by Klang et al[70] evaluated the accuracy of CNN for the detection of 
ulcers in CD on CE for image sets from 49 patients. They reported an AUC of 0.99 for 
split images and accuracies ranging from 95.4% to 96.7%. The AUC for individual 
patients was 0.94 to 0.99[69]. Also, the use of CNN enabled characterizing the severity 
of ulcers on CE images in patients with CD with high accuracy in the detection of 
severe CD ulcerations and better differentiation between mild and severe ulceration 
(accuracy 0.91, 95%CI: 0.867-0.954) but a less accurate separation of moderate from 
severe: (Accuracy 0.78, 95%CI: 0.716–0.844) and mild vs moderate (accuracy 0.624, 
95%CI: 0.547–0.701)[71]. Undoubtedly, this technology provides accurate and rapid 
detection of ulcers from CE images, thereby decreasing reading times. Moreover, deep 
neural networks are highly accurate in detecting stenosis in CE images (accuracy 
93.5%) and differentiating between stenosis and healthy mucosa (AUC 0.989), stenosis, 
and all ulcers (AUC 0.942), and stenosis and different degrees of ulcer severity[72]. In 
another area, recent studies suggest that CNN would allow for the automatic 
evaluation of the degree of intestinal cleansing in CE studies, which could serve as a 
means of comparing different intestinal preparation methods and thus design 
recommendations[73].

Despite the encouraging results on the use of AI on CE in IBD, prospective studies 
are necessary to evaluate its usefulness in the diagnosis and follow-up in CD.

OTHER NEWS IN CE
Because CE passage is passive and dependent on the peristalsis of the intestine, only 
80 to 90% of patients have their entire intestine visualized. Thus, up to 30% of minor 
injuries may not be seen during the study[23]. One of the new challenges is the 
possibility of directing the navigation of the CE in the intestine. Magnetically-assisted 
CE (MACE) has been tested as a screening tool in gastric cancer[74], Barrett’s 
esophagus, and esophageal varix[75]. MACE has generated results comparable with 
esophagogastroduodenoscopy in detecting focal lesions[76] and the study of iron 
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Table 1 Characteristics of available capsule endoscopy systems for the study of inflammatory bowel disease

SB CE Colon CE PillCam CrohnÒ

(Pillcam SB3Ò)

Dimensions 26 mm × 11 mm 32 mm × 11 mm 32.3 mm ± 0.5 mm × 11.6 mm 

Weight 3.0 g 2.9 g 2.9 g

Camera One 2-one at each end 2-one at each end

Field of view 156º ISO-8600-3 344º: 172° ISO-8600-3 per camera 344º: 172° ISO-8600-3 per camera

Frame rate 2-6 fps (2-6) 4-35 fps (AFR) 4-35 fps (AFR)

operating time ≥ 8 or longer (max.15) 10 h Minimum of 10 hr

Operating temperature 20-40 ºC 20-40 ºC 20-40 ºC

SB: Small bowel; CE: Capsule endoscopy; AFR: Adaptative frame rate; fps: Frames per second.

deficiency anemia[77]; however, it has not been evaluated in patients with IBD.
Other CE prototypes in development include biopsy[78] and drug delivery[79] 

capabilities, which could be clinically relevant for patients with IBD in the future.

CONCLUSION
The use of CE has played a fundamental role in evaluating the small bowel of patients 
with IBD, mainly in those with suspected CD and established CD. The development of 
new types of capsules, such as the panenteric capsule, and the integration of AI into 
CE image analysis, have improved the visualization and automated the identification 
of lesions in the digestive tract using a non-invasive, safe, highly tolerated method. 
Treatment optimization for patients with CD, thanks to CE findings, has improved the 
course of the disease. More studies are needed to support the use of CE in the 
evaluation of all patients with CD.
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Abstract
Traditional endoscopic techniques for Barrett’s esophagus (BE) surveillance relied 
on factor of probability as endoscopists performed cumbersome random biopsies 
of low yield. Optical coherence tomography (OCT) is a novel technique based on 
tissue light interference and is set to break conventional barriers. OCT was 
initially introduced in ophthalmology but was soon adopted by other areas of 
medicine. When applied to endoscopy, OCT can render images of the superficial 
layers of the gastrointestinal tract and is highly sensitive in detecting dysplasia in 
BE. Volumetric laser endomicroscopy is a second generation OCT endoscope 
device which is able to identify buried glands after ablation. Addition of artificial 
intelligence to OCT has rendered it more productive. The newer additions to OCT 
such as angiogram and laser marking will increase the accuracy of investigation. 
In spite of the few inevitable drawbacks associated with the technology, it 
presently outperforms all newer endoscopic techniques for the surveillance of BE.

Key Words: Optical coherence tomography; Volume laser endomicroscopy; Esophageal 
adenocarcinoma; Endoscopy; Gastroesophageal reflux disease
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Core Tip: Surveillance of Barrett’s esophagus for dysplasia is a long-debated and 
intensively researched topic. Optical coherence tomography (OCT) is a breakthrough 
technology in the medical field that enables the visualization of the layers of a structure 
in an office setting. The application of artificial intelligence (AI) to OCT endoscopy is 
the latest addition to the armamentarium of endoscopists. AI-based diagnostic 
algorithm scores are proven to be better than clinical scores. The accuracy of AI-based 
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system is enhanced further by using color coding software and convolutional neural 
networks. Multi-center randomized control trials validating these technologies is the 
need of the hour.
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INTRODUCTION
Barrett’s esophagus (BE) is defined as columnar metaplasia (or intestinal metaplasia, 
as some authorities prefer to call it) of the stratified squamous epithelium, lining the 
lower end of the esophagus[1]. It occurs due to chronic exposure of the distal eso-
phagus to acidic contents as a part of gastroesophageal reflux disease. The prevalence 
of BE is around 1.6% in general population[2]. It varies in different regions of the 
world with increased prevalence in the western population. Apart from the gastroeso-
phageal reflux disease, other risk factors for BE include advancing age, male gender, 
obesity, tobacco consumption, and Caucasian race[3].

Once the diagnosis of BE is made based on endoscopy, the endoscopist evaluates its 
extent as per the Prague C and M classification. All cases of BE should be biopsied at 
multiple levels as per the Seattle biopsy protocol to identify the presence of dysplasia 
or adenocarcinoma, which is the main concern. Traditional endoscopic techniques 
relied on the chance factor as endoscopists performed random cumbersome biopsies of 
low yield. The early diagnosis of esophageal neoplasia is important because it helps to 
initiate curative therapies for cancer. This has directed the path of research to identify 
newer techniques and technologies to increase the accuracy of biopsies during 
endoscopy[4]. Optical coherence tomography (OCT) is one of such techniques which is 
set to break conventional barriers.

Humans are prone to do errors due to fatigue, increased workload and working 
environment. The use of artificial intelligence (AI) has grown rapidly in the past few 
decades from using technology to perform simple household tasks to piloting aircraft. 
AI is also adopted into the medical field in the form of surgical robots in the last 
decade. The application of AI to endoscopy is widely researched as newer techno-
logies of endoscopy are being developed. The purpose of this narrative review is to 
enlighten the readers about the principles of OCT and its application to BE and the use 
of AI in the OCT endoscopy.

OCT
OCT is an imaging modality based on light interference. It is used to produce cross-
sectional images of a structure based on the differential properties of various layers 
with respect to light refraction[5]. The basic setup of OCT consists of a light source 
which is a low-coherence semiconductor super-luminescent diode. The light is split 
into two beams by an optical splitter: A reference beam and a sample beam. The 
reference beam is reflected back by a mirror, while the sample beam is focused onto 
the tissue to be imaged. Based on the refractory properties of the layers of the tissue, 
the sample beam is variably reflected back. The reflected light from the reference and 
sample beams are coupled in a coupler, producing interference patterns which are 
analyzed, after which a cross-sectional image is created (Figure 1). The axial resolution 
of OCT will depend on the spectral band of the light source with large spectral bands 
having better resolution[5]. The transverse resolution is independent of axial 
resolution and will depend on the numerical aperture of the lens through which the 
light beam passes[5].

The conventional OCT technology is based on the time-domain (TD-OCT) concept 
in which variations in the time of the travelled beams of light are analyzed to form an 
image with the help of moving mirrors. The technology has now evolved into the 
Fourier-domain (FD-OCT) which uses static mirrors so an image is formed based on 
the modulations in the source spectrum. The FD-OCT has higher image acquisition 

https://www.wjgnet.com/2689-7164/full/v2/i4/149.htm
https://dx.doi.org/10.37126/aige.v2.i4.149


Gupta N et al. OCT in BE

AIGE https://www.wjgnet.com 151 August 28, 2021 Volume 2 Issue 4

Figure 1 Basic schematic representation of the principle of optical coherence tomography.

speeds than TD-OCT. The resolution of FD-OCT is 1-3 μm, which is far better than the 
10 μm resolution of TD-OCT. The FD-OCT is based on either charge-coupled device-
based image acquisition (spectral-domain OCT) or photodetector-based image 
detection with longer wavelengths of the light source (swept-source OCT)[6]. The 
swept-source OCT has better resolution and twice the image acquisition speed 
compared to spectral-domain OCT[6].

OCT was initially introduced in ophthalmology as a method to visualize the layers 
of the retina but it was soon adopted into other areas of medicine. Nevertheless, the 
utility of OCT is still only the “tip of the iceberg” with its vast potential yet to be 
unleashed. When applied to endoscopy, OCT is able to render images of the 
superficial layers of the gastrointestinal tract. OCT can be combined with either a 
forward-viewing endoscope or a side-viewing endoscope, with the forward-viewing 
endoscope enabling the sampling of the desired tissue[7]. There are two main types of 
OCT endoscopes: The proximal scanning rotating endoscope, which is less expensive 
but has lower capture speed, and the distal scanning endoscope, which comes with a 
micromotor, acquires images at a much higher speed but comes at a cost higher than 
the proximal scanning endoscope[7].

Volumetric laser endomicroscopy (VLE) is a second generation OCT endoscope 
device presently used for imaging[8] (Figure 2). It uses balloon centered imaging 
probes for imaging with a high axial resolution of 7 μm and a depth of 3 mm, which is 
10 times greater compared to the standard endoscopic ultrasound[9]. It images the 
esophagus in six-centimeter intervals and is quite fast in image acquisition compared 
to the conventional OCT. It images about 1200 cross-sectional areas in the six cm span 
which are reconstructed. The application of VLE in BE is mainly to diagnose 
suspicious areas of mucosal abnormalities and in the post-treatment surveillance of BE 
and early neoplastic lesions.

PREDICTIVE FEATURES OF DYSPLASIA IN BE USING OCT/VLE AND THE 
USE OF AI
The absence of layering, surface maturation, and gland maturation are the three 
independent predictive factors for dysplasia in OCT imaging. The surface maturation 
is assessed in terms of the surface OCT signal, which if equal or stronger than the sub-
surface signal, is predictive of dysplasia. Gland maturation is assessed in terms of the 
number of abnormal glands identified in imaging with more than five glands 
predictive of dysplasia.

AI is based on computer algorithms which provide result based on the received 
input. The algorithms are created based on previous OCT images which are correlated 
with histological diagnosis. The AI system has been automated to evolve with time, 
based on its previous results just as a human brain which is known as machine 
learning. Machine learning may be supervised, semi-supervised or unsupervised. 
Hence, AI is said to as good as a human brain and sometimes even better. Swager et al
[10] created an AI-based VLE prediction score using multivariable logistic regression 
analysis of 60 VLE images[10]. The components of the score were: the lack of layering 
of superficial layers, higher surface intensity than sub-surface intensity, and the 
number of abnormal glands (Table 1). A cut-off score of ≥ 8 was predicative of 
dysplasia with a sensitivity and specificity of 83% and 71% respectively[10]. This VLE 
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Table 1 Volumetric laser endomicroscopy prediction score and diagnostic algorithm[9]

VLE prediction score

Parameter Score

Layering present-more than 50% 0Layering

Layering present–less than 50% 8

Surface signal < subsurface signal 0

Surface signal = subsurface signal 6

Surface signal

Surface signal > subsurface signal 8

0-5 0Abnormal glands

> 5 5

VLE-diagnostic algorithm

Abnormal glands > 5 DysplasiaMucosal layer partial effacement

Abnormal glands ≤ 5 Non-dysplasia

Surface intensity > subsurface intensity DysplasiaMucosal layer complete effacement

Surface intensity ≤ subsurface intensity Non-dysplasia

VLE: Volumetric laser endomicroscopy.

Figure 2 Parts of the volumetric laser endomicroscopy device.

prediction score based on computer-based VLE diagnostic algorithm (VLE-DA) was 
more sensitive (86%) and specific (88%) than the clinical VLE predication score[10-12]. 
The components of VLE-DA are listed in Table 1.

Outcomes of first generation OCT
The traditional OCT criteria were found to be 97% sensitive and 93% specific when 
applied to BE surveillance prospectively in a study by Poneros et al[13] in 2001. The 
accuracy of OCT in diagnosing dysplasia in BE was about 78% in a double-blinded 
study by Isenberg et al[14] in 2005. The utility of OCT in diagnosing dysplasia was also 
confirmed in a study by Evans et al[15] using the dysplasia index which was 83% 
sensitive and 75% specific[15]. Chen et al[16] used ultra-high-resolution OCT for 
diagnosing dysplasia and adenocarcinoma with an accuracy of 83.3% and 100% 
respectively[16]. The utility of ultra-high-resolution OCT was also confirmed in the 
study by Cobb et al[17].
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OUTCOMES OF SECOND-GENERATION OCT
The imaging capability of three-dimensional OCT is faster than conventional OCT. Its 
utility was proved in the study by Adler et al[18]. VLE has been found to be more 
sensitive and specific than random blind biopsies as per Seattle protocol. The role of 
VLE was initially proved in a study by Vakoc et al[19], while in a study by Trindade et 
al[20] five out of six patients were upstaged due to the diagnosis of dysplasia which 
was missed by conventional endoscopy and narrow band imaging[19,20]. The 
sensitivity and specificity of VLE in diagnosing dysplasia was 86% and 88% in a study 
by Leggett et al[11]. In a study by Jain et al[21], VLE was compared with histology; the 
sensitivity in diagnosing BE-related dysplasia was 50% and specificity was 47.1%[21]. 
The false negative rate was 2.9%. Even though the specificity was low in the study, it is 
far better than the random biopsies. In a systematic review by Kohli et al[22], the 
sensitivity and specificity of OCT in diagnosing dysplasia and early malignancy was in 
the ranges of 68%-83% and 75%-82% respectively[22].

POST-ABLATION BE SURVEILLANCE USING OCT
A variety of ablation therapies such as radiofrequency ablation, cryoablation, laser 
ablation, photodynamic therapy, etc. are used for the treatment of high-grade BE 
dysplasia and insitu carcinoma. One of the main disadvantages of these procedures is 
the occurrence of buried glands or subsquamous glandular structures[23,24]. These 
glands, present beneath the epithelium, may undergo dysplastic changes and turn 
malignant, but are not visualized on routine endoscopy as the surface epithelium 
appears normal. OCT is one of the few techniques able to diagnose buried glands[25]. 
The sensitivity and specificity in identifying buried glands in post-treatment BE using 
VLE was shown to be 92.3% and 23.8% in a study by Jain et al[21]. However, in the 
study by Swager et al[26], most of the subsquamous glandular structures identified on 
OCT were histologically normal[26]. The role of OCT in post-ablative surveillance was 
also proved in a study by Benjamin et al[27].

Doppler-OCT is useful in detecting the changes in the sub-mucosal micro-vascular 
network, which further improves the accuracy of OCT. Doppler-OCT is also used to 
detect the change in the vascular pattern during post-photodynamic therapy for BE. 
Doppler-OCT helps to monitor the dose of photodynamic therapy[28,29].

NEWER ADDITIONS TO OCT
As neoplasia is associated with neovascularization, this is one of the features used to 
distinguish benign epithelium form malignancy. OCT angiography is used to image 
the subsurface vasculature without the need for any contrast and is useful in 
diagnosing neoplasia[30]. The changes in the OCT signal caused by the movement of 
erythrocytes are quantified by calculating the decorrelation. However, this makes the 
OCT signal susceptible to artifacts due to respiratory and cardiac movements.

As a balloon is used to augment the scanning speed in VLE, simultaneous sampling 
of mucosa is not possible. The biopsy taken from the mucosa may not be the original 
mucosa intended on imaging. This disadvantage is overcome by using laser marking 
along with VLE. The laser fiber is used for creating point coagulation spots which act 
as markers for biopsy after the scan[31,32]. Simultaneous laser coagulation along with 
OCT is also possible[32].

The addition of deep learning to AI-based OCT systems further improved the 
accuracy of prediction of BE related dysplasia. Deep learning is one kind of machine 
learning where multiple diagnostic algorithms are layered to form a convolutional 
neural network just as a human brain. The output from one layer is fed to the next 
layer which further processes it and feeds it to the next layer to produce a refined 
output[33]. Deep learning also increases the speed of processing the images.

Trindade et al[34] used an AI-based new software termed intelligent real-time image 
segmentation for BE surveillance. The software provided color codes based on the 
degree of dysplasia using the previously mentioned VLE prediction features[34]. A 
multi-center randomized control trial with trial number NCT03814824 is going on, 
validating the above software, the results of which are awaited.
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OCT IN COMPARISON TO OTHER ADVANCED ENDOSCOPIC IMAGING
VLE has been proved to be better than confocal laser endomicroscopy (CLE), which is 
one of the emerging endoscopic imaging techniques for BE and associated dysplasia. 
The sensitivity and specificity of VLE using VLE-DA were higher than CLE in a study 
by Leggett et al[11]. CLE is also disadvantageous as it requires injection of contrast into 
the blood and a limited field of view and imaging depth[35]. Endoscopic ultrasound is 
an excellent imaging modality for assessing the depth of tumor involvement. 
However, its accuracy is lower in differentiating early invasive carcinoma (T1 and T2). 
In a study by Kahn et al[36], VLE showed good results in differentiating T1a lesions 
from T1b lesions[36].

DRAWBACKS OF OCT
All technologies have one or more drawbacks and OCT is no exception. The main 
drawback of OCT is the absence of real-time imaging, as it is the case with other 
imaging modalities. Even the fastest OCT technology and probes require seconds to 
process the reflected waves. VLE requires balloon apposition and although perfect 
apposition is theoretically possible, it is rare in reality. The mucous layer on the surface 
epithelium, the contractions of the esophagus, and the presence of blood interfere with 
the close approximation resulting in artifacts. Simultaneous biopsy is not possible 
during imaging in VLE probes, which may pose a difficulty in biopsying the originally 
identified area. Movement artifacts are common in Doppler-OCT and OCT 
angiography. Unlike endoscopic ultrasound, OCT cannot be used to image the deeper 
tissues. Finally, cost is one of the main limiting factors for the widespread usage in all 
institutes.

The application of AI to OCT requires inputs from a large number of experts with 
expertise in this new technology who are fewer at present. The accuracy of the AI 
systems is based on the data fed which requires advanced imaging techniques and 
higher quality images. As AI and machine learning require input from humans it may 
be the victim of human errors during data input. Much of the knowledge of AI in OCT 
is based on pilot studies and case series. The number of randomized control trials and 
multi-center trials are very less due to concerns raised by ethical committees.

CONCLUSION
Surveillance of BE for dysplasia is a long-debated and intensively researched topic. 
OCT is a breakthrough technology in the medical field that enables the visualization of 
the layers of a structure in an office setting. The application of OCT to endoscopy is the 
latest addition to the armamentarium of endoscopists. Even though earlier OCT 
instruments were slow to image tissues, the newer AI-based technologies are fast 
enough to add only a few minutes to the conventional endoscopy time and are highly 
accurate compared to clinical diagnosis. OCT is highly sensitive in detecting dysplasia 
in BE. Even though the specificity in diagnosing dysplasia is lower, it is far more 
efficient than the conventional blind biopsy protocol. An especially important feature 
is the ability of VLE to identify buried glands after ablation. The newer additions to 
OCT, such as angiogram and laser marking, will help to increase the accuracy of the 
investigation. The AI software systems and deep learning systems are evolving over 
time. However, the utility of AI to BE surveillance is still at its bud stage. In spite of the 
few unavoidable drawbacks associated with the technology, AI-based OCT system is 
presently the most promising of all newer endoscopic techniques for the surveillance 
of BE.
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Abstract
Artificial intelligence is a technology that processes and analyzes information with 
reproducibility and accuracy. Its application in medicine, especially in the field of 
gastroenterology, has great potential to facilitate in diagnosis of various disease 
states. Currently, the role of artificial intelligence as it pertains to colonoscopy 
revolves around enhanced polyp detection and characterization. The aim of this 
article is to review the current and potential future applications of artificial 
intelligence for enhanced quality of detection for colorectal neoplasia.
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Core Tip: The application of artificial intelligence (AI) in medicine and gastroen-
terology has demonstrated to date, broad utility in both disease diagnostics and 
management. The utility of AI in colonoscopy has recently demonstrated enhanced 
polyp detection and characterization, assessment for mucosal healing and identification 
of dysplasia associated with inflammatory bowel disease, as well as assessment of the 
quality of bowel preparation for colonoscopy.
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INTRODUCTION
Although artificial intelligence (AI) was first conceptually presented as a means for 
machines to mechanize human actions and cognitive thinking approximately 70 years 
ago, the current applications are exponentially broad[1,2]. This technology is 
predicated on the fact that AI is able to exhibit certain facets of human intelligence 
which is derived from techniques known as machine learning (ML) and deep learning 
(DL)[3]. Machine learning involves automatically building mathematical algorithms 
from data sets and forming decisions with or without human supervision[3,4]. When 
an algorithm is able to learn predictive models, it can use new inputs to form outputs
[3,5,6]. These models can be combined to form artificial neural networks (ANN) which 
mimic the neural network of a brain. Each algorithm assumes the role of a neuron and 
when grouped together form a network that interacts with different neurons[5,6]. 
ANN have pathways from inputs to outputs with hidden layers in between to help 
make the inner nodes more efficient and improve the overall network[3]. DL is a 
domain in which AI process a vast amount of data and self-creates algorithms that 
interconnect the nodes of ANN with interplay in the hidden neural layers[3,6]. 
Researchers have been using DL to form computer aided diagnosis systems (CADS) to 
aid in polyp detection and characterization[7]. Two major CAD systems have been 
developed so far: CADe (termed for computer-aided detection) and CADx (termed for 
computer-aided characterization). CADe uses white-light endoscopy for image 
analysis with the ultimate goal to increase the number of adenomas found in each 
colonoscopy thereby increasing adenoma detection rate (ADR) and reducing the rate 
of missed polyps[8]. CADx is designed to characterize polyps found during 
colonoscopy, thereby improving the accuracy of optical biopsies and reducing 
unnecessary polypectomy for non-neoplastic lesions[8]. It predominantly uses 
magnifying narrow band imaging (mNBI) but could also incorporate a variety of other 
techniques including white-light endoscopy, magnifying chromoendoscopy, confocal 
laser endomicroscopy, spectroscopy, and autofluorescence endoscopy[8]. In addition, 
AI technology is being applied to evaluate the quality of bowel preparation for 
colonoscopy. In this review, we outline the role of AI in polyp detection and character-
ization of dysplastic and/or neoplastic lesions. We also provide the current data on 
utility of AI in evaluation of bowel preparation and future directions of AI in 
colonoscopy.

POLYP DETECTION AND CADS 
Polyps are abnormal tissue growths that arise in the colon that carry malignant 
potential[9]. Polyps are detected during colonoscopy but can sometimes be missed due 
to a variety of factors e.g., age of patient, diminutive polyp size, failure to reach cecum, 
quality of bowel preparation, and experience of endoscopist[10,11]. The ADR is the 
frequency to detect one or more adenomatous polyps during screening colonoscopy 
and is a universal quality metric with the strongest association to the development of 
interval cancers[11-13]. Owing to growing concerns of increasing rates of colon cancer 
in adults, CADS have been developed and utilized to aid in polyp detection and 
ultimately increase ADR[9,14-18].

Multiple research groups have created automated computer vision methods to help 
analyze and detect polyps during colonoscopy[15-19] (Figure 1). One of the first 
groups to use CADe to help detect polyps relied mainly on still images from videos for 
analysis and polyp detection[20]. Their CADe used 24 videos containing a total of 31 
polyps which were detectable in at least 1 frame[20]. The study demonstrated a 
sensitivity and specificity for polyp detection of 70.4% and 72.4%, respectively[20]. 
Another group created a model using DL which used 546 short videos and 73 full 
length videos to create the software and train it with positive and negative polyp 
containing videos[21]. The sensitivity and specificity were 90% and 63.3% respectively, 
showing that the model could potentially be used in a clinical setting to help minimize 
polyp miss rates during colonoscopy[21]. A recent, prospective multicenter trial 
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Figure 1 Polyp detection without artificial intelligence (top) and with artificial intelligence (bottom).

comparing a CADe system to trained endoscopists and found that endoscopists (with 
a baseline ADR ≥ 35%) and CADe had a diagnostic accuracy of 98.2% and 96.5% 
respectively[22]. This led the authors to conclude that CADe was non-inferior to expert 
endoscopists[22].

As CADe systems proved to enhance polyp detection, researchers then focused on 
the role of AI on improving ADR. A prospective, randomized, controlled study 
evaluated 1058 patients undergoing colonoscopy with or without an automatic polyp 
detection system (APDS) found a relative ADR increase of 43.3% (29.1% vs 20.3%) 
using the APDS compared to standard colonoscopy[23]. This increase was most 
prevalent amongst diminutive adenomas which suggests that smaller adenomas are 
more likely to be missed compared to larger adenomas[23]. To expand upon the 
previous study, a double-blinded, randomized, controlled trial was performed with a 
sham group to control for operational bias[24]. There was a 21.4% relative increase of 
ADR in the CADe group (34% vs 28%) when compared to controls[24]. They found the 
delta to be higher amongst endoscopists with lower baseline ADR than compared to 
those with a higher baseline ADR[24]. A recent meta-analysis which included 6 
randomized controlled trials comparing AI-assisted-colonoscopy to non-AI-assisted-
colonoscopy totaling 5058 patients showed a significantly higher ADR within the AI 
group compared to the control (33.7% vs 22.9%, respectively)[25]. The study also 
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showed an overall increase in detecting proximal colon adenomas with the AI-
assisted-group compared to the control group (23.4% vs 14.5%, respectively)[25]. This 
is important because currently colorectal cancer (CRC) screening with colonoscopy 
alone is not effective at reducing proximal colon cancers and their mortality[25,26]. 
Thus while improving ADR is vital to preventing CRC, particularly in the proximal 
colon, the use of AI alongside endoscopists can be an ideal starting point. The CADe 
systems could be used as second observers, as second observers have been shown to 
increase ADR[27].

POLYP CHARACTERIZATION AND AI
Worldwide, CRC is the third most common cancer diagnosed in men and second in 
women[28]. Overall incidence of CRC in the United States has decreased due to lower 
smoking rates, early colonoscopy screenings, and early identification of patient-
specific risk factors, but recent studies have reported a global increase in incidence of 
CRC in the younger population[29,30]. Thus, the latest endoscopic research is aimed 
towards techniques to better identify polyps and allow for real-time polyp histologic 
characterization which provides vital information for early intervention through 
endoscopic or surgical resection[31].

Studies evaluating AI and histologic assessment with optical biopsy have been a 
targeted focus- in particular for a “resect and discard” strategy for diminutive polyps 
< 6 mm, thereby avoiding the costs of pathology for low risk lesions[32] (Figure 2) top.

Several studies have found the range of sensitivity and specificity for polyp 
detection and characterization to be 70%-98% and 63%-98%, respectively[33]. An 
optical biopsy allows for differentiation of polyp type based on certain features. For 
example, NBI is an image-enhanced type of endoscopy that is used to identify 
microstructures and capillaries of the mucosal epithelium and allow for prediction of 
histologic features of colorectal polyps. Use of this advanced imaging technique often 
requires expertise to differentiate hyperplastic polyps from neoplastic polyps with 
high accuracy. AI systems offer a standardization of polyp characterization that 
overcomes the expertise or training differences across endoscopists[34]. Analysis of a 
CAD system with a deep neural network for analyzing NBI of diminutive polyps 
found that the AI system could identify neoplastic or hyperplastic polyps with 96.3% 
sensitivity and 78.1% specificity[34]. The system was compared to both novice (in-
training) and expert endoscopists and it was notable that over half of the novice 
endoscopists classified polyps with a negative-predictive value of ranging from 73%-
84%, compared to 91.5% of the system. The system also had a shorter time-to-classi-
fication compared to both expert and novice endoscopists (P < 0.05)[34]. Other groups 
have had similar results showing promise for AI-identification. One study compared 
images of 225 polyps as evaluated by a CAD system compared to diagnosis by 
endoscopists[35]. The polyps were classified using the Kudo and NBI international 
colorectal endoscopic classifications which found of the 225 polyps, 142 were 
dysplastic and 83 were non-dysplastic after endoscopy. The results of the CAD system 
correctly classified 205 polyps (91.1% of the total) and correctly delineated 131/142 
(92%) as dysplastic and 74/83 (89%) as non-dysplastic[35]. There were no statistically 
significant differences in histologic prediction between the CAD system and 
endoscopic assessment, thus they concluded that a computer vision system based on 
characterization of the polyp surface could accurately predict polyp histology[35].

AI IN INFLAMMATORY BOWEL DISEASE
Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and 
ulcerative colitis (UC), is a chronic inflammatory gastrointestinal tract disorder that 
remains a global concern as incidence in developing countries continues to grow[36]. 
Studies with AI and large datasets of endoscopic images have shown that AI can 
improve the way to diagnose IBD, evaluate the severity of disease, and follow-up 
treatments and provide follow-up[37]. Initial diagnosis of IBD through endoscopic 
evaluation remains a challenge due to wide ranging clinical manifestations of IBD and 
overlap across subtypes. Key endoscopic features of IBD include ulceration or 
erosions, and AI has shown its role in better predicting the need for further evaluation
[38]. Aoki et al[38] have demonstrated that a deep convolutional neural network 
(DCNN) can be trained to detect erosions and ulcerations seen on wireless capsule 
endoscopy. Their system evaluated 10440 images in 233 s and demonstrated an area 
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Figure 2 Optical pathology of detected polyps with associated probability utilizing artificial intelligence. A-C: Hyperplastic polyps; D-F: 
Adenomas; G-I: Sessile serrated adenomas.

under the curve for detection of erosions and ulcerations at 0.958 (95% confidence 
interval: 0.947-0.968) and sensitivity, specificity and accuracy of 88%, 90% and 90%, 
respectively[38]. Tong et al[39] studied 6399 patients with UC, CD, or intestinal 
tuberculosis (ITB) who underwent colonoscopies. The colonoscopic images were then 
translated in the form of free texts and Random Forest (RF) and CNN were utilized to 
distinguish the three diseases. Diagnostic sensitivity and specificity of RF in 
UC/CD/ITB were 0.89/0.84, 0.83/0.82, and 0.72/0.77, respectively and that of CNN 
were 0.99/0.97, 0.87/0.83, and 0.52/0.81, respectively[39]. The studies showed that AI 
can be employed to discern and diagnose IBD although real-time diagnostic utility 
remains an area to develop[39].

Determining disease severity and activity in IBD can be done using endoscopic 
inflammation indices, and histologic scores. However, there can be certain flaws to 
using these methodologies such as intra-observer and inter-observer variability[40]. 
Studies using AI have been done to help control some of these factors. Bossuyt et al[41] 
developed a red density (RD) system, which was specific for endoscopic and histologic 
disease activity in UC patients, to help mitigate the observer bias by endoscopists. The 
study had 29 UC patients compared against 6 control patients using the RD score 
gained during colonoscopy[41]. The RD score was linked to the Robart’s Histologic 
Index in a multiple regression analysis and was found to be correlated with the RHI (r 
= 0.65, P < 0.00002) from the patients with UC[41]. The RD score from the control 
patients was also correlated with the RHI, Mayo endoscopic subscores (r = 0.76, P < 
0.0001) and UC Endoscopic Index of Severity scores (r = 0.74, P < 0.0001), showing it 
correlated well with the validated tests[41]. A study done by Takenaka et al[40] used 
their algorithm, the deep neural network for evaluation of UC (DNUC), in 875 UC 
patients. The DNUC was developed using 40785 images from colonoscopies and 6885 
biopsy results from 2012 UC patients[40]. The DNUC was able to identify patients in 
endoscopic remission with 90.1% accuracy and a kappa coefficient of 0.798 and 
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identify patients in histologic remission with 92.2% accuracy and a kappa coefficient of 
0.895 between the biopsy result and the DNUC[40]. The researchers concluded that it 
could be used to identify patients in remission and potentially avoid mucosal biopsy 
and analysis[40]. Stidham et al[42] created a 159-layer CNN using 16514 images from 
3082 UC patients to help categorize patients groups in remission (Mayo subscore 0 or 
1) to moderate to severe (Mayo subscore 2 or 3). The CNN had a positive predictive 
value of 0.87, sensitivity 83% and specificity of 96%[42]. The CNN was compared 
against human reviewers when assigned the Mayo scores, with a kappa coefficient of 
0.84 for the CNN vs 0.86 for the human reviewers[42]. This shows that the AI is 
effectively able to help categorize patients into their respective severity stages[42].

Patients with IBD are at increased risk for CRC and it is important for these patients 
to undergo frequent surveillance. Guidelines differ depending on the medical society, 
but overall recommended intervals are from 1-5 years[43]. IBD surveillance guidelines 
and whether AI has a role in CRC detection has yet to be directly studied. A large 
reason for the lack of studies of AI and IBD has been due to IBD being an exclusion 
criterion for many of the early colonoscopic AI studies. A single study by Uttam et al
[44] was one of the first to look at IBD and cancer risk, utilizing a three-dimensional 
nanoscale nuclear architecture mapping (nanoNAM). By analyzing 103 patients with 
IBD that were undergoing colonoscopy, their system measured for submicroscopic 
alterations in the intrinsic nuclear structure within epithelial cells and compared 
findings to histologic biopsies after 3 years. They found that their nanoNAM could 
identify colonic neoplasia with an AUC of 0.87, sensitivity of .81, and specificity of 0.82
[44]. Additional studies on AI in IBD surveillance could help personalize surveillance 
strategies or guidelines for patients.

AI SYSTEMS IN PRACTICE
The most recent developments in clinical practice have been with the approval of 
several different devices: EndoBRAIN (Olympus Corporation, Tokyo, Japan), GI 
Genius (Cosmo Pharmaceuticals N.V., Dublin, Ireland), and WavSTAT4 (SpectraS-
cience, Inc., San Diego, CA)[33,45,46]. EndoBRAIN is an AI-based system that is able to 
analyze pathologic features present on endoscopic imaging, and was developed and 
approved as a class II medical device[33]. In a multi-center study to determine the 
diagnostic accuracy of EndoBRAIN, their system was trained using 69142 endocyto-
scopic images taken from patients that had undergone endoscopy and the EndoBRAIN 
was compared against 30 endoscopists (20 trainees, 10 experts) with primary outcome 
of assessing neoplastic vs non-neoplastic lesions. Their results found that EndoBRAIN 
distinguished neoplastic from non-neoplastic lesions with 96.9% sensitivity, 94.3% 
specificity, which was higher than trainees and comparable to experts[33].

GI Genius has been approved by the FDA as an AI device to detect colonic lesions. 
GI Genius was compared to experienced endoscopists for colorectal polyp detection
[45]. This system was trained on a data-set using white-light endoscopy videos in a 
randomized controlled trial and primarily looked at reaction time on a lesion as the 
primary endpoint. Results demonstrated that the AI system held a faster reaction time 
when compared with endoscopists in 82% of cases[45].

Lastly, laser-induced fluorescence spectroscopy using a WavSTAT4 optical biopsy 
system was evaluated for efficacy in accurately assessing the histology of colorectal 
polyps with the end goal of reducing time, costs, and risks of resecting diminutive 
colorectal polyps[46]. The overall accuracy of predicting polyp histology was 84.7%, 
sensitivity of 81.8%, specificity of 85.2%, and negative predictive value of 96.1%. This 
suggests that the system is accurate enough to allow distal colorectal polyps to be left 
in place and nearly reaches the American Society for Gastrointestinal Endoscopy 
threshold for resecting and discarding without pathologic assessment[46].

REAL-TIME EVALUATION FOR INVASIVE CANCER
AI prediction of invasive cancers through the utilization of real-time identification of 
colorectal polyps has the potential to improve CRC screening by limiting misses and 
improving outcomes, especially in geographic regions with less access to highly 
trained endoscopists.

Advanced imaging techniques during endoscopy (without AI) to provide a real-
time prediction of lesion pathology and depth of invasion has been widely used. For 
example, a study assessed white-light endoscopy, mNBI, magnifying chromoen-
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doscopy, and probe-based confocal laser endomicroscopy in real-time, in order to 
evaluate and classify the depth of invasion for colorectal lesions[31]. Of the 22 
colorectal lesions, 7 were adenomas, 10 were intramucosal cancers, and 5 had deep 
submucosal invasion or deeper involvement. Sensitivity and specificity of white light 
endoscopy and mNBI were both 60% and 94%, respectively. Magnifying chromoen-
doscopy and probe-based confocal laser endomicroscopy were both 80 and 94%, 
respectively[31].

With data showing reliability of advanced imaging techniques in real-time for 
information to establish a diagnosis and drive intervention pursuits, integration of AI 
systems with these advanced imaging techniques has been a growing research focus. 
A recent review assessed 5 retrospective studies with wide ranging sensitivities 
ranging from 67.5%-88.2% sensitivity and 77.9%-98.9% specificity in finding invasive 
cancers[47]. The prediction of cancer invasion was made using magnified NBI, 
confocal laser endomicroscopy, white light endoscopy, or endocytoscopy. As the 
numbers reflect, more studies are needed to better evaluate how AI can provide more 
stable reliability in evaluation for invasive cancers[47].

COLON PREPARATION AND AI 
Bowel preparation significantly impacts the diagnostic accuracy of colonoscopies. 
Inadequate colon preparation impairs visualization of the mucosa, thus causing 
missed lesions, extended operative time, and increased need for repeat colonoscopies
[48,49]. Approximately 10%-25% of all colonoscopies are inadequately prepared[50-
52]. In addition, studies have shown that suboptimal bowel preparation can result in 
an adenoma miss rate ranging from 35%-42%[51]. A recent prospective study 
discovered that variable bowel preparation quality did not have a measurable effect on 
their AI algorithm’s ability to accurately identify colonic polyps. However, the applic-
ability of these findings is limited by the study’s small sample size of 50[50]. Therefore, 
the ability of AI to accurately identify polyps in suboptimal conditions remains 
unknown.

Currently several scales, the most validated and reliable of which is the Boston 
Preparation Scale (BBPS), are used to assess bowel preparation quality[52]. Scores 
ranging from 0-3 are individually given to the right, transverse, and left colon during 
colonoscope withdrawal. A bowel preparation that fails to have a total BPPS score of ≥ 
2 would mandate a repeat colonoscopy before the recommended 10-year interval 
(assuming a normal colon)[48,52]. Despite BBPS being deemed the most reliable scale, 
it cannot accurately account for variability in bowel preparation throughout the entire 
colon or gradients in adequacy of cleansing. Although BBPS takes into consideration 
the 3 colonic segments, regions of the same segment can be variably cleansed[49,52]. 
Therefore, 1 score cannot accurately represent one-third of the colon. This limitation is 
further exacerbated by the scale’s susceptibility to subjectivity, as individual expe-
riences can shape how physicians interpret data[49].

Most studies indicating the efficacy of AI in detecting colonic polyps utilized still 
images and videos of ideally prepared colons to train and test their AI software[53]. A 
DCNN known as ENDOANGEL (Wuhan EndoAngel Medical Technology Company, 
Wuhan, China) provided real-time and objective BPPS scores during the colonoscopy. 
ENDOANGEL circumvents subjective bias via DL using thousands of images scored 
by different endoscopists[49]. Additionally, the DCNN simultaneously calculates a 
real-time BPPS score every 30 s throughout the colonoscopy and provides a cumu-
lative ratio of the different stages, thus providing an accurate assessment of 
preparation quality throughout the colon[49,52]. Through DL and frequent scoring, 
ENDOANGEL proved to be far more effective than endoscopists at accurate BPPS 
scoring (93.33% vs 75.91%)[49].

Overall, poor bowel preparation quality significantly increases ADR[51]. Although 
previous applications of CADe and CADx have been used to optimize endoscopic 
image quality and mucosal visualization, ENDOANGEL, is the first utilization of AI to 
provide objective, real-time assessments of bowel preparation quality throughout the 
entire colon[49,54,55]. Another laboratory group has since independently released 
promising results regarding use of their AI to assess bowel preparation, indicating AI’s 
potential to improve the preparatory-phase of colonoscopy[56].
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FUTURE DIRECTIONS
A significant problem in the advanced imaging trials is that these are done by experts 
and accordingly, there is good inter-observer performance characteristics. These 
results are not the same when evaluated by lesser experienced providers[57]. 
Application of AI as a formidable tool seems logical and promising to mitigate the 
costs and learning curves for application of these newer techniques across the broad 
and variable ranges of providers.

Although the current CADS provide promising results, a larger data sets for 
training the systems can provide improvements in sensitivity and specificity in 
addition to minimizing false positives and false negatives. The larger training data also 
increases the burden of annotations, however, this can be overcome by an annotation 
software which incorporates a DL module. The precise effects of AI once it is widely 
available in clinical practices are yet to be determined, but the evidence based on 
EndoBRAIN, GI Genius, and WavSTAT4 are hopeful that significant benefits in 
training gastroenterologist and diagnosing a polyp can be expected.

Additional areas of future study include better detection of various polyps 
(adenomatous, non-adenomatous, dysplastic), evaluation of lesion size and 
morphology, and distinguishing invasive involvement. Additionally, further study is 
necessary to evaluate the adequacy of large polyp resection (i.e., margins free of 
adenomatous change). Much of the early data to date have used AI systems which are 
based on algorithms using still-images and videos[58]. Larger-scale studies can help us 
better understand real-time use of AI to show how it compares to endoscopists. Due to 
the novelty of AI systems in the clinical setting, study methods utilizing AI have also 
largely been done in a non-blinded manner, which may interfere with how the 
endoscopists perform the procedure, leading to a component of observation bias.

Finally, the future of AI lies in simplifying the tool for utilization by many 
endoscopists as well as achieving the goal of treatment. One way to overcome the 
complexity is incorporating the CADS into the colonoscope and display instead of 
existing as a separate entity that needs to be installed. In addition, an improved model 
for distinguishing polyps and invasion can further facilitate treatment process for 
patients.

CONCLUSION
AI is widely applied and utilized in endoscopy and continues to be researched to 
augment the accuracy of screening and differentiation of neoplastic vs non-neoplastic 
lesions. Although this wide applicability and active investigations are encouraging, 
further work is needed to solidify the integration of AI into everyday practice. Real-
time diagnosis using AI remains technically challenging, however, these recent studies 
exemplify promising advancements for enhanced quality assessment and management 
of colonic disease.
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Abstract
Pancreatic malignancy still becomes a major global problem and is considered as 
one of the most lethal cancers in the field of gastroenterology. Most patients come 
in the late stage of the disease due to organ’s location, and until now the treatment 
result is still far away from satisfaction. Early detection is still the main key for 
good, prolonged survival. However, discerning from other types of tumor 
sometimes is not easy. Endoscopic ultrasound (EUS) is still the best tool for 
pancreatic assessment, whereas fine-needle aspiration biopsy (FNAB) is 
considered as the cornerstone for further management of pancreatic malignancy. 
Several conditions have become a concern for EUS-FNAB procedure, such as risk 
of bleeding, pancreatitis, and even needle track-seeding. Recently, an artificial 
intelligence innovation, such as EUS elastography has been developed to improve 
diagnostic accuracy in pancreatic lesions evaluation. Studies have shown the 
promising results of EUS elastography in improving diagnostic accuracy, as well 
as discerning from other tumor types. However, more studies are still needed 
with further considerations, such as adequate operator training, expertise, 
availability, and its cost-effectiveness in comparison to other imaging options.

Key Words: Pancreatic malignancy; Pancreatic lesion; Endoscopic ultrasound; Fine needle 
aspiration biopsy; Elastography
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Core Tip: The application of endoscopic ultrasound (EUS) elastography is one of the 
most potential roles of artificial intelligence in pancreaticobiliary disorders. EUS 
elastography becomes a promising method to evaluate pancreatic lesions by providing 
information of tissue elasticity, which may correlate with malignant characteristics. 
Incomplete elastographic delineation, especially in large tumor size, as well as 
compelling intra-/inter-observer variability also still become limitations in performing 
adequate EUS elastography examination on pancreatic lesions.
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INTRODUCTION
Pancreatic malignancy is still considered as the most lethal cancer in the field of 
gastroenterology. Based on Global Cancer Observatory database 2020, it is still holding 
the 12th rank of the most common malignancies all over the world. The mortality rate 
related to pancreatic cancer has increased more than double within 27 years. The 
survival rate has also been considered far from satisfaction with regards to the 
standard treatment development. In Asian population, the incidence and mortality 
related to pancreatic cancer are also quite high (47.1% and 48.1%, respectively)[1]. 
Most of the patients are diagnosed at the late stage due to organ’s location, non-
specific clinical manifestation in early stages, and the absence of simple screening test 
with high accuracy for early stages of the disease.

In the evaluation of pancreatic cancer, imaging has been proven to play a central 
and critical role. Imaging modalities are expected to be able to detect and characterize 
the tumor mass, evaluate local and vascular involvement, evaluate lymphatic and 
perineural invasion, and find any metastases. Evolution of diagnostic imaging 
examination such as abdominal computed tomography (CT) scan and magnetic 
resonance imaging (MRI) have shown good accuracy for detecting pancreatic lesion. A 
single-center retrospective study in 140 subjects showed higher sensitivity (89.5% vs 
81.4%) and specificity (63.4% vs 43%) in MRI compared to CT-scan for evaluating 
pancreatic adenocarcinoma. This study also showed that only 14% of the patients were 
diagnosed in the early stage at the time of diagnosis. Nevertheless, in the setting of 
small size of tumor mass, uncooperative patients for MRI evaluation, availability of 
MRI, lack of clinicians’ familiarity with the device, and high cost of performing MRI 
still become the limitations in clinical practice. Additionally, from the same study, the 
highest diagnostic accuracy was shown by endoscopic ultrasound (EUS) (sensitivity 
97.5%, specificity 90.3%). In the new era of the old instrument development, EUS has 
become the cornerstone in pancreatic malignancy, as it has a high sensitivity for small 
tumor size (< 2 cm), evaluation of staging (including the presence of lymph nodes, 
ascites, liver metastasis, and vascular involvement), and to perform direct tissue 
sampling[2,3]. However, in the conditions of uncertain malignant condition, normal 
tumor markers level, and possibility of needle tract seeding, a dilemmatic condition on 
whether the lesion should be punctured or not may arise[3-5]. Learning from the non-
invasive tool development, such as elasticity evaluation, has opened a better insight 
for utilizing EUS, not only for diagnostic purpose, but also for therapeutic purpose.

PRINCIPLE OF ENDOSCOPIC ULTRASOUND ELASTOGRAPHY
The concept of utilizing combination of elastography (EG) and ultrasonography in 
diagnosing pancreatic disorders has been proposed as a way to overcome the 
diagnostic problem of solid pancreatic lesions (Figure 1). A prospective study 
conducted by Uchida et al[6] showed that real-time tissue EG and transcutaneous 
ultrasonography can provide real-time visualization and information of pancreatic 
tissue elasticity. Combination of sonic and ultrasound waves will cause less 
compression in fibrotic and stiff tissue, in comparison to softer and healthy tissue. This 
characteristic may overcome the limitation of conventional EUS, especially in patients 
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Figure 1 Basic principles of endoscopic ultrasound elastography in pancreatic lesion evaluation. The possibility of combining endoscopy and 
ultrasonography in evaluating pancreatic lesion through the principle of strain elastography, in which, tissues with higher elasticity will exhibit more deformation after a 
form of pressure is being applied. The degree of displacement will then be represented as colour pattern analysis to determine the possible diagnosis (Red = Soft 
tissue; Green = Intermediate tissue; Blue = Hard tissue).

with coexistent chronic pancreatitis or “pseudotumoral” pancreatitis[7]. As one of the 
most recent approaches in gastrointestinal endoscopy, EUS real-time tissue EG has 
more diagnostic potentials compared to EUS with only a B-mode imaging ability. In 
general, EUS EG provides information of tissue elasticity through differences in 
deformation and displacement among tissue areas, as well as different amount of 
tissue distortion attained from spatial differentiation. Tissue consistency may correlate 
with malignancy characteristics, in which malignant tissues have harder consistency 
than benign tissues[8].

Reported for the first time in 2006 for evaluating pancreatic tissues, EUS EG has 
been continuously developed for tissue elasticity assessment. Two methods have been 
differently proposed and compared for each diagnostic performance, i.e., strain and 
shear-wave EG. Generally, strain elastograms are produced by internal physiological 
pulsations from respiratory contractions. Estimation of the target tissue’s stiffness is 
conducted with semiquantitative real-time elastography (RTE) using strain histogram 
(SH), and quantitative strain ration (SR) histogram EG. In particular, SR is a semi-
quantitative method to calculate relative tissue stiffness by dividing mean strain of 
reference area and mean strain in lesion of interest. Meanwhile, the global hardness of 
a lesion is expressed by the mean histogram value (numerical values from SH)[3,9]. 
There are three major important principles when RTE is applied for tissue elasticity 
evaluation, i.e., the stress compression, the region of interest (ROI), and the tissue 
displacement. Semi-quantitative SH EUS EG uses the manual method through tissue 
compression effect or pressure application, which will create color-based results. 
Quantitative strain elastograms or SH needs to calculate the ratio; however, this can be 
a combined assessment. This software methods usually will be incorporated to the 
echoendoscope for pancreatic tissue assessment[3,8]. In a healthy pancreatic tissue, the 
internal structure is isoechoic with soft elastogram. In elderly, the consistency of 
pancreatic tissue is remarkably harder, but not as hardened as the histogram result of 
chronic pancreatitis. In acute pancreatitis, softer consistency can be observed in the 
necrotic zones. Significantly higher stiffness (often unequivocal) can be found in ductal 
adenocarcinoma. The hue color-based parameter, where it is used for tissue elasticity 
evaluation, consists of red, green, and blue color. Soft tissue appears as red color, 
whereas intermediate tissue appears as green color, and blue color will represent hard 
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tissue. However, perception errors or variability of interpretation between endosono-
graphers may occur in the characterization of hue color-based parameter[8,9].

On the other hand, shear-wave EG is a quantitative tissue elasticity assessment, 
where it has been mostly used for liver, breast, prostate, rectum, and lymph node. In 
shear wave EG, focused ultrasound from the probe to target tissue is emitted and 
evaluation of target tissue’s stiffness is performed afterwards by measuring the shear 
wave’s propagation speed. An exploratory study of EUS shear-wave measurement 
(EUS-SWM) in the assessment and treatment of autoimmune pancreatitis showed 
approximately 97.6% success rate with no significant difference of success rate in the 
head, body, and tail of the pancreas (P = 0.4997)[10]. Another preliminary study also 
demonstrated similarly high success rate (96.8%) without any adverse events. In 
addition, the elastic value with unique reliability index of the velocity of shear wave 
measurement also allows more objective and repeated measurement with EUS-SWM
[11]. However, compared to strain EG, varying results with EUS-SWM are still found 
from previous study by Carlsen et al[12] This study also showed that target diameter 
had the most significant effect for all methods of shear-wave EG measurement, while 
target depth only affected shear-wave velocity measurement in targets with hard 
consistency.

ENDOSCOPIC ULTRASOUND EG IN PANCREATIC LESION EVALUATION
Throughout the years, evidences related to the use of EUS EG in pancreatic lesion 
evaluation keep emerging (Table 1). A pioneer study by Giovannini et al[13], 2006 
showed the impact of endosonoelastography examination for pancreatic masses 
evaluation in 49 patients, where the sensitivity and specificity in diagnosing malignant 
lesion were 100% and 67%, respectively. In this study, there were two misdiagnosed 
cases (neuroendocrine tumor and benign fibromyoblastic tumor of surgically resected 
pancreas). The sensitivity and specificity of endosonoelastography in assessing 
malignant lymph node invasion in this study were 100% and 50%, respectively. As 
mentioned in the previous section, the first experimental study for real-time tissue EG 
for pancreatic tissue assessment was investigated by Uchida et al[6], 2009, in which a 
linear probe, with B-mode and EG mode, was used to visualize the object. The color-
based (blue for hard and red for soft) was used in the ROI. In pancreatic cancer, the 
lesion was identified with blue color, which was subsequently confirmed through 
histopathologic examination result. Combination of B-mode and EG mode increased 
the diagnosis accuracy of pancreatic cancer from 73.3% to 100%, corrected by operator. 
The sensitivity and specificity between operator and another reviewer showed the 
same results for EG mode evaluation (64.3% vs 60.7% and 88% vs 88%). In the case of 
pancreatic endocrine tumor, the diagnosis accuracy also increased from 66.7% to 100%
[6]. In 2009, a prospective study by Iglesias-Garcia et al[14], where the EG pattern was 
compared to histological specimen, showed the blue color pattern supported the 
malignant pancreatic lesions, whereas the green color pattern excluded malignant 
lesions. The sensitivity and specificity of EG diagnosis in malignant pancreatic lesions 
were 100% and 85.5%, respectively. This study concluded that the overall diagnostic 
accuracy of EUS EG for malignancy was 94%. Further concordance analysis by two 
endosonographers yielded agreement of elastographic pattern by both of them in 
93.1% of the cases. This study also addressed the possibility of EUS EG in tackling the 
limitation of EUS-guided fine needle aspiration (EUS-FNA). One of the major 
drawbacks of EUS-FNA was interposition of malignant tissue and vascular structures, 
which may contribute to false negative results. EUS EG can overcome this limitation 
by assessing tissue elasticity and discerning hardness between normal and malignant 
tissues[14].

In contrast to previous evidences, a prospective study by Hirche et al[4] showed that 
EUS-EG had low sensitivity (41%), specificity (53%), and accuracy (45%) in predicting 
malignant pancreatic lesion. A subgroup analysis in ductal adenocarcinoma also 
demonstrated poor sensitivity (50%). Moderate intraobserver and interobserver 
reproducibilities were also demonstrated from the findings. However, in this study, 
the sample size was considered small. Additionally, some patients were diagnosed 
with cystic lesion tumor, suggesting that presence of fluid might interfere the 
elastographic pattern. On the other hand, larger tumor size was causing the inaccurate 
distance between the EUS probe and the mucosal wall. Incomplete border delineation 
by EUS- EG was also shown in lesions with a larger diameter, leading to insufficient 
display of surrounding pancreatic parenchyma[4]. In another small prospective single-
center study by Janssen et al[15], three groups were classified as normal pancreas, 
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Table 1 Summary of the studies utilizing endoscopic ultrasound elastography for evaluating pancreatic lesions

Ref. Population of the study Key findings

Sensitivity 100% and specificity 67% in diagnosing malignant 
lesions.

Giovannini et al
[13], 2006

24 patients with pancreatic masses. 

Sensitivity 100% and specificity 50% in diagnosing malignant 
invasion of lymph nodes. 

Diagnostic performance of real-time tissue elastography mode for 
diagnosing malignancy: Operator vs another reviewer 

Sensitivity: 64.3% vs 60.7%.

Specificity: 88% vs 88%. 

Phase 1: pancreatic cancer (5 subjects), endocrine tumor (2 
subjects), chronic pancreatitis (5 subjects), intraductal papillary 
mucinous neoplasm.

Positive predictive value: 85.7% vs 85%. 

Uchida et al[6], 
2009

Phase 2:  53 consecutive subjects with pancreatic lesions visible 
on B-mode images.

Negative predictive value: 68.8% vs 66.7%. 

Diagnostic performance of EUS elastography in diagnosing 
malignancy 

Sensitivity: 100%. 

Specificity: 85.5%.

Positive predictive value: 90.7%.

Negative predictive value: 100%.

Iglesias-Garcia et 
al[14], 2009

130 consecutive patients with solid pancreatic masses vs 20 
subjects with normal pancreases.

Overall accuracy: 94%. 

Diagnostic performance of EUS elastography in predicting the 
nature of pancreatic lesions 

Sensitivity: 41%. 

Specificity: 53%. 

Hirche et al[4], 
2008

70 patients with unclassified solid pancreatic lesions vs 10 
subjects with healthy pancreas.

Accuracy: 45%. 

Diagnostic performance of EUS elastography in diagnosing chronic 
pancreatitis 

Sensitivity: 65.9%. 

Specificity: 56.9%. 

Accuracy: 60.2%.

Diagnostic performance of EUS elastography in diagnosing focal 
pancreatic lesions 

Sensitivity: 93.8%. 

Specificity: 65.4%. 

Accuracy: 73.5%.

Janssen et al[15], 
2007

20 patients with chronic pancreatitis vs 33 patients with focal 
pancreatic lesions vs 20 subjects with normal pancreas.

Diagnostic performance of EUS elastography in differentiating 
pancreatic adenocarcinoma and inflammatory pancreatic masses 

Diagnostic performance of EUS elastography in differentiating 
pancreatic adenocarcinoma and inflammatory pancreatic masses 

AUC: 0.8227. 

In studies with color pattern as the diagnostic standard 

Sensitivity: 99%. 

Specificity: 76%.

Positive likelihood ratio: 3.36. 

Negative likelihood ratio: 0.03.

Diagnostic odds ratio: 129.96.

In studies with hue histogram as the diagnostic standard 

Li et al[16], 2013 Meta-analysis of 10 studies with 781 patients. 
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Sensitivity: 92%. 

Specificity: 68%. 

Positive likelihood ratio: 2.84.

Negative likelihood ratio: 0.12.

Diagnostic odds ratio: 24.69.

Diagnostic performance of EUS elastography in differentiating 
benign and malignant pancreatic masses 

In studies with qualitative color pattern as the diagnostic standard 

Sensitivity: 99%. 

Specificity: 74%. 

AUROC: 0.9624.

In studies with quantitative hue histogram value as the diagnostic 
standard 

Sensitivity: 85%-93%. 

Xu et al[17], 2013 Meta-analysis of 9 studies.

Specificity: 64%-76%. 

Diagnostic performance of EUS elastography in differentiating 
benign and malignant solid pancreatic masses 

Sensitivity: 95%. 

Specificity: 67%. 

Mei et al[18], 2013 Meta-analysis of 13 studies with 1044 patients. 

Diagnostic odds ratio: 42.28. 

Diagnostic performance of combined elasticity score and strain ratio 
in differentiating benign and malignant pancreatic lesions (cut-off 
point: 7.75) 

Sensitivity: 99%. 

Specificity: 94.6%. 

Positive predictive value: 98%. 

Negative predictive value: 98.5%.

Altonbary et al
[19], 2019

97 patients with malignant lesions vs 19 patients with benign 
lesions

Accuracy: 97%. 

Diagnostic performance of EUS elastography with high stiffness of 
the lesion in diagnosing malignancy

Sensitivity: 84%. 

Specificity: 67%. 

Positive predictive value: 56%.

Negative predictive value: 89%. 

Diagnostic performance of EUS elastography in diagnosing 
pancreatic ductal adenocarcinoma

Sensitivity: 96%. 

Specificity: 64%. 

Positive predictive value: 45%. 

Ignee et al[20], 
2018

218 patients with solid pancreatic lesions sized ≤ 15 mm and a 
definite diagnosis. 

Negative predictive value: 98%. 

EUS: Endoscopic ultrasound.

chronic pancreatitis, and focal pancreatic lesions. The elastographic pattern classi-
fication (homogenous, different colors, and honeycomb pattern) and elastographic 
colors classification (blue, green/yellow, and red) were combinedly used. In normal 
pancreas group, all showed homogenous green color interfered with blue clouds’ 
color. Whereas, in chronic pancreatitis group showed hard (blue) with honeycomb 
pattern. In pancreatic focal lesions’ group, examination showed that almost all patients 
had blue/green honeycomb pattern. Only one patient which has tumorlike due to 
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chronic pancreatitis showed blue/green honeycomb pattern. The sensitivity and 
specificity for group with chronic pancreatitis were 65.9% and 56.9%, respectively, 
with diagnostic accuracy of 60.2%; while the sensitivity and specificity in group with 
focal pancreatic lesions were 93.8% and 65.4%, respectively, with slightly higher 
diagnostic accuracy (73.5%). The findings from this study also addressed the limitation 
of EUS EG in distinguishing the elastographic patterns of chronic pancreatitis and 
malignant tumors due to the corresponding amount of fibrous pattern of chronic 
pancreatitis, which can also be found in desmoplastic pancreatic carcinomas and 
microcystic adenomas[15]. Another meta-analysis, which evaluated the use of EUS EG 
in discernment of pancreatic adenocarcinoma and inflammatory masses, indicated 
slightly better diagnostic performance in studies with color pattern as the diagnostic 
standard (sensitivity 99%, specificity 76%) compared to studies with hue histogram as 
the diagnostic standard (sensitivity 92%, specificity 68%)[16]. In differentiating benign 
and malignant pancreatic masses, better diagnostic performance was also 
demonstrated by studies using qualitative color pattern as the diagnostic standard 
(sensitivity 99%, specificity 74%) in comparison to studies using hue histogram as the 
diagnostic standard (sensitivity 85%-93%, specificity 64%-76%). This meta-analysis 
also acknowledged the difficulties in distinguishing neuroendocrine tumors and 
adenocarcinomas due to their similar hardness[17]. Regardless of the low specificity, 
EUS EG can still be considered as a complementary diagnostic method. A meta-
analysis by Mei et al[18] showed high pooled sensitivity (95%) with acceptable pooled 
specificity (67%) and moderate accuracy (summary Receiver Operating Characteristic: 
90.46%) of EUS EG in diagnosing solid pancreatic masses. Improvement of diagnostic 
accuracy may be achieved with application of more meticulous computer-aided 
diagnosis method for EUS-EG[18]. Recent findings from a single center retrospective 
study by Altonbary et al[19] also demonstrated promising results of EUS EG with 
combination of elasticity score and strain ratio in discerning solid pancreatic lesions 
(sensitivity 99%, specificity 94.6%, and accuracy 97%). Moderately well diagnostic 
performance in ruling out malignancy was also demonstrated by a multicenter study 
conducted in 218 patients with small (< 15 mm) solid pancreatic lesions (sensitivity 
84%). Higher sensitivity (96%) was shown when EUS EG was used in diagnosing 
Pancreatic Ductal Adenocarcinoma (PDAC)[20].

CLINICAL DILEMMA IN PANCREATIC LESION EVALUATION AND IMPACT 
OF EUS EG INNOVATION STUDY
Several conditions have been considered as clinical dilemma, such as small pancreatic 
lesion which also can be found incidentally, pseudo-tumoral in chronic pancreatitis, 
negative FNA biopsy (FNAB) results, and possibility of needle tract tumor seeding[3-
5]. It has been known that pancreatic cancer is mostly dominated by PDAC, a highly 
aggressive tumor with very poor prognosis and high mortality rate. It has been 
reported that Negative Predictive Value (NPV) of FNAB result can vary, ranging from 
16% to 85%. In the case of negative biopsy, patients with suspicion of PDAC should be 
referred immediately for surgical approach consideration. Spier et al[21] published a 
small retrospective EUS-FNA study in patients who had suspected pancreatic lesions 
with negative biopsy results. The study found that 30.9% of patients with negative/ 
non-diagnostic FNA results were later diagnosed with pancreatic cancer (mean time 66 
d to 360 d after FNA procedure)[21]. RTE has been proposed as a supplementary 
method to improve diagnostic performance of EUS-FNA, especially in terms of 
available rapid on-site tissue evaluation by a cytopathologist[22,23]. A retrospective 
study in 54 subjects with solid pancreatic lesions highlighted the benefit of combining 
RTE and EUS-FNA (sensitivity 94.4%, specificity 93.4%, and accuracy 100%) compared 
to the diagnostic performance of RTE alone (sensitivity 86.9%, specificity 75%, and 
accuracy 85.1%)[22].

Possibility of tumor seeding has become a challenging issue as it will impact on 
faster disease progression, patient’s clinical-based management, and patient’s survival 
after surgery or non-surgical biliary drainage procedure in patients with bile duct 
obstruction. There has been a debate on whether this tract seeding issue should be 
underestimated or overestimated, since most of the studies use retrospective study 
design. Small sample size and no clear tumor dissemination finding also become 
issues on the studies of needle tract seeding related to EUS-FNA[5]. The first reported 
case of EUS-FNA-related tumor dissemination was delivered in 2003, in which 
peritoneal dissemination occurred in intraductal papillary mucinous tumor (T1N0M0)
[5]. Approximately 80% of all needle tract seeding cases following EUS-FNA happened 
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in pancreatic cancer and pancreatic cystic tumors located in the body or tail of 
pancreas. In most of the cases, 22-G FNA needle was used, even though the 
relationship between needle size or number of needle passes and the risk of tumor 
seeding is still unclear. The range of interval from EUS-FNA procedure to diagnosis of 
needle tract seeding is 3-48 mo[24].

EG EUS multicenter study by Ignee et al[20] in small solid pancreatic lesions showed 
that sensitivity and specificity were 84% and 67%, respectively, with 56% of positive 
predictive value and 89% of NPV. In PDAC cases, sensitivity and specificity were 96% 
and 64%, respectively. Based on this study, it is clear that early detection in less than 
15 mm pancreatic lesion might prevent the delay for surgery management even 
though PDAC tends to be found in larger lesions (> 15 mm)[20]. Another prospective 
study was conducted by Dawwas et al[25] in patients underwent quantitative EUS EG 
procedure for differentiating pancreatic malignant lesion with pancreatic inflam-
matory lesion. The examination results were compared to histology or cytology results 
with follow-up imaging study. The sensitivity and specificity with quantitative EUS 
EG were 100% and 95.7%, respectively. This study has shown the important value of 
EUS EG in reducing the need of biopsy as the EUS-FNAB procedure still carries 
potentially harmful risks, such as pancreatitis and bleeding[25]. In 2018, Dong et al[26] 
reported the role of combination strategy using B-mode ultrasound, contrast-enhanced 
ultrasound (CEUS), and EUS EG in small case series of isolated pancreatic tuberculosis 
(PTB) cases. These findings were then compared with the clinical findings of PDAC 
cases. In PTB cases, common bile duct and pancreatic duct dilatation are considered to 
be rare findings, however, it is common to find multiple peripancreatic lymph nodes 
enlargement. The PTB lesion was showing less demarcation, whereas clear 
demarcation was found in PDAC cases. It might be difficult to differentiate PTB from 
PDAC cases by using the tissue stiffness result from EUS elastrography alone, 
however, with CEUS combination, PTB lesion showed hyperenhancement, whereas in 
PDAC cases showed hypoenhancement. In addition, peripancreatic pseudocysts were 
more commonly observed in PTB cases. This non-invasive strategy can be an accurate 
diagnosis tool with or without biopsy as a clinical-based approach in patients with 
PTB. Consequently, it can also avoid unnecessary surgical management[26].

A former retrospective analysis study by Iordache et al[27] in 50 consecutive patients 
with negative results of EUS-FNA who sequentially underwent EUS EG and CE-EUS, 
found that EUS EG has similar results with CE-EUS in diagnosing possibility of 
pancreatic malignancy. However, combination of both methods showed excellent 
specificity (100%). Another interesting finding from this study is the excellent 
specificity (100%) exhibited by CEH-EUS in patients with soft/mixed or hard (low 
strain) appearance from EG. Excellent specificity was shown by CEH-EUS for distin-
guishing chronic pancreatitis in soft/mixed (high strain) appearance; while in hard 
appearance, CEH-EUS exhibited outstanding specificity (100%) and sensitivity 
(88.89%) for distinguishing pancreatic cancer. These results suggested that hard 
hypovascular masses can indicate the presence of pancreatic adenocarcinoma or other 
malignant masses, whereas soft hyper-/isovascular masses can indicate the presence 
of chronic pseudotumoral pancreatitis or other benign masses[27]. Another pro-
spective multi-center study by Costache et al[28] about clinical impact of combination 
between SH EUS EG and CE-EUS in patients with pancreatic masses, showed that 
combined CE-EUS with SH EUS EG had similar sensitivity. However, higher 
specificity (81.48%) was found in the combination method for diagnosing pancreatic 
carcinoma in comparison to SH EUS EG with several cut-offs (80; 60; 40; 33). 
Meanwhile, the specificity of single method was ranging from 29.63% to 62.96% based 
on several cut-offs. The overall diagnostic accuracy in combination method reached 
93.81% for pancreatic cancer, whereas in the single method only ranged from 79.38 % 
to 80.41%. Overall, this study indicated that combination of CE-EUS and semi-
quantitative EUS EG can be utilized as a supplementary modality for distinguishing 
benign and malignant pancreatic masses and for continuous follow-up evaluation of 
patients during neo-adjuvant chemotherapy and/or anti-angiogenic therapy adminis-
tration[28]. A case series study by Jafri et al[29] showed the potential of EUS EG as a 
complementary method along with conventional EUS for targeting the FNA procedure 
in patients with suspected pancreatic masses. Also, in this case series, subjects with 
low risk of malignancy from EUS and EG examinations did not develop any interval 
cancer during the mean period of 2-year follow-up[29].
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CURRENT STATUS AND LIMITATIONS
According to most studies on EUS EG, it has been shown that EUS EG has a big role in 
managing pancreatic lesions. This method can be a primary choice for diagnosis 
evaluation in patients who have coagulation disorders or history of anticoagulation 
drugs consumption, who are not suitable yet for chemotherapy, and who have the 
possibility for direct surgical approach due to the needle tract seeding risk during 
FNA procedures. In targeting unclear demarcation and pancreatic lesion image, EUS 
EG can also be an additional tool. However, it cannot be used for pancreatic cystic 
mass tumor evaluation. Studies to differentiate between malignant and benign 
pancreatic mass lesion have not shown any strong evidence yet as some studies were 
only performed with small sample size, and some only used retrospective study 
analysis.

The main objectives of performing EG for the pancreas are to ensure that the 
elastogram is sufficiently meticulous to represent the histological structures and to be 
reproducible adequately. These objectives, however, are hampered by the small size of 
the pancreas, the depth of its anatomical location in the center of the body, the 
technical difficulties in extracting biopsy specimens, and the strong influence of aortic 
pulsation to pancreas. In addition, EG is an operator-independent modality[30]. Other 
pitfalls of EUS EG are the difficulty in controlling tissue compression by the EUS 
transducer, the presence of motion artifacts due to respiratory movement, as well as 
the careful selection of ROI from its surrounding soft tissues[31].

Overall, the application of EUS EG is one of the most potential roles of artificial 
intelligence (AI) in pancreaticobiliary disorders. In general, AI refers to the capacity of 
a computer to imitate the cognitive intelligence or the learning capability of human 
being in order to perform tasks appropriately. In medicine, AI consists of machine 
learning and deep learning, which are often utilized reciprocally[32]. A cross-sectional 
feasibility study in Denmark established the importance of AI in distinguishing 
pancreatic cancer from chronic pancreatitis through the application of neural network 
analysis of dynamic sequences of EUS EG. In this study, the sensitivity, specificity, and 
accuracy were 91.4%, 87.9%, and 89.7%, respectively. In addition, the application of 
multilayer perceptron neural networks with high training performance was able to 
reach an accuracy as high as 97%[33]. Another prospective and multicenter study in 
258 patients by Săftoiu et al[34] also highlighted the efficacy of AI in EUS EG. The 
utilization of multilayer perceptron as an artificial neural network demonstrated 
moderately high diagnostic performance (sensitivity 87.59%, specificity 82.94%, 
AUROC 0.94, training accuracy 91.14%, and testing accuracy 84.27%) in diagnosing 
focal pancreatic lesions.

CONCLUSION
EUS EG is a promising method to improve the diagnostic accuracy as well as helping 
to decide which type of management is probably more suitable for patients with 
pancreatic mass lesion. However, it would still need more studies with further consid-
erations, such as adequate operator training, expertise, availability, and its cost-effect-
iveness in comparison to other imaging options. Integrating clinical data into artificial 
intelligence techniques concomitantly with real-time imaging results is potentially 
favorable for faster and more accurate clinical-decision making in pancreatic lesion 
evaluation.
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Abstract
Gastrointestinal angiodysplasia (GIAD) is defined as the pathological process 
where blood vessels, typically venules and capillaries, become engorged, tortuous 
and thin walled – which then form arteriovenous connections within the mucosal 
and submucosal layers of the gastrointestinal tract. GIADs are a significant cause 
of gastrointestinal bleeding and are the main cause for suspected small bowel 
bleeding. To make the diagnosis, gastroenterologists rely on the use of video 
capsule endoscopy (VCE) to “target” GIAD. However, the use of VCE can be 
cumbersome secondary to reader fatigue, suboptimal preparation, and difficulty 
in distinguishing images. The human eye is imperfect. The same capsule study 
read by two different readers are noted to have miss rates like other forms of 
endoscopy. Artificial intelligence (AI) has been a means to bridge the gap between 
human imperfection and recognition of GIAD. The use of AI in VCE have shown 
that detection has improved, however the other burdens and limitations still need 
to be addressed. The use of AI for the diagnosis of GIAD shows promise and the 
changes needed to enhance the current practice of VCE are near.
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Core Tip: Video capsule endoscopy (VCE) is the primary modality to diagnose 
gastrointestinal angiodysplasias (GIADs). Typically, gastroenterologists rely on VCE 
to make a diagnosis of GIAD prior to referral for deep enteroscopy. However, VCE 
analysis can be cumbersome secondary to reader fatigue, suboptimal preparation, and 
difficulty in distinguishing images. Use of artificial intelligence in VCE has shown 
improved GIAD detection, however limitations exist that still need to be addressed. 
The use of artificial intelligence for GIAD diagnosis shows promise and changes 
needed to enhance current VCE practices are near.
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INTRODUCTION
Gastrointestinal angiodysplasia (GIAD) is defined as the pathological process where 
blood vessels, typically venules and capillaries, become engorged, tortuous and thin 
walled – which then form arteriovenous connections within the mucosal and 
submucosal layers of the gastrointestinal (GI) tract[1]. GIADs are found throughout 
the GI tract, but they most often occur in the small intestine (80% jejunum, 57% 
duodenum), stomach (22.8%) and less frequently the ascending colon (11.4%)[2]. The 
gold standard in diagnosis of GIAD has been endoscopy, with the addition of video 
capsule endoscopy (VCE) in 2001. The technology of VCE radically improved the 
diagnostic yield of GIADs as well as other small bowel diseases. VCE provided a 
means to target lesions in the small bowel and has played a role in the development of 
balloon enteroscopy for advanced diagnoses and treatment options. Although, VCE 
improved the diagnostic yield of GIADs, as well other as small bowel diseases, there 
are several challenges which a reader continues to face. First, review of these images 
has been an arduous process, which can last from 30-40 min to over an hour. The 
abnormalities that are of interest may only present in a couple of frames that last a 
minute or less. Second, the long reading time may lead to reader fatigue and a 
reduction in diagnostic accuracy. To address these issues, there have been several 
advances made to VCE technology such as a Quick-view algorithm, suspected blood 
indicator and adaptive frame rate technology. None of these technologic advances 
have improved diagnostic accuracy[3-5]. Despite these limitations, VCE is still the 
widely used technology to diagnose GIAD and has become a growing focus for the use 
of artificial intelligence (AI) to improve the identification of GIAD. We discuss the 
implementation of computer software known as AI, machine programs capable of 
learning and simulating patterns like the human brain.

TYPES OF AI
Several layers exist within AI and have been utilized throughout the field of gastroen-
terology, especially endoscopy. One aspect is machine learning (ML), a discipline 
where large, complex data sets are used to predict outcomes and identify patterns 
using various algorithms[6]. These algorithms are often trained to differentiate data 
sets or characteristics such as color, size and shape, which help to distinguish between 
lesions within the GI tract. Beyond ML, two other types of AI exist, artificial neural 
networks (ANNs) and convolutional neural networks (CNNs). ANNs utilize the 
patterns observed within data sets to perform complex task of cross comparison at 
various points of calculation. Therefore, numerous computed data sets can be collected 
at any stage and compared to provide one outcome. This simulates the intelligence 
and neurobiological processes of the human brain, as the computer continues to learn 
to perform new task through automated analysis. CNNs use real time or still images to 
distinguish between normal and abnormal, then further investigate abnormal objects 
to identify a diagnosis with relatively highly accuracy and efficacy (Table 1).

https://www.wjgnet.com/2689-7164/full/v2/i4/179.htm
https://dx.doi.org/10.37126/aige.v2.i4.179
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Table 1 Artificial intelligence methods for gastrointestinal angiodysplasia detection[17]

Artificial 
intelligence Description Function Advantages Disadvantages

Ability of a computer program to 
learn 

Automation of tasksMachine learning 

Algorithm workflow improves 
performance

Discern logic-based rules 
from input and output 
data

Detect patterns between 
input and output data

Requires high-quality data likely 
to have some causal link

Use of weighted/graded signals to 
perceive data

Mapping performance 
between input and output 
data

Requires labeled dataArtificial neural 
network 

Use of computational 
communication

Adaptive learning

Adaptive learning capability Requires large volumes of data

Image detection Highly dependent on a training 
modelor models

Convolutional 
neural network 

Interpretation through three-
dimensional convolutional layers

Computer vision Highly accurate image 
recognition and classification

Limited by image rotation or 
orientation 

CNNs have become one of the most commonly used AI modalities, particularly in 
VCE, which has significantly aided in the detection of GIADs. The use of AI, partic-
ularly CNNs, has created a new era in capsule endoscopy (CE) capable of improving 
lesion detection rates, reducing capsule reading time, as well as reducing reviewer 
fatigue. This shift towards computer-aided diagnostic tools in clinical practice may 
represent a future of common practice. Further investigation with AI in computer-
aided diagnosis of GIAD leans heavily towards CE. Three of the most popular areas of 
CNN implementation include newly developed algorithms, single-shot multibox 
detection (SSD) and region of interest (ROI) color contrast analysis.

MODALITIES WHERE AI CAN BE USED WHEN DETECTING GIAD
In 2019, Leenhardt et al[7] analyzed 2946 still frames with vascular lesions utilizing 
CNN, where two data sets were used to create a trained algorithm for GIAD detection. 
The first dataset, also termed the “training and learning phase,” consisted of a CNN 
analysis of 2946 still frame images containing vascular lesions for characteristic 
analysis of abnormal lesions based on size, shape, color, pattern, and contour. This 
helped the CNN distinguish GIADs within a still frame. The second data set utilized 
the learned features from the previous data set, which were applied to new images to 
detect and located GIAD within a still frame. The primary and secondary endpoints 
were the sensitivity and specificity of the computer aided diagnosis (CADx) algorithm. 
These values were 100% and 96% respectively[7].

Similarly, Hwang et al[8] developed their own CNN-based AI model bases on a 
collection of still images later classified as ulcerative or hemorrhagic, which were 
augmented by rotating each image by 90 degrees 3 times and flipping each rotated 
image horizontally. As a result, a collection of 30224 abnormal images (11776 
hemorrhagic lesions and 18,448 ulcerative lesions) and 30224 normal images were used 
to train their CNN model by observing similar outcomes in the Leenhardt et al[7] 
study. However, Hwang et al[8] went a step further in developing their own CNN 
based on VGGnet, a CNN that incorporates more convolution filters or layers when 
screening an image to improve its accuracy of image recognition[9]. Using two 
training protocols, Hwang et al[8] developed a binary model, trained to detect any 
pathological images as abnormal without distinguishing the types of lesions, and a 
combined model, trained to detect distinctive hemorrhage or ulcerative lesions.

Another type of CNN is called SSD which is very similar to CNNs described above. 
However, in this instance, an expert endoscopist will demarcate a rectangular box 
around a lesion within an image making it much faster to provide a unifying 
framework for both training and interpretation[10]. Tsuboi et al[11] incorporated this 
technique with 2237 still images of small-bowel GIAD captured by VCE and placed a 
bounding box where GIAD were found. Through this method, Tsuboi et al[11] were 
able to test their ability to detect GIAD using an area under the receiver operating 
characteristic (ROC) curve for the probability score, as well as sensitivity, specificity, 
PPV and NPV of their CNN’s detection rate for GIAD and accurately distinguish their 
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location within an image. Lin et al[12] delved deeper into this approach by combining 
SSD with RetinaNet, a CNN that mimics VGGnet described above, with the enhanced 
ability to find shortcuts when comparing images in order to limit the number of layers 
used when training. Otani et al[13] was able to analyze and characterize images of 
erosions and ulcers, GIAD and tumors, then compared the ROC, sensitivity, 
specificity, and accuracy of their AI detection system for each lesion image.

Another prevalent area of CNN performance is color contrast analysis. Since color is 
one of the most relevant features in diagnosing GIAD, Noya et al[14] used color to 
detect potential regions of GIAE within an image. This is done in 4 categorized steps: 
Image preprocessing (contrast enhancement), selection of potential ROI (geometric 
outline of colored pixels making up the angiodysplastic lesion), feature extraction and 
selection (labeling a ROI based on color, texture and geometric pattern) and classi-
fication of a ROI (recognizing patterns of potential angiodysplasia lesions as 
pathological vs. non-pathological). Comparably, Iakovidis and Koulaouzidis[15] use 
color-based pattern recognition to separate pathological vs. normal lesions from 137 
still images, which they placed into four categories: vascular, inflammatory, 
lymphangiectatic, and polypoid. Iakovidis and Koulaouzidis[15] used a 4-step categor-
ization process, like Noya et al[14] above, however, they differ with the introduction of 
salient point saturation (SPS), an automated extraction algorithm which selects salient 
points in a digital image based on changes in observed color intensity[16].

OUTCOMES OF AI IN DETECTING GIAD
The effects of AI computer-aided diagnosis in GIAD are producing promising results 
that individual practitioners may hope to incorporate into their practices. The 
diagnostic yield of GIADs using AI leans heavily on VCE with the use of CNNs. 
Newly developed algorithms, such as SSD and ROI color contrast analysis have been 
areas of particular focus in medical literature. Each modality of these CNN 
implementing tools stands on their own, as very limited research compares these 
techniques by using the same data set or still images for a head-to-head comparison.

The diagnostic performance of a CADx algorithm for the detection of GIAD using 
VCE, assess its diagnostic precision as a means for a segmental approach in localizing 
lesions. Leenhardt et al[7] found a sensitivity of 100% [95% confidence interval (CI), 
100%-100%]. Secondary endpoints revealed a specificity of 96.0% (95%CI: 93.78%-
98.22%), a positive predictive value of 96.15% (95%CI: 93.97%-98.33%), a negative 
predictive value of 100.0% (95%CI: 100%-100%) and a kappa coefficient of reprodu-
cibility at 1.0[7]. Only "clean" images were used in their data set, which meant that 
images with poor preparation quality or the presence of bubbles would not be 
included. This is a limitation to the study, which the authors point to. In comparison, 
the algorithm of Hwang et al[8] combined (all images trained separately as 
hemorrhagic or ulcerative) vs binary training (all images trained without segregation) 
approach in the development of an automated CNN, demonstrated that combined 
training revealed higher sensitivity (97.61% vs 95.07%, P < 0.001). Although, accuracy 
classifying GIADs as small bowel lesions was 100% in both the combined and binary 
training models.

The use of SSD by Tsuboi et al[11] to automatically detect GIAD in VCE images 
focuses on diagnostic accuracy utilizing t-test analysis. The study reported a ROC 
curve for CNN detection of GIAD at 0.999. The cut-off value for the probability score 
was 0.36, exhibiting a sensitivity, specificity, positive predictive value, and negative 
predictive value of their CNN at 98.8%, 98.4%, 75.4%, and 99.9% respectively at this 
value[11]. Otani et al[13] enhanced CNN by combination of SSD with RetinaNet 
detection of vascular lesions displayed an AUC 0.950 (95%CI: 0.923-0.978) among the 
internal cohort (images obtained for training) and 0.884 (95%CI: 0.874-0.893) among 
the external cohort (randomly obtained imaged for cross-validation). This is an 
observable difference compared to Tsuboi et al[11] study, although still relatively high 
in automated lesion detection.

Color contrast has been used as well. Iakovidis and Koulaouzidis[15] assessed the 
validity of color-based pattern recognition in the classification of pathologic lesions 
with the addition of SPS, including p0 GIAD (low probability of bleeding), p1 GIAD 
(intermediate probability of bleeding) and p2 GIAD (high probability of bleeding). 
Classification per type of GIAD revealed an AUC of 69.9 ± 15.8 (P0 GIAD), 97.5 ± 2.4 
(P1 GIAD), and 79.6 ± 13.1 (P3 GIAD) respectively[15]. Noya et al[14] used the 
combination of a color-based, texture, statistical and morphological features analysis 
for GIAD detection. Utilization of this method led to a sensitivity of 89.51% and a 
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specificity of 96.8%, as well as an AUC 82.33% ± 10.43% detection of GIAD[14].

CONCLUSION
GIADs are a significant cause of GI bleeding and are the main cause for suspected 
small bowel bleeding. To make the diagnosis, gastroenterologists rely on the use of 
VCE to “target” GIAD. However, the use of VCE can be cumbersome secondary to 
reader fatigue, suboptimal preparation, and difficulty in distinguishing images. 
Humans are imperfect. The human eye is imperfect. The same capsule read by two 
different readers are noted to have miss rates like other forms of endoscopy. The use of 
AI in VCE have shown that detection has improved, however the other burdens and 
limitations still need to be addressed. AI used for the diagnosis of GIAD shows 
promise and the changes needed to enhance the current practice of VCE are near.
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Abstract
Early gastrointestinal (GI) cancer has been the core of clinical endoscopic work. Its 
early detection and treatment are tightly associated with patients’ prognoses. As a 
novel technology, artificial intelligence has been improved and applied in the field 
of endoscopy. Studies on detection, diagnosis, risk, and prognosis evaluation of 
diseases in the GI tract have been in development, including precancerous lesions, 
adenoma, early GI cancers, and advanced GI cancers. In this review, research on 
esophagus, stomach, and colon was concluded, and associated with the process 
from precancerous lesions to early GI cancer, such as from Barrett’s esophagus to 
early esophageal cancer, from dysplasia to early gastric cancer, and from 
adenoma to early colonic cancer. A status quo of research on early GI cancers and 
artificial intelligence was provided.

Key Words: Artificial intelligence; Early esophageal cancer; Early gastric cancer; Early 
colonic cancer
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Core Tip: Diagnosis and management of early gastrointestinal (GI) cancer is one of the 
cores of clinical practice. Endoscopy is the indispensable tool for standard surveillance 
and management. Artificial intelligence is a novel technology used in some fields of 
cancer including early GI cancer. Therefore, we provide an overview and introduce 
how artificial intelligence can be applied to endoscopy on early GI cancer mainly 
including esophagus, stomach, and colon from the point of view of the clinical 
diagnosis and management guidelines. Studies with quality control on the diagnosis 
and management of early GI cancer and their precancerous lesions have also been 
concluded.

Citation: Yang H, Hu B. Early gastrointestinal cancer: The application of artificial intelligence. 
Artif Intell Gastrointest Endosc 2021; 2(4): 185-197

https://www.f6publishing.com
https://dx.doi.org/10.37126/aige.v2.i4.185
http://orcid.org/0000-0002-7235-8162
http://orcid.org/0000-0002-7235-8162
http://orcid.org/0000-0002-7235-8162
http://orcid.org/0000-0002-9898-8656
http://orcid.org/0000-0002-9898-8656
http://orcid.org/0000-0002-9898-8656
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:hubingnj@163.com


Yang H et al. AI and early GI cancer

AIGE https://www.wjgnet.com 186 August 28, 2021 Volume 2 Issue 4

Specialty type: Gastroenterology 
and hepatology

Country/Territory of origin: China

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): 0 
Grade C (Good): C, C, C, C 
Grade D (Fair): D, D 
Grade E (Poor): 0

Received: June 11, 2021 
Peer-review started: June 11, 2021 
First decision: June 24, 2021 
Revised: June 25, 2021 
Accepted: August 18, 2021 
Article in press: August 18, 2021 
Published online: August 28, 2021

P-Reviewer: Balakrishnan DS, 
Lalmuanawma S, Tanabe S, Vijh S 
S-Editor: Liu M 
L-Editor: Filipodia 
P-Editor: Xing YX

URL: https://www.wjgnet.com/2689-7164/full/v2/i4/185.htm
DOI: https://dx.doi.org/10.37126/aige.v2.i4.185

INTRODUCTION
Artificial intelligence (AI) is essentially a process of learning human thinking and 
transferring human experience. Recognizing images based on artificial neural 
networks/convolutional neural networks (CNNs) is one of the novel and main fields 
of AI. Computer-aided diagnosis (CAD) systems are designed to interpret medical 
images using advances in AI from method learning to deep learning (DL) and includes 
mainly three groups (CADe, CADx, and CADm)[1].

AI has been widely involved in cancer[2]. In regard to digestive cancer, it has been 
utilized to find more intelligent ways to facilitate detection, diagnosis, risk evaluation, 
and prognosis. For instance, radiomics machine learning signature for diagnosing 
hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules was 
also validated in a multicenter retrospective cohort, which could enhance clinicians’ 
decisions[3].

In the aspect of pancreatic cancer, it continues to be one of the deadliest 
malignancies with less than 10% overall survival rate. Survival rates will increase if 
pancreatic cancer can be detected at an early stage[4]. Intraductal papillary mucinous 
neoplasms are precursor lesions of pancreatic adenocarcinoma. A DL model was 
shown to be a more accurate and objective method to diagnose malignancies of 
intraductal papillary mucinous neoplasms in comparison to human diagnosis and 
conventional endoscopic ultrasonography (EUS) images[5]. Pancreatic cystic lesions 
are also precursors of pancreatic cancer. Radiomics utilizing quantitative image 
analysis to extract features in conjunction with machine learning and AI methods 
helped differentiate benign pancreatic cystic lesions from malignant ones[6]. An 
artificial neural network was trained to help predict pancreatic ductal adenocarcinoma 
based on gene expression[7]. An AI-assisted CAD system using DL analysis of EUS 
images was efficient to help detect pancreatic ductal carcinoma[8]. The artificial neural 
network model could accurately predict the survival of pancreatic adenocarcinoma 
patients as a useful objective decision tool in complex treatment decisions[9].

In this review, we concluded the application and research of AI based on 
endoscopic examination related to early gastrointestinal (GI) cancer mainly including 
esophagus, stomach, and colon. The progression of carcinogenesis from Barrett’s 
esophagus (BE) to early esophageal cancer (EEC), from dysplasia to early gastric 
cancer (EGC), and from adenoma to early colonic cancer (ECC) were reviewed in 
detailed as well as related AI research on the histopathology and invasion depth 
detection of these GI cancer.

LITERATURE SEARCH
This review was aimed to make a qualitative only review of the application of AI on 
early GI cancer. We searched the PubMed database for articles that were published in 
the last 5 years using the term combinations of AI/DL and EEC, esophageal squamous 
cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), EGC, and ECC for early GI 
cancer, and term combinations of AI/DL and precancerous lesions [BE/ 
dysplasia/chronic atrophic gastritis (CAG)/gastric intestinal metaplasia/Helicobacter 
pylori/adenoma/polyp/inflammatory bowel diseases] for precancerous lesions of 
early GI cancer. Endoscopic-related results were qualitatively concluded in Table 1.

SEARCH RESULTS
Initially, a total of 424 articles were identified. After manually screening and reading, 
22 studies were tabulated in Table 1, and 2 prospective studies on detecting adenoma 
were also added in Table 1. Meanwhile, 13 studies on precancerous lesions of early GI 
cancer were showed in the review. The flowchart was presented in Figure 1.
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Table 1 Early gastrointestinal cancer and artificial intelligence

Ref. Target 
disease 

Prospective/ 
retrospective AI Endoscopy 

image
Training 
dataset

Validation 
dataset Sensitivity Specificity

Accuracy1

/AUC

[1] Diagnosing 
ESCC and 
EAC

Retrospective CNNs 
(SSD)

WLI and NBI 8428 
images

1118 images 98% 95% 98%1

[2] Diagnosing 
ESCC

Retrospective CAD 
(SegNet)

NBI/videos 6473 
images

6671 images 98.04% 95.03% 0.989

[3] Detecting 
EEC and BE

Retrospective CAD 
(ResNet-
UNet)

WLI 494364 
images

1704 images 90% 88% 89%1

[4] Detecting 
E/J cancers

Retrospective CNNs 
(SSD)

WLI and NBI 3443 
images

232 images 94% 42% 66%1

[5] Detecting 
ESCC

Retrospective DCNNs-
CAD

NBI 2428 
images

187 images 97.80% 85.40% 91.4%1

[6] Diagnosing 
BE and EAC

Retrospective CAD 
(ResNet)

WLI and NBI 148/100 Leave-one 
patient-out 
cross 
validation

97%(WLI)/94%(NBI) 88% 
(WLI)/80%(NBI)

[7] Diagnosing 
ESCC

Retrospective CAD (FCN) ME-NBI 3-fold cross-
validation

[8] Detecting 
EAC

Retrospective CNNs 
(SSD)

WLI 100 images 96% 92%

[9] Detecting 
EGC

Retrospective CNNs WLI 348943 
images

9650 images 80.00% 94.80%

[10] Diagnosing 
EGC

Retrospective CNNs WLI 21217 
images

1091 images 36.8 91.20%

[11] Diagnosing 
EGC

Retrospective CNNs 
(Inception-
v3)

ME-NBI 1702 
images

170 images 91.18% 90.64% 90.91%1

Detection 
(0.981)

[12] Diagnosing 
EGC

Retrospective CNNs 
(VGG16)

WLI 896 t1a-
EGC and 
809 t1b-
EGC

5-fold cross-
validation

Depth 
prediction 
(0.851)

[13] Detecting 
EGC

Retrospective CNNs 
(VGG16 
and 
ResNet-50)

WLI/NBI/BLI 3170 
images 

94.00% 91.00% 92.5%1

[14] Diagnosing 
EGC

Retrospective CNNs 
(ResNet-50)

WLI 790 
images

203 images 76.47% 95.56% 89.16%1

[15] Detecting 
EGC

Retrospective CNNs 
(SSD)

WLI 13584 
images

2940 images 58.40% 87.30% 0.76

[16] Classifying 
EGC

Retrospective CNNs 
(Inception-
ResNet-v2)

WLI 5017 
images

5-fold cross-
validation

0.85

[17] Diagnosing 
EGC

Retrospective CNNs 
(ResNet-50)

ME-NBI 4460 
images 

1114 images 98% 100% 98.7%1

[18] Detecting 
and 
localizing 
colonic 
adenoma

Representative CNNs 
(VGG16,19, 
ResNet50)

WLI and NBI 8641 
images/9 
videos, 11 
videos

Cross-
validation

[19] Detecting 
ECC

Representative CNNs WLI 190 
images

3-fold cross-
validation 

67.50% 89.00% 81.2%1

/0.871

[20] Classifying 
ECC

Representative CNNs 
(ResNet-
152)

WLI 3-fold cross-
validation

95.40% 30.10%

Detecting 
colonic 

[21] Prospective Cade 1058 patients ADR (29.1% vs 20.3%)
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adenoma

[22] Detecting 
colonic 
adenoma

Prospective Cade 962 patients ADR (34% vs 28%)

1Accuracy is with “1” and AUC is without “1”, e.g., 100%1 means accuracy is 100%.
ADR: Adenoma detection rates; AI: Artificial intelligence; AUC: Area under the curve; BE: Barrett’s esophagus; BLI: Bright light imaging; CAD: Computer-
aided diagnosis; CNN: Convolutional neural network; DCNN: Deep convolutional neural network; EAC: Esophageal adenocarcinoma; ECC: Early colonic 
cancer; EEC: Early esophageal cancer; EGC: Early gastric cancer; E/J: Esophagogastric junctional; ESCC: Esophageal squamous cell carcinoma; ME-NBI: 
Magnifying narrow band imaging; NBI: Narrow-band imaging; SSD: Single-Shot Multibox Detector; WLI: White-light imaging.

Figure 1 Flow chart of study selection and logic arrangement of review. BE: Barrett’s esophagus; CAG: Chronic atrophic gastritis; EAC: Esophageal 
adenocarcinoma; ECC: Early colonic cancer; EEC: Early esophageal cancer; EGC: Early gastric cancer; ESCC: Esophageal squamous cell carcinoma; GI: 
Gastrointestinal; GIM: Gastric intestinal metaplasia; H. pylori: Helicobacter pylori; IBD: Inflammatory bowel diseases.

AI AND EEC FROM PRECANCEROUS LESIONS TO EEC
Esophageal cancer is one of most common cancers related to a considerable decline in 
health-related quality of life and a reduction in survival rate. ESCC and EAC are two 
main histological types. Many patients with ESCC have a history of heavy tobacco and 
alcohol use[10] as well as other risk factors including polycyclic aromatic hydro-
carbons, high-temperature foods, diet, oral health, microbiome, and genetic factors
[11]. Some risk factors for EAC have been considered mainly as gastroesophageal 
reflux disease, BE, obesity, and tobacco smoking as well as genetic variants[12]. 
Chronic gastroesophageal reflux disease can cause metaplasia from the native 
squamous cell mucosa to a specialized columnar epithelium[13]. BE and dysplasia in 
squamous epithelium are precancerous lesions to EAC and ESCC, respectively, and 
they are supposed to be as one of the main aims of early diagnosis. Endoscopic 
diagnosis of EEC, white-light imaging (WLI), iodine staining, narrow-band imaging 
(NBI), and biopsy have been widely used clinically[14].

There is also study on AI being involved in preclinical stage. For instance, the 
diagnostic ability of AI using DL to detect esophageal cancer including superficial and 
advanced squamous cell carcinoma and adenocarcinoma was characterized as highly 
sensitive (98%) and efficient based on WLI images. Small cancer lesions less than 10 
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mm in size could be detected[15].
In terms of EAC, AI using DL to diagnose superficial esophagogastric junctional 

adenocarcinoma showed favorable sensitivity (94%) and acceptable specificity (42%) of 
WLI images compared with experts[16]. A CAD using DL (CAD-DL) model was 
trained by two datasets based on two different kinds of images (WLI and NBI images) 
used to detect early EAC. The diagnosis of EAC by CAD-DL reached sensiti-
vities/specificities of 97%/88% for WLI images and sensitivities/specificities of 
94%/80% for NBI images, respectively (Augsburg dataset) and 92%/100% (another 
dataset) for WLI images[17]. Additionally, one research compared several AI methods 
including regional-based CNN (R-CNN), Fast R-CNN, Faster R-CNN, and Single-Shot 
Multibox Detector. Single-Shot Multibox Detector outperformed other methods 
achieving a sensitivity of 96% in automatically identify EAC[18].

In terms of ESCC, the endocytoscopic system (ECS) helps in virtual realization of 
histology. The CNN method was applied to detect ESCC with an overall sensitivity of 
92.6% based on ECS images aimed at replacing biopsy-based histology[19]. NBI is 
currently regarded as the standard modality for diagnosing ESCC. A CNN model was 
applied to detect ESCC based on NBI images and showed significantly higher 
sensitivity (91%), specificity (51%), and accuracy (63%) than those of endoscopic 
experts[20]. Besides NBI and ECS, AI was also applied in magnified endoscopy (ME). 
The accuracy, sensitivity, and specificity of AI based on ME images were 89%, 71%, 
and 95% for the AI system, respectively[21]. Accuracy, sensitivity, and specificity with 
WLI images were 87%, 50%, and 99%, respectively. Furthermore, as endoscopic 
resection (ER) is often used to treat ESCC when invasion depths are diagnosed as 
intraepithelial–submucosal layer (tumor invasion is within 0.5 mm of the muscularis 
mucosae). The invasion depth of superficial ESCC was also calculated by a CNN 
method based on WLI and NBI images, which demonstrated higher accuracy. The 
diagnosis accuracy of the CNN method was higher in the intraepithelial-lamina 
propria and muscularis mucosa groups (91.2% and 91.4%, respectively) than that in 
the submucosal layer group (67.8%)[22].

Recently, there have been some application and research of AI on precursor lesions 
of EEC including BE and dysplasia in squamous epithelium. For instance, AI could 
enhance the image of volumetric laser endomicroscopy to facilitate the surveillance BE
[23]. The CNN method was developed to recognized early esophageal neoplasia in BE. 
It could correctly detect early neoplasia with the sensitivity of 96.4%, the specificity of 
94.2%, and the accuracy of 95.4%. In addition, the object detection algorithm was able 
to draw a localization box around areas of dysplasia with a mean average accuracy of 
75.33% and sensitivity of 95.60%[24]. Another similar research demonstrated that a 
CAD system used five independent endoscopy datasets to detect early neoplasia in 
patients with BE. In dataset 4, the CAD classified images as containing neoplasms or 
non-dysplastic BE with 89% accuracy, 90% sensitivity, and 88% specificity. The CAD 
also identified the optimal site for biopsy of detected neoplasia in 97% of cases in 
dataset 4[25].

Moreover, AI was also applied in esophageal histopathology; attention-based deep 
neural networks were used to detect cancerous and precancerous esophagus tissue on 
histopathological slides. Classification accuracies of the proposed model were 85% for 
the BE-no-dysplasia class, 89% for the BE-with-dysplasia class, and 88% for the 
adenocarcinoma class[26].

AI AND EGC FROM CAG AND DYSPLASIA TO EGC
EGC is dened as a cancer conned to the mucosa or submucosa, regardless of lymph 
node metastasis (LNM). Standard WLI and image enhancement endoscopy, such as 
NBI and ME, have been widely used in screening and surveillance of EGC as well as 
EUS, which can enable the precise assessment of the risk of LNM of EGC[27]. Risk 
factors include Helicobacter pylori infection, age, high salt intake, diets low in fruit and 
vegetables, and genetic factors[28]. ER is a minimally invasive treatment for EGC with 
negligible risk of LNM[29]. Patients with CAG, intestinal metaplasia, or dysplasia are 
at risk for gastric adenocarcinoma and are recommended to accept the regular 
endoscopic surveillance. Virtual chromoendoscopy can guide biopsies for staging 
atrophic and metaplastic changes and can target neoplastic lesions[30]. The 5-year 
survival rate of EGC patients is significantly higher than that of advanced GC patients
[31,32]. Early detection and treatment are always one of the top priorities.

In regard to the application of AI in EGC, there are some considerations both related 
on the promise such as the benefits for endoscopists and patients and limitations[33]. 
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To detect and diagnose EGC via ME with NBI (ME-NBI) requires considerable 
experience; AI-assisted CNN CAD system based on ME-NBI images was constructed 
to diagnose EGC, and the overall accuracy, sensitivity, and specificity of the CNN 
were 98.7%, 98.0%, and 100%, respectively, in a short period of time[34]. Different 
deep CNN methods have been designed (such as VGG, Single-Shot Multibox Detector, 
and ResNet) based on different image types (such as WLI, NBI, and chromoen-
doscopy) and mucosal backgrounds (normal mucosa, superficial gastritis, and erosive 
mucosa) (shown in Table 1). There was also research on differentiating EGC from 
gastritis[35] and peptic ulcer[36] achieving reliable accuracy.

Moreover, training with video is considered to improve accuracy in a real clinical 
setting. A CNN model based on videos demonstrated a high detection rate (94.1%) 
with a high processing speed[37]. Furthermore, CNN-CAD was applied to diagnose 
the invasion depth of GC based on WLI images and distinguish EGC from advanced 
GC, with the sensitivity of 76.47%, specificity of 95.56%, and accuracy of 89.16%[38]. 
Another model was also involved in invasion depth. For instance, a CNN method 
(lesion-based VGG-16 model) was used to classify EGC with of sensitivity (91.0%), 
specificity (97.6%), and accuracy (98.1%), respectively. The prediction of invasion 
depth achieved sensitivity (79.2%), specificity (77.8%), and accuracy (85.1%), 
respectively, higher than results of non-lesion-based models, indicating a lesion-based 
CNN was an appropriate training method for AI in EGC[39].

In terms of histopathology, a CNN model trained with pixel-level annotated 
hematoxylin and eosin stained whole slide images achieved a sensitivity near 100% 
and an average specificity of 80.6% in diagnosing GC, aimed at alleviating the 
workload and increasing diagnostic accuracy[40]. Similarly, AI automatically classified 
GC in hematoxylin and eosin stained histopathological whole slide images from 
different groups and demonstrated favorable results[41,42]. Besides endoscopic 
images, machine learning based on radiographic-radiomic images could help predict 
adverse histopathological status of GC[43]. Dual-energy computed tomography based 
DL radiomics could improve LNM risk prediction for GC[44]

In the aspect of gastric precancerous conditions, the application of AI has also been 
focused. For example, atrophic gastritis, as a kind of precancerous condition was 
diagnosed by the pretrained CNN based on WLI images achieved an accuracy of 93% 
in an independent dataset, outperforming expert endoscopists[45]. The CNN method 
was trained by WLI images of gastric antrum in diagnosing CAG, and the diagnostic 
accuracy, sensitivity, and specificity were 94.2%, 94.5%, and 94.0%, respectively, which 
were higher than those of experts. The further detection rates of mild, moderate, and 
severe atrophic gastritis were 93%, 95%, and 99%, respectively[46]. Helicobacter pylori 
infection, as a dominant cause of CAG and GC, has also been detected via AI method 
based on endoscopic images, such as CNN (GoogLeNet) and CNN (ResNet-50 model), 
and achieved the higher accuracy and reliability in a considerably shorter time[47-49].

AI AND ECC FROM POLYPS AND ADENOMA TO ECC
ECC has been defined as a carcinoma with invasion limited to the submucosa 
regardless of lymph node status and according to the Royal College of Pathologists as 
TNM stage T1NXM0[50]. If the dysplasia is restricted to the layer of epithelium, it is 
defined as low-grade or high-grade intraepithelial neoplasia. Mild or moderate 
dysplasia is the pathological character of low-grade intraepithelial neoplasia, and 
severe dysplasia is the pathological character of high-grade intraepithelial neoplasia or 
preinvasive carcinoma[51]. Colonic precancerous lesions include traditional serrated 
adenoma and sessile serrated adenoma/polyps[52,53]. The submucosal invasion in 
clinical practice is considered as the superficial depth of tumor invasion and further as 
a surrogate for nominal LNM risk. Meanwhile, it can be a general criterion to identify 
whether patients are eligible for local ER or surgery[54]. Curative ER is indicated for 
lesions confined to the mucosal layer or invading less than 1 mm into the submucosal 
layer[50]. Endoscopic screening is proven to decrease the risk of disease-specific 
morbidity and mortality[55]. Current guidelines recommend screening beginning at 
age 50 and continuing until age 75 with fecal immunochemical test every year, flexible 
sigmoidoscopy every 5 years, and/or colonoscopy every 10 years[56]. Early diagnosis 
and treatment are pivotal. When colon carcinoma is detected in a localized stage, the 5-
year relative survival is 91.1%. However, the 5-year relative survival of colon 
carcinoma patients with regional metastasis or distant metastasis were 71.7% and 
13.3%, respectively[57].
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AI has been widely involved in the research of ECC on the aspect of detection, 
diagnosis, classification, invasion depth, and histopathology as well as inflammatory 
bowel diseases associated with inflammation-dysplasia-colon cancer pattern. 
Regarding the detection and diagnosis, a research trained Faster R-CNN with VGG16 
based on WLI images and videos covering ECC (Tis or T1) and precursor lesions 
including hyperplastic polyps, sessile serrated adenoma/polyps, traditional serrated 
adenoma, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, 
and submucosal invasive cancer was conducted. It showed the sensitivity and 
specificity were 97.3% and 99.0%, respectively[58]. Another research used two CNN 
methods trained by WLI images. ResNet-152 showed a higher mean area under the 
curve for detecting tubular adenoma + lesions (0.818), and the mean area under the 
curve for detecting high-grade intraepithelial neoplasia + lesions reached 0.876 by 
ResNet-v2[59]. Regarding the invasion depth, for deeply invasive cT1 (SM) (hereafter, 
cT1b) or deeper colorectal cancer (CRC), there is a 10%–15% or higher risk of lymph 
node metastases. Further surgical resection including lymph node dissection is 
required[60]. For an accurate depth of invasion diagnosis, the CNN method was used 
to assist in cT1b diagnosis and demonstrated that cT1b sensitivity, specificity, and 
accuracy were 67.5%, 89.0%, and 81.2%, respectively[61].

In the research of AI application in precancerous lesions such as polyps, there has 
been some research of AI, especially retrospective research related to polyp detection 
and diagnosis with high accuracy[62,63]. For example, a local-feature-prioritized 
automatic CADe system could detect laterally spreading tumors and sessile serrated 
adenoma/polyps with high sensitivity from 85.71% to 100%[64]. Besides retrospective 
research, AI has been designed into some associated prospective research. For 
instance, a multicenter randomized trial used CAD to detect colorectal neoplasia. It 
showed a significant increase in adenoma detection rates and adenomas detected per 
colonoscopy without increasing withdrawal time (54.8% vs 40.4%). Additionally, the 
detection rate of adenomas 5 mm or smaller was significantly higher in the CAD 
group (33.7%) than in the control group[65]. Another randomized study used CAD to 
detect adenomas and achieved increased adenoma detection rates (29.1% vs 20.3%) 
and the mean number of adenomas per patient (0.53 vs 0.31). Similarly, a higher 
number of diminutive adenomas were found (185 vs 102)[66]. In addition, inflam-
matory bowel diseases including Crohn’s disease and ulcerative colitis are also 
associated precancerous lesions, and some AI methods aiding in scoring have been 
trained, such as DL model in grading endoscopic disease severity of patients with 
ulcerative colitis[67] and in predicting remission in patients with moderate to severe 
Crohn’s disease[68].

In the aspect of histopathology, AI has been used in ECC and precancerous lesions. 
A systematic review has concluded that AI use in CRC pathology image analysis 
included gland segmentation, tumor classification, tumor microenvironment charac-
terization, and prognosis prediction[69]. A DL approach was developed to recognize 
four different stages of cancerous tissue development, including normal mucosa, early 
preneoplastic lesion, adenoma, and cancer and obtained an overall accuracy more than 
95%[70]. Prediction of LNM for early CRC is critical for determining treatment 
strategies after ER. An LNM prediction algorithm for submucosal invasive (T1) CRC 
based on machine learning showed better LNM predictive ability than the conven-
tional method on some datasets[71-82].

PROSPECTS AND CHALLENGES OF AI APPLICATION ON EARLY GI 
CANCER
Endoscopy is usually the first choice in the diagnosis and management of early GI 
cancer. According to the Clinical Practice Guideline, ER is now a standard treatment 
for early GI cancers without regional LNM. Early GI cancers can completely be 
removed by en bloc fashion (resection of a tumor in one piece without visible residual 
tumor) via endoscopic mucosal resection and/or endoscopic submucosal dissection. 
High-definition white light endoscopy, chromoendoscopy, and image-enhanced 
endoscopy such as ME-NBI can be used to assess the edge and depth of early GI 
cancers for delineation of resection boundaries and prediction of the possibility of 
LNM before the decision of ER. Histopathological evaluation can confirm the depth of 
cancer invasion and lymphovascular invasion[83]. From this review, we can see AI as 
a novel technology has been penetrated in early GI cancer detection, diagnosis, 
boundaries, invasion depth, lymphovascular invasion, and prognosis prediction based 
on endoscopic images and videos and pathological tissue slides obtained after ER.
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Both high-quality endoscopy and high-quality AI model construction research are 
crucial to ensure better health outcomes and benefits of patients. Some AI methods 
have been designed to identify and assure the quality of endoscopy to improve the 
detection rate of early GI cancer. In upper GI tract, missed EGC rates are an important 
measure of quality. A deep CNN model was built to monitor blind spots, time the 
procedure, and automatically generate photo-documentation during esophago-
gastroduodenoscopy[84]. Meanwhile, in colonoscopy, poorer adenoma detection rates 
are associated with poorer outcomes and higher rates of post-colonoscopy colonic 
cancer[85]. A deep CNN model was developed for timing withdrawal phase, 
supervising withdrawal stability, evaluating bowel preparation, and detecting 
colorectal polyps[86].

In the aspect of quality control of AI studies related to endoscopy, some limitations 
should be concerned. Different CNN models have demonstrated high accuracies or 
area under the curve and 7 out of 22 more than 90%/0.9 with high sensitivities and 
specificities in Table 1. These limitations were concentrated on the retrospective 
research, the single center, the small sample number, still images, background images, 
the only use of high-quality images, and not all images with lesions identified by gold 
standard such as pathology. They may discount the reliability of the results. As most 
endoscopic-related algorithms are trained in a supervised manner, labeling data is 
important. Meanwhile, videos and large, heterogenous, and prospectively collected 
data are less prone to biases[87].

CONCLUSION
AI has been widely used in medicine, although most studies have remained at the 
preclinical stage. In this review, we provided an overview of the associated application 
of AI in early GI cancer including EEC, EGC, and ECC as well as their precancerous 
lesions. Detection, diagnosis, classification, invasion depth, and histopathology have 
been involved. Indeed, AI will bring benefits to patients and doctors. It will provide 
useful support during endoscopies to achieve more precise diagnosis of early GI 
cancer after more intelligent detection and biopsy with high efficiency and reduce 
workload to fill the lack of clinical resources in the future.
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