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Abstract
BACKGROUND 
The presence of perineural invasion (PNI) in patients with rectal cancer (RC) is 
associated with significantly poorer outcomes. However, traditional diagnostic 
modalities have many limitations.

AIM 
To develop a deep learning radiomics stacking nomogram model to predict 
preoperative PNI status in patients with RC.

METHODS 
We recruited 303 RC patients and separated them into the training (n = 242) and 
test (n = 61) datasets on an 8: 2 scale. A substantial number of deep learning and 
hand-crafted radiomics features of primary tumors were extracted from the 
arterial and venous phases of computed tomography (CT) images. Four machine 
learning models were used to predict PNI status in RC patients: support vector 
machine, k-nearest neighbor, logistic regression, and multilayer perceptron. The 
stacking nomogram was created by combining optimal machine learning models 
for the arterial and venous phases with predicting clinical variables.

RESULTS 
With an area under the curve (AUC) of 0.964 [95% confidence interval (CI): 0.944-
0.983] in the training dataset and an AUC of 0.955 (95%CI: 0.900-0.999) in the test 
dataset, the stacking nomogram demonstrated strong performance in predicting 
PNI status. In the training dataset, the AUC of the stacking nomogram was 
greater than that of the arterial support vector machine (ASVM), venous SVM, 
and CT-T stage models (P < 0.05). Although the AUC of the stacking nomogram 
was greater than that of the ASVM in the test dataset, the difference was not 
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particularly noticeable (P = 0.05137).

CONCLUSION 
The developed deep learning radiomics stacking nomogram was effective in predicting preoperative PNI status in 
RC patients.

Key Words: Rectal cancer; Perineural invasion; Radiomics; Deep learning; Machine learning

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Four machine models (support vector machine, k-nearest neighbor, multilayer perceptron, and logistic regression) 
were used to predict the preoperative rectal cancer (RC) presence of perineural invasion (PNI) status, with good performance 
in both the arterial and venous phases. With an area under the curve of 0.964 in the training dataset and 0.955 in the test 
dataset, the stacking nomogram model to predict pretreatment PNI status had high predictive power and clinical utility, 
which can help diagnostic and treatment decision-making. Deep learning radiomics stacking models are rare in our RC PNI, 
which was also an innovation in our research.

Citation: Zhao ZC, Liu JX, Sun LL. Preoperative perineural invasion in rectal cancer based on deep learning radiomics stacking 
nomogram: A retrospective study. Artif Intell Med Imaging 2024; 5(1): 93993
URL: https://www.wjgnet.com/2644-3260/full/v5/i1/93993.htm
DOI: https://dx.doi.org/10.35711/aimi.v5.i1.93993

INTRODUCTION
Rectal cancer (RC) is the most common type of gastrointestinal cancer worldwide, and its incidence and mortality are 
steadily increasing, posing a severe threat to human health[1]. The two most distinguishing biological activities of 
malignant tumors are invasion and metastasis. Oncologists and physicians are becoming more aware of neural invasion 
in addition to the usual direct invasion, lymph node metastasis, and hematogenous metastasis.

One obvious method by which cancer cells spread is through neural invasion, also known as perineural invasion (PNI), 
which is the invasion of tumor cells around or through nerve fibers[2]. PNI is present in many different tumor types, 
including pancreatic ductal adenocarcinoma, gastric cancer, colorectal cancer, and prostate cancer. It plays a significant 
role in determining the pathological features and prognosis of malignant tumors by foretelling a high incidence of 
metastatic tumors, poor prognosis, and high rate of local recurrence[2,3]. PNI has a significant role in deciding whether 
patients benefit from postoperative chemotherapy and neoadjuvant chemoradiation[4-6]. Furthermore, it significantly 
affects the prognosis of individuals with rectal cancer who will survive over the long term. Therefore, physicians can 
benefit from knowing PNI status beforehand.

Traditional radiological methods, such as computed tomography (CT) and magnetic resonance imaging (MRI), do not 
determine the PNI status of rectal cancer. However, because RC is a temporally and spatially heterogeneous disease, the 
risk of invasive sampling and potential complications limit its application in tumor progression and real-time monitoring. 
As a result, a simple and noninvasive strategy to provide this critical information before clinicians make clinical treatment 
decisions must be developed.

Radiomics, which uses a large number of objective and quantitative imaging features to select imaging markers that are 
most closely related to clinical, pathological, molecular, and genetic characteristics, and then uses machine learning and 
statistical modeling to perform further quantitative analysis and analyze the correlation with clinical features, can 
noninvasively reflect tumor heterogeneity[7-9]. Several recent studies[10] have demonstrated that radiomics is a superior 
method for predicting PNI status in colorectal cancer. Guo et al[10] created a nomogram based on CT score and T2-
weighted imaging score to predict PNI status in RC, and it performed the best [training set, area under the curve (AUC) = 
0.906; test set, AUC = 0.884][11]. The results of the study demonstrated that radiomics can supplement conventional 
imaging techniques and aid physicians in decision-making. Additionally, a type of deep learning neural network that 
learns from the data itself is the convolutional neural network (CNN). Convolution is its central layer and is mostly 
utilized for segmentation, classification, and image recognition. Large data sets can be processed and the outcome of data 
analysis can be predicted and classified[12]. It is rarely stated that deep learning radiomics can be used to predict PNI 
status in RC.

Therefore, in this study, radiomics features of arterial and venous phases were extracted from enhanced CT images of 
patients with RC, and a deep learning radiomics nomogram was constructed to explore its application the prediction of 
PNI.

https://www.wjgnet.com/2644-3260/full/v5/i1/93993.htm
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MATERIALS AND METHODS
Patients
Patients with RC who underwent enhanced CT examination at our hospital between March 2018 and December 2023 
were included in this study retrospectively. The following were the inclusion criteria for patients (Figure 1): (1) Patholo-
gically confirmed RC with PNI status; (2) Within 2 wk prior to surgery, an enhanced abdominal CT scan was conducted; 
and (3) All clinical information and pertinent laboratory results were recorded, including age, sex, history of alcohol 
consumption and smoking, carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9, routine blood tests, blood 
lipids, and T stage of the CT report. Exclusion criteria were (Figure 1): (1) Neoadjuvant chemoradiotherapy prior to 
surgery; (2) Complicated malignant tumors at other sites; and (3) Inadequate clinical data or poor image quality. 
Ultimately, the study comprised 303 patients (mean age 65.94 ± 10.76 years, age range 24-91 years; 165 male and 117 
female). The patients were assigned to training (n = 242) and test (n = 61) datasets.

Spiral CT (Philips iCT 256) showed that all patients had enhanced abdominal scans with the following settings: Matrix 
512 × 512, transverse fault thickness of 5 mm, pitch 0.5 s, tube voltage 120 kV, and tube current autoregulation. Patients in 
the supine position were injected with 80-100 mL (300 mg mL) at a rate of 3.0 mL/s with a delay of 30-35 s and 60-70 s, 
resulting in arterial and venous phase images.

Two seasoned radiologists who were blind to all clinical and pathological data evaluated the CT reported T stage (CT-T 
stage) using CT-enhanced images (Table 1).

Features for extraction and selection
Using the open-source 3D Slicer software (www.3D-Slicer.com, version 4.13.2), two radiologists manually identified and 
separated main tumors from axial CT scans at arterial and venous stages. The pixel intensity was normalized to transform 
the images to standardized inputs, which had the intensity range from 1024 to 1024 HU and the unified abdominal 
window (window level 50 and window width 350). The two radiologists repeated manual segmentation on the same 
group of 50 CT images to test the consistency of the two, intraclass correlation coefficients (CCs) used for consistency 
within the tester. For intraclass CCs used for consistency between examiner and assessors, only intraclass CCs > 0.75 
indicated that acceptable stability of the construction model. Regions of interest (ROIs) include tumor and necrosis, 
bleeding areas and avoid the use of intestinal gases and contents. Fir every patient, two ROIs (venous and arterial phases) 
were created.

CT images were resampled to the voxel size of 1 mm × 1 mm × 1 mm. The raw images were processed using log, 
exponential, square, square root, gradient, and high wavelet transform and low wavelet filter. First-order features (n = 
342), shape features (n = 14), gray-level dependence matrix (n = 266), gray-level size zone matrix (GLSZM, n = 304), and 
gray-level run-length matrix (n = 306) were among the radiomics features.

For the extraction of deep learning features, we initialized deep CNNs (DCNNs) using the pretrained weights in 
ImageNet, and selected the maximum cross-sectional area and its upper and lower images as three-channel images. The 
CT images were cropped using a rectangular ROI around the tumor contours. The size of the tumor patch was adjusted to 
224224 to meet the input size requirements of the pretrained CNN model. We used the same normalization technique as 
in the ImageNet dataset, subtracting the mean (0.485, 0.456 and 0.406) and dividing by the standard deviation (0.229, 
0.224 and 0.225) to ensure that the input features of the image agreed with the mean and standard deviation during 
ImageNet training.

We constructed two different deep learning models (DCNNs) for the deep learning feature extraction of tumor ROI in 
the arterial and venous stage CT images, respectively. The DCNN model was based on the Resnet-50 backbone, extracted 
deep learning features for classification, and predicted the RC PNI status based on a large number of 2D patches extracted 
from the ROI of the main cohort. The largest cross-sectional area and its upper and lower cross-section lesions were 
selected from the arterial and venous stages of the ROI as the input model, and the CT slices of the extracted features 
were input into the hierarchical convolution structure of the DCNN, using its CNN structure and learning weights on 
ImageNet, to obtain accurate ROI features in the average pool layer of the DCNN using the ResNet50 architecture. Using 
the average pool layer of ResNet-50 as the output of feature extraction generated a fixed size feature vector (usually 2048 
dimensions), which provided a uniform and stable input feature for subsequent classification tasks, reducing the 
variability brought by different ROI sizes. The feature representation of this layer summarized the information about the 
entire ROI, providing a fixed-length feature vector suitable for subsequent classification tasks. We also froze most or all of 
the convolutional layers, only fine-tuning them in the final fully connected layer. This reduced the training time while 
maintaining the stability of the pretraining features.

Following the segmented ROI, 3696 features were extracted from each arterial and venous phase ROI, consisting of 
2048 deep learning features and 1648 radiomics features, respectively. All features were normalized to a standard 
numerical range. We assessed the stability of two radiologists' tumor delineation using the interclass CC)/intraclass CC 
in order to remove unstable features and keep features with intraclass CC > 0.75. The Mann–Whitney U test (P < 0.05) 
eliminated the duplicate features. The features with the highest correlation with the outcome but the lowest correlation 
among the features were chosen using the maximum correlation and the minimum redundancy (mRMR). We selected the 
lambda value that yielded the least amount of error as the final parameter. LASSO regression lowered the coefficient of 0 
and prevented overfitting and multicollinearity of the model when combined with fivefold cross-validation. The study 
flow chart, which includes image preprocessing, feature extraction, feature selection, and model building, is depicted in 
Figure 2.

http://www.3D-Slicer.com
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Table 1 Statistical analysis results of clinical characteristics, n (%)

Training set (n = 242) Test set (n = 61)
Characteristics

PNI (n = 148) PNI+ (n = 94)
P value

PNI (n = 40) PNI+ (n = 21)
P value

Age, (mean ± SD) (years) 67.01 ± 10.57 64.26 ± 12.06 0.063 67.33 ± 8.18 63.104 ± 8.66 0.065

Gender 0.248 0.86

Male 85 (58.2) 54 (39.1) 20 (64.5) 11 (35.5) 

Female 63 (65.6) 33 (34.4) 20 (66.7) 10 (33.3) 

Smoking 0.882 0.396

No 101 (60.8) 65 (39.2) 29 (69.0) 13 (31.0)

Yes 47 (51.8) 29 (38.2) 11 (57.9) 8 (42.1)

HGB (g/L) 126.98 ± 20.67 130.69 ± 20.00 0.071 128.881 ± 14.16 128.67 ± 22.28 0.965

RBC (1012/L) 4.28 ± 0.62 4.40 ± 0.44 0.126 4.40 ± 0.47 4.28 ± 0.48 0.339

WBC (109/L) 6.55 ± 1.79 6.84 ± 2.19 0.265 6.18 ± 1.68 6.54 ± 1.67 0.391

PLT (109/L) 229.14 ± 77.31 240.92 ± 76.73 0.248 231.05 ± 70.18 231.62 ± 50.56 0.974

Lymphocyte(109/L) 1.61 ± 0.59 1.63 ± 0.68 0.808 1.59 ± 0.68 1.71 ± 0.95 0.567

Monocyte(109/L) 0.46 ± 0.23 0.47 ± 017 0.667 0.40 ± 0.14 0.70 ± 1.02 0.1

Neutrophil(109/L) 4.27 ± 1.55 4.54 ± 1.94 0.243 3.96 ± 1.51 4.47 ± 1.70 0.228

TG 1.47 ± 1.11 1.31 ± 0.60 0.18 1.43 ± 0.72 1.59 ± 0.98 0.502

Cholesterol 4.58 ± 0.88 4.72 ± 0.98 0.232 4.82 ± 0.89 4.91 ± 1.08 0.707

HDL 1.12 ± 0.28 1.19 ± 0.32 0.088 1.42 ± 1.51 1.13 ± 0.24 0.392

LDL 2.79 ± 0.69 2.93 ± 0.85 0.164 2.96 ± 0.84 3.18 ± 1.09 0.392

AproA 1.24 ± 0.19 1.26 ± 0.20 0.406 1.29 ± 0.17 1.22 ± 0.15 0.126

AproB 0.89 ± 0.19 0.90 ± 0.22 0.795 0.94 ± 0.18 0.89 ± 0.19 0.279

CEA (≥ 5 ng/mL) 0.016 0.173

No 94 (67.6) 45 (32.4) 28 (71.8) 11 (28.2)

Yes 54 (52.4) 49 (47.6) 12 (54.5) 10 (45.5)

CA19-9 (≥ 37 U/mL) 0.003 0.052

No 136 (64.8) 74 (35.2) 37 (71.2) 15 (28.8)

Yes 12 (37.5) 20 (62.5) 3 (33.3) 6 (66.7)

CT T stage 0.000 0.006

1/2 29 (85.3) 5 (14.7) 16 (88.6) 2 (11.1)

3 73 (66.4) 37 (33.6) 17 (68.0) 8 (32.0)

4 46 (46.9) 52 (53.1) 7 (38.9) 11 (61.1)

CEA: Carcinoembryonic antigen; CA19-9: Carbohydrate antigen 19-9; P < 0.05.

Construction and evaluation of the predictive models
Preoperative PNI status was developed in the radiomics models (arterial and venous phase) using four machine learning 
models: Support vector machine (SVM), logistic regression (LR), multilayer perceptron (MLP), and k-nearest neighbor 
(KNN). The effectiveness of these four machine learning models in determining PNI status was assessed using the AUC 
and receiver operating characteristic (ROC) curves. We chose the most effective machine learning model by using the 
DeLong test to determine whether there were significant differences between the four distinct ROC curves.

For continuous clinical factors (age, blood routine index, blood lipid items, etc.) that differed between PNI+ and PNI 
groups, we used a t test. For categorical variables (gender, CA19-9, CEA level and CT-T stage), we utilized χ2 testing. 
Multivariate logistic regression was used to examine clinical characteristics with P < 0.05 to identify independent clinical 
predictors. Ultimately, the most effective arterial and venous phase machine learning models were combined with 
clinically predictive features to create a stacking nomogram. The DeLong test examined whether there were differences 
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Figure 1 Flow chart of patient recruitment. CT: Computed tomography; PNI: Perineural invasion.

between stacking nomogram, clinical models and the ROC curves of the machine learning models. Hosmer–Lemeshow 
examined the nomogram for fit, and the model fitted well at P > 0.05. The agreement between the actual and anticipated 
values of the superimposed nomograms was evaluated using calibration curves. The decision curve was employed to 
evaluate the clinical net-gain of the nomogram.

Statistical analysis
Anaconda (https://www.anaconda.com/python3.7) and R (https://www.r-project.org/version4.1.2) were used for 
statistical analysis. When comparing the differences between training and test groups for continuous clinical variables, an 
independent sample t test was used if a normal distribution was satisfied; if not, the Mann–Whitney U test was utilized to 
assess the differences. To evaluate the differences between categorical clinical variables, we used Fisher's exact test or χ2 
test. Ultimately, we used multiple logistic regression analysis to identify independent predictors, and two-sided P < 0.05 
was considered statistically significant.

RESULTS
Clinical features
Age, gender, history of smoking, history of alcohol consumption, CA19-9 level, CEA level, routine blood index, and six 
blood lipid items did not significantly differ between the PNI and PNI+ groups in the training and test datasets (P > 0.05). 
CT T-stage was shown to be significant in the training and test datasets (P < 0.05). Clinical characteristics of the patients 
are shown in Table 1.

Feature selection
We extracted 3254 radiomic features from each ROI during the arterial and venous phases. Intraclass CC < 0.75 excluded 
83 arterial phase features and 94 venous phase features. Then, 131 and 154 features were selected using the 
Mann–Whitney U test. The top 50 features were retained by mRMR, and the last 15 arterial phase and 13 venous phase 
predictive features were determined by LASSO regression combined with cross-validation.

Construction of the machine learning model
Figure 3 and Table 2 show the ROC curves and AUCs for the four machine learning models. The established radiomics 
model accurately predicted the preoperative PNI status in RC patients, according to the AUCs of the four machine 

https://www.anaconda.com/python3.7
https://www.anaconda.com/python3.7
https://www.anaconda.com/python3.7
https://www.anaconda.com/python3.7
https://www.r-project.org/version4.1.2
https://www.r-project.org/version4.1.2
https://www.r-project.org/version4.1.2
https://www.r-project.org/version4.1.2
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Table 2 Performance of four machine learning classifiers (support vector machine, multi-layer perceptron, k-nearest neighbor and 
logistic regression)

Training set Test set
Classifiers

AUC 95%CI Sensitivity Specificity AUC 95%CI Sensitivity Specificity

ASVM 0.904 0.865-0.943 0.840 0.885 0.890 0.794-0.987 0.857 0.850

AKNN 0.790 0.736-0.844 0.638 0.791 0.762 0.640-0.884 0.667 0.725

AMLP 0.821 0.769-0.873 0.840 0.649 0.814 0.691-0.937 0.810 0.750

ALR 0.788 0.731-0.846 0.723 0.730 0.750 0.607-0.893 0.714 0.750

VSVM 0.890 0.850-0.930 0.926 0.703 0.867 0.778-0.956 0.810 0.800

VKNN 0.834 0.783-0.884 0.702 0.838 0.790 0.676-0.904 0.667 0.800

VMLP 0.800 0.744-0.856 0.766 0.730 0.769 0.648-0.890 0.571 0.850

VLR 0.760 0.698-0.822 0.628 0.777 0.735 0.606-0.863 0.999 0.375

ASVM: Arterial support vector machine; AKNN: Arterial k-nearest neighbor; AMLP: Arterial multilayer perceptron; ALR: Arterial logistic regression; 
VSVM: Venous support vector machine; VKNN: Venous k-nearest neighbor; VMLP: Venous multilayer perceptron; VLR: Venous logistic regression.

learning models. The results showed that arterial SVM (ASVM) and venous SVM (VSVM) had AUCs of 0.904 and 0.890 in 
the training set, sensitivity of 0.840 and 0.926, and specificity of 0.885 and 0.703, respectively. SVM was the most effective 
model for the venous and arterial phases. In the test set, the AUC, sensitivity, and specificity of ASVM and VSVM were 
0.890 and 0.867, 0.857 and 0.810, and 0.850 and 0.800, respectively. In the training group, the SVM models significantly 
outperformed the KNN, LR, and MLP models (P < 0.05). In the test group, however, the difference between the AUC of 
the ASVM model and the MLP model was not significant (P = 0.05938), nor was the difference between the AUC of the 
VSVM model and the KNN model (P = 0.15586).

Development and validation of the stacking nomogram
The possibility of the SVM model correctly predicting PNI+ during the venous and arterial phases was noted as 
Arterial_signature and Venous_signature, respectively. Arterial_signature, Venous_signature, and CT-T stage were 
merged, and logistic regression was used to create the stacking nomogram (Figure 4). With an AUC of 0.964 (95%CI: 
0.944-0.983) in the training group and 0.955 (0.900-0.999) in the test group, the stacking nomogram demonstrated a 
satisfactory evaluation. In the training group, there were significant differences between the ROC curves of the stacking 
nomogram and the machine learning models in the arterial and venous phases (P < 0.001); however, there was no 
significant difference between the stacking nomogram and the ASVM in the test cohort (P = 0.05137). Figure 5 and Tables 
3 and 4 show evaluation and comparison of the stacking nomogram, ASVM, VSVM, and CT-T stage. Hosmer–Lemeshow 
test showed that the stacking nomogram had a good fit (training group: P = 0.867, test group: P = 0.256). The calibration 
curve of the stacking nomogram is shown in Figure 5, which illustrates that there is good agreement between the 
predicted and actual values. A strong net benefit is displayed by the decision curve. Figure 6 shows the radiomics model, 
clinical model, and stacking nomogram decision curve analysis. The decision curve indicated that, if the threshold 
likelihood of PNI was between 10% and 90%, the stacking nomogram gained more from treating all patient alternatives 
or from having no treatment options.

DISCUSSION
According to recent research, PNI is the result of interactions between tumor and nerve cells as well as different biological 
signaling chemicals and their receptors inside the peripheral milieu. These interactions may cause the cancer to become 
more aggressive and to spread[13]. Currently, pathological investigation is the sole method available to ascertain PNI 
status. Preoperative prediction of PNI facilitates the development of individualized treatment. For instance, postoperative 
chemotherapy and neoadjuvant chemoradiotherapy can help the majority of PNI+ patients, increasing the survival rate
[14-16]. Therefore, accurate preoperative prediction of PNI status helps to evaluate the prognosis of RC patients.

The evaluation of noninvasive prognosis in RC patients has always been a difficult issue. Traditional imaging methods, 
such as CT and MRI, cannot accurately predict the PNI status of RC; however, RC is a temporally and spatially hetero-
geneous disease. The risk of invasive sampling and potential complications limit its application in tumor progression and 
real-time monitoring, so radiomics gradually attracted the attention of oncologists and clinicians. There have been several 
studies using radiomics to assess PNI status in RC. Chen et al[17] proposed a nomogram model for predicting preo-
perative PNI status in colorectal cancer (training group, AUC = 0.88; test group, AUC = 0.80), including radiomics 
features, CT-T stage and CT-N stage levels. Yang et al[18] predicted the preoperative PNI nomogram based on MRI, 
including radiomics characteristics, MRI-T stage (training group, AUC = 0.81; test group, AUC = 0.75). In this study, we 
developed and validated a PNI for CT preoperatively (training group, AUC = 0.964; test group, AUC = 0.955). Our results 
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Table 3 Prediction performance of four models (arterial support vector machine, venous support vector machine, CT-Tstage and 
Nomogram)

Model Dataset AUC 95%CI Sensitivity Specificity Recall Accuracy Precision F1-score

Train 0.904 0.865-0.943 0.840 0.885 0.840 0.863 0.880 0.860ASVM

Test 0.890 0.794-0.987 0.857 0.850 0.857 0.854 0.851 0.854

Train 0.890 0.850-0.930 0.926 0.703 0.926 0.815 0.757 0.786VSVM

Test 0.867 0.778-0.956 0.810 0.800 0.810 0.805 0.802 0.806

Train 0.647 0.583-0.710 0.553 0.689 0.553 0.621 0.640 0.593CT-Tstage

Test 0.730 0.607-0.854 0.525 0.825 0.525 0.675 0.750 0.618

Train 0.964 0.944-0.983 0.800 0.789 0.800 0.795 0.791 0.795Nomogram

Test 0.955 0.900-0.999 0.952 0.900 0.952 0.928 0.905 0.919

AUC: Area under curve; ASVM: Arterial support vector machine; VSVM: Venous support vector machine.

Table 4 Delong-test results of four models (Arterial support vector machine, venous support vector machine, CT-T stage and 
Nomogram)

Model Training set Test set

Delong-test ASVM VSVM CT-T stage Nomogram ASVM VSVM CT-T stage Nomogram

ASVM - 0.6304 1.934e-11 0.000271 - 0.6997 0.0527 0.05137

VSVM - - 1.737e-10 2.15e-05 - - 0.0692 0.03611

CT-Tstage - - - 2.2e-16 - - - 0.000305

Nomogram - - - - - - - -

ASVM: Arterial support vector machine; VSVM: Venous support vector machine; P < 0.05.

showed that the CT deep learning-radiomics stacking nomogram can identify the PNI status of RC before surgery, 
provide a quantitative, efficient, and noninvasive mechanism for PNI status identification in RC patients, and guide 
personalized treatment. In this study, T stage as assessed by CT was an independent clinical predictor of PNI, suggesting 
that tumor invasive depth was significantly associated with PNI. With increased T stage, increased proliferation and 
aggressiveness of tumor cells, and increased risk of PNI in colorectal cancer patients, which is consistent with previous 
studies[17-19]. Histopathological predictors from surgical pathological tissue may lead to sampling bias; therefore, we 
combined radiomics characteristics and clinical risk factors based on arterial and venous enhanced CT into an easy-to-use 
nomogram to facilitate noninvasive individualized prediction of PNI status in RC patients and to determine treatment 
strategies.

To construct the radiomics model, we screened 15 and 13 radiomics features highly associated with PNI from the 
arterial and venous stages, respectively. In both arterial and venous stages, the radiomics features GLSZM-small area 
emphasis showed a negative correlation with PNI of RC. GLSZM is defined as the number of connecting elements with 
the same gray intensity. Small area emphasis is a measure of regional distribution of small size, with larger values repres-
enting smaller areas and better texture, which indicates that PNI-positive tumors have rough texture features, and more 
detailed features are needed to describe PNI-negative tumors. These reflect the existence of some specific connection 
between tumor intensity, differences within tumor texture, and PNI. Previous studies also showed that texture features 
are predictive in many cases, which is consistent with the results of this study[19,20].

A large number of studies on disease classification, differential diagnosis and predictive prognosis have shown that 
deep learning can better promote radiomics analysis, which is becoming more widely used in the field of medical 
imaging. The use of deep learning methods to process and analyze medical imaging data has promoted the development 
of precision and personalized medicine[21,22]. Deep learning features comprised most of the features that we screened 
(25 of 28), suggesting that deep learning is more predictively significant in the preoperative PNI prediction of RC. We 
constructed a neural network by transfer learning using the Resnet-50 method to provide machine learning models with 
strong feature representation capabilities. Transfer learning is a generalized and efficient method of learning that involves 
applying knowledge from tasks related to general object recognition to challenges specific to a certain domain. Therefore, 
the main contribution of this study is to use the ImageNet pretrained deep learning CNN architecture as the foundation 
to establish an automated tool for the detection and diagnosis of PNI in CT images. Its main idea is to use their CNN 
structure and its learning weights on ImageNet, and use the ResNet50 architecture to accurately extract features from the 
ROIs. The Resnet-50 algorithm is based on the residual learning mechanism. The algorithm simplifies the learning 
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Figure 2 Demonstration of radiomics model construction. A: Image segmentation; B: Features extraction; C: Features selection; D: Model construction.

process, making it possible to train deeper networks, and solves the problem of gradient dispersion and disappearance as 
the network deepens. Research has demonstrated that a range of tumor-related tasks, such as tumor diagnosis, classi-
fication, grade, stage, and prognostic prediction, as well as identification of pathological features, biomarkers, and genetic 
alterations, may be carried out using CNN algorithms based on Resnet50. Several studies have also demonstrated the 
clinical utility of this architecture of Resnet-50[23-25].

Selecting the right machine learning model is essential for maintaining the stability and performance of the model. 
Many researchers[18,20] only used one machine learning technique to create their models. Chen et al[20] discovered that 
the logistic-regression-based MR radiomics model was effective in predicting PNI in patients with colorectal cancer (AUC 
= 0.86 in the training group; AUC = 0.85 in the test group). This study investigated the diagnostic performance of four 
machine learning models built on the KNN, SVM, MLP, and LR machine learning algorithms. With AUC values greater 
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Figure 3 Receiver operating characteristic curves of the support vector machine, multi-layer perceptron, k-nearest neighbor and logistic 
regression. A: Receiver operating characteristic (ROC) curves of arterial support vector machine (ASVM), arterial multilayer perceptron (AMLP), arterial k-nearest 
neighbor (AKNN) and arterial logistic regression (ALR) in the Training set; B: ROC curves of ASVM, AMLP, AKNN and ALR in the test set; C: ROC curves of VSVM, 
VMLP, VKNN and VLR in the Training set; D: ROC curves of VSVM, VMLP, VKNN and VLR in the test set.

than KNN, MLP, and LR algorithms (training group: AUC = 0.904; validation group: AUC = 0.890), SVM was the best 
machine learning method. In the realm of machine learning, SVMs are examples of classical classification algorithms. The 
SVM is known as the most robust classifier and has good generalization ability, suitability for small samples, and high 
dimensional features. It has been applied extensively to numerous classification and regression issues, yielding positive 
outcomes[26,27]. To further improve the ability to predict PNI, we constructed a stacking nomogram model using the 
input variable obtained by the above SVM machine learning algorithm. The AUC of this stacking nomogram model 
(training group, AUC = 0.964; test group, AUC = 0.955) improved the AUC compared with a single machine learning 
model and higher than the recently reported results (training group, AUC = 0.88; test group, AUC = 0.80) [17]. Although 
the increase in AUC of the stacking nomogram model was not significant compared with the machine learning ASVM 
model (P = 0.051), this may be due to the small sample size of the test set in this study, which cannot reflect the signi-
ficance of the intermodel differences.

Our study had some limitations. This was a retrospective study conducted in a single center, hence adequate external 
data are required to validate the findings. Our sample size was small, and future research and data from other centers are 
required to confirm the generalizability of our model. These could be useful directions for future investigation.

CONCLUSION
We provide a stacking nomogram model of radiomics based on contrast-enhanced CT that may predict the PNI status of 
RC and provide clinicians with additional quantifiable evidence for the formulation of individualized treatment options.
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Figure 4 Nomogram based on the radiomics feature and clinical predictors.

Figure 5 Receiver operating characteristic curves and calibration curves for training and test set. A: Receiver operating characteristic (ROC) 
curves of CT_Tstage, arterial support vector machine (ASVM), enous support vector machine (VSVM) and stacking nomogram in the Training set; B: ROC curves of 
CT_Tstage, ASVM, VSVM and stacking nomogram in the Test set; C: Calibration curves of the stacking nomograms in the training set; D: Calibration curves of the 
stacking nomograms in the test set. X-axis represents the predicted risk of perineural invasion (PNI). Y-axis represents the actual PNI.
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Figure 6 Decision curve analysis of four model. A: Decision curve analysis of four model in the training set; B: Decision curve analysis of four model in the 
test set.
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Abstract
Imaging methods are frequently used to diagnose gastrointestinal diseases and 
play a crucial role in verifying clinical diagnoses among all diagnostic algorithms. 
However, these methods have limitations, challenges, benefits, and advantages. 
Addressing these limitations requires the application of objective criteria to assess 
the effectiveness of each diagnostic method. The diagnostic process is dynamic 
and requires a consistent algorithm, progressing from clinical subjective data, 
such as patient history (anamnesis), and objective findings to diagnostics ex 
juvantibus. Caution must be exercised when interpreting diagnostic results, and 
there is an urgent need for better diagnostic tests. In the absence of such tests, pre-
liminary criteria and a diagnosis ex juvantibus must be relied upon. Diagnostic 
imaging methods are critical stages in the diagnostic workflow, with sensitivity, 
specificity, and accuracy serving as the primary criteria for evaluating clinical, 
laboratory, and instrumental symptoms. A comprehensive evaluation of all 
available diagnostic data guarantees an accurate diagnosis. The “gold standard” 
for diagnosis is typically established through either the results of a pathological 
autopsy or a lifetime diagnosis resulting from a thorough examination using all 
diagnostic methods.
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Core Tip: The diagnostic process is a complex journey that every physician undertakes with each patient. Successfully 
diagnosing gastrointestinal diseases requires mastery of all the methods within the diagnostic algorithm. Modern imaging 
methods provide physicians with significant diagnostic support. But how should the results of these imaging methods be 
evaluated? This is done using key criteria such as sensitivity, specificity, and accuracy. Only a comprehensive assessment of 
various diagnostic methods, taking into account these criteria, will ensure the correct diagnosis of the disease.
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TO THE EDITOR
Imaging methods are frequently used to diagnose gastrointestinal diseases, serving as crucial tools to verify clinical 
diagnoses across various diagnostic algorithms (Table 1). These methods, however, have their limitations, challenges, 
benefits, and advantages. To address these limitations, it is necessary to apply objective criteria to evaluate the effect-
iveness of each diagnostic method. Non-invasive imaging techniques, such as ultrasound, CT, positron emission 
tomography (PET), and MRI, have revolutionized gastrointestinal diagnostics over the past few decades. Advancements 
in imaging resolution, three-dimensional imaging, and contrast agents have significantly improved diagnostic accuracy. 
Studies indicate remarkable diagnostic accuracy for various bowel conditions. For instance, inflammatory bowel diseases 
can be detected with 73%-87% sensitivity, while ulcerative colitis can be detected with 89% sensitivity and 100% 
specificity. Ultrasound also shows strong performance in diagnosing acute appendicitis (80%-93% sensitivity and 94%-
100% specificity) and acute colonic diverticulitis (84%-100% sensitivity), achieving diagnostic accuracy comparable to that 
of CT scans[1]. In addition, literature reviews on the diagnosis of Crohn’s disease and its complications using small 
intestine contrast ultrasonography report sensitivity and specificity rates of 88% and 86%, respectively, for detecting small 
bowel lesions[2-4]. Assessing intestinal wall thickness further enhances the accuracy of this diagnostic method, with 
sensitivity, specificity, and accuracy values of 98%, 100%, and 98.3%, respectively[5]. Comparative studies reveal satis-
factory performance for endoscopic studies and contrast-enhanced magnetic resonance (MR) enterography. Endoscopy 
has a sensitivity of 81.3% and a specificity of 70.5%, while MR enterography has a sensitivity of 80.2% and a specificity of 
84.0%[6]. The diagnostic accuracy of imaging largely depends on the skill and expertise of the diagnostician. To ensure 
accurate interpretation and reduce diagnostic errors, radiologists need to thoroughly understand the factors that 
contribute to false-positive and false-negative findings[7,8]. To enhance diagnostic precision, optimal protocols tailored to 
the chosen imaging methods must be employed[9].

IMAGING METHODS FOR DIAGNOSING DIGESTIVE ORGAN NEOPLASMS
Imaging techniques are essential for diagnosing gastrointestinal cancers, although their accuracy varies depending on the 
type of cancer and the method used. For gastric cancer, fasting whole-body PET/CT scans demonstrate a sensitivity of 
92.9% and a specificity of 75%, with a positive predictive value of 94.5% and a negative predictive value of 69%. 
Enhancing these results by adding a mixture of milk and diatrizoate meglumine increases sensitivity to 91.1%, specificity 
to 91.7%, positive predictive value to 98.1%, and negative predictive value to 68.8%[10]. However, routine PET/CT scans 
may not be ideal for the initial staging of diffuse-type gastric cancer or for restaging lymph nodes after neoadjuvant 
treatment owing to lower sensitivities, which are reported at 24% and 32%, respectively. CT scans are useful in evaluating 
the primary gastric tumor and detecting liver metastasis, with sensitivity ranging from 54.5% to 72.7% and specificity 
from 89.3% to 94.6%, depending on the interpreting radiologist. The positive predictive value varies from 57.1% to 66.7%, 
while the negative predictive value ranges from 91.4% to 94.3%, highlighting the impact of radiologist interpretation on 
diagnostic accuracy[11,12]. For esophageal squamous cell carcinoma, multidetector CT shows variable diagnostic 
efficiency, with sensitivity ranging from 62.5% to 96.9%, specificity from 77.9% to 98.5%, and overall accuracy from 73% 
to 98%. The effectiveness of multidetector CT depends on the assessment criteria used, such as measuring the maximum 
esophageal wall thickness (≤ 9 mm) or the average attenuation of the esophageal wall (≤ 64 HU). These findings 
emphasize that, while imaging is indispensable for diagnosing and managing gastrointestinal cancers, factors such as the 
specific technique, the type and stage of cancer, the assessment criteria, and even the interpreting radiologist’s experience 
significantly influence the accuracy and reliability of the results[13]. There are conflicting results regarding the effect-
iveness of various imaging techniques for diagnosing gastrointestinal tumors[14-16]. However, diagnostic efficiency 
significantly improves when two modern imaging methods are combined, leading to substantially increased sensitivity, 
specificity, and accuracy[17-20]. High sensitivity, specificity, and accuracy of diagnostic methods not only enable the 
detection of disease but also help determine its activity and severity. For example, dual-energy CT enterography can 
measure iodine density, a criterion that reflects Crohn’s disease activity and correlates well with histological analysis[21]. 
This raises a question regarding the method that can serve as the reference standard when assessing the performance of 
imaging techniques (radiological or endoscopic diagnostics). Histopathological analysis is often seen as the gold 
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Table 1 Classification of diagnostic methods

Groups of diagnostic methods Criteria for assessing the diagnostic effectiveness of a method (symptom)

Clinical methods Sensitivity, specificity, and accuracy

Subjective symptoms -

Complaints -

Anamnesis -

Objective symptoms -

Data of objective findings, somatic symptoms -

Additional methods -

Laboratory symptoms -

Biochemical methods -

Immuno-enzyme methods -

Immunological methods -

Molecular genetic methods -

Bacteriological methods -

Histopathological and cytological methods -

Instrumental methods -

Symptoms of radiation methods -

Endoscopic symptoms -

Symptoms of other methods -

Method ex juvantibus -

The reference “gold standard” method is typically established through either a pathological autopsy or a lifetime diagnosis obtained from a comprehensive 
examination that incorporates all available diagnostic methods.

standard, but it has its challenges. Various histopathological methods, such as biopsies in living patients, may yield 
conflicting results for the same disease in different individuals[22]. Factors influencing the accuracy of diagnostic 
methods include the technological sophistication of the equipment and the professional expertise of the diagnostician.

IMAGING METHODS FOR DIAGNOSING OTHER DISEASES
Imaging methods have high sensitivity and negative predictive value for diagnosing esophageal perforation. Thoracic CT 
has proven highly reliable in ruling out esophageal perforation, demonstrating 100% sensitivity and negative predictive 
value. This means that if the thoracic CT scan appears normal, patients can confidently be cleared of this complication. 
However, while the test excels at excluding perforation, it is less accurate in confirming its presence. Specifically, 
although the sensitivity for detecting esophageal perforation is a perfect 100%, ensuring that all perforations are 
identified, the specificity is lower at 54.6%, suggesting a higher chance of false positives. This is reflected in a positive 
predictive value of only 23.4%, meaning that only about one in four suspected cases based on the scan are true perfor-
ations[23]. For detecting choledocholithiasis, CT with contrast has moderate diagnostic effectiveness, with a sensitivity 
ranging from 77% to 88%, specificity ranging from 50% to 71%, and overall accuracy ranging from 71% to 74%[24]. MRI 
shows high diagnostic performance in pediatric appendicitis, with both sensitivity and specificity reaching 97%. Receiver 
operating characteristic analysis revealed an area under the curve of 0.98, indicating a high level of accuracy[25].

Diagnosing intestinal ischemia using clinical and laboratory methods is challenging. However, modern imaging 
methods offer improved diagnostic accuracy. For the first experienced radiologist, sensitivity, specificity, positive 
predictive value, negative predictive value, and accuracy were 62.0%, 87.5%, 88.6%, 59.6%, and 72.0%, respectively, and 
for the second experienced radiologist, the corresponding values were 58.0%, 93.8%, 93.5%, 58.8%, and 72.0%[26]. To 
enhance the effectiveness of instrumental diagnostics, it is recommended to combine different imaging techniques and 
use multiple diagnostic approaches in conjunction.
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CONCLUSION
The diagnostic process is dynamic and requires a consistent algorithm of diagnostic methods, from clinical subjective 
data (anamnesis) and objective findings to diagnostics ex juvantibus. Current diagnostic methods for these conditions are 
recognized as imperfect, necessitating caution in their application and underscoring the urgent need for more reliable 
diagnostic tools. Until such tools become available, clinicians must depend on preliminary criteria and diagnoses based 
on a patient’s response to treatment, which is inherently less reliable than a definitive diagnostic test[27,28]. Diagnostic 
imaging methods play a crucial role in this process. Sensitivity, specificity, and accuracy are key indicators used to 
evaluate the effectiveness of diagnostic methods across all diagnostic symptoms (clinical, laboratory, and instrumental). 
To avoid diagnostic errors, it is necessary to combine various instrumental diagnostic methods. The diagnostician must 
be highly trained, and it is recommended that two diagnosticians assess each imaging method. A comprehensive 
evaluation of all available diagnostic symptoms guarantees a correct diagnosis.
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