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Abstract
Pancreatic adenocarcinoma remains to be one of the deadliest malignancies in the 
world despite treatment advancement over the past few decades. Its low survival 
rates and poor prognosis can be attributed to ambiguity in recommendations for 
screening and late symptom onset, contributing to its late presentation. In the 
recent years, artificial intelligence (AI) as emerged as a field to aid in the process 
of clinical decision making. Considerable efforts have been made in the realm of 
AI to screen for and predict future development of pancreatic ductal adenocar-
cinoma. This review discusses the use of AI in early detection and screening for 
pancreatic adenocarcinoma, and factors which may limit its use in a clinical 
setting.

Key Words: Artificial intelligence; Pancreatic cancer; Pancreatic adenocarcinoma; 
screening; Early detection
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Core Tip: Pancreatic adenocarcinoma has poor survival rate and high morbidity. 
Artificial intelligence is a potential tool to screen for high risk individuals and for early 
detection of pancreatic adenocarcinoma. Despite advances made in artificial intelligence 
research in pancreatic adenocarcinoma, it faces a number of challenges before it can be 
generalised and applied in a clinical setting.
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INTRODUCTION
The global incidence of pancreatic cancer is increasing, and it remains as one of the leading causes of 
cancer-related death, with 495773 new cases of pancreatic cancer diagnosed and accounting for 466003 
deaths in 2020[1]. Although the 5-year survival rates for pancreatic ductal adenocarcinoma (PDAC) 
have improved, it remains low at approximately 9%[2,3], and the overall prognosis of PDAC is poor. 
This is partly due to the late stage of presentation of PDAC, which is largely dependent on patient 
symptoms for suspicion of the disease[4,5]. Early cases are asymptomatic and there is a lack of a simple 
screening tool for clinical use unlike the case of colorectal cancer screening where screening can be 
performed in the primary care setting with the use of fecal immunohistochemical test. In the case of 
PDAC, cross-sectional imaging tests such as computed tomography (CT) or magnetic resonance 
imaging (MRI) are needed for detection, making widespread population screening unfeasible. Germline 
mutations and a family history of PDAC have been identified as the strongest risk factors for the disease
[6,7]. As such, efforts in screening programmes have focused their attention on this group of patients[8]. 
Pancreatic cysts, increased age, and smoking are also known risk factors for PDAC[5,9,10], although it 
may not be practical to conduct routine surveillance for patients with these risk factors. There is an 
interest in selecting higher risk patients for screening, as the appropriate use biomarkers and imaging 
may result in detection of early-stage PDAC amenable to curative resection[2,3,11-15].

Artificial intelligence (AI) is a branch in computer science where computer systems are designed to 
perform tasks which would require human intelligence. It is recognised as a potential tool as part of the 
screening efforts and building predictive models[16]. Most progress for AI in endoscopy has been made 
in the field of colonoscopy, where polyp detection and characterisation has been studied[17]. Computer-
aided diagnosis has also been extended to detection and screening of PDAC[18] in endoscopic 
ultrasound (EUS)[19,20], MRI[21] and cytology from fine needle sampling[22]. In recent years, various 
groups have harnessed the potential of AI in creating prediction models. These include The Felix Project
[23], the Pancreatic-Cancer Collective[24], and the Early Detection Research Network[25] effort.

This mini-review aims to study the role of AI in the early detection and screening for pancreatic 
cancer, as well as factors which may limit its use.

METHODS
A comprehensive literature search was performed in the PubMed, MEDLINE and EMBASE electronic 
databases from the inception of the databases up to and including 30 November 2021. The key words 
used were “artificial intelligence”, “pancreatic cancer”, “pancreatic adenocarcinoma”, “pancreatic ductal 
adenocarcinoma”, “pancreatic carcinoma”, “screening”, and “early detection”. These were supple-
mented with manual searches of references from retrieved articles. Publications in English were 
considered for this mini-review.

AI BASIC PRINCIPLES AND TERMINOLOGIES
AI is a term that refers to the ability of a computer programme to imitate the human mind to perform 
tasks such as problem solving and learning[26,27].

Machine learning (ML) is the commonest branch of AI used in medicine and refers to a mathematical 
model that aims to generate a prediction based on a set of data provided[28,29]. In supervised learning, 
the data points are labelled and the ML model “learns” from these labels and identifies new data points. 
In contrast, labels are not provided in unsupervised learning, and the model recognises the patterns of 
the data by learning its unknown properties and identifying crucial data checkpoints. This is especially 
important when the gold standard is not available[29].

Deep learning (DL) is subset of ML that employs the use of Artificial Neural Networks (ANN). Like 
the human brain, ANN consists of layers of artificial neurons that are interlinked. Each layer receives a 
weighted signal from the previous layer(s) and these signals will be propagated to the next layer when a 
specific threshold is exceeded[29]. In the setting of a pancreatic lesion or cancer, DL first identifies the 
basics of the lesion (e.g., location) in its initial layers before moving on to next layer for further character-
isation (e.g., size, shape, colour). A final prediction of the pancreatic lesion is made after a systematic 
assessment via multiple layers of neural network[29].

ANNs are first trained using the training data set, where the model learns to identify specific patterns 
to obtain a relationship between the input and the output. Hyperparameters refer to all settings that are 
pre-determined by the investigator and are used to construct the model for optimal execution of a 
particular task or on a specific dataset. The validation data set involves a different data set that is used 
to fine-tune the hyperparameters of the model. Finally, the test data set refers to a data set whose 
purpose is to evaluate the performance of the model against unseen data and determine its generaliz-
ability[29]. This set needs to be unseen by the model during training and validation. However in certain 
studies, the test set is sometimes a subset of the training or validation data set, which many result in 
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Figure 1 Schematic diagram showing the workflow and neural network to be designed for an early detection protocol. CT: Computed 
tomography; CEA: Carcinoembryonic antigen; PDAC: Pancreatic ductal adenocarcinoma; MRI: Magnetic resonance imaging.

overfitting of the model. This may lead to a discrepancy in the performance of the model when tested in 
the same centre and a decline in performance when validated externally.

MODEL FOR SCREENING FOR AND EARLY IDENFICATION OF DEVELOPING PDAC
Early detection of pancreatic cancer requires a step wise approach in order to systematically screen for 
risk factors and identify high-risk groups. Figure 1 is a schematic diagram showing the workflow and 
neural network to be designed for an early detection protocol. It represents the complex interplay 
between each of the input(s) to be processed for the next neural layer(s) until a final output is obtained. 
We will be discussing the role of AI in early detection of pancreatic cancer based on this model.

AI IN CLINICAL DECISION MAKING USING HEALTH RECORDS
The identification of risk factors for pancreatic cancer is essential in identifying the specific population 
which would benefit from screening[18,30,31]. Factors such as diabetes, hemoglobin A1C (HbA1c) 
value, weight, body mass index (BMI), blood type, smoking status, alcohol use and family history of 
pancreatic cancer influence the age of onset of screening for an individual[13,32]. These factors are easily 
available in the primary care setting and could potentially predict the development of pancreatic cancer 
within 5 years, even before any changes to the pancreas can be detected on imaging[30]. However, most 
of the data is stored in health records, which are often proprietary or internet-separated to protect 
patient data. The retrieval and subsequent integration of data from different platforms remains a 
manual and laborious process for physicians[30]. Even after retrieval, there are no validated scoring 
systems to assess these risk factors and stratify patients. On the other hand, AI, with the aid of Natural 
Language Processing, can facilitate this process[33-38]. In a case-control study, Malhotra et al[33] created 
an algorithm based on electronic health records (EHR) obtained from primary care to identify 41.3% of 
patients (≤ 60 years old) who had significant risk of developing pancreatic cancer up to 20 mo prior to 
diagnosis with a sensitivity, specificity, area under the receiver operating characteristic (AUROC) curve 
of 72.5%, 59.0% and 0.66%, respectively. Similarly, Appelbaum et al[35] was able to train an ANN using 
101381 EHRs to predict the development of PDAC one year before the diagnosis in a population of 
high-risk patients (AUROC 0.68, confidence interval (CI): 0.65-0.71).

Despite its potential benefits, research in AI for the above purpose is still preliminary as they are 
mostly based on retrospective data from single institutions or registries, and hence not ready for use in a 
wider clinical setting[33-38]. One of the major limitations would be the lack validation in the real-world 
setting or at least in populations derived from different centres to overcome the risk of bias and 
overfitting.
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The use of AI in EHR faces other challenges. Various institutions’ medical records are built on 
different healthcare systems and encoding systems, making the task of harmonising them difficult[30]. 
There is also a lack of standardised clinical research data collection models. To overcome this, efforts are 
made to build a model of processing and integrating data across institutions. The i2b2 was created to 
review medical records, retrieve specific data of interest and repurpose it for research[39]. The Observa-
tional Health Data Sciences and Informatics was developed from the Observational Medical Outcomes 
Partnership, an initiative that develops the Common Data Model aiming to gather information from 
different data sets or medical repositories and systemically analyse them in a common platform[40]. 
Similarly, the National Patient-centered Clinical research network is another example which was 
developed in United States to access millions of EHR and create a common data set for research 
purposes[41]. A common dataset with a standardised format for input of data relevant to PDAC would 
enable AI systems to leverage on big data to identify changing risk profiles in PDAC, enabling the 
clinician to channel resources for screening to the appropriate cohorts of patients depending on the 
population from which this data has been derived.

While these are upcoming and promising initiatives, concerns surrounding restrictions in data 
sharing, privacy issues, and maintenance costs could hinder data collection efforts[18]. EHRs are also 
stored in different languages in different regions of the world, making the integration of data difficult. 
Besides, once data sets are gathered, obtaining IRB approval from the various sites for research may be 
difficult.

AI AND THE USE OF NON-INVASIVE BIOMARKERS
Carbohydrate Antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) are the most widely used 
markers for screening of PDAC, but have also been proven to lack the specificity when applied 
individually and without clinical context[42,43]. On the other hand, a combined measurement can 
potentially increase its sensitivity and specificity up to 1 year before the diagnosis of PDAC[44-46]. 
Capitalising on this concept, Yang et al[47], developed an algorithm (with 658 subjects in its training set) 
to diagnose pancreatic cancer by using ANN to combine CA19-9, CA125 and CEA values. This model 
was subsequently evaluated against the test set and was able to yield an AUROC of 0.905 (95%CI = 
0.868-0.942) and a high diagnostic accuracy of 83.5% for pancreatic cancer.

New biomarkers for PDAC such as MicroRNAs and gene expressions have generated much interest 
in the recent years[45,48-52]. MicroRNAs are non-coding RNAs that are involved in the regulation of 
biological pathways, and when altered, could lead to the development of PDAC[53]. MicroRNAs can 
potentially predict future PDAC[54] or detect early stage pancreatic cancer. However, they have the 
same limitations in sensitivity and specificity when applied without clinical context and as independent 
test[55,56]. A combination of the commonly used biomarkers and newer biomarkers may address the 
problem of low sensitivity and specificity[56], and in particular can be combined with clinical and 
demographic information as described earlier to increase its usefulness.

While AI is able to make use of plasma microRNA panels and specific gene expressions to diagnose 
pancreatic cancer[57,58], studies on their use on predicting future pancreatic cancer are not available
[55]. By integrating Particle Swarm Optimization, ANN and Neighborhood Component Analysis 
iterations on a list of microRNAs that are most commonly expressed by pancreatic cancer, Alizadeh et al
[59] created a model consisting of 5 MicroRNAs (miR-663a, miR-1469, miR-92a-2-5p, miR-125b-1-3p and 
miR-532-5p) to diagnose pancreatic cancer (Accuracy: 0.93, Sensitivity: 93%, and Specificity: 92%). 
Similarly in a multicentre study by Cao et al[57], a machine learning approach was able to identify 2 
panels of microRNAs to differentiate pancreatic cancer from chronic pancreatitis with an accuracy of 
above 80%.

Gene expressions have gained popularity in diagnosing pancreatic cancer[13,60]. Using a machine 
learning approach, Khatri et al[61] analysed the results from transcriptomics-based meta-analysis to 
create a nine-gene panel to diagnose pancreatic cancer. This panel was able to differentiate PDAC from 
chronic pancreatitis with a specificity of 89%, sensitivity of 78%, and accuracy of 83% and an AUROC of 
0.95. As compared to a normal pancreas, it was also used to identify stage I and II PDACs with a 
sensitivity of 74%, specificity of 75%, and an AUROC of 0.82. In another study, a machine learning 
algorithm was formulated based on the biochemical differences in the serum of 2 groups of subjects 
(PDAC group and High risk group) detected via the use of Probe Electrospray Ionization Mass 
Spectrometry (PESI-MS) to identify early stages of pancreatic cancer[62]. It was able to differentiate 
healthy controls from subjects with earlier stage of PDAC with sensitivity of 81.2% and specificity of 
96.8% respectively and an accuracy of 92.9%.

At present, these studies have shown that AI can offer the advantage of identifying specific 
microRNA and genetic combinations to identifying pancreatic cancer at a faster speed, making this 
process less laborious. However, these studies lack external validation, limiting their application in 
modern practice. Besides, studies utilising AI to formulate specific sequences to accurately predict 
future pancreatic cancer development are still lacking. More studies are required to analyse its ability in 
predicting future pancreatic cancer for high risk groups especially during the latency period.
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Table 1 Studies on artificial intelligence using computed tomography or MRI imaging to diagnose pancreatic ductal adenocarcinoma

Ref. Clinical question

Training 
set 
(number 
of 
subjects)

Validation 
set 
(number 
of 
subjects)

AI 
instrument AUROC Accuracy Sensitivity Specificity 

Watson 
et al
[66], 
2021

Detection of 
pancreatic cystic 
neoplasms 
(including PDAC) vs 
benign cysts

18 9 CNN NA NA NA NA

Si et al
[65], 
2021

Detection of 
pancreatic cancer 
(including PDAC, 
IPMN, PNET)

319 347 DL 0.871 87.6% for 
PDAC

86.8% for 
pancreatic 
cancer 

69.5% for 
pancreatic 
cancer

Park et 
al[64], 
2020

Distinguishing 
pancreatic cancer 
tissue from 
autoimmune pancre-
atitis

120 62 Random 
forest 
machine 
learning

0.975 95.2% 89.7% 100%

Ma et al
[63], 
2020

Differentiate 
pancreatic cancer 
from benign tissue

330 41 CNN 0.9653 (plain scan) 95.47% (plain 
scan),95.76% 
(arterial scan), 
95.15% 
(venous 
phase)

91.58% (plain 
scan), 94.08% 
(arterial 
scan), 92.28% 
(venous 
phase)

98.3% (plain 
scan), 97.6% 
(arterial 
scan), 97.9% 
(venous 
phase)

Zhang 
et al
[67], 
2020

Detection of 
pancreatic cancer 

2650 
images

240 images CNN 0.9455 90.2% 83.8% 91.8%

Liu et al
[69], 
2020

Differentiating 
pancreatic cancer 
tissue from non-
cancerous pancreatic 
tissue

412 139 CNN 0.92 83.2% 79.0% 97.6%

Gao et 
al[71], 
2020

To differentiate 
pancreatic diseases 
in pancreatic lesions 

398 106 CNN 0.9035 (includes PDAC, 
adenosquamous carcinoma, 
acinar cell carcinoma, colloid 
carcinoma, myoepithelial 
carcinoma, undifferentiated 
carcinoma with osteoclast-like 
giant cells, mucinous 
cystadenocarcinoma, pancre-
atoblastoma, pancreatic 
neuroendocrine carcinoma 
and metastatic carcinoma)

NA NA NA

Chu et 
al[70], 
2019

Differentiating 
PDAC from normal 
pancreas

255 125 Random 
forest

NA 93.6% 95% 92.3%

Zhu et 
al[72], 
2019

Detecting PDAC 
from normal 
pancreas

205 234 CNN NA 57.3% 94.1% 98.5%

Liu et al
[73], 
2019

Diagnosis of 
pancreatic cancer

238 100 CNN 0.9632 NA NA NA

Corral 
et al
[21], 
2019

Identify and stratify 
IPMN lesions 

139 DL 0.783 NA 75% (for 
PDAC or 
high grade 
dysplasia)

78% (for 
PDAC or 
high grade 
dysplasia)

Chu et 
al[74], 
2019

Differentiating 
PDAC from normal 
pancreas

456 DL NA NA 94.1% 98.5%

Pancreas 
segmentation 
(including PDAC, 
IPMN, Pancreatic 
Neuroendocrine 

Fu et al
[75], 
2018

59 CNN NA NA 82.5% 76.22 (PPV)
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Tumors, Serous Cyst 
Adenoma, and Solid 
Pseudopapillary 
Tumour of the 
pancreas)

AUROC: Area under the receiver operating characteristic; AI: Artificial intelligence; CNN: Convolutional neural network; DL: Deep learning; NA: Not 
available; IPMN: Intraductal papillary mucinous neoplasm; PNET: Pancreatic neuroendocrine tumour; PDAC: Pancreatic ductal adenocarcinoma.

CURRENT EVIDENCE IN PREDICTING THE DEVELOPMENT OF PANCREATIC LESIONS 
INTO PDAC IN THE FUTURE
Various studies have been conducted using AI to diagnose pancreatic cancer and yielded promising 
results. Table 1 summarises the studies to date[21,63-75]. In a retrospective study, Liu et al[69] was able 
to train a convolutional neural network (CNN) to identify pancreatic cancer on contrast-enhanced CT 
and achieve an AUROC of 0.9, with more than 90% for its sensitivity and specificity for its test set. It 
maintained good sensitivity of 91.3%, specificity of 84.5%, an accuracy of 85.6% and AUROC of 0.955 
(95%CI 0.955-0.956) with the validation set. Further analysis revealed that with CNN, radiologists 
missed 7% of the pancreatic cancers, of which majority were accurately diagnosed by CNN[69]. By 
enhancing the CNN, Liu et al[73] was able to process the CT images and obtain the diagnosis faster than 
the radiologists (3 s for CNN vs 8 mins for a radiologist) with an AUROC of 0.9632, proving that AI is 
comparable to radiologists.

Besides CT, EUS has been frequently utilised to diagnosed pancreatic cancer. Table 2 summaries these 
studies[19,20,76-86]. The EUS-CAD based CNN was developed in a retrospective study by Tonozuka et 
al[83] to identify lesions harbouring pancreatic cancer in patients with chronic pancreatitis with a 
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 90.2%, 
74.9%, 80.1%, and 88.7%, respectively, and an AUROC of 0.924. Similar findings were also echoed in 
Zhu et al[86] who utilised SVM to obtain a sensitivity, specificity, PPV and NPV of over 90% for 
diagnosis of pancreatic cancer in chronic pancreatitis.

Despite numerous studies looking at using AI to diagnose pancreatic cancer (as shown in Tables 1 
and 2), only a few attempted to predict the development to pancreatic cancer. On average, CT changes 
for early pancreatic cancer starts approximately 12 to 18 mo before diagnosis[87]. Yet, pancreatic cancer 
can advance from being undetectable to metastatic in a short period of time even before the next 
surveillance imaging[88,89]. AI-based imaging itself cannot be used to predict pancreatic cancer and 
should be combined with other markers.

An ideal AI model for predicting pancreatic cancer is one that integrates multiple biochemical, 
radiological and clinical data[90]. In a retrospective proof-of-concept study, Springer et al[91] developed 
a supervised machine learning-based approach (CompCyst) based on a combination of patient-reported 
symptoms, imaging results (including CT, MRI and EUS images), cyst fluid and molecular character-
istics to calculate its malignant potential and subsequently determine the management of pancreatic 
cyst(s). When tested against the validation set, CompCyst outperformed the current standard of care 
(accuracy 56%) in its ability to identify patients who required surgery, close monitoring or can be 
discharged (accuracy 69%). CompCyst correctly identified 60% of the surgeries that were not warranted 
and could have been avoided, while not compromising on its ability to identifying those who truly 
require surgery. With CompCyst, 71% of the pancreatic lesions were correctly identified as PDAC as 
compared to 58% based on clinical suspicion[91].

While this study has proven that AI has the potential to incorporate various clinical characteristics, 
biomarkers, and imaging characteristics to assess for the malignant potential of a pancreatic lesion, it 
has a number of limitations. Firstly, the imaging characteristics and molecular biomarkers that were 
identified as high risk features were obtained at the time of surgery and not during screening. These 
features may not be present early enough to be identified by routine screening. Secondly, important risk 
factors (including age and diabetes) that were crucial in the early detection of PDAC (as shown in 
Figure 1) were not included in its learning process, representing a missed step in the screening process. 
Finally, CompCyst is yet to be externally validated and cannot be applied to the clinical setting 
currently.

While CompCyst is a potential tool to aid in clinical decision making, future studies aiming at early 
detection of PDAC face a myriad of challenges. Firstly, the pancreas is a complex organ. Unlike the 
other organs, the pancreas can be highly variable in its anatomy and location. Moreover, the training 
data set is highly dependent on the quality of the images provided. Hence, automated segmentation of 
the pancreas via a deep learning approach remains challenging[92]. Secondly, the lack of databases 
limits the ability to develop new training sets. There are currently only a few open-access databases[93], 
and there are issues regarding sharing of images across various institutions as pointed out by the 
Alliance of Pancreatic Cancer Consortia imaging working group[90]. Finally, the algorithm for early 
detection of PDAC will have to evaluate images of pancreatic lesion(s) across different time points of 
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Table 2 Studies on artificial intelligence using endoscopic ultrasound to diagnose pancreatic ductal adenocarcinoma

Ref. Clinical question

Training 
set 
(number of 
subjects)

Validation 
set (number 
of subjects)

AI instrument AUROC Accuracy Sensitivity Specificity 

Udristoiu et 
al[84], 2021

Detecting focal pancreatic 
masses in four EUS imaging 
modalities

65 CNN and 
Long Short-
term Memory 
models

0.97 97.6% 98.1% 96.7%

Tonozuka et 
al[83], 2021

Detecting PDAC in patients 
with normal 
pancreas/Chronic pancre-
atitis

92 CNN 0.924 NA 90.2% 74.9%

Marya et al
[78], 2021

Differentiate AIP from 
PDAC, chronic pancreatitis 
and other pancreatic 
diseases

336 124 CNN 0.976 NA 95% 90%

Kuwahara 
et al[77], 
2019

Predicting malignancy in 
IPMN

50 CNN 0.98 94% 95.7% 92.6%

Ozkan et al
[80], 2016

Differentiating pancreatic 
cancer from healthy 
pancreas

260 images 72 images ANN NA 87.5% 83.3% 93.3%

Saftoiu et al
[81], 2015

Differentiate pancreatic 
cancer from chronic pancre-
atitis

117 25 ANN NA NA 94.6% 94.4%

Zhu et al
[86], 2013

Differentiating pancreatic 
cancer from chronic pancre-
atitis. 

194 194 SVM NA 94.2% 96.3% 93.4%

Saftoiu et al
[82], 2012

Diagnosis of focal 
pancreatic lesions 

258 patients ANN 0.94 84.27% 87.59% 82.94%

Zhang et al
[85], 2010

Differentiate pancreatic 
cancer from non-tumorous 
tissue

108 108 SVM NA 97.98% 94.3% 99.45%

Saftoiu et al
[20], 2008 
cancer

Differentiate normal 
pancreas, chronic pancre-
atitis, pancreatic cancer, and 
neuroendocrine tumors

68 Neural 
network

0.847 (for 
PDAC vs 
chronic 
pan-
creatitis)

86.1% (for 
PDAC vs 
chronic pan-
creatitis)

93.8% (for 
PDAC vs 
chronic pan-
creatitis)

63.6% (for 
PDAC vs 
chronic pan-
creatitis)

Das et al
[19], 2008

Differentiating pancreatic 
adenocarcinoma from non-
neoplastic tissue (includes 
normal pancreas and 
chronic pancreatitis)

160 159 ANN 0.93 NA 93% 92%

Norton et al
[79], 2001

Differentiate malignancy 
from pancreatitis

35 ML NA 80% 100% 50%

AUROC: Area under the receiver operating characteristic; AI: Artificial intelligence; CNN: Convolutional neural network; EUS: Endoscopic ultrasound; 
SVM: Support vector machines; ML: Machine learning; NA: Not available; IPMN: Intraductal papillary mucinous neoplasm; PDAC: Pancreatic ductal 
adenocarcinoma.

surveillance and from different 3 imaging modalities (namely CT, MRI, and EUS). Unlike CompCyst 
which looks at images at one time point (i.e. at surgery), combining multiple images obtained from 
periodical surveillance via these 3 imaging modalities will require a very large database and multiple 
layers.

There is a major gap that needs to be bridged before AI systems for early detection of pancreatic 
cancer can be developed. Given sufficient training data and cooperation, AI-based image analyzers 
could match or even outperform physicians in image classification and lesion detection[90].

CONCLUSION
Despite the recent advances to predict future PDAC, the use of AI in screening for pancreatic cancer 
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remains limited in the clinical setting. Much of the efforts are made in the research setting and lack 
external validation and generalisability. However, this field remains promising as we recognise the 
challenges ahead to bridge the necessary gaps. The hope to develop an integrated AI model to screen for 
PDAC remains a reality, and it will play a complementary role in assisting physicians in their clinical 
decision making process but not replace it.
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Abstract
Artificial intelligence (AI) has been entwined with the field of radiology ever since 
digital imaging began replacing films over half a century ago. These algorithms, 
ranging from simplistic speech-to-text dictation programs to automated 
interpretation neural networks, have continuously sought to revolutionize 
medical imaging. With the number of imaging studies outpacing the amount of 
trained of readers, AI has been implemented to streamline workflow efficiency 
and provide quantitative, standardized interpretation. AI relies on massive 
amounts of data for its algorithms to function, and with the wide-spread adoption 
of Picture Archiving and Communication Systems (PACS), imaging data is 
accumulating rapidly. Current AI algorithms using machine-learning technology, 
or computer aided-detection, have been able to successfully pool this data for 
clinical use, although the scope of these algorithms remains narrow. Many 
systems have been developed to assist the workflow of the radiologist through 
PACS optimization and imaging study triage, however interpretation has 
generally remained a human responsibility for now. In this review article, we will 
summarize the current successes and limitations of AI in radiology, and explore 
the exciting prospects that deep-learning technology offers for the future.

Key Words: Artificial intelligence; Machine-learning; Deep-learning; Radiology workflow; 
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Core Tip: Artificial intelligence (AI) has been an increasingly publicized subject in the field of radiology. 
This review will attempt to summarize the evolving philosophy and mechanisms behind the AI movement 
as well as the current applications, limitations, and future directions of the field.
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INTRODUCTION
Advancements in artificial intelligence (AI) technology have created a stir of excitement—and 
trepidation—amongst professionals in radiology. With the advent of concepts such as machine learning 
and artificial neural networks promising instantaneous and accurate image interpretation, AI has been 
heralded as the next step in radiology evolution[1,2]. The ability to reduce image interpretation time and 
increase detection to levels beyond what is possible for the human eye could create a revolutionary, and 
increasingly necessary, impact on patient care across all medical disciplines.

AI in radiology has focused on improving three broad principles attributed to human limitations; 
efficiency, objectivity, and standardization[1,2,3]. Over the past few years there has been a continual 
increase in imaging orders, and it has been estimated that a radiologist must interpret an image every 3-
4 s to match the demand[3,4] This demand, combined with declining reimbursement, has put more 
pressure on radiologists to increase productivity[5]. Additionally, human and health system variability 
has long been seen as a potential target to improve standardization across the field. Depending on who 
the reader is, what hospital system they work for, the time of day, and the number of scans the 
radiologist has read can result in measurable discrepancies in accuracy and timeliness of image 
interpretation[3,6,7].

Despite the exciting potential of AI utilization, the fear of algorithms replacing radiologists is ever 
present. AI companies have grown at an astonishing rate, with 60 new Food and Drug Administration 
(FDA) approved products in 2020, however the once foreseen AI takeover has not yet manifested[8-10]. 
Nonetheless, AI is making an impact, just not in the way it was originally planned. A fundamental shift 
has occurred in recent years in AI implementation, scope, and underlying philosophy. The idea of 
“replacing radiologists” is not a viable next step in AI evolution, at least for now, and the new 
philosophy of “working with radiologists” is one that is rapidly gaining traction[11,12]. By examining 
the current utilizations and limitations of AI in radiology, we can recognize the importance of this fast-
rising technology and where the interaction between human and machine may be headed in the future.

CURRENT AI UTILIZATION IN RADIOLOGY
The current state of AI utilization in the field of radiology is variable based on institution, although 
there are several widely-adopted systems. Aligning with the newer philosophy of “working with 
radiologists”, many of the current AI systems are being used in a limited capacity as tools to enhance 
the radiologist’s workflow. Many of these AI systems fall under the category of “micro-optimizations”
[13].

The primary goal for micro-optimization algorithms is to assist the radiologist in his or her daily tasks 
rather than fully automating the radiologic process. Micro-optimizations can be broken down into two 
categories; nonpixel-based optimizations and pixel-based optimizations. By using AI to streamline the 
efficiency and standardization of time-consuming, mundane, or non-interpretive tasks, radiologists can 
better allocate their time and energy to further focus on image interpretation, consultation, and overall 
patient care[3,4,14]. Table 1 provides a summary of AI applications for both nonpixel-based and pixel-
based optimizations.

Nonpixel-based optimizations
Nonpixel-based optimizations refers to AI assistance in tasks that are not directly related to image 
interpretation. Some of these tasks include triaging patients, Picture Archiving and Communication 
Systems (PACS) optimizations, and standardized reporting. As an example, to better triage patients for 
immediate interpretation AI systems are currently being tested for risk stratification in patients with 
possible aortic dissection or aneurysm rupture[15,16]. As a different example, through big data analysis, 
AI algorithms have started to tackle the issue of automated image protocol creations. By reviewing 
imaging study requests, AI can determine if the study is appropriate, if another study may be more 
appropriate, or if contrast is necessary or not. With the ability to automatically mine the electronic 
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Table 1 Areas of radiology workflow with current artificial intelligence implementation

Workflow target Application examples

Nonpixel-based

Triage Risk stratification for aortic pathology and generation of ‘aortic calcification score’ to assess for disease severity[15,16]

PACS display Automated hanging protocol and comparison image generation[11]

Order verification Patient medical record mining with built-in appropriateness criteria guidelines to approve or flag study orders[17,18,19,20,21]

Reporting Automated data insertion into templates for standardized reporting of chest radiograph findings[23,24] 

Pixel-based

Segmentation Segmentation of simple lung nodules on chest CT images[43]

Disease registration PI-RADS lesion classification based on MRI image characteristics[25,26]

Screening Algorithmic interpretation and classification of screening mammograms[27,28]

PACS: Picture Archiving and Communication Systems; CT: Computed tomography; MRI: magnetic resonance imaging.

medical record system and compare it to established guidelines, the system can then make the 
appropriate recommendation[17-19]. With an estimated 10% of all imaging studies being ordered in 
error, these nonpixel-based algorithms can automatically detect and eliminate erroneous study orders
[20,21].

The automatic generation of hanging protocols and standardized screen display is another target for 
optimization. Before data interpretation can commence, a radiologist can spend 10-60 s selecting the 
appropriate images for comparison[11]. By having the appropriate hanging protocol and display 
automatically generate, image interpretation can commence instantaneously. What may at first seem 
like an insignificant amount of time, the elimination of manual protocol selection can significantly 
improve efficiency and allow for the redirection of the radiologist’s brain power toward actual 
diagnostic interpretation[11].

The standardization of reporting is one of the final areas for optimization, and one that is becoming 
increasingly necessary among all medical specialties in order to efficiently navigate and report in the 
electronic medical systems. Reporting is the final step in the radiologist’s workflow, and it is also one of 
the most error-prone[22]. Many micro-optimization AI algorithms are working on increasing the 
efficiency of reporting through the creation of automatic report generation tools including pre-selected 
formats specific for the study and automatic annotation. Automating and standardizing reporting can 
optimize radiologists’ reimbursements and save time, as demonstrated by one current chest x-ray 
reporting algorithm that saved radiologists an average of 8.5 h per month[23,24].

Pixel-based optimizations
While the importance of these nonpixel-based micro-optimizations cannot be understated, the prospect 
of instantaneous image interpretation is the ultimate ambition of AI. Although AI technology has not 
yet achieved this ability in a broad sense, the development of pixel-based micro-optimizations have 
been paramount in maximizing a radiologist’s workflow efficiency[14]. Some example applications of 
these systems involve image segmentation, reconstruction, and disease registration.

AI segmentation has the ability to automatically delineate structures and provide measurements such 
as organ volume or the surface area of a tumor. Taken a step further, these AI algorithms can be 
specialized to stage tumors and provide pre-interpreted read-outs such as PI-RADS scores for prostate 
cancer staging[25,26]. A study by Sanford et al[25] demonstrated a modest 40% agreement between an 
AI algorithm and an expert radiologist when assigning PI-RADS scores based on magnetic resonance 
imaging (MRI). This result was comparable with previous human inter-reader agreements. Automated 
segmentation and pre-interpreted read-outs may be maximally utilized in areas that have the most 
amount of data, such as screening imaging studies.

Utilizing AI for screening processes helps to reduce the workload for radiologists while not over-
extending the abilities of AI. As the typical screen produces categorically “positive”, “negative”, or 
“inconclusive” results, the complexity of the AI reads can be minimized. Using machine learning for 
screening detection is referred to as computer aided detection (CADe). CADe is currently being used in 
screening mammography, where there is an abundance of imaging studies and a relatively dispropor-
tionate amount of mammography trained readers[1,2,27]. CADe highlights the area of interest, and it is 
then determined whether an additional diagnostic study is indicated. CADe for mammography has 
been around since 1998 and its implementation into clinical workflow has continued to increase 
allowing radiologists to read more screening studies in less time. Along with the decreased read-time, it 
should be noted that several studies comparing the accuracy of CADe mammography to traditional 
radiologist-read mammograms have shown no discernable difference[26]. In one such study, an 
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ensemble of top-performing AI algorithms combined with a single radiologist reader achieved an area 
under the curve (AUC) of 0.942, with 92% specificity, outperforming the radiologists’ specificity of 
90.5%[28]. This is a representative example of new AI algorithms geared toward instantaneous, 
automatic interpretation.

LIMITATIONS
Despite the constant development of new AI companies, advanced algorithms, and enhanced learning 
technology, AI has not yet become mainstream in the radiology world due to a combination of both 
logistical and clinical challenges. The ease of which AI programs can be implemented varies widely 
based on the scope and technicalities of the clinical problem they aim to solve, as well as the mechanism 
by which they solve them. In general terminology, there are two main types of AI systems, machine-
learning and deep-learning, each of with have some specific limitations of their own[1,29].

Machine-learning AI
Machine-learning functions largely on the principal of pattern recognition. If the machine is able to 
“see” enough example image characteristics of a certain disease, it can then look at new images and be 
able to recognize them based on those previously defined features. The caveat here, is that these “pre-
defined features”, such as tumor volume, density, etc., must be hand-fed into each specific machine-
learning classifier[3]. In this way the AI does not actually learn, but rather applies the specifics of its pre-
engineered programming. Consequently, machine-learning AI is intrinsically limited by these specific 
characteristics which can reduce its ability to recognize image features, such as rare or unusual disease 
presentations[30,31]. Figure 1 demonstrates a schematic example of how machine-learning AI systems 
utilize these pre-defined features for classification. Furthermore, as the breadth of medical knowledge 
continues to expand, previous CAD systems may become outdated, and therefore obsolete[30]. The 
theoretical solution to these hard-wired restrictions is the use of AI algorithms that do not rely on pre-
engineered feature recognition, but rather one that can learn and adapt in a manner similar to the 
human brain.

Deep-learning AI 
Deep-learning is programmed to mimic the pattern of neural networks such as those in the human 
brain, referred to in the literature as convolutional neural networks (CNNs). The principal mechanism 
behind AI algorithms relies on a vast quantity of data, and through this data the AI can develop its own 
pattern of feature recognition without the need for pre-programming from human experts. Deep-
learning AI uses these features to create connections and draw conclusions in a way similar to the 
human brain, and allowing it to operate freely from human input thus increasing its automaticity and 
decreasing restrictions[3,32,33]. While in theory this method appears to be a step-up from classical 
machine-learning technology, the reliance on data and complexity of the mechanism has its limitations.

With the wide-implementation of PACS and an ever-increasing number of medical images, there is 
no shortage of data for AI algorithms to mine[34]. The issue is not quantity—but quality. Different 
PACS, different imaging machine manufacturers, and different protocols can all effect the generaliz-
ability of an AI algorithm. These variations in image reconstruction, segmentation, and labelling can 
have adverse effects on the AI’s ability to learn, and the process of standardization across these variables 
would be a time-consuming and expensive task. This is one of the reasons for the current narrow use of 
AI in clinical practice. Currently approved AI programs only function with specific computed 
tomography (CT) imager models, specific PAC systems, and specific disease processes. With such a 
narrow clinical window, AI in its current form is limited in scope[30,31]. If multiple different AI systems 
are needed for each specific pathology the process of creating and implementing these systems may not 
be fiscally feasible[35]. Even with implementation, a lapse in the detection of rare diseases would still 
exist.

Industry acceptance
Questions regarding the mechanism of how deep-learning functions can also create additional 
limitations, specifically regarding FDA approval and the accuracy of the AI’s results[8,36]. The 
mechanism is extremely complex, and in many instances, the exact way in which the AI forms these 
CNNs is either unknown or proprietary. If the way the AI algorithm functions to produce its results is 
not well understood, this begs the question of whether or not its results can be trusted[8,36,37]. This 
question has haunted AI since its inception, and the answer of whether or not health professionals and 
patients would be willing to put their faith in the recommendation of a 100% computer-controlled 
radiologic study is not an easy one to answer. A variety of comparison studies have been conducted to 
determine whether AI accuracy is comparable to that of human readers, and the results have been 
mixed.
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Figure 1 Machine-learning requires pre-defined feature inputs which are then extracted in order to classify target image characteristics. 
AI: Artificial intelligence.

In the previously mentioned Schaffter et al[28] study on breast cancer detection, no single AI 
algorithm was able to outperform the radiologists, with a specificity of 66.1% for the top-performing 
algorithm compared to 90.5% for the radiologists. In a breast cancer detection study using a different AI 
system, the AI outperformed the radiologists with an AUC of 0.740 compared to the radiologists’ AUC 
of 0.625[38]. In a study comparing chest radiograph interpretation, AI outperformed the radiologists on 
detection of pulmonary edema, underperformed on detection of consolidation, and had comparable 
performance for detection of pleural effusions[39]. These studies collectively demonstrate that AI 
systems have mixed performance compared to human radiologists.

The utilization of different algorithms, training datasets, and radiologist experience in these studies 
makes drawing conclusions about AI’s general trustworthiness difficult. Concerns such as these are why 
the shift toward micro-optimizations has been an attractive one for the interim, however as new techno-
logies are developed and deep-learning systems are polished the future of AI continues to push the 
boundaries of possibility.

FUTURE DIRECTIONS
The future of AI in radiology is constantly evolving, and with new computer systems, implementation 
targets, and algorithms being developed seemingly by the day there is no discernable end to what is 
possible[8-10]. Within PACS, the utilization of deep learning AI could theoretically be implemented 
wherever large quantities of data are available, although as previously stated there are several 
limitations to deep learning technology. With the interconnectivity, digitization, and increasing data 
pool in modern radiology, the limitations of deep-learning may slowly start to be overcome, and the use 
of micro-optimization may ramp up in scale.

The next phase in AI utilization will likely continue the trend of micro-optimization, but with 
increased efficiency. As hospital systems become more integrated, with imaging devices and PACS 
being able to directly communicate with each other, it would only make sense that the AI algorithms 
within these systems do the same. With AI’s current narrow clinical usage, each system excels at only 
one specific task[30,31]. By combining these systems, the scope of each can be summated into a larger, 
more efficient system. For example a lung cancer screening CT reconstruction algorithm could be used 
alongside a hanging protocol algorithm, with CADe for detection, and another algorithm for report 
generation[40]. Until a more encompassing system is created, combining existing micro-optimizations 
can scale efficiency in clinical workflow.

Disease recognition and triage
Despite the profound promise of deep learning, it has yet to have seen wide-spread clinical utilization. 
That being said, the power behind deep learning is data and the amount of available data is 
continuously growing. As we gather more high-quality data, the deep learning systems should become 
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Figure 2 Deep-learning artificial intelligence application in triaging head computed tomography images. The input image characteristics are 
extracted and analyzed by the convolutional neural network to create an output. The output is then flagged or not flagged depending on the algorithm’s interpretation. 
AI: Artificial intelligence.

more powerful, increasing their usage potential. The full potential of deep learning is still unknown, 
however there are several promising applications in detection and automated disease monitoring. One 
of these applications is in the identification of incidental findings. When a radiologist is examining a 
trauma study, the AI system can detect incidental pulmonary nodules, allowing the radiologist to focus 
on the primary clinical issue without overlooking other findings[41,42,43]. Looking to improve upon 
current CAD systems, utilizing deep learning AI for triage is another attractive target, where the 
urgency of a given study is prioritized and then sent to a radiologist for final interpretation. These 
algorithms pool hundreds of thousands of imaging studies along with their subsequent reports, and use 
this information to train their CNNs. In a study of one such algorithm on assigning priority to adult 
chest radiographs, AI was able to assign priority with a sensitivity of 71% and a specificity of 95%. 
Importantly, the time taken to report critical findings was reduced significantly from 11.2 to 2.7[32]. 
Another study on triaging patients based on head CT findings produced similar results, with an AUC of 
0.92 for accurately detecting intracranial hemorrhage[44]. Figure 2 is schematic example demonstrating 
this type of AI triage system. The ability for the system to distinguish between ‘normal’ and ‘abnormal’ 
accurately, and then further stratify ‘abnormal’ into severity categories, is a promising step toward 
automated interpretation[32,44].

Disease monitoring
The prospect of monitoring disease progression is a more complicated one, but the ability of the deep 
learning system to accumulate and track data changes over time makes this an attractive target. These 
systems may also have the ability to automatically adjust for changes in patient position or body habitus 
at the times the studies were conducted[3]. One of the obvious applications for this is oncology, with AI 
models already demonstrating their ability to accurately measure therapeutic response and tumor 
recurrence[45,46]. Throughout the coronavirus disease 2019 (COVID-19) pandemic, the ability to track 
disease progression has been crucial for medical decision making. Unfortunately, the wide variability in 
an individual’s disease course has been difficult to predict. To solve this problem, several deep learning 
systems have been tested to identify minute chest CT changes based on quantitative pixel analysis, 
giving us a more sophisticated look into the pathophysiology of the disease[47-49]. Not only does this 
present the potential to make educated decisions for COVID-19 patients regarding the need for hospital-
ization and allocation of resources, but the pandemic in general has further stressed the need of 
increased efficiency in radiology during times of unprecedented volume.

CONCLUSION
As the role of AI in radiology continues to advance and diversify, the potential for revolutionary clinical 
impact persists. One of the most important factors for the continued development of AI in radiology is 
achieving wide-spread implementation, and to achieve this AI must be embraced by radiologists. 
Currently, only an estimated 30% of radiologists use AI in day-to-day workflow[50]. With the shift of AI 
philosophy away from replacing radiologists, the view of AI as a threat to fear may be replaced with its 
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view as a tool to exploit. As more algorithms are approved, more studies published, and more systems 
implemented into clinical practice, radiologists and trainees alike need to educate themselves on what 
AI can do for them and their patients. When radiologists and AI learn to work together, the potential 
clinical benefits of a human-machine symbiosis can be fully realized.
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Abstract
BACKGROUND 
The pandemic outbreak of the novel coronavirus disease (COVID-19) has 
highlighted the need to combine rapid, non-invasive and widely accessible 
techniques with the least risk of patient’s cross-infection to achieve a successful 
early detection and surveillance of the disease. In this regard, the lung ultrasound 
(LUS) technique has been proved invaluable in both the differential diagnosis and 
the follow-up of COVID-19 patients, and its potential may be destined to evolve. 
Recently, indeed, LUS has been empowered through the development of 
automated image processing techniques.

AIM 
To provide a systematic review of the application of artificial intelligence (AI) 
technology in medical LUS analysis of COVID-19 patients using the preferred 
reporting items of systematic reviews and meta-analysis (PRISMA) guidelines.

METHODS 
A literature search was performed for relevant studies published from March 2020 
- outbreak of the pandemic - to 30 September 2021. Seventeen articles were 
included in the result synthesis of this paper.

RESULTS 
As part of the review, we presented the main characteristics related to AI 
techniques, in particular deep learning (DL), adopted in the selected articles. A 
survey was carried out on the type of architectures used, availability of the source 
code, network weights and open access datasets, use of data augmentation, use of 
the transfer learning strategy, type of input data and training/test datasets, and 
explainability.

CONCLUSION 
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Finally, this review highlighted the existing challenges, including the lack of large datasets of 
reliable COVID-19-based LUS images to test the effectiveness of DL methods and the 
ethical/regulatory issues associated with the adoption of automated systems in real clinical 
scenarios.

Key Words: Lung ultrasound; Deep learning; Neural network; COVID-19 pneumonia; Medical imaging

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Challenging coronavirus disease 2019 (COVID-19) pandemic through the identification of 
effective diagnostic and prognostic tools is of outstanding importance to tackle the healthcare system 
burdening and improve clinical outcomes. Application of deep learning (DL) in medical lung ultrasound 
may offer the advantage of combining non-invasiveness and wide accessibility of ultrasound imaging 
techniques with higher diagnostic performance and classification accuracy. This paper overviews the 
current applications of DL models in medical lung ultrasound imaging in COVID-19 patients, and 
highlight the existing challenges associated with the effective clinical application of automated systems in 
the medical imaging field.

Citation: De Rosa L, L'Abbate S, Kusmic C, Faita F. Applications of artificial intelligence in lung ultrasound: 
Review of deep learning methods for COVID-19 fighting. Artif Intell Med Imaging 2022; 3(2): 42-54
URL: https://www.wjgnet.com/2644-3260/full/v3/i2/42.htm
DOI: https://dx.doi.org/10.35711/aimi.v3.i2.42

INTRODUCTION
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a life-threatening infectious virus and 
its related disease (COVID-19) represents a still ongoing challenge for humans. At time of writing, over 
497 million infections have been recorded worldwide including more than 6.1 million attributable 
deaths[1]. Despite the large number of vaccination programs introduced from the end of 2020 has 
represented an opportunity to minimise the risk of severe COVID-19 and death, the spread of new 
genetic viral variants with a higher probability of contagion has raised a renewed strong concern for 
either not vaccinated and vaccinated people. Thus, since the outbreak of the pandemic, research has 
continuously looked for a quick and reliable way to diagnose the disease, treat and monitor people 
affected by coronavirus.

To date, molecular test based on real time quantitative reverse transcription polymerase chain 
reaction (RT-qPCR) assay by nasopharyngeal swabs along with the serological antibody-detecting and 
antigen-detecting tests are the current accepted diagnostic tools for the conclusive diagnosis of COVID-
19[2]. RT-qPCR may take up to 24 h to provide information and requires multiple tests for definitive 
results and, in addition, it is not relevant to assess the disease severity. Furthermore, the accuracy of 
molecular and serological tests remains highly dependent on timing of sample collection relative to 
infection, improper sampling of respiratory specimens, inadequate preservation of samples and 
technical errors, particularly contamination during RT-qPCR process and cross-reactivity in the 
immunoassay[3,4].

To complement conventional in vitro analytical techniques of COVID-19, biomedical imaging 
techniques have demonstrated great potential in clinical diagnostic evaluation by providing rapid 
patient assessment in the presence of high pre-test probability. Furthermore, imaging techniques are 
currently important in the follow-up of subjects with COVID-19[5,6]. Among the imaging techniques, 
chest computed tomography (CT) is considered the primary diagnostic modality and an important 
indicator for assessing severity and progression of COVID-19 pneumonia[7,8], although it has been 
reported to have limited specificity[9-11]. Indeed, the CT imaging features can overlap between COVID-
19 and other viral pneumonia. Moreover, CT scanning is expensive, not easy to perform in the COVID-
19 context, and multiple risks are associated with it, such as radiation exposure and cross-infection risk 
associated with repeated use of a CT suite[12], along with unavailability of CT in many parts of the 
world.

In the last few years, lung ultrasound (LUS) technique has become increasingly popular and a good 
option for real-time point-of-care testing, with several advantages making it a valuable tool in the fight 
against COVID-19[13], although it has specificity limits comparable to those of chest CT.

Ultrasound (US) is a low-cost, non-radioactive medical imaging method, particularly indicated for 
evaluation in pregnant women and children, which is portable to the bedside or patient’s home and is 
easy to sterilise. Moreover, the risk of COVID-19 cross-infection can be limited by making use of 
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disposable ultrasound gel with a portable probe[14]. In addition, some studies indicate that LUS shows 
excellent performances in speed of execution and accuracy of diagnosis in case of respiratory failure
[15]. Furthermore, compared with chest X-ray, LUS demonstrated higher sensitivity in detecting 
pneumonia[16] and similar specificity in the diagnosis of pneumothorax[15]. On the other hand, the 
distinctive LUS features (B-lines, consolidations, pleural thickening and rupture) observed in patients 
with varying severity of COVID pneumonia are similar to the features seen in patients with pneumonia 
of different aetiologies. Indeed, a recent review[17] on ultrasound findings of LUS in COVID-19 
demonstrated that LUS has high sensitivity and reliability in ruling out lung involvement, but at the 
expense of low specificity. Therefore, especially in the case of low prevalence of the disease, at present 
LUS cannot be considered a valid gold standard in clinical practice.

Ultrasound image processing techniques have assumed great importance in recent years, with the 
growing experience that accurate image processing can significantly help in extracting quantitative 
characteristics to assess and classify the severity of diseases. Accordingly, sophisticated techniques of 
automated image processing, that include the use of artificial intelligence (AI) methods, have been 
developed and applied to assist LUS imaging in the detection of COVID-19 and make such assessment 
more objective and accurate. AI methods - from machine learning (ML) to deep learning (DL), indeed, 
aim to imitate cognitive functions and stand out in automatically recognizing complex patterns in 
imaging data, providing quantitative rather than qualitative assessments. The primary purpose of 
applying AI methods in medical imaging is to improve the visual recognition of certain features in 
images to produce lower-than-human error rates. Furthermore, an enhancement in LUS performance 
can reduce the use of more invasive and time-consuming techniques, facilitating both faster diagnosis 
and recognition of earlier stages of the disease[18]. To allow a quick development of highly performant 
AI models, a large amount of accessible and validated data to train and test AI models is a critical 
requirement that can be achieved, for instance, with the development of shared big data archives. 
Indeed, one of the most common problems associated with using limited training samples is the over-
fitting of DL models. To address this issue, two main approaches can be selected: model optimization 
and transfer learning. These strategies significantly improve the performance of DL models. Likewise, 
data pre-processing and data augmentation/enhancement can be useful additional strategies[19,20].

The most common applications of DL methods in clinical imaging, and hence in medical ultrasound 
imaging as well, are object detection, object segmentation, and object classification[21]. The main 
architectures applied in current analysis are convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs)[22]. CNNs are architectures able to work with 2D and 3D input images and 
RNNs recognize the image's sequential characteristics and use patterns to predict the next likely 
scenario[23].

Since the outbreak of the pandemic, many proposals have been made based on AI methods applied to 
LUS scans of COVID-19 patients. Here we propose a comprehensive systematic review of the literature 
on the use of AI technology, DL in particular, to aid in the fight against COVID-19.

MATERIALS AND METHODS
Study selection
A literature search to identify all relevant articles on the use of DL tools applied to LUS imaging in 
patients affected by COVID-19 virus was conducted.

This systematic review was carried out using the PubMed/Medline electronic database and 
according to the preferred reporting for systematic reviews and meta-analysis (PRISMA) guidelines[24,
25]. We performed a systematic search covering the period from March 2020 (from the outbreak of the 
pandemic) to 30 September 2021. The search strategy was restricted to English-language publications.

We performed an advanced research concatenating terms with Boolean operators. In particular, 
search words and key terms used in the search included ("lung ultrasound" OR "lus") AND ("COVID-
19" OR "coronavirus" OR "SARS-CoV2") AND ("artificial intelligence" OR "deep learning" OR "neural 
networks" OR "CNN").

Eligibility criteria
The inclusion criteria were: Studies that include COVID-19 patients with LUS acquisitions and 
developed or tested DL-based algorithms on LUS images or on features extracted from the images; No 
restriction on the ground truth adopted to analyse the presence/absence of COVID-19 and/or the 
severity of lung disease (e.g., PCR, visual evaluation of video/images and score assignment by expert 
clinicians); No restriction on the type of DL architecture used in the studies. Studies on paediatric 
population were excluded. Studies were restricted to peer reviewed articles and conference 
proceedings. However, the following publication types were excluded: reviews and conference 
abstracts.
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Data extraction and analysis
Two investigators (DRL and FF) screened the articles independently. Disagreement between reviewers 
was resolved by consensus via discussion. The reasons for the exclusion of some trials are described in 
the Results section. Publications by the same research group or by different groups using the same 
dataset were included in the analysis. After the selection of the articles, we collected the following 
characteristics: First author’s surname, date of publication, sample size, general characteristics of the 
study populations, AI techniques used, validation methods and main results obtained. The study 
selection process is presented in Figure 1.

RESULTS
Search results
Twenty-four articles resulted after querying the database and screened for eligibility (Figure 1). Of the 
24 articles, we discarded four references as review papers. After examining the titles and abstracts, we 
excluded five articles: one manuscript did not include DL methods applied on US imaging, three papers 
were not based on AI and DL approaches, and one article was focused on the paediatric population. 
Moreover, two additional papers, retrieved from the checking of references of the eligible articles, were 
included. Finally, 17 articles[26-42] were selected for full-text screening and included in our analysis 
(Table 1 and 2). The following part of the section provides a concise overview of the studies’ main 
features.

Dataset and source code availability 
Authors of seven[27-30,33,39,40] of the seventeen selected articles (41.2%) extrapolated their datasets 
from the free access LUS database acquired by point-of-care ultrasound imaging and made available 
firstly by Born et al[30]. Instead, an Italian group firstly introduced the Italian COVID-19 Lung 
Ultrasound DataBase (ICLUS-DB)[38], which is accessible upon mandatory request to the authors, and 
that was used in two other studies[32,37]. Noteworthy, Roy et al[38] have created a platform through 
which physicians can access algorithms, upload their data and see the algorithm's evaluation of the 
data.

Besides dataset open access, access to the code for the neural network is also important to reproduce 
results and compare performances. Seven articles[26-30,32,38] (41.2%) made the source code 
implementing the proposed DL architecture available for download from the Git-hub repository.

Single-frame/multi-frames or video based architecture
In the majority of the selected papers, DL architectures work with single frame images as input and only 
three publications[29,34,41] (17.6%) report DL architectures based on image sequences (i.e., video). 
However, six studies[28,30,32,37-39] (35.3%), despite adopting a DL architecture designed to perform 
single-frame classification, also propose additional methods to fulfil video-based classification. In 
particular, Roy et al[38] proposed an aggregation layer system of frame-level scores to produce 
predictions on LUS videos and Mento et al[37] proposed an alternative video-based classification using a 
threshold-based system on the frame-level scores obtained from DL architecture.

Other authors[32] adopted a Long Short-Term Memory (LSTM) system, which has been used to 
exploit temporal relationships between multiple frames by taking long time series as input, over 
performing their results obtained by CNN without LSTM.

Finally, Xue et al[42] applied AI models for patient-level assessment of severity using a final module 
across the entire architecture that works with ML rather than DL systems.

Test strategy of DL models
The proposed DL models have been tested on a database entirely independent from the training 
database in seven articles[26,35-39,42] (41.2%); five-fold and ten-fold cross-validation techniques were 
applied in nine[27-34,40] (52.9%) and one[41] (5.9%) studies, respectively. Among the papers that tested 
DL models on an independent database, the percentage of data used for the testing ranged from 33%[35] 
to 20%[38] and 10%[26,36] of the overall data. Born et al[29], alongside the five-fold cross-validation 
technique in the training/test phase of the DL model, also used an independent validation dataset 
made-up of 31 videos (28 convex and 3 linear probes) from six patients. Indeed, Roy et al[38], for 
instance, used 80 videos/10709 frames out of the total 277 videos/58924 frames to test their DL model.

In all studies, the splitting of data between training set and test set was performed either at the 
patient-level or at the video-level. Thus, all the frames of a single video clip belonged either to the 
training or to the test set.

Data augmentation 
Twelve (70.6%) research groups extended their LUS database by augmentation. The main strategies for 
data augmentation applied to LUS images were: Horizontal/vertical flipping[26,27,29,30,32,33,36,38-40,
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Table 1 General characteristics of the studies included in the analysis (part I)

Ref. Publication 
date Journal Sample size1, N° 

pts/videos/images Subjects Main results

Arntfield et al
[26]

22/02/2021 BMJ Open 243/612/121k COVID +, COVID -, 
HPE

Overall Acc = 0.978AUC = 1/0.934/1 for 
COVID +, COVID -, HPE

Awatshi et al
[27]

23/03/2021 IEEE Trans Ultrason 
Ferroelectr Freq 
Control

-/64/1.1k COVID +, Healthy, PN 5-fold validation: Acc = 0.829

Barros et al[28] 14/08/2021 Sensors 131/185/- COVID +, PN bacterial, 
Healthy

Best model (Xception+LSTM): Acc = 
0.93 – Se = 0.97

Born et al[29] 12/01/2021 Applied Sciences 216/202/3.2k COVID +, Healthy, PN External validation: Se = 0.806 – Sp = 
0.962

Born et al[30] 24/01/2021 ISMB TransMed -/64/1.1k COVID +, Healthy, PN Overall Acc = 0.89Binarization COVID 
y/n: Se = 0.96 – Sp = 0.79 – F1score = 
0.92

Chen et al[31] 29/06/2021 IEEE Trans Ultrason 
Ferroelectr Freq 
Control

31/45/1.6k COVID-19 PN 5-fold validation: Acc = 0.87

Dastider et al
[32]

20/02/2021 Comput Biol Med 29/60/14.3k COVID-19 PN Independent data validation: Acc = 
0.677 – Se = 0.677 – Sp = 0.768 – F1score 
= 0.666

Diaz Escobar et 
al[33]

13/08/2021 PLos One 216/185/3.3k COVID +, PN bacterial, 
Healthy

Best model (InceptionV3): Acc = 0.891 – 
AUC = 0.971

Erfanian Ebadi 
et al[34]

04/08/2021 Inform Med 
Unlocked

300/1.5k/288k COVID +, PN 5-fold validation: Acc = 0.90 – PP=0.95

Hu et al[35] 20/03/2021 BioMed Eng OnLine 108/-/5.7k COVID + COVID detection: Acc = 0.944 – PP = 
0.823 – Se = 0.763 – Sp=0.964

La Salvia et al
[36]

03/08/2021 Comput Biol Med 450/5.4k/> 60k Hospitalised COVID-19 External validation (ResNet50): Acc = 
0.979 – PP=0.978 – F1score = 0.977 – 
AUC = 0.998

Mento et al[37] 27/05/2021 J Acoust Soc Am 82/1.5k/315k COVID-19 confirmed % Agreement DL and LUS = 96%

Roy et al[38] 14/05/2020 IEEE Trans 35/277/58.9k COVID-19 confirmed, 
COVID-19 suspected, 
Healthy

Segmentation: Acc = 0.96 – DICE = 0.75

Sadik et al[39] 09/07/2021 Health Inf Sci Syst -/123/41.5k COVID +, PN, Healthy COVID y/n (VGG19+SpecMen): PP = 
0.81 – F1score = 0.89

Muhammad et 
al[40]

25/02/2021 Information Fusion 121 videos + 40 frames COVID +, PN bacterial, 
Healthy

Overall: Acc = 0.918 – PP = 0.925

Tsai et al[41] 08/03/2021 Phys Med 70/623/99.2k Healthy, Pleural effusion 
pts

Pleural effusion detection:Acc = 0.924

Xue et al[42] 20/01/2021 Med Image Anal 313/-/6.9k COVID-19 confirmed 4-level and binary disease severity:Acc = 
0.75 and Acc = 0.85

1k: Indicates × 103.
pts: Patients; HPE: Hydrostatic pulmonary edema; PN: Pneumonia; Acc: Accuracy; Se: Sensitivity; Sp: Specificity; AUC: Area under the curve; PP: 
Precision; DL: Deep learning; LUS: Lung ultrasound.

42], bidirectional arbitrary rotation[26,27,29,30,32,33,35,38-40,42], horizontal and vertical shift[30,32,38,
39,42]; filtering, colour transformation, adding salt and pepper noise, Gaussian noise[36,38,42], normal-
isation of grey levels’ intensity[38]. Although proposed by all the authors, only seven papers[26,29,30,32,
33,38,40] provided details on the amplitude of image rotation. In particular, Dastider et al[32] applied 
rotations in the range of 0 ± 360 degrees, while other authors have limited image rotations to 10 degrees
[26,29,30,33], ± 15 degrees[38] and ± 20 degrees[40], respectively. The remaining five papers[28,31,34,37,
41] (29.4%) did not perform data augmentation.

Explainability
Among the selected articles, tools for interpreting the network output were provided in twelve studies 
(70.6%), whereas in the remaining five (29.4%) the DL algorithms’ outcomes were proposed as black box 
systems. The majority of papers[26-29,32,35,36,38,40] reported the Gradient-weighted Class Activation 
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Table 2 General characteristics of the studies included in the analysis (part II)

Ref. DL 
architecture

Input of 
DL models

Available 
dataset

Available 
code

Pre-
trained/TL

Test 
independent

Data 
Augmentation Explainability

Arntfield et al
[26]

CNN SF No Yes (on 
github)

Yes Yes Yes Yes

Awatshi et al
[27]

CNN SF No Yes (on 
github)

Yes No (five-fold) Yes Yes

Barros et al[28] CNN+LSTM SF Yes Yes (on 
github)

Yes No(five-fold) No Yes

Born et al[29] 3D CNN MF Yes Yes (on 
github)

Yes No(five-fold) Yes Yes

Born et al[30] CNN SF Yes Yes (on 
github)

Yes No(five-fold) Yes No

Chen et al[31] MLFCNN SF No Yes (on 
github)

No No(five-fold) No No

Dastider et al
[32]

CNN+LSTM SF No Yes (on 
github)

Yes No(five-fold) Yes Yes

Diaz Escobar et 
al[33]

CNN SF No No Yes No(five-fold) Yes No

Erfanian Ebadi 
et al[34]

3D CNN MF No Yes (on 
github)

Yes No(five-fold) No Yes

Hu et al[35] CNN + MCRF SF No No Yes Yes Yes Yes

La Salvia et al
[36]

CNN SF No No Yes Yes Yes Yes

Mento et al[37] CNN+ STN SF No No No - No No

Roy et al[38] CNN+ STN SF Yes (on 
request)

Yes (on 
github)

No Yes Yes Yes

Sadik et al[39] CNN SF No No Yes Yes Yes Yes

Muhammad et 
al[40]

CNN SF Yes No No No(five-fold) Yes Yes

Tsai et al[41] CNN+ STN MF No No Yes No(ten-fold) No No

Xue et al[42] CNN SF No No No Yes Yes Yes

CNN: Convolutional neural network; LSTM: Long short-term memory; MCRF: Multimodal channel and receptive field; MLFCNN: Multi-layer fully 
connected neural network; STN: Spatial transformer network; SF: Single-frame; MF: Multi-frame; DL: Deep learning; TL: Transfer learning.

Mapping (Grad-CAM) as the preferred explainability tool. Grad-CAM uses gradients to create a location 
map to highlight the region of interest of the images[43]. Instead, Sadik et al[39] used a colormap jet to 
visualise a heat map overlay to US images; Erfanian Ebadi et al[34] adopted an activation map system to 
detect and segment features in LUS scans. Furthermore, one study[42] showed LUS images with 
overlaid colormaps to indicate the segmentation zone of ultrasound according to the different severity. 
Roy et al[38], differently, provided an ultrasound colormap overlay on the LUS frame/video and used 
four colours to distinguish the different classes of disease severity recognized by DL architecture.

Clinical use
Most of the selected papers applied the AI system to diagnose COVID-19 and/or discriminate between 
COVID-19 and other lung diseases (such as bacterial pneumonia)[26-30,33,34,39,40]. The first approach 
using DL architecture for automatic differential diagnosis of COVID-19 from LUS data was POCOVID-
Net[30].

However, a fair number of studies have focused on assessing the severity of COVID-19[31,32,35-38,
42]. In particular, a disease severity score is assigned to the single image according to some character-
istics visible in the image pattern. Most of the articles used four severity classes by assigning a score to 
the single frame from 0 to 3[31,32,35-38], as defined by Soldati et al[44]. Xue et al[42] proposed a classi-
fication in five classes of pneumonia severity (score from 0 to 4) along with a binary severe/non-severe 
classification. Furthermore, these authors used the DL technology exclusively to implement a 
segmentation phase based on a VGG network, while the classification phase still employed a more 
traditional, features-based machine learning approach. Finally, La Salvia et al[36] proposed a classi-
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Figure 1 Flow diagram of systematic identification, screening, eligibility and inclusion of publications that applied deep learning methods 
to lung ultrasound imaging in coronavirus disease 2019 patients.  AI: Artificial intelligence; DL: Deep learning; US: Ultrasound.

fication based on three severity classes and a modified version considering a seven-classes scenario.
Furthermore, Arntfield et al[26] showed that their network was able to recognize pathological pattern 

in LUS images with higher sensitivity than sonographers; whilst an InceptionV3 network proposed by 
Diaz-Escobar et al[33] was able to discriminate COVID-19 pneumonia from healthy lung and other 
bacterial pneumonia with an accuracy of 89.1% and an area under the ROC curve of 97.1%.

Curiously, one of the eligible papers[41] did not include confirmed cases of COVID-19 patients. The 
authors’ aim was to design an algorithm capable of identifying the presence of pleural effusion. 
However, we have included this work in our systematic review, because small pleural effusions are 
rarely reported in COVID-19 patients. Therefore, the detection of pneumonia with pleural effusion can 
help rule out the hypothesis of COVID-19 disease.

Transfer learning and DL architecture
From our analysis, it emerged that most of the studies have proposed convolutional neural networks 
(CNNs) as DL models to generate screening systems for COVID-19. In particular, all publications with 
the exception of one[31] used the CNN network. Conversely, Chen et al[31] developed a multi-layer 
fully connected neural network for scoring LUS images in assessing the severity of COVID-19 
pneumonia.

Among the DL systems included in this review, most of them were generated starting from DL 
architectures already proposed for other tasks[26-30,32-36,39,42], suitably modified and trained for new 
tasks. Furthermore, many works compared the results of their architectures with those obtained using 
existing and well-known architectures[27-30,32,33,35,38-40]. In particular, the following DL 
architectures were adapted to fulfil the requirements of LUS analysis to assist in COVID-19 detection 
and/or assessment of the severity of the lung disease, or just to compare their performances: VGG-19
[28,33,39] and VGG-50[28-30,33]; Xception[26,28,39]; ResNet 50[27,33,36,40]; NasNetMobile[27,29,39]; 
DenseNet[32,39].

More in detail, Awasthi et al[27] proposed Mini-COVIDNet, a modified MobileNet model belonging 
to the CNN’s networks family and originally developed for detecting objects in mobile applications[45]. 
Barros et al[28], along with their proposed DL model, also investigated the impact of using different pre-
trained CNN architectures in extracting spatial features that were successively classified by a LSTM 
model. Finally, Born et al[29] derived their DL video-based models from a model that was pre-trained 
on lung CT scans[46].
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All aforementioned architectures are pre-trained on ImageNet[47].

Sample size
Partly due to the recent outbreak of the pandemic and to the difficulty of having standardised high 
quality archives of US images, only few of the selected studies relied on a large dataset in terms of 
enrolled patients. Six papers (35.3%) reported a sample size greater than 200 subjects (namely, 243, 216, 
216, 300, 450 and 313 in references[26,29,33,34,36,42] respectively).

However, despite the relatively low number of subjects, the total number of LUS videos reaches up to 
5400 in one study[36], with an average equal to 1589 videos[26,29,33,34,36]. Among the studies carried 
out on a low sample size, Dastider et al[32] included 29 patients and 60 videos, whilst 35 patients/45 
videos and 35 patients/277 videos were analysed in references Chen et al[31] and Roy et al[38], 
respectively. However, it should be noted that Roy et al[38] published their work at the beginning of the 
COVID-19 pandemic, when the total number of COVID-19 patients was still relatively limited. In the 
paper by Xue et al[42], the number of frames/video was not reported.

DISCUSSION
The paper reviews the different DL techniques able to work with LUS images in assisting the diagnosis 
and/or prognosis of the COVID-19 disease published since the outbreak of the pandemic. In the 
selected documents, the use of DL systems aimed to achieve an accuracy comparable to or better than 
clinical standards to provide a faster diagnosis and/or follow-up in COVID-19 patients.

Most of the papers present pre-trained DL architectures[26-30,32-36,39,42] that were modified and 
adapted to new data. This approach is also known as transfer learning (TL) technique - i.e., a training 
strategy for new DL models with reduced datasets. The network is pre-trained on a very large dataset, 
such as ImageNet, with millions of images intentionally created to facilitate the training of DL models, 
focusing on image classification and object location/detection tasks[48]. Indeed, deeper models are 
difficult to train and provide inconsistent performances when trained on a limited amount of data[49]. 
Therefore, most of the studies based on DL systems to classify COVID-19 images appropriately use the 
TL strategy as large datasets of US images from COVID-19 patients are not yet easily available, partly 
because the coronavirus disease is a relatively recent concern.

Furthermore, most of the proposed systems shared the same design, i.e., CNN’s architectures. CNNs 
have several applications in medical imaging – among others, image segmentation and object detection
[50]. However, CNNs are particularly suited for image classification problems[51] and, consequently, 
represent an optimal solution for the classification of the disease severity from US images.

To date, one of the main challenges faced by DL architectures applied to LUS images of COVID-19 
patients are the limited datasets in the available databases. This problem could benefit from creating 
open access databases that collect large amounts of data from multiple centres. In some of the selected 
studies, a first attempt to overcome this issue is evident, with particular emphasis on the work by Born 
et al[30], the authors who first collected a free access dataset of lung images from healthy controls and 
patients affected by COVID-19 or other pneumonia.

The development of public and multicentre platforms would guarantee the collection of a 
continuously growing amount of data, large and highly heterogeneous, suited for the training and 
testing of new DL applications in medical imaging, both in the COVID-19 and LUS field. Furthermore, 
this would allow an easier comparison of performances among DL models proposed in different 
studies. However, alternative approaches are often used in the testing phase that do not require the use 
of independent data sets to evaluate the performance of the model in the event of a limited number of 
images available. Among these, the k-fold cross-validation is a statistical method used to evaluate the 
ability of ML models to generalise to previously unseen data. Despite being widely used in ML models, 
the k-fold cross validation approach is less reliable than tests performed using an external dataset; the 
latter is always preferable to test model's ability to adapt properly to new, previously unseen data.

Data augmentation techniques are an alternative strategy to overcome the issue of the limited 
amounts of data, largely adopted in practice. These techniques generate different versions of a real 
dataset artificially to both increase its size and the power of model's generalisation. Despite the great 
advantage in increasing data to feed DL architectures, data augmentation techniques should be used 
with awareness, as some geometric transformations could be unrealistic when applied to LUS images (
e.g., angles of rotations greater than 30°). In the field of DL applied to medical imaging, the use of 
architectures designed to work with 3D images is another interesting challenge. Indeed, a DL system 
that operates with 3D data input usually requires a larger amount of data for training, as a 3D network 
contains a parameters’ number that is orders of magnitude greater than a 2D network. This could 
significantly increase the risk of overfitting, especially in the case of limited dataset availability. In 
addition, the training on large amounts of data requires high computational costs associated with 
memory and performance requirements of the tools used. LUS images are usually recorded in the form 
of videoclips (2D + time) and can be assimilated to 3D data. Exploitation of dynamic information 
naturally embedded in image sequences has proven very important in the analysis of lung echoes. In 
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particular, changes induced by COVID-19 viral pneumonia are better detectable in LUS through the 
analysis of multi-frames acquisition due to its ability in capturing dynamic features, e.g., pleural sliding 
movements and generation of B-line artefacts[44].

Regardless of the data format (i.e., 3D, 2D or 2D+time images), the labelling of ground truth data is 
required in supervised DL applications and should be provided by skilled medical professionals. 
However, it is a time-consuming activity, in particular in the 2D approach that is characterised by a high 
number of samples.

Indeed, some authors demonstrated that the performance in pleural effusion classification on LUS 
images obtained with the video-based approach was comparable to that obtained with frame-based 
analysis, despite a significant reduction in labelling effort[41]. Furthermore, Kinetics-I3D network was 
able to classify LUS video sequences with great accuracy and efficiency[34]. On the other hand, the 
video-based approach has also revealed a reduced accuracy in patients classification with respect to the 
single frame analysis; however, this could be explained by the relatively reduced number of available 
LUS clips[29].

Extending the use of DL architectures beyond multi-frame analysis with respect to single 2D images 
is highly desirable. In particular, these methods could be effectively used to assign a patient-level 
disease severity score. In fact, this information plays a key role in the selection of treatment, monitoring 
of disease progression and management of medical resources (e.g., mechanical ventilator needed).

Code availability is another very critical issue in applications of AI in medical imaging. Indeed, the 
lack of ability to reproduce the training of the proposed DL models or to test these models on new US 
images is a rather widespread problem. Often, authors do not provide access to either the source code 
used to train NNs or the final weight of the trained network. On the other hand, the availability of this 
information would greatly facilitate the diffusion of new AI systems in the clinical setting.

DL systems are often presented as black boxes - i.e., they produce a result without providing a clear 
understanding in "human terms" of how it was obtained. The black-box nature of the algorithms has 
restricted their clinical use until now. Consistently, the explainability - i.e., making clear and 
understandable the features that influence the decisions of a DL model - is a critical point to guarantee a 
safe, ethical, and reliable use of AI. Especially in medical imaging applications, explainability is very 
important as it gives the opportunity to highlight regions of the image containing the visual features 
that are critical for the diagnosis. Gradient-weighted Class Activation Mapping (Grad-CAM) is a 
promising technique for producing "visual explanations" of decisions taken from a large class of CNN-
based models, making their internal behaviour more understandable, thus partially overcoming the 
black-box problem. The basic idea is to produce a rough localization map that highlights the key regions 
in the image that have a major effect on customization of network parameters, thus maximally 
contributing to the prediction of outcomes[43].

These maps visualised areas using a blue-to-red scale, with the highest/lowest contribution to the 
class prediction operated by the model. The clinical use of DL systems is a crucial issue. One of the 
major current limitations of LUS imaging in COVID patients is the specificity. Focusing the design of DL 
systems to overcome this limit could really represent a benefit in the clinical setting.

Along this line, some of the included studies tested the agreement between physicians' ability to 
classify COVID-19 patients and that proposed by neural networks. Furthermore, this finding suggests 
that the automated system can capture some features (biomarkers) in US images that are not clearly 
visible to the human eye.

Finally, another important issue to mention is the use of the quantitative evaluation indicators and 
the analysis of the benchmarking techniques adopted to evaluate the effectiveness of the proposed 
methods. Unfortunately, the tools examined in the selected manuscripts had very heterogeneous targets 
(Table 1, Main results column), ranging from diagnostic to prognostic purposes or assessment of disease 
severity. This dispersion of intent and the few articles published in the literature at present make any 
comparison or analysis very difficult.

CONCLUSION
The studies analysed in this article have shown that DL systems applied to LUS images for the 
diagnosis/prognosis of COVID-19 disease have the potential to provide significant support to the 
medical community. However, there are a number of challenges to overcome before AI systems can be 
regularly employed in the clinical setting. On the one hand, the critical issues related to the availability 
of high-quality databases with large sample size of lung images/videos of COVID-19 patients and free 
access to datasets must be addressed. On the other hand, existing concerns about the methodological 
transparency (e.g., explainability and reproducibility) of DL systems and the regulatory/ethical and 
cultural issues that the clinical use of AI methods raise must be resolved. Finally, a closer collaboration 
between the communities of informatics/engineers and medical professionals is desirable to facilitate 
the outcome of adequate guidelines for the use of DL in US pulmonary imaging and, more generally, in 
medical imaging.
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ARTICLE HIGHLIGHTS
Research background
The current coronavirus disease 2019 (COVID-19) pandemic crisis has highlighted the need for 
biomedical imaging techniques in rapid clinical diagnostic evaluation of patients. Furthermore, imaging 
techniques are currently important in the follow-up of subjects with COVID-19. The lung ultrasound 
technique has become increasingly popular and is considered a good option for real-time point-of-care 
testing, although it has specificity limits comparable to those of chest computed tomography.

Research motivation
The application of artificial intelligence, and of deep learning in particular, in medical pulmonary 
ultrasound can offer an improvement in diagnostic performance and classification accuracy to a non-
invasive and low-cost technique, thus implementing its diagnostic and prognostic importance to 
COVID-10 pandemic.

Research objectives
This review presents the state of the art of the use of artificial intelligence and deep learning techniques 
applied to lung ultrasound in COVID-19 patients.

Research methods
We performed a literature search, according to preferred reporting items of systematic reviews and 
meta-analysis guidelines, for relevant studies published from March 2020 - to 30 September 2021 on the 
use of deep learning tools applied to lung ultrasound imaging in COVID-19 patients. Only English-
language publications were selected.

Research results
We surveyed the type of architectures used, availability of the source code, network weights and open 
access datasets, use of data augmentation, use of the transfer learning strategy, type of input data and 
training/test datasets, and explainability.

Research conclusions
Application of deep learning systems to lung ultrasound images for the diagnosis/prognosis of COVID-
19 disease has the potential to provide significant support to the medical community. However, there 
are critical issues related to the availability of high-quality databases with large sample size and free 
access to datasets.

Research perspectives
Close collaboration between the communities of computer scientists/engineers and medical profes-
sionals could facilitate the outcome of adequate guidelines for the use of deep learning in ultrasound 
lung imaging.
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