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Abstract
Acute kidney injury (AKI) has serious consequences on the prognosis of patients 
undergoing liver transplantation (LT) for liver cancer and cirrhosis. Artificial 
neural network (ANN) has recently been proposed as a useful tool in many fields 
in the setting of solid organ transplantation and surgical oncology, where patient 
prognosis depends on a multidimensional and nonlinear relationship between 
variables pertaining to the surgical procedure, the donor (graft characteristics), 
and the recipient comorbidities. In the specific case of LT, ANN models have been 
developed mainly to predict survival in patients with cirrhosis, to assess the best 
donor-to-recipient match during allocation processes, and to foresee postoperative 
complications and outcomes. This is a specific opinion review on the role of ANN 
in the prediction of AKI after LT for liver cancer and cirrhosis, highlighting 
potential strengths of the method to forecast this serious postoperative 
complication.

Key Words: Liver transplantation; Acute kidney injury; Artificial neural network; 
Prediction; Hepatocellular carcinoma; Postoperative
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Core Tip: This opinion review aims to explore the potential benefits of artificial neural 
network models in predicting the occurrence of acute kidney injury in the postoperative 
period of liver transplantation for cirrhosis and hepatocellular carcinoma.
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INTRODUCTION
Liver transplantation (LT) is the best treatment option for patients with early stages of 
hepatocellular carcinoma (HCC) and cirrhosis[1-4]. Mainly, the use of LT depends on 
maintaining a balance between patient-specific survival benefit, the availability of 
alternative treatment modalities[5,6], and the equitable distribution of donor organs[5,
7-12]. Current selection criteria aim to avoid transplant futility by excluding patients at 
a high risk of tumor recurrence[10,11]. Selecting patients with HCC within Milan 
criteria has been shown to provide excellent patient outcomes[13-15].

Among the possible complications related to LT for cirrhosis and HCC, acute 
kidney injury (AKI) is a common complication, with extremely variable reported 
incidence rates (4% to 94%)[16-22], and is associated with several immediate complic-
ations, including volume overload, metabolic acidosis and electrolyte disturbances. 
Although most patients eventually recover after an episode of AKI, many patients may 
not return to baseline renal function, and the occurrence of AKI has been shown to be 
an independent risk factor for the development of chronic kidney disease and death, 
as well as for the reduction of survival rates of liver receptors[23]. In addition, 
transplant patients who require temporary renal replacement therapy (RRT) have a 
prolonged hospital stay, with subsequent need for more resources and higher costs 
related to LT[24].

Artificial neural network (ANN) is commonly used to solve complex problems, 
where the behavior of variables is not rigorously known. One of its main character-
istics is the ability to learn through examples and generalize the information learned, 
generating a non-linear model, making its application in spatial analysis very efficient
[25]. ANN can be an alternative with high performance to the logistic regression (LR) 
model, where the relative risk term is parameterized by an ANN instead of regression, 
enabling the application of deep learning. ANN models have been developed mainly 
to predict survival in patients with cirrhosis, to assess the best donor-to-recipient 
match during allocation processes, and to foresee postoperative complications and 
outcomes[26-32], but studies evaluating such a promising tool, as ANN, for predicting 
AKI following LT for cirrhosis and HCC, are scarce.

The multifactorial origin of AKI after LT makes it complex to predict which 
candidate for the procedure has an increased risk of this complication[33,34]. In the 
face of this complexity, ANN would be a very reliable prognostic tool for AKI risk 
assessment, enabling, therefore, early or even prophylactic therapies for AKI, 
improving patients outcomes[35]. This is a specific opinion review on the role of ANN 
in the prediction of AKI after LT for liver cancer and cirrhosis, highlighting potential 
strengths of the method to forecast this serious postoperative complication.

OVERVIEW OF RISK FACTORS FOR AKI AFTER LT
The etiology of AKI after LT is multifactorial and not fully understood, with several 
risk factors related to the organ receptor[20,22,24,35], graft-related characteristics[36], 
and finally some perioperative have been identified over the past few years[20,33,34]. 
Similarly, the use of postoperative nephrotoxic immunosuppression can further 
provoke or aggravate kidney damage[20].

Based on these risk factors, various models have been developed using LR for 
predicting AKI after LT. However, because several of these models address 
postoperative parameters, their utility in predictive modeling appears to be of 
questionable relevance. Regardless of the variability of the triggering factors, it is of 
fundamental importance to identify patients at risk ideally by the set of preoperative 
clinical assessment and complementary information of the intraoperative period, thus 
enabling the adoption of preventive measures or early therapies for AKI, such as 
reduced doses and postponing postoperative patients immunosuppression, and also 
early RRT, thus reducing mortality and accelerated recovery of renal function[20].
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Among the potential AKI predictors that can be evaluated at the time of transplant 
indication, the severity of the recipient’s liver disease stands out[20-37], expressed by 
the Model for End-Stage Liver Disease (MELD) score. The MELD score determines the 
allocation of the organ prioritizing the "sickest first" patient, with high values of the 
score conferring a greater risk for the occurrence of ARF after TH, thus reflecting an 
interrelationship between liver and renal functions in cirrhotic patients[38]. Similarly, 
another predictors related to the recipient have been identified, such as high levels of 
pre-transplant serum creatinine, high body mass index (BMI) of the recipient (BMI 
values above 30 kg/m2), and the presence of pre-existing diabetes mellitus[33,35,37].

In addition to the clinical characteristics of the recipient, there are predictive factors 
of AKI that are related to the functional quality of the graft. The first situation refers to 
the modality of TH performed, as living-donor LT, in general, offers a graft that is 
functionally superior to deceased-donor LT, where the critical clinical conditions of the 
donor confer a greater potential risk to the occurrence of postoperative AKI[20]. 
Moreover, "marginal grafts" from "extended criteria donors" have increasingly been 
used, including steatotic grafts, grafts from clinically critical donors, grafts with high 
ischemia time, both “warm ischemia time” and “cold ischemia time”[20,37,39].

There are some intraoperative events that can be crucial for the occurrence of AKI. 
The main factor concerns the occurrence of intraoperative arterial hypotension (IOAH) 
with consequent renal hypoperfusion during LT[22]. Patients undergoing LT often 
experience IOAH as a result of several factors, including the duration of surgery, the 
severity of bleeding, the severity of post-reperfusion syndrome of the graft, and the 
severity of liver disease[33,35,39]. On some occasions, this renal hypoperfusion occurs 
in patients with previous renal dysfunction[34], and can often be aggravated by the 
deleterious renal effects of blood transfusion[22,34,37] and the use of vasoactive drugs 
in the intraoperative period[40].

BASICS OF ANN
An ANN lies under the umbrella of reinforcement machine learning, and comprises 
‘units’ arranged in a series of layers, each of which connects to layers on either side. 
ANNs are inspired by biological systems, such as the brain, and how they process 
information. The original concept of ANNs is derived from neurobiological models. 
ANNs are massively parallel, computer-intensive and data-driven algorithmic system 
that is composed of multitude of highly interconnected nodes (neurons). Each 
elementary node of a neural network is able to receive an input from external sources, 
according to the relative importance and different weight, which transforms into an 
output signal to other nodes by different activation function[25].

In terms of topology, to implement an ANN, different variables must be defined, 
among which: (1) the number of nodes in the input layer (such variable corresponds to 
the number of variables that will be used to feed the neural network, being normally 
the variables of greater importance for the problem under study); (2) the number of 
hidden layers and the number of neurons to be placed in these layers; and (3) the 
number of neurons in the output layer[41].

The process of learning of an ANN is a process where free parameters are adapted 
through a process of stimulation by the environment in which the network is inserted. 
With this, the type of learning is determined based on the way in which the 
modification of the parameters takes place. In summary, there is the following 
sequence of events: (1) the neural network is stimulated by an environment; (2) the 
neural network undergoes modifications in its free parameters as a result of this 
stimulation; and (3) the neural network responds in a new way to the environment, 
due to changes in its internal structure[25].

Considering the interactions of linked nodes, an output obtained from one node can 
serve as an input for other nodes, and the conversion of inputs into outputs is 
activated by virtue of certain transforming function that is typically monotone. The 
specified working function depends on parameters determined for the training set of 
inputs and outputs. The network architecture is the organization of nodes and the 
types of connections permitted. The nodes are arranged in a series of layers with 
connections between nodes in different layers, but not between nodes in the same 
layer[42].

ANNs can be classified into feedforward and feedback networks categories, and 
back-propagation updating algorithm with adjustment of connection weights between 
the neurons during the training process, is a widely used feedforward networks. 
Feedforward networks is included within the supervised learning network, essentially 
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using a gradient descent-training algorithm[43,44].

Multilayer perceptron
The perceptron, introduced by Rosenblatt in 1958, is a simple form of RNA whose 
main application is in pattern classification problems. The single-layer perceptron is 
only capable of classifying linearly separable patterns. In practice, the problem to be 
worked on does not admit an exact linear separation, making it necessary to use a 
multilayer perceptron. Multilayer perceptron (MLP)-type architectures are the most 
used and known artificial neural models. An MLP network is subdivided into layers: 
input layer, intermediate or hidden layer(s) and output layer. In the multilayer ANN 
architecture, inputs are extended from the input layer to the output layer, passing 
through one or more hidden layers. In this same sense, a multilayer neural network is 
typically composed of aligned layers of neurons. The input layer distributes the input 
information to the hidden layer(s) of the network. At the output layer, the solution to 
the problem is obtained. Hidden layers are intermediate layers, whose function is to 
separate the input and output layers. Neurons in one layer are connected only to 
neurons in the immediately posterior layer, with no feedback or connections between 
neurons in the same layer. Also, characteristically, the layers are fully connected[45].

In Figure 1 it is possible to observe an MLP-type architecture with two intermediate 
layers. The presented network has all connections, which means that a neuron in any 
layer of the network is connected to all other neurons in the previous layer. Signals 
flow through the network positively, from left to right, layer by layer.

The learning process of MLP networks by back-propagation consists of two steps: 
propagation and back-propagation. In the propagation step, an activation pattern is 
applied to the nodes of the network’s input layer and its effect propagates through the 
network, layer by layer. In the last layer, a set of outputs is produced, configured as 
the real network response. In the and back-propagation step, all synaptic weights are 
adjusted according to an error correction rule. The error signal is propagated 
backwards through the network, against the direction of the synaptic connections, the 
synaptic weights being adjusted to make the actual response of the network approach 
the desired response, in a statistical sense[25]. An important characteristic of MLP 
networks is the non-linearity of neuron outputs. This nonlinearity is obtained using a 
sigmoid-type function as an activation function, usually the logistic function[25].

ANNS FOR AKI PREDICTON AFTER LT FOR CIRRHOSIS AND HCC
Over the past two decades, machine learning algorithms have been increasingly 
applied for cancer diagnosis, prognostication, and treatment outcome prediction[46-
49]. For example, recently, an MLA approach based on a random forest workflow has 
been developed by a group in Germany to predict disease-free survival after liver 
resection for HCC[50].

Studies regarding ANNs in the field of LT for cirrhosis and HCC, researchers[26-31] 
have already conducted studies with LR models and ANN for the prediction of 
survival of these patients (Table 1). In 1992, Doyle et al[26] introduced a 10 feed 
forward back-propagation ANN model to predict LT survival. Marsh et al[27] 
presented a three layer feed forward fully connected ANN model to predict the 
survival analysis and time to recurrence of HCC after LT. Parmanto et al[28] conducted 
a study with time series sequence of medical data of patients that undergone LT with 
ANNs using back-propagation through time algorithm, and their results were 
compared with 6-fold cross validation. Cucchetti et al[29] proposed an ANN survival 
prognosis model for patients with cirrhosis at a LT unit, and proved that ANN is 
better than MELD for this proposal. Zhang et al[30] proposed a MLP model of patients 
with cirrhosis and compared the performance of the model with MELD and Sequential 
Organ Failure Assessment score. In 2013, Cruz et al[31] conducted a study with radial 
basis function ANNs using multi-objective evolutionary algorithm in order to match 
the donor-recipient pairs.

The results of the researchers above demonstrate that the ANNs predictive models 
can be capable of using live data of cirrhotic patients with or without HCC, and 
perform both diagnostic and predictive tasks[32]. Because of the simplicity in 
structure, ability to do parallel processing tasks, having long term memory, having 
fault tolerant ability and getting collective output, ANN models can do better than LR 
models[51].

In the specific scenario of AKI after LT for cirrhosis and HCC, in 2018, Lee et al[52] 
compared the performance of machine learning approaches with that of LR analysis to 
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Table 1 Studies with artificial neural networks and logistic regression models for the prediction of survival of patients in the field of 
cirrhosis and liver transplantation

Ref. Year Model and endpoint

Doyle et al
[26]

1992 10 feed forward back-propagation  ANN model to predict LT survival

Marsh et al
[27]

1997 ANN for  survival analysis and time to recurrence of HCC after LT

Parmanto et 
al[28]

2001 Back-propagation through time ANN algorithm to predict outcomes after LT

Cucchetti et al
[29] 

2007 ANN for survival prognosis of patients with cirrhosis 

Zhang et al
[30]

2012 MLP model for predicting outcomes of patients with cirrhosis and compared the performance with MELD and SOFA scores

Cruz et al[31] 2013 Radial basis function ANNs using multi-objective evolutionary algorithm to match the donor-recipient pairs

Lee et al[52] 2018 Compared the performance of ML approaches (decision tree, random forest, gradient boosting machine, support vector machine, 
naïve Bayes, MLP, and deep belief networks) with that of LR analysis to predict AKI after LT for cirrhosis and HCC (49%)

He et al[53] 2021 LR analysis as a conventional model, and random forest, support vector machine, classical decision tree, and conditional inference 
tree algorithms to predict AKI after LT for cirrhosis and HCC (40.7%)

ANN: Artificial neural network; LR: Logistic regression; LT: Liver transplantation; HCC: Hepatocellular carcinoma; MLP: Multilayer perceptron; MELD: 
Model for end-stage liver disease; SOFA: Sequential Organ Failure Assessment; AKI: Acute kidney injury.

Figure 1 Multilayer perceptron-type architecture with two intermediate layers.

predict AKI after LT for cirrhosis and up to 49% of total patients with HCC. This huge 
analysis of 1211 patients adopted preoperative and intraoperative input variables. The 
primary outcome was postoperative AKI defined by Acute Kidney Injury Network 
criteria. The following machine learning techniques were used: decision tree, random 
forest, gradient boosting machine, support vector machine, naïve Bayes, MLP, and 
deep belief networks. These techniques were compared with LR analysis regarding the 
area under the receiver operating characteristic (AUROC). AKI incidence was 30.1%. 
The performance in terms of AUROC was best in gradient boosting machine among all 
analyses to predict AKI of all stages (0.90, 95%CI: 0.86–0.93), and decision tree and 
random forest techniques showed moderate performance (AUROC 0.86 and 0.85, 
respectively). The AUROC of the MLP was 0.64 (0.59–0.69), vector machine was 0.62 
(0.57–0.67), naïve Bayes was 0.60 (0.54–0.65), and deep belief network was 0.59 
(0.53–0.64). The AUROC of LR analysis was 0.61 (95%CI: 0.56–0.66), concluding that 
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MLP model showed best performance than LR analysis, with a slight higher, but 
significant, AUROC.

He et al[53] evaluated a total of 493 patients (40.7% of patients with HCC) with 
donation after cardiac death LT. In this study, AKI was defined according to the 
clinical practice guidelines of Kidney Disease Improving Global Outcomes, and the 
clinical data of patients with AKI and without AKI were compared through LR 
analysis as a conventional model, and four predictive machine learning models were 
developed using random forest, support vector machine, classical decision tree, and 
conditional inference tree algorithms. The predictive power of these models was then 
evaluated using the AUROC. The reported incidence of AKI was 35.7% (176/493) 
during the follow-up period. Compared with the non-AKI group, the AKI group 
showed a remarkably lower survival rate (P < 0.001). The random forest model 
demonstrated the highest prediction accuracy of 0.79 with AUROC of 0.850 (95%CI: 
0.794–0.905), which was significantly higher than the AUCs of the other machine 
learning algorithms and LR models (P < 0.001).

As the standard ANN workflow involves model performance monitoring and re-
training to account for model drift, a multidisciplinary partnership between clinicians 
and data scientists is required, with a commitment to the curation and iterative 
maintenance of datasets to allow for the development of meaningful decision-support 
tools[54]. This process should involve, first and foremost, a robust, consistent, and 
objective means of collecting data. The data in the case of postoperative AKI, are 
mainly laboratorial and clinicopathologic characteristics from electronic medical 
records, and clinicians and surgeons must to establish interdisciplinary partnerships 
that strive towards a common goal and synergism. For instance, clinicians and 
surgeons help provide a clinically relevant outcome, and data scientists can identify 
the optimal methodology to make predictions for the outcome based on the available 
data.

CONCLUSION
The reported high incidence of AKI after LT for cirrhosis and HCC in numerous 
studies highlights the importance of this issue. The prediction of this complication may 
provide a focus for further research, mainly in the development of ANNs predictive 
models that may be applied immediately after LT.

ANNs are essentially a large number of interconnected processing elements, 
working in unison to solve specific problems, and its use for this specific purpose is 
directly related to the efficiency with which it provides responses close to real output 
data. ANN methods may provide feasible tools for forecasting AKI after LT in this 
population, and perhaps provide a high-performance predictive model that may 
ultimately improve perioperative management of these patients at risk for this serious 
complication.
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Abstract
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oncology in particular. In this work, we envisage to provide a global vision of this 
mathematical discipline outgrowth by linking some other related subdomains 
such as transfer, reinforcement or federated learning. Complementary, we also 
introduce the recently popular method of topological data analysis that improves 
the performance of learning models.
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reinforcement learning designs. Overall, we point out the outgrowth of this mathem-
atical discipline in cancer research and how computational biology and topological 
features can boost the general performances of these learning models.
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INTRODUCTION
The flourishing proliferation of artificial intelligence (AI) worldwide over the last 
decade has disrupted the way oncologists face cancer. More and more every day, the 
contribution of AI-based models to different axes of cancer research is not only 
improving their ability to stratify patients early on or discover new drugs but also 
influences its fundamentals. By integrating novel structures of data organisation, 
exploitation, and sharing of clinical data among health institutions, AI is achieving in 
the short-term to successfully accelerate cancer research. Medical practitioners are 
becoming familiar with some few mathematical concepts, such as machine learning 
(ML) or (un/semi) supervised learning. The former is a collection of data-driven 
techniques with the goal of building predictive models from high-dimensional 
datasets[1,2], while the latter refers to the grade of human intervention that these 
models require to make predictions.

These methods are being successfully used in cancer at many levels by simply 
analysing clinical data, biological indicators, or whole slide images[3-5]. Their 
application has revealed themselves as an effective way to tackle multiple clinical 
questions, from diagnosis to prediction of treatment outcomes. For instance, in Morilla 
et al[3], a minimal signature composed of seven miRNAs and two biological indicators 
was identified using general linear models trained at the base of a deep learning model 
to predict treatment outcomes in gastrointestinal cancer. In Schmauch et al[4], 2020, the 
authors predicted the RNA-Seq expression of tumours from whole slide images using 
a deep learning model as well.

Indeed, in this particular discipline, ML algorithms have evolved faster. Several 
approaches have succeeded in the classification of cancer subtypes using medical 
imaging[6-8]. Mammography and digital breast tomosynthesis have enabled a robust 
breast cancer detection by means of annotation-efficient deep learning approaches[9]. 
Epigenetic patterns of chromatin opening across the stem and differentiated cells 
across the immune system have also been predicted by deep neural networks in 
ATAC-seq analysis. In Maslova et al[10], solely from the DNA sequence of regulatory 
regions, the authors discovered ab initio binding motifs for known and unknown 
master regulators, along with their combinatorial operation.

Another domain where the application of AI-based models has largely been used is 
single-cell RNA sequencing (sc-RNAseq) analysis. In Lotfollahi et al[11] (2020), a new 
method based on transfer learning (TL) and parameter optimisation is introduced to 
enable efficient, decentralised, iterative reference building, and the contextualization of 
new datasets with existing single-cell references without sharing raw data. In addition, 
few methods have emerged around genetic perturbations of outcomes at the single-
cell level in cancer treatments[12,13].

Finally, some computational topology techniques grouped under the heading of 
“topological data analysis” (TDA) have also been successfully proven as efficient tools 
in some cancer subtype classifications[14].

Thus, AI has turned the oncologists and co-workers’ lives around providing them 
with a new perspective, which was once developed by only a bulk of specialists and is 
rapidly becoming a reference in the domain. This work revisits, then, most of those 
techniques and provides a quick overview of their applications in cancer research.

AI OR ML
ML or AI models, sometimes a philosophical matter, is a branch of mathematics 
concerned by numerically mimicking the human brain reasoning as it resolves a given 
problem. There are many examples of this practice; from those most classic techniques 
of regression or classification of dataset[15] to the current ground-breaking algorithms 
as “Deep-Mind, Alpha Fold” for protein-folding prediction[16]. In any case, all of these 
methods share a common objective: the ML problem. This problem can be mathemat-
ically expressed as: $$\hat{C}=\underset{C\in\mathcal{M}}{argmin}\math-
bb{E}_{x,y\in\mathcal{X}\times\mathcal{Y}} [\mathcal{B}_{l} (C(x),y)]$$.

For example, if we select the particular loss function binary cross entropy, –Bl–, this 
equation describes the parameter misapplication of the neural network C by 
diminishing the expected value of the loss function between the output of this network 
C(x) and the true label y.
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INTERPRETABLE AI MODELS
Frequently, the intricate design of models based on any ML technique (i.e., neural 
networks) makes them more difficult to interpret than simpler traditional models. 
Hence, if we want to fully exploit the potential of these models, a deeper 
understanding of their predictions would be advisable in practice. Thus, the predicted 
efficacy of a personal therapy on a cancer must be well explained, since its decisions 
directly influence human health. From a methodological point of view, we need to 
ensure model development with proper interpretations of their partial outputs in 
order to prevent undesirable effects of the models[17,18]. The two main streams of this 
discipline are the so-called “feature attribution” and “feature interaction” methods. 
The former[19-22] individually rewards input features depending on its local causal 
effect in the model output, whereas the latter examines those features with large 
second-order derivatives at the input or weight matrices of feed-forward and convolu-
tional architectures[23,24]. However, the robustness of all these approaches may be 
compromised by the presence of specific types of architecture.

DEEP LEARNING
One class of ML models broadly used in current computational cancer research is deep 
neural networks. Overall, they have succeeded over other non-linear models[25] in the 
analysis of pathologic image recognition and later patient stratification based on the 
learned models[26,27]. In brief, deep neural models work in a large number of layers 
of information that is progressively passing by from one layer to another (i.e., the 
backpropagation algorithms) to extract relevant features from the original data 
according to a non-linear model, which is associated with the selected optimisation 
problem. Their designs can encompass a wide range of algorithms from the classic 
multiple perceptron networks[28-30] and convolutional neural networks[31-36] to the 
most recently established long short-term memory (LSTM) recurrent neural networks 
(RNNs) that are put into the spotlight in the next section[37,38].

RNNs: A different and convenient design other than the more classical neural 
networks in which the information flows forward are the RNNs. These are computa-
tionally more complex models with the skill of capturing hidden behaviours other 
methods in cancer studies cannot do[39-41]. Recurrent models exhibit an intrinsic 
representation of the data that allows the exploitation of context information. 
Specifically, a recurrent network is designed to maintain information about earlier 
iterations for a period that depends only on the weights and input data at the model’s 
entrance[42]. In particular, the network’s activation layers take advantage of inputs 
that come from chains of information provided by previous iterations. This influences 
the current prediction and enables the gathering of network flops that can retain 
contextual information on a long-term scale. Thus, by following this reasoning, RNNs 
can dynamically exploit a contextual interval over the input training history[43].

LSTM: An improvement in of RNNs is the construction of LSTM networks. LSTMs 
can learn to sort the interexchange between dependencies in the predictive problems 
addressed by batches. These models have had a major impact on the biomedical 
domain, particularly in cancer research[44-48]. LSTMs have been successfully proven 
in analysis where the intrinsic technical drawbacks associated with RNNs have 
prevented a fair performance of the model[49]. There are two main optimisation 
problems that must be avoided during the training stage when applying LSTM to 
solve a problem, namely: (1) vanishing gradients; and (2) exploding gradients[50]. In 
this sense, LSTM specifically provides an inner structural amelioration concerning the 
units leveraged in the learning model[51]. However, there is an improvement in the 
LSTM network calibration that is increasingly used in biomedical research: LSTM 
bidirectional networks. In these architectures, a bidirectional recurrent neural lattice is 
applied in order to be able to separately pass by two forward and backward recurrent 
nets sharing the same output layer during the training task[51].

TL
Recycling is always a significant issue! In ML, we can also reuse a model that was 
originally envisaged for solving a different task other than the problem that we might 
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be currently facing, but both share a similar structural behaviour. This practice is 
called TL in ML. Its usage has been progressively increasing in problems whose 
architecture can consume huge amounts of time and computational resources. In these 
cases, pre-trained networks are applied as a starting learning point, which largely 
boosts the performance of new models to approach related problems. Then, TL should 
ameliorate the current model in another setting if such a model is available for 
learning features from the first problem in a general way[52,53]. Regarding its benefits 
in oncology, we can outstand its usage in large datasets of piled images to be 
recognised for patient stratification, as previously described in the following works[54-
61].

REINFORCEMENT LEARNING
Reinforcement learning (RL) is one of the latest ML extensions that ameliorates the 
global performance of learning models when making decisions. In RL, a model learns 
a given objective in an a priori fixed uncertainty by means of trial and error 
computations until a solution is obtained. Then, to guide the model, the AI algorithm 
associates rewards or penalties with the local performance of the model. The final goal 
was to maximise the amount of rewards obtained. Remarkably, the ML architecture 
provides no clues on how to find the final solution, even if it rules the reward 
conditions. Thus, the model must smooth the optimisation problem from a totally 
random scenario to a complex universe of possibilities. However, if the learning 
algorithm is launched into a sufficiently powerful computational environment, the ML 
model will be able to store thousands of trials to effectively achieve the given goal. 
Nevertheless, a major inconvenience is that the simulation environment is highly 
dependent on the problem to be computed.

To sum it up, although RL should not be taken as the definitive algorithm, it 
promises to blow up the current concept of deep learning in oncology[62-64]. An 
example with no precedents is the DeepMind algorithm very famous nowadays by 
performing alpha protein folding[16] predictions at a scale ever done before.

FEDERATED LEARNING
A simple description of federated learning (FL) could be a decentralised approach to 
ML. Thus, FL boosts and accelerates medical discoveries on partnerships with many 
contributors while protecting patient privacy. In FL, we only improve and calibrate the 
results and not the data. Thus, what FL really promises it is a new era in secured AI in 
oncology: Training, testing, or ensuring privacy that way of learning is an efficient 
method of using data from a comprehensive network of resources belonging each time 
to a node of many interconnected hospital institutions[65-68].

TOPOLOGICAL ML
Topological ML (TML) is an interaction that has been recently established between 
TDA and ML. Owing to new advances in computational algorithms, the extraction of 
complex topological features, such as persistence homology or Betti curves, has 
become progressively feasible in large datasets. In particular, TDA is commonly 
referred to as capturing the shape of the data. This method fixes their topological 
invariants as hotspot to look up relevant structural and categorical information. 
Indeed, TDA provides ideal completeness in terms of multi-scalability and global-
isation missed from the rigidness of their geometric characteristics. In that sense, the 
use of this tool has been growing in cancer research until it is considered as contex-
tually informative in the analysis of massive biomedical data[69-74]. Multiple studies 
have exploited the complementary information that emerged from different prisms to 
gain new insights into the datasets. Its association with ML has enhanced both classical 
ML methods and deep learning models[75,76].
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Figure 1 Relational overview of the artificial intelligence-based models introduced in this work. To solve any given complex problem in cancer 
research by means of machine learning models we can use many deep layers. Then, depending on the particular structures of data, we can empower the 
performance of the selected architecture, i.e., multilayer perceptron, convolutional or recurrent networks by adding learning strategies such as transfer, federated or 
topological learning. These strategies are interchangeable (double banded black arrows). As well, we can directly go directly from the selected architecture to the 
problem’s solution using reinforcement learning. AI: Artificial intelligence; MLPs: Multi-layer perceptrons; CNNs: Convolutional neural networks; RNNs: Recurrent 
neural networks.

CONCLUSION
In this work, we summarise the conclusions of some major references of AI in cancer 
research (Figure 1). Overall, we wanted to point out the rapid AI outgrowth in the 
biomedical domain and how AI has systematically become familiar to anyone in the 
domain, expert, or not. This is possibly due to recent advances in learning-oriented 
algorithms, which have enabled the transformation of data analysis to any scale and 
complexity provided a suitable environment is available. We have provided many 
examples of a varied set of learning models (Multi-layer perceptron, convolutional 
neural networks, RNNs, etc.) that have been successfully proven for related cancer 
problems such as patient stratification, image-based classification, or recording-device 
optimisation[77,78]. We have compared different approaches to solve similar 
questions, and we have introduced novel concepts such as TL, FL, or RL that prevent 
some of the most classical constraints regarding network architectures or information 
privacy on high dimensional datasets. Finally, the combination of TDA and ML has 
also been shown to be a promising discipline where to exploit extra topological 
features extracted at a higher level. Such tandem promises to contribute to the 
improvement of the AI algorithm’s performance from a totally different perspective. 
Although data-driven based AI models have the potential to change the world of 
unsupervised learning, some limitations could endanger a promising future. The three 
major issues that hamper a better optimisation and general performance in AI models 
are related to: (1) the high dependency of the model on the data scale; (2) choice of a 
proper computational environment, and (3) practical problems of time or computa-
tional cost should be assumed. Thus, the future challenges in this discipline begin by 
smoothing such obstacles as much as possible, which will ultimately end up with AI as 
the tool of reference in healthcare institutions for a much broader analysis in oncology.
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INTRODUCTION
Colorectal cancer (CRC) continuously receives public and academic attentions due to 
its high prevalence and mortality rate[1]. Understanding the genetic mechanisms 
behind CRC initiation and progression is important to the development of early 
diagnosis and new therapy for CRC and its recurrence. The concept of the adenoma-
carcinoma sequence, which refers to a sequential activation of oncogenes and 
inactivation of tumor suppressor genes, is well recognized for CRC progression[2,3]. 
The adenoma-carcinoma sequence involves genetic mutations and epigenetic 
modification of human genome in vivo, which have been believed to be caused by 
exogenous and endogenous mutagens for decades[4-6]. However, it is still not fully 
understood which exogenous mutagens induce cancers and the induction mechanisms 
behind them remain largely unknown, especially when the questions go deep to a 
defined type of cancer.

Growing evidences indicate that gut mucosal microbiota is strongly linked to CRC 
development and may serve as a primary driver to induce inflammation in the human 
colon[7-13]. High-throughput sequencing (HTS) of 16S ribosomal RNA (rRNA) gene 
fragments is widely applied to profile microbial communities and used to study the 
composition structures of gut mucosal microbiota associated with human CRC 
(Figure 1)[14-17]. Moreover, metagenome sequencing of gut mucosal microbiomes 
coupled with binning strategies and other downstream analysis are able to reveal 
metabolism pathways in potential pathogenic bacteria at lineage levels, which are 
critical to screening microbial biomarkers (e.g., taxa and gene) for CRC and 
understanding the microbe-host interactions (Figure 1)[18-20]. Emerging meta 
transcriptomic sequencing, which examines large-scale gene expressions in microbial 
communities, is able to provide comprehensive insights into microbial population 
activities in host. Based on these in silico analyses and following wet-lab validations, 
species such as Fusobacterium nucleatum, Peptostreptococcus anaerobius, pks+ Escherichia 
coli and Eubacterium rectale have been identified as pathogenic drivers responsible for 
CRC progression[9,10,12,21]. However, due to the expensive and time-consuming wet-
lab experiments, a list of CRC-associated species is on the way to be examined for the 
physiological roles in CRC progression. Instead, AI approaches can serve as efficient 
methods to detect potential roles of these microbes in microbe-host interactions and 
provide clues for wet-lab validation.

With its increasingly wide applications in our everyday life, e.g. self-driving cars, 
facial recognition, and medical diagnosis, AI becomes one of the most popular fields 
that are heavily invested and supported in a number of countries. AI is capable of 
mimicking and going beyond human capabilities. In some biological fields such as 
genomics and transcriptomics, AI is able to complete the complex tasks that are 
impossible for human to finish[22]. AI technique encompasses machine learning (ML) 
as a major branch that includes deep learning as a subset of ML[23,24]. In essence, ML 
are computing algorithms that are either supervised by training datasets or designed 
as unsupervised algorithms. They are widely applied in gut microbiome field. Here I 
review the current progresses of AI applications in detection of pathogenic drivers for 
CRC and prediction of their driving roles in CRC evolution.

TAXONOMIC PROFILING OF GUT MICROBIOMES BASED ON 16S RRNA 
GENE SEQUENCING
Classification algorithms to categorize operational taxonomic unit
To understand the roles of pathogenic bacterial species in initiating and driving CRC 
progression, the first and most important step is to identify the spectrum of 
indigenous bacterial taxonomy in human gut. Current HTS technology has developed 
sufficiently mature methods and is able to extensively characterize bacterial taxonomy 
in samples collected from diverse environments and various hosts, including human 
gut mucosal[14-20,25,26]. As a key step for taxonomic assignment, classification of 
operational taxonomic units (OTUs) from large datasets of HTS 16S rRNA sequencing 
reads employs various AI algorithms. Classical algorithms for OTU classification 
include long-sequence-fist list removal algorithm[27,28], uclust algorithm[29], random 
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Figure 1 Schematic of artificial intelligence applications in characterizing the traits of gut microbiota associated with colorectal cancer. 
OTU: Operational taxonomic unit.

forest algorithm[30], and RDP naïve Bayesian classifier algorithm[31]. Because the 
datasets are usually generated in large scales, both accuracy and computation speed 
must be considered for trade off. Long-sequence-fist list removal algorithm 
implements a super-fast heuristic to identity DNA segments with high identity 
between sequences, to avoid costly computational alignments of full sequences[27,28]. 
Uclust algorithm sorts k-mer of sequencing reads to rapidly identify sequences in 
common[29]. Random forest algorithm builds an ensemble of decision trees that are 
trained with a combination of learning models[30]. RDP naïve Bayesian classifier 
algorithm classifies based on the multinomial model in both training and testing for 
computing classification probabilities[31]. However, challenges still remain to 
accurately determine the species using 16S rRNA sequences. Errors introduced due to 
experimental limitations such as polymerase chain reaction amplification and HTS 
sequencing need to be considered. In addition, although hypervariable regions in 16S 
rRNA sequences were used for taxonomic assignment, some sequences from bacterial 
species within the same genus are highly homologous or identical, leading to 
problems for taxonomic assignment. To solve these issues, new algorithms are also 
developed. For example, Bayesian-like operational taxonomic unit examiner algorithm 
employs a grammar-based assignment strategy to deal with sequencing reads errors, 
in which unsupervised Bayesian models are built based on k-mers split from 
sequencing reads[32]. To solve homology issues of hypervariable regions in 16S rRNA, 
Gwak and Rho used a k-nearest neighbor algorithm and the species consensus 
sequence models to determine species-level taxonomy[33]. Further development of AI 
methods for OTU classification will help improve the accuracy for taxonomic 
assignment and speed for dealing with large-scale dataset.

Neighbor-joining and maximum-likelihood based phylogenetic trees
Since gut microbiome OTUs may represent novel species/strains, placing them on a 
phylogenetic tree can shed light on their taxonomic positions. The computation of 
phylogenetic likelihood for reconstruction of evolutionary tress from sequence data is 
both memory and computing consuming. Both Neighbor-Joining (NJ) and maximum-
likelihood algorithms are the most popular methods in resolving topology of OTU 
sequences[34-38]. The NJ tree inference method belongs to distance-based method and 
takes a matrix of pairwise distance between the sequences to build evolutionary tree. 
The maximum-likelihood algorithm calculates all the possible tree topologies based on 
the probability.

Principal component analysis based dimension reduction of big data
The composition structure of gut microbiome is highly complex, containing high-
dimensional information for hundreds of bacterial species and their abundances[39]. 
To apply data mining strategies on looking for critical factors that distinguish gut 
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microbiomes, large numbers of samples were usually collected from patients in 
different CRC conditions, such as various intestinal locations and CRC stages. To 
examine the differences among samples that belong to specific conditions, the high-
dimensional information from each sample need to be reduced and presented on a 
two-dimensional space. As an unsupervised algorithm, principal component analysis 
is a dimensionality reduction algorithm that transforms and compresses matrix 
consisting of high-dimensional interrelated variables to a new set of two-dimensional 
variables[40,41]. By plotting the compressed two-dimensional variables, the 
microbiome patterns of gut mucosal samples collected from different conditions can be 
evaluated.

CLINICAL MICROBIAL GENOMIC ASSEMBLY ALGORITHM
To understand gut microbiome functions, bacteria residing in gut mucosal ecosystem 
need to be isolated and cultivated in laboratory for experimental validation[42]. 
Sequencing the genomes of these bacteria can reveal their metabolism traits and guide 
downstream functional analyses. For whole genome shotgun sequencing, bacterial 
genomic DNA is fragmented into small pieces for 2 × 100 or 2 × 150 bp paired-end 
sequencing. Various de novo assemblers, including Velvet, SPAdes and SoapDeNovo, 
have been designed to assemble a large number of short sequence reads to form a set 
of contiguous sequences representing the genome[43-45]. Because the reads are short, 
they are usually generated in large quantities with a high coverage depth. To deal with 
such a large dataset, the assemblers are not designed to assemble the short reads 
directly. Instead, the reads are splitted to form a set of k-mers and then mapped 
through de Bruijn graph. Although de Bruijn graph is suggested for short read 
assembly (100-200 bp), it is not recommended to assemble very short reads (25-50 bp). 
Velvet was designed to manipulate de Bruijn graph algorithm efficiently for very short 
reads assembly[43]. Elimination of errors and resolving repeats regions were 
considered in Velvet[43]. Reconstruction of consensus sequences from k-mers based on 
de Bruijn algorithm may lead to fragmented assembly. To deal with the issues, paired 
de Bruijn graphs using read-pairs (bireads) was designed. Inspired by paired de Bruijn 
graphs, SPAdes uses paired assembly graph algorithm by introducing k-bimer 
adjustment that reveals exact distances for the adjusted k-bimers[44]. SOAPdevo2, as 
the version 2 of SOAPdenovo, also utilizes de Bruijn graph algorithm but is designed 
to reduce memory consumption in de Bruijn graph constructions[45]. The algorithm 
supports error correction for long k-mers to improve accuracy and sensitivity during 
the assembly process. Moreover, the program benefits the assembly of repeat regions 
with high coverage depth and regions with low coverage depth via application of a k-
mer size selection strategy. Therefore, these assembly algorithms have their specific 
advantages and are widely utilized in practical applications.

METAGENOMICS ASSEMBLY AND BINNING
Gut mucosal microbiomes comprise hundreds of bacterial species, of which some are 
uncultivable in laboratory conditions[46,47]. Sequencing these mixed bacterial 
populations facilitates discovery of the genomic traits of these uncultivable bacteria. 
Although assembling the reads and reconstructing genes from these complex mixtures 
are challenging, metagenomic assembly algorithms and downstream binning 
strategies are under developing progresses to solve the technique problems.

Metagenomic assembly algorithms
Genome assembly for sequencing reads from a single species assumes that all the 
reads are sequenced from the same genomic DNA and contaminations can be screened 
out during quality control process[48]. The genome size of single species can be 
estimated based on the sizes of close phylogenetic neighbors and k-mer counting, and 
the required sequencing depth can be calculated according to the genome size. During 
assembly process, de Bruijn algorithm is designed to simply consider nodes or edges 
with low coverage depth as contamination and remove them[48,49]. In the same way, 
nodes with high coverage depth are considered by the algorithm as repetitive regions 
in the genome sequence. In contrast, metagenomic assembly cannot make such a 
simple assumption to decide nodes with low and high coverage depths to be from 
contamination sequences or repetitive regions. This is because metagenomic 
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sequencing reads are generated from mixed bacterial populations, in which certain 
species grow better than the rest and show high abundances in the mixed 
communities, whereas rare species show low abundances. Therefore, the coverage 
depths of heterogeneous reads cannot facilitate the assumption of their origins.

Currently, the most popular assemblers for metagenomics assembly include 
MEGAHIT and metaSPAdes[50,51]. MEGAHIT utilizes a fast parallel algorithm for 
succinct de Bruijn graphs to assemble k-mers from metagenomics reads[50]. To avoid 
k-mer singletons caused by sequencing error, MEGAHIT sorts and counts all (k + 1)-
mers splitted from the sequencing reads and only counts (k + 1)-mers with > 2 
occurrences[50]. In addition, MEGAHIT utilizes a mercy-kmers strategy to recover 
low-depth edges for the assembly of rare species[50]. MetaSPAdes uses de Bruijn 
graph of all reads using SPAdes, transforms it into the assembly graph using various 
simplification procedures[51]. The algorithm works across a wide range of coverage 
depths.

Binning strategy
Since assembled metagenomic scaffolds/contigs are derived from each species and 
show sequence composition characteristics such as GC content and coverage depth, 
various binning strategies are designed for the reconstruction of metagenome-
assembled genome (MAG). MAGs represent genomes from monophyletic lineages and 
can be used to analyze taxonomic and metabolic potentials. A number of programs 
have been designed for MAG binning, including MetaBat2, Maxbin2, CONCOCT, 
MyCC, and BinSanity[52-56]. MetaBat2 is a user-friendly program that does not need 
to tune the parameters for its sensitivity and specificity[52]. It utilizes a new adaptive 
binning algorithm to tune these parameters automatically, and uses a graph based 
structure for contig clustering. MetaBat2 is optimized for extensive low-level 
computation and works very efficiently for very large datasets. MaxBin 2.0 employs an 
Expectation-Maximization algorithm to recover draft genomes from metagenomes
[53]. It measures the tetranucleotide frequencies of the contigs and their coverages and 
then classifies the contigs into each bins. CONCOCT uses Gaussian mixture models to 
cluster contigs into bins[54]. Sequence composition and coverage are considered for 
assigning contigs to bins. A variational Bayesian approach is used to determine the 
number of clusters. MyCC works in a way using metagenomics signatures, 
contig/scaffold coverage depths, and Barnes-Hut-SNE-based dimension reduction
[55]. MyCC predicts genes in metagenomic contigs using Prodigal and then identifies 
single-copy marker genes using Hidden Markov Model trained FetchMG along with 
UCLUST. The reduced genomic signatures via Barnes-Hut-SNE algorithm are then 
clustered using affinity propagation for binning. Similarly, BinSanity utilizes affinity 
propagation algorithm to generate bins based on coverage depth, tetranucleotide 
frequency, and GC content[56]. Although these bin extraction algorithms are designed 
based on their own specific principles, the resulted bins from the same dataset can be 
combined, evaluated, modified, and improved to generate high-quality final set of bins 
using metaWRAP[57].

Quality checking and taxonomic inference for MAGs
Quality evaluation of the assembled MAGs determines the reliability of downstream 
annotation analyses. Because the concept of metagenome sequencing is quite new, not 
many programs have been developed with matured principles to determine MAG 
qualities. Currently, the most popular program is CheckM, which uses a set of lineage-
specific marker genes within a reference genome tree[58]. By this way, CheckM 
estimates the completeness and contamination of the assembled MAGs and 
determines which MAGs are useful for downstream analyses. To determine the set of 
marker genes, CheckM reconstructed a genome tree based on 5656 reference genomes 
and then inferred the marker gene set using HMMER based on hidden Markov models 
and FastTree based on WAG and GAMMA models. To evaluate a MAG, the marker 
gene set is identified in the MAG using hidden Markov models. The identified 
homologous genes of the marker genes are further aligned, concatenated, and then 
placed into the reference genome tree using pplacer for taxonomic inference and 
quality checking[59]. Another evaluation method for the assembled MAG is 
MetaQUAST, which aligns contig sequences of MAG to a close reference genome[60]. 
This program is able to detect potential taxonomic position of MAG by BLASTN 
searches against 16S rRNA sequences from the SILVA database[61,62]. Then it 
automatically downloads close reference genomes from the on-line NCBI database and 
aligns them against MAG for evaluation.
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Different from the taxonomic assignment based on 16S rRNA sequencing, 
metagenome sequencing and assembly contain much more information than 16S 
rRNA sequences. Data mining strategies to obtain taxonomic information from large-
scale metagenome assembly need to be considered and designed. As discussed above, 
both CheckM and MetaQUAST provide lineage hints for taxonomic assignment of 
MAGs[58,60]. Additionally, PhyloFlash maps sequencing reads to small-subunit rRNA 
(SSU rRNA) database for taxonomic assignment and can be performed before the 
metagenomes are assembled[63]. FOCUS uses non-negative least squares algorithm to 
compare k-mers between references genomes and MAGs, and determine taxonomic 
position for contigs binned in MAGs[64].

PREDICTION OF MICROBE-HOST INTERACTIONS
Gut microbes living in intestine mucosal, including commensals and pathogens, 
regulate homeostasis of host immunity[65]. Their activities are able to alter host 
signaling and immunity by interacting with the host proteins. Deciphering how 
microbe and host interact via protein-protein interactions and through which microbial 
and host proteins they work are important to development of novel strategies for 
prevention of CRC. Since wet-lab experiments are time-consuming and laborious, 
experimentally determining the microbe-host interactions is still challenging. On the 
other hand, genome-wide computational methods can efficiently provide hints to 
enhance our understanding of this challenging task[66-71]. One category of these 
computational methods are AI based methods for determining protein-protein 
interactions (PPI) between microbes and host[69,70]. Currently, AI based methods for 
PPI predictions are still new and only a few of them have been developed. Most of 
them are supervised methods, which utilizes well-recognized datasets as standards to 
train AI models and determine parameters. These training datasets are either collected 
from high-throughput experiments or obtained from literatures by text mining. 
Supervised PPI methods utilize various AI models such as logistic regression, random 
forests, support vector machine, artificial neural networks, and K-nearest neighbors
[72-76]. However, these AI-based PPI methods are designed for the PPI relationship 
between specific pathogen and human such as human-Bacillus anthracis, human-
Yersinia pestis and human-Fusobacterium nucleatum[67,77-79]. Because high abundances 
of F. nucleatum are associated with CRC patients and especially associated with 
specific CRC stages, F. nucleatum is proposed for its causal role in CRC development. 
Computational scanning of F. nucleatum genome and human proteins identified 
FusoSecretome proteins and their targets in the host network[67]. PPI-coupled 
network analysis identified that F. nucleatum perturbed host cellular pathways 
including immune and infection response, homeostasis, cytoskeleton organization, 
and gene expression regulation[67]. However, AI-based PPI studies for human-
microbiome interactions still need more efforts due to the complex mixed-population 
of species within gut microbiome.

CONCLUSION
Rapid development of high-throughput sequencing and high-throughput screening 
experiments generate large-scale datasets and largely improve our understanding of 
functional roles of gut microbiomes in CRC evolution. Using AI-based analyses, 
potential pathogenic species from gut microbiome have been identified to play critical 
roles in driving CRC. However, there are still limitations in current methods and 
challenges remain for them to be improved. These include but not limited to the 
questions as follows. How to accurately identify bacterial species/strains that reside in 
gut mucosal? How to use metagenomics sequencing data to assemble complete or 
nearly complete MAGs for bacterial single species? How to build AI models to 
interpret human-microbiome interactions under different environmental conditions? 
And many more challenges remain to be solved. I believe that continuous 
improvement of AI technology in CRC diagnosis as well as many more diseases will 
facilitate answering the above questions and help develop clinical treatment and 
prevention of CRC in advance.
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