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Abstract
Cancer is a major public health problem worldwide. Current predictions suggest 
that 13 million people will die each year from cancer by 2030. Thus, new ideas are 
urgently needed to change paradigms in the global fight against cancer. Over the 
last decades, artificial intelligence (AI) emerged in the field of cancer research as a 
new and promising discipline. Although emerging, a great potential is 
appreciated in AI to improve cancer diagnosis and prognosis, as well as to 
identify relevant therapeutics in the current era of personalized medicine. 
Developing pipelines connecting patient-generated health data easily translatable 
into clinical practice to assist clinicians in decision making represents a 
challenging but fascinating task. AI algorithms are mainly fueled by multi omics 
data which, in the case of cancer research, have been largely derived from 
international cancer programs, including The Cancer Genome Atlas (TCGA). 
Here, I briefly review some examples of supervised and unsupervised big data 
derived from TCGA programs and comment on how AI algorithms have been 
applied to improve the management of patients with cancer. In this context, 
Artificial Intelligence in Cancer journal was specifically launched to promote the 
development of this discipline, by serving as a forum to publish high-quality basic 
and clinical research articles in various fields of AI in oncology.

Key words: Omics; Big data; Artificial intelligence; Deep learning; Precision medicine
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Core tip: Artificial intelligence (AI) emerged in the field of cancer research as a new and 
promising discipline to improve the management of patients with cancer, including more 
accurate and fastest diagnosis to facilitate the therapeutic decision. AI models are mainly 
fueled by multi omics data. Integrating omics data and clinical data of patients represents a 
challenging but fascinating task.
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INTRODUCTION
Cancer is a public health problem worldwide[1]. Predictions suggest that 13 million 
people will die each year from cancer by 2030[2]. Tumor heterogeneity represents an 
important obstacle to establish efficient therapeutic strategies. Over the last decades, 
large-scale pan-genomic studies allowed to address tumor heterogeneity in multiple 
cancers and to provide a landscape of alterations occurring at multiple levels in tumor 
cells (e.g. at DNA, RNA and protein levels). Thus, international consortia have been 
initiated, including The Cancer Genome Atlas (TCGA) and its landmark cancer 
genomics program, which molecularly characterized over 84000 cases from 67 primary 
sites so far (https://portal.gdc.cancer.gov). Accordingly, TCGA and other cancer 
programs generated over 2.5 petabytes of genomic, epigenomic, transcriptomic, and 
proteomic data. This explosive growth of data represented a major driving force to 
develop innovative artificial intelligence (AI) methods, including deep learning 
algorithms, capable of analyzing large and multifaceted datasets in an integrated and 
comprehensive way[3]. By using algorithms that imitate the thinking process, deep 
learning allows computational models that are composed of multiple processing layers 
to learn representations of data with multiple levels of abstraction and to discover 
intricate structure in large data sets[4]. These automated methods, popularized in the 
society by image or speech recognition algorithms, are now moving into the field of 
health, including cancer research. Indeed, innovative algorithms are developed to 
extract meaningful genomic patterns and to translate this conceptual basic information 
into clinical applications, notably to improve cancer diagnosis, prognosis prediction 
and treatment efficacy (Figure 1). Here, I briefly review some examples of supervised 
and unsupervised big data derived from TCGA programs and comment on how AI 
algorithms have been applied to improve the management of patients with cancer.

BIG DATA FROM TCGA
TCGA programs represented a major advance in the field of cancer research, allowing 
both supervised analysis of specific cancers and unsupervised analysis of pan-cancer 
datasets. Thus, supervised comparative and comprehensive analyses that 
distinguished clinically relevant molecular subtypes were reported in several cancers, 
including gastrointestinal (GI) cancers[5], gynecologic and breast cancers[6], pancreatic[7] 
or liver[8] cancers. Unsupervised analyses have been also performed using pan-cancer 
datasets. By analyzing mutation profiles, copy-number changes, gene fusions, mRNA 
expression, and DNA methylation in 9125 tumors profiled by TCGA, a detailed 
landscape of oncogenic pathway alterations was notably charted in 33 cancer types. 
Tumors were stratified into 64 subtypes, and patterns of co-occurrence and mutual 
exclusivity alterations were identified using SELECT, a method that infers conditional 
selection dependencies between alterations from occurrence patterns[9]. Importantly, 
using dedicated knowledge base of clinically actionable alterations, it was shown that 
57% of tumors had at least one alteration potentially targetable and 30% of tumors had 
multiple targetable alterations, indicating opportunities for combination therapy[9]. 
This type of information will be crucial in the current area of cancer precision medicine 
to develop effective combination therapies that address or prevent resistance to 
initially successful single agent therapies. Pan-cancer supervised analyses were also 
performed to highlight frequent alterations in key signaling pathways involved in 
cancer progression. transforming growth factor beta (TGFβ) is a pleiotropic cytokine 
that harbors a functional duality in cancer, i.e. exhibiting tumor suppressive features at 
early stages but switching toward pro-metastatic activities at late tumor stages[10]. 
Interestingly, genetic alterations in TGFβ signaling, affecting mostly metastatic-
associated genes, were observed in 39% of pan-cancer TCGA cases, and were 
particularly enriched in GI cancers[11]. Specific algorithms have been also used to 
characterize the immune tumor microenvironment across 33 cancer types analyzed by 
TCGA. By integrating major immunogenomics methods, including analysis of 
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Figure 1  Artificial intelligence and omics to improve the management of patients with cancer. Actual artificial intelligence algorithms are mainly 
fueled with clinical data (e.g. clinical records, computed tomography scan, magnetic resonance imaging) and omics data, as exemplified by those from The Cancer 
Genome Atlas consortium (e.g. genetic, epigenetic, transcriptomic, proteomic, metabolomics profiles). They pave the way for future models that will integrate 
personalized clinical information related to lifestyle of each patient, including exposome and microbiome, in order to improve cancer diagnosis, prognosis prediction 
and treatment efficacy. AI: Artificial intelligence; TCGA: The Cancer Genome Atlas.

genomic profiles, hematoxylin and eosin stained tumor sections and deconvolution 
analysis of mRNA sequencing (mRNA-seq) data, six immune subtypes were 
characterized, spanning multiple tumor types, with potential therapeutic and 
prognostic implications for cancer management[12]. Interestingly, one so-called TGFβ 
dominant subtype, displayed the highest TGFβ signature and a high lymphocytic 
infiltrate. This observation is particularly relevant with the emergence of effective 
immunotherapies, including the recent development of an innovative immuno-
therapeutic that simultaneously blocks the PD-L1 checkpoint protein and the TGFβ 
signaling pathway[13].

From a basic point of view, several efforts have been made also to integrate multi 
omics data and to provide a better understanding of tumor biology. As an example, a 
deep learning-based predictive model using deep denoising auto-encoder and multi-
layer perceptron was developed to quantitatively capture how genetic and epigenetic 
alterations correlate with directionality of gene expression in liver cancer[14]. Similarly, 
an innovative one-class logistic regression machine-learning algorithm was used to 
identify stemness features associated with oncogenic dedifferentiation[15]. Interestingly, 
an unanticipated correlation of cancer stemness with immune checkpoint expression 
and infiltrating immune cells was highlighted in the tumor microenvironment[15]. The 
analysis of gene regulatory networks from available omics data is a challenging task 
given that biological data is prone to different kinds of noise and ambiguity. Soft 
computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, 
have been found to be helpful in providing low-cost, acceptable solutions in the 
presence of various types of uncertainties[16].

AI AND OMICS FOR CANCER DIAGNOSIS AND PROGNOSIS
Cancer diagnosis using deep learning has been recently reviewed[17]. Soft computing 
techniques also provided solutions for cancer, regarding diagnosis, prediction, 
inference and classification[18,19,20]. The approaches are mainly based on segmentation 
processes using convolutional neural networks (CNN) in clinical images notably 
acquired from computed tomography (CT) and magnetic resonance imaging (MRI). AI 
allows integrating quantitative, multiparametric and functional imaging data to 
automatically recognize complex patterns and to provide quantitative, rather than 
qualitative, assessments of radiographic characteristics[21]. A classification of skin 
lesions using a single CNN, trained end-to-end from images directly, using only pixels 
and disease labels as inputs, nicely illustrates the interest and the power of AI 
algorithms[22]. Indeed, a CNN trained using a dataset of 129450 clinical images (2032 
different cases) was capable of classifying skin lesions with a level of competence 
comparable to dermatologists[22]. By helping clinicians in characterizing early benign 
and/or malignant lesions, AI recently emerged as the next step towards precision 
pathology. Screening programs for early detection of colorectal cancer (CRC) have 
been shown to reduce mortality in multiple studies. Thus, a machine learning-based 
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algorithm (MeScore) was trained to predict the occurrence of CRC and to identify a 
group of individuals at a high risk for CRC. Remarkably, MeScore can help identifying 
individuals in the population who would benefit most from CRC screening, including 
those with no clinical signs or symptoms of CRC[23]. In another study, a total of 1970 
whole slide images of 731 cases of nasopharyngeal carcinoma were divided into 
training, validation and testing sets. A CNN model was trained to classify images into 
three categories: Chronic nasopharyngeal inflammation, lymphoid hyperplasia and 
nasopharyngeal carcinoma. Remarkably, the model equals the senior pathologist when 
considered in terms of accuracy, specificity, sensitivity, area under the curve and 
consistency[24]. Thus, this couple of examples suggests that deep learning algorithms 
could potentially assist pathologists in clinical practice by providing a second opinion 
and thus increasing consistency on the diagnosis.

Gene expression profiling has been extensively used to derive prognostic signatures 
in multiple types of cancers. However, these signatures are usually derived from a 
single type of omics data (e.g. mRNA, miRNA, lncRNA profiling). Integration of 
multifaceted datasets with different levels of information appears relevant to better 
reflect the biology of a specific tumor. Accordingly, integrated genome-wide 
epigenetic and multi omics analyses using AI entered in the era of precision medicine 
with the burst of data generated over the last decades[25]. Thus, a deep learning multi 
omics model integrating RNA-seq, miRNA-seq, and methylation data from TCGA, 
was reported to robustly predict survival of patients with liver cancer[26]. A more 
aggressive subtype was associated with frequent TP53 inactivation mutations, higher 
expression of stemness markers, and activated WNT and AKT signaling pathways[26]. 
Pathway-based biomarker identification with crosstalk analysis has been also reported 
in liver cancer for efficiently differentiating patients into moderate or aggressive risk 
subtypes with significant differences in terms of survival[27]. Besides, deep-learning 
algorithms based on whole slide histological images were reported to predict 
prognosis of patients with liver cancer. By using a training set made of 390 slides from 
206 tumors and a validating set made of 342 slides from 328 patients, a model was 
built for predicting the survival of patients after surgical resection of hepatocellular 
carcinoma[28]. Notably, the study highlights the importance of pathologist/machine 
interactions for the construction of deep-learning algorithms[28]. By processing 5202 
digital pathology images from 13 cancer types, a deep-learning model established 
tumor-infiltrating lymphocytes maps correlated with molecular data, tumor subtypes, 
immune profiles and patient survival[29]. The application of deep learning in cancer 
prognosis has been shown to be equivalent or better than current approaches, as 
recently reviewed[30].

AI AND OMICS FOR CANCER TREATMENT
Deep learning-based analysis of multi omics data finds its natural place for the 
development of personalized therapies in cancer, notably by linking molecular 
actionable alterations with specific drugs already developed for these alterations or 
through a drug repositioning process (also referred to as drug repurposing). Deep 
learning models also enable large scale virtual screening of compound databases for 
predictive activity profiling against targets important for multiple cancers. Such large 
scale screening facilitate the quick and cost-effective repurposing of existing drugs[31]. 
By using a pharmacogenomics database of 1001 cancer cell lines, deep neural networks 
were trained for predicting drug response and their performance was assessed on 
multiple clinical cohorts[32]. By integrating RNA-seq, copy number, and mutations from 
33 different cancer types (TCGA PanCanAtlas project), a deep learning model was 
shown to successfully predict RAS activation across cancer types and to identify 
phenocopying variants (e.g. NF1 loss). The model represents a useful tool to predict 
response to MEK inhibitors and identify the best responders[33]. Specific algorithms for 
drug repurposing have been also developed, based notably on linking gene expression 
profiles of tumors with gene signatures of bioactive molecules. Thus, the L1000 
Connectivity Map is a library of gene expression signatures established in cell lines 
after pharmacologic or genetic (knockdown or over-expression) perturbation 
(approximately 20000 compounds, 4500 knockdowns, and 3000 over-expressions)[34]. 
This approach has been successfully used to propose epigenetic modulators (e.g. 
HDAC inhibitors) as relevant innovative therapeutics to target several hallmarks of 
liver cancer[35]. Using the same approach, anthelminthic drugs were also identified as 
potential therapeutic candidates in liver cancer[36]. Thus, combined with a robust 
stratification of human tumors, AI would help predicting response to individual 
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therapy. Although translation between research and clinical practice requires to fully 
addressing the question of the reproducibility and interpretability of the developed 
algorithms, there is no doubt that AI will positively impact clinical decision-making, 
providing a more personalized management of patients[37]. Another aspect that needs 
to be fully appraised is the regulatory issue for AI technologies, including clinically 
approved algorithms (Software as Medical Devices, SaMD), e.g. in terms of personal 
data sharing[38].

CONCLUSION
Over the last decades, cancer genomic programs generated a large amount of multi 
omics data. This information fueled the development of innovative algorithms to 
extract meaningful information possibly translatable into clinical practices. AI 
emerged only recently in the field of cancer research. However, specific studies 
demonstrated already the possibility of AI to improve diagnosis and prognosis of 
patients with cancer and to develop innovative targeted therapeutics. Although, the 
actual algorithms are fueled mainly with omics data and clinical images (e.g. genetic, 
epigenetic, transcriptomic, proteomic, metabolomics profiles, CT scan, MRI), they pave 
the way for future models that will also integrate personalized clinical information 
related to lifestyle of each patient, including environmental exposure (exposome) or 
microbiome composition that may influence response to treatment[39](Figure 1). As a 
promising future direction, research on exposome, genetic factors, microbiome, 
immunity, and molecular tissue biomarkers is needed using AI and omics 
technologies. This field referred to as molecular pathological epidemiology (MPE) 
aims at investigating those factors in relation to molecular pathologies and clinical 
outcomes by means of computational analyses. Thus, MPE represents a promising area 
of investigation to better understand how a particular exposure influences the 
carcinogenic and pathologic process[40,41].

In this context, Artificial Intelligence in Cancer journal was specifically launched to 
promote the development of this discipline, by serving as a forum to publish high-
quality basic and clinical research articles in various fields of AI in oncology.
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and higher mortality risk. This susceptibility may be due to the 
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Core tip: Management of cancer patients during the novel 2019 corona virus disease 
pandemic is challenging. The need of surgery, chemotherapy or radiation therapy places 
the patients at risk of nosocomial transmission. The myelosuppressive effect of 
chemotherapy and radiation may increase the morbidity and mortality associated with the 
coronavirus. Therefore, cancer treatment should be stratified based on the benefits and risk 
of intervention. Avoiding unnecessary procedures, social distancing, hand hygiene and 
mask wear could reduce the associated disease burden.
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BACKGROUND
The novel 2019 corona virus disease (COVID-19) also called severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic and more than 
2.5 million people have been affected globally with over 100000 deaths[1]. The corona 
virus is highly contagious and transmitted from person to person through direct 
contact of respiratory secretions from coughing or sneezing[2]. The disease has caused 
an escalation in hospitalization with growing need for hospital beds and intensive care 
unit for severe cases. During this period, the oncological practice has faced enormous 
challenges.

Recent evidence has shown that a significant proportion of cancer patients affected 
by the corona virus present with severe respiratory pneumonia-like illness with need 
for subsequent intensive care unit (ICU) ventilation along with higher mortality risk[3]. 
Study by Liang et al[4] revealed that cancer patients with corona virus progress more 
rapidly to severe disease than non-cancer patients. This susceptibility may be due to 
the immunosuppressive state of patients with malignancy confounded by 
chemotherapy, immunotherapy and targeted therapy[1]. Most cancers centers are now 
weighing the benefit of cancer treatment and risk of exposure to the corona virus.

Many solid tumors (lung cancer, pancreatic cancer) as well as hematological 
malignancies (leukemias) may require prompt diagnosis and treatment based on the 
disease aggression and progression[5]. However, low risk early-stage breast cancer, 
prostate cancer and cervical cancer may be amenable to some delay in treatment. The 
major risks to cancer patients remain the availability of hospital beds, changes of 
resource allocation and the lack of an appropriate guideline for cancer care during a 
pandemic[6]. Even if cancer treatment is to continue, the risk of nosocomial infection 
remains a concern during the pandemic.

Currently, many oncological societies and cancer networks have assessed the risk of 
COVID-19 infection for cancer patients and formulated practice recommendation for 
oncological care including neoadjuvant therapy, surgery, adjuvant therapy, 
immunotherapy, targeted therapy and palliative care. Several soft tissue malignancies 
have now been stratified according to priority or risk level predicting the need for 
either urgent intervention, delayed intervention or deferment of intervention after the 
pandemic.

The objective of this review is to synthesize the available literature and provide 
recommendations on the management of various soft tissue and hematological 
malignancies. The review will also assess the management guidelines for hospitalized 
cancer patients; cancer patients in the outpatient setting as well as available modalities 
for follow-up.

LITERATURE SEARCH
A comprehensive literature search of COVID-19 was conducted using the PubMed 
database from December 2019 until the May 11, 2020. The keyword used was 
“managing cancer patients during the COVID-19 pandemic”. A total of 71 articles 
were retrieved after using free full-text filter in the PubMed database. Both the English 
and French literatures were included for analysis. Duplicated articles on COVID-19 
during the search were also excluded. All articles published in the Chinese language 
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were also excluded from the study. The title, abstract and full text of the retrieved 
publication were screened for eligibility. A snapshot of the search in PubMed data was 
presented in Figure 1.

ELIGIBILITY
About 37 texts met the desired objective and were included in the review for analysis. 
All soft tissue malignancies with proposed management recommendation on 
neoadjuvant therapy, surgery, adjuvant therapy, immunotherapy, targeted therapy 
and palliative care were included in the study. All commentaries, editorials, reviews, 
group consensus and original article with recommendation on cancer management 
during the COVID-19 pandemic were considered for inclusion. All accepted articles, 
with published online proof reviewing recommendation of cancer management were 
included for analysis. A PRISMA flow chart was used to summarize the selection 
process (Figure 2).

RESULT
Out of the 35 papers retrieved, 34 articles were published in the English language with 
only one in French. The result included review recommendations and guidelines, 
commentaries, editorials, letters and correspondence. The selected articles provided 
various recommendations for cancer care during this current corona virus crisis 
assessing the benefit of treatment against the risk of contracting the virus.

The qualitative analysis included articles with data on COVID-19 epidemiology, 
recommendations for hospitalized cancer patients, outpatient settings and oncological 
follow-up during the COVID-19 pandemic. There was also specific recommendation 
for specific types of malignancy during the pandemic including hematological cancers, 
sarcoma, breast cancer, urological cancers, thoracic cancers, neuro-oncology, head and 
neck cancers, gastrointestinal cancers and colorectal cancer (Figure 3). A qualitative 
analysis of the various ‘malignancies is synthesized below.

EVIDENCE SYNTHESIS AND DISCUSSION
Managing cancer patients during the COVID-19 pandemic
Due to the immunosuppressive state of cancer patients most oncological practices are 
now informing all cancer patients about signs and symptoms of COVID-19 (fever, 
cough, dyspnea, fatigue)[7] and advocating strong adherence to social distancing 
principle[1,5]. Report from a Collaborative Cancer Network in the United States by Ueda 
et al[8] have demanded that all cancer patients are triaged for respiratory symptoms as 
part of a mandatory practice for this current outbreak. A systematic review by 
Moujaess et al[9] found that cancer patients may present with atypical clinical and 
radiological features that could be confused for SARS-CoV-2 infection causing a 
diagnostic dilemma.

Management in outpatient settings: An International Collaborative Group involving 
several cancer centers around the world have proposed that clinic visits should be 
restricted, and universal precaution is taken[6]. According to Al-Shamsi et al[6], clinic 
attendants should be limited as much as possible because the coronavirus could be 
asymptomatic in up to 33.3% of patients. To minimize occupational hazard, health care 
workers wear personal protection equipment (PPE) and maintain health protocols to 
ensure infection control and avoid nosocomial transmission[1]. Shankar et al[1] and 
Motlagh et al[2] recommended that patients with cancer could be selectively treated 
provided there is a guideline for risk stratification to prevent unnecessary infection 
from COVID-19 in hospital settings[5]. According to Al-Shamsi et al[6] and Gosain et al[7], 
patients on intravenous chemotherapy can be switched to appropriate oral 
chemotherapy if feasible. Decision should be considered on a case by case basis. Home 
drawn blood service is now being recommended to monitor side effect from 
chemotherapy[6]. For symptom management and chemotherapy supervision, 
telemedicine is being strongly advocated. The Gustave Roussy cancer center in France 
is now utilizing telemedicine for monitoring and organizing referrals for cancer 
patients with COVID-19[10]. According to Scotté et al[10] telemedicine is also being used 
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Figure 1  Search strategy using PubMed database for free full text.

Figure 2  PRISMA flow chart outlining the selection of articles for qualitative analysis. COVID-19: Novel 2019 corona virus disease.

by other institution in France to monitor cancer patients on oral therapy. Mei et al[11] 
reported that the Cancer Center of Wuhan in China have now attended to more than 
80000 cancer patients using the telemedicine platform. Nonetheless, the limitation of 
telemedicine remains the inability to perform a physical examination. Patients 
receiving curative radiation therapy are encouraged to continue[3]. Patients who have a 
known contact can continue treatment in a separate compartment.
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Figure 3  Number of retrieved recommendations on each malignancy during the novel 2019 corona virus disease pandemic. COVID-19: 
Novel 2019 corona virus disease.

Hospitalized patients with cancer: The management of hospitalized patients during 
the pandemic is complicated. Strict safety measures should be ensured by all health 
care provider to avoid nosocomial transmission[11]. The number of ward staff should be 
reduced as much as possible[12]. Patients that are symptomatic should be isolated and 
tested. If results are positive for SARS-CoV-2 infection, the patient should be moved to 
the COVID-19 disease treatment unit according to the safety protocols. According to 
Motlagh et al[2] cancer patients are at higher risk vascular thrombosis therefore, 
mobilizing the patients is crucial during these isolations. Delaying surgery and 
chemotherapy in these setting is reasonable due to the high demand of ICU beds and 
ventilation[3,4]. Conversely, an editorial by Peng et al[13] stated that the cessation or 
continuation of chemotherapy in the setting of COVID-19 infection remains debatable. 
This was based on reports that cancer patients coinfected with human 
immunodeficiency virus and hepatitis B did not experience viral reactivation during 
chemotherapy. A multi-center study by Tan et al[12] recommended risk stratification for 
cancer patients requiring surgery as either emergency or selective operation. Rapidly 
progressing and compressive tumors with imminent risk of rupture and hemorrhage 
should be operated as an emergency[12]. According to Gosain et al[7] patient who have 
received neoadjuvant therapy awaiting tumor resection can be addressed on a 
selective basis considering the hospital capacity, cancer stage and the burden of the 
prevailing coronavirus pandemic. Intervention for cancer can be avoided for patients 
that are clinically stable or those requiring palliative care during the peak of the virus 
epidemic.

Cancer in older patients: Data have shown that older cancer patients have higher risk 
of respiratory complications and death following a viral infection therefore increase 
barrier methods, mask wearing, and hand hygiene should be provided for this 
population[3,4,14]. The report by Falandry et al[14] from France was inconclusive whether 
older cancer with COVID-19 infection should be offer resuscitation when needed 
considering the high demand of ICU beds and ventilation. This calls into question 
ethical issues that differs across center based on the disease burden and available 
resources for treatment. However, it is being advocated that older cancer patients 
should not become systemically excluded from oncological care with the theory of 
their impending risk of severe disease when infected with the coronavirus[3,14].

Specific recommendation for hematological malignancies: A multi-center review in 
Brazil by Perini et al[15] provided recommended management algorithm for patients 
with lymphoid malignancies during the coronavirus outbreak. All lymphoid 
malignancies in remission are advised to be postponed with virtual follow-up and 
counseling. Patients with aggressive non-Hodgkin lymphoma like Burkitt’s 
lymphoma, plasmoblastic lymphoma, lymphoblastic lymphoma, mantle cell 
lymphoma and peripheral T-cell lymphoma are recommended immediate treatment 
using the appropriate regimen[15]. Granulocyte stimulating agents (G-CSF) should be 
considered strongly to avoid febrile neutropenia during the COVID-19 pandemic. 
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Nonetheless, patients with indolent lymphoma like chronic lymphocytic lymphoma 
and follicular lymphoma can benefit from watchful waiting or a less intense regimen 
including oral chemotherapies can be considered. Patients with relapse and refractory 
diseases can be managed on an outpatient basis. Treatment should not be delayed for 
patients with Hodgkin lymphoma, but less intensive chemotherapeutic regimen 
should be initiated.

Specific recommendation for sarcoma: The French Sarcoma in collaboration with the 
European Society for Medical Oncology (ESMO) by Penel et al[16] proposed several 
management recommendations for sarcoma patients during the COVID-19 crisis. 
Operable patients with soft tissue sarcoma, visceral sarcoma and bone sarcoma 
without symptoms of coronavirus infection should not have their surgery delayed[16]. 
Patients with Ewing’s sarcoma, osteosarcoma, alveolar sarcoma and embryonal 
rhabdomyosarcoma without symptoms of COVID-19 infection should proceed with 
standard treatment including neoadjuvant chemotherapy, surgery and adjuvant 
chemotherapy[16]. Patients with advanced soft tissue sarcoma should receive standard 
chemotherapy along with G-CSF to avoid neutropenia.

Specific recommendation for breast cancer: Based on the challenges of cancer care 
during the recent coronavirus outbreak, the Commission on Cancer, the National 
Accreditation Program for Breast Centers, American Society of Breast Surgeons, the 
National Comprehensive Care Net-work, and the American College of Radiology have 
stratified patients with breast cancer into priority categories[17]. These recommenda-
tions were based on individual patient’s disease, comorbidities and treatment benefits.

Priority A category are patients that are clinically unstable with life threatening 
disease like breast abscess and sepsis or expanding breast hematoma. Immediate 
operative drainage is warranted for breast abscess; breast tumor hematoma should be 
evacuated with control of the bleeder.

Patients priority B category do not have life threatening conditions, but their 
surgery should not be deferred after the pandemic. A short delay of 6-12 wk may not 
adversely affect treatment outcome in this group. Patients in this group include 
hormone receptor positive patients, mastectomy flap ischemia, patients completing 
neoadjuvant therapy and suspected local recurrences[17].

Individuals in priority C category are patients whose intervention can be deferred 
indefinitely till after the epidemic without adversely affecting treatment outcome. 
These include hormone receptor +/- ductal carcinoma in situ, clinical stage I breast 
cancers, benign breast lesions, prophylactic mastectomies and discordant benign 
biopsies[17].

Specific recommendation for urological cancers: The Cancer Committee of the French 
Association of Urology (CCFAU) published a report by Méjean et al[18] with formulated 
guidelines for the management of urological malignancies during the COVID-19 
pandemic.

Localized renal cancer along with renal cyst Bosniak I and II should be postponed 
and undergo quarterly surveillance. Patients with locally advanced renal cancer or 
symptomatic tumor with pain and hematuria should have their surgery prioritized. 
Good prognosis metastatic renal cancer can benefit from immunotherapy with virtual 
follow-up from home. Poor prognosis metastatic renal cancer can receive 
immunotherapy, but the benefit should be balanced against the risk of toxicity[18]. 
Otherwise, palliative care is a reasonable alternative.

According the CCFAU guideline, transurethral resection for low-grade, low 
volume, non-muscle invasive bladder tumor without out evidence of carcinoma in situ 
from urine cytology can be delayed for 3 mo. Patients with muscle invasive bladder 
cancer or non-muscle invasive disease refractory to bacille Calmette-Guerin therapy 
should have radical cystectomy within 3 mo following diagnosis[18]. Neoadjuvant 
chemotherapy is discouraged in this setting.

According to Méjean et al[18] low risk localized prostate cancer should preferably 
undergo surveillance during the outbreak. A systematic review by radio-oncology 
groups in the United Kingdom (UK) and the United States of America (USA) by 
Zaorsky et al[19] recommended that radiotherapy for low risk prostate cancer can be 
delayed until safe. The CCFAU recommended that patients with intermediate risk 
localized prostate cancer, treatment can be delayed within 2 mo. These include radical 
prostatectomy, extremal beam radiotherapy and brachytherapy. For patients with high 
risk and localized advanced prostate cancer, surgery cannot be delayed more than 2 
mo and hormonotherapy should not be delayed. The radio-oncology group in UK and 
USA[19] recommended a delay of 1-3 mo for intermediate risk prostate cancer, high risk 
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prostate cancer, postprostatectomy and nodal cancer requiring radiation therapy. The 
initiation of androgen deprivation therapy (ADT) for high risk prostate cancer can 
help in the delay of intervention. However, if delay is not feasible, external beam 
radiotherapy is preferred with the shortest fractionation schedule. Nevertheless, the 
benefit of treatment, the toxicity of treatment as well as the risk of contracting COVID-
19 infection are important parameters to assess to limit morbidity and mortality.

Patients with hormone sensitive metastatic prostate cancer can continue ADT and 
newer generation hormonotherapy (apalutamide or enzalutamide)[18]. Patients with 
castrate resistant metastatic prostate cancer treated who did not receive second 
generation hormonotherapy can continue ADT with enzalutamide. Chemotherapy and 
steroid should be avoided to prevent unwanted toxicity. For patients with castrate 
resistant metastatic prostate cancer who received second generation hormonotherapy, 
the risk and benefits of initiating chemotherapy can be discussed (docetaxel, 
carbazitaxel)[18]. G-CSF should be considered to avoid neutropenia in patient on 
chemotherapy. According to Zaorsky et al[19] radiotherapy for low volume metastatic 
cancer and oligometastases can be delayed up to 6 mo for patients on ADT.

Specific recommendation for thoracic cancers: A consensus statement from the 
Thoracic Surgery Outcomes Research Network formulated several recommendations 
for thoracic cancers based on the high usage of ICU beds, ventilators and PPE during 
the COVID-19 pandemic. Lung cancer ≥ 2-cm, node positive lung cancer, high risk 
chest wall tumors, symptomatic mediastinal tumors and invasive esophageal cancer 
should have surgery prioritized in the soonest possible time[20]. Yet, lung cancer less 
than 2-cm, indolent histology, asymptomatic thymoma, pulmonary oligometastases, 
bronchoscopy, upper endoscopy and tracheostomy can be deferred for up to 3 mo[20].

An ESMO publication by Banna et al[21] also stratified non-small cell lung cancer and 
small cell lung cancer for treatment intervention. For locally advanced resectable non-
small cell lung cell, neoadjuvant chemotherapy, chemotherapy + radiotherapy and 
immunotherapy should not delay treatment when possible[21]. Nonetheless, 
Chemotherapy should be withheld in patients at significant risk of COVID-19 
infection. Patients with locally advanced to advanced small cell lung cancer should 
continue with standard treatment. Treatment should be delayed in patients at risk of 
COVID-19 infection or those requiring long period of immunotherapy. According to 
Zhao et al[22], immunotherapy is associated with significant pulmonary toxicity as such 
should be suspended or postponed in patients with stable disease.

Study by Mazzone et al[23] also provided a consensus statement on the management 
of lung nodule during the epidemic. There was almost a unanimous agreement that 
evaluation should be delayed for pulmonary nodule discovered incidentally or during 
screening that are likely indolent[23]. The expert group from this study generally agreed 
that surgery for localized non-small cell lung cancer can be postponed if there no 
evidence of an aggressive disease or progression.

Specific recommendation for brain cancers: A correspondence by Zacharia et al[24] 
stratified patients with brain tumor needing surgery into emergent, urgent and semi-
urgent. In the setting of a brain tumor with impending herniation or hydrocephalus, 
surgery should be performed as soon as possible[24]. All patients should be considered 
COVID-19 positive until otherwise. Enhanced PPE is required for all operating staff 
and health care providers. High grade malignancies or tumor presenting with 
progressive neurological deficits should be operated urgently between 2 to 7 d. 
Attempt COVID-19 testing preoperatively if possible.

Patients with asymptomatic or benign brain lesions can have their surgery delayed 
up to 4 wk. Patient should be properly screened, and every health precaution should 
be maintained including self-quarantine for 14 d before surgery. Studies by Mohile 
et al[25] and Bernhardt et al[26] also formulated guidelines for patients with gliomas 
during the COVID-19 pandemic. According to Mohile et al[25] newly diagnosed glioma 
should continue with their standard of care but with precaution to avoid nosocomial 
transmission. Therapy for recurrent glioma should be delayed and certain 
chemotherapeutic agents avoided[25,26].

Specific recommendation for head and neck cancers: The French consensus on the 
standard of care of head and neck surgery by Fakhry et al[27] stratified patients into 3 
groups. Cancer patients with life-threatening emergencies (dyspnea, hemorrhage) 
where classified as Group A and required immediate treatment. The SARS-COV-2 
swab test along with a chest CT-san in 24 h is advisable before surgery.

Aggressive cancer of the salivary gland and aerodigestive tract for whom treatment 
postponement for a month will adversely affect outcome of the disease were 
considered as Group B. If tracheostomy is not required, the surgery should be delayed, 
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and all necessary investigation done[27].
Well differentiated thyroid cancer, non-progressive skin cancer and slow growing 

salivary gland tumor were considered as Group C for which treatment can be 
postponed for 6 to 8 wk without adversely affecting outcome.

A review by a head and neck oncology group Day et al[28] proposed that hospitals 
should provide preoperative, intraoperative and postoperative management algorithm 
to ensure patient and staff safety. They proposed several reasons for strict precautions 
by head and neck surgeons. The coronavirus replicates in the nasal cavities, 
nasopharynx and oropharynx which are sites for routine head and neck surgery[28]. The 
coronavirus is aerosolized for at least three hours. Most head and neck surgeries 
require general anesthesia which entail aerosol generating procedures like bag-valve 
mask ventilation and intubation. The team recommended that most high-risk 
procedures should be performed with an N95 mask or a powered air-purifying 
respirator. The disadvantage is that these masks are uncomfortable to surgeons for 
long standing procedures.

A guideline consensus from the European Society for Radiotherapy and Oncology 
and the American Society of Radiation Oncology agreed that patients with locally 
advanced squamous cell carcinoma of the oropharynx and larynx scan continue 
radiation therapy with concurrent chemotherapy[29].

According to Sharma et al[30] the management of head and neck cancer in elderly 
patient during the COVID-19 pandemic is very challenging. About 70% of death from 
head and neck cancer occur in patients over 70 years. Moreover, 95% of COVID-19 
death occur in patients over 60 years and about 50% in patients over 80 years alone[30]. 
Therefore, treatment decision for this group should be individualized considering 
disease severity, comorbidity and risk of coronavirus infection (Figure 4).

Report by Salari et al[31] conveyed that multidisciplinary meeting for head and neck 
cancer in Iran have now been moved to a virtual platform, since the COVID-19 
pandemic. During these virtual meetings, cancer surgeons, head and neck surgeons, 
maxillofacial surgeons, medical oncologists, radiologist, radiotherapist and nuclear 
medicine specialist discuss the benefit and risk of treatment and patient are prioritized 
for the appropriate treatment[31].

Specific recommendation for gastrointestinal and colorectal cancers: An editorial by 
Patel et al[32] recently outlined three groups prioritizing the treatment of cancer patient 
during the COVID-19 pandemic. This stratification had been previously released by 
the American Society of Clinical Oncology. Group 1 were patients who completed 
treatment or patients with controlled disease. Clinics visits were recommended to be 
delayed and telemedicine platform are to be used for follow-up. Group 2 were patients 
undergoing active neoadjuvant or adjuvant treatment with curative intent. Patients 
were encouraged to continue treatment while minimizing the risk of nosocomial 
transmission with hand hygiene, PPE for staff and social distancing[32]. Patients 
undergoing treatment for metastatic disease were considered as Group 3. Delaying 
treatment in this group was considered reasonable if it did not adversely affect the 
disease outcome. Another multi-center radio-oncology report by Tchelebi et al[33] 
classified the provision of radiotherapy during the pandemic for several 
gastrointestinal cancers including esophageal cancer, gastric cancer, hepatocellular 
cancer, cholangiocarcinoma, pancreatic cancer, rectal cancer and anal cancer. The 
group recommended that operable esophageal cancer, advanced gastric cancer, locally 
advanced operable rectal cancer and hepatocellular cancer can receive radiation 
therapy reducing the period of fractionation. Radiotherapy was not recommended in 
operable or resected gastric cancer, operable cholangiocarcinoma and resectable 
pancreatic tumor[33]. These recommendations were made to guide treatment decision; 
to either reduce disease progression or avoid unnecessary exposure to the COVID-19 
infection. A report by Romesser et al[34] from the Memorial Sloan Kettering Cancer 
Center suggested that short course radiation therapy (SCRT) can provide quality and 
efficient oncological care for patients while reducing the risk of exposure to the 
COVID-19 infection. A report from a multinational colorectal cancer group in Europe 
by Di Saverio et al[35] proposed that surgery during the COVID-19 pandemic should be 
aligned by clear perioperative protocols. The group advocated safe transfer of patients 
between the ward and the operating theater with the proper use of PPE by staffs and 
coordinated transport system between the theater staff and ward staff[35].
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Figure 4  Organizational structure and risk stratification of cancer patient for management during the novel 2019 corona virus disease 
pandemic. COVID-19: Novel 2019 corona virus disease.

CONCLUSION
Management of cancer patients during the COVID-19 pandemic is challenging. The 
need of surgery, chemotherapy or radiation therapy places the patients at risk of 
nosocomial transmission. The myelosuppressive effect of chemotherapy and radiation 
may increase the morbidity and mortality associated with the coronavirus. Therefore, 
cancer treatment should be stratified based on the benefits and risk of intervention. 
Avoiding unnecessary procedures, social distancing, hand hygiene and mask wear 
could reduce the associated disease burden.
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Abstract
Lung cancer is the most common cause of cancer death in the world. Early 
diagnosis, screening and precise individualized treatment can significantly reduce 
the death rate of lung cancer. Artificial intelligence (AI) has been shown to be able 
to help clinicians make more accurate judgments and decisions in many ways. It 
has been involved in the screening of lung cancer, the judgment of benign and 
malignant degree of pulmonary nodules, the classification of histological cancer, 
the differentiation of histological subtypes, the identification of genomics, the 
judgment of the effectiveness of treatment and even the prognosis. AI has shown 
that it can be an excellent assistant for clinicians. This paper reviews the 
application of AI in the field of non-small cell lung cancer and describes the 
relevant progress. Although most of the studies to evaluate the clinical application 
of AI in non-small cell lung cancer have not been repeatable and generalizable, the 
research results highlight the efforts to promote the clinical application of AI 
technology and influence the future treatment direction.

Key words: Artificial intelligence; Machine learning; Non-small cell lung cancer; 
Diagnosis; Prognosis; Therapy
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Core tip: Artificial intelligence has been shown to help clinicians make more accurate 
judgments and decisions in non-small cell lung cancer screening and preliminary 
evaluation of lung nodules, histological differentiation and diagnosis, genomic 
identification, decision-making of therapy, prognosis of overall survival, metastasis or 
recurrence. Electronic medical records could be used as a source of artificial intelligence 
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to help clinicians. This manuscript reviews the state of art artificial intelligence 
applications in clinical non-small cell lung cancer for those who will be interested in this 
field.
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INTRODUCTION
The global tumor statistics report released in 2018 shows that lung cancer is the 
malignant tumor with the highest morbidity and mortality in the world. The incidence 
of lung cancer accounts for 11.6% of the incidence of all tumors, and the mortality rate 
accounts for 18.4% of the deaths of all tumors[1]. Due to the late onset of clinical 
symptoms and limited screening procedures, a large number of patients are diagnosed 
as advanced[2]. Histologically, about 85% of new lung cancer cases are classified as 
non-small cell lung cancer (NSCLC), 10% are small cell lung cancer, and 5% are other 
variants[3]. Most NSCLC can be divided into three categories: squamous cell carcinoma, 
adenocarcinoma and large cell carcinoma[4]. Patients need the most accurate 
personalized treatment from doctors. Therefore, doctors need to obtain genomics, 
proteomics, immunohistochemistry and imaging data, in addition to histological, 
clinical and demographic information in order to develop precise treatment plans for 
patients. There are many factors, such as high cost of testing and treatment 
discontinuity, which will limit the timely access to data. This has aroused people’s 
interest in developing artificial intelligence.

Artificial intelligence (AI) is an important product of the rapid development of 
computer technology. It has a profound impact on the development of human society 
and the progress of science and technology through communication and cooperation 
with multidisciplinary and multifield, especially the organic combination with 
medicine, which is one of the most promising fields. John McCarthy first proposed the 
concept of AI: To develop machine software with human thinking mode, so that 
computers can think like humans[5]. Machine learning (ML) is a method to realize AI, 
which belongs to a subfield of AI. It analyzes and interprets data through machine 
algorithms, learns from it, and then makes decisions or predictions about something. 
Therefore, unlike manually writing software routines to complete specific tasks with a 
specific set of instructions, machines use a large number of data and algorithms to 
“train”, which give machines the ability to learn how to perform tasks. ML comes 
directly from the idea of the early artificial intelligence crowd. For many years, 
algorithm methods include decision tree learning, inductive logic programming, 
clustering, reinforcement learning and Bayesian network, etc. These algorithms allow 
information to be classified, predicted and segmented to provide insights that are 
difficult to obtain by the human eye or cognitive system.

Deep learning is a technology to realize ML. There are two key aspects in the 
description of advanced definition of deep learning: (1) A model composed of 
multilayer or multistage nonlinear information processing; and (2) A supervised or 
unsupervised learning method for feature representation at a higher and more abstract 
level[6]. There are many kinds of network learning models for deep learning, such as 
convolutional neural networks (CNN), recurrent neural networks, bi-directional long-
term and short-term memory cyclic neural networks, multilayer neural networks, etc. 
Among them, the CNN is one of the representative algorithms of deep learning, which 
is a kind of feed forward neural networks with deep structure and convolution 
calculation. It consists of a series of layers. Each layer performs specific operations, 
such as convolution, pooling, loss calculation, etc. Each middle layer receives the 
output of the previous layer as its input and finally extracts the high-level abstraction 
through the fully connected layer. In the process of back propagation in the training 
stage, the weights of neural connection and kernel are optimized continuously. A 
CNN has the ability of representation learning, which can classify input information 
according to its hierarchical structure. Therefore, it is also called “translation invariant 
artificial neural network (ANN)”.

There are two main methods of data processing in ML: Supervised learning and 
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unsupervised learning. Supervised learning specifically refers to the use of labeled 
data learning process to assist, so as to achieve learning objectives. The advantage is 
that the generalization ability of the machine itself can be given full play, and 
problems such as classification and regression can be effectively solved. Unsupervised 
learning does not need to be marked, and it explores the similarity between instances 
according to specific indicators and methods or the value relationship among features. 
The algorithms commonly used in unsupervised learning are as follows: Deep 
confidence network, automatic encoder, etc. The most important research problems of 
unsupervised learning include clustering, correlation analysis and dimension 
reduction. Other learning methods include reinforcement learning, which optimizes 
the model to get the best decision by giving different feedback to different choices in 
the iterative process, semisupervised learning that mixes supervised and unsupervised 
learning and transfer learning with models as an experiential training.

AI can improve patients’ treatment results, ameliorate patients’ treatment process 
and even mend medical management[7]. In view of the increasing application of AI in 
lung cancer treatment (Figure 1), this paper will review the AI applications being 
developed for NSCLC detection and treatment as well as the challenges facing clinical 
adaptability.

APPLICATION OF AI IN SCREENING AND PRELIMINARY EVALUATION 
OF NSCLC
Pulmonary nodules are the early signs of lung cancer, which are of great significance 
for the diagnosis of early lung cancer. Early detection, early diagnosis and early 
treatment can improve the survival rate and prolong the survival time of patients. The 
national lung screening test showed that low-dose computed tomography (LDCT) 
screening was associated with a significant 20% reduction in overall mortality among 
current and previous high-risk smokers[8]. While conducting LDCT screening to detect 
patients with early-stage lung cancer, the number of health checkups, disease 
screenings and follow-up examinations is increasing. As a result, the workload of 
radiologists has multiplied. The increasing workload aggravates the fatigue of doctors, 
affects the quality of reading images and the accuracy of diagnosis results. The 
emergence of AI is just like a drop of sweet dew in a long drought for radiologists. AI 
can carry out self-learning and self-evolution under semi-supervision. At the same 
time as improving the accuracy of diagnosis, the time for doctors to read the images is 
greatly shortened, which solves the clinical needs well[9].

Most uncertain lung nodules were discovered by accident[10]. Every year, more than 
1.5 million Americans are diagnosed with accidental detection of lung nodules[11]. Most 
of these nodules are benign granuloma and about 12% may be malignant[12]. Another 
potential hazard of lung cancer screening is the over diagnosis of slow-growing, 
inactive cancers. If left untreated, these cancers may not pose a threat. Therefore, over 
diagnosis must be identified and significantly reduced. Identifying the nature of 
pulmonary nodules by AI can effectively reduce the clinical work pressure as well as 
the long-term follow-up workload and ameliorate the psychological pressure of 
pulmonary nodule owners. In the field of cancer imaging, AI has found tremendous 
utility in three main clinical tasks: Detection, characterization and monitoring. In 
current clinical practice, imaging methods used to assess the presence of lung cancer 
include chest X-ray, computed tomography (CT) and positron emission 
tomography/computed tomography (PET/CT).

Chest X-ray is one of the most commonly used methods. The covering of the chest 
ribs on the lung field often affects the radiologists’ reading of the film and increases 
the missed diagnosis rate of the lung nodule shadow. von Berg et al[13] used a dual 
energy subtraction technology based on ANN to reduce the bone density shadow in 
the X-ray film, expose the lung nodule covered by the bone structure and improve the 
sensitivity and specificity of the radiologist in the diagnosis of lung nodules. Nam 
et al[14] recently developed an algorithm for detecting malignant pulmonary nodules on 
chest X-ray films based on deep learning and compared its performance with that of 
physicians, half of whom were radiologists. They used 43292 cases of chest X-ray data. 
The ratio of normal to pathological changes was 3.67. Using external validation data 
sets, they found that the area under the curve (AUC) of the developed algorithm was 
higher than 17 of the 18 doctors. When all doctors used this algorithm as the second 
reader, they found the improvement of nodule detection.

For lung cancer screening, the sensitivity and specificity of LDCT are much higher 
than that of general chest X-ray[15]. More than 200 thin-layer images can be 
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Figure 1  The application of artificial intelligence involved in clinical non-small cell lung cancer. Learning process and application of AI in different 
fields are indicated by those two-way arrows. AI: Artificial intelligence; ANN: Artificial neural network; CNN: Convolutional neural networks; DL: Deep learning; EMR: 
Electronic medical record; ML: Machine learning; NSCLC: Non-small cell lung cancer; OS: Overall survival time; TME: Tumor microenvironment; WSI: Whole slide 
image.

reconstructed after high-resolution CT scanning or spiral CT scanning, which results in 
excessive reading of radiologists. Pulmonary nodules < 3 mm are more time-
consuming and laborious. This has caused a considerable workload for radiologists in 
the traditional mode. Pulmonary nodule AI detection software is most sensitive to 
pulmonary nodules of 3-6 mm followed by nodules above 6 mm. Nodules of 3-6 mm 
are the most easily missed diagnosis by human vision[16]. After the application of AI, 
the daily working time can be halved without changing the inspection amount, and 
there will be no missed diagnosis due to excessive fatigue[17,18]. Detection refers to the 
positioning of objects of interest in X-rays or CTs and is collectively referred to as 
computer-aided detection[19]. In the early 2000s, methods of computer-aided detection 
for automatically detecting lung nodules on CT were based on traditional ML 
methods, such as support vector machines[20]. Computer-aided detection is used as an 
assistant in LDCT screening to find missed cancers and to detect brain metastases on 
MRI to improve radiological interpretation time while maintaining high detection 
sensitivity[21]. The computer-aided detection x system has been used for the diagnosis 
of pulmonary nodules by thin-layer CT[22].

Due to the simplicity of clinical implementation, size-based measurements such as 
the longest tumor diameter are widely used for staging and response assessment. 
However, size-based features and disease stages have limitations such as imprecise 
diagnosis. A preliminary work shows that AI can automatically quantify the 
radiographic characteristics of tumor phenotype, which has a significant prognosis for 
many types of cancer, including lung cancer[23]. Liu et al[24] combined a model of four 
semantic features (minor axis diameter, contour, concavity and texture) of quantitative 
scores. The accuracy of distinguishing malignant and benign nodules in lung cancer 
screening environment was 74.3%. In a separate study[25], semantic features were 
identified from small lung nodules (less than 6 mm) to predict the incidence of lung 
cancer in the context of lung cancer screening. The AUC of the final model was 0.930 
based on the total score of emphysema, vascular attachment, nodal location, border 
definition and concavity. Paul et al[26] used a kind of pre-trained CNN after large-scale 
data training to detect lung cancer by extracting the features of CT images. They 
combined the extracted deep neural network features with the traditional quantitative 
features and obtained 90% accuracy (AUC: 0.935) by using the five best corrected 
linear unit features and five best traditional features extracted by vgg-f pre-trained 
CNN.

In recent years, the number of pure ground glass nodules (pGGN) has increased 
significantly. Judging its nature and making the treatment plan is very important. Qi 
et al[27] retrospectively analyzed the clinical follow-up data of 573 CT scans belonging to 
110 patients with pGGNs from January 2007 to October 2018. The Dr. Wise system 
based on CNN was used to segment the initial CT scan and all subsequent CT scans 
automatically. Then, the diameter, density, volume, mass, volume doubling time and 
mass doubling time of pGGNs were calculated. Kaplan-Meier analyses with the log-
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rank test and Cox proportional hazards regression analysis were used to analyze the 
cumulative percentages of pGGN growth and identify risk factors for growth. It was 
found that persistent pGGNs showed a slow course. The 12-mo, 24.7-mo and 60.8-mo 
cumulative percentages of pGGN growth were 10%, 25.5% and 51.1%, respectively. 
Deep learning helps to clarify the natural history of pGGNs accurately. Those pGGNs 
with lobulated sign and larger initial diameter, volume and mass are more likely to 
grow up. Ardila et al[28] trained a deep learning algorithm on the NLST dataset, which 
came from 14851 patients and 578 of those patients developed lung cancer the 
following year. They tested the model on the first test data set of 6716 patients, and the 
AUC reached 94.4%. A part of 507 patients was compared with six radiologists. When 
a single CT is analyzed, the performance of the model was the same or higher than 
that of all radiologists.

The diagnosis of simultaneous or metachronous multiple pulmonary nodules is a 
new challenge for clinicians. In a retrospective study[29], a total of 53 patients with 
multiple pulmonary nodules, simultaneously or metachronously, were included. The 
coincidence rate of AI diagnosis and postoperative pathology to benign and malignant 
lesions was 88.8%. AI may represent a relevant diagnostic aid that can display more 
accurate and objective results when diagnosing multiple lung nodules. It may reduce 
the interpretation of results by displaying visual information directly to doctors and 
patients and the clinical status of multiple primary lung cancer patients. The time 
required and a reasonable follow-up and treatment plan may be more beneficial to the 
patient.

PET/CT using 18F-fluorodeoxyglucose (FDG) has been established as a great 
imaging method for the staging of patients with lung cancer[30]. Schwyzer et al[31] 
assessed whether machine learning would help detect lung cancer in FDG-PET 
imaging against the background of ultra-low-dose PET scans. The ANN was used to 
identify 3936 PET images, including images of lung tumors visible to the naked eye 
and image slices of patients without lung cancer. Based on clinical standard radiation 
dose PET images (PET 100%), 10% dose and 3.3% radiation dose (approximately 0.11 
mSv), the diagnostic performance of the artificial neural network was evaluated. Their 
results indicated that even at very low effective radiation doses of 0.11 mSv, machine 
learning algorithms may contribute to fully automated lung cancer detection.

More and more new PET and single-photon emission computerized tomography 
tracers are used to explore various aspects of tumor biology, and hybrid multimodal 
imaging is increasingly used to provide multiparameter measurements. AI is needed 
to deal with the huge workload. According to reports[32], texture and color analysis of 
human FDG-PET images can be used to judge heterogeneity within tumors, thereby 
distinguishing NSCLC subtypes. Using support vector machine algorithm to extract 
texture and color features from FDG-PET images to differentiate histopathological 
tumor subtypes (squamous cell carcinoma and adenocarcinoma), the area under the 
receiver operating characteristic curve was 0.89. The use of the least absolute shrinkage 
and selection operator method[33] to derive radiographic descriptors of metastatic 
lymph nodes from FDG-PET images of patients with NSCLC has been found relate 
better with overall survival (OS) than the radiological data extracted from the primary 
tumor. Wang et al[34] made a comparison of ML methods for classifying NSCLC 
mediastinal lymph node metastasis from PET/CT images. A CNN and four ML 
methods (random forest, support vector machine, adaptive boosting and artificial 
neural networks) were used to classify mediastinal lymph node metastases of NSCLC. 
PET/CT images of 1397 lymph nodes were collected from 168 patients and were 
evaluated by the five methods with corresponding pathology analysis results as gold 
standard. The accuracy of CNN is 86%, which is not significantly different from the 
best ML method that uses standard diagnostic features or a combination of diagnostic 
features and texture features. CNN is more accurate than ML methods that simply use 
texture features.

APPLICATION OF AI IN HISTOPATHOLOGY OF NSCLC
In the differential diagnosis of lung cancer, it is necessary to classify the types or 
subtypes accurately. Because the hematoxylin-eosin (HE) stained full-scale whole slide 
image (WSI) is usually at the megapixel level, the much smaller image blocks (about 
300 × 300 pixels) extracted from it are often used as training input. For example, Wang 
et al[35] trained a CNN model; each 300 × 300 pixel image block of lung adenocarcinoma 
WSIs stained by HE was classified as malignant or nonmalignant. The overall 
classification accuracy (malignant and nonmalignant) of the test set was 89.8%. This 
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method can detect tumor rapidly when the tumor area is very small, which will 
greatly help pathologists in future clinical diagnoses. In the study reported by 
Teramoto et al[36], a deep CNN (DCNN) was developed for an automatic lung cancer 
classification scheme, which is a major deep learning technology. In the evaluation 
experiment, they used original database, including fine needle aspirate cytology 
images and HE stained WSIs and a graphics processing unit to train DCNN. First, the 
micro images were cropped and resampled to obtain the image with a resolution of 
256 × 256 pixels. In order to prevent over fitting, the collected images were enhanced 
by rotation, flipping and filtering. The probability of three types of cancer was 
evaluated using the developed scheme, and its classification accuracy was evaluated 
using triple cross validation. In the results obtained, about 71% of the images were 
correctly classified, which is equivalent to the accuracy of cell technicians and 
pathologists.

The identification of early lung adenocarcinoma before operation, especially in the 
case of subcentimeter cancer, can provide important guidance for clinical decision 
making. Zhao et al[37] developed a 3D deep learning system based on 3D CNN and 
multitask learning. The deep learning system had better classification performance 
than radiologists. In terms of three-level weighted average F1 score, the model reached 
63.3%, while the four radiologists reached 55.6%, 56.6%, 54.3% and 51.0%, respectively.

With tumor microenvironment increasingly considered as an important factor 
affecting tumor progression and immunotherapy response, tumor microenvironment 
for lung cancer has been studied in depth. Saltz et al[38] developed a CNN model to 
distinguish lymphocytes from necrotic or other tissues at the image spot level in 
multiple cancer types, including adenocarcinoma and small cell carcinoma of the lung. 
Then, by quantifying the spatial organization of lymphoid image plaques detected in 
WSIs, they reported the relationship between the distribution pattern, prognosis and 
lymphoid components of tumor infiltrated lymphocytes.

Lung cancer patients usually present with advanced, inoperable disease. Because 
the whole tumor specimen cannot be obtained, the size of the biopsy specimen 
obtained is usually very limited. It is difficult to distinguish squamous cell carcinoma 
and adenocarcinoma especially in poorly differentiated tumors because of their 
obscure histological features. ML in immunohistochemistry[39] was applied to establish 
a comprehensive and automatic diagnosis strategy for NSCLC biopsy specimen 
subtypes, which successfully solved this problem. Koh et al[40] described a 
comprehensive diagnostic strategy using a reliable and minimal immuno-
histochemistry team for histopathological subtype analysis of NSCLC biopsy 
specimens. The team used two ML methods: Decision tree and support vector 
machines to learn from 30 small NSCLC biopsies with fuzzy morphology. The decision 
tree model showed that the highest accuracy of the combination of two markers (such 
as p63 and CK5/6) was about 72% except for three other markers (i.e. TTF-1, Napsin A 
and P40).

Wang et al[41] explored the correlation between the morphological features of the 
WSIs stained with HE and the NSCLC epidermal growth factor receptor (EGFR) 
mutation to achieve the purpose of predicting the risk of gene mutation. The results 
showed that the AUC of the EGFR mutation risk prediction model proposed in this 
paper can reach 72.4% on the test set, and the accuracy rate was 70.8%, suggesting a 
close relationship between morphological characteristics and EGFR mutations of 
NSCLC. Coudray et al[42] trained a DCNN (inception V3) to accurately and 
automatically classify the WSIs obtained from The Cancer Genome Atlas. Its 
performance was comparable to that of the pathologist, and the average AUC was 
0.97. They trained the network to predict the ten most common mutations in lung 
adenocarcinoma and found that six genes (STK11, EGFR, FAT1, setbp1, KRAS and 
TP53) could be predicted by pathological images. In the nonexperimental population, 
AUC was 0.733-0.856. It suggested that deep learning models could help pathologists 
detect cancer subtypes or gene mutations.

APPLICATION OF AI IN GENOMIC CLASSIFICATION OF NSCLC
Various molecular abnormalities affecting oncogenes and tumor suppressor genes 
have been reported in NSCLC. It is so important to identify potential lung cancer 
genome subtypes that a specific targeted therapy was proposed. For example, 
mutations in EGFR or anaplastic lymphoma kinase (ALK) receptors are significant in 
NSCLC because they provide molecular targets for customized treatment regimens.

The gene expression profile of NSCLC subtype has been established by 
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microarray[43,44]. Microarray data used to identify NSCLC genetic subtypes can be used 
to train ML algorithms to better understand genomic pathways. Yamamoto et al[45] 
screened 24 CT image traits performed in a training set of 59 patients, followed by 
random forest variable selection incorporating 24 CT traits plus six clinical-pathologic 
covariates to identify a radiomic predictor of ALK+ status. This predictor was then 
validated in an independent cohort (n = 113). Tests for accuracy and subset analyses 
were performed. It was found that ALK+ NSCLC had distinct characteristics at CT 
imaging that when combined with clinical covariate discriminated ALK+ from non-
ALK tumors and could potentially identify patients with a shorter durable response to 
crizotinib.

With the commercialization of next generation sequencing technology and the 
improvement of the performance of these algorithms, clinicians will be able to better 
describe NSCLC based on genome data[46]. Duan et al[47] explored the application of the 
ANN model in the auxiliary diagnosis of lung cancer. They compared the effects of the 
back-propagation neural network with the Fisher discrimination model for lung cancer 
screening by combining the detection of four biomarkers, p16, RASSF1A and FHIT 
gene promoter methylation levels and the relative telomere length. The result of the 
back-propagation neural network AUC was higher than that of the Fisher 
discrimination analysis, which meant that the back-propagation neural network model 
for the prediction of lung cancer was better than Fisher discrimination analysis.

APPLICATION OF AI IN THERAPY OF NSCLC
Systemic treatment is needed in most stages of NSCLC; for example, those in stage II 
often need adjuvant radiotherapy and chemotherapy. The contour of organs at risk is 
an important but time-consuming part of radiotherapy treatment planning. Lustberg 
et al[48] analyzed the CT scan data of 20 patients with stage I-III NSCLC and compared 
the user adjusted contour and manual contour based on atlas and deep learning 
contour. It was found that the median time of manual contour drawing was 20 
minutes. When using atlas-based contour drawing, a total of 7.8 minutes was saved, 
while the deep learning contour drawing saved 10 minutes. It showed that it was a 
feasible strategy for users to adjust the contour generated by the software, which could 
reduce the contour time of organs at risk in lung radiotherapy. Compared with the 
existing programs, deep learning shows encouraging results.

At present, targeted therapies[49] such as EGFR tyrosine kinase inhibitors, ALK 
inhibitors or angiogenesis inhibitors are used depending on the patients’ molecular 
status. The prediction of targeted therapy response is mainly accomplished by biopsy 
to analyze the status of the targeted mutation. AI prediction models can complement 
this by identifying the imaging phenotypes associated with mutation status. Support 
for this approach comes from quantitative imaging studies of patients with NSCLC 
treated with gefitinib. The results[50] showed that the mutation state of EGFR could be 
predicted by radiology. AI analysis of quantitative imaging data can also improve the 
assessment of response to targeted therapy. Bevacizumab (a monoclonal antibody 
against vascular endothelial growth factor)-treated NSCLC tumors had reduced FDG 
uptake and were found to have more patients responding to treatment (73% than 
18%). In this study[51], both PET and CT were independent of OS (PET, P = 0.833; CT, P 
= 0.557).

The level of PD-L1 expression detected by immunohistochemistry is a key 
biomarker to identify whether NSCLC patients respond to the treatment of PD-1/PD-
L1. The quantification of PD-L1 expression currently includes a pathologist’s visual 
estimate of the percentage of PD-L1 staining (tumor proportion score or TPS) in tumor 
cells. Kapil et al[52] proposed a new deep learning solution that can automatically and 
objectively grade PD-L1 expression for the first time in advanced NSCLC biopsy. 
Using a semisupervised approach and a standard full supervised approach, they 
integrated manual annotation for training and visual tumor proportion scores for 
quantitative evaluation by multiple pathologists. It was believed to be the first proof of 
concept study that showed that deep learning could accurately and automatically 
estimate the PD-L1 expression level and PD-L1 status of small biopsy samples.

Researchers have studied the use of ML in predicting treatment failure or death. For 
example, Jochems et al[53] studied ML methods for predicting early death in NSCLC 
patients after receiving therapeutic chemical radiation. Similarly, Zhou et al[54] used ML 
to predict the failure of stereotactic body radiotherapy in early NSCLC patients. Both 
groups used ML methods to establish the prognosis model of early mortality or 
treatment failure, which could be used to inform patients of treatment plan and 
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optimize treatment. Kureshi et al[55] studied the role of multiple factors in predicting 
tumor response to EGFR-TKI therapy (erlotinib or gefitinib) in patients with advanced 
NSCLC.

APPLICATION OF AI IN PROGNOSIS OF NSCLC
Accurate classification, clinical stage, molecular subtype and therapies of NSCLC are 
all important because prognosis is closely related to these factors. Hsia et al[56] 
incorporated the clinical detection indicators and gene polymorphism detection results 
and predicted the prognosis of 75 lung cancer patients without indications of surgical 
treatment through the ANN model and made treatment plans accordingly. The actual 
average survival time of the patients was 12.44 ± 7.95 mo, while the ANN prediction 
result was 13.16 ± 1.77 mo with an accuracy of 86.2%. Zhu et al[57] successfully used 
DCNN to directly predict the survival time of patients from lung cancer pathological 
images. Another lung cancer study[58] showed that the prognosis of OS can be 
improved by adding genomic and radiological information to clinical models, thereby 
increasing the 95% confidence index from 0.65 (Noether P = 0.001) to 0.73 (P = 2 × 10-9), 
and the inclusion of radiation data led to a significant improvement in performance (P 
= 0.01).

Wang et al[59] proposed a computational histomorphometric image classifier using 
nuclear direction, texture, shape and tumor structure to predict the recurrence of early 
NSCLC diseases from digital HE tissue microarray slides. The results showed that the 
combination of these four features could predict the early recurrence of NSCLC, but it 
had nothing to do with clinical parameters such as gender, cancer stage and 
histological subtype. Yu et al[60] reported that Zernike shape characteristics of the 
nucleus could predict the recurrence of NSCLC adenocarcinoma and stage I squamous 
cell carcinoma.

In an article published in 2018, Saltz et al[38] described the use of CNN combined 
with pathologist’s feedback to automatically detect the spatial tissue of tumor 
infiltrating lymphocytes (TIL) in the tissue slide image of The Cancer Genome Atlas 
and found that this feature predicted the prognosis of 13 different cancer subtypes. In 
a related study, Corredor et al[61] showed the spatial arrangement of TIL clusters in 
early NSCLC, which was found by calculating the adjacent TILs and the prognosis of 
cancer cell nuclear recurrence risk compared with TIL density alone. The accuracy of 
the model in predicting recurrence was 82% and 75%, respectively, which proved to be 
an independent prognostic factor.

Blanc-Durand et al[62] trained a CNN in 189 NSCLC patients who received PET/CT 
examination. The subcutaneous adipose tissue, visceral adipose tissue and muscle 
weight were automatically segmented from the low-dose CT images. After a quintuple 
cross validation of a subset of 35 patients, body surface area was standardized as the 
anthropometric index extracted by deep learning. Cox risk regression analysis showed 
that body surface area normalized visceral adipose tissue/subcutaneous adipose tissue 
ratio was an independent predictor of progression free survival and OS in NSCLC 
patients.

Another study[63] evaluated the ability of CT radiomic features in patients with lung 
adenocarcinoma to predict distant metastasis. The phenotype of the primary tumor 
was quantified with 635 radiomic features in the pre-treatment CT scan. Univariate 
and multivariate analyses were performed using the consistency index to evaluate the 
efficacy of radiotherapy. Thirty-five radiomic features were used as prognostic 
indicators for distant metastasis (consistency index > 0.60, FDR < 5%) and 12 
prognostic indicators. Notably, tumor volume was only a moderate prognostic 
indicator for distant metastasis in the discovery cohort (consistency index = 0.55, P = 
2.77 × 10-5). This study suggested that radiomic features that capture the details of the 
tumor phenotype can be used as prognostic biomarkers for clinical factors such as 
distant metastasis.

APPLICATION IN ELECTRONIC MEDICAL RECORDS OF NSCLC
Electronic medical records (EMR) can be used in clinical diagnosis and treatment, 
medical insurance and scientific research. EMR is rich in information that can provide 
evidence of clinical diagnosis, treatment and data source of clinical research 
phenotype. In Wang et al[64]’s study, multiobjective ensemble deep learning, a dynamic 
integrated deep learning and adaptive model selection method based on 
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multiobjective optimization, was developed. The information extracted from EMRs 
through analysis can better predict the treatment results than other conventional 
methods. According to accurate prognosis prediction, we can stratify the risk of 
treatment failure of lung cancer patients after radiotherapy. This method can help to 
design personalized treatment and follow-up plan and improve the survival rate of 
lung cancer patients after radiotherapy.

FUTURE CHALLENGES
It is one of the key directions of medical research in the information age to build a big 
database by collecting and integrating various biomics, clinical detection indicators 
and nonbiological environmental background data of patients. Effective analysis and 
interpretation of these data will be the top priority, and the integration and analysis of 
the existing massive information is precisely the biggest advantage of AI.

At present, the investment in AI in lung cancer and the entire medical field is huge, 
but there is still a certain distance from the actual clinical application. The lack of a 
high-quality standardized lung cancer clinical database is an important factor 
restricting AI’s use in lung cancer research. The deficiency of research sample size 
causes most prediction or diagnostic studies to not fully simulate the actual clinical 
environment, limiting the value of clinical applications. Studies[65] have pointed out 
that the current use of AI in the medical field, such as inadequacy of correct methods 
and evaluation criteria in ANN and the credibility of the results is questionable. In 
addition, in terms of social regulations, lack of common technical regulations on 
medical responsibility issues and information security issues exists.

In the future, major medical centers should take the lead to establish a multicenter 
standardized lung cancer clinical database as a world-class database in line with 
epidemiology and to develop an AI system that meets the clinical environment. 
Diagnosis, treatment and optimization of medical resources have positive significance. 
On the other hand, active promotion of AI-related system regulations, technical 
specification, audit systems to provide institutional support and corresponding 
constraints for the development of AI are needed. AI has promising prospects for lung 
cancer research in the future, but it is still full of challenges.

According to the accuracy stated, which is around 90%, misjudgment may happen 
in 10% of cases, which reflects a pitfall of AI. Therefore, in clinical work, AI must be 
placed in a subordinate position. It should exist as an assistant to clinicians and 
provide auxiliary information under the supervision of doctors to avoid mistakes as 
much as possible.

CONCLUSION
AI has become an indispensable method to solve complex problems in modern life. In 
this review, I introduced various attempts and applications of AI in clinical work of 
NSCLC patients. According to a large number of imaging, histology, genomics, EMR 
system and other data, doctors can accurately diagnose and treat NSCLC patients. It 
has been shown that AI is gradually becoming a powerful assistant for doctors. 
Oncologists, radiologists and surgeons should continue to integrate AI into the clinical 
treatment of NSCLC in order to provide more patients with accurate and personalized 
therapy. Over time, both patients and doctors will benefit from the combination of AI 
and clinical practice.
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Abstract
BACKGROUND 
Digital pathology image (DPI) analysis has been developed by machine learning 
(ML) techniques. However, little attention has been paid to the reproducibility of 
ML-based histological classification in heterochronously obtained DPIs of the 
same hematoxylin and eosin (HE) slide.

AIM 
To elucidate the frequency and preventable causes of discordant classification 
results of DPI analysis using ML for the heterochronously obtained DPIs.

METHODS 
We created paired DPIs by scanning 298 HE stained slides containing 584 tissues 
twice with a virtual slide scanner. The paired DPIs were analyzed by our ML-
aided classification model. We defined non-flipped and flipped groups as the 
paired DPIs with concordant and discordant classification results, respectively. 
We compared differences in color and blur between the non-flipped and flipped 
groups by L1-norm and a blur index, respectively.

RESULTS 
We observed discordant classification results in 23.1% of the paired DPIs obtained 
by two independent scans of the same microscope slide. We detected no 
significant difference in the L1-norm of each color channel between the two 
groups; however, the flipped group showed a significantly higher blur index than 
the non-flipped group.

CONCLUSION 
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Our results suggest that differences in the blur - not the color - of the paired DPIs 
may cause discordant classification results. An ML-aided classification model for 
DPI should be tested for this potential cause of the reduced reproducibility of the 
model. In a future study, a slide scanner and/or a preprocessing method of 
minimizing DPI blur should be developed.

Key words: Machine learning; Digital pathology image; Automated image analysis; Blur; 
Color; Reproducibility
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Core tip: Little attention has been paid to the reproducibility of machine learning (ML)-
based histological classification in heterochronously obtained Digital pathology images 
(DPIs) of the same hematoxylin and eosin slide. This study elucidated the frequency and 
preventable causes of discordant classification results of DPI analysis using ML for the 
heterochronously obtained DPIs. We observed discordant classification results in 23.1% of 
the paired DPIs obtained by two independent scans of the same microscope slide. The 
group with discordant classification results showed a significantly higher blur index than 
the other group. Our results suggest that differences in the blur of the paired DPIs may 
cause discordant classification results.

Citation: Ogura M, Kiyuna T, Yoshida H. Impact of blurs on machine-learning aided digital 
pathology image analysis. Artif Intell Cancer 2020; 1(1): 31-38
URL: https://www.wjgnet.com/2644-3228/full/v1/i1/31.htm
DOI: https://dx.doi.org/10.35713/aic.v1.i1.31

INTRODUCTION
Recent developments in medical image analysis empowered by machine learning (ML) 
have expanded to digital pathology image (DPI) analysis[1-3]. For over ten years, NEC 
Corporation has researched and developed image analysis software that can detect 
carcinomas in tissue in the digital images of hematoxylin and eosin (HE) stained 
slides. DPI analysis is generally performed for digital images obtained with special 
devices such as microscopic cameras or slide scanners. These devices cannot make 
completely identical digital images or data matrices even when the same microscope 
slide is repeatedly shot with the same camera or scanned by the same scanner.

In general, image analysis by ML can provide different classification results if an 
object has multiple images showing different features. Therefore, slight differences in a 
DPI made by imaging devices can also cause different classification results. Each 
digital image will have different characteristics even when the same microscope slide 
of a patient is repeatedly digitized by the same slide scanner. Similarly, the same 
microscope slide of a patient can be digitized at a local hospital and then at a referral 
hospital. The resulting differences in image features of the same microscope slide can 
provide discordant classification results of DPI analysis, confusing both patients and 
medical professionals. However, only a few reports have mentioned this issue.

The aim of this study is to elucidate the frequency and preventable cause of 
discordant classification results of DPI analysis using ML in the aforementioned 
situation. We compared the classification results between paired DPIs of the same 
microscope slide obtained from two independent scans using the same slide scanner 
(Figure 1).

MATERIALS AND METHODS
Tissue sample
We conducted the study in accordance with the Declaration of Helsinki and with the 
approval of the Institutional Review Board of the National Cancer Center, Tokyo, 
Japan. We consecutively collected 3062 gastric biopsy specimens between January 19-
April 30, 2015 at the National Cancer Center (Tsukiji and Kashiwa campuses). The 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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Figure 1  The schema of this study. A: Hematoxylin and eosin stained slides of gastric biopsy specimens were scanned twice by the same slide scanner, then 
the paired digital images were created; B: The paired images were independently analyzed and classified by our machine-learning model. If concordant classification 
results were obtained, the case is “Non-flipped”; if discordant classification results were obtained, the case is “Flipped.” Then, color and blur differences were 
compared between the “Non-flipped” and “Flipped” groups.

specimens were placed in 10% buffered formalin and embedded in paraffin. Each 
block was sliced into 4-μm thick sections. Routine HE staining was performed for each 
slide using an automated staining system.

Digital image acquisition and automated image analysis
During the image collection and analysis procedure, the researchers were blind to all 
of the diagnoses of the human pathologists. We developed an ML model to analyze 
the DPIs using a multi-instance learning framework[4]. The results of the concordance 
between pathological diagnosis by human pathologists and classification by an ML 
model was previously reported[5]. In our study, we randomly selected 584 images of 
the 3062 specimens to use for the present analysis.

We scanned 298 HE stained slides containing 584 tissues twice using the 
NanoZoomer (Hamamatsu Photonics K. K., Shizuoka, Japan) virtual slide scanner, 
creating the paired DPIs. The paired DPIs were analyzed by our ML-aided 
classification model[4]. Our ML-aided classification model classified the results of each 
tissue as “Positive” or “Negative”. “Positive” denoted neoplastic lesions or suspicion 
of neoplastic lesions and “Negative” denoted the absence of neoplastic lesions. The 
procedure for classification of a cancerous areas in a given whole-slide image is as 
follows: (1) Identify the tissue regions at 1.25 ×; (2) The tissue area was then divided 
into several rectangular regions of interest (ROIs); (3) From each ROI, the structural 
and nuclear features are extracted at different magnification (10 × and 20 ×); (4) After 
the feature extraction, all ROIs were classified as positive or negative using a pre-
trained classifier (support vector machine, SVM); and (5) The SVM-based classifier 
assigns a real number t to each ROI, where t takes value in the range (-1.0, 1.0). A value 
of 1.0 indicates a positive ROI and a value of -1.0 indicates a negative ROI[5]. In this 
experiment, we interpreted the value of t ≥ 0.4 indicates a positive ROI.

We defined the group without discordant classification results between the paired 
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DPIs as the “non-flipped group” and the group with discordant classification results 
as the “flipped group”.

For reference, we repeated analysis of the identical DPIs that had identical data 
matrices twice, then compared their results.

Color analysis
We separated tissue images into tissue regions and non-tissue regions. To examine the 
differences in tissue color in the first and second scanned images, we measured the L1-
norm distance between color distributions of images in each color channel; i.e., red (R), 
green (G), and blue (B). The L1-norm distance between normalized histograms p and q 
were defined as Formula 1:

Where pi and qi are the normalized frequencies at the i-th bin of histograms p and q, 
respectively.

Quantification of the degree of image blurring
We quantified the degree of image blurring using the variance of wavelet coefficients 
of an image[6]. The degree of image blurring is calculated and normalized as follows: 
(1) 2D convolution by neighboring fileter; (2) Local variance of a 5 × 5 area; and (3) 
Captures local phase variations after convolution with wavelet filters, normalized by a 
sigmoid function to (0, 1) range. The degree of blurring was then normalized to 
between 0 and 255 and we calculated its distribution (normalized histogram). We 
defined the blur index using the 98th percentile of the above distribution of the 
variance of wavelet coefficients.

Statistical analysis
We used the Mann-Whitney test to evaluate the significant differences in the blur 
index between the non-flipped and flipped groups.

RESULTS
Classification results of the paired DPIs
The analysis results did not change in 449 tissues; however, the results changed in 135 
tissues (23.1%), either from positive to negative or from negative to positive (Table 1). 
Therefore, 135 tissues were in the flipped group.

On the other hand, 100% (584/584) of the concordance rate was observed between 
the classification results of the first analysis and the second analysis of the identical 
DPIs by our ML-aided classification model.

Comparison of the DPI color
We compared the medians of the L1-norm in the non-flipped and flipped groups and 
found no significant difference (Table 2).

Comparison of the blur index of the DPIs
Next, we calculated the blur index of the paired DPIs and compared it between the 
non-flipped group and the flipped group. The flipped group showed a significantly 
higher blur index than the non-flipped group (Figure 2). Figure 3 shows a 
representative case of the flipped group’s results.

DISCUSSION
We observed 23.1% of discordant classification results between the paired DPIs 
obtained from two independent scans of the same microscope slide. Furthermore, we 
detected differences in blur (not color) of the paired DPIs as a potential cause of 
different classification results.

Differences in the colors of DPIs did not correlate with discordant classification 
results in this study. Since differences in the colors of digitized images reportedly 
result in different features of digitized images and different data matrices[7], we 
expected the difference in color to reduce reproducibility in our ML-aided 
classification model. However, the distribution of RGB value did not differ 
significantly between the paired DPIs and did not seem to cause discordant 
classification results. Nevertheless, color differences should be a concern because the 
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Table 1 Concordance of classification results between the paired digital pathology images

The second scan

Positive Negative Unclassifiable

Positive 248 66 0

Negative 69 197 2

The first scan

Unclassifiable 1 0 4

Table 2 Comparison of pair-wise L1-norm between non-flipped and flipped groups

Color channel Median of the non-flipped group Median of the flipped group P value

R 0.0350 ± 0.0220 0.0347 ± 0.0217 0.900

G 0.0319 ± 0.0197 0.0313 ± 0.0205 0.931

B 0.0266 ± 0.0148 0.0250 ± 0.0190 0.255

Figure 2  Differences in the blur index between the “Non-flipped” and “Flipped” groups.

color of HE stained slides obviously differed between different pathological 
laboratories. In such cases, a discordant classification result was observed in the same 
specimen with an identical pathological diagnosis (unpublished data). Therefore, even 
DPIs taken from the same microscope slide might show discordant classification 
results from obvious color changes due to the miscalibration of an imaging device.

Although qualitative changes in the blurs of the paired DPIs were macroscopically 
recognizable, their qualitative assessment was difficult. However, we developed a blur 
index that provided a quantitative comparison and detected the significant differences 
in blurs between the DPIs of the non-flipped group and those of the flipped group. 
Reportedly, blur can potentially influence the stability of features of a digitized 
image[7]; so, first, our study demonstrated that quantifying blurs revealed their impact 
on classification results.

A significant portion of cases showed discordant classification results; however, our 
ML-aided classification model worked efficiently for our intended purpose. 80.7% of 
all the flipped cases was non-tumor tissue, and 6.5% was carcinoma tissue. Our ML-
aided classification model set a lower threshold than the best one (i.e., the threshold 
that yields a minimum error rate) because we made our model minimize false negative 
results, classifying carcinoma as non-tumor tissue. This lower threshold caused more 
frequent flipped cases in non-tumor tissue. In other words, the larger the percentage of 
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Figure 3  Typical examples of differences in the blurring level. A: Whole-slide image at the first scan; B: Whole-slide image at the second scan; C: The 
blurring level at the first scan (blur index = 115); D: The blurring level at the second scan (blur index = 78); E: A heat map representation of the blurring level at the 
first scan; F: A heat map representation of the blurring level at the second scan.

non-tumor tissue included in the dataset, the greater the total number of flipped cases. 
Our dataset contained non-tumor tissue images 4.4 times more than cancerous tissue 
images, so the total number of flipped cases increased. Slide scanners have been 
broadly used to obtain DPIs for ML-aided image analysis, so the issue of blurring 
should be mentioned more in the implementation of DPI analysis and in the 
development of more robust ML-aided classification models.

This study had some limitations. First, the robustness of a classification model for 
DPIs differs depending on the objects being analyzed, the method of machine-
learning, and the quality and quantity of the dataset for learning. Therefore, the issue 
mentioned above should not be overgeneralized. However, a classification model for 
medical images (including DPI) should be tested to find if image blur might reduce 
reproducibility of the classification model. Second, we only investigated differences in 
color and blur in this study, while there may be another potential cause of discordant 
classification.

In conclusion, our findings suggest that differences in the blur in paired DPIs from 
the same microscope slide could cause different classification results by an ML-aided 
classification model. If an ML model has sufficient robustness, these slight differences 
in DPI might not cause a different classification result. However, an ML-aided 
classification model for DPI should be tested for this potential cause of the reduced 
reproducibility of the model. Since our method provides a quantitative measure for 
the degree of blurring, it is possible to avoid discordance through excluding these 
disqualified slides using this measure. However, further experiments are required to 
establish more reliable measure together with other factors, for instance, such as tissue 
area size and nuclear densities. In a future study, we will develop a slide scanner 
and/or a preprocessing method that will minimize DPI blur.
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ARTICLE HIGHLIGHTS
Research background
Little attention has been paid to the frequency and preventable causes of discordant 
classification results of digital pathological image (DPI) analysis using machine 
learning (ML) for the heterochronously obtained DPIs.

Research motivation
Authors compared the classification results between paired DPIs of the same 
microscope slide obtained from two independent scans using the same slide scanner.

Research objectives
In this study, the authors elucidated the frequency and preventable causes of 
discordant classification results of DPI analysis using ML for the heterochronously 
obtained DPIs.

Research methods
Authors created paired DPIs by scanning 298 hematoxylin and eosin stained slides 
containing 584 tissues twice with a virtual slide scanner. The paired DPIs were 
analyzed by our ML-aided classification model. Differences in color and blur between 
the non-flipped and flipped groups were compared by L1-norm and a blur index.

Research results
Discordant classification results in 23.1% of the paired DPIs obtained by two 
independent scans of the same microscope slide were observed. No significant 
difference in the L1-norm of each color channel between the two groups; however, the 
flipped group showed a significantly higher blur index than the non-flipped group.

Research conclusions
The results suggest that differences in the blur - not the color - of the paired DPIs may 
cause discordant classification results.

Research perspectives
An ML-aided classification model for DPI should be tested for this potential cause of 
the reduced reproducibility of the model. In a future study, a slide scanner and/or a 
preprocessing method of minimizing DPI blur should be developed.
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