SYSTEMATIC REVIEWS

META-ANALYSIS
ABOUT COVER
Peer Reviewer of World Journal of Meta-Analysis, Bing Han, PhD, Doctor, Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China. 1102625821@qq.com

AIMS AND SCOPE
The primary aim of World Journal of Meta-Analysis (WJMA, World J Meta-Anal) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality meta-analysis and systematic review articles and communicate their research findings online.

WJMA mainly publishes articles reporting research results and findings obtained through meta-analysis and systematic review in a wide range of areas, including medicine, pharmacy, preventive medicine, stomatology, nursing, medical imaging, and laboratory medicine.

INDEXING/ABSTRACTING
The WJMA is now abstracted and indexed in Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Zi-Hang Xu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
Epidemiology of carbapenem-resistant Acinetobacter baumannii colonization in neonatal intensive care units: A systematic review and meta-analysis

Abstract

BACKGROUND
The rising prevalence of carbapenem-resistant Acinetobacter baumannii (CRAB) in neonatal intensive care units (NICUs) represents an escalating challenge in healthcare settings, particularly in managing hospital-acquired infections (HAIs). Studies across various World Health Organization regions have documented a significant incidence of CRAB-related HAIs, with rates as high as 41.7 cases per 1000 patients in ICUs, accounting for 13.6% of all HAIs. These infections pose a doubled mortality risk compared to infections with carbapenem-susceptible Acinetobacter baumannii. A particularly concerning aspect of CRAB colonization is its asymptomatic nature, enabling its transmission through healthcare workers (HCWs) or the NICU environment to vulnerable neonates with developing
immune systems.

AIM
To explore the prevalence of CRAB colonization in NICUs, focusing on neonates, healthcare workers, and the environmental samples, to enhance epidemiological understanding and inform targeted interventions.

METHODS
We conducted according to PRISMA 2020 checklist guidelines, a comprehensive literature search across multiple databases including MEDLINE (Ovid), EMBASE (Ovid), Global Health (Ovid), Web of Science, and Global Index Medicus. Studies were selected based on predetermined criteria, primarily involving neonates, HCWs, and environmental swabs, using culture or molecular methods to detect CRAB colonization. We excluded studies that did not specifically focus on NICUs, were duplicates, or lacked necessary data. The study selection and quality assessment were conducted independently by two reviewers. Data extraction involved collecting comprehensive details about each study. Our statistical analysis used a random-effects model to calculate the pooled prevalence and confidence intervals, stratifying results by regional location. We assessed study heterogeneity using Cochran’s Q statistic and I^2 statistic, with regression tests employed to evaluate potential publication bias.

RESULTS
We analyzed 737 records from five databases, ultimately including 13 studies from ten countries. For neonates, the pooled prevalence was 4.8% (95%CI: 1.1% to 10.5%) with the highest rates observed in South-East Asia (10.5%; 95%CI: 2.4% to 23.3%). Among HCWs, a single Indian study reported a 3.3% prevalence. Environmental samples showed a prevalence of 2.3% (95%CI: 0% to 9.3%), with the highest rates in South-East Asia (10%; 95%CI: 4.2% to 17.7%). Significant heterogeneity was found across studies, and no publication bias was detected.

CONCLUSION
This systematic review highlights a significant prevalence of CRAB colonization in neonates across various regions, particularly in South-East Asia, contrasting with lower rates in high-income countries. The study reveals a gap in research on HCWs colonization, with only a single study from India reporting moderate prevalence. Environmental samples indicate moderate levels of CRAB contamination, again higher in South-East Asia. These findings underscore the need for more extensive and focused research on CRAB colonization in NICUs, including exploring the roles of HCWs and the environment in transmission, understanding antimicrobial resistance patterns, and developing effective prevention measures.

Key Words: Colonization; Carbapenem-resistant *Acinetobacter baumannii*; Neonatal intensive-care unit

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study reveals a notable prevalence of carbapenem-resistant *Acinetobacter baumannii* colonization in neonatal intensive care units. The analysis revealed a pooled prevalence of 4.8% in neonates, with a considerable gap in research on healthcare workers colonization and a 2.3% prevalence in environmental samples. The substantial heterogeneity across studies and the observed regional variations underlines the need for more targeted research.

URL: https://www.wjgnet.com/2308-3840/full/v12/i1/90229.htm

DOI: https://dx.doi.org/10.13105/wjma.v12.i1.90229

INTRODUCTION
The escalation of carbapenem-resistant *Acinetobacter baumannii* (CRAB) in neonatal intensive care units (NICUs) is a mounting concern in the healthcare settings. A study has highlighted the significance of CRAB healthcare-acquired infections (HAIs) in various World Health Organization (WHO) regions, revealing an incidence of 21.4 (95%CI: 11.0 to 41.3) cases per 1000 patients in hospital settings, and a higher incidence of 41.7 (95%CI: 21.6 to 78.7) cases per 1000 patients in intensive care units[1]. CRAB accounts for 13.6% (95%CI: 9.7 to 18.7%) of all HAIs in these settings[1]. Another study has highlighted the severe implications of CRAB infections, with patients exhibiting a doubled mortality risk compared to those with carbapenem-susceptible *Acinetobacter baumannii* (CSAB), evidenced by a pooled crude odds ratio of 2.22 (95%CI: 1.66 to 2.98)[2]. A retrospective study from Thailand has highlighted the economic impact of CRAB infections in
ventilator-associated pneumonia (VAP), where CRAB VAP patients incurred a median total hospital cost of US$11773, higher than the US$9735 for CSAB VAP patients[9].

The asymptomatic nature of CRAB colonization and the possibility of its transmission to vulnerable neonates with developing immune systems through healthcare workers (HCWs) or the NICU environment exacerbate this risk[4,5]. This scenario is challenging because the absence of symptoms in colonized individuals makes early detection and isolation difficult, increasing the risk of transmission to vulnerable newborns. The findings from a study investigating nosocomial rectal CRAB colonization in a tertiary-care hospital identified several significant risk factors associated with CRAB colonization, notably the use of permanent devices (OR 10.15, 95%CI: 2.27 to 45.39), mechanical ventilation (OR 40.01, 95%CI: 4.05 to 395.1), urinary catheters (OR 4.9, 95%CI: 1.52 to 16.19), a poorer prognosis (OR 5.45, 95%CI: 1.87 to 15.89), increased length of stay (OR 1.03, 95%CI: 1.01 to 1.05), and carbapenem use (OR 5.39, 95%CI: 1.14 to 25.44)[6]. Effective management in NICUs demands a comprehensive strategy encompassing regular screening of neonates and HCWs, strict hand hygiene, thorough environmental cleaning and disinfection, and adherence to infection control protocols[7]. CRAB, identified by the WHO and the Infectious Diseases Society of America (IDSA) as a high-priority pathogen, poses a significant threat due to its resistance to a wide range of antibiotics[8,9]. CRAB’s resistance to a broad range of antibiotics, including cephalosporins, fluoroquinolones, and commonly used hospital antibiotics like piperacillin, ticarcillin, and ampicillin, limits treatment options[10]. Colistin and polymyxin B show the lowest resistance rates, suggesting potential therapeutic alternatives[10]. The prevalence of CRAB colonization in NICUs is subject to significant variation, reflecting disparities in healthcare practices, hospital environments, geographic locations, and patient demographics. Despite the critical impact of CRAB in NICUs, current epidemiological understanding, particularly regarding neonates, HCWs, and the NICU environment, remains limited. The objective of this review is to examine the prevalence of CRAB colonization in NICUs, focusing on neonates, HCWs, and the NICU environment.

MATERIALS AND METHODS

Protocol registration and review design
The protocol was registered on the International Prospective Register of Systematic Reviews, PROSPERO, as CRD-42023463547 and to conduct this systematic review, the study design followed PRISMA 2020 guidelines[11].

Search strategy
The search strategy included looking through five databases, such as MEDLINE (Ovid), EMBASE (Ovid), Global Health (O-vid), Web of Science, and Global Index Medicus (Supplementary Table 1). The databases query was done on September 13, 2023. The reference list of pertinent papers was also hand-searched. The review focused on papers published in English or French that were not time limited.

Eligibility criteria
After removing duplicates from the detected papers across bibliographic databases, the titles and abstracts of the remaining articles were independently examined by two reviewers. The studies were chosen based on preset inclusion criteria, which included studies that recruited neonates, HCW, and swabbed inert surfaces in environment to investigate CRAB colonization or carriage using culture or molecular techniques. Studies focusing on clinical CRAB infections, CRAB outbreaks, research done outside of NICUs, review studies, duplicates, and those without abstracts or complete texts were removed. Publications not in English or French, articles with irrelevant or inadequate data were all excluded from the analysis.

Study selection
The selection was done by two independent reviewers (DSM and SK) based on the predefined inclusion and exclusion criteria. The reviewers individually examined all of the publication titles and abstracts to find potentially qualifying studies. The entire texts of these possibly qualifying papers were then evaluated to decide their inclusion in the review. Any discrepancies or contradictions were reviewed and resolved by consensus. If an agreement could not be reached, a third reviewer was consulted.

Data extraction
SK and DSM independently examined the data retrieved from selected studies. Data was extracted online by google form and summarized in a Microsoft Excel file. From each study we collected first author names, publication year, reason of exclusion if study were excluded, study design, country of study, sampling method, setting, levels of care, number of sites, timing of samples collection, countries; Geographic regions; number of participants screened, number of participants colonized with CRAB, isolation method utilized.

Quality assessment
The studies that met the inclusion criteria were rated for methodological quality by two investigators (SK and DSM) independently. Quality assessment of the included studies were done by using the Hoy et al[12] tools (Supplementary Table 2). Any disagreements were settled verbally, and consensus was obtained.
Data analysis
The analysis was carried out with R software version 4.0.3 utilising the statistical software packages meta (version 4.18-2) and metafor (version 3.0-2)[13,14]. The pooled percentage and 95% confidence interval (CI) were calculated using a random-effects model[15]. Results in subgroup analysis were stratified by geographical and regional location. Heterogeneity of study effect sizes was evaluated using Cochran’s Q statistic and I^2 statistic[16,17]. Significant heterogeneity is defined by a P value < 0.05 for the Cochran Q statistic or by I^2 values > 50%. Regression tests were used to investigate publication bias[18].

RESULTS

Study selection
A total of 737 records were identified from five databases: MEDLINE ($n = 98$), EMBASE ($n = 337$), Global Health ($n = 117$), Web of Science ($n = 164$), and Global Index Medicus ($n = 21$). Of these, 454 records were screened, leading to the exclusion of 107 reports. Subsequently, 347 reports were sought for retrieval, but 14 could not be retrieved. Upon assessing the 333 retrieved reports for eligibility, 320 were excluded for various reasons, including the absence of CRAB colonization or carriage data ($n = 225$), language barriers ($n = 41$), lack of NICU data ($n = 36$), and other categorizations such as reviews, case reports, article comments, duplicates, editorials, and outbreak investigations. Ultimately, 13 studies were included in the analysis (Figure 1)[19-31].

Study characteristics
We gathered published data from ten countries, with Brazil, Morocco, and Thailand each contributing two studies, and Egypt, Germany, India, Italy, Netherlands, Serbia, and Türkiye each providing one (Supplementary Table 3). Geographically, the majority of the studies hailed from Europe ($n = 5$), followed by the Eastern Mediterranean and South-East Asia each with three studies, and America with two studies (Figure 2). When segmented by income, most of the studies were from upper-middle-income countries ($n = 6$), with lower-middle-income countries providing four and high-income...
Table 1 Summary of meta-analysis results for estimates of carbapenem-resistant *Acinetobacter baumannii* colonization in neonatal intensive care units

<table>
<thead>
<tr>
<th></th>
<th>Prevalence % (95%CI)</th>
<th>95% prediction interval</th>
<th>N studies</th>
<th>N participants</th>
<th>I² (95%CI)</th>
<th>H (95%CI)</th>
<th>P heterogeneity</th>
<th>P egger test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonates</td>
<td>4.8 [1.1-10.5]</td>
<td>[0-35.7]</td>
<td>10</td>
<td>6610</td>
<td>8.7 [7.6-9.9]</td>
<td>98.2 [98.3-99]</td>
<td>< 0.001</td>
<td>0.718</td>
</tr>
<tr>
<td>HCWs</td>
<td>3.3 [0-13.8]</td>
<td>NA</td>
<td>1</td>
<td>30</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Environmental samples</td>
<td>2.3 [0-9.3]</td>
<td>[0-51.9]</td>
<td>4</td>
<td>530</td>
<td>2.7 [1.7-4.2]</td>
<td>86.4 [67-94.4]</td>
<td>< 0.001</td>
<td>0.989</td>
</tr>
</tbody>
</table>

1. I² is a measure of the extent of heterogeneity, a value of I² = 1 indicates homogeneity of effects and a value of I² > 1 indicates a potential heterogeneity of effects.
2. H describes the proportion of total variation in study estimates that is due to heterogeneity, a value > 50% indicates presence of heterogeneity.

CI: Confidence interval; N: Number; 95%CI: 95% Confidence interval; NA: Not available; HCWs: Healthcare workers.

countries three. The majority of these studies were recent, with various participant recruitment periods ranging from January 1989 to February 2020. Concerning the populations under study, neonates dominated the research (n = 9), compared to environmental samples (n = 4) and HCWs (n = 1). Different methods, such as culture and biochemical (API gallery), were used for CRAB identification, with disk diffusion test being the most common antimicrobial susceptibility testing method and following mainly Clinical and Laboratory Standards Institute guidelines. The antibiotics primarily used for these tests were carbapenem including imipenem and meropenem. Samples varied from endotracheal aspirates and environmental samples to various swabs like rectal and surface. A study in Brazil from September 2013 to September 2015 involving 21 neonates tested CRAB antimicrobial susceptibility and reported 100% resistance to ampicillin/sulbactam, piperacillin/tazobactam, ceftazidime, ceftriaxone, cefepime, gentamicin, and ciprofloxacin, 76.2% to tigecycline, 47.6% to amikacin, and no resistance to colistin[24]. All the studies reviewed had a moderate risk of bias (Supplementary Table 4).

Prevalence of CRAB colonization in neonates in neonatal intensive care units

The prevalence of CRAB colonization in neonatal intensive care units for neonates was 4.8% (95%CI: 1.1 to 10.5%) based on 10 studies with 6610 participants, with a heterogeneity of P = 98.7% (95%CI: 98.3 to 99), indicating significant heterogeneity (Figure 3). A study in Germany during the study period from November 2016 to March 2018 reported a prevalence of 0% among 584 preterm infants and severely ill neonates, including those with very low birth weight[20]. In Serbia, from December 2017 to April 2018, found a colonization prevalence of 13.6% among 103 premature neonates, with 14 neonates testing positive for CRAB[26]. A study in Thailand, during the study period from January 2015 to September 2015, reported a prevalence of 27.9% among 660 outborn neonates, with 184 of these neonates testing positive for CRAB colonization[29]. In a study in Thailand, during the preintervention period from January 2011 to December 2013, which involved pasteurization cleaning of a reused ventilator circuit and daily cleaning of the NICU environment with 0.5% NaOCl, the prevalence was 14.0% among 1437 neonates, with 201 neonates testing positive for CRAB[31]. During the intervention period from January 2014 to December 2014, which implemented the use of disposable HMEs, HME equipment for all ventilated neonates, 0.5% NaOCl for NICU cleaning, 0.05% NaOCl for neonatal environment cleaning, and ongoing education for HCWs about HME and NaOCl use, the prevalence dropped to 5.1% among 455 neonates, with 23 neonates testing positive. In the postintervention period spanning from January 2015 to December 2017, which maintained the use of disposable HMEs and HME equipment for all ventilated neonates, 0.5% NaOCl for NICU cleaning, and 0.05% NaOCl for neonatal environment cleaning without additional training for HCWs, the prevalence further decreased to 2.2% among 1475 neonates, with 33 neonates found to be colonized with CRAB. P values for heterogeneity were significant at less than 0.001, while the Egger test results, indicative of no publication bias was 0.718 (Table 1).

Prevalence of CRAB colonization in healthcare workers, and environmental samples in neonatal intensive care units

For HCWs, the prevalence was 3.3% (95%CI: 0 to 13.8) from a singular study conducted in India and involving 30 participants. In the case of environmental samples, the prevalence was reported at 2.3% (95%CI: 0 to 9.3) from four studies with 530 samples, showcasing a heterogeneity of P = 86.4% (95%CI: 67 to 94.4) (Figure 4). P values for heterogeneity were significant at less than 0.001, while the Egger test results, indicative of no publication bias was 0.989 (Table 1).

Subgroup analysis

In a subgroup analysis of a systematic review aimed at describing the colonization of CRAB in neonatal intensive care units, among neonates, Serbia reported the highest prevalence at 13.6% (95%CI: 7.6% to 21%) followed by Thailand with 10.5% (95%CI: 2.4% to 23.3%) and Türkiye with 7.2% (95%CI: 5.5% to 9.2%) (Supplementary Table 5). When grouped by WHO regions, South-East Asia had the highest prevalence at 10.5% (95%CI: 2.4% to 23.3%), while Europe reported a prevalence of 3.1% (95%CI: 0% to 11.9%). By World Bank Income Groups, upper-middle-income countries showed the highest colonization at 8% (95%CI: 2.5% to 16.1%). For environmental samples, India reported the highest prevalence at...
10% (95%CI: 4.2% to 17.7%), followed by Morocco at 5.2% (95%CI: 2.9% to 8.1%). In the WHO regional breakdown for environmental samples, South-East Asia had a prevalence of 10% (95%CI: 4.2% to 17.7%). The differences in prevalence among country subtypes for both neonates and environmental samples were significant with P values less than 0.001. In contrast, differences among the WHO regions for environmental samples were not statistically significant with a P value of 0.187.
DISCUSSION

The present systematic review is the first to examine CRAB colonization in neonates, HCWs, and environmental samples in NICUs in ten countries, encompassing 13 included studies. The review found a substantial variability in CRAB colonization rates among neonates, with a pooled prevalence of 4.8% (95%CI: 1.1% to 10.5%). For HCWs, a single study from India reported a 3.3% prevalence, while environmental samples showed a pooled prevalence at 2.3% (95%CI: 0% to 9.3%). South-East Asia recorded the highest prevalence of CRAB colonization for both neonates (10.5%; 95%CI: 2.4% to 23.3%) and environmental samples (10%; 95%CI: 4.2% to 17.7%). High-income countries exhibited minimal prevalence of CRAB colonization in these categories. A Brazilian study involving neonates found 100% resistance to several antibiotics, but no resistance to colistin. In Thailand, interventions like the use of disposable ventilation equipment and improved cleaning protocols significantly reduced CRAB prevalence in NICUs.

The review identifies a pooled prevalence of 4.8% (95%CI: 1.1% to 10.5%) among neonates, with notable geographical variability, highlighting the influence of regional socioeconomic factors and healthcare practices. South-East Asia showed the highest prevalence at 10.5% (95%CI: 2.4% to 23.3%), contrasting with minimal rates in high-income countries. This disparity in CRAB colonization rates may be attributed to infection control standards, healthcare infrastructures, distinct local healthcare protocols, environmental conditions, and variations in antibiotic usage, which warrant further detailed investigation to understand their contributions to these regional differences[7,32,33]. However, a significant limitation is the absence of data on neonatal length of stay in NICUs in included studies, a critical factor in assessing colonization risk[34]. Another limitation of this study is the absence of data from low-income countries, which potentially limits the generalizability of the findings. There is a clear need for further research on CRAB in NICUs from low- and middle-income countries.

The review also points to a significant knowledge gap regarding HCW colonization, with only one study from India indicating a 3.3% prevalence. Given the potential of HCWs as vectors for asymptomatic transmission of CRAB to highly susceptible neonates, this lack of data hampers the development of comprehensive infection control strategies in non-outbreak settings in NICUs[35]. Environmental samples revealed a pooled prevalence of 2.3% (95%CI: 0% to 9.3%), with a peak prevalence of 10% in South-East Asia (95%CI: 4.2% to 17.7%), suggesting that hospital environments, particularly in resource-limited settings, can act as reservoirs for CRAB, facilitating its spread within NICUs[5,36].

Antimicrobial resistance patterns in neonates are poorly represented in the literature, with only one Brazilian study included, reporting a 100% resistance rate to several antibiotics except for colistin. This finding aligns with Lima’s 2019 study, which documented high resistance rates to various antibiotics in CRAB isolates from burn injury patients[10]. The emerging challenge in treating CRAB infections is evident, highlighting the urgent need for judicious antibiotic use and alternative therapeutic strategies[5,37].

In terms of preventive measures, the review includes a study from Thailand, demonstrating a significant reduction in CRAB prevalence in NICUs following specific interventions. This contrasts with Tomczyk’s 2019 review, which provides a broader view of effective infection prevention and control measures across various healthcare settings[38]. The specific challenges and needs of neonatal populations in NICUs, however, remain under-researched, underscoring the necessity for more focused interventional studies on effective preventive strategies for this vulnerable group.

CONCLUSION

This systematic review finds a notable prevalence of CRAB colonization in neonates, with significant regional differences, being higher in South-East Asia and lower in high-income countries. The research on HCWs colonization is limited, with only one study from India indicating a moderate prevalence. Environmental samples also show a moderate CRAB contamination, with higher rates again observed in South-East Asia. This study highlights the need for more comprehensive
research focused on CRAB on neonatal populations in NICUs, including studies on HCW colonization, environmental contamination, antimicrobial resistance patterns, and effective prevention measures. The development of tailored strategies that address the unique vulnerabilities of neonates in NICUs is essential to combat the threat of CRAB colonization and ensure the safety and health of these patients.

ARTICLE HIGHLIGHTS

Research background
The surge of carbapenem-resistant Acinetobacter baumannii (CRAB) in neonatal intensive care units (NICUs) has emerged as a significant healthcare concern, particularly due to its role in healthcare-acquired infections (HAIs). CRAB doubles the mortality risk compared to patients with carbapenem-susceptible Acinetobacter baumannii.

Research motivation
The asymptomatic nature of CRAB colonization, especially in NICU settings, and its potential transmission through healthcare workers (HCWs) or the environment, intensify the risks to vulnerable neonates with developing immune systems.

Research objectives
This review aims to examine the prevalence of CRAB colonization in NICUs, focusing on neonates, HCWs, and the NICU environment.

Research methods
Our systematic review was conducted following the PRISMA 2020 guidelines. We initiated our search across MEDLINE (Ovid), EMBASE (Ovid), Global Health (Ovid), Web of Science, and Global Index Medicus. We also conducted a manual search through the references of relevant papers. Our inclusion criteria focused on studies in English or French that investigated CRAB colonization in neonates, HCWs, and environmental samples using culture or molecular techniques. Studies that did not focus on NICUs, were duplicates, or lacked adequate data were excluded. A random-effects model was applied to calculate the pooled prevalence and 95% confidence intervals, with subgroup analysis stratified by regional location.

Research results
Our systematic review collated data from 13 studies across ten countries. We found that neonates had a pooled CRAB colonization prevalence of 4.8%, though this varied widely by region, with South-East Asia reporting the highest rates. The prevalence in HCW was only documented in a single study from India, suggesting a significant research gap in understanding the role of HCWs as potential vectors in CRAB transmission. Environmental samples exhibited CRAB presence, with a pooled prevalence of 2.3%, again with the highest rates in South-East Asia.

Research conclusions
The study revealed significant geographical variability in CRAB colonization rates, with a pooled prevalence of 4.8% among neonates and notable higher rates in South-East Asia and lower in high-income countries. A critical gap in research was identified regarding CRAB colonization, with only a single study from India reporting a prevalence of 3.3%. Environmental samples showed a 2.3% pooled prevalence, with the highest rates again in South-East Asia.

Research perspectives
This study underscores the necessity of tailored research and intervention strategies in NICUs to address the unique challenges of neonatal populations and combat the threat of CRAB colonization effectively.

FOOTNOTES

Author contributions: Mbaga DS, Kenmoe S, Njiki Bikot J and Riwom Essama SH were responsible for conception and design of the study as well as project administration; Mbaga DS, Kenmoe S, Nkie Esemu S, Kaah Keneh N, Tatah Kihla Akoachere JF, Gonsu Kamga H, Ndip Ndip R, Ebogo-Belobo J, Kenne-Ndé C, Mbaga DS, Tendongfor N, Mande Ndip L, Assam Assam JP, Njiki Bikot J and Riwom Essama SH were responsible for the data curation and interpretation of results; Kengne-Nde C and Kenmoe S were responsible for statistical analysis; Kenmoe S Njiki Bikot J and Riwom Essama SH were responsible for the project supervision; Mbaga DS and Kenmoe S wrote the original draft; All authors critically reviewed the first draft and approved the final version of the paper for submission, and have read and approve the final manuscript.

Conflict-of-interest statement: All authors declare that they have no conflicts of interest.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.
REFERENCES

Control Hosp Epidemiol 10.18295/squmj.2018.18.01.012

Infect Control 10.1017/ice.2020.35

Exploring influences and risk of bias of studies on return to sport and work after lateral ankle sprain: A systematic review and meta-analysis

Priscilla A Maria, Gwendolyn Vuurberg, Gino MMJ Kerkhoffs

Abstract

BACKGROUND

Lateral ankle sprains are the most common traumatic musculoskeletal injuries of the lower extremity, with an incidence rate of 15%-20%. The high incidence and prevalence highlights the economic impact of this injury. Ankle sprains lead to a high socioeconomic burden due to the combination of the high injury incidence and high medical expenses. Up to 40% of patients who suffer from an ankle sprain develop chronic ankle instability. Chronic instability can lead to prolonged periods of pain, immobility and injury recurrence. Identification of factors that
fluence return to work (RTW) and return to sports (RTS) after a lateral ankle sprain (LAS) may help seriously reduce healthcare costs.

AIM

To explore which factors may potentially affect RTW and RTS after sustaining an LAS.

METHODS

EMBASE and PubMed were systematically searched for relevant studies published until June 2023. Inclusion criteria were as follows: (1) Injury including LAS or chronic ankle instability; (2) Described any form of treatment; (3) Assessment of RTW or RTS; (4) Studies published in English; and (5) Study designs including randomized controlled clinical trials, clinical trials or cohort studies. Exclusion criteria were: (1) Studies involving children (age < 16 year); or (2) Patients with concomitant ankle injury besides lateral ankle ligament damage. A quality assessment was performed for each of the included studies using established risk of bias tools. Additionally quality of evidence was assessed using the GRADEpro tool in cases where outcomes were included in the quantitative analysis. A best evidence synthesis was performed in cases of qualitative outcome analysis. For all studied outcomes suitable for quantitative analysis a forest plot was created to calculate the effect on RTW and RTS.

RESULTS

A total of 8904 patients were included in 21 studies, 10 randomized controlled trials, 7 retrospective cohort studies and 4 prospective cohort studies. Fifteen studies were eligible for meta-analysis. The overall RTS rate ranged were 80% and 83% in the all treatments pool and surgical treatments pool, respectively. The pooled mean days to RTS ranged from 23-93 d. The overall RTW rate was 89%. The pooled mean time to RTW ranged from 5.8-8.1 d. For patients with chronic ankle instability, higher preoperative motivation was the sole factor significantly and independently ($P = 0.001$) associated with the rate of and time to RTS following ligament repair or reconstruction. Higher body mass index was identified as a significant factor ($P = 0.04$) linked to not resuming sports or returning at a lower level (median 24, range 20-37), compared to those who resumed at the same or higher level (median 23, range 17-38). Patients with a history of psychological illness or brain injury, experienced a delay in their rehabilitation process for sprains with fractures and unspecified sprains. The extent of the delayed rehabilitation was directly proportional to the increased likelihood of experiencing a recurrence of the ankle sprain and the number of ankle-related medical visits. We also observed that 10% of athletes who did return to sport after lateral ankle sprain without fractures described non-ankle-related reasons for not returning.

CONCLUSION

All treatments yielded comparable results, with each treatment potentially offering unique advantages or benefits. Preoperative motivation may influence rehabilitation after LAS. Grading which factor had a greater impact was not possible due to the lack of comparability among the included patients.

Key Words: Ankle sprain; Prognostic factors; Bias; Return to work; Return to sport; Preoperative motivation

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our findings indicated that all treatments yielded comparable results, with each treatment potentially offering unique advantages or benefits. The effect of preoperative motivation on the delay of rehabilitation after an ankle sprain can be substantial and multifaceted. Psychological factors can influence an individual’s perception of the severity of their injury and their perceived control over the recovery and can have an impact on an individual’s willingness, motivation and ability to engage in the rehabilitation process. Lack of studies and the different ways that return to sport or return to work was defined can cause potential limitations in the interpretation of the results.

Citation: Maria PA, Vuurberg G, Kerkhoffs GM. Exploring influences and risk of bias of studies on return to sport and work after lateral ankle sprain: A systematic review and meta-analysis. *World J Meta- Anal* 2024; 12(1): 87026

URL: https://www.wjgnet.com/2308-3840/full/v12/i1/87026.htm

DOI: https://dx.doi.org/10.13105/wjma.v12.i1.87026

INTRODUCTION

Ankle sprains are the most common traumatic musculoskeletal injury of the lower extremities in individuals who engage in physical activity, including both athletes and non-athletes [1-3]. This is especially applicable for lateral ankle sprains (LAS), which account for 80% of ankle sprains, with an incidence rate of 15%-20%[1-4]. Sports such as basketball, soccer, running, American football and volleyball are specifically associated with an increased risk of ankle sprains[5-8]. Every
day, approximately one LAS is recorded per 10000 people in Western countries[9]. Annually, approximately 1.6 million patients suffer from an LAS of which as many as 8000 are hospitalized in the United States alone[10]. In the United Kingdom the incidence at emergency departments was estimated to be 5.7 per 10000 persons per year[10,11].

The estimated incidence of ankle sprains, including both first-time and recurrent sprains, is between 2.15 and 3.29 per 1000 persons per year[12]. Up to 40% of these patients develop chronic ankle instability (CAI), which can lead to prolonged periods of pain, immobility and injury recurrence[13,14]. Yet despite the high incidence and high risk of developing CAI, only about 50% of the patients who sustained an LAS seek medical attention[15].

Ankle injuries not only inflict pain and functional restriction but also result in sick days at work and the inability to participate in sports. Additionally, LASs are directly correlated to low work efficiency in the days following ankle trauma, depending on the work-related ankle loading demands[10]. The high incidence and prevalence in combination to loss of working days and high medical expenses highlights the great socioeconomic impact of this injury. The total costs per individual for LAS management varies widely ranging from 360 to 1300 euros. In the Netherlands, approximately 187.2 million euros are spent annually on the treatment of sports-related ankle sprains alone[13,14].

The journey towards optimal recovery, particularly the return to sport (RTS) and return to work (RTW) following an ankle sprain has been a focal point of extensive research in recent years. Authors typically advocate for nonsurgical treatments, such as immobilization, bandages, tape, braces, and balance training, as primary options for managing lateral ankle sprains.

As the understanding of the multifaceted nature of ankle sprains has evolved, so too has the emphasis on elucidating the diverse factors that influence the rehabilitation process. This meta-analysis aimed to synthesize the latest research findings pertaining to the intricate interplay of physical, psychological and biomechanical elements that contribute to RTS and RTW after LAS.

MATERIALS AND METHODS

Search strategy

The purpose of this study was to determine the top ten factors that influence RTW and RTS in patients who sustained an LAS. In April 2023, a systematic search was conducted in EMBASE and PubMed to identify all relevant studies published until May 2023. The search consisted of the search entries: (1) Ankle sprain; (2) Return to work and return to sports; and (3) Treatments and their corresponding synonyms (Supplementary material).

Hypothesis

Null hypothesis (H0): There is no significant influence of specific interventions, rehabilitation strategies or individual factors on the RTS and RTW after an LAS.

Alternative hypothesis (H1): Certain interventions, rehabilitation strategies or individual factors significantly influence the rate and success of RTS and RTW following an LAS.

Selection criteria

Two authors independently screened the identified studies for relevance based on titles and abstracts using Rayyan QCRI [16] as data management software. If there was any disagreement the studies were openly discussed to reach consensus on initial inclusion or exclusion. Full texts of all potentially relevant studies were screened and selected based on the predefined inclusion and exclusion criteria. The selection process is shown in the PRISMA Flow Diagram in Figure 1[17].

Studies with the following criteria were included: (1) Patients who sustained an LAS or suffered from CAI; (2) Patients received any form of treatment; (3) They assessed RTW or RTS; (4) Studies were published in English; and (5) The study designs included randomized controlled clinical trials (RCTs), clinical trials or cohort studies. Exclusion criteria were: (1) Studies involving children (age < 16 year); or (2) Patients with solely concomitant ankle injury besides lateral ankle ligament damage.

Quality assessment

A comprehensive quality assessment was conducted by scoring the risk of bias of each of the included studies using established tools and scales depending on each study design.

For the cohort studies and clinical trials, the Risk of Bias in Non-randomized Studies-Interventions[18] was used to assess the risk of bias in non-randomized therapy studies. The risk was scored as ‘low’, ‘moderate’, ‘serious’ or ‘critical risk’. The lowest scored category was decisive for the overall risk of bias. For RCTs, the Cochrane Risk of Bias Tool[19] was used to assess the risk of bias. The risk of bias for the RCTs was scored as ‘low’, ‘high’ or ‘unclear’ per key domain. Overall low risk of bias was only assigned to studies that scored low risk of bias for all key domains. When one or more key domains were scored as high risk of bias, the overall risk of bias was scored as being high. All other scenarios were scored ‘unclear’ for the overall risk of bias.

Additionally, quality of evidence was assessed per outcome. The quality of summarized evidence in the quantitative analysis was assessed using the GRADEpro GDT tool[20]. Quality of evidence was scored as ‘high’, ‘substantial’, ‘moderate’, ‘low’ or ‘very low’. In cases where < 3 studied the same outcome and a meta-analysis could not be performed, outcomes were included in the qualitative assessment. The quality of these outcomes was scored using a best evidence synthesis[21] (Table 1).
Table 1 Best evidence synthesis for qualitative outcome assessment

<table>
<thead>
<tr>
<th>Level of evidence</th>
<th>Study design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Systematic Review or multiple RCTs</td>
</tr>
<tr>
<td>Level 2</td>
<td>One RCT or multiple comparative studies</td>
</tr>
<tr>
<td>Level 3</td>
<td>One comparative study or non-comparative research</td>
</tr>
<tr>
<td>Level 4</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

RCT: Randomized controlled clinical trials.

Data collection

Study characteristics were collected including the first author, year of publication and study design. Then, baseline characteristics of each study were extracted including number of included patients, patient characteristics (including age, sex and weight), duration of follow-up, treatment type, studied outcomes (minimally including RTW and RTS) and injury recurrence. If reported whether patients represented a specific group within the population (i.e. athletes or military) this was also recorded.

A quantitative and qualitative analysis was performed. For inclusion in the quantitative analysis, at least three studies reporting the same outcome variable were required. In cases where less than three studies reported the specific outcome measure, or heterogeneity was considerable (≥ 75%), studies were included in the qualitative analysis.

To determine the degree of heterogeneity the I^2 was used. The I^2 was interpreted as 0%-40% representing no important heterogeneity, 30%-49% representing moderate heterogeneity, 50%-90% representing substantial heterogeneity and 75%-100% meaning considerable heterogeneity[22]. For the analysis and calculation of the effect, correction for heterogeneity was performed using a fixed model ($I^2 < 50\%$) or a random effects model ($I^2 \geq 50\%$).
To calculate the effect of each studied outcome (i.e. factor) on RTW and RTS a forest plot was created. Using RevMan (V.5.4, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2020) the mean difference or odds ratio and corresponding 95% confidence interval (95%CI) were calculated. A P value of < 0.05 was considered significant.

RESULTS

Study selection
The initial search identified 957 potential studies. After removing 183 duplicates and screening of titles and abstracts, 59 were selected for full-text review. A secondary search yielded 1158 potential studies. Of these, 78 studies remained after removal of duplicates, exclusion for not meeting eligibility criteria or being previously reviewed in the initial search. After screening the remaining 78 records, 12 studies were selected for full-text assessment. Lastly, a reference search yielded five additional studies. Fifty-nine studies from the initial search, twelve studies from the secondary search and five studies from the reference search remained for full-text assessment. Resulting in a final selection of 21 eligible studies for qualitative and quantitative synthesizes. The inclusion process of studies is illustrated by the PRISMA flowchart in Figure 1. All included studies were published in English. Publication dates of included studies ranged from 1995 to 2023.

Study characteristics
A total of 8904 patients were included in these 21 studies, 10 randomized controlled trials, 7 retrospective cohort studies and 4 prospective cohort studies. Of the studies that provided information on age, the mean age of included patients was 28 years. Of the studies that reported on sex, a total of 957 (36%) were female and 1682 (65%) were male. Eleven studies reported on RTS. Eight studies reported on RTW. These patients received surgical treatment, functional treatment or no treatment. One study reported solely on costs. Within these studies no significant difference was found in age, sex, laterality or between team or individual sports. The follow-up period ranged from 1.5-84.0 mo. Eleven (52%) studies assessed surgical interventions, whereas 9 studies (48%) assessed nonsurgical interventions, such as physical therapy, brace, tape or external support bandage.

Study quality
All 18 included studies were assessed for study quality using corresponding risk of bias tools depending on the study design. Of the 14 included studies a total of 5 studies were cohort studies. From the studies assessed according to the Risk of Bias in Non-randomized Studies-Interventions scale, 100% of studies had an overall moderate risk of bias. The moderate risk of bias was mainly due to moderate assessment of confounders (n = 3), uncertainties in the patient selection process (n = 3) and missing data (Table 3). The lowest risk of bias was seen in the cohort study by White et al.[23], which only scored moderate risk of bias for patient selection.

The remaining nine studies (64%) included RCTs. Only Slatyer et al.[24] scored an overall low risk of bias for study quality. This high risk of bias of the remaining eight studies was explained by unclarity or missing information regarding the blinding of patients and personnel. Two studies, Avci et al.[25] and O’Connor et al.[26] additionally scored a high risk of bias for outcome blinding. Despite the overall high risk of bias, Hupperets et al.[27], Punt et al.[28] and Razzano et al.[29] scored well on five out of six key domains (Table 4).

RTS
Seven studies reported on the rate of RTS on a total of 532 patients (Table 5). Overall, a total of 460 patients were reported to RTS at the final follow-up. The pooled RTS rate from meta-analysis was 80% (95%CI: 71%-87%). The pooled RTS rate for operative treatments from meta-analysis was 83% (95%CI: 69%-92%). No significant difference was found (level 1 of evidence) in the rate of RTS between these four treatment groups (Figure 2). Seven studies reported on time to RTS on a total number of 609 patients (Table 5). The pooled mean days to RTS ranged from 23-70 d (Table 6). The RTS results from the meta-analysis are categorized as low quality of evidence.

A higher percentage (72%) (P = 0.029) of athletes with grade I or II ankle sprain treated with electrotherapy were observed to RTS at the 2-mo mark when compared to a sham treatment (55%). However, by the 4-mo mark, the numbers in both groups were similar (84% and 83%, respectively) without significant difference. The Visual Analog Scale at 30 d after treatment (P = 0.043) favored the electrotherapy treatment group (1) over the sham device group (1.7)[29] (evidence level 2). In another study on patients with grade III CAI, Visual Analog Scale during walking was lower (P = 0.018) at the 3-mo follow-up in favor of arthroscopic treatment (mean ± SD: 2.3 ± 2.5), which had quicker (P = 0.023) RTS when compared to open surgery (mean ± SD: 4.9 ± 2.5)[30] (evidence level 2).

Arthroscopic ligament repair and simultaneous procedures for other pathologies delayed (P < 0.001) mean days to RTS (mean ± SD: 42 ± 19 d, range 1-58) when compared to ligament repair alone without concurrent procedures (mean ± SD: 61 ± 23 d, range 32-123). Ankle stabilization surgery with concurrent procedures allowing weight bearing (mean ± SD: 45 ± 14 d, range 32-75) showed a shorter time to RTS than ankle stabilization surgery with simultaneous procedures that required nonweight bearing after surgery (P < 0.001, mean ± SD: 71 ± 23 d, range 35-123)[31] (evidence level 3). A delayed (P < 0.001) RTS was also seen when associated injuries (median 105 d, range 82-178) were present compared to isolated injuries (median 72, range 56-127) in patients with grade I or II ankle sprain[23] (evidence level 3).

In a single study, it was found that individuals with CAI who had a higher body mass index (BMI) (median 24, range 20-37) were more likely (P = 0.04) to refrain from resuming sports or to RTS at a lower level in contrast to those with a similar or lower BMI (median 23, range 17-38) who were more inclined to resume their sports activities at the same or
Table 2 Study characteristics and patient geographics

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Study design</th>
<th>RTS or RTW</th>
<th>Sample size, n</th>
<th>Sex, F:M</th>
<th>Age, yr (± SD)</th>
<th>Patient population</th>
<th>Follow-up, month (± SD)</th>
<th>Loss to follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avci et al [25], 1998</td>
<td>RCT</td>
<td>RTW</td>
<td>57 (64 enrolled)</td>
<td>20:37</td>
<td>Mean = 28.9 (NR)</td>
<td>General</td>
<td>1.5</td>
<td>7 (11)</td>
</tr>
<tr>
<td>Bouveau et al [32], 2022</td>
<td>RCS</td>
<td>RTS</td>
<td>40</td>
<td>17:23</td>
<td>Median = 32.9 (range: 15.6-59.9)</td>
<td>Active population</td>
<td>Median 28.8</td>
<td>NA</td>
</tr>
<tr>
<td>Cooke et al [15], 2009</td>
<td>RCT</td>
<td>RTW</td>
<td>584</td>
<td>247:337</td>
<td>Mean = 30 (± 10.8)</td>
<td>General</td>
<td>9</td>
<td>34 (6)</td>
</tr>
<tr>
<td>Eiff et al [33], 1994</td>
<td>RCT</td>
<td>RTW</td>
<td>82</td>
<td>NR</td>
<td>Range = 16-50 (mean/median: NR)</td>
<td>Military</td>
<td>12</td>
<td>6 (7)</td>
</tr>
<tr>
<td>Hong et al [40], 2022</td>
<td>PCS</td>
<td>RTS</td>
<td>147</td>
<td>16:131</td>
<td>Mean = 24.4 (± 4.9)</td>
<td>Athletes</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Hou et al [30], 2022</td>
<td>RCT</td>
<td>RTS</td>
<td>70</td>
<td>36:34</td>
<td>Arthroscopic: Mean = 28.3 (± 5.4); open surgery mean = 28.6 (± 4.8)</td>
<td>Active population</td>
<td>24</td>
<td>10 (13)</td>
</tr>
<tr>
<td>Hupperets et al [27], 2009</td>
<td>RCT</td>
<td>RTS</td>
<td>552</td>
<td>248:274</td>
<td>Mean = 28 (± 11.7)</td>
<td>Athletes</td>
<td>12</td>
<td>14 (5)</td>
</tr>
<tr>
<td>Leanderson et al [38], 1995</td>
<td>RCT</td>
<td>RTW</td>
<td>73</td>
<td>25:48</td>
<td>Mean = 28 (NR)</td>
<td>General</td>
<td>2.5</td>
<td>NR</td>
</tr>
<tr>
<td>Lee et al [41], 2019</td>
<td>PCS</td>
<td>RTW</td>
<td>18</td>
<td>9-9</td>
<td>Mean = 19.3 (± 3.0)</td>
<td>Athletes</td>
<td>Mean = 28.8 (± 4.3)</td>
<td>0</td>
</tr>
<tr>
<td>Lee et al [42], 2020</td>
<td>RCT</td>
<td>RTW</td>
<td>125</td>
<td>35:90</td>
<td>Mean = 32 (± 7)</td>
<td>Military</td>
<td>Min 12, Mean 84 (NR)</td>
<td>NR</td>
</tr>
<tr>
<td>Liu et al [43], 2022</td>
<td>RCS</td>
<td>RTS</td>
<td>64</td>
<td>20:44</td>
<td>Mean one anchor = 30.5 (± 9.5); mean two anchor = 29.6 (± 8.0)</td>
<td>Active population</td>
<td>24</td>
<td>NR</td>
</tr>
<tr>
<td>May et al [42], 2022</td>
<td>RCS</td>
<td>RTS</td>
<td>59</td>
<td>21:20</td>
<td>Mean returners = 27.2 (± 9.3); mean non-returners = 27.1 (± 7.7)</td>
<td>Active population</td>
<td>Min 24</td>
<td>18 (30)</td>
</tr>
<tr>
<td>Melton et al [33], 2018</td>
<td>RCT</td>
<td>RTW</td>
<td>127</td>
<td>10:117</td>
<td>Mean = 30.4 (± 6)</td>
<td>Military</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>O’Connor et al [26], 2020</td>
<td>RCT</td>
<td>RTW</td>
<td>60</td>
<td>20:40</td>
<td>Mean = 29.5 (NR)</td>
<td>General</td>
<td>1</td>
<td>10 (17.7%)</td>
</tr>
<tr>
<td>Punt et al [28], 2015</td>
<td>RCT</td>
<td>RTS</td>
<td>90</td>
<td>39:51</td>
<td>Wii Fit™ mean = 34.3 (± 10.7); physical therapy mean = 34.7 (± 11.3); no therapy mean = 33.5 (± 9.5)</td>
<td>General</td>
<td>1.5</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Razzano et al [29], 2019</td>
<td>RCT</td>
<td>RTS</td>
<td>61</td>
<td>28:33</td>
<td>Mean = 23 (NR)</td>
<td>Athletes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Rhon et al [36], 2021</td>
<td>RCS</td>
<td>RTS</td>
<td>6150</td>
<td>8:818:15684</td>
<td>Median = 31.75 (range: NR)a</td>
<td>Military</td>
<td>12</td>
<td>NA</td>
</tr>
<tr>
<td>Slatyer et al [24], 1997</td>
<td>RCT</td>
<td>RTW</td>
<td>364</td>
<td>54:310</td>
<td>Range = 18-35 (median: NR)</td>
<td>Military</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Takao et al [31], 2020</td>
<td>PCS</td>
<td>RTS</td>
<td>93</td>
<td>65:28</td>
<td>Mean = 22.2 (± 12.5)</td>
<td>Athletes</td>
<td>12</td>
<td>NR</td>
</tr>
<tr>
<td>Wang et al [34], 2023</td>
<td>RCS</td>
<td>RTS and RTW</td>
<td>64</td>
<td>39:22</td>
<td>Open mean = 28.6 (± 8.1); arthroscopic mean = 27.1 (± 7.7)</td>
<td>Generalized joint laxity patients</td>
<td>24</td>
<td>3 (4.7)</td>
</tr>
<tr>
<td>White et al [23], 2016</td>
<td>PCS</td>
<td>RTS</td>
<td>42</td>
<td>5:37</td>
<td>Median = 22 (range: NR)</td>
<td>Elite athletes</td>
<td>Median = 44 (range: NR)</td>
<td>0</td>
</tr>
</tbody>
</table>

Data are n (%).
aSex reported on 41 patients excluding the lost to follow (n = 18).
bSex and mean age were only reported for the initially identified cohort (n = 24502) and not for the final included cohort (n = 6150).

F: Female; M: Male; Min: Minimum; NA: Not available; NR: Not reported; PCS: Prospective cohort study; RCS: Retrospective cohort study; RCT: Randomized controlled trial; RTS: Return to sport; RTW: Return to work; SD: Standard deviation.
Table 3 Risk of bias of included cohort studies and clinical trials according to the Risk of Bias in Non-randomized Studies-Interventions

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Confounding</th>
<th>Selection of participants</th>
<th>Classification of interventions</th>
<th>Deviation from intended interventions</th>
<th>Missing data</th>
<th>Measurements of outcomes</th>
<th>Selection of the reported results</th>
<th>Overall risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouveau et al.[32], 2022</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Hong et al [40], 2022</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Lee et al [41], 2019</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Lee et al [42], 2020</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Liu et al [43], 2022</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>May et al [44], 2022</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Melton et al[33], 2018</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Rhon et al [36], 2021</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Takao et al [31], 2020</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>White et al [23], 2016</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Table 4 Quality and risk of bias of included randomized controlled clinical trial studies according to the Cochrane Risk of Bias tool

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective outcome reporting</th>
<th>Overall risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avci et al[25], 1998</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Cooke et al[13], 2009</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Unclear</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Eff et al[35], 1994</td>
<td>Low</td>
<td>Unclear</td>
<td>High</td>
<td>High</td>
<td>Unclear</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Hou et al[30], 2022</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Huppers et al [27], 2009</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Leandersen et al [38], 1995</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>O'Connor et al [24], 2010[26]</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Punt et al [28], 2015</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Razzano et al [29], 2019</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Wang et al [34], 2023</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Slatyer et al [24], 1997</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
higher level. In this study higher preoperative motivation emerged as the sole factor significantly and independently \((P = 0.001)\) associated with both rate of and time to RTS following ligament repair or ligament reconstruction\(^{[32]}\) (evidence level 3).

RTW

Five studies reported on the rate of RTW on a total of 693 patients (Table 7). Overall, a total of 614 patients were reported to have RTS at the last follow-up. The pooled RTS rate from meta-analysis was 89% (95%CI: 79%-95%) (Figure 3). Seven studies reported on time to RTW on a total of 1284 patients (Table 7). The pooled mean time to RTW ranged from 5.8-8.1 d (Table 8). The RTS results from the meta-analysis were categorized as low quality of evidence.

The open modified Broström procedure allowed the majority of patients (73%) in an examined military population with CAI (complaints for > 6 mo) to return to active duty\(^{[33]}\) (evidence level 3). For patients with grade III CAI (complaints for > 6 mo), arthroscopic surgery showed quicker RTS (mean ± SD: 6.8 ± 2.1 d) compared to patients in the open surgery group (mean ± SD: 8.1 ± 2.4 d, \(P = 0.006\))\(^{[34]}\) (evidence level 2).

When comparing immobilization of 3 d to immobilization of 10 d, 53% (\(P < 0.001\)) of the early mobilized patients reported RTS after 10 d compared to 13% of the immobilized patients. A lower percentage of patients in the early mobilization group (57%) reported levels of pain compared to the immobilization group (87%, \(P < 0.05\)). After 3 wk, all patients in both groups were able to return to any type of work, and after 3 mo, they were able to resume full work\(^{[35]}\) (evidence level 2). Comparing two different forms of immobilization for grade III ankle sprain, the Soft Cast\(^{®}\) (2.5 d) demonstrated significantly better results (\(P < 0.001\)) in terms of days away from work compared to Scotchcast Plus\(^{®}\) (6.3 d)\(^{[25]}\) (evidence level 2).

One study observed patients who suffered from an ankle sprain with fracture. They found that those individuals with a previous history of traumatic brain injury, depression, anxiety or substance abuse experienced a delay in their rehabilitation process. In the case of patients diagnosed with post-traumatic stress disorder (PTSD), the impact of the delay was observed in unspecified ankle sprains\(^{[36]}\) (evidence level 2).

DISCUSSION

This meta-analysis sought to consolidate recent research findings on the complex interactions among physical, psychological and biomechanical factors influencing the process of RTS and RTW following LAS. Preoperative motivation, psychological factors, mobilization and weight bearing were factors associated with a faster RTS or RTW. Absent ligament structures and associated injuries were factors that negatively influenced RTS or RTW. The effect of psychological factors on the delay of rehabilitation after an ankle sprain can be substantial and multifaceted. Psychological factors can influence an individual’s perception of the severity of their injury and their perceived control over the recovery process. Depression, anxiety, PTSD and substance abuse can have a significant impact on an individual’s willingness, motivation and ability to engage in the rehabilitation process. Conditions like depression and anxiety may lead to a lack of interest or reduced commitment to the recovery process, resulting in delays in attending therapy sessions, neglecting exercises or not adhering to treatment plans.

After sustaining an ankle sprain, simple tasks such as walking, climbing stairs or standing for extended periods may become challenging and uncomfortable. Fear of re-injury, loss of confidence and psychological distress can arise, impacting mental well-being. A patient with PTSD might be hesitant to engage in activities that remind them of the traumatic event, including activities related to rehabilitation. Fear of re-injury or the pain can also hinder progress and lead to delays. Individuals with a history of substance abuse may rely on maladaptive coping mechanisms to deal with stress and pain. These coping strategies can interfere with the recovery process and lead to setbacks. Patients with work-related injuries were observed to be at a greater risk for experiencing persistent pain. This finding suggests that occupational factors may have a significant impact on pain outcomes and delayed RTW after an ankle sprain\(^{[36]}\). Our results showed that patient satisfaction after modified Broström surgery was very high (88%), even among athletes who were unable to return to preinjury levels. A large proportion of those athletes (46%) did not return to their preinjury activity, but only 37% reported ankle-related reasons for not returning\(^{[33]}\).

In one study, higher BMI was found to be a significant factor associated with not returning to exercise or returning to a lower level (\(P = 0.04\)). Individuals with a higher BMI may experience challenges related to weight-bearing and joint stress during recovery, which can contribute to a longer delay in returning to sports activities. This finding underscores the importance of addressing weight management strategies and implementing appropriate rehabilitation protocols tailored to individuals with higher BMIs to optimize their recovery. Concomitant injuries or additional procedures have shown to have a negative effect on RTS or RTW. Further, it is common to treat an ankle sprain nonsurgically unless chronic complaints persist\(^{[37]}\).

While certain studies have indicated a potential connection between psychological factors and delays in RTW, it is important to recognize that additional variables, such as proprioceptive disturbance, may also contribute to these delays. The high failure rate observed in ankle sprain treatments could also be attributed to neglected associated injuries, such as syndesmosis or cartilage injuries. Another contributing factor might be inadequate treatment that does not align with the specific injury grades and healing phases\(^{[1]}\).

Although patient burden is our primary concern, insights into the costs indicate the need for cost-efficiency to minimize the socioeconomic burden. One study found that the extent of the delayed rehabilitation was directly proportional to the increased likelihood of experiencing a recurrence of the ankle sprain and the number of ankle-related medical visits. Patients who received delayed care had up to ten additional visits. Costs were also 1.13 times more likely...
Table 5 Outcomes of return to sport

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Intervention + patients (n)</th>
<th>Rate of RTS</th>
<th>Time to RTS, d (± SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouiveau et al [32], 2022</td>
<td>Arthroscopic repair (19)</td>
<td>16 (76.2)</td>
<td>NR</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Arthroscopic reconstruction (21)</td>
<td>14 (67.7)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Hong et al [40], 2022</td>
<td>Arthroscopic Broström with isolated injury (122)</td>
<td>122 (100)</td>
<td>Mean = 68.6 (range: 58-105)</td>
<td>P = 0.004</td>
</tr>
<tr>
<td></td>
<td>Arthroscopic Broström with associated injury (123)</td>
<td>125 (100)</td>
<td>Mean = 82.8 (range: 65-132)</td>
<td></td>
</tr>
<tr>
<td>Hou et al [30], 2022</td>
<td>Arthroscopic Broström (36)</td>
<td>NR</td>
<td>Mean = 13.2 (± 2.4)</td>
<td>P = 0.023</td>
</tr>
<tr>
<td></td>
<td>Open Bröstrom (34)</td>
<td>NR</td>
<td>Mean = 18.7 (± 3.1)</td>
<td></td>
</tr>
<tr>
<td>Lee et al [41], 2019</td>
<td>Open Broström early return (8)</td>
<td>8 (100)</td>
<td>Mean = 88.16 (± 9.12)</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Open Broström late return (10)</td>
<td>10 (100)</td>
<td>Mean = 145.92 (± 39.52)</td>
<td></td>
</tr>
<tr>
<td>Liu et al [45], 2022</td>
<td>Arthroscopic one anchor suture (30)</td>
<td>23 (76.7)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arthroscopic two anchor suture (34)</td>
<td>26 (76.5)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>May et al [44], 2022</td>
<td>Modified Broström (41)</td>
<td>22 (53.6)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Punt et al [28], 2015</td>
<td>Wii Fit™ (30)</td>
<td>NR</td>
<td>Mean = 27.4 (± 20.3)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Physical Therapy 930</td>
<td>NR</td>
<td>Mean = 39.7 (± 24.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No treatment (30)</td>
<td>NR</td>
<td>Mean = 23.0 d (± 15.5)</td>
<td></td>
</tr>
<tr>
<td>Razzano et al [29], 2019</td>
<td>Electric Therapy (32)</td>
<td>2 month = 23 (71.9); 4 month = 27 (84.3)</td>
<td>NR</td>
<td>2 month, P = 0.029; 4 month, NS</td>
</tr>
<tr>
<td></td>
<td>No treatment (29)</td>
<td>2 mo = 16 (55.2); 4 mo = 24 (62.7)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Takao et al [31], 2020</td>
<td>A1: Unilateral arthroscopic repair (43)</td>
<td>NR</td>
<td>Mean = 41.6 d (± 18.2)</td>
<td>Group A vs group B, P < 0.001; group A1 vs group A2, NS; group B1 vs group B2, P = 0.001</td>
</tr>
<tr>
<td></td>
<td>A2: Bilateral arthroscopic repair (16)</td>
<td>NR</td>
<td>Mean = 44.6 d (± 22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1: Arthroscopic repair + ankle stabilization + postop nonweight bearing (22)</td>
<td>NR</td>
<td>Mean = 70.7 d (± 23.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2: Arthroscopic repair + ankle stabilization + postop weight bearing (12)</td>
<td>NR</td>
<td>Mean = 45.0 d (± 13.7)</td>
<td></td>
</tr>
<tr>
<td>Wang et al [34], 2023</td>
<td>Arthroscopic Broström (30)</td>
<td>21 (70.0)</td>
<td>Mean = 15.1 wk (± 7.8 wk)</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Open Broström (31)</td>
<td>22 (71.0)</td>
<td>Mean = 17.2 wk (± 9.3 wk)</td>
<td></td>
</tr>
<tr>
<td>White et al [23], 2016</td>
<td>Modified Broström, isolated injury</td>
<td>NR</td>
<td>Median = 77 (range: 56-127)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td></td>
<td>Modified Broström, associated injuries</td>
<td>NR</td>
<td>Median = 105 (range: 82-178)</td>
<td></td>
</tr>
</tbody>
</table>

Data are n (%). NR: Not reported; NS: Not significant; RTS: Return to sport; SD: Standard deviation.

to be greater (up to $1400 per episode), with a linear relationship noted with each day rehabilitation care was delayed. The total financial burden (adjusted for inflation) of ankle sprain ranges from $11.7-$90.9 million per year, and costs in military and civilian settings are similar [38]. Home-based proprioception training adjacent to physical therapy showed costs 4 times lower than physical therapy alone [28]. Higher grade ankle sprains also increased the cost per patient (P < 0.001) [39]. Our results showed that the extent of the delayed rehabilitation was directly proportional to the increasing likelihood of experiencing a recurrence of the ankle sprain and the number of ankle-related medical visits. If taking into
account these psychological factors improving rehabilitation, considering these factors will also lead to lower healthcare costs per patient.

While we aimed to comprehensively identify and analyze the factors influencing RTW and RTS after an LAS, there is a possibility that certain relevant factors were not considered or included in our analysis due to lack of published data. The complex nature of ankle sprain recovery may involve additional factors that were not captured in our study. When identified, these new factors may improve our current protocols and knowledge in treatment of ankle sprains.

Table 6: Time of return to sport

<table>
<thead>
<tr>
<th>Intervention type</th>
<th>Mean d to RTS (± SD)</th>
<th>Pooled mean d to RTS (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroscopic surgery</td>
<td>13.2 (± 2.4)[30]; 105.7 (± 54.6)[34]</td>
<td>60 (± 46)</td>
</tr>
<tr>
<td>Open surgery</td>
<td>18.7 (± 3.1)[30]; 120.4 (± 65.1)[34]</td>
<td>70 (± 51)</td>
</tr>
<tr>
<td>All surgery</td>
<td>13.2 (± 2.4)[30]; 18.7 (± 3.1)[30]; 105.7 (± 54.6)[34]; 120.4 (± 65.1)[34]</td>
<td>65 (± 49)</td>
</tr>
<tr>
<td>Functional treatment</td>
<td>27.4 (± 20.3)[28]; 39.7 (± 24.9)[28]</td>
<td>34 (± 6.2)</td>
</tr>
<tr>
<td>No treatment</td>
<td>23 (± 15.5)[28]</td>
<td>23 (± 16)</td>
</tr>
</tbody>
</table>

RTS: Return to sport; SD: Standard deviation.

Table 7: Outcomes return to work

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Intervention + patients (n)</th>
<th>Rate of RTW, n (%)</th>
<th>Time to RTW in mean d (± SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avci et al[25], 1998</td>
<td>Soft cast tape (31)</td>
<td>NR</td>
<td>2.5 (NR)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Cooke et al[13], 2009</td>
<td>Below knee cast (142)</td>
<td>NR</td>
<td>10 d = 22; (54); 3 wk = 30 (75); 6 wk = 36 (97); 3 month = 40 (100); 6 month = 40 (100)</td>
<td>4.3 (NR)</td>
</tr>
<tr>
<td>Eiff et al[35], 1994</td>
<td>Early mobilization (40)</td>
<td>NR</td>
<td>10 d = 4 (13); 3 wk = 29 (79); 6 wk = 36 (96); 3 month = 37 (100); 6 month = 37 (100)</td>
<td>4.7 (NR)</td>
</tr>
<tr>
<td>Leanderson et al[38], 1995</td>
<td>Air-Stirrup ankle brace (39)</td>
<td>NR</td>
<td>5.3 (range: 0-26)</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>Lee et al[42], 2020</td>
<td>Isolated ankle stabilization with fibular periosteum augment (99)</td>
<td>88 (88.9)</td>
<td>9.1 (range: 0-21)</td>
<td>NS</td>
</tr>
<tr>
<td>Melton et al[33], 2018</td>
<td>Modified Broström (127)</td>
<td>93 (73.2)</td>
<td>5.2 (± 4.9)</td>
<td>NS</td>
</tr>
<tr>
<td>O'Connor et al[29], 2020</td>
<td>Tubigrip (18)</td>
<td>NR</td>
<td>6.8 (± 2.1)</td>
<td>P = 0.006</td>
</tr>
<tr>
<td>Slatyer et al[24], 1997</td>
<td>Piroxicam (184)</td>
<td>173</td>
<td>2.74 (NR)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Wang et al[34], 2023</td>
<td>Arthroscopic Broström (50)</td>
<td>NR</td>
<td>8.1 (± 2.4)</td>
<td></td>
</tr>
</tbody>
</table>

NA: Not available; NR: Not reported; NS: Not significant; RTW: Return to work; SD: Standard deviation.
Table 8 Time of return to work

<table>
<thead>
<tr>
<th>Intervention type</th>
<th>Means d to RTW (± SD)</th>
<th>Pooled mean d to RTW (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroscopic surgery</td>
<td>6.8 (± 2.1)[34]</td>
<td>6.8 (± 2.1)</td>
</tr>
<tr>
<td>Open surgery</td>
<td>8.1 (± 2.4)[34]</td>
<td>8.1 (± 2.4)</td>
</tr>
<tr>
<td>All surgery</td>
<td>6.8 (± 2.1)[34]; 8.1 (± 2.4)[34]</td>
<td>7.5 (± 0.7)</td>
</tr>
<tr>
<td>Functional treatment</td>
<td>6.3 (NR)[25]; 2.5 (NR)[23]; 7.7 (NR)[13]; 9.6 (NR)[13]; 6.9 (NR)[13]; 7.7 (NR)[13]; 4.3 (NR)[33]; 4.7 (NR)[33]; 9.1 (range: 0.2-9); 5.3 (range: 0.2-9); 5.2 (± 4.9)[20]; 3.7 (± 3.5)[20]; 2.74 (NR)[39]</td>
<td>5.8 (± 2.2)</td>
</tr>
<tr>
<td>No treatment</td>
<td>5.8 (± 4.7)[26]; 8.57 (NR)[24]</td>
<td>7.2 (± 1.4)</td>
</tr>
</tbody>
</table>

NR: Not reported; RTW: Return to work; SD: Standard deviation.

Figure 2 Forest plot rate of return to sport. CI: Confidence interval.

This study represented a first attempt to comprehend which factors may influence RTS and RTW using a meta-analysis. While our analysis provided valuable insights into which factors may potentially be influential, it is essential to acknowledge that grading which factor has a greater or lesser impact is not possible due to the lack of comparability among the included patients regarding the grading of ankle ligament injury and concomitant injuries. In some studies, patients received surgical treatment in acute situations[40-43]. Therefore, any surgical treatment performed earlier is highly debatable. Despite our efforts to include high-quality studies, many were listed as high or moderate risk due to patients or personnel physically not being able to be blinded in order for a patient to receive treatment. Other limitations were variations in terms of methodology, small sample size, and short follow-up time. There was inconsistency in how RTS was defined within orthopedic sports medicine literature. While many studies defined RTS as the athlete’s return to competitive play, other variations include returning to practice, training or meeting specific competition levels and objectives. The studies in our review employed different outcome measures to assess RTS and RTW, making it challenging to directly compare and synthesize the findings. In one study, some patients reported RTS before any treatment was even started[36]. The different ways that RTS or RTW was defined can cause potential limitations in the interpretation of the results. Additionally, there is a wide range of years between the earliest and latest published studies that have been included. We have noted that more recent studies have tried to define their return in the best way possible, but due the lack of comparable studies, older studies still may cause bias in pooled results.

As shown in Tables 3 and 4, certain studies exhibited a moderate or high risk of bias. For instance, when evaluating the risk of bias in Table 4, some studies were assigned a high risk due to the absence of blinding for participants and personnel or the lack of blinding in outcome assessment. In the case of our included studies, implementing blinding was deemed physically impossible, which could lead the risk of bias assessment tool to assign a lower score to a study that is,
in qualitative terms, superior. Overall, our findings indicated that all treatments yielded comparable results, with each treatment potentially offering unique advantages or benefits. Given the variety of factors that affect RTS and RTW after LAS, tailored interventions targeting these psychological and physical factors have the great potential to improve recovery and accelerate return to normal activities. For example, Scotchcast Plus® had a quicker (P < 0.001) RTW compared to the Soft Cast®. The range of motion (ROM) measurements were also better (P = 0.001) in the Scotchcast Plus® group (43°, range: 35-55°) compared to the Soft Cast® group (54°, range: 35-65°)[23].

Another study found that following 3-5 d of functional treatment with either air-stirrup or compression bandage, females experienced a greater restriction in ROM in their injured ankle compared to males (P < 0.05)[29]. In current literature males are approximately 1.5 times more likely than females to return to either their previous level of sport or competitive sport after obtaining an LAS[44]. Future research should be conducted on possible cofactors such as ROM affecting the differences in outcomes between males and females. Future studies should also assess the weight of concomitant injuries and psychological factors in RTS and RTW.

Consideration of simultaneous procedures for other medical conditions should be factored in while evaluating the timeframe for resuming work or sports activities. Treatment plans that address physical, psychological and social aspects of recovery may aid regaining mobility, overall well-being and returning to preinjury level of activities after an LAS.

CONCLUSION

Collectively, the findings derived from these studies provided valuable insights into the various treatment approaches employed and their associated outcomes. However, it is important to note that the current body of literature does not provide sufficient comparative data to draw definitive conclusions on what factors work in favor of or negatively influence RTS or RTW. Further research with larger sample sizes and standardized methodologies is warranted to establish more robust evidence regarding treatment approaches and their effectiveness in facilitating the RTW and RTS after LAS.

This systematic review and meta-analysis identified several factors that were observed to influence the RTS or RTW after LAS. In random order, these factors included: (1) Factors favoring RTS or RTW: (a) Preoperative Motivation and Psychological factors. In patients with CAI, higher preoperative motivation was the primary factor associated with a faster RTS following ligament repair or reconstruction. However, patients with a history of psychological illness or brain injury experienced delays in their rehabilitation for ankle sprains with fractures and unspecified sprains. Among athletes who RTS after LAS without fractures, 10% cited non-ankle related reasons for not returning. The evidence for these findings was categorized as level 2; (b) Early mobilization. Immobilization of 3 d was found to have a positive impact on the RTS or RTW when compared to immobilization of 10 d (Categorized as evidence level 3); and (c) Postoperative weight bearing. Ankle stabilization surgery with concurrent weight-bearing procedures resulted in a shorter time to RTS compared to ankle stabilization surgery with simultaneous non-weight-bearing procedures (Categorized as evidence level 3); and (2) Factors negatively influencing return to sport or work: (a) Absent ligament structures. An additional procedure such as ankle stabilization surgery due to other pathologies than ligament rupture may result in a longer time to return to work (Categorized as evidence level 3); and (b) Associated injuries. The presence of associated injuries along with the ankle sprain negatively impacted the return to sport or work (Categorized as evidence level 3).

It is important to consider these factors when developing personalized treatment plans and interventions for individuals recovering from LAS to optimize their chances of successful RTS and/or RTW.
ARTICLE HIGHLIGHTS

Research background
Lateral ankle sprains (LAS) are a highly prevalent musculoskeletal injury affecting both athletes and non-athletes, constituting 80% of all ankle sprains with an incidence of 15%-20%. Up to 40% of LAS cases progress to chronic ankle instability, causing prolonged pain and reduced mobility. This interplay of high incidence, prevalence, workdays lost and substantial medical expenses underscores the profound socioeconomic impact of LAS.

Research motivation
The consequences of ankle sprains extend beyond pain and functional impairment. Despite the alarmingly high incidence and chronic ankle instability risk, only around half of LAS patients seek medical attention.

Research objectives
In light of these compelling circumstances, the primary objective of this systematic review and meta-analysis was to comprehensively investigate the factors that may exert an influence on return to work (RTW) and return to sport (RTS) following LAS.

Research methods
EMBASE and PubMed were systematically searched for relevant studies published until June 2023. Quality assessments were carried out for each study using established risk of bias tools, and the quality of evidence was evaluated using the GRADEpro tool for quantitative outcomes. Qualitative outcome analysis was subjected to a best evidence synthesis, and for outcomes amenable to quantitative analysis, forest plots were generated to ascertain the impact on RTW and RTS.

Research results
The RTS rates were 80% and 83% in both the all treatments and surgical treatments groups, respectively. Mean RTS times ranged from 23-93 d, with an overall RTS rate of 89%. The average time to RTW ranged from 5.8-8.1 d. Preoperative motivation, early mobilization and postoperative weight bearing resulted in a shorter time to RTS.

Research conclusions
Overall, our findings indicated that all treatments yielded comparable results. Given the variety of factors that affected RTW and RTS after LAS, tailored interventions targeting both psychological and physical factors have the great potential to improve recovery and accelerate return to normal activities.

Research perspectives
Future studies should assess the weight of psychological factors in RTS and RTW. Treatment plans that address physical, psychological and social aspects of recovery may aid regaining mobility, overall well-being and returning to preinjury levels of activities after LAS.

FOOTNOTES

Author contributions: Maria PA participated in the design of the study, data acquisition and analysis, and interpretation of the collected data, and drafted the manuscript and was involved in making critical revisions and approval of the final version; Vuurberg G participated in the design of this study, assisted in data analysis and interpretation of collected data, drafted the manuscript, was involved in making critical revisions and approved the final version; Kerkhoffs GMMJ participated in the study design, making critical revisions and approved the final version.

Conflict-of-interest statement: All the authors declare that they have no conflicts of interest.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Netherlands

ORCID number: Priscilla A Maria 0000-0001-3450-4544; Gwendolyn Vuurberg 0000-0001-5008-890X; Gino MMJ Kerkhoffs 0000-0001-7910-7123.

S-Editor: Liu JH
L-Editor: Filipodia
P-Editor: Guo X

Razzano C, Izzo R, Savastano R, Colantuoni C, Carbone S. Noninvasive Interactive Neurostimulation Therapy for the Treatment of Low-
Grade Lateral Ankle Sprain in the Professional Contact Sport Athlete Improves the Short-Term Recovery and Return to Sport: A Randomized Controlled Trial. *J Foot Ankle Surg* 2019; 58: 441-446 [PMID: 30910488 DOI: 10.1053/j.jfas.2018.09.009]

