<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457</td>
<td>Nonalcoholic fatty liver disease shows significant sex dimorphism</td>
<td>Chen XY, Wang C, Huang YZ, Zhang LL</td>
</tr>
<tr>
<td>1485</td>
<td>Effect of prior malignancy on the prognosis of gastric cancer and somatic mutation</td>
<td>Yin X, He XK, Wu LY, Yan SX</td>
</tr>
<tr>
<td>1498</td>
<td>Elemene-containing hyperthermic intraperitoneal chemotherapy combined with chemotherapy for elderly patients with peritoneal metastatic advanced gastric cancer</td>
<td>Chen ZX, Li J, Liu WB, Zhang SR, Sun H</td>
</tr>
<tr>
<td>1508</td>
<td>Timing theory continuous nursing, resistance training: Rehabilitation and mental health of caregivers and stroke patients with traumatic fractures</td>
<td>Shen YL, Zhang ZQ, Zhu LJ, Liu JH</td>
</tr>
<tr>
<td>1517</td>
<td>Effect of precise nursing service mode on postoperative urinary incontinence prevention in patients with prostate disease</td>
<td>Zheng XC, Luo TT, Cao DD, Cai WZ</td>
</tr>
<tr>
<td>1536</td>
<td>Castleman disease and TAFRO syndrome: To improve the diagnostic consciousness is the key</td>
<td>Zhou QY</td>
</tr>
<tr>
<td>1548</td>
<td>Correlation of myopia onset and progression with corneal biomechanical parameters in children</td>
<td>Lu LL, Hu XJ, Yang Y, Xu S, Yang SY, Zhang CY, Zhao QY</td>
</tr>
</tbody>
</table>
META-ANALYSIS

1557 Intensive vs non-intensive statin pretreatment before percutaneous coronary intervention in Chinese patients: A meta-analysis of randomized controlled trials
Yang X, Lan X, Zhang XL, Han ZL, Yan SM, Wang WX, Xu B, Ge WH

CASE REPORT

1572 Giant nodular fasciitis originating from the humeral periosteum: A case report
Yu SL, Sun PL, Li J, Jia M, Gao HW

1580 Tumor-related cytokine release syndrome in a treatment-naïve patient with lung adenocarcinoma: A case report
Deng PB, Jiang J, Hu CP, Cao LM, Li M

1586 Submucosal protuberance caused by a fish bone in the absence of preoperative positive signs: A case report
Du WW, Huang T, Yang GD, Zhang J, Chen J, Wang YB

1592 Misdiagnosis of unroofed coronary sinus syndrome as an ostium primum atrial septal defect by echocardiography: A case report
Chen JL, Yu CG, Wang DJ, Chen HB

1598 Uncommon complication of nasoenteral feeding tube: A case report
Jiang YP, Zhang S, Lin RH

1602 Treatment of extracranial internal carotid artery dissecting aneurysm with SUPERA stent implantation: Two case reports
Qiu MJ, Zhang BR, Song SJ

1609 Combination of atezolizumab and chidamide to maintain long-term remission in refractory metastatic extranodal natural killer/T-cell lymphoma: A case report
Wang J, Gao YS, Xu K, Li XD

1617 Hemangioma in the lower labial vestibule of an eleven-year-old girl: A case report

1623 Primary orbital monophasic synovial sarcoma with calcification: A case report
Ren MY, Li J, Li RM, Wu YX, Han RJ, Zhang C

1630 Small-cell carcinoma of the prostate with negative CD56, NSE, Syn, and CgA indicators: A case report

1639 Disseminated peritoneal leiomyomatosis with malignant transformation involving right ureter: A case report
Wen CY, Lee HS, Lin JT, Yu CC
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1645</td>
<td>Arthroscopic surgery for synovial chondroma of the subacromial bursa with non-traumatic shoulder subluxation complications: Two case reports</td>
<td>Tang XF, Qin YG, Shen XY, Chen B, Li YZ</td>
</tr>
<tr>
<td>1667</td>
<td>Gastric schwannoma misdiagnosed as gastrointestinal stromal tumor by ultrasonography before surgery: A case report</td>
<td>Li QQ, Liu D</td>
</tr>
<tr>
<td>1675</td>
<td>Giant retroperitoneal lipoma presenting with abdominal distention: A case report and review of the literature</td>
<td>Chen ZY, Chen XL, Yu Q, Fan QB</td>
</tr>
<tr>
<td>1684</td>
<td>Pneumothorax during retroperitoneal laparoscopic partial nephrectomy in a lupus nephritis patient: A case report</td>
<td>Zhao Y, Xue XQ, Xia D, Xu WF, Liu GH, Xie Y, Ji ZG</td>
</tr>
<tr>
<td>1689</td>
<td>Bulbar conjunctival vascular lesion combined with spontaneous retrobulbar hematoma: A case report</td>
<td>Lei JY, Wang H</td>
</tr>
<tr>
<td>1709</td>
<td>Tacrolimus treatment for relapsing-remitting chronic inflammatory demyelinating polyradiculoneuropathy: Two case reports</td>
<td>Zhu WJ, Da YW, Chen H, Xu M, Lu Y, Di L, Duo JY</td>
</tr>
<tr>
<td>1723</td>
<td>Unusual magnetic resonance imaging findings of brain and leptomeningeal metastasis in lung adenocarcinoma: A case report</td>
<td>Li N, Wang YJ, Zhu FM, Deng ST</td>
</tr>
<tr>
<td>1738</td>
<td>Neurothekeoma located in the hallux and axilla: Two case reports</td>
<td>Huang WY, Zhang YQ, Yang XH</td>
</tr>
</tbody>
</table>
Subclavian artery stenting via bilateral radial artery access: Four case reports

Qiu T, Fu SQ, Deng XY, Chen M, Dai XY
AIMS AND SCOPE

The primary aim of *World Journal of Clinical Cases* (WJCC, *World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Lin-Yu Tong Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
Nonalcoholic fatty liver disease shows significant sex dimorphism

Xing-Yu Chen, Cong Wang, Yi-Zhou Huang, Li-Li Zhang

ORCID number: Xing-Yu Chen 0000-0003-0244-3721; Cong Wang 0000-0002-1209-4978; Yi-Zhou Huang 0000-0002-7151-205X; Li-Li Zhang 0000-0001-9007-5281.

Author contributions: Chen XY was the main author of the review, and completed the collection and analysis of relevant literature and the writing of the first draft of the paper; Wang C and Huang YZ participated in the analysis and collation of literature materials; Zhang LL is the principal of the project, supervising the thesis writing; all authors have read and approve the final manuscript.

Conflict-of-interest statement: The authors declare no conflicts of interest associated with this article.

Country/Territory of origin: China

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): E

Open-Access: This article is an

Abstract

Nonalcoholic fatty liver disease (NAFLD), which has been renamed metabolic dysfunction-associated fatty liver disease, is a growing global medical problem. The incidence of NAFLD and its associated end-stage liver disease is increasing each year, and many research advancements have been achieved to date. This review focuses on the current knowledge of the sex differences in NAFLD and does not elaborate on areas without differences. Studies have revealed significant sex differences in the prevalence, influencing factors, pathophysiology, complications and therapies of NAFLD. Men have a higher incidence than women. Compared with women, men exhibit increased visceral fat deposition, are more susceptible to leptin resistance, lack estrogen receptors, and tend to synthesize fatty acids into fat storage. Male patients will experience more severe hepatic fibrosis and a higher incidence of liver cancer. However, once NAFLD occurs, women show a faster progression of liver fibrosis, higher levels of liver cell damage and inflammation and are less likely to undergo liver transplantation than men. In general, men have more risk factors and more severe pathological reactions than women, whereas the development of NAFLD is faster in women, and the treatments for women are more limited than those for men. Thus, whether sex differences should be considered in the individualized prevention and treatment of NAFLD in the future is worth considering.

Key Words: Nonalcoholic fatty liver disease; Metabolic dysfunction-associated fatty liver disease; Sex differences; Estrogen; Steatosis; Cirrhosis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Nonalcoholic fatty liver disease (NAFLD) is a sexual dimorphic disease, and its prevalence worldwide is increasing each year. However, our understanding of sex differences in NAFLD remains insufficient. The incidence in males is significantly higher than that in females, and studies have also revealed significant sex differences in
Nonalcoholic fatty liver disease (NAFLD), which has been renamed metabolic dysfunction-associated fatty liver disease, affects approximately a quarter of adults worldwide [1]. In the past, NAFLD was considered a Western disease, but with improvements in living standards, the prevalence of this disease in Asia is increasing each year, particularly in China [2], where the incidence has exceeded that in Europe and North America. NAFLD should be regarded as a global disease. Moreover, NAFLD, which manifests as nonalcoholic fatty liver or nonalcoholic steatohepatitis (NASH), is a growing worldwide cause of chronic liver disease, which may gradually lead to severe liver disease, such as liver cirrhosis, hepatocellular carcinoma, and even death. The increasing prevalence of this disease and the serious complications it may cause pose a substantial medical and economic burden to the whole world [3]. With the development of research on NAFLD, an increasing number of findings have revealed significant sex differences regarding this disease. This review focuses on the current knowledge of sex differences in NAFLD and does not elaborate on the areas without differences. The review mainly focuses on the following aspects: Epidemiology, influencing factors, pathophysiology, complications and therapies.

EPIDEMIOLOGY

The prevalence of NAFLD is increasing annually and has exceeded 25% of the global population. The increasing trend of NAFLD is closely related to the increasing standard of life and the increasing prevalence of obesity [4]. A large number of studies have proven that obesity is an important risk factor for hepatic steatosis and promotes the formation of NAFLD [5-7]. Considering the continuing increase in NAFLD, this disease will be the main cause of cirrhosis and hepatocellular carcinoma (HCC) and is the fastest growing cause of orthotopic liver transplantation [8].

Previous epidemiological studies revealed a significant sex difference in the incidence rate of NAFLD, which is strongly related to age. Overall, the prevalence of NAFLD in men is higher than that in women [7,9-11]. Interestingly, studies in pediatric populations have also found that the prevalence of NAFLD is higher in boys than in girls [12]. A study performed in Korea using data from 6648 subjects found that the prevalence of NAFLD in women increased with age, and the prevalence increased sharply with age among women older than 50 years, particularly after the perimenopausal period. However, the prevalence in men shows minimal differences according to age. The prevalence among men under 50 years of age is significantly higher than that among women (22.6% vs 6.8%), whereas the sex difference is not significant among participants over 50 years of age (23.6% vs 24.2%) [7]. Similar conclusions have been reached by studies conducted in Shanghai and Japan [10,11]. Compared with men and postmenopausal women, premenopausal women are at a significantly lower risk for NAFLD. Moreover, hormone replacement therapy can reduce the prevalence of NAFLD in postmenopausal women, which suggests that estrogen is protective against NAFLD [13]. Men are more susceptible to NAFLD at a younger age than women, which is a problem worthy of attention. Men are exposed to high metabolic risk for a longer period of time.
Adipose distribution, adipocytokines and lipid metabolism

The main sex differences in adipose distribution are well recognized: Men store more adipose tissue in their intra-abdominal depots, whereas women tend to have enlarged peripheral adipose tissue, and these differences are associated with the deleterious metabolic consequences of men and the lower cardiometabolic risk of women[14]. Estrogen promotes and maintains typical female fat by reducing the lipolysis of subcutaneous fat without affecting visceral fat[15]. Peripheral adipocytes exhibit a lower lipolytic response[16]. Heine et al[17] found that estrogen regulates the amount of adipose tissue. The absence of estrogen receptor α (ERα) causes adipocyte hyperplasia and hypertrophy. Postmenopausal women exhibit increased central fat deposition[18]. For a given waist circumference or body mass index, women have higher levels of subcutaneous adipose tissue than men[19]. Sex also influences lipid storage within the liver and muscle. Fat can be stored in adipose tissue, liver and skeletal muscle as triglycerides (TGs). Excessive liver TG storage leads to NAFLD. Studies have found that men have higher levels of TGs stored in the liver than women, and women store more intramyocellular lipids than men, which explains the higher prevalence of NAFLD in men[20,21]. Skeletal muscle is one of the major organs responsible for peripheral glucose disposal, and a higher intramyocellular lipid content is associated with insulin resistance, which decreases the skeletal muscle glucose uptake[22]. However, the increased levels of intramyocellular lipids in women are not related to a higher risk of diabetes, which may be related to the mechanism through which lipids are stored and metabolized in muscles[20].

Adipose tissue releases a multitude of secretory products, which are collectively called adipocytokines. The related sex differences are mainly reflected by the levels of leptin, adiponectin and prohibitin. Leptin is a metabolic regulator that can reduce food intake and inhibit the synthesis of lipids, and its secretion is proportional to the fat mass. However, in some cases, hyperleptinemia can lead to insulin resistance and participates in hepatic steatosis. Studies have repeatedly shown that adiponectin enhances insulin sensitivity and increases lipolysis, which is inversely correlated with the fat mass[23–25]. Many studies have proven that the levels of leptin and adiponectin in males are lower than those in females[26,27]. The serum leptin levels in men and women with NAFLD are higher than those in individuals without NAFLD, whereas the opposite trend has been found for adiponectin. A previous study showed that the leptin level is correlated with the severity of steatosis in men and women, whereas the serum adiponectin level is inversely correlated with the severity of steatosis in men (P < 0.01) but not in women (P = 0.4)[26]. Prohibitin plays a sex-dimorphic role in adipose tissue functions[28]. Its overexpression induces the upregulation of mitochondrial organelles, which leads to obesity and impairments in glucose homeostasis and insulin sensitivity, but this issue is specific to males.

The retention of TGs within the liver is a prerequisite for the development of NAFLD. The synthesis of fatty acids (FAs) in the liver is an important determinant of the development of hepatic steatosis[29]. The oxidation of FAs removes TGs from the liver[30]. To some extent, the occurrence of NAFLD depends on the imbalance between liver FA synthesis and oxidation. Individuals with a similar age, BMI, and liver fat content were assessed using metabolic substrates labeled with stable isotope tracers, and the results revealed clear differences in hepatic FA partitioning. Specifically, females tended to favor oxidation pathways, and increased levels of 13C in breath CO2 and plasma 3-hydroxybutyrate are found in females, whereas males tend to favor synthetic pathways. In both men (τr = 0.75, P < 0.05) and women (τr = 0.79, P < 0.01), de novo lipogenesis (DNL) is positively correlated with the plasma very low-density lipoprotein (VLDL) cholesterol concentration[31]. As many studies have revealed, premenopausal women have better lipid profiles than men, as demonstrated by higher high-density lipoprotein cholesterol levels and lower low-density lipoprotein cholesterol, VLDL cholesterol and total plasma TG levels[32,33]. The disposal of FAs via the oxidation pathway may play an important role in preventing the accumulation of TG in the liver, which may partially explain the sex difference in the prevalence of NAFLD.

In addition, glucocorticoids exert certain effects on the human body during the process of lipid metabolism. Excessive glucocorticoids are related to the pathogenesis of NAFLD, which can cause the decomposition of adipose tissue, hyperlipidemia, visceral fat generation and insulin resistance[34]. One study found hepatic steatosis in 20% of patients with Cushing’s syndrome[35]. It is important to note that gender differences remain during the process. Among mice administered high levels of cortisol, male mice exhibit more severe insulin resistance, and female mice show more...
protective adaptations to adipose tissue, such as increased adiponectin levels[36].

Estrogen and hepatic ERα

Based on the abovementioned differences in prevalence between men and women and the findings that women of postmenopausal age are at increased risk of developing NAFLD, that hormone replacement therapy is protective against NAFLD after menopause[15], and that women are at increased risk of developing NAFLD after using an anti-estrogen drug or undergoing surgical ovariectomy[37,38], we can assume that the resistance to NAFLD in premenopausal women depends on estrogen. A large number of studies have shown that estrogen regulates almost all steps of lipid metabolism. Estrogen reduces the lipolysis of subcutaneous adipocytes by upregulating alpha2A-adrenergic receptors[15] and thereby reduce the delivery of FAs to the liver. Estrogen regulates liver lipid metabolism through ERα. Estrogen signaling reduces DNL to prevent hepatic steatosis. The lack of estrogen signaling will reduce the VLDL output, promote the accumulation of TGs in the liver, and lead to hepatic insulin resistance[39]. In female mammals, estrogen receptor is highly expressed in the liver, but this finding has rarely been observed in males. This receptor plays an important role in the regulation of the synthesis of receptors for cholesterol uptake, cholesterol transport proteins, and enzymes for lipoprotein remodeling[40]. A recent study found that hepatic ERα shows opposite lipid metabolism regulation in men and women that consume diets high in lipids: the male liver exceeds its compensatory capacity, and liver ERα promotes the accumulation of liver lipids by stimulating the input and synthesis of lipids. While the female liver can handle the excess lipids, and the ERα in the female liver is able to reduce lipid synthesis and absorption and promote FA oxidation[41]. In general, hepatic ERα plays an important role in the sex difference in NAFLD.

Androgen

Polycystic ovary syndrome (PCOS) is a female endocrine disease characterized by hyperandrogenemia. Many studies have documented a higher incidence of NAFLD in women with PCOS. However, only patients with PCOS and high androgen levels are associated with a higher risk of NAFLD[42]. It can be inferred that high androgen levels play an important role in this process. Biological studies have shown that androgen can induce cell cycle arrest and initiate hepatocyte apoptosis[43]. High androgen levels can promote inflammation by activating mononuclear cells[44]. Increased androgen levels increase the visceral fat mass by decreasing the activation of adenosine 5’ and monophosphate-activated protein kinase and increasing the expression of lipogenic genes in visceral fat[45]. In men, however, decreased androgen levels are independently associated with NAFLD[46]. Low serum testosterone levels increase visceral fat accumulation and inflammation, and these effects lead to insulin resistance and hepatic steatosis[47-49]. Therefore, further studies may be needed to clarify the mechanism related to androgen and NAFLD.

Mitochondria and liver pyruvate kinase

Mitochondrial dysfunction contributes to the development of NAFLD, which predates insulin dysfunction and hepatic steatosis[50]. Exercise enhances mitochondrial function[51]. In general, females exhibited an improved mitochondrial quality than males. Men often need to exercise to maintain a stronger mitochondrial respiratory function, whereas women can maintain this function even without exercise[52]. A recent study reported a close relationship between liver pyruvate kinase (LPK) and NAFLD. As demonstrated by mouse experiments, LPK affects liver lipids, mitochondrial respiration, glucose metabolism and insulin sensitivity. LPK expression is increased in men under the influence of testosterone. LPK overexpression aggravates insulin resistance, increases the plasma cholesterol levels and exacerbates liver steatosis by changing liver mitochondrial respiration, whereas LPK silencing attenuates these effects. Studies have also found a positive correlation between hepatic LPK expression and the liver TG levels in males but not in females, which shows that LPK is only slightly involved in the development of steatosis in females. Researchers have performed liver biopsies in patients with NASH and observed a strong positive correlation between liver LPK expression and the NAFLD activity score in men but no correlation in women[53]. LPK overexpression exerts a male-specific effect on NAFLD.

Vitamin D deficiency

Vitamin D deficiency can increase hepatic fat accumulation and mildly reduce insulin sensitivity[54]. Studies have found that low serum levels of 25-hydroxyvitamin D are
associated with dyslipidemia and cardiovascular disease. Vitamin D increases intestinal calcium absorption, and this finding is more obvious in males than in females. Calcium supplements can improve blood lipids. Estrogen can also affect calcium absorption. A sex disparity has been found for the association of vitamin D deficiency with NAFLD. A cross-sectional study revealed that vitamin D deficiency is positively associated with NAFLD in men, whereas no significant interaction has been observed in women. Vitamin D deficiency is an independent risk factor for NAFLD in men and may be associated with testosterone levels. Women may respond differently to vitamin D supplementation than men, and women show improvements in blood lipids in response to this supplementation.

Serum uric acid

Elevated serum uric acid (SUA) is a risk factor for NAFLD. The mechanism may be related to the insulin resistance induced by high SUA levels. According to basic studies, SUA can directly induce and regulate hepatic steatosis and stimulate hepatic fat accumulation. Many population-based studies have revealed a sex difference in the association between SUA and NAFLD: The correlation between SUA and NAFLD is significantly higher in women than in men. However, a study of patients with type 2 diabetes mellitus (T2DM) revealed that although SUA is associated with NAFLD, an increase in the SUA level is independently associated with a higher risk of NAFLD only in male patients. Therefore, whether diabetes is one of the causes of the inconsistent results is worth further study.

Fructose and dietary intake, sleep quality and the gut microbiota

Regarding food choices, women tend to eat more fruits, vegetables and grains, whereas men tend to choose more meat products, eggs and certain types of poultry. Studies have shown that women tend to eat better-quality diets. The negative correlation between diet quality and obesity is similar in both men and women. However, the diet-induced increases in serum TGs are more significant in females. With a high consumption of fructose, the role of fructose in inducing NAFLD has become increasingly important. Fructose can increase insulin resistance and induce an increase in plasma TGs. In a study of a high-fructose diet, female mice that were fed this diet for a long time showed extensive steatosis and ballooning, whereas males showed only a slight increase in hepatic steatosis. These findings suggest that after the long-term consumption of high-fructose foods, women are more likely than men to develop NAFLD/NASH.

Poor sleep affects the production of hormones and increases the risk of metabolic syndrome. However, poor sleep quality can be more detrimental to women than men by increasing the risk of T2DM and cardiovascular disease, and this finding may be related to the higher testosterone levels in men and sex differences in peroxisome proliferator-activated receptor-α. The sex differences in gut microbes may be influenced by age, race, and diet. Intestinal microbiota-dependent metabolites, such as short-chain fatty acids and trimethylamine N-oxide, are involved in the regulation of cholesterol metabolism and insulin sensitivity. Women are more vulnerable to adverse effects. Bile acids are important signaling molecules that activate receptors such as farnesoid X receptor, and these receptors have been shown to promote hepatic steatosis. Intestinal microorganisms can mediate the metabolism of bile acids. The gut microbiota differs according to sex, which leads to differences in the synthesis and metabolism of bile acids and other metabolites between males and females and thus affects the metabolism of liver fat.

PATHOPHYSIOLOGY

Hepatic fibrosis

NAFLD includes a spectrum of liver disorders consisting of nonalcoholic fatty liver and NASH, which range from simple hepatic steatosis to inflammation and fibrosis and even progress to cirrhosis. Hepatic stellate cells are one of the primary target cells of hepatic inflammatory stimulation and play a major role during liver repair reactions, including fibrosis. In mice, estrogen inhibits the activation of stellate cells and suppresses the induction of hepatic fibrosis through estrogen receptors. A cross-sectional study revealed that postmenopausal women and men are at a higher risk (60% to 70%) of developing severe fibrosis than premenopausal women. In postmenopausal women, estrogen replacement treatment appears to reduce the risk of advanced fibrosis. A recent systematic review and meta-analysis of 62239
individuals also found that women have a lower risk of developing NAFLD than men pooled risk ratio (RR), 0.81; 95%CI, 0.68-0.97; \(P = 97.5\% \). However, after the development of NAFLD, women face a higher risk of developing advanced fibrosis than men (RR, 1.56; 95%CI, 1.36-1.80; \(P = 0 \), and this finding is particularly obvious among individuals older than 50 years[81]. This finding suggests the protective effect of estrogen on hepatic fibrosis in patients with NASH, and the effect is more pronounced in patients with hepatitis C virus[82]. However, the severity of hepatocyte injury and inflammation in NAFLD shows the opposite trend. Premenopausal women exhibit increased levels of lobular inflammation, hepatocyte ballooning and Mallory-Denk bodies than men and postmenopausal women. Hormone replacement therapy is related to a risk of more severe hepatocyte inflammation in postmenopausal women [83]. This association may be related to an increase in the progesterone levels, but this hypothesis needs further study.

Branched-chain amino acids

Branched-chain amino acids (BCAAs) are amino acids with nonlinear aliphatic side chains and include the essential amino acids leucine, valine and isoleucine. High plasma BCAA levels may contribute to insulin resistance and increase the risks of metabolic syndrome and T2DM[84,85]. Intestinal microorganisms are also related to the synthesis of BCAAs[86]. The level of plasma BCAAs in patients with NAFLD is increased, and its changes show sex dimorphism. Studies have shown that the plasma BCAA concentration is positively correlated with the severity of NAFLD[87]. However, a recent study found that only the female BCAA concentration is positively associated with the level of steatosis and fibrosis in NAFLD, whereas no correlation has been detected in males, as demonstrated by a moderate negative correlation between the plasma valine level and lobular inflammation. Additionally, menopause alone has no significant effect on the plasma BCAA concentration in NAFLD[88]. The mechanism of BCAAs involved in NAFLD remains unclear. BACCs are associated with activation of the mammalian target of rapamycin pathway and liver injury in mice[89-91]. However, BCAA supplementing can reduce further liver injury in patients with liver cirrhosis[92].

Macrophages and inflammation

A large number of experimental and clinical studies have shown that macrophages play a critical role in the development and progression of NAFLD. Liver-resident macrophages, which are also known as Kupffer cells, are important participants in liver metabolism disorders and inflammation. These cells activate the inflammatory response, recruit monocytes into the liver, and then differentiate into proinflammatory macrophages to promote the development of NAFLD. Kupffer cells are closely associated with insulin resistance, FA accumulation, and inflammatory injury to promote the progression of fibrosis[93]. High fructose intake triggers the activation of Kupffer cells, which leads to an inflammatory response. As mentioned above, fructose plays an important role in inducing NAFLD. The main types of macrophages can be divided into proinflammatory and anti-inflammatory subgroups (M1 and M2), and both estrogen and androgen receptors can be found in murine macrophages and promote M2 phenotype differentiation[94]. The effect of sex on the differentiation of hepatic macrophages in patients with NAFLD has not been reported. However, accumulating evidence shows that testosterone reduces the secretion of proinflammatory cytokines by macrophages and exerts anti-inflammatory effects[95].

COMPLICATIONS

HCC

HCC is the fourth leading cause of cancer-related death worldwide, and its morbidity and mortality rates are both increasing[96,97]. With improvements in the prevention, diagnosis and treatment of viral hepatitis, the proportion of end-stage liver disease caused by NAFLD progression is increasing. NAFLD is the most common cause of chronic liver disease in the world. HCC is one of the major complications of NASH-associated cirrhosis[98]. NASH-related liver disease has become the leading indicator of liver transplantation (LT)[99]. The incidence of liver cancer in males is significantly higher than that in females. Premenopausal women are also at a lower risk of NAFLD than men. Some studies have found that estrogen may prevent the occurrence of liver cancer and can play a beneficial biological role once HCC develops[100]. Among patients with nonsurgical liver cancer and patients undergoing surgical resection, the
prognosis of women is better than that of men[101,102], but the benefits from LT in patients exhibit no significant gender differences[101]. Moreover, under the current organ allocation system, the proportion of women who receive a LT is lower than that of men. The explanations of this sex difference in LT may include size mismatch and lower creatinine levels in women, which leads to lower Model for End-Stage Liver Disease scores[103,104].

Cardiovascular disease
An increasing number of studies have shown that NAFLD can increase the incidence and prevalence of cardiovascular disease (CVD). In addition, the incidence of CVD presents a sex difference similar to that of NAFLD: Men younger than 50 years are at a higher risk of developing CVD than women, but the incidence of CVD in postmenopausal women is higher[105]. Women are also at a lower risk of death from CVD than men[106]. As mentioned above, women exhibit better blood lipid values than men, and men with NAFLD have worse TG and high-density lipoprotein levels than women[107]. In addition, the incidence of other cardiovascular risk factors in patients with NASH, such as hypertension, renal failure and smoking, is lower in women than in men. Women are more likely to develop obesity and diabetes. A retrospective observational cohort study of 41005 adult patients with NASH conducted by Gayatri Pemmasani found that males have a higher incidence of most CVDs, such as coronary artery disease, myocardial infarction, and heart failure, than females[108]. However, another previous study showed that women with NAFLD lose the protective effect that women have against cardiovascular disease[109]. These researchers found that women and men with NAFLD have a similar risk of CVD and that women with NAFLD develop CVD earlier than women without NAFLD. This finding may be due to the high metabolic burden of patients with NAFLD because these metabolites neutralize the protective effect of estrogen.

T2DM
NAFLD is associated with an increased risk of T2DM, is involved in the pathogenesis of T2DM and promotes insulin resistance. Obesity is a risk factor for NAFLD and T2DM. However, a recent study obtained a novel finding that NAFLD has a hazard ratio of 2.331 for the incidence of diabetes. Among lean patients with NAFLD, the effect appeared to be more pronounced in women, particularly postmenopausal women, than in men (5.53 vs 2.02)[110]. A study conducted in Japan also showed that the female sex is an independent risk factor for T2DM through the follow-up of patients diagnosed with NAFLD[111].

Others
A previous study showed that the serum insulin levels are directly correlated with a higher risk of colorectal adenomas (OR, 1.5; 95% CI, 1.1-2.0; \(P = 0.005 \)) and hyperplastic polyps (OR, 1.3; 95% CI, 1.0-1.7; \(P = 0.075 \))[112]. Disorders of insulin and adipocytokine metabolism are now thought to influence the development of colon tumors[113]. Patients with NAFLD always show fat metabolism disorders, insulin resistance, and high insulin levels. A large number of studies have shown that NAFLD is a risk factor for adenomatous polyps and hyperplastic polyps[114,115]. However, the correlation exhibits significant sex differences: NAFLD is associated with an increased risk of colorectal adenomatous and hyperplastic polyps in men (OR = 1.53, 95% CI: 1.18-2.00, \(P < 0.05 \); OR = 1.42, 95% CI: 1.04-1.95, \(P < 0.05 \)) but is not a significant risk factor in women (OR = 0.44, 95% CI: 0.18-1.04, \(P > 0.05 \); OR = 1.18, 95% CI: 0.50-2.78, \(P > 0.05 \))[115]. The promoting mechanism of NAFLD on colorectal adenoma and hyperplastic polyps is unclear, but some researchers believe that this mechanism may be related to the metabolic disorder of adipocytes and the effect of inflammatory cytokines[115]; thus hypothesis needs further exploration.

Abdominal obesity and insulin resistance are risk factors for erosive esophagitis (EO). Metabolic syndrome (MS) and NAFLD are significantly associated with EO. A previous study revealed significant sex differences in the effects of NAFLD and MS on EO: MS (OR 1.26; 95% CI 1.09 to 1.45) shows a greater detrimental effect on EO in males, NAFLD (OR 1.93; 95% CI 1.43 to 2.59) is significantly associated with EO in females, and the relationship between NAFLD and EO is stronger in premenopausal females than in postmenopausal females (51.1% vs 48.9%)[116]. In addition, MS is independently associated with EO through increased serum cytokines. Men exhibit increased visceral obesity deposition than women, and visceral obesity increases the esophageal reflux by increasing the serum cytokine levels[117]. The sex difference between NAFLD and EO may be related to estrogen, which reduces oxidative stress.
and serum cytokines. Hence, the decrease in estrogen levels found in female patients with NAFLD leads to a decrease in the protective effect on EO.

THERAPY

Very low-carbohydrate ketogenic diets

Obesity is a risk factor for NAFLD. Very low-carbohydrate ketogenic diets (VLCKDs) constitute a new treatment for obesity that functions by reducing the caloric intake and promoting the transformation of energy metabolism from carbohydrates to TGs to reduce weight. Previous studies have suggested that VLCKDs are associated with inducing the activity of lysosomal acid lipase and improving hepatic steatosis, which can benefit patients with NAFLD[118]. Studies have shown that men benefit more from this therapy than women, particularly premenopausal women[119]. This finding may be related to the fact that men have more visceral adipose tissue and exhibit a higher basal energy expenditure.

Inhibition of protein tyrosine phosphatase 1B

Protein tyrosine phosphatase 1B (PTP1B) is an enzyme with multiple functions that can inhibit leptin and insulin signal transduction, which results in abnormal glucose tolerance and hepatic steatosis. PTP1B inhibition may be a potential weight loss therapy that increases energy consumption, weight loss and insulin sensitivity[120]. A study of the role of proopiomelanocortin neuronal-specific PTP1B deficiency in metabolic regulation after consumption of a high-fat diet found that male but not female mice fed this diet exhibit significantly reduced liver lipid accumulation than control mice[121]. This result may indicate that PTP1B is a potential target in the treatment of NAFLD in men.

Others

At present, the treatment of NAFLD remains focused on prevention, as reflected by the control of risk factors, such as weight loss, reduced fat and fructose intake, increased exercise, and vitamin D supplementation. Men lose weight mainly by reducing their visceral adipose tissue and exhibit better histological improvement than women[122,123]. Women are more affected by dietary factors than men. Reducing lipid and fructose intake is more beneficial for female patients. Physical activities are beneficial to the prevention of NAFLD, and exercise can reduce liver enzymes in postmenopausal women[124]. Vitamin D deficiency is an independent risk factor for NAFLD in men, and men should be screened early and administered timely supplementation. Therefore, the optimal prevention of NAFLD may differ by sex, but no consensus has been reached, and further exploration is still needed.

CONCLUSION

As mentioned above, NAFLD exhibits significant sex dimorphism in many aspects, particularly in influencing factors, pathophysiology (Figure 1) and intrahepatic and extrahepatic damage (Figure 2). In general, the higher incidence among males than females is related to adipose distribution, adipose metabolism, differences in estrogen and its receptors, liver metabolism and other factors. The protective effects of estrogen reduce the degree of liver fibrosis in women. Robust evidence shows that NAFLD is closely associated with liver cancer, cardiovascular disease, T2DM and other diseases, and men with NAFLD are at a higher risk of experiencing these complications than women. However, once NAFLD occurs, the inflammation and disease progression is markedly worse among female than male patients, and the treatments for females are more limited than those for men. Although we found a large number of sex differences in NAFLD, the relevant principles are unclear, and further research is needed. Whether sex differences should be considered in future research and whether they can be applied to clinical personalized treatment and prevention are still worth exploring.
Figure 1 Overview of sex differences in etiology and pathogenesis of nonalcoholic fatty liver disease. Men store more visceral adipose tissue than women. Adipokines mediate fat metabolism, and adiponectin can increase lipolysis; however, excessive leptin can lead to insulin resistance and steatosis. The estrogen receptor plays an important role in the regulation of fat metabolism. Increased androgen levels in women and low testosterone in men are prone to visceral fat accumulation. In the process of fatty acid metabolism, men tend to synthesize, and women tend to oxidize. We found that the overexpression of liver pyruvate kinase can lead to changes in liver mitochondrial function, which leads to the deformation of liver fat. The difference in intestinal microflora between men and women also plays a role in the sex difference in nonalcoholic fatty liver disease (NAFLD). In addition, sleep quality, high sugar intake and diet quality can also affect the formation of NAFLD. VLDL: Very low-density lipoprotein; DNL: De novo lipogenesis; TG: Triglyceride; LPK: Liver pyruvate kinase; FA: Fatty acid; NAFLD: Nonalcoholic fatty liver disease.

Figure 2 Sex differences in intrahepatic and extrahepatic outcomes in nonalcoholic fatty liver disease. As a metabolic disorder, nonalcoholic fatty liver disease (NAFLD) is related not only to liver injury but also to a variety of extrahepatic diseases. The picture summarizes the differences between men and women in this respect. Without the protection of estrogen, men have more serious liver fibrosis than women and are more likely to develop liver cancer. The incidence of cardiovascular events and colorectal adenoma in men with NAFLD is higher than that in women. However, female patients have more severe hepatocyte injury and inflammation than male patients and have a higher risk of erosive esophagitis and type 2 diabetes.
REFERENCES

29 Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014; 146: 726-735 [PMID: 24316260 DOI: 10.1053/j.gastro.2013.11.049]

42 Ramezani-Binabaj M, Motalebi M, Karimi-Sari H, Rezaee-Zavareh MS, Alavian SM. Are women with polycystic ovarian syndrome at a high risk of non-alcoholic fatty liver disease; a meta-analysis. Hepat Mon 2014; 14: e23235 [PMID: 23598791 DOI: 10.5812/hepatmon.23235]

Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care 2004; 27: 861-865 [PMID: 15047639 DOI: 10.2337/diacare.27.4.861]

Choi YJ, Shin HS, Choi HS, Park JW, Jo I, Oh ES, Lee KY, Lee BH, Johnson RJ, Kang DH. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. *Lab Invest* 2014; **94**: 1114-1125 [PMID: 25111690 DOI: 10.1038/labinvest.2014.98]

Yang JD, Abdelnallae MF, Guy CD, Gill RM, Lavine JE, Yates K, Klair J, Terrault NA, Clark JM,

Epidemiology, and End Results analysis. Cancer 2014; 120: 3707-3716 [PMID: 25081299 DOI: 10.1002/ener.28912]

MINDIKOGLU AL, Emre SH, Magder LS. Impact of estimated liver volume and liver weight on gender disparity in liver transplantation. Liver Transpl 2013; 19: 89-95 [PMID: 23008117 DOI: 10.1002/lt.23553]

Hwang WC, Wu JS, Sun ZJ, Lu FH, Yang YC, Chang CJ. Gender differences in the association of non-alcoholic fatty liver disease and metabolic syndrome with erosive esophagitis: a cross-sectional study in a Taiwanese population. BMJ Open 2016; 6: e013106 [PMID: 27852719 DOI: 10.1136/bmjopen-2016-013106]

Aberdein N, Dambriro RJ, do Carmo JM, Wang Z, Mitchell LE, Drummond HA, Hall JE. Role of PTP1B in POMC neurons during chronic high-fat diet: sex differences in regulation of liver lipids

Management of procedural pain in the intensive care unit

Na-Na Guo, Hong-Liang Wang, Ming-Yan Zhao, Jian-Guo Li, Hai-Tao Liu, Ting-Xin Zhang, Xin-Yu Zhang, Yi-Jun Chu, Kai-Jiang Yu, Chang-Song Wang

ORCID number: Na-Na Guo 0000-0001-6652-4964; Hong-Liang Wang 0000-0002-1407-0072; Ming-Yan Zhao 0000-0003-4287-8586; Jian-Guo Li 0000-0001-5569-9603; Hai-Tao Liu 0000-0002-3052-8709; Ting-Xin Zhang 0000-0001-7265-5370; Xin-Yu Zhang 0000-0002-1622-1620; Yi-Jun Chu 0000-0003-1436-7121; Kai-Jiang Yu 0000-0001-8456-9664; Chang-Song Wang 0000-0002-0079-5259.

Author contributions: Wang CS and Yu KJ provided design and guidance; Guo NN, Zhang TX, Zhang XY and Chu YJ consulted the literature and completed the writing; Wang HL, Zhao MY, Li JG and Liu HT assisted in the literature review; all authors read and approved the final manuscript.

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Country/Territory of origin: China

Specialty type: Medicine, research and experimental

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): 0

Na-Na Guo, Hai-Tao Liu, Xin-Yu Zhang, Yi-Jun Chu, Chang-Song Wang, Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China

Hong-Liang Wang, Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, China

Ming-Yan Zhao, Kai-Jiang Yu, Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, China

Jian-Guo Li, Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan 430000, Hubei Province, China

Ting-Xin Zhang, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, China

Corresponding author: Chang-Song Wang, PhD, Professor, Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang Province, China. changsongwangicu@163.com

Abstract

Pain is a common experience for inpatients, and intensive care unit (ICU) patients undergo more pain than other departmental patients, with an incidence of 50% at rest and up to 80% during common care procedures. At present, the management of persistent pain in ICU patients has attracted considerable attention, and there are many related clinical studies and guidelines. However, the management of transient pain caused by certain ICU procedures has not received sufficient attention. We reviewed the different management strategies for procedural pain in the ICU and reached a conclusion. Pain management is a process of continuous quality improvement that requires multidisciplinary team cooperation, pain-related training of all relevant personnel, effective relief of all kinds of pain, and improvement of patients’ quality of life. In clinical work, which involves complex and diverse patients, we should pay attention to the following points for procedural pain: (1) Consider not only the patient's persistent pain but also his or her procedural pain; (2) Conduct multimodal pain management; (3) Provide combined sedation on the basis of pain management; and (4) Perform individualized pain management. Until now, the pain management of procedural pain in the ICU has not attracted extensive attention. Therefore, we expect additional studies to solve the existing problems of procedural pain management in the ICU.
Pain is a common experience for inpatients, and intensive care unit (ICU) patients undergo more pain than other departmental patients, with an incidence of 50% at rest and up to 80% during common care procedures[1]. The inducing factors of pain in the ICU include primary disease, various monitoring devices, treatment, long-term bed rest, and environmental and psychological factors[2]. In terms of its duration, pain in the ICU is divided into persistent pain (with inducing factors including mechanical ventilation, surgical incision, etc.) and transient pain (with inducing factors including arteriovenous puncture, abdominocentesis, etc.). At present, the management of persistent pain in ICU patients has attracted considerable attention, and there are many related clinical studies[3-5] and guidelines[6,7]. However, the management of transient pain caused by certain ICU procedures has not received sufficient attention. In 2018, although the PADIS guidelines[7] and ‘The Guidelines for the Management of Pain, Agitation in Adult Patients in the Intensive Care Unit’[2] refer to the prevalence of pain in ICU patients and recommend pain management and sedation to reduce patient discomfort, there are no specific recommendations for managing pain caused by procedures performed in the ICU. Therefore, the purpose of this article is to review the different management strategies for procedural pain in the ICU.

CLASSIFICATION OF PROCEDURAL PAIN IN THE ICU

Due to the severity and complexity of diseases in the ICU, various procedures are performed for monitoring, treatment, nursing care and other reasons. According to the procedural purposes, we defined the source of procedural pain into the following four categories: (1) Establishment of vascular access; (2) Noninvasive catheterization of a natural lumen; (3) Percutaneous catheterization and extubation of a natural lumen; and (4) Other procedures (Table 1). Although the above classifications are distinguished for operational purposes, the causes of each type of procedural pain have similar physiological anatomical foundations.

MANAGEMENT OF DIFFERENT CATEGORIES OF PROCEDURAL PAIN

In the past decade, the prevention and treatment concepts of pain, anxiety, and delirium have been updated: treatment based on pain management is emphasized, focusing on early intervention and paying more attention to patient-centered humanistic care while minimizing the side effects of analgesic and sedative drugs[6,8,9]. ‘The Guidelines for the Management of Pain, Agitation in Adult Patients in the Intensive Care Unit’ recommend the preadministration of analgesics or nonpharmacological analgesics and sedatives to patients who are scheduled to undergo painful procedures. However, consensus is needed on the various methods of pharmaceutical and non-pharmaceutical interventions. Further research is needed to improve the management of procedural pain in the ICU.
Table 1 Classification of procedural pain in the intensive care unit

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment of vascular access</td>
<td>Arterial puncture and catheterization</td>
</tr>
<tr>
<td></td>
<td>Peripherally inserted central catheters</td>
</tr>
<tr>
<td></td>
<td>Central venous catheter</td>
</tr>
<tr>
<td></td>
<td>Extracorporeal membrane oxygenation</td>
</tr>
<tr>
<td></td>
<td>Continuous renal replacement therapy etc.</td>
</tr>
<tr>
<td>Natural cavity noninvasive catheterization</td>
<td>Endotracheal intubation</td>
</tr>
<tr>
<td></td>
<td>Bronchofiberscopy</td>
</tr>
<tr>
<td></td>
<td>Nasogastric tube intubation</td>
</tr>
<tr>
<td></td>
<td>Nasal jejunal intubation</td>
</tr>
<tr>
<td></td>
<td>Urethral catheterization etc.</td>
</tr>
<tr>
<td>Natural cavity percutaneous catheterization and extubation</td>
<td>Pericardiocentesis</td>
</tr>
<tr>
<td></td>
<td>Thoracentesis</td>
</tr>
<tr>
<td></td>
<td>Thoracic closed drainage</td>
</tr>
<tr>
<td></td>
<td>Tracheotomy</td>
</tr>
<tr>
<td></td>
<td>Abdominocentesis</td>
</tr>
<tr>
<td></td>
<td>Extraction of chest tube etc.</td>
</tr>
<tr>
<td>Others</td>
<td>Turn etc.</td>
</tr>
</tbody>
</table>

logical interventions to relieve pain before procedures that may cause pain[2].

The generation of pain involves both physiological and psychological factors. At present, clinical pain management includes pharmacological and nonpharmacological treatments. These drugs include opioid analgesics, nonopioid analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs), and local anesthetics. Nonpharmacological pain management, including hypnosis and distraction by virtual reality, has been used as an adjunct for procedural pain management in ICUs. To date, there is not enough evidence to support the value of nonpharmacological pain management in ICUs[10]. Therefore, this review mainly compares the existing pain management approaches from the perspective of drug analgesia according to the different types of procedural pain mentioned above.

MANAGEMENT OF PAIN CAUSED BY THE ESTABLISHMENT OF VASCULAR ACCESS

Establishing vascular access is an essential operation in the ICU (Figure 1). For example, arterial puncture and catheterization can enable blood gas analysis and continuous arterial pressure monitoring, and central venous catheters (CVCs) and peripherally inserted central catheters (PICCs) can facilitate central venous pressure monitoring and the rapid administration of liquid and vasoactive drugs. Extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) are important organ support methods in the ICU. Both procedures require deep venous catheterization to establish extracorporeal circulation. Improving the patient's oxygenation and excreting metabolic waste from the blood saves valuable time.

At present, pain caused by arterial puncture and catheterization, deep venous catheterization, and PICCs in the ICU is usually managed by local infiltration anesthesia. However, local infiltration anesthesia has the following limitations: (1) Local infiltration anesthesia itself can cause pain; (2) The effect of partial local infiltration anesthesia is not perfect; (3) After local infiltration, superficial arteriovenous structures may be difficult to identify, increasing the difficulty of puncture; and (4) Improper operation of local infiltration anesthesia may cause local anesthetic poisoning. Therefore, some clinical studies have attempted to apply more pain management methods to alleviate the pain caused by the establishment of vascular access.

Pain management during arterial puncture and catheterization and PICCs

There are few studies on arterial puncture and catheterization or on PICCs with general anesthesia as pain management methods. Zeng et al[11] found that a subanesthetic dose of ketamine (0.5 mg/kg) combined with midazolam (0.05 mg/kg) for arterial puncture has good analgesic and sedative effects, and most patients can awaken within 5 min to 8 min. When adopting this method, local infiltration anesthesia is not needed, and swelling of the puncture site during local anesthesia is avoided, which is beneficial to improving the success rate of puncture. This method has little effect on the patient's breathing and circulation, but for individuals who are elderly and infirm, it is still necessary to pay attention to transient respiratory depression. Because of the side effects of ketamine on pulmonary arterial pressure and intracranial pressure, patients with pulmonary hypertension or intracranial
hypertension should be treated with caution[11].

Most studies on the management of pain caused by arterial puncture and catheterization and PICCs focus on topical anesthesia. A review published in 2006 suggested that the use of lidocaine topical anesthesia before arterial puncture can significantly reduce pain and does not affect the success rate of puncture[12]. In 2012, a randomized double-blind trial examined topical anesthesia induced via a lidocaine/tetracaine patch in arterial puncture and showed that both the lidocaine/tetracaine patch and a subcutaneous injection of lidocaine effectively relieved pain during arterial puncture; however, the subcutaneous injection of lidocaine caused discomfort during the injection. In contrast, the lidocaine/tetracaine patch should be placed for 20 min before the operation, and the analgesic effect is better if given enough time[13]. A study published in 2016 compared the analgesic effects of vapocoolant sprays (ethyl chloride and alkane mixtures) with lidocaine local anesthesia during radial artery cannulation. The results showed that vapocoolant sprays can replace local anesthesia with lidocaine to relieve pain and discomfort caused by arterial catheterization[14]. A trial conducted in 2001 evaluated the effectiveness of two types of local anesthesia (buffered lidocaine and EMLA cream, which is a eutectic mixture of 2.5% lidocaine, 2.5% prilocaine, an emulsifier, and a thickener) compared to no anesthesia. The results showed that buffered lidocaine was superior to EMLA cream or no anesthesia in reducing PICC-related pain[15].

Topical anesthesia with different types or formulations of local anesthetics has been used to relieve pain caused by arterial puncture and catheterization and by PICCs in an increasing number of studies. Although topical anesthesia does not cause stabbing pain or local anesthetic poisoning, its anesthetic effect needs to be confirmed by more clinical studies.

Pain management of central venous catheterization

A 2014 study by Samantaray and Rao[16] evaluated the efficacy of fentanyl combined with local infiltration anesthesia with lidocaine for CVCs. The results showed that fentanyl is effective in relieving pain and can be safely used in conscious patients. The same team compared the effects of dexmedetomidine, fentanyl, and placebo during CVC placement in a trial conducted in 2016. The study concluded that both dexmedetomidine and fentanyl achieved good analgesia. Dexmedetomidine is superior to fentanyl and placebo in providing comfort to patients but is associated with excessive sedation and cardiovascular adverse events[17]. The latest study conducted in 2019 compared the target-controlled infusion of remifentanil plus local lidocaine infiltration and placebo plus local lidocaine infiltration in conscious patients. Remifentanil is effective in reducing the pain associated with local lidocaine infiltration during CVC placement[18].

The pain management of CVC placement is mostly focused on the intravenous administration of opioid analgesics (remifentanil, fentanyl) combined with lidocaine local infiltration, which can achieve a good analgesic effect while keeping patients awake. Although general anesthesia is more comfortable than local anesthesia, respiratory and circulatory inhibition by general anesthesia cannot be ignored.
Pain management of ECMO

The essence of ECMO is an improved artificial heart-lung machine that can be used for both extracorporeal respiratory support and cardiac support. There is currently no independent study on pain management during the establishment of extracorporeal circulation for ECMO. However, some studies have focused on pain management after extracorporeal circulation establishment.

Two recent case studies and one review suggest that ketamine infusion can be used as an analgesic for ECMO patients, reducing sedatives and opioid doses without changing the Richmond Agitation and Sedation Scale (RASS) score\[19-21\]. Based on the above findings, ketamine combined with local lidocaine infiltration may be an option for analgesia in ECMO patients during the establishment of extracorporeal circulation.

Pain management for CRRT

There is no independent study on the pain management of extracorporeal circulation establishment before CRRT. Mostly, these cases involve renal insufficiency in patients with CRRT. The choice of pain management should avoid nephrotoxic drugs such as tramadol and NSAIDs and may be patterned after pain management for CVC. The management of pain caused by establishing different types of vascular access is shown in Table 2.

In addition to the management of procedural pain caused by the establishment of vascular access, we should also pay attention to improving the success rate of vascular access and avoiding repeated procedures that cause patients more pain. A large number of studies have confirmed that ultrasound guidance in arterial puncture, PICCs and CVCs can not only improve the success rate of puncture but also reduce the incidence of adverse events and improve the satisfaction and comfort of patients\[22, 23\]. Moreover, bedside ultrasound can also identify malpositioning of the CVC and pneumothorax faster than an X-ray examination\[24,25\].

MANAGEMENT OF PAIN CAUSED BY NONINVASIVE CATHETERIZATION THROUGH A NATURAL CAVITY

Natural cavities are channels that connect the inside and outside of the human body, and they are sensitive and highly reactive. When a fiberoptic bronchoscope, stomach tube or urinary catheter enters a natural cavity, the device stimulates the mucous membrane, causing discomfort or even pain (Figure 2). Therefore, proper pain management combined with sedation can not only relieve the patient's discomfort and pain but also improve the success rate of intubation and avoid additional pain caused by repeated operations.

Pain management for bronchofiberscopy

A 2013 study found that remifentanil target-controlled infusion analgesia was reliable in ICU patients who required bronchoscopy with spontaneous breathing\[26\].

Kundra et al\[27\] evaluated the efficacy of upper airway anesthesia produced by nebulized lidocaine against a combined regional block (CRB) for awake fiberoptic nasotracheal intubation. The results showed that both nebulization and CRB produced satisfactory anesthesia of the upper airway, but CRB provided better patient comfort and hemodynamic stability\[27\]. A randomized controlled study was performed to compare two methods of airway anesthesia, namely, ultrasonic nebulization of a local anesthetic and the performance of airway blocks. The results showed that upper airway blocks provided better quality anesthesia than lidocaine nebulization\[28\].

The above studies indicate that the analgesic effect of topical anesthesia combined with a nerve block is superior, but it may be difficult for some clinicians to achieve. On the basis of adequate topical anesthesia, combining intravenous analgesic sedative drugs may have a better effect, but this option needs to be confirmed by clinical research.

Pain management of nasogastric tube intubation

Nasal tube intubation is a common operation in the ICU but a painful process for patients\[29\]. Pain management for nasal tube intubation mainly involves topical anesthesia.
<table>
<thead>
<tr>
<th>Operational type</th>
<th>Ref.</th>
<th>Drugs</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial puncture and catheterization</td>
<td>Zeng et al[11], 2007</td>
<td>Subanesthetic dose of ketamine (0.5 mg/kg) combined with midazolam (0.05 mg/kg)</td>
<td>The effect of pain management is 100%, with less side effect on breathing and circulation</td>
<td>Older and infirm should pay attention to transient respiratory depression</td>
</tr>
<tr>
<td></td>
<td>Rüsch et al[14], 2017</td>
<td>Vapocoolant sprays</td>
<td>Can replace lidocaine to relieve discomfort caused by arterial catheterization</td>
<td>Not mentioned</td>
</tr>
<tr>
<td></td>
<td>Ruetzler et al [13], 2012</td>
<td>Lidocaine/tetracaine patch</td>
<td>Effectively relieve pain</td>
<td>Need enough time before operation</td>
</tr>
<tr>
<td>PICC</td>
<td>Fry and Aholt [15], 2001</td>
<td>Buffered lidocaine</td>
<td>Effectively relieve pain</td>
<td>With short-term stability</td>
</tr>
<tr>
<td>CVC</td>
<td>Vardon Bounes et al[18], 2019</td>
<td>Remifentanil combined with lidocaine</td>
<td>Effectively relieve pain and has a short half-life</td>
<td>Extended operating time</td>
</tr>
<tr>
<td></td>
<td>Samantaray et al[17], 2016</td>
<td>Fentanyl</td>
<td>Effectively relieve pain, less adverse respiratory and cardiovascular events</td>
<td>It is not as good as dexmedetomidine in providing comfort to patients</td>
</tr>
<tr>
<td></td>
<td>Samantaray and Rao[16], 2014</td>
<td>Fentanyl</td>
<td>Effectively relieve pain</td>
<td>Respiratory depression may occur</td>
</tr>
<tr>
<td>ECMO</td>
<td>Maybauer et al[21], 2019</td>
<td>Ketamine</td>
<td>Provides relatively stable hemodynamic stability while maintaining airway reflex</td>
<td>There may be dose-related hallucinations, paralyis, tearing, tachycardia, and possibly increased intracranial pressure, and coronary ischemia</td>
</tr>
<tr>
<td></td>
<td>Floroff et al [20], 2016</td>
<td>Ketamine</td>
<td>Less respiratory depression, better pain control, boosting, and increased cardiac output</td>
<td>There may be dose-related hallucinations, sputum, hooliganism</td>
</tr>
<tr>
<td></td>
<td>Tellor et al[19], 2015</td>
<td>Ketamine</td>
<td>Can reduce the amount of opioids used in surgical patients</td>
<td>The safety and efficacy of patients requiring ECMO therapy have not been determined</td>
</tr>
</tbody>
</table>

PICC: Peripherally inserted central catheter; CVC: Central venous catheter; ECMO: Extracorporeal membrane oxygenation.

A randomized controlled trial by Singer and Konia[30] showed that using topical lidocaine and phenylephrine for the nose and tetracaine with benzocaine spray for the throat prior to nasogastric (NG) intubation resulted in significantly less pain and discomfort than using a nasal surgical lubricant alone. Widespread use of topical anesthetics and vasoconstrictors prior to NG intubation is recommended[30]. Studies by Wolfe et al[31] have shown that atomized nasopharyngeal and oropharyngeal 4% lidocaine results in clinically and statistically significant reductions in pain during NG tube (NGT) placement. Ducharme and Matheson[32] compared atomized lidocaine, atomized cocaine, and lidocaine gel and found that 2% lidocaine gel appeared to
provide the best option for a topical anesthetic during NGT insertion. A randomized controlled trial by Cullen et al.[33] showed that nebulized lidocaine decreases the discomfort of NGT insertion and should be considered before passing an NGT.

Both nebulized and topical local anesthetics (lidocaine, tetracaine, cocaine) can alleviate the pain of NG intubation. The combined application of both nebulized and topical local anesthetics may be a better option during NG intubation.

There is little research on analgesia after nasal jejunal intubation. In fact, management for nasal jejunal intubation may be patterned after pain management for NG tube intubation.

Pain management of urethral catheterization

A randomized controlled trial in 2004 determined whether pretreatment of the urethra with topical lidocaine reduces the pain associated with urethral catheterization. The results showed that using a topical lidocaine gel can reduce the pain associated with male urethral catheterization in comparison with topical lubricants only[34]. Another randomized controlled trial in 2007 compared the effects of a lidocaine gel and a water-based lubricating gel for female urethral catheterization. The results showed that compared with the water-based lubricating gel, the lidocaine gel substantially reduced the procedural pain caused by female urethral catheterization[35].

All of the above studies have shown that topical anesthesia with a lidocaine gel can effectively reduce the pain experienced during urethral catheterization. The management of pain caused by natural cavity noninvasive catheterization is shown in Table 3.

MANAGEMENT OF PAIN CAUSED BY NATURAL CAVITY PERCUTANEOUS CATHETERIZATION AND EXTUBATION

Natural cavity percutaneous catheterization is common in the ICU (Figure 3). Tracheotomy can quickly establish a respiratory passage and save patients’ lives; thoracentesis, thoracic closed drainage, pericardial drainage, and abdominocentesis can drain effusions or gas to relieve symptoms and to diagnose and treat diseases. Since these operations require puncture through the skin and muscle layers, pain management is necessary.

Pain management of tracheotomy

Mechanical ventilation is an important means of respiratory support for critically ill patients. The clinical application guidelines for mechanical ventilation clearly suggest that patients who cannot have their artificial airways removed in the short term should be selected for replacement with tracheotomy as soon as possible[36]. A 2010 study showed that compared with tracheal intubation, tracheotomy may increase survival rates in mechanical ventilation patients. However, during tracheotomy, some patients are conscious and experience a certain fear of the procedure. Therefore, appropriate preoperative pain management and sedation are inevitable[37].

A 2011 trial compared local anesthesia (2% lidocaine tracheal mucosal-surface anesthesia and local-infiltration anesthesia) and monitored anesthesia (midazolam, propofol and fentanyl given intravenously after surface and local anesthesia) during tracheotomy. Monitored anesthesia gave patients a higher level of comfort, no memory of the tracheotomy and more stable hemodynamics[38]. A recent study evaluated the pain management and side effects of remifentanil in percutaneous dilatational tracheostomy. The results showed that based on propofol general anesthesia, combined treatment with remifentanil and lidocaine for local anesthesia can result in a shorter recovery time and more tolerable pain after recovery[39].

Tracheotomy pain management has mostly focused on intravenous analgesia (fentanyl, remifentanil), sedative drugs (propofol, midazolam) and combination treatment with local infiltration anesthesia (lidocaine), which can provide good pain management and sedative effects. According to the patient’s circulatory state and the original pain management sedation plan, the pain management sedation combination and the local infiltration anesthesia method can be selected.

Pain management for the extraction of a chest tube

A 2004 study compared morphine and ketorolac in cardiac surgery patients undergoing chest tube removal. The findings confirmed that if used correctly, either an opioid (morphine) or an NSAID (ketorolac) can substantially reduce pain during chest
Table 3 The management of pain caused by the natural cavity noninvasive catheterization

<table>
<thead>
<tr>
<th>Operational type</th>
<th>Ref.</th>
<th>Drugs</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberbronchoscopy</td>
<td>Chalumeau-Lemoine et al[26], 2013</td>
<td>Remifentanil</td>
<td>Shorten the operational time, reduce discomfort, and have better antitussive effect</td>
<td>May cause respiratory arrest</td>
</tr>
<tr>
<td></td>
<td>Gupta et al[28], 2014</td>
<td>2% lignocaine and viscous lignocaine gargles</td>
<td>Effectively relieve pain and provide comfort</td>
<td>Not mentioned</td>
</tr>
<tr>
<td></td>
<td>Kundra et al[27], 2000</td>
<td>Translaryngeal block, bilateral superior laryngeal nerve block and three 4% lignocaine-soaked cotton swabs in the nose (CRB group)</td>
<td>Provided better patient comfort and haemodynamic stability</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Nasogastric tube intubation</td>
<td>Cullen et al[33], 2004</td>
<td>Nebulized lidocaine</td>
<td>Can significantly alleviate pain</td>
<td>Can cause complications such as nosebleeds</td>
</tr>
<tr>
<td></td>
<td>Ducharme and Matheson[32], 2003</td>
<td>2% lidocaine gel</td>
<td>Effectively alleviate pain and is easy to use</td>
<td>Not mentioned</td>
</tr>
<tr>
<td></td>
<td>Wolfe et al[31], 2000</td>
<td>4% Nebulized lidocaine</td>
<td>Significantly alleviate pain</td>
<td>Not mentioned</td>
</tr>
<tr>
<td></td>
<td>Singer and Konia[30], 1999</td>
<td>Lidocaine, tetracaine</td>
<td>Alleviate pain</td>
<td>Adverse events such as vomiting and nosebleeds</td>
</tr>
<tr>
<td>Urethral catheterization</td>
<td>Chung et al[35], 2007</td>
<td>Lidocaine gel</td>
<td>Alleviate pain</td>
<td>Not mentioned</td>
</tr>
<tr>
<td></td>
<td>Siderias et al[34], 2004</td>
<td>Lidocaine gel</td>
<td>Alleviate pain</td>
<td>Not mentioned</td>
</tr>
</tbody>
</table>

CRB: Combined regional block.

Figure 3 Natural cavity percutaneous catheterization and extubation.

tube removal without causing adverse sedative effects[40]. However, a review published in 2005 suggested that morphine alone does not provide satisfactory pain management for chest tube removal pain. NSAIDs, local anesthetics and inhalation agents may play a role in providing more effective analgesia[41].

A prospective, randomized, double-blind, placebo-controlled study conducted in 2005 evaluated the efficacy of topical valdecoxib as an analgesic during chest tube removal in postcardiac surgical patients. The results showed that compared with liquid paraffin, valdecoxib is a safe and effective topical analgesic[42].

In addition, three studies compared whether the preuse of ice packs can alleviate the pain of chest tube removal. Integration of the three studies in a meta-analysis showed that the preuse of ice packs can alleviate the pain of patients with chest tubes. The pain score was reduced after removal of the chest tube, SMD=0.30, [95% confidence interval (CI): 0.01-0.59, P = 0.04, I² = 0]%[43-45].
There are many pain management methods, such as intravenous opioid analgesics, NSAIDs and cold compresses, for the extraction of chest tubes. There are few studies on local infiltration anesthesia, but it may be a better pain management method for the extraction of chest tubes because local infiltration anesthesia not only reduces pain during extubation but also reduces pain after extubation. The effect of local infiltration anesthesia in the extraction of chest tubes needs to be confirmed by clinical studies.

There are few pain management studies on thoracentesis and abdominocentesis. The traditional pain management method is local lidocaine infiltration anesthesia, which can provide effective analgesic effects. However, short-term pain management and sedation combined with local infiltration anesthesia may be a better choice, and we expect more clinical studies to confirm this option. The management of pain caused by natural cavity percutaneous catheterization and extubation is shown in Table 4.

MANAGEMENT OF PAIN CAUSED BY OTHER PROCEDURES

Some nursing care in the ICU can also cause discomfort to the patient, and appropriate pain management can reduce the incidence of pain and adverse events.

Pain management of turning

Turning is part of routine nursing care that is beneficial to sputum discharge and can even prevent hemorrhoids. However, due to the patient’s own disease and the presence of various tubes, the patient may suffer from pulling and friction pain during turning. Even if the movement is slow and gentle, it will cause discomfort and pain to the patient.

In a randomized controlled trial conducted by Robleda et al.[46], patients who underwent mechanical ventilation in the ICU were randomized to a fentanyl group (39 patients) and a placebo group (36 patients). Fentanyl or placebo was administered before turning. The incidence of pain in the fentanyl group was lower than that in the control group, and the incidence of adverse events was not statistically significant in the fentanyl group[46].

A prospective intervention study by de Jong et al.[47] found that planned analgesia treatment (analgesic drugs combined with music) before turning can reduce the incidence of severe pain from 16% to 6% (odds ratio = 0.33, 95%CI: 0.11-0.98, P = 0.04) and the incidence of serious adverse events from 37% to 17%.

At present, no more attention is being paid to pain management during patient turning. Because the pain caused by turning is mostly systemic, general anesthesia may be a good choice. Remifentanil can be chosen because it has a quick effect and a short half-life; moreover, its analgesic effect and side effects are dose-dependent, so it is suitable for turning. The management of pain caused by other procedures is shown in Table 5.

Since some ICU patients are already in a state of analgesia and sedation during the above operations, the combination of local anesthesia (surface anesthesia or local infiltration anesthesia) on the basis of deepening their analgesia and sedation may be a more effective pain management method for procedural pain. However, for patients who are not under analgesic sedation, the pain management methods mentioned above can be referred to.

Critical care medicine aims to provide the most comprehensive and effective life support for patients with multiple organ dysfunction and severe nonterminal diseases to save their lives, improve their prognosis to the greatest extent and increase their quality of life. Contemporary medicine focuses on human care. Pain management in the ICU can eliminate or alleviate pain and discomfort, reduce adverse stimuli and excessive sympathetic nervous system excitement, facilitate and improve sleep, induce procedural amnesia, reduce memory in the ICU, alleviate or reduce anxiety, incite or even paralyze, prevent unconscious movements, reduce the metabolic rate and decrease oxygen consumption to ensure organ metabolism.

CONCLUSION

Pain management is a process of continuous quality improvement that requires multidisciplinary team cooperation, pain-related training of all relevant personnel, effective relief of all kinds of pain, and improvement of patients’ quality of life. In clinical work, which involves complex and diverse patients, we should pay attention
to the following points for procedural pain: (1) Consider not only the patient's persistent pain but also his or her procedural pain; (2) Conduct multimodal pain management; (3) Provide combined sedation on the basis of pain management; and (4) Perform individualized pain management. Until now, the pain management of procedural pain in the ICU has not attracted extensive attention. There are few studies and there is no clear standard for the application of drugs; thus, there is no adequate guidance for clinicians to use exact treatment methods to reduce patients' pain and improve their prognosis. Moreover, for some special procedures, such as ECMO and CRRT, we should provide individualized pain management based on pharmacokinetics and pharmacodynamics. Therefore, we expect additional studies to solve the existing problems of procedural pain management in the ICU.

REFERENCES

7 Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, Watson PL,

10 He ZH, Yang CL. Pain assessment and treatment progress in critically ill patients in ICU. Jiangxi YiXue Zazhi 2011; 46: 290-293

14 Rüsch D, Koch T, Scel F, Eberhart L. Vapocoolant Spray Versus Lidocaine Infiltration for Radiological Artery Cannulation: A Prospective, Randomized, Controlled Clinical Trial. J Cardiothorac Vasc Anesth 2017; 31: 77-83 [PMID: 27590462 DOI: 10.1053/j.jvca.2016.06.008]

34 Siderias J, Gaudio F, Singer AJ. Comparison of topical anesthetics and lubricants prior to urethral catheterization in males: a randomized controlled trial. Acad Emerg Med 2004; 11: 703-706 [PMID: 15172514]

39 Chang SY. Analgesic study of remifentanil in short operation of ICU. M.D. Thesis, Zhengzhou University. 2011. Available from: https://t.cnki.net/kcms/detail?v=i8RQNj_vMVRYPe5jP8kzRPhbPTZW21wxREglgzGTP_kVKNcaBq5eQX-0c1pflj3a87gfUmwYzKfitHLjT2PcoEPL5Xc0efidWpz4kUcUULjDUYxJQkwpG1m4EBAVuvYF

Clinical and Translational Research

Effect of prior malignancy on the prognosis of gastric cancer and somatic mutation

Xin Yin, Xing-Kang He, Ling-Yun Wu, Sen-Xiang Yan

ORCID number: Xin Yin 0000-0002-4177-3048; Xing-Kang He 0000-0002-1586-2266; Ling-Yun Wu 0000-0001-7753-6143; Sen-Xiang Yan 0000-0001-6902-0892.

Author contributions: Yin X, Yan SX, and He XK conceived and designed the study, conducted data extraction statistical analyses, interpreted the study results, and wrote the first draft of the manuscript; Wu LY extracted and analyzed the data, and interpreted the study results; All authors edited and critically revised the final version of the manuscript.

Institutional review board statement: The data that support the findings of this study are publicly available. The current study does not require approval from an ethics committee.

Conflict-of-interest statement: The authors declare that they have no competing interests.

Data sharing statement: The data that support the findings of this study are publicly available.

Country/Territory of origin: China

Specialty type: Medicine, research and experimental

Provenance and peer review: Submitted for peer review and accepted in December 2021

Abstract

BACKGROUND
Cancer survivors have a higher risk of developing secondary cancer, with previous studies showing heterogeneous effects of prior cancer on cancer survivors.

AIM
To describe the features and clinical significance of a prior malignancy in patients with gastric cancer (GC).

METHODS
We identified eligible patients from the Surveillance, Epidemiology, and End Results (SEER) database, and compared the clinical features of GC patients with/without prior cancer. Kaplan-Meier curves and Cox analyses were used to assess the prognostic impact of prior cancer on overall survival (OS) and cancer-specific survival (CSS) outcomes. We also validated our results in The Cancer Genome Atlas (TCGA) cohort and compared mutation patterns.

RESULTS
In the SEER dataset, of the 35492 patients newly diagnosed with GC between 2004 and 2011, 4,001 (11.3%) had at least one prior cancer, including 576 (1.62%) patients with multiple cancers. Patients with a prior cancer history tended to be elderly, with a more localized stage and less positive lymph nodes. The prostate (32%) was the most common initial cancer site. The median interval from initial cancer diagnosis to secondary GC was 68 mo. By using multivariable Cox analyses, we found that a prior cancer history was not significantly associated with OS (hazard ratio [HR]: 1.01, 95% confidence interval [CI]: 0.97–1.05).
However, a prior cancer history was significantly associated with better GC-specific survival (HR: 0.82, 95% CI: 0.78–0.85). In TCGA cohort, no significant difference in OS was observed for GC patients with or without prior cancer. Also, no significant differences in somatic mutations were observed between groups.

CONCLUSION

The prognosis of GC patients with previous diagnosis of cancer was not inferior to that of primary GC patients.

Key Words: Gastric cancer; Secondary cancer; Survivorship; Prognosis; Lymph nodes

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We identified eligible cases during 2004-2011 from the Surveillance, Epidemiology, and End Results database and compared the clinical features of gastric cancer (GC) patients with/without prior cancer. We found that patients with a history of prior cancer tended to be elderly, with a more localized stage and less positive lymph nodes. The prognosis of GC patients with diagnosis of prior cancer was not inferior to primary GC.

INTRODUCTION

With the successful eradication of *Helicobacter pylori* and healthier lifestyles, gastric cancer (GC) incidence and mortality have steadily declined in the United States[1,2]. In recent decades, thanks to active cancer screening and effective therapies, many cancer survivors now enjoy relatively longer lives. Although risk factors for primary GC incidence and prognosis are well documented[2,3], little is known about secondary GC occurrence in cancer survivors.

With the increasing aging populations, it is anticipated that the prevalence of secondary cancer in cancer survivors will increase[4]. A recent study revealed that approximately 17.8% of elderly (≥ 65 years) and 7.3% of young adults (< 65 years) with newly diagnosed GC have a prior cancer history[5].

Due to inadequate selection criteria, patients with prior cancers are routinely excluded from oncology clinical trials[5,6]; thus, a substantial number of patients may have lost access to cutting-edge therapies and care. The impact of prior cancer on a current malignancy is often inconsistent and varies by cancer type (e.g., pancreatic, prostate, esophageal, Non-Hodgkin’s lymphoma, gastrointestinal, and lung cancers)[7-16]. To the best of our knowledge, there is a dearth of data on the characteristics and survival outcomes of GC patients with prior cancer. Similarly, there is a lack of real-world evidence to address these issues.

In this study, we characterized GC patients with a prior cancer history and estimated survival outcomes from real-world data. Understanding the prognostic impact of prior cancer on GC patients may have significant implications for improved therapeutic strategies and surveillance.

MATERIALS AND METHODS

Data sources and populations

We identified eligible patients with newly diagnosed and histopathologically proven GC between 2004 and 2011 in 18 Surveillance, Epidemiology, and End Results (SEER) registries (https://seer.cancer.gov/), which covered approximately 30% of the United States population[17]. We included patients aged ≥ 18 with active follow-up to the end of 2014. Tumor 83 site codes (C16.0, C16.1, C16.2, C16.3, C16.4, C16.5, C16.6, C16.8, and
C16.9) were used for GC identification according to the International Classification of Diseases for Oncology 3rd edition. A sequence number was used to identify the number of multiple primaries. A sequence number = 0 indicated that an individual had only one primary cancer, and a larger number indicated more than one primary cancer. To reduce the possibility of misclassifying synchronous metastases, a latency period of at least 6 mo was required from initial prior cancer diagnosis to secondary GC. For initial prior cancer, we excluded cases termed as GC. We categorized prior malignancies of interest including prostate, gastrointestinal, hematologic, breast, genitourinary, and lung cancers.

The following information was collected from the SEER database: age, sex, race, marital status, tumor sites for the prior malignancy and GC, lymph nodes examined, positive lymph nodes, SEER stage, GC grade, and current and prior cancer therapies. To validate the impact of prior cancer on GC patient survival, we used The Cancer Genome Atlas (TCGA) database as an external validation source. Primary gastric adenocarcinoma in TCGA with or without prior malignancy was included. Clinicopathological and genomic data were also queried in TCGA database.

Statistical analyses
Baseline characteristics from GC patients with or without prior cancer were summarized and investigated using the χ² test. For patients with prior cancer, site distribution, stages, and main therapies were classified. To investigate the impact of a prior cancer, we calculated overall GC survival and cancer-specific 3-year survival rates with and without prior cancer, stratified by age. Kaplan-Meier curves were constructed for patients with and without prior cancer, and survival differences were examined using the log-rank test. Furthermore, to validate our results, we adopted a multivariate Cox proportional hazards model to estimate hazard ratios (HRs). Using the maftools package in R, the frequency and visualization of gene mutations in TCGA was performed. Differentially expressed genes (DEGs) in TCGA samples, with and without prior malignancy, were analyzed using the Limma package. DEGs were considered genes where fold change > 2 and \(P < 0.05 \). All \(P \) values were two-sided and statistical significance was accepted at \(P < 0.05 \). All statistical analyses were performed using STATA version 13.0 (StataCorp, College Station, TX, United States) and R software version 3.40 (www.r-project.org).

RESULTS
Demographic and clinicopathological characteristics
In the SEER dataset, from 2004 to 2011, 35492 patients were identified with newly diagnosed GC, of which, 4,001 (11.27%) had one or more prior malignancy, including 576 (1.62%) patients with multiple malignancies. Baseline patient demographic and clinicopathological characteristics are described in Table 1. When compared with patients with primary GC only, those with a history of prior cancer were more likely to be elderly, male, white, and married. The proportion of cancers arising at cardia and fundus sites, with negative lymph nodes, at a localized stage, and with well/moderate differentiation, were higher in patients with prior cancer. In terms of GC therapeutic options, no significant differences were observed in the percentage of surgeries. In patients without prior cancer, radiotherapy and chemotherapy were more common. From TCGA dataset, 13 patients had one or more prior malignancy and 376 patients had no prior malignancy.

Regarding initial cancer sites, the prostate (32%) was the most common site, followed by gastrointestinal tract (17%), genitourinary (15%), breast (14%), others (10%), hematological system (7%), and the lung (5%) (Figure 1A). Unsurprisingly, the majority of prior cancers were either at localized (37%) or localized/regional stages (28%), with only 5% at distant stages (Figure 1B). Regarding therapeutic options for initial cancers, surgery was the most common modality, with most cases receiving multiple therapies (Figure 1C). The median time of initial malignancy to the time of subsequent GC diagnosis varied across initial cancer sites (from 50-78 mo, average = 68 mo; Supplementary Table 1). For breast and genitourinary cancer survivors, this interval exceeded 68 mo, whereas it was only 50 mo for lung cancer survivors.

Effects of prior cancer on GC patient survival in the SEER dataset
Among the primary GC patients in the SEER dataset, 25,592 (81%) died and 22,223 (87%) GC-related deaths were recorded during follow-up. In GC patients with prior cancer, 3407 (85.28%) died, including 544 initial cancer-related deaths and 2,353 GC-
Table 1 Baseline characteristics of patients diagnosed with gastric cancer (n = 35,492) by prior cancer status

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No previous cancer, n = 31491 (88.73%)</th>
<th>With prior cancer, n = 4001 (11.27%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>< 65</td>
<td>13160 (41.79%)</td>
<td>714 (17.85%)</td>
<td></td>
</tr>
<tr>
<td>≥ 65</td>
<td>18331 (58.21%)</td>
<td>3267 (82.15%)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>Male</td>
<td>19479 (61.86%)</td>
<td>2777 (69.41%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>12012 (38.14%)</td>
<td>1224 (30.59%)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>White</td>
<td>22087 (70.14%)</td>
<td>2926 (73.13%)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>4090 (12.99%)</td>
<td>555 (13.87%)</td>
<td></td>
</tr>
<tr>
<td>AI/AN</td>
<td>285 (0.91%)</td>
<td>16 (0.4%)</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>4898 (15.55%)</td>
<td>504 (12.6%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>131 (0.42%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>Married</td>
<td>17571 (55.80%)</td>
<td>2366 (59.14%)</td>
<td></td>
</tr>
<tr>
<td>Unmarried</td>
<td>12473 (39.61%)</td>
<td>1416 (35.39%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1447 (4.59%)</td>
<td>219 (5.47%)</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardia and Fundus</td>
<td>10537 (33.46%)</td>
<td>1486 (37.14%)</td>
<td></td>
</tr>
<tr>
<td>Body of stomach</td>
<td>6340 (20.13%)</td>
<td>844 (21.09%)</td>
<td></td>
</tr>
<tr>
<td>Antrum and Pylorus</td>
<td>7570 (23.40%)</td>
<td>862 (21.54%)</td>
<td></td>
</tr>
<tr>
<td>Stomach, NOS</td>
<td>7244 (23.00%)</td>
<td>809 (20.22%)</td>
<td></td>
</tr>
<tr>
<td>Lymph nodes examined</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>No examined</td>
<td>16884 (53.62%)</td>
<td>2287 (57.16%)</td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>7020 (22.29%)</td>
<td>909 (22.72%)</td>
<td></td>
</tr>
<tr>
<td>≥ 16</td>
<td>6338 (20.13%)</td>
<td>686 (17.15%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1249 (3.97%)</td>
<td>119 (2.97%)</td>
<td></td>
</tr>
<tr>
<td>Positive lymph nodes</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>0</td>
<td>4914 (36.79%)</td>
<td>693 (43.45%)</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>2599 (19.46%)</td>
<td>327 (20.50%)</td>
<td></td>
</tr>
<tr>
<td>3-6</td>
<td>2399 (17.96%)</td>
<td>276 (17.30%)</td>
<td></td>
</tr>
<tr>
<td>7-15</td>
<td>2355 (17.63%)</td>
<td>207 (12.98%)</td>
<td></td>
</tr>
<tr>
<td>≥ 16</td>
<td>1066 (7.98%)</td>
<td>89 (5.58%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>25 (0.19%)</td>
<td>3 (0.19%)</td>
<td></td>
</tr>
<tr>
<td>SEER stage</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>Localized</td>
<td>7209 (22.89%)</td>
<td>1190 (29.74%)</td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>8978 (28.51%)</td>
<td>1051 (26.27%)</td>
<td></td>
</tr>
<tr>
<td>Distant</td>
<td>12615 (40.06%)</td>
<td>1242 (31.04%)</td>
<td></td>
</tr>
<tr>
<td>Unstaged</td>
<td>2689 (8.54%)</td>
<td>518 (12.95%)</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>G1</td>
<td>1087 (3.45%)</td>
<td>181 (4.52%)</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>7012 (22.27%)</td>
<td>1027 (25.67%)</td>
<td></td>
</tr>
</tbody>
</table>
Yin X et al. Effect of prior malignancy

AI/AN: American Indian/Alaska Native; AP: Asian or Pacific Islander; G1: Well-differentiated; G2: Moderately differentiated; G3: Poorly differentiated; G4: Undifferentiated.

Figure 1 Distribution of initial site (A), stage (B) and therapeutic options (C) of prior cancers in gastric cancer patients with a history of cancer.

AI/AN: American Indian/Alaska Native; AP: Asian or Pacific Islander; G1: Well-differentiated; G2: Moderately differentiated; G3: Poorly differentiated; G4: Undifferentiated.

related deaths (Supplementary Table 2). The all-cause and GC-specific 3-year survival rates of primary GC patients were 26.42% (95% confidence interval [CI]: 25.90%–26.94%) and 30.91% (95%CI: 30.34%–31.47%), respectively, while for patients with a history of prior cancer, theses rates were 25.20% (95%CI: 23.80%–26.63%) and 38.03 (95%CI: 36.27%–39.79%), respectively (Table 2, Supplementary Table 3). Thus, it appeared that patients with prior cancer had a higher GC-related survival rate. Considering age may have had a role, we calculated the survival rates stratified by age. In either young or elderly patients, a higher GC-specific survival rate was observed in those with prior cancer. In terms of different initial cancer sites, lung cancer survivors had lower all-cause and cancer-specific survival (CSS) rates than those with other initial cancer sites. From Kaplan-Meier curves, patients with prior cancer had a significantly worse overall-survival (OS) and better GC-specific survival rate (log-rank tests both $P < 0.05$) (Figure 2). We also constructed multivariable Cox regression models to confirm the effects of prior cancer on survival outcomes. A
Table 2 Overall 3-year survival rate of gastric patients stratified by age

<table>
<thead>
<tr>
<th>Prior initial cancer site</th>
<th>All-cause survival (95%CI)</th>
<th>Overall</th>
<th>Age < 65 yr (%)</th>
<th>Age ≥ 65 yr (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No prior cancer</td>
<td>26.42 (25.90, 26.94)</td>
<td>28.95 (28.14, 29.77)</td>
<td>24.49 (23.82, 25.16)</td>
<td></td>
</tr>
<tr>
<td>With prior cancer</td>
<td>25.20 (23.80, 26.63)</td>
<td>30.12 (26.68, 33.62)</td>
<td>24.08 (22.55, 25.65)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>26.47 (23.96, 29.04)</td>
<td>31.13 (22.60, 40.03)</td>
<td>26.00 (23.38, 28.68)</td>
<td></td>
</tr>
<tr>
<td>Hematologic</td>
<td>28.06 (22.75, 33.58)</td>
<td>42.17 (31.11, 52.80)</td>
<td>22.16 (16.49, 28.38)</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>26.80 (22.96, 30.78)</td>
<td>33.27 (25.47, 41.25)</td>
<td>24.36 (20.04, 28.92)</td>
<td></td>
</tr>
<tr>
<td>Genitourinary</td>
<td>23.64 (20.14, 27.30)</td>
<td>34.29 (25.39, 43.35)</td>
<td>21.06 (17.36, 25.02)</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>19.32 (13.87, 25.45)</td>
<td>12.50 (3.95, 26.23)</td>
<td>20.83 (14.64, 27.79)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>22.90 (18.79, 27.26)</td>
<td>24.61 (16.44, 33.66)</td>
<td>22.33 (17.66, 27.35)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Kaplan–Meier survival curves of gastric cancer patients with and without a history of prior cancer. A: All-cause survival; B: Gastric cancer-specific cancer survival.

Effects of prior cancer on GC patient survival in TCGA

We observed that 329 patients (329/376, 87.5%) without prior cancer had molecular alterations; the top mutated genes were titin (TTN), tumor protein 53 (TP53), mucin 16 (MUC16), AT-rich interactive domain-containing protein 1A, and lipoprotein receptor-related protein 1B (LRP1B) (Figure 3A). Ten patients (10/13, 76.92%) with prior cancer had molecular alterations; the top mutation genes were MUC16, TP53, TTN, contactin associated protein 2, and LRP1B (Figure 3B). We observed no significant differences in
Table 3 Multivariable Cox regression analysis of survival in patients with gastric cancer

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All-cause adjusted HR</th>
<th>P value</th>
<th>Cancer-specific adjusted HR</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr; vs < 65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 65</td>
<td>1.32 (1.28, 1.35)</td>
<td>< 0.001</td>
<td>1.25 (1.22, 1.29)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sex (vs male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.93 (0.91, 0.96)</td>
<td>< 0.001</td>
<td>0.95 (0.92, 0.98)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Race (vs white)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1.09 (1.05, 1.13)</td>
<td>< 0.001</td>
<td>1.07 (1.03, 1.12)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>AI/AN</td>
<td>1.14 (1.01, 1.29)</td>
<td>0.033</td>
<td>1.16 (1.02, 1.32)</td>
<td>0.023</td>
</tr>
<tr>
<td>AP</td>
<td>0.79 (0.76, 0.82)</td>
<td>< 0.001</td>
<td>0.79 (0.76, 0.82)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Marital status (vs married)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmarried</td>
<td>1.14 (1.12, 1.17)</td>
<td>< 0.001</td>
<td>1.11 (1.08, 1.14)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Gastric cancer site (vs cardia and fundus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body of stomach</td>
<td>0.96 (0.92, 0.99)</td>
<td>0.013</td>
<td>0.93 (0.90, 0.97)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Antrum and Pylorus</td>
<td>0.99 (0.96, 1.03)</td>
<td>0.727</td>
<td>0.97 (0.93, 1.01)</td>
<td>0.114</td>
</tr>
<tr>
<td>Lymph nodes examined (vs no examined)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-15</td>
<td>0.73 (0.69, 0.77)</td>
<td>< 0.001</td>
<td>0.72 (0.68, 0.77)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>≥ 16</td>
<td>0.65 (0.61, 0.68)</td>
<td>< 0.001</td>
<td>0.66 (0.62, 0.71)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Prior history of cancer (vs none)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.01 (0.97, 1.05)</td>
<td>0.644</td>
<td>0.82 (0.78, 0.85)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>SEER stage (vs localized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>2.34 (2.26, 2.44)</td>
<td>< 0.001</td>
<td>2.83 (2.70, 2.96)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Distant</td>
<td>3.43 (3.31, 3.57)</td>
<td>< 0.001</td>
<td>4.35 (4.16, 4.54)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Grade (vs G1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>1.19 (1.10, 1.28)</td>
<td>< 0.001</td>
<td>1.27 (1.16, 1.38)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>G3</td>
<td>1.56 (1.45, 1.67)</td>
<td>< 0.001</td>
<td>1.75 (1.61, 1.91)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>G4</td>
<td>1.60 (1.43, 1.79)</td>
<td>< 0.001</td>
<td>1.85 (1.63, 2.09)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Surgery (vs none)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.45 (0.43, 0.48)</td>
<td>< 0.001</td>
<td>0.44 (0.42, 0.47)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Radiation (vs none)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.92 (0.89, 0.95)</td>
<td>0.007</td>
<td>0.92 (0.89, 0.96)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Chemotherapy (vs none)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.52 (0.51, 0.54)</td>
<td>< 0.001</td>
<td>0.53 (0.51, 0.55)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

*Adjusted for age, race, sex, marital status, grade, stage, size, radiation, surgery, chemotherapy. AI/AN: American Indian/Alaska Native; AP: Asian or Pacific Islander; CI: Confidence interval; G1: Well-differentiated; G2: Moderately differentiated; G3: Poorly differentiated; G4: Undifferentiated; HR: Hazard ratio.

Somatic mutations between GC patients with or without prior cancer (Figure 3C). Distinct to the SEER dataset, TCGA appeared to show a survival benefit toward patients with prior cancer. Due to insufficient sample numbers, we observed no significant OS between GC patients with or without prior cancer (Figure 3D). Also, we identified 42 DEGs between cancer groups, with 15 upregulated and 27 downregulated genes identified in the prior cancer group. Additionally, we constructed a volcano map (Figure 3E) to show the distribution of these 42 DEGs.
Table 4 Multivariable Cox regression analysis of survival in gastric cancer patients stratified by age, stage, and timing of prior cancer (prior cancer vs < none)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All-cause survival (CI)</th>
<th>P value</th>
<th>Gastric cancer-specific survival (CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 65</td>
<td>1.08 (1.00, 1.18)</td>
<td>0.064</td>
<td>0.77 (0.69, 0.85)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>≥ 65</td>
<td>1.00 (0.96, 1.04)</td>
<td>0.843</td>
<td>0.83 (0.79, 0.87)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localized</td>
<td>1.10 (1.02, 1.19)</td>
<td>0.012</td>
<td>0.82 (0.74, 0.91)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Regional</td>
<td>0.99 (0.92, 1.06)</td>
<td>0.777</td>
<td>0.84 (0.78, 0.92)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Distant</td>
<td>0.92 (0.87, 0.98)</td>
<td>0.014</td>
<td>0.79 (0.73, 0.85)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Timing of prior cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5</td>
<td>1.03 (0.98, 1.09)</td>
<td>0.275</td>
<td>0.77 (0.72, 0.82)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>5-10</td>
<td>0.98 (0.92, 1.04)</td>
<td>0.525</td>
<td>0.84 (0.78, 0.90)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>≥ 10</td>
<td>1.01 (0.94, 1.08)</td>
<td>0.811</td>
<td>0.88 (0.81, 0.95)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Adjusted for age, race, sex, marital status, grade, stage, size, radiation, surgery, chemotherapy. AHR: Adjusted hazard ratio; CI: Confidence interval.

DISCUSSION

Cancer survivors are at higher risk of developing secondary malignancies[18,19]. With increasing numbers of cancer survivors having complicated dual or even multiple malignancies, the prognostic impact of previous cancer on cancer survival remains controversial. A pan-cancer study investigated the distinct effects of prior cancer across 20 cancer types[20]. For colorectal, sarcoma, melanoma, breast, cervical, endometrial, prostate, urothelial, orbital, and thyroid cancers, a prior cancer history contributed to a poor OS, while nasopharynx, gastrointestinal tract, lung, ovary, and brain cancer patients, with prior cancer, had a similar OS to patients without prior cancer[20]. In our population-based study, more than 10% of patients with newly diagnosed GC had a prior cancer history, similar to that reported by Murphy et al[5]. Newly diagnosed GC patients with prior cancer were older, suggesting that age is an independent risk factor for secondary malignancies[21]. The proportion of localized stages and negative lymph nodes were higher in patients with a prior cancer history, suggesting that cancer survivors may receive more active surveillance and that their cancer may be incidentally diagnosed at earlier stages[22,23]. Unsurprisingly, prostate cancer was the most common prior tumor type, suggesting an indolent clinical course. Similar results were identified for lung cancer patients[24]. The interval between initial malignancy and GC suggested the GC risk increased after five years of prior cancer diagnoses.

In oncology clinical trials, a substantial proportion of cancer survivors are excluded due to stringent eligibility criteria, and the assumption that these patients have inferior survival[6,24-27]. A previous study reported that the heterogeneous impact of a prior cancer history should be reconsidered according to the specific cancer type[20]. Thus, it is inappropriate to assume a prior cancer is a risk factor for mortality in a newly diagnosed cancer. In our study, using the SEER database, GC patients with a prior cancer history had similar 3-year survival rates compared to those without a prior cancer history. Despite a survival benefit trend, these data were not significant for patients with prior cancer.

A similar result was identified and validated in TCGA cohort, and suggested that a prior cancer history did not adversely affect the overall prognosis in GC patients. Regarding CSS, patients with prior cancer had superior GC-specific survival after particular variables were adjusted. It is unclear why a prior cancer history could improve GC-specific survival. Cancer survivors may undergo active cancer surveillance, thereby having an early cancer stage and improved survival, which may cause length bias and lead-time bias[28-30]. As gene mutations underlie most cancers, we hypothesized that patients with prior cancers harbored more molecular mutations, however, no significant mutation counts were associated with prior cancer status in the TCGA cohort.
Figure 3 Effect of prior cancer on the survival of patients with gastric cancer in The Cancer Genome Atlas. A: Oncoplot of the top frequently mutated genes in patients without prior cancer; B: Oncoplot of the top frequently mutated genes in patients with prior cancer.
In our study, we could not avoid bias as the percentage of early stage GC was more frequent in patients with prior cancer. However, we did not believe this bias was responsible for GC-specific survival advantages because a prior cancer was also associated with better GC-specific survival in the localized stages (HR = 0.82, 95% CI: 0.74–0.91). We speculated that higher competing mortality risks (either due to prior cancer or other factors) in patients with prior cancer may have accounted for GC-specific survival benefits[31]. Further studies are required to address these observations.

In subgroup analyses, age did not affect the impact of a prior cancer diagnosis. A prior cancer had no significant influence on OS, but improved CSS in GC patients. We also noted that the prognostic impact of a prior cancer was independent of the time of previous cancer diagnosis, suggesting that GC patients with a prior cancer diagnosis could be considered for trial enrollment regardless of the time.

We observed that the impact of a prior cancer history on survival was varied across different cancer types. In 2009, Pulte et al.[10] reported that non-Hodgkin’s lymphoma patients with prior malignancies had worse prognoses than those without prior cancer. Youn et al.[32] subsequently showed a reduced survival time for Hodgkin’s lymphoma survivors with secondary gastrointestinal cancer. In contrast, opposite trends were identified in other studies: Smyth et al.[11] showed that gastrointestinal cancer patients with/without prior cancer had comparable OS and gastrointestinal cancer-specific survival times. Also, in early or advanced lung cancer stages, no differences in OS were noted between patients with and without prior cancer[24,33]. Pruitt et al.[24] demonstrated improved lung CSS outcomes in patients with prior cancer. For stage IV esophageal cancer, a prior malignancy had no impact on OS[9]. A recent study explored the prognostic effect landscape across 20 prior cancer types[20]. However, this study primarily focused on pan-cancer and did not characterize specific clinical features and the specific impact of GC with a prior cancer history. Thus, our study filled this knowledge gap.

Our study had several limitations. The SEER database did not provide detailed chemotherapy and radiation information, and the efficacy and tolerability of prior therapies were unclear. Other covariates, such as Helicobacter pylori infection status, genetic information, and comorbidities were unavailable. Also, we could not completely exclude the possibility of GC metastatic misclassifications from earlier tumors. Finally, our findings were based on the SEER database and TCGA cohorts, thereby limiting overall generalizability to other populations. Further studies or independent cohorts are required to validate our findings and conclusions.
CONCLUSION

In the SEER database, 11.3% of newly diagnosed GC patients had a prior cancer history, with GC occurring within 6 years after prior cancer diagnosis. GC patients with a prior cancer history had a non-inferior OS, and the CSS was slightly improved. We suggest that in future clinical trials, broader inclusion criteria for GC patients with previous cancer should be considered in order to obtain the best inclusion rate and generalizable results.

ARTICLE HIGHLIGHTS

Research background
Cancer survivors had a higher risk of developing secondary cancer, and previous studies have indicated the heterogeneous effects of prior cancer on cancer survivors.

Research motivation
To evaluate prior malignancy on patients with gastric cancer (GC).

Research objectives
To describe the features and clinical significance of a prior malignancy on patients with GC.

Research methods
We identified eligible cases from the Surveillance, Epidemiology, and End Results (SEER) database and compared clinical features of GC patients with/without prior cancer. We adopted Kaplan-Meier curves and Cox analyses to assess the prognostic impact of a prior cancer on the overall survival (OS) and GC-specific survival outcomes. We also validated these results in The Cancer Genome Atlas (TCGA) cohort and compared mutation patterns.

Research results
In the SEER dataset, 35,492 patients newly diagnosed with GC during 2004-2011, 4,001 (11.3%) cases had at least one prior cancer, including 576 (1.62%) cases with multiple prior cancers. Patients with a history of prior cancer tended to be elderly, with a more localized stage and less positive lymph nodes. Prostate (32%) was the most common initial cancer site. The median interval from the initial diagnosis of malignancy to secondary gastric cancer was 68 mo. A history of prior cancer was not significantly associated with overall (hazard ratio: 1.01, 95% confidence interval: 0.97-1.05) survival in multivariable Cox analyses.

Research conclusions
The prognosis for GC patients with a diagnosis of prior cancer was not inferior to primary GC patients.

Research perspectives
The prognosis for GC patients with a diagnosis of prior cancer was not inferior to primary GC patients. Our results suggest that a wide range of conclusions should be considered in the clinical trials of GC patients with a previous cancer to obtain the best inclusion rate and generalizable results.

REFERENCES

Yin X et al. Effect of prior malignancy

Retrospective Cohort Study

Elemene-containing hyperthermic intraperitoneal chemotherapy combined with chemotherapy for elderly patients with peritoneal metastatic advanced gastric cancer

Zhi-Xiong Chen, Jin Li, Wen-Bin Liu, Shou-Ru Zhang, Hao Sun

ORCID number: Zhi-Xiong Chen 0000-0002-7942-5903; Jin Li 0000-0001-8943-1197; Wen-Bin Liu 0000-0002-7944-918X; Shou-Ru Zhang 0000-0001-8166-0037; Hao Sun 0000-0003-8205-6826.

Author contributions: Sun H and Chen ZX concepted and designed; Chen ZX and Li J; Chen ZX, Liu WB, and Zhang SR analysed the data and interpretation; all authors wrote the manuscript and approval of the final manuscript.

Institutional review board statement: All procedures performed in studies that involved human participants were in accordance with the ethical standards of the institutional and/or national research committee, and the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The present study was approved by the Ethics Committee of CUCH.

Informed consent statement: All study participants or their legal guardian provided informed written consent about personal and medical data collection prior to study enrolment.

Conflict-of-interest statement: The

Abstract

BACKGROUND
Almost all elderly patients with peritoneal metastatic gastric cancer (PGC) are unlikely to tolerate cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) and adjuvant chemotherapy. However, determining how to optimize the treatment strategy for such patients has always been a clinical problem. Both HIPEC and palliative adjuvant chemotherapy can benefit patients with PGC. Therefore, optimizing HIPEC and chemotherapy regimens has potential clinical value in reducing side effects, and improving treatment tolerance and clinical effectiveness.

AIM
To explore the effect of HIPEC containing elemene, which is an anti-cancer component extracted in traditional Chinese herbal medicine, combined with reduced capecitabine and oxaliplatin (CapeOx) chemotherapy regimens, in elderly patients with PGC.

METHODS
In the present study, 39 of 52 elderly PGC patients were included and assigned to different HIPEC treatment groups (loaplatin group (group L) and mixed group...
authors declare that they have no conflict of interest.

Data sharing statement: The datasets generated and analyzed in the present study are available from the corresponding author on reasonable request.

STROBE statement: The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.

Country/Territory of origin: China

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works upon this work non-commercially, with the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licens es/by-nc/4.0/

Received: September 18, 2021
Peer-review started: September 18, 2021
First decision: October 27, 2021
Revised: November 19, 2021
Accepted: January 11, 2022
Article in press: January 11, 2022
Published online: February 16, 2022
P-Reviewer: Kawabata H,

INTRODUCTION

In 2020, it was reported that there were approximately 1089103 new gastric cancer (GC) cases and 789793 gastric cancer-related deaths worldwide[1]. The lack of typical clinical symptoms at the early stage has made GC one of the malignancies with the highest incidence in the gastroenterological tract in China. Furthermore, a recent study demonstrated that more than half of patients were diagnosed at the advanced stage[2]. In addition, nearly 20%-30% of diagnosed GC patients were found to develop peritoneal metastasis[3]. Despite the advances achieved by treatment approaches, the median survival time still ranges within 3-4 mo[4,5]. Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) has been shown to be an effective therapeutic strategy for prolonging survival in a variety of peritoneal malignancies[6-7]. Most recent evidence has shown that CRS-HIPEC can improve the prognosis of GC patients with peritoneal metastasis[8-10]. However, it has been reported that elderly patients have an increased risk for postoperative morbidity[11].

Key Words: Gastric cancer; Hyperthermic intraperitoneal chemotherapy; Peritoneal metastasis; Oxaliplatin; Capecitabine
Therefore, this group of patients may not be able to tolerate regular CRS-HIPEC. Thus, developing an effective therapeutic strategy for elderly GC patients with peritoneal metastasis is urgently important.

An increasing body of evidence has revealed that HIPEC combined with systemic chemotherapy using capecitabine and oxaliplatin (CapeOx) can significantly improve the outcome of GC patients with peritoneal metastasis\cite{12,13}. It is noteworthy that CapeOx has been accepted as a regimen with acceptable toxicity for metastatic or advanced GC\cite{14,15}. Furthermore, it has been reported that elderly patients with advanced GC can tolerate and benefit from CapeOx treatment, even at lower doses\cite{16}. However, the use of HIPEC combined with systemic chemotherapy for elderly patients with advanced GC has not been described to date. Furthermore, a recommended treatment paradigm to achieve optimum therapeutic effects and minimum side-effects for patients with advanced GC has not been established.

Accumulating evidence has revealed that \(\beta\)-elemene, an active ingredient in the ginger family of Chinese herbal medicine Wenyujin, has anti-cancer activity. Importantly, it has been shown that \(\beta\)-elemene can increase the susceptibility of multidrug-resistant cancer cells and exhibit synergistic anti-cancer effects\cite{17} with neglectable side effects. Furthermore, it has been reported that elemene can be utilized to treat a variety of cancers, including lung cancer\cite{18}, liver cancer\cite{19}, brain cancer\cite{20}, breast cancer\cite{21}, and GC\cite{22,23}. Moreover, elemene has been shown to increase the susceptibility of cancer cells to chemotherapy and radiotherapy\cite{17,24}. In addition, it has fewer side effects, and can inhibit M2 macrophage-mediated immunosuppressive effects\cite{24}. Its extremely high penetrating potential\cite{25} also enables elemene to penetrate the blood-brain barrier and prolong the survival of patients with glioma\cite{25}. The therapeutic efficacy of elemene for malignant pleural and ascites has been well-documented\cite{26-28}. Therefore, it was speculated that the \(\beta\)-elemene-containing HIPEC paradigm might be a promising therapeutic strategy for elderly patients with advanced GC. In line with this, the present study evaluated the efficacy and safety of the elemene-supplemented HIPEC combined with CapeOx regimen in elderly GC patients with peritoneal metastasis.

MATERIALS AND METHODS

Study design and patients

A single-center research was conducted for patients recruited at the Gastrointestinal Cancer Center of Chongqing University Cancer Hospital (CUCH) between July 2016 and April 2020. All patients (\(n = 52\)) who participated in the present study provided a signed informed consent. The inclusion criteria were, as follows: (1) Age \(\geq 65\) years old; (2) Diagnosed with advanced GC and peritoneal metastasis; (3) Eastern Cooperative Oncology group (ECOG) score \(\leq 2\); (4) No severe organ or metabolic dysfunction; (5) No hypertension; (6) Mentally capable to adapt to intervention; and (7) \(> 3\) mo of expected survival time. Finally, 39 patients who met the inclusion criteria were analyzed for the present study (Figure 1), and none of these cases were HER2-positive.

Groupings: A total of 52 recruited elderly peritoneal metastatic gastric cancer (PGC) patients were randomly assigned to two groups: lobaplatin group (group L), in which lobaplatin was used during HIPEC; mixed group (group M), in which both elemene and lobaplatin were used during HIPEC.

Treatment information

Before HIPEC, patients underwent preventive fasting, gastric intubation, intravenous fluid replacement, nebulization, and sputum suction. Then, patients received laparoscopic puncture and catheterization, and no postoperative ICU admission was needed. Three cycles of HIPEC were performed for each patient. The first cycle was administered upon completion of the catheterization, and while the patient was still under anesthesia. The remaining cycles were performed when the patient was transferred to the ward (within 36, 72, or 120 h after surgery). In general, the HIPEC system (BR-TRG-I, BRM, Guangzhou, China) was perfused with 3000 mL of 0.9% sodium chloride, and pre-heated for 15 minutes until the ambiance temperature reached 43 °C. Then, the chemotherapy agents were delivered into the system in different groups. In particular, for patients in group L, lobaplatin [State Drug Administration (SDA) approval number: H20050308, 50 mg/m\(^2\)] supplemented in 250 mL of 5% glucose was added into the system for all three HIPEC cycles. For patients in group M, elemene (SDA approval number: H20110114, 0.6 g) supplemented in 250 mL of 5%
glucose was administered at the first and third HIPEC cycles. For the second HIPEC cycle, these patients were administered with the same HIPEC chemotherapy reagent as that administered for patients in group L. The perfusion machine was operated according to manufacturer's instructions. The perfusion time ranged within 30-90 min, based on the tolerance of each recipient (patients who failed to achieve a perfusion speed higher than 350 mL/min were excluded from the present study). Morphine and tramadol were used to relieve the pain before and after the perfusion. Oxygen was given to patients during the perfusion. In group M, 1.5 g of lidocaine was administered into the HIPEC system at five minutes before the administration of elemene to reduce peritoneal irritation. After the HIPEC treatment, case-specific supportive care was provided based on the complications (analgesia, acid suppression, antiemetic, maintenance of electrolyte balance, albumin infusion, and blood transfusion; subcutaneous injection of granulocyte stimulating factor, thrombopoietin [300 µg, once], and/or interleukin-11 (IL-11; 3 mg, per day, 5-7 d, according to the manual; Qilu Pharmaceutical Co., Ltd.); partial parenteral nutrition support therapy). Within two weeks after discharge, these patients received CapeOx chemotherapy (60% or 80%, or the standard CapeOx dose). The dose was gradually reduced to 60% from 80% for some patients. Each cycle was repeated every 21 d.

Data collection

The vital signs of each patient were collected during hospitalization, and these patients were followed up monthly. The average follow-up time for the entire cohort was 9.04 mo (range: 3.0-17.9 mo), and the follow-up of all patients recruited for the present study was concluded in April 2020. After perfusion, the abdominal drainage was sent to the laboratory for bacterial test. In addition, during the CapeOx chemotherapy, the results for the routine blood test, liver and kidney function evaluation, immune function analysis (CD4/CD8 ratio), and serum markers for gastric cancer (CEA, CA-125 and CA-199; any serum marker level that increases to two or becomes more than two times of the normal threshold was defined as high; otherwise, the level was defined as normal) were recorded for each patient.

Statistical analysis

The data were analyzed using the SPSS software package (version 22.0). The measurement data were presented as mean ± SD, categorical variables were analyzed by Chi-square test or Fisher's exact test, and ordinal data were analyzed by nonparametric Mann-Whitney U-test. Furthermore, the survival differences were analyzed using the Kaplan-Meier survival curve and Log-rank test. In addition, univariate analysis and Cox multivariate risk ratio regression analysis were performed to identify the potential factors related to the prognosis. A P value of < 0.05 in the two-sided test was considered statistically significant.
RESULTS

Patients' clinical data
A total of 39 GC patients were analyzed (Figure 1). The clinical characteristics of these patients are summarized in Table 1. There were 22 GC patients in group L (n = 22, 69.9 ± 3.6 years old), and 17 GC patients in group M (n = 17, 68.6 ± 3.0 years old). There were no significant differences between the two groups, in terms of gender, ECOG score, age, tumor site composition ratio, tumor size, and occurrence of complications during the first hospitalization (except for myelosuppression). However, patients in group L developed severe myelosuppression during the first hospitalization, when compared to patients in group M (P = 0.027). In addition, the average length of hospital stay was 18.7 d for patients in group L. This was a slightly longer than that for patients in group M, which was merely 16.1 d (P = 0.045).

Follow-up results
The average follow-up duration for all patients was 9.04 ± 4.30 mo (3.00-17.90 mo). The follow-up duration was 9.60 ± 4.20 mo (3.40-17.90 mo) for patients in group L, and 8.30 ± 4.40 mo (3.00-16.10 mo) for patients in group M. There was no significant difference in follow-up duration between these two groups (9.60 ± 4.20 mo (3.40-17.90 mo) vs 8.30 ± 4.40 mo (3.00-16.10 mo), P = 0.292). Three patients were lost to follow-up during the follow-up period, and 33 patients became deceased, while three patients survived at the end of the follow-up period. There were no significant differences in survival performance, in terms of HIPEC regimen (P = 0.29, Figure 1). Furthermore, both groups' median overall survival (OS) was 9.90 mo (95%CI: 5.30-13.50). The median survival was 10.80 mo (95%CI: 8.50-13.10) and 9.40 mo (95%CI: 5.30-13.50) for patients in groups L and M, respectively.

Prognostic factors
In order to identify the potential prognostic factors, independent variables, including gender, age, treatment regimen, serum tumor marker levels, immune function (CD4/CD8 ratio), myelosuppression status, cycles of chemotherapy (CapeOx chemotherapy) after HIPEC, peritoneal cancer index (PCI), and observation/presence of malignant ascites during catheterization, were analyzed using univariate analysis, followed by multivariate analysis. The results revealed that high-level serum tumor markers, low CD4/CD8 ratio (< 1), fewer cycles of chemotherapy (reduced CapeOx regimen) after HIPEC (< 6 times), high PCI (not < 20), and the appearance of ascites during laparoscopic catheter placement indicates poor prognosis (Table 2).

DISCUSSION
Compared to the OS of simple systemic palliative chemotherapy, the present study revealed that the elemene-containing HIPEC combined with CapeOx regimen can extend the OS (the median OS was approximately 9.40 mo) of elderly PGC patients, which is consistent with the report of Blum Murphy et al[29] (the OS was approximately 12 mo). It is noteworthy that clinical studies have revealed that multiple chemotherapy regimens, including fluorouracil plus leucovorin, oxaliplatin (FLOT4), and docetaxel and docetaxel, cisplatin, and 5-fluorouracil (DCF), are poorly tolerated by elderly patients[30,31]. The present study provides the possibility that the tolerance of these regimens by elderly PGC patients could be potentially elevated. However, further investigations are needed to determine whether implementing elemene to lobaplatin-based HIPEC can improve the chemotherapy efficacy of FLOT4 or DCF to be as potent as that of CapeOx. The present finding revealed that the implementation of the lobaplatin-based HIPEC combined with CapeOx regimen resulted in a high occurrence of myelosuppression in elderly GC patients (27.3%). Although the addition of elemene in the lobaplatin-based HIPEC combined with CapeOx regimen did not improve the OS of these patients, when compared to that in group L (Figure 2), this significantly reduced the incidence of myelosuppression in the recipients (P = 0.027). It is noteworthy that elderly patients with advanced cancer, such as GC, often undergo myelosuppression after receiving high-intensity chemotherapies, including lobaplatin-based regimens[32]. Notably, such complications would lead to treatment delay, and some can be life-threatening[33]. Although the OS of patients was not directly influenced, this complication increased the cost of treatment and length of hospital stay of these patients. In addition, the subgroup analysis revealed that the cycles of CapeOx treatment after HIPEC, PCI, and the CD4/CD8 ratio are prognostic factors in
Table 1 Clinical characteristics of patients with gastric cancer

<table>
<thead>
<tr>
<th>Clinical parameters</th>
<th>Group L</th>
<th>Group M</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>0.531</td>
</tr>
<tr>
<td>Male</td>
<td>14</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Age group (yr)</td>
<td></td>
<td></td>
<td>0.748</td>
</tr>
<tr>
<td>65-69</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>70-75</td>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ECOG score</td>
<td></td>
<td></td>
<td>0.561</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
<td></td>
<td>0.667</td>
</tr>
<tr>
<td>Proximal</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Distal</td>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tumor stage</td>
<td></td>
<td></td>
<td>0.192</td>
</tr>
<tr>
<td>cT3</td>
<td>12</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>cT4a</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>cT4b</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PCI scores</td>
<td></td>
<td></td>
<td>0.508</td>
</tr>
<tr>
<td>< 20</td>
<td>15</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>≥ 20</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Abdominal infection (cases)</td>
<td>2</td>
<td>0</td>
<td>0.495</td>
</tr>
<tr>
<td>Pulmonary infection (cases)</td>
<td>1</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Urinary tract infection (cases)</td>
<td>0</td>
<td>1</td>
<td>0.436</td>
</tr>
<tr>
<td>Myelosuppression system (grade 3/4, cases)</td>
<td>6</td>
<td>0</td>
<td>0.027</td>
</tr>
<tr>
<td>Blood transfusion therapy (cases)</td>
<td>4</td>
<td>0</td>
<td>0.118</td>
</tr>
<tr>
<td>Average length of stay (d)</td>
<td>18.7</td>
<td>16.1</td>
<td>0.045</td>
</tr>
</tbody>
</table>

PCI: Peritoneal cancer index; ECOG: Eastern Cooperative Oncology group.

elderly patients. The finding that a low CD4/CD8 ratio indicates poor prognosis is in line with the findings reported by previous studies, suggesting that GC patients with impaired immune function have a poor prognosis[34,35].

The present study has the following limitations. First, the sample size was small, and a control group that only used elemene HIPEC was not added. Hence, a larger cohort is needed in future studies. Second, it has been reported that reduced CapeOx doses can affect the clinical outcomes of elderly patients with advanced GC[16]. In the present study, the reduced dose of CapeOx was utilized during the treatment for part of the patients, and this may have led to biased results. Third, further exploration is needed to determine whether patients can benefit from the intravenous administration of elemene combined with CapeOx after HIPEC. Lastly, a control group for systemic chemotherapy should also be considered. Finally, it has been reported that NCT03333967[36], TAGS[37] and EPOC1201[38] can improve the prognosis of patients with advanced GC. Therefore, in future studies, it should be determined whether elemene-containing HIPEC can improve the therapeutic effects of these drugs.
Table 2 Univariate and multivariate analysis of prognostic factors of gastric cancer patients

<table>
<thead>
<tr>
<th>Clinical parameters</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95%CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Gender (male vs female)</td>
<td>0.858 (0.424-1.734)</td>
<td>0.670</td>
</tr>
<tr>
<td>Age (< 70 vs ≥ 70)</td>
<td>1.139 (0.564-2.301)</td>
<td>0.717</td>
</tr>
<tr>
<td>Group (L vs M)</td>
<td>1.467 (0.714-3.016)</td>
<td>0.297</td>
</tr>
<tr>
<td>T stage (T3 vs T4 or above)</td>
<td>2.403 (1.118-5.163)</td>
<td>0.025</td>
</tr>
<tr>
<td>Tumor marker (normal vs high)</td>
<td>1.009 (0.473-2.153)</td>
<td>0.981</td>
</tr>
<tr>
<td>CD4/CD8 (< 1 vs ≥ 1)</td>
<td>2.505 (1.147-5.467)</td>
<td>0.021</td>
</tr>
<tr>
<td>Myelosuppression (1/2 vs 3/4)</td>
<td>3.570 (1.291-9.874)</td>
<td>0.014</td>
</tr>
<tr>
<td>Times of chemotherapy after HIPEC (< 6 vs ≥ 6)</td>
<td>0.143 (0.060-0.343)</td>
<td>0.000</td>
</tr>
<tr>
<td>PCI (< 20 vs ≥ 20)</td>
<td>2.444 (1.105-5.404)</td>
<td>0.027</td>
</tr>
<tr>
<td>Ascites (exist vs none)</td>
<td>4.106 (1.746-9.658)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

¹Discernible malignant ascites in surgery.

Figure 2 Survival curves for gastric cancer patients, according to the treatment regimen (P = 0.29).

CONCLUSION

The elemene-containing HIPEC combined with CapeOX regimen has fewer side effects, and is safe for elderly PGC patients. However, further exploration is needed to determine how to further optimize the dose and combine this with other chemotherapy regimens.

ARTICLE HIGHLIGHTS

Research background

Elderly patients with peritoneal metastatic gastric cancer (PGC) have poor tolerance to intensive treatment, such as cytoreductive surgery plus hyperthermic perfusion chemotherapy (HIPEC). To date, no guidelines or consensus has standardized the HIPEC composition. However, elemene, a Chinese herbal extract with anti-cancer activity and low toxicity, turns out to be a promising ingredient for HIPEC.

Research motivation

The study aims to determine whether implementing elemene in lobaplatin-based
HIPEC benefits elderly PGC patients during chemotherapy.

Research objectives
The study aims to explore the clinical effectiveness and potential side effects of elemene-containing lobaplatin-based HIPEC in elderly PGC patients.

Research methods
The included patients were assigned into two groups: patients who received elemene-containing lobaplatin-based HIPEC plus oxaliplatin and capecitabine (CapeOx) treatment (group M) and patients who received elemene-free lobaplatin-based HIPEC plus CapeOx treatment (group L). The incidence of complications such as myelosuppression, immune function (CD4/CD8 ratio), average length of hospital stay, and prognosis were compared between these two groups.

Research results
There was no significant difference in the incidence of complications and overall survival between the two groups during hospitalization. In addition, supplementing elemene in HIPEC lessened the myelosuppression ($P = 0.027$) and shortened the length of hospital stay ($P = 0.045$) of elderly PGC patients.

Research conclusions
The administration of elemene led to the amelioration of myelosuppression in elderly PGC patients.

Research perspectives
The present study sheds light on the implementation of an elemene-containing HIPEC therapeutic strategy for elderly patients with PGC.

REFERENCES

Chen ZX et al. HIPEC plus CapeOx used for patients

(HIPEC) with Cisplatin, Mitomycin, and Paclitaxel in Patients with Gastric Adenocarcinoma and Associated Carcinomatosis or Positive Cytology. *Ann Surg Oncol* 2020; 27: 2806-2811 [PMID: 31974712 DOI: 10.1245/s10434-020-08226-x]

Retrospective Study

Timing theory continuous nursing, resistance training: Rehabilitation and mental health of caregivers and stroke patients with traumatic fractures

Ya-Li Shen, Zong-Qun Zhang, Li-Juan Zhu, Jing-Hua Liu

ORCID number: Ya-Li Shen 0000-0002-3673-7157; Zong-Qun Zhang 0000-0002-6687-0688; Li-Juan Zhu 0000-0003-3093-5264; Jing-Hua Liu 0000-0002-6040-5291.

Author contributions: Shen YL and Zhang ZQ design the experiment; Zhu LJ drafted the work, Liu JH and Shen YL collected the data; Zhang ZQ and Zhu LJ analyzed and interpreted data, Liu JH and Shen YL wrote and revised the manuscript.

Institutional review board statement: This study was approved by the Ethics Committee of Chengde Central Hospital.

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: The authors declared that there is no conflict of interest between them.

Data sharing statement: No additional data are available.

Country/Territory of origin: China

Abstract

BACKGROUND
Stroke is the leading cause of adult lifelong disability worldwide. A stroke is an acute cerebrovascular disease with a variety of causes and corresponding clinical symptoms. Around 75% of surviving stroke patients experience impaired nerve function, and some suffer from traumatic fractures, which can lead to special care needs.

AIM
To determine the effect of timing theory continuous care, with resistance training, on the rehabilitation and mental health of caregivers and stroke patients with traumatic fractures.

METHODS
Between January 2017 to March 2021, we selected 100 hospital admissions with post-stroke hemiplegia complicated with a traumatic fracture. Two participant groups were created: (1) Control group: given resistance training; and (2) Observation group: given timing theory continuous care combined with resistance training. The degree of satisfaction and differences in bone and phosphorus metabolism indexes between the two groups were compared. The self-perceived burden scale (SPBS) and caregiver burden questionnaire were used to evaluate the psychological health of patients and caregivers. The Harris hip function score, ability of daily living (ADL) scale, and global quality of life
INTRODUCTION

Patients with stroke that is complicated by a traumatic fracture after surgery often experience a partial or total loss of self-care ability, causing them to require assistance in their daily life and activities[1,2]. Currently, China’s medical resources tend to be insufficient and unevenly available, and there is a lack of health human resources. Therefore, caregivers undertake a large part of patients’ daily care[3-6]. Caring for patients who have experience both stroke and fracture require more difficult care. Patients often have limb dysfunction, and severe osteonecrosis can occur. Therefore, effective rehabilitation care can significantly improve the patient’s prognosis. This study showed that caregivers are under considerable pressure, which is related in part to the health status of the patient. Adverse emotions, such as depression, seriously affect the recovery of patients, and the existence and influence of the burden of care is long-lasting[7]. However, there are very few reports about the continuation of nursing care in stroke patients with fractures.

This study analyzed the effect of timing theory continuous nursing combined with resistance training on the rehabilitation of stroke patients with traumatic fractures and the mental health of caregivers. The purpose is to provide guidance and a basis for clinical practice.

OBJECTIVES

The object of this study was to explore the effect of timing theory continuous nursing combined with resistance training on reducing hip dysfunction in stroke patients with traumatic fractures and improving the quality of life of patients and nursing staff.

METHODS

A retrospective study of patients with hemiplegia and traumatic fractures after stroke was performed. The patients were divided into an observation group and a control group. The observation group received timing theory continuous nursing combined with resistance training, while the control group received conventional nursing. The following indicators were used to evaluate the effects of the two groups:

1. **Harris Hip Function Scale (HHS)\[8\]**
 - Used to evaluate hip function.

2. **Spino-Pelvic Balance Score (SPBS)\[9\]**
 - Used to assess the balance of patients with hip fractures.

3. **Activities of Daily Living (ADL)\[10\]**
 - Used to evaluate patients' ability in daily life and activities.

4. **Quality of Life Questionnaire (GQOL-74)\[11\]**
 - Used to evaluate patients' quality of life.

RESULTS

Data were collected prior to and after intervention. Alkaline phosphatase (ALP), osteocalcin, and vitamin D3 in the observation group and control group increased after intervention ($P < 0.05$), and carboxy-terminal peptide of type I collagen β Special sequence ($β$-CTX) decreased ($P < 0.05$). ALP and osteocalcin in the observation group were higher than in the control group ($P < 0.05$). There was no significant difference in $β$-CTX and vitamin D3 between the two groups ($P > 0.05$). The SPBS score of the observation group was lower and the ADL score was higher than the control group. The burden score was lower and the Harris hip function and GQOL-74 scores were higher than that of the control group ($P < 0.05$). The observation group's satisfaction rating was 94.00%, which was higher than the rating from the control group ($P < 0.05$).

CONCLUSION

Timing theory continuous nursing with resistance training can reduce hip dysfunction in stroke patients with a traumatic fracture and enhance quality of life and mental health of patients and caregivers.

Core Tip: Through a retrospective study of patients with hemiplegia and traumatic fractures after stroke, we proved that the timing theory and continuous nursing combined with resistance training can reduce hip dysfunction in patients with traumatic fractures after stroke, and improve the quality of life of patients and nursing staff.

Key Words: Timing theory continuous nursing; Resistance training; Stroke; Traumatic fracture; Mental health

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
MATERIALS AND METHODS

Participant inclusion and exclusion criteria
Inclusion criteria:
(1) Stroke was diagnosed by CT or MRI and stroke had not occurred previously; (2) ≥ 40 years old and ≤ 75 years old; (3) Disease duration was ≥ 6 mo; (4) Diagnosed with hemiplegia and muscle strength < grade 4; (5) Diagnosed with a femoral neck fracture who had undergone hip arthroplasty; and (6) Complete clinical data.

Exclusion criteria:
(1) Cognitive dysfunction and comprehension disorder; (2) Complications with brainstem and cerebellar infarction; (3) Long-term use of hormones and other drugs that can affect calcium and phosphorus metabolism; (4) Malignant tumor; (5) Liver and kidney dysfunction; and (6) Illiteracy.

Baseline data
A total of 100 patients with post-stroke hemiplegia combined with trauma fractures that had been admitted to our hospital from January 2017 to March 2021 were divided into two groups according to the intervention plan. The comparison of general data between the two groups was not statistically significant (\(P > 0.05 \)) (Table 1).

Method
The control group completed resistance training, and patients were guided on active ankle flexion training. Ankle flexion actions were performed with patients’ maximum strength, and nursing staff held the lower third of their calf with the left hand to enable patients to perform the resistance training in the opposite direction with equal strength. In active ankle dorsiflexion exercises, patients performed active ankle dorsiflexion with their maximum strength, and nursing staff crossed their hands and placed them on the dorsum of patients’ feet. The training was conducted with equal strength in the opposite direction. Each training session lasted for 5 s, 300 times each day, and patients were divided into 5 groups to gradually complete the exercise.

For the observation group, timing theory continuous care combined with resistance training was conducted and divided into 5 stages, which were determined based on literature reviews and expert consultation. The intervention content at each stage was based on the specific needs of the caregivers, and targeted intervention was implemented. A health education manual for patient caregivers was formulated according to the results of qualitative studies, from admission to 3 mo after discharge. Each manual included basic information about the disease, treatment methods, rehabilitation exercise guidance, daily nursing, discharge procedures, and postoperative complications and prevention. An intervention group was established to jointly control data collection, implementation of health education, follow-up after discharge, and the construction of a public platform. Duties were divided between team members depending on their personal expertise. They regularly shared reviewed articles and videos related to rehabilitation training, answered patients’ questions, and encouraged the exchange of experiences among patients to form a mutual assistance team. Patients regularly attended group face-to-face lectures. Concurrently, those in the intervention group were asked to conduct three 30-minute lectures. Hand-in-hand demonstrations were performed. The resistance training method was the same as in the control group.

Standard for evaluation
The self-perceived burden scale (SPBS)[8] and caregiver burden questionnaire[9] were used to evaluate the mental health of the patients and caregivers, respectively. The Harris hip function score[10] (HHS), ability of daily living (ADL) scale, and comprehensive quality of life questionnaire (GQOL-74)[11] were used to evaluate the patients' hip function, ability of daily living and quality of life.

Detection method
Fasting venous blood (3 mL) was drawn and centrifugated at 2000 r/min for 30 min. The concentrations of ALP, osteocalcin, vitamin D3 and \(\beta \)-CTX were determined by Enzyme-linked immunosorbent assay using the Hitachi 7600i automatic biochemical analyzer provided by Nanjing Jianchi Biological Products Co. Ltd.

Statistical analysis
SPSS19.0 was used for data analysis and measurement data was expressed as mean ± SD, a \(t \)-test was applied for comparison, and an \(\chi^2 \) test was used for comparison of
Table 1 Comparison of two groups of general data, n (%)

<table>
<thead>
<tr>
<th>General information</th>
<th>Control group (n = 50)</th>
<th>Observation group (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>29 (58.00)</td>
<td>27 (54.00)</td>
</tr>
<tr>
<td>Female</td>
<td>21 (42.00)</td>
<td>23 (46.00)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>62.32 ± 8.92</td>
<td>61.69 ± 9.22</td>
</tr>
<tr>
<td>Course of stroke (yr)</td>
<td>2.12 ± 0.56</td>
<td>2.09 ± 0.54</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>22.85 ± 3.23</td>
<td>22.80 ± 3.37</td>
</tr>
<tr>
<td>Stroke type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebral infarction</td>
<td>32 (64.00)</td>
<td>26 (52.00)</td>
</tr>
<tr>
<td>Cerebral hemorrhage</td>
<td>18 (36.00)</td>
<td>22 (44.00)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary plus junior</td>
<td>9 (18.00)</td>
<td>10 (20.00)</td>
</tr>
<tr>
<td>Technical secondary school, high school and College</td>
<td>23 (46.00)</td>
<td>19 (38.00)</td>
</tr>
<tr>
<td>Bachelor degree or above</td>
<td>18 (36.00)</td>
<td>21 (42.00)</td>
</tr>
<tr>
<td>Caregiver patient relationship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td>17 (34.00)</td>
<td>15 (30.00)</td>
</tr>
<tr>
<td>Spouse</td>
<td>24 (48.00)</td>
<td>24 (48.00)</td>
</tr>
<tr>
<td>Other</td>
<td>9 (18.00)</td>
<td>11 (22.00)</td>
</tr>
</tbody>
</table>

enumeration data. \(P < 0.05 \) was statistically significant.

RESULTS

The comparison of bone phosphorus metabolism indexes between the two groups
Before the intervention, there was no statistically significant difference in the bone phosphorus metabolism indexes between the two groups \((P > 0.05) \). After intervention, ALP, osteocalcin, and vitamin D3 increased in both the observation group and control group \((P < 0.05) \), and carboxy-terminal peptide of type I collagen \(\beta \) Special sequence \((\beta\text{-CTX}) \) decreased \((P < 0.05) \) in both groups. ALP and osteocalcin in the observation group were higher than they were in the control group \((P < 0.05) \) and there was no significant difference in \(\beta\text{-CTX} \) and vitamin D3 between the observation and control group \((P > 0.05) \). Before intervention, there was no statistically significant difference in the SPBS scores between groups \((P > 0.05) \). After intervention, the SPBS scores of patients in both groups decreased \((P < 0.05) \), but they were lower for patients in the observation group than for those in the control group \((P < 0.05) \). Before intervention, there was no statistically significant difference in ADL scores between groups \((P > 0.05) \). After intervention, ADL scores of both groups increased \((P < 0.05) \), and the ADL scores of the observation group were higher than those of the control group \((P < 0.05) \) (Table 2).

Comparison of burden scores of caregivers between the two groups
Before intervention, there was no statistically significant difference between the two groups regarding the burden scores of caregivers \((P > 0.05) \). After intervention, time-dependent, development-constrained, physiological, social, and emotional load and total score in the observation and control group decreased \((P < 0.05) \) and the burden scores of caregivers in the observation group were lower than those of the control group \((P < 0.05) \) (Table 3).

Comparison of HHS between the two groups
Before intervention, there was no statistically significant difference in the HHS \((P > 0.05) \) between the two groups. After intervention, pain, function, gait, walking aid, walking distance, deformity, range of joint motion, and the total HHS between the two
Table 2 Comparison of bone phosphorus metabolism, self-perceived burden scale, ability of daily living in two groups (mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>Control group (n = 50)</th>
<th>Observation group (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP (IU/L)</td>
<td>Before intervention</td>
<td>82.36 ± 12.05</td>
</tr>
<tr>
<td></td>
<td>After intervention</td>
<td>95.25 ± 13.65</td>
</tr>
<tr>
<td>β-CTX (ng/mL)</td>
<td>Before intervention</td>
<td>182.02 ± 23.36</td>
</tr>
<tr>
<td></td>
<td>After intervention</td>
<td>164.02 ± 15.34</td>
</tr>
<tr>
<td>Osteocalcin (μg/L)</td>
<td>Before intervention</td>
<td>9.56 ± 1.21</td>
</tr>
<tr>
<td></td>
<td>After intervention</td>
<td>12.36 ± 1.52</td>
</tr>
<tr>
<td>Vitamin D3 (ng/L)</td>
<td>Before intervention</td>
<td>9.66 ± 2.85</td>
</tr>
<tr>
<td></td>
<td>After intervention</td>
<td>13.65 ± 3.12</td>
</tr>
<tr>
<td>SPBS score</td>
<td>Before intervention</td>
<td>35.23 ± 4.56</td>
</tr>
<tr>
<td></td>
<td>After intervention</td>
<td>28.65 ± 3.36</td>
</tr>
<tr>
<td>ADL score</td>
<td>Before intervention</td>
<td>31.25 ± 3.69</td>
</tr>
<tr>
<td></td>
<td>After intervention</td>
<td>65.74 ± 5.69</td>
</tr>
</tbody>
</table>

*P < 0.05 vs pre-intervention.
*cP < 0.05 vs the control group.

ALP: Alkaline phosphatase; β-CTX: carboxy-terminal peptide of type I collagen β Special sequence; SPBS: self-perceived burden scale; ADL: Ability of daily living.

Table 3 Comparison of burden scores of caregivers between the two groups (mean ± SD, min)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group (n = 50)</th>
<th>After intervention</th>
<th>Observation group (n = 50)</th>
<th>After intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time dependent load</td>
<td>16.23 ± 3.24</td>
<td>10.23 ± 2.12*c</td>
<td>16.09 ± 3.36</td>
<td>7.82 ± 1.92*c</td>
</tr>
<tr>
<td>Development-constrained load</td>
<td>14.25 ± 2.96</td>
<td>7.56 ± 2.01*c</td>
<td>14.06 ± 3.11</td>
<td>5.23 ± 1.49*c</td>
</tr>
<tr>
<td>Physiological load</td>
<td>10.26 ± 2.13</td>
<td>5.87 ± 1.41*c</td>
<td>10.21 ± 2.06</td>
<td>3.96 ± 0.95*c</td>
</tr>
<tr>
<td>Social load</td>
<td>6.21 ± 1.25</td>
<td>2.58 ± 0.45*c</td>
<td>6.09 ± 1.33</td>
<td>1.51 ± 0.38*c</td>
</tr>
<tr>
<td>Emotional load</td>
<td>4.02 ± 1.02</td>
<td>1.85 ± 0.23*c</td>
<td>3.97 ± 0.91</td>
<td>1.02 ± 0.18*c</td>
</tr>
<tr>
<td>Total score</td>
<td>50.56 ± 5.36</td>
<td>28.63 ± 4.02*c</td>
<td>51.04 ± 4.98</td>
<td>19.85 ± 3.47*c</td>
</tr>
</tbody>
</table>

*P < 0.05 vs pre-intervention.
*cP < 0.05 vs the control group.

groups increased (P < 0.05) and were higher in the observation than in the control group (P < 0.05) as illustrated in Table 4.

Comparison of GQOL-74 scores between the two groups
Before intervention, there was no statistically significant difference in GQOL-74 scores between the two groups (P > 0.05). After intervention, GQOL-74 scores for physical and mental health, material life, and social function in the two groups increased (P < 0.05), and the GQOL-74 score in the observation group was higher than the control group (P < 0.05) (Table 5).

Comparison of satisfaction between the two groups
In the observation group, there were 30 very satisfied cases and 17 basically satisfied cases; the overall satisfaction rating was 94.00%, which was higher than the control group. The difference was statistically significant (P < 0.05) (Table 6).
Table 4 Comparison of Harris hip function scores between the two groups (mean ± SD, min)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group (n = 50)</th>
<th>Observation group (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before intervention</td>
<td>After intervention</td>
</tr>
<tr>
<td></td>
<td>Before intervention</td>
<td>After intervention</td>
</tr>
<tr>
<td>Pain degree</td>
<td>8.56 ± 1.65</td>
<td>35.69 ± 4.12</td>
</tr>
<tr>
<td></td>
<td>8.70 ± 1.71</td>
<td>40.52 ± 4.56</td>
</tr>
<tr>
<td>Daily activity function</td>
<td>2.96 ± 0.52</td>
<td>10.12 ± 2.02</td>
</tr>
<tr>
<td></td>
<td>3.05 ± 0.45</td>
<td>11.89 ± 2.14</td>
</tr>
<tr>
<td>Gait</td>
<td>1.85 ± 0.63</td>
<td>7.12 ± 1.63</td>
</tr>
<tr>
<td></td>
<td>1.87 ± 0.59</td>
<td>9.36 ± 1.45</td>
</tr>
<tr>
<td>Walking aid</td>
<td>1.63 ± 0.36</td>
<td>5.24 ± 0.96</td>
</tr>
<tr>
<td></td>
<td>1.68 ± 0.30</td>
<td>7.11 ± 1.41</td>
</tr>
<tr>
<td>Walking distance</td>
<td>1.98 ± 0.37</td>
<td>6.36 ± 1.32</td>
</tr>
<tr>
<td></td>
<td>1.95 ± 0.31</td>
<td>8.05 ± 1.17</td>
</tr>
<tr>
<td>Deformity</td>
<td>2.03 ± 0.41</td>
<td>3.22 ± 0.29</td>
</tr>
<tr>
<td></td>
<td>2.06 ± 0.35</td>
<td>3.56 ± 0.31</td>
</tr>
<tr>
<td>Joint range of motion</td>
<td>1.98 ± 0.29</td>
<td>3.22 ± 0.37</td>
</tr>
<tr>
<td></td>
<td>2.03 ± 0.26</td>
<td>3.69 ± 0.41</td>
</tr>
<tr>
<td>Total score</td>
<td>20.36 ± 2.12</td>
<td>70.52 ± 6.02</td>
</tr>
<tr>
<td></td>
<td>20.13 ± 2.23</td>
<td>83.12 ± 7.02</td>
</tr>
</tbody>
</table>

a P < 0.05 vs pre-intervention.

*P < 0.05 vs the control group.

Table 5 Comparison of global quality of life questionnaire scores between the two groups (mean ± SD, min)

<table>
<thead>
<tr>
<th>Group</th>
<th>Control group (n = 50)</th>
<th>Observation group (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before intervention</td>
<td>51.02 ± 9.63</td>
<td>50.29 ± 10.13</td>
</tr>
<tr>
<td>After intervention</td>
<td>75.69 ± 11.05*</td>
<td>82.34 ± 10.53</td>
</tr>
<tr>
<td>Mental health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before intervention</td>
<td>68.36 ± 10.26</td>
<td>66.95 ± 12.97</td>
</tr>
<tr>
<td>After intervention</td>
<td>81.36 ± 8.66*</td>
<td>87.96 ± 9.43</td>
</tr>
<tr>
<td>Material life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before intervention</td>
<td>61.62 ± 8.63</td>
<td>62.05 ± 9.34</td>
</tr>
<tr>
<td>After intervention</td>
<td>66.36 ± 7.44*</td>
<td>73.05 ± 8.05</td>
</tr>
<tr>
<td>Social function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before intervention</td>
<td>59.02 ± 7.14</td>
<td>58.36 ± 7.74</td>
</tr>
<tr>
<td>After intervention</td>
<td>67.36 ± 5.98*</td>
<td>75.45 ± 8.06</td>
</tr>
</tbody>
</table>

a P < 0.05 vs pre-intervention.

*P < 0.05 vs the control group.

Table 6 Comparison of satisfaction between the two groups, n (%)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>Very satisfied</th>
<th>Basically satisfied</th>
<th>Dissatisfied</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>50</td>
<td>21 (42.00)</td>
<td>18 (36.00)</td>
<td>11 (22.00)</td>
<td>39 (78.00)</td>
</tr>
<tr>
<td>Observation group</td>
<td>50</td>
<td>30 (60.00)</td>
<td>17 (34.00)</td>
<td>3 (6.00)</td>
<td>47 (94.00)*</td>
</tr>
</tbody>
</table>

a P < 0.05 vs the control group.

DISCUSSION

Timing theory advocates that during hospitalization, nurses provide appropriate interventions for caregivers by identifying the stage of the patient and strengthening the caregivers’ performance through repeated guidance. The goal is to improve caregivers’ ability to provide care, the quality of care, and the effectiveness of patients’ rehabilitation[9]. A continuous nursing care plan, guided by post-discharge timing theory, can reduce the pressure on caregivers’ through the application of a variety of intervention tools and measures, ensuring the effectiveness of post-discharge patient rehabilitation[12]. The continuous nursing model based on timing theory and combined with resistance training was used for patients with stroke that had been complicated with a traumatic fracture and incorporated both patients and caregivers.
Caregivers have multidimensional needs during the nursing period, and the primary needs changed over time depending on the patient’s stage of disability. Therefore, to better meet the needs of caregivers, nursing staff should be cognizant of the characteristics of caregivers’ needs when formulating health education content and nursing intervention measures to achieve comprehensive and multi-dimensional support. Staff should also be aware of changes in caregivers’ needs so they can provide timely and corresponding needs support. After discharge, through regular telephone follow-up, WeChat groups, and public account information pushes, caregivers and patients can continue to acquire health knowledge. This can assist the caregivers in regularly evaluating the patient’s disease status and adjusting their individualized care plan accordingly. This can help them to effectively manage a variety of problems in the process of rehabilitation and can encourage multi-directional and multi-channel access to health resources.

In this study, the SPBS and load scores of both patients and caregivers in the observation group was lower after intervention, suggesting that the use of timing theory continuous nursing, combined with resistance training, can reduce patients’ sense of self-burden as well as caregivers’ sense of load in patients with stroke combined with a traumatic fracture. Continuous nursing based on timing theory can effectively reduce the caregivers’ psychological pressure and improve their caring ability\[13-17]. Caregivers can share their caring experiences and emotional communication, thereby effectively relieving the psychological pressure. The study also found that the ADL score of the observation group after intervention was higher than that of the control group, and the Harris hip function score of the observation group after intervention was higher than that of the control group. By improving the hip joint function score, the quality of daily life is improved.

According to the study, the SPBS and load scores of both patients and caregivers in the observation group were higher than those in the control group, suggesting that timing theory continuous nursing, combined with resistance training, can be conducive to bone phosphorus metabolism recovery and improvement. Both ALP and osteocalcin are important indicators in the process of bone metabolism, so active rehabilitation care is of great significance for regulating human bone metabolism. The quality of daily life in patients with stroke combined with a traumatic fracture. The GQOL-74 and HHS in the observation group, after intervention, were higher than those in the control group, indicating that the application of this model can enable patients and caregivers to adapt to the new role of caring more quickly for patients and rearranging their work and life. Over time, the caregivers can slowly accept the reality of the disease, adapt to the reality of caregiving, and accumulate further care experience, while the patients’ own functional defects and their self-care ability can gradually improve\[18].

Timing theory has been applied in a variety of disease groups abroad, but it is rarely applied in stroke patients with a traumatic fracture in China\[19,20]. In this study, the specific needs of patients at different stages and the timing to meet these needs were analyzed. An investigation was conducted according to patients’ needs. Based on this, intervention measures conforming to the characteristics of caregivers’ needs were formulated and implemented, and positive intervention effects were achieved. However, there was a short follow-up time in this study, so the long-term effects cannot be identified. The sample size and sampling range were small. Future studies should increase the sample size and conduct longer continuous intervention studies to understand their long-term effects.

CONCLUSION
In conclusion, timing theory continuous nursing combined with resistance training can reduce the hip function of stroke patients with a traumatic fracture, improve their ability of daily life and quality of life, and promote the mental health of both patients and their caregivers.

ARTICLE HIGHLIGHTS

Research background
Stroke is the main cause of lifelong disability in adults worldwide. It refers to acute cerebrovascular diseases with multiple etiologies and corresponding clinical
symptoms. Approximately 75% of surviving stroke patients have neurological impairment. Because of this, some patients are prone to traumatic fractures and require special care.

Research motivation
Provide new methods and ideas for the nursing of patients with traumatic fracture and stroke.

Research objectives
The authors aimed to determine the effect of timing theory continuous care, with resistance training, on rehabilitation and mental health of caregivers and stroke patients with traumatic fractures.

Research methods
We conducted a study on 100 patients with traumatic fractures who came to our hospital from January 2017 to March 2021 due to post-stroke hemiplegia.

Research results
After the intervention, compared with before the intervention, the observation group and the control group increased alkaline phosphatase (ALP), osteocalcin, and vitamin D3, and type I collagen β-carboxy terminal peptide (β-CTX) decreased. ALP and osteocalcin in the observation group were higher than those in the control group. There was no statistically significant difference between the two groups of β-CTX and vitamin D3. The SPBS score of the observation group was lower than that of the control group, and the ability of daily living score of the observation group was higher than that of the control group. The burden score was lower than that of the control group, Harris hip joint function and global quality of life questionnaire scores were higher than that of the control group, and the satisfaction degree was higher than that of the control group.

Research conclusions
Timing theory continuous nursing with resistance training can reduce hip dysfunction of stroke patients with a traumatic fracture and enhance quality of life and mental health of patients and caregivers.

Research perspectives
In the subsequent treatment, it can improve the ability of daily living and quality of life of patients with traumatic fracture of stroke, and promote the mental health of patients and their caregivers.

REFERENCES

Young Adults With Serious Traumatic Brain Injury. J Head Trauma Rehabil 2020; 35: E310-E319 [PMID: 31834059 DOI: 10.1097/HTR.0000000000000539]

Veieva CS, de Nadai MN, de Melo Pereira do Carmo LS, Braga GC, Infante BF, Stifani BM, Ferriani RA, Quintana SM. Timing of postpartum etonogestrel-releasing implant insertion and bleeding patterns, weight change, 12-month continuation and satisfaction rates: a randomized controlled trial. Contraception 2019; 100: 258-263 [PMID: 31145885 DOI: 10.1016/j.contraception.2019.05.007]

Retrospective Study

Effect of precise nursing service mode on postoperative urinary incontinence prevention in patients with prostate disease

Xi-Chun Zheng, Ting-Ting Luo, Dan-Dan Cao, Wen-Zhi Cai

ORCID number: Xi-Chun Zheng 0000-0003-2044-0364; Ting-Ting Luo 0000-0003-4735-1767; Dan-Dan Cao 0000-0003-3773-2339; Wen-Zhi Cai 0000-0002-2354-5199.

Author contributions: Zheng XC and Cai WZ designed this retrospective study, Zheng XC and Luo TT wrote this paper; Zheng XC, Luo TT, Cao DD and Cai WZ were responsible for sorting the data.

Institutional review board statement: This study was reviewed and approved by the Ethics Committee Shenzhen Hospital of Southern Medical University (Approval No. NYSZYJEC20210005).

Conflict-of-interest statement: Nothing to disclose.

Data sharing statement: No additional data are available.

Supported by: Nursing Scientific Research Project Fund of Nursing Society of Guangdong Province, No. gdhxueh2019zx218; Shenzhen Bao’an District Science and Technology Plan, No. 2020051503525001.

Country/Territory of origin: China

Specialty type: Urology and

Abstract

BACKGROUND
Patients with benign prostatic disease often experience detrusor morphological changes and dysfunction. In severe cases, it leads to bladder detrusor dysfunction, resulting in dysuria, frequent urination, urgent urination, incomplete urination, and other symptoms including renal function injury. An operation to restore normal urination function and to control postoperative complications, as far as possible, is the most common method for benign prostatic disease.

AIM
To observe the effect of precise nursing service mode on postoperative urinary incontinence prevention in patients with prostate disease.

METHODS
In total, 130 patients diagnosed with benign prostatic disease, from January 2018 to June 2021, in our hospital, were selected and divided into observation and control groups according to their treatment options. Sixty-five cases in the control group were given routine nursing mode intervention and 65 cases in the observation group received precise nursing service mode intervention. The intervention with the observation group included psychological counseling about negative emotions, pelvic floor exercises, and post-hospital discharge care. The complications of the two groups were counted, and the general postoperative conditions of the two groups were recorded. The urinary flow dynamics indexes of the two groups were detected, and differences in clinical international prostate system score (IPSS) and urinary incontinence quality of life questionnaire (I-QOL) scores were evaluated.

RESULTS
Zheng XC et al. Precise nursing service and patients with prostate disease

Nephrology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works upon this work non-commercially, provided the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Received: November 14, 2021
Peer-review started: November 14, 2021
First decision: December 9, 2021
Revised: December 26, 2021
Accepted: January 8, 2022
Article in press: January 8, 2022
Published online: February 16, 2022
P-Reviewer: Agarwal N, Lecouvet FE
S-Editor: Wang JL
L-Editor: A
P-Editor: Wang JL

Postoperative exhaust time (18.65 ± 3.23 h and 24.63 ± 4.51 h), the time of indwelling catheter (4.85 ± 1.08 d and 5.63 ± 1.24 d), and hospitalization time (8.78 ± 2.03 d and 10.23 ± 2.28 d) in the observation group were lower than in the control group. The difference was statistically significant (P < 0.05). After the operation, the maximum urinary flow rate (Qmax) increased (P < 0.05), the residual urine volume (RUJ) decreased (P < 0.05), and the maximum closed urethral pressure (MUCP) was not statistically significant (P > 0.05) compared to pre-operation. The Qmax of the observation group was higher than that of the control group, while the RUJ was lower than that of the control group. There was no significant difference in MUCP between the observation and control groups (P > 0.05). The I-QOL score of the two groups improved (P < 0.05), and the IPSS decreased (P < 0.05). After the operation, the I-QOL score of the observation group was higher than that of the control group, and the IPSS was lower than that of the control group (P < 0.05). There were no significant differences in the incidence of urethral injury (1.54% and 3.08%), bladder spasm (0.00% and 1.54%), and secondary bleeding (1.54% and 4.62%) between the observation and control groups (P > 0.05).

CONCLUSION
The precise nursing service mode can reduce the incidence of postoperative urinary incontinence in patients with prostate disease, thus improving postoperative urodynamics and rehabilitation, and quality of life.

Key Words: Precise nursing service mode; Prostate disease; Urinary incontinence; Urodynamics; Life quality

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Citation: Zheng XC, Luo TT, Cao DD, Cai WZ. Effect of precise nursing service mode on postoperative urinary incontinence prevention in patients with prostate disease. World J Clin Cases 2022; 10(5): 1517-1526
URL: https://www.wjgnet.com/2307-8960/full/v10/i5/1517.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1517

INTRODUCTION
Urinary incontinence is one of the most common postoperative complications in patients with benign prostate disease who fail to respond to conservative treatment. Urinary incontinence can not only cause local skin eczema, erosion, incontinence dermatitis, and other complications but also exert psychological pressure on patients, seriously affecting their physical and mental health after surgery[1,2]. Previous studies have found that postoperative local edema, a long catheter indwelling time, hyperplastic gland compression, hemostatic balloon placement, and psychological factors were related to urinary incontinence. The postoperative nursing quality has greatly influenced the care for urinary incontinence; however, routine nursing mode focuses on basic nursing. Therefore, targeted interventions for urinary incontinence are often inadequate[3].

Precise nursing service mode is a novel nursing mode, providing care based on patients’ needs rather than care being imposed on them by the nursing staff. Hence, this intervention administers the right care to the right patient at the right time. Comprehensive precision nursing intervention helps to improve patients’ cognition, compliance, and satisfaction while reducing complications. It has been applied in many areas such as in intensive care units, surgery, orthopedics, gynecology, and pediatrics, and has achieved beneficial results[4,5]. Neurogenic bladder, caused by dysuria, has no completely effective treatment in China or abroad. Urinary
incontinence can be alleviated by using a bladder therapy instrument after the prostate operation. Our study aimed to observe the effect of precise nursing service mode on the prevention of postoperative urinary incontinence in patients with prostate disease.

MATERIALS AND METHODS

Case data
A total of 130 patients, on average (62.89 ± 11.71) years old, diagnosed with benign prostatic disease from January 2018 to June 2021, in our hospital, were selected and divided into observation and control groups according to their treatment options. Sixty-five cases in the control group were given routine nursing mode intervention, and 65 cases in the observation group received precise nursing service mode intervention. There was no statistical significance of the baseline data between the two groups \((P > 0.05) \). Written informed consent was given by patients in this study.

Selection of cases

Inclusion criteria: (1) Preoperative biopsy was performed on patients with prostate specific antigen < 4 ng/mL, which met the criteria of benign prostatic hyperplasia in The Guidelines for Diagnosis and Treatment of Diseases of Urology in China. Cystoscopy, urodynamic examination, and digital rectal examinations were performed to confirm the diagnosis; (2) Patients were ≥ 50 years old, ≤ 85 years old; (3) Electro prostatectomy was performed after invalid conservative observation and drug treatment; (4) Neurogenic bladder was excluded; (5) Patients had no history of lower urinary tract trauma; and (6) They understood the purpose and methods of this study, voluntarily participated in it, and signed the informed consent.

Exclusion criteria: (1) Obstruction of urination due to urinary calculi, urethral stricture, and other reasons; (2) skin disease or severe skin damage in the perineal region; (3) psychological urinary incontinence or previous urethral trauma; (4) mental abnormalities; and (5) serious heart, liver, kidney, and other organ diseases.

Methods
The control was given routine nursing mode intervention, including vital signs' monitoring, proper catheter fixation and unobstructed, continuous bladder irrigation, dietary guidance, psychological counseling, prevention of falls and pressure sores, and analgesic drugs as directed by doctors.

The observation group was given precise nursing service mode intervention. Moreover, psychological intervention occurred first to understand the factors causing patients' negative emotions, to correct patients' wrong ideas through health education, to ensure patients realize the impact of negative emotions on postoperative urinary incontinence, and to help patients establish recovery confidence.

Stepped pelvic floor functional exercise was adopted, and patients were guided to engage in pelvic floor muscle rehabilitation training three days before the operation. Training method: the nursing staff wore disposable gloves; inserted the right index finger into the patient's anus after smearing paraffin oil and asked the patient to relax the abdominal and thigh muscles, contract the anus and urethra, relax for 5–10 s after holding for more than 3 s, and gradually extended the contraction time for 5–10 s, depending on the feeling of tightness of the anus by the pressure on the fingers. The training time was 20 min/t, 3 times/d. The training was suspended from the day of the operation to 2d after the operation, and the tube training was started on the third day after operation. The duration and intensity of the exercise was gradually increased.

Patients were guided to conduct bladder function training. When the urinary catheter was just removed, the nurse responsible told the patients to urinate again immediately after urination, to avoid holding urine, to urinate regularly within a short time, and then gradually extend the interval. Once urination had occurred, they did not urinate again immediately, but maintained a relaxed and pleasant mood to relax the bladder and inhibit urination.

Intermittent micturition training was conducted to stop or slow down the speed of urinary flow during micturition. Attention was paid to contract the pelvic floor muscles to prevent urine outflow before urinary incontinence caused by coughing, laughing and other actions. For patients with urinary incontinence, clothes were changed in time and perineum area cleaned, to prevent urine odor and skin irritation.
The patient was guided to use the Lihe household low-frequency electronic pulse bladder instrument correctly after discharge from the hospital. Precision nursing permeates all stages of preoperative nursing, postoperative nursing, and continuous nursing to establish an out of hospital follow-up platform for specific diseases and to build a patient discharge system on effective supervision and communication.

Observation indexes and test method

The postoperative exhaust time, time of indwelling catheter, hospitalization time, urethral orifice injury, bladder spasm, secondary hemorrhage, and urinary incontinence were recorded.

Clinical international prostate system score (IPSS) and urinary incontinence quality of life questionnaire (I-QOL) scores were used to evaluate the symptoms and life quality\[6,7\]. There are 7 IPSSs, and the individual score is 0–5. The lower the score, the lighter the symptoms. There are 22 questions in the I-QOL score, with a total score of 0–100. The higher the score, the better the quality of life.

Statistical analysis

SPSS 19.0 was used for data analysis; measurement data were expressed by mean ± SD; t-test was used for comparative application; enumeration data were expressed by the number of cases (percentage); χ² test was used for comparative application. The inspection level was 0.05.

RESULTS

The comparison of baseline data between the two groups

There were no significant differences in age, course of the disease, IPSS, prostate volume, rectal digital examination, and basic diseases between the two groups (\(P > 0.05\)), as indicated in Table 1.

The comparison of postoperative outcomes between the two groups

Postoperative exhaust time, time of indwelling catheter, and hospitalization time for the observation group were lower than for the control group. The difference was significant (\(P < 0.05\)) (Table 2).

Comparisons of urinary flow mechanics index, IPSS, and I-QOL scores of the two groups

The urinary flow mechanics index before the operation was consistent (\(P > 0.05\)). After the operation, the maximum urinary flow rate (Qmax) increased (\(P < 0.05\)), the residual urine volume (RUV) decreased (\(P < 0.05\)), and the maximum closed urethral pressure (MUCP) was not statistically significant (\(P > 0.05\)) compared with during pre-operation. The Qmax of the observation group was higher than that of the control group, while the RUV was lower than that of the control group. There were no significant differences in MUCP between the observation and control groups (\(P > 0.05\)). Preoperative IPSS and I-QOL scores were similar (\(P > 0.05\)). After the operation, the I-QOL score of the two groups improved (\(P < 0.05\)), and the IPSS decreased (\(P < 0.05\)). The I-QOL score of the observation group was higher than that of the control group, and the IPSS was lower than that of the control group (\(P < 0.05\)), as demonstrated in Table 3.

Comparison of complications between two groups

There were no significant differences in urethral orifice injury, bladder spasm, and secondary bleeding between the two groups (\(P > 0.05\)) (Table 4).

Comparison of urinary incontinence between the two groups

In the observation group, there were 14 cases of temporary urinary incontinence on the day the catheter was introduced; the incidence rate was 21.54%; mainly mild. Among the 14 cases of urinary incontinence in the observation group, 9 cases returned to normal within 1 wk, and 5 cases returned to normal within 1 to 4 wk. In the control group, 25 cases of temporary urinary incontinence occurred on the same day; the incidence rate was 38.46%; mainly moderate. Among the 25 cases of urinary incontinence in the control group, 13 cases returned to normal within 1 wk, and 8 cases returned to normal within 1 to 4 wk. The incidence of urinary incontinence in the observation group was lower than that in the control group, and there was no
Zheng XC et al. Precise nursing service and patients with prostate disease

Table 1 Comparison of baseline data between the two groups, n (%)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control group (n = 65)</th>
<th>Observation group (n = 65)</th>
<th>χ²/t</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>63.12 ± 12.05</td>
<td>62.85 ± 11.54</td>
<td>0.130</td>
<td>0.896</td>
</tr>
<tr>
<td>Course of disease (yr)</td>
<td>12.24 ± 3.02</td>
<td>12.31 ± 2.84</td>
<td>0.136</td>
<td>0.892</td>
</tr>
<tr>
<td>IPSS score</td>
<td>30.56 ± 4.63</td>
<td>31.02 ± 4.81</td>
<td>0.555</td>
<td>0.580</td>
</tr>
<tr>
<td>Prostate volume (mL)</td>
<td>45.96 ± 7.86</td>
<td>46.21 ± 7.37</td>
<td>0.187</td>
<td>0.852</td>
</tr>
<tr>
<td>Rectal digital examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II degree</td>
<td>36 (55.38)</td>
<td>41 (63.08)</td>
<td>0.796</td>
<td>0.372</td>
</tr>
<tr>
<td>III degree</td>
<td>29 (44.62)</td>
<td>24 (36.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder stones</td>
<td>24 (36.92)</td>
<td>19 (29.23)</td>
<td>0.869</td>
<td>0.351</td>
</tr>
<tr>
<td>Hypertension</td>
<td>36 (55.38)</td>
<td>39 (60.00)</td>
<td>0.284</td>
<td>0.594</td>
</tr>
<tr>
<td>Diabetes</td>
<td>18 (27.69)</td>
<td>20 (30.77)</td>
<td>0.149</td>
<td>0.700</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>27 (41.54)</td>
<td>22 (33.85)</td>
<td>0.819</td>
<td>0.366</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>25 (38.46)</td>
<td>23 (35.38)</td>
<td>0.132</td>
<td>0.716</td>
</tr>
</tbody>
</table>

IPSS: International prostate system score.

Table 2 Comparison of postoperative outcomes between the two groups (mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>Postoperative exhaust time (h)</th>
<th>Time of indwelling catheter (d)</th>
<th>Hospitalization time (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>65</td>
<td>24.63 ± 4.51</td>
<td>5.63 ± 1.24</td>
<td>10.23 ± 2.28</td>
</tr>
<tr>
<td>Observation Group</td>
<td>65</td>
<td>18.65 ± 3.23</td>
<td>4.85 ± 1.08</td>
<td>8.78 ± 2.03</td>
</tr>
<tr>
<td>t</td>
<td>8.691</td>
<td>3.824</td>
<td>3.829</td>
<td>0.000</td>
</tr>
<tr>
<td>P value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

significant difference in the duration of urinary incontinence between the observation and control groups (P > 0.05) as indicated in Table 5.

DISCUSSION

Postoperative urinary incontinence is the common complication affecting the quality of life, with a harmful influence on patients’ bodies and minds[8,9]. The main treatment for postoperative urinary incontinence is prevention, and nursing intervention plays a vital role in this process[10]. The Lihe household low-frequency electronic pulse bladder instrument provides a type of intervention. It is a non-invasive, painless physical therapeutic apparatus, multidimensional bladder stimulus with a low frequency, which can help patients to improve the bladder smooth muscle, pelvic floor muscles, and urethral sphincter function, to solve the increased residual urine, urinary retention, and urination dysfunction. The instrument can be used in professional medical institutions and at home.

In the postoperative care of patients with prostate disease, it is necessary to consider patients as the center and to implement the targeted nursing plan based on fully evaluating the patient’s condition, which is the essence of the precision nursing model [11]. Since its advent, the precise nursing service mode has played a key role in various clinical fields. The precision nursing emergency management system in emergency rescue, and found that it could improve the emergency response rate and overall standards of nursing staff and ensure the safety of patients’ lives[12,13]. Moreover, Spiers et al[14] applied the improved scheme based on precision nursing to the care of patients with the replantation of an amputated finger, and found that it could effectively reduce the risks of complications such as vascular crisis, postoperative infection, constipation, and could help relieve the pain.
Table 3 Comparison of urinary flow mechanics index, international prostate system score and incontinence quality of life questionnaire score in the two groups (mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>Control group (n = 65)</th>
<th>Observation group (n = 65)</th>
<th>t</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUCP (cmH2O)</td>
<td>Preoperative</td>
<td>24.12 ± 4.33</td>
<td>24.05 ± 4.56</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Postoperative</td>
<td>25.69 ± 4.13</td>
<td>25.47 ± 4.32</td>
<td>0.297</td>
</tr>
<tr>
<td>RUU (mL)</td>
<td>Preoperative</td>
<td>74.21 ± 15.66</td>
<td>73.25 ± 16.74</td>
<td>0.338</td>
</tr>
<tr>
<td></td>
<td>Postoperative</td>
<td>16.23 ± 3.21</td>
<td>13.14 ± 2.57</td>
<td>6.058</td>
</tr>
<tr>
<td>Qmax (mL/s)</td>
<td>Preoperative</td>
<td>4.26 ± 1.23</td>
<td>4.31 ± 1.27</td>
<td>0.228</td>
</tr>
<tr>
<td></td>
<td>Postoperative</td>
<td>11.45 ± 2.03</td>
<td>13.65 ± 2.41</td>
<td>5.629</td>
</tr>
<tr>
<td>IPSS score</td>
<td>Preoperative</td>
<td>30.56 ± 4.63</td>
<td>31.02 ± 4.81</td>
<td>0.555</td>
</tr>
<tr>
<td></td>
<td>Postoperative</td>
<td>8.96 ± 1.56</td>
<td>5.74 ± 1.04</td>
<td>13.846</td>
</tr>
<tr>
<td>I-QOL score</td>
<td>Preoperative</td>
<td>40.43 ± 4.52</td>
<td>40.68 ± 5.06</td>
<td>0.297</td>
</tr>
<tr>
<td></td>
<td>Postoperative</td>
<td>48.74 ± 3.62</td>
<td>51.14 ± 3.05</td>
<td>4.088</td>
</tr>
</tbody>
</table>

*aP < 0.05 vs the pre-operation of this group.
MUCP: Maximum closed urethral pressure; RUU: Residual urine volume; Qmax: Maximum urinary flow rate; IPSS: International prostate system score; I-QOL: Incontinence quality of life questionnaire score.

Table 4 Comparison of complications between two groups, n (%)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>Urethral orifice injury</th>
<th>Bladder spasm</th>
<th>Secondary bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>65</td>
<td>2 (3.08)</td>
<td>1 (1.54)</td>
<td>3 (4.62)</td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>1 (1.54)</td>
<td>0 (0.00)</td>
<td>1 (1.54)</td>
</tr>
<tr>
<td>χ²</td>
<td>0.341</td>
<td>1.008</td>
<td>1.032</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.559</td>
<td>0.315</td>
<td>0.310</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Comparison of urinary incontinence between two groups, n (%)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of cases</th>
<th>Urinary incontinence</th>
<th>Duration of urinary incontinence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td>Control group</td>
<td>65</td>
<td>10 (40.00)</td>
<td>11 (44.00)</td>
</tr>
<tr>
<td>Observation group</td>
<td>65</td>
<td>7 (50.00)</td>
<td>5 (35.71)</td>
</tr>
<tr>
<td>χ²</td>
<td>4.322</td>
<td>2.517</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.035</td>
<td>0.284</td>
<td></td>
</tr>
</tbody>
</table>

In our study, precise nursing service mode was applied to prevent postoperative urinary incontinence in patients with prostate disease, and it was found to shorten postoperative exhaust time, the time of indwelling catheter and hospitalization time, and the incidence of urinary incontinence. However, there were no significant differences in urethral orifice injury, bladder spasm, and secondary bleeding between the two groups. This is because the psychological intervention was given first under the precision nursing service mode, which could have helped patients to reduce psychological pressure and to reduce the adverse psychological effects on urinary incontinence.

Before and after the operation, patients were guided to implement intervention measures such as pelvic floor muscle rehabilitation training to improve the strength of pelvic floor muscle groups and to reduce urinary incontinence caused by pelvic floor muscle relaxation. They were guided to increase urinary continence with intermittent training. Furthermore, patients were educated on how to use Lihe household low-frequency electronic pulse bladder instrument correctly after discharge. This was to help them improve urinary continence ability, to promote local blood circulation,
accelerate the damage of nerve repair which can help patients recover automatic micturition function as soon as possible, and accelerate the removal of catheters. The removal of the urethra is more conducive to the early cessation of the patient’s rehabilitation, which can promote the faster recovery of intestinal function[15].

The urinary flow mechanics index is important to evaluate the effects of the operation and assess patients’ urination function. In patients with prostate disease, the abnormality of the urinary flow mechanics index is related to not only the prostate disease but also the surgical trauma[16,17]. In our study, the urination function was evaluated through Qmax, RUV, and MUCP testing in the two groups. IPSSs were used to evaluate the prostate symptoms, and I-QOL scores were used to evaluate the quality of life. We found that the precision nursing service model could improve postoperative urinary flow mechanics, promote rehabilitation, and improve the quality of life of patients. This is because this nursing model can guide patients to avoid the occurrence of urinary incontinence. Furthermore, it provides timely treatment after the occurrence of urinary incontinence, thus relieving the pain of patients and allowing their quality of life to improve[18]. The early removal of the catheter can not only reduce the triggering factors of urinary incontinence but also help patients to implement urination training and improve the urinary flow mechanics index. Operation on the prostate may affect the sexual function of patients, which is related to the damage of the penile anatomy, penile blood vessels, and the erectile nerve[19,20].

Nursing care for patients with prostate disease who have undergone surgery has a direct and important impact on patients’ rehabilitation. However, existing conventional nursing interventions fail to achieve satisfactory results and have no significant effect on the prevention of patient complications. Precision nursing through psychological intervention, stepped pelvic floor exercises, and home training after discharge facilitates recovery and yields satisfactory results. Compared with conventional care, precision care encompasses all stages of preoperative, postoperative, and continuous care. Moreover, it is effective in preventing urinary incontinence. However, the findings are limited by the study sample because only patients who underwent prostatectomy for the treatment of benign prostatic hyperplasia were included. Patients with urinary dysfunction caused by urinary calculi, urethral stricture, and other reasons; skin diseases or severe skin damage in the perineum; psychological urinary incontinence; a previous history of urethral trauma; mental disorders; severe heart, liver, kidney, and other organic diseases were excluded. However, such patients are not uncommon in clinical settings, so future studies should explore targeted and precise care for such patients.

CONCLUSION

The precise nursing service mode can reduce the incidence of postoperative urinary incontinence in patients with prostate disease; thus, it improves postoperative urodynamics and rehabilitation, and the patients’ quality of life.

ARTICLE HIGHLIGHTS

Research background

An operation to restore normal urination function and to control postoperative complications, as far as possible, is the most common method for benign prostatic disease. The postoperative nursing quality has greatly influenced the care for urinary incontinence.

Research motivation

In order to find a reasonable nursing way to improve postoperative urinary incontinence of patients with prostate disease.

Research objectives

This study aimed to observe the effect of precise nursing service mode on postoperative urinary incontinence prevention in patients with prostate disease.
Zheng XC et al. Precise nursing service and patients with prostate disease

Research methods
A total of 130 patients diagnosed with benign prostatic disease were selected and divided into observation and control groups according to their treatment options. The control was given routine nursing mode intervention; The observation group was given precise nursing service mode intervention. The postoperative exhaust time, time of indwelling catheter, hospitalization time, urethral orifice injury, bladder spasm, secondary hemorrhage, and urinary incontinence were recorded. Clinical international prostate system score (IPSS) and urinary incontinence quality of life questionnaire (I-QOL) scores were used to evaluate the symptoms and life quality.

Research results
Postoperative exhaust time, time of indwelling catheter and hospitalization time in the observation group were lower than in the control group. After the operation, the maximum urinary flow rate increased, the residual urine volume decreased, and the maximum closed urethral pressure was not statistically significant compared with during pre-operation; After the operation, the I-QOL score of the two groups improved, and the IPSS decreased. The I-QOL score of the observation group was higher than that of the control group, and the IPSS was lower than that of the control group. The incidence of urinary incontinence in the observation group was lower than that in the control group, and there was no statistical significance in the duration of urinary incontinence between the observation group and the control group.

Research conclusions
The precise nursing service mode can reduce the incidence of postoperative urinary incontinence in patients with prostate disease; thus, it improves postoperative urodynamics and rehabilitation, and the patients’ quality of life.

Research perspectives
Next, we want to explore the improvement effect of precision nursing service mode on the prognosis of patients undergoing surgery for other urinary diseases

REFERENCES
Global Burden of Disease Study. Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and...

Retrospective Study

Significance of serum glucagon-like peptide-1 and matrix Gla protein levels in patients with diabetes and osteoporosis

Fei-Fei Xie, Yu-Fang Zhang, Yan-Fang Hu, Yun-Yun Xie, Xiao-Ying Wang, Shu-Zhen Wang, Bao-Qiang Xie

ORCID number: Fei-Fei Xie 0000-0002-9837-3045; Yu-Fang Zhang 0000-0002-6711-8834; Yan-Fang Hu 0000-0002-0980-7666; Yun-Yun Xie 0000-0003-2662-747X; Xiao-Ying Wang 0000-0001-7525-6046; Shu-Zhen Wang 0000-0002-8491-0022; Bao-Qiang Xie 0000-0002-7724-3380.

Author contributions: Xie FF and Zhang YF designed the experiment; Hu YF drafted the work; Xie YY, Wang XY, and Wang SZ collected the data; Xie BQ and Xie FF analyzed and interpreted the data; and Zhang YF, Hu YF, and Xie YY wrote the article.

Institutional review board statement: This study was approved by the Medical Ethics Committee of Guangdong Provincial People’s Hospital Ganzhou Hospital.

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: No conflict of interest.

Data sharing statement: No additional data are available.

Abstract

BACKGROUND
Osteoporosis is a systemic bone disease characterized by decreased bone mass, impaired bone mass, and reduced bone strength that leads to increased bone fragility and fracture. Type 2 diabetes mellitus (T2DM) complicated with osteoporosis is a common systemic metabolic bone disease, and reduced bone mass and bone strength are considered the main clinical features; however, the pathogenesis of this disease has not been fully clarified. Its occurrence is considered related to sex, age, and genetic factors. There are many risk factors for diabetes complicated with osteoporosis. Therefore, exploring these risk factors will help prevent it.

AIM
To investigate the relationships among serum glucagon-like peptide-1 (GLP-1) levels, matrix Gla protein (MGP) levels, and diabetes with osteoporosis.

METHODS
Sixty patients with T2DM complicated with osteoporosis confirmed by the endocrinology department of our hospital were selected as the case group. Sixty T2DM patients with bone loss were selected as the control group. Sixty healthy participants were selected as the healthy group. The general data, bone mineral density index, and bone metabolic markers of the three groups were compared. The relationships among GLP-1 levels, MGP levels, and the bone mineral density index of the case group were analyzed using linear correlation analysis and a logistic regression model.

RESULTS
Differences in sex, smoking, and drinking among the case group, control group, and healthy group were not statistically significant (P > 0.05). The mean age of the
INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a systemic metabolic disorder that can cause metabolic abnormalities of sugar, lipids, and proteins. It can also cause an imbalance of water and electrolytes and abnormal metabolism of bone minerals, resulting in massive losses of calcium, magnesium, phosphorus, and other trace elements, resulting in osteopenia. Additionally, the relative lack of insulin leads to decreased bone matrix synthesis, thereby causing decreased bone mineral density. Therefore, patients with T2DM are more likely to have osteoporosis[1]. When fracture healing occurs slowly in patients with T2DM, they are prone to infectious complications that have adverse effects on their physical and mental health. Therefore, early detection of and interventions for osteoporosis are particularly essential for patients with T2DM[2].

Glucagon-like peptide-1 (GLP-1) is an endocrine hormone that can stimulate insulin secretion in a glucose-dependent manner and protect islet β cells through various mechanisms. It has been widely used for the diagnosis and treatment of T2DM. Recent studies have suggested that GLP-1 can inhibit bone resorption by promoting the secretion of calcitonin[3]. Matrix Gla protein (MGP) is a circulating protein related to vitamin K that can inhibit calcium and phosphorus deposition and play a role in the

Case group was older than those of the control and healthy groups (P < 0.05). The body mass index, fasting plasma glucose level, HbA1c level, hypertension rate, and coronary heart disease rate of the case and control groups were higher than those of the healthy group (P < 0.05). The serum GLP-1 and MGP levels of the case group were lower than those of the control and healthy groups; these differences were statistically significant (P < 0.05). The serum GLP-1 and MGP levels of the control group were lower than those of the healthy group; these differences were statistically significant (P < 0.05). The serum GLP-1 and MGP levels of the case group were significantly positively correlated with the bone mineral density values of the hip and lumbar spine (P < 0.05). The results of the logistic regression model showed that age and duration of diabetes were independent risk factors for osteoporosis in diabetic patients (P < 0.05) and that increased GLP-1 and MGP values were protective factors against osteoporosis in diabetic patients (P < 0.05).

CONCLUSION
Serum GLP-1 and MGP levels of diabetic patients with osteoporosis were significantly decreased and positively correlated with bone mineral density and were independent risk factors for osteoporosis in diabetic patients.

Key Words: Glucagon-like peptide-1; Matrix Gla protein; Diabetes mellitus; Osteoporosis; Bone mineral density; Systemic bone disease

Core Tip: Serum glucagon-like peptide-1 (GLP-1) and matrix Gla protein (MGP) levels were significantly positively correlated with bone mineral density values of the hip joint and lumbar vertebrae. They were significantly negatively correlated with type 1 procollagen amino-terminal propeptide, osteocalcin, and special sequence of carboxy-terminal peptide β of type 1 collagen. Older age and duration of diabetes were independent risk factors for osteoporosis for diabetic patients. Increased GLP-1 and MGP levels were protective factors against osteoporosis for diabetic patients. GLP-1 and MGP levels should be used as auxiliary evaluation indexes to evaluate the risk of osteoporosis for patients with diabetes to enable early detection of and intervention for diabetes with osteoporosis and improve its prognosis.

DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1527
regulation of bone metabolism[4]. However, there are few studies of its effect on diabetic patients. This study explored the relationships among serum GLP-1 levels, MGP levels, and diabetes with osteoporosis.

MATERIALS AND METHODS

Data
Sixty patients with T2DM complicated with osteoporosis diagnosed by the staff of the endocrinology department of our hospital from April 2019 to January 2020 were selected as the case group. Sixty patients with T2DM complicated with osteopenia were selected as the control group. Sixty healthy participants were selected as the healthy group. The flow chart of the selection of the three groups of study participants is presented in Figure 1. Inclusion criteria were as follows: T2DM diagnosed according to the criteria of the Guidelines for the Prevention and Treatment of Type 2 Diabetes in China (2017 edition)[5]; age 52 to 81 years; and bone mass reduction indicated by a bone mineral density T value of 1 to -2.5 (the diagnostic criteria for osteoporosis were a bone mineral density T value < -2.5 and/or one or more fractures)[6]. The healthy group included volunteers who underwent a physical examination. Exclusion criteria were as follows: complicated infectious diseases; thyroid disease; long-term use of hormone drugs; malignant tumors and tuberculosis; and use of drugs related to bone metabolism within 6 mo.

Patients and their families were advised about this study before its implementation and signed informed consent forms. This study was performed after approval was obtained from the medical ethics committee of our hospital. The baseline data of the participants in the three groups are shown in Table 1. The case group and control group had good equilibrium and comparability.

Serum GLP-1 and MGP testing methods
Venous blood samples (2 mL) were extracted from all participants during the morning after fasting for more than 8 h; they were kept at room temperature for 2 h after centrifugation. Serum was obtained after centrifugation at 3000 rpm for 10 min, and GLP-1 and MGP were detected using an enzyme-linked immunoassay. Serum samples were encapsulated, sealed, combined, incubated with the primary antibody, washed, incubated with the secondary antibody, washed, colored, and analyzed. The optical density was read using a 450-nm wavelength and substituted into the standard curve to calculate the concentration (the kit was from Wuhan Youersheng Technology Co., Ltd., Wuhan, China; the test instrument was the Elx88 automatic enzyme label instrument from Bertin Corporation, Rockville, MD, USA).

Measurement of bone density and bone metabolic marker levels
The bone mineral density values of the lumbar spine (L1-L4) and hip joint and levels of serum bone alkaline phosphatase (BALP), type 1 procollagen amino-terminal propeptide (P1NP), osteocalcin (BGP), and special sequence of carboxy-terminal peptide β of type 1 collagen (β-CTX) of the three groups were measured.

Venous blood samples (5 mL) were extracted from all participants during the morning after fasting for more than 8 h; they were kept at room temperature for 2 h after centrifugation. After centrifugation at 3000 rpm for 10 min, the serum was obtained, BALP, P1NP, BGP, and β-CTX were detected using electrochemiluminescence (the kit was from Beijing Boorsen Biological Co., Ltd., Beijing, China; the detection instrument was the Unicel DxI800 automatic chemiluminescence immunoassay analyzer from Beckman-Coulter, Brea, CA, USA).

All participants underwent testing to determine the bone mineral density values of the lumbar spine (L1-L4) and hip joint. Low-energy and high-energy photon peaks were obtained using an X-ray tube ball, and the data were transferred to the computer for processing and converted to bone mineral density values (DiscoveryA dual-energy X-ray bone mineral density instrument; Hologic, Marlborough, MA, USA).

Statistical analysis
Data processing software SPSS (v21.0; IBM, Cary, NC, USA) was used. The measurement indexes, including body mass index (BMI), fasting plasma glucose (FPG) level, and HbA1c level, during this study were tested using the normal distribution test, and the results were in line with the approximate normal distribution or normal distribution represented by mean ± SD. The t-test or single-factor analysis was used for
Table 1 Single factor analysis of general data of the three groups of study participants, n (%)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Case group (n = 60)</th>
<th>Control group (n = 60)</th>
<th>Healthy group (n = 60)</th>
<th>(P_{\chi^2/t})</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>66.78 ± 5.85</td>
<td>61.83 ± 5.36</td>
<td>61.92 ± 5.48</td>
<td>15.563</td>
<td>0.000</td>
</tr>
<tr>
<td>Course of disease (yr)</td>
<td>12.99 ± 4.01</td>
<td>8.98 ± 3.83</td>
<td>-</td>
<td>5.601</td>
<td>0.000</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>24.52 ± 2.32</td>
<td>24.73 ± 2.49</td>
<td>23.68 ± 2.05</td>
<td>3.510</td>
<td>0.032</td>
</tr>
<tr>
<td>FPG (mmol/L)</td>
<td>8.50 ± 1.50</td>
<td>8.27 ± 1.24</td>
<td>5.77 ± 0.61</td>
<td>99.314</td>
<td>0.000</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>9.18 ± 1.12</td>
<td>8.76 ± 1.26</td>
<td>5.89 ± 0.70</td>
<td>184.683</td>
<td>0.000</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>5.896</td>
<td>0.052</td>
</tr>
<tr>
<td>Male</td>
<td>15 (25.00)</td>
<td>25 (41.67)</td>
<td>27 (45.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45 (75.00)</td>
<td>35 (58.33)</td>
<td>33 (55.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td>2.553</td>
<td>0.279</td>
</tr>
<tr>
<td>Yes</td>
<td>9 (15.00)</td>
<td>16 (26.67)</td>
<td>14 (23.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>51 (85.00)</td>
<td>44 (73.33)</td>
<td>46 (76.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking</td>
<td></td>
<td></td>
<td></td>
<td>2.182</td>
<td>0.336</td>
</tr>
<tr>
<td>Yes</td>
<td>7 (11.67)</td>
<td>11 (18.33)</td>
<td>13 (21.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>53 (88.33)</td>
<td>49 (81.67)</td>
<td>47 (78.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td>23.054</td>
<td>0.000</td>
</tr>
<tr>
<td>Yes</td>
<td>15 (25.00)</td>
<td>20 (33.33)</td>
<td>0 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>45 (75.00)</td>
<td>40 (66.67)</td>
<td>60 (100.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td></td>
<td></td>
<td></td>
<td>9.449</td>
<td>0.009</td>
</tr>
<tr>
<td>Yes</td>
<td>5 (8.33)</td>
<td>9 (15.00)</td>
<td>0 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>55 (91.67)</td>
<td>51 (85.00)</td>
<td>60 (100.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BMI: body mass index; FPG: Fasting plasma glucose.

Figure 1 Flow chart of the selection of the three groups of study participants. T2DM: Type 2 diabetes mellitus.

Comparisons between groups, and the least significant difference t-test was used for comparisons at any time point. The enumeration data were analyzed and compared using the \(\chi^2 \) test. The Pearson linear correlation method was used for correlation analyses and the logistic regression model was used for multivariate analyses (\(\alpha = 0.05 \)).
RESULTS

Single-factor analysis of general data of the three groups
Differences in sex, smoking, and drinking among the case group, control group, and healthy group were not statistically significant ($P > 0.05$). The mean age of the case group was higher than those of the control and healthy groups ($P < 0.05$). The BMI, FPG level, HbA1c level, hypertension rate, and coronary heart disease rate of the case and control groups were higher than those of the healthy group ($P < 0.05$) (Table 1).

Comparison of serum GLP-1 and MG levels among the three groups
The serum GLP-1 and MGP levels of the case group were lower than those of the control and healthy groups; these differences were statistically significant ($P < 0.05$). The serum GLP-1 and MGP levels of the control group were lower than those of the healthy group; these differences were statistically significant ($P < 0.05$) (Table 2).

Comparison of bone mineral density and bone metabolic markers among the three groups
The bone mineral density values of the lumbar vertebrae (L1-L4) and hip joint of the case group were lower than those of the control and healthy groups; these differences were statistically significant ($P < 0.05$). The bone mineral density values of the lumbar vertebrae (L1-L4) and hip joint of the control group were lower than those of the healthy group; these differences were statistically significant ($P < 0.05$). The serum P1NP, BGP, and β-CTX levels of the case group were higher than those of the control and healthy group; these differences were statistically significant ($P < 0.05$). The serum P1NP, BGP, and β-CTX levels of the control group were higher than those of the healthy group; these differences were statistically significant ($P < 0.05$) (Table 3).

Correlations of serum GLP-1 and MGP levels with bone mineral density of the case group
The serum GLP-1 and MGP levels of the case group were significantly positively correlated with the bone mineral density values of the hip joint and lumbar vertebrae ($P < 0.05$) (Table 4).

Correlations of serum GLP-1 and MGP levels with bone metabolic markers of the case group
The serum GLP-1 and MGP levels of the case group were significantly negatively correlated with the serum P1NP, BGP, and β-CTX levels ($P < 0.05$) (Table 5).

Multivariate analysis
The logistic regression model was established with osteoporosis as the dependent variable and BMI, FPG level, HbA1c level, hypertension, coronary heart disease, GLP-1 Level, MGP level, P1NP level, BGP level, and β-CTX level as the independent variables. The results showed that older age and duration of diabetes were independent risk factors for osteoporosis in diabetic patients ($P < 0.05$) and that increased GLP-1 and MGP levels were protective factors against osteoporosis in diabetic patients ($P < 0.05$) (Table 6).

DISCUSSION
T2DM is characterized by reduced insulin secretion or decreased insulin sensitivity resulting in elevated blood glucose levels; it is often accompanied by metabolic disorders involving fat, protein, water, and electrolytes[7]. An epidemiological survey found that the worldwide incidence of T2DM exceeded 6.87%. Furthermore, diabetic complications result from disease progression and can cause disability or death[8]. The bone metabolism of patients with osteoporosis is abnormal, and their bone loss is aggravated, thus leading to decreased bone strength and increasing their risk of fractures. If patients with T2DM develop osteoporosis, then their risk of disability is increased, thereby adversely affecting their prognosis[9].

During this study, the lumbar vertebrae (L1-L4) and hip bone mineral density values were grouped and compared with the general data. Patients with T2DM complicated with osteoporosis were older than patients with T2DM complicated with decreased bone mass and healthy participants. The BMI, FPG level, HbA1c level,
Xie FF et al. Serum glucagon-like peptide-1 and matrix Gla protein

Table 2 Comparison of serum glucagon-like peptide-1 and matrix Gla protein levels in the three groups of study participants (mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>GLP-1 (pmol/L)</th>
<th>MGP (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case group</td>
<td>60</td>
<td>9.19 ± 1.10</td>
<td>7.88 ± 0.92</td>
</tr>
<tr>
<td>Control group</td>
<td>60</td>
<td>13.88 ± 1.65</td>
<td>9.77 ± 1.52</td>
</tr>
<tr>
<td>Healthy group</td>
<td>60</td>
<td>17.07 ± 2.48</td>
<td>10.79 ± 1.63</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>280.527</td>
<td>67.487</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

GLP-1: Glucagon-like peptide-1; MGP: Matrix Gla protein.

Table 3 Comparison of bone density and bone metabolic marker levels of the three groups of study participants (mean ± SD)

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Lumbar spine (g/m²)</th>
<th>Hip joint (g/m²)</th>
<th>BALP (μg/mL)</th>
<th>P1NP (ng/mL)</th>
<th>BGP (μg/mL)</th>
<th>β-CTX (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case group</td>
<td>60</td>
<td>0.69 ± 0.08</td>
<td>0.66 ± 0.09</td>
<td>4.08 ± 1.20</td>
<td>49.16 ± 4.08</td>
<td>15.92 ± 4.08</td>
<td>0.49 ± 0.08</td>
</tr>
<tr>
<td>Control group</td>
<td>60</td>
<td>0.95 ± 0.14</td>
<td>0.83 ± 0.10</td>
<td>4.03 ± 0.84</td>
<td>44.41 ± 2.75</td>
<td>14.40 ± 2.75</td>
<td>0.44 ± 0.08</td>
</tr>
<tr>
<td>Healthy group</td>
<td>60</td>
<td>1.08 ± 0.16</td>
<td>0.99 ± 0.14</td>
<td>4.07 ± 0.82</td>
<td>31.59 ± 2.38</td>
<td>12.14 ± 2.38</td>
<td>0.41 ± 0.10</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>142.637</td>
<td>130.422</td>
<td>0.036</td>
<td>122.211</td>
<td>21.822</td>
<td>14.496</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.965</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

BALP: Bone alkaline phosphatase; P1NP: Type 1 procollagen amino-terminal propeptide; BGP: Osteocalcin; β-CTX: Special sequence of carboxy-terminal peptide β of type 1 collagen.

Table 4 Correlation analysis results

<table>
<thead>
<tr>
<th>Index</th>
<th>Relativity</th>
<th>Lumbar spine (g/m²)</th>
<th>Hip joint (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP-1 (pmol/L)</td>
<td>r</td>
<td>0.707</td>
<td>0.691</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>MGP (nmol/L)</td>
<td>r</td>
<td>0.571</td>
<td>0.546</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

GLP-1: Glucagon-like peptide-1; MGP: Matrix Gla protein.

Table 5 Correlation between serum glucagon-like peptide-1, matrix Gla protein levels, and bone metabolism marker levels

<table>
<thead>
<tr>
<th>Index</th>
<th>Relativity</th>
<th>BALP (μg/mL)</th>
<th>P1NP (ng/mL)</th>
<th>BGP (μg/mL)</th>
<th>β-CTX (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP-1 (pmol/L)</td>
<td>r</td>
<td>0.192</td>
<td>-0.401</td>
<td>-0.386</td>
<td>-0.377</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>0.163</td>
<td>0.000</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>MGP (nmol/L)</td>
<td>r</td>
<td>0.155</td>
<td>-0.421</td>
<td>-0.419</td>
<td>-0.351</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>0.227</td>
<td>0.000</td>
<td>0.000</td>
<td>0.010</td>
</tr>
</tbody>
</table>

GLP-1: Glucagon-like peptide-1; MGP: Matrix Gla protein; BALP: Bone alkaline phosphatase; P1NP: Type 1 procollagen amino-terminal propeptide; BGP: Osteocalcin; β-CTX: Special sequence of carboxy-terminal peptide β of type 1 collagen.

Hypertension rate, and coronary heart disease rate of diabetic patients were higher than those of healthy participants, suggesting that elderly patients with T2DM are more likely to have osteoporosis. Diabetes patients have a higher risk of obesity, hypertension, coronary heart disease, and other complications. P1NP is a peptide secreted by osteoblasts that can sensitively reflect the synthesis rate of type 1 collagen.
GLP-1 is a hormone secreted by ileal endocrine cells that can protect islet β cells, stimulate insulin secretion, and inhibit glucagon secretion to reduce blood glucose levels. GLP-1 exhibits low expression in patients with T2DM because of the impaired incretin effect[13-15]. GLP-1 receptor agonists promote the secretion of GLP-1 by binding to the receptor, thereby producing a hypoglycemic effect[16]. MGP is a strong inhibitor of calcium and phosphorus deposition that can bind to bone morphogenetic protein-2 to inhibit its biological activity and affect the transformation of mesenchymal cells into chondrocytes or osteoid cells[17-20]. In this study, serum GLP-1 and MGP levels were compared among the three groups. It was found that serum GLP-1 and MGP levels of patients with T2DM complicated with osteoporosis were lower than those of patients with T2DM complicated with bone loss and healthy participants. Furthermore, serum GLP-1 and MGP levels of patients with T2DM and bone loss were lower than those of healthy participants, suggesting that T2DM patients with osteoporosis have more severe bone metabolism disorders related to their lack of insulin, increased thyroid hormone secretion, insufficient collagen synthesis, and decreased osteoblast function. The abnormal bone metabolism in diabetic patients is one of the important mechanisms underlying their osteoporosis.

BGP is a non-collagen acidic glycoprotein synthesized by osteoblasts and chondrocytes. P1NP and BGP are bone formation markers recommended by the International Osteoporosis Foundation[10]. BALP can directly reflect the osteoblast activity, which is the best indicator of human bone mineralization disorders[11]. β-CTX is an index of bone absorption and collagen degradation during bone remodeling[12]. During this study, the serum P1NP, BGP, BALP, and β-CTX levels of the three groups were compared. These levels were higher in patients with T2DM complicated with osteoporosis than in those of patients with T2DM complicated with decreased bone mass and healthy participants. The serum P1NP, BGP, and β-CTX levels of patients with T2DM complicated with bone loss were higher than those of healthy participants, suggesting that diabetic patients with osteoporosis have more severe bone metabolism disorders related to their lack of insulin, increased thyroid hormone secretion, insufficient collagen synthesis, and decreased osteoblast function. The abnormal bone metabolism in diabetic patients is one of the important mechanisms underlying their osteoporosis.

Table 6 Factor analysis of the logistic regression model

<table>
<thead>
<tr>
<th>Index</th>
<th>SE</th>
<th>Walds</th>
<th>P value</th>
<th>OR</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.551</td>
<td>5.997</td>
<td>0.007</td>
<td>1.735</td>
<td>1.116</td>
</tr>
<tr>
<td>Course of disease</td>
<td>0.494</td>
<td>4.237</td>
<td>0.048</td>
<td>1.639</td>
<td>1.024</td>
</tr>
<tr>
<td>BMI</td>
<td>0.381</td>
<td>3.261</td>
<td>0.094</td>
<td>1.464</td>
<td>0.968</td>
</tr>
<tr>
<td>FPG</td>
<td>0.307</td>
<td>2.784</td>
<td>0.116</td>
<td>1.359</td>
<td>0.948</td>
</tr>
<tr>
<td>HbA1c</td>
<td>0.502</td>
<td>1.407</td>
<td>0.248</td>
<td>1.623</td>
<td>0.729</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.484</td>
<td>1.241</td>
<td>0.241</td>
<td>1.632</td>
<td>0.729</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>0.490</td>
<td>1.421</td>
<td>0.540</td>
<td>0.504</td>
<td></td>
</tr>
<tr>
<td>GLP-1</td>
<td>-0.616</td>
<td>4.945</td>
<td>0.039</td>
<td>0.564</td>
<td>0.343</td>
</tr>
<tr>
<td>MGP</td>
<td>-0.573</td>
<td>5.089</td>
<td>0.037</td>
<td>1.202</td>
<td>0.892</td>
</tr>
<tr>
<td>β-CTX</td>
<td>0.184</td>
<td>1.465</td>
<td>0.237</td>
<td>1.202</td>
<td>0.892</td>
</tr>
<tr>
<td>BALP</td>
<td>0.207</td>
<td>1.294</td>
<td>0.301</td>
<td>1.230</td>
<td>0.861</td>
</tr>
<tr>
<td>BGP</td>
<td>0.118</td>
<td>1.287</td>
<td>0.316</td>
<td>1.125</td>
<td>0.918</td>
</tr>
</tbody>
</table>

BMI: body mass index; FPG: Fasting plasma glucose; GLP-1: Glucagon-like peptide-1; MGP: Matrix Gla protein; BALP: Bone alkaline phosphatase; P1NP: Type 1 procollagen amino-terminal propeptide; BGP: Osteocalcin; β-CTX: Special sequence of carboxy-terminal peptide β of type 1 collagen.
diabetes were independent risk factors for osteoporosis in diabetic patients and that increased GLP-1 and MGP levels were protective factors against osteoporosis in diabetic patients. Future clinical studies should involve osteoporosis screening for elderly patients with long durations of diabetes, and the serum GLP-1 and MGP levels should be used as auxiliary evaluation indexes to evaluate the risk of osteoporosis in patients with T2DM to allow early detection of and intervention for diabetes with osteoporosis and improve the prognosis.

CONCLUSION

In summary, serum GLP-1 and MGP levels of diabetic patients with osteoporosis were markedly decreased and significantly positively correlated with bone mineral density. Furthermore, they were independent risk factors for osteoporosis in patients with diabetes.

ARTICLE HIGHLIGHTS

Research background
Osteoporosis is a systemic bone disease characterized by decreased bone mass, damaged bone mass, and decreased bone strength, leading to increased bone fragility and fractures. Type 2 diabetes (T2DM) complicated by osteoporosis is a common systemic metabolic bone disease. The reduction of bone mass and bone strength is considered to be the main clinical feature; its occurrence is considered to be related to gender, age and genetic factors.

Research motivation
Explore the risk factors of T2DM complicated with osteoporosis, and provide reasonable guidance for preventing this problem.

Research objectives
This study aimed to investigate the relationships among serum glucagon-like peptide-1 (GLP-1) levels, matrix Gla protein (MGP) levels, and diabetes with osteoporosis.

Research methods
Sixty T2DM patients with osteoporosis were selected as the case group, and 60 T2DM patients with bone loss were selected as the control group. Sixty healthy subjects were selected as the healthy group for the study.

Research results
Serum GLP-1 and MGP levels in diabetic osteoporosis patients are independent risk factors for osteoporosis in diabetic patients.

Research conclusions
Serum GLP-1 and MGP levels of diabetic patients with osteoporosis were significantly decreased and positively correlated with bone mineral density and were independent risk factors for osteoporosis in diabetic patients.

Research perspectives
Provide for the prevention of osteoporosis in diabetic patients.

REFERENCES

3 Bird GH, Fu A, Escudero S, Godes M, Opoku-Nsiah K, Wales TE, Cameron MD, Engen JR, Danial

Maly IP, Eppler E, Müller-Gerbl M. High metabolic activity of tissue-nonspecific alkaline phosphatase not only in young but also in adult bone as demonstrated using a new histochemical detection protocol. Gen Comp Endocrinol 2018; 258: 109-118 [PMID: 28502741 DOI: 10.1016/j.ygcen.2017.05.008]

Vallat S, Hoyle NR, Kyle RA, Podar K, Pecherstorfer M. A role for bone turnover markers β-CrossLaps (CTX) and amino-terminal propeptide of type I collagen (PINP) as potential indicators for disease progression from MGUS to multiple myeloma. Leuk Lymphoma 2018; 59: 2431-2438 [PMID: 29345175 DOI: 10.1080/10428194.2017.1421757]

Retrospective Study

Castleman disease and TAFRO syndrome: To improve the diagnostic consciousness is the key

Qian-Yun Zhou

ORCID number: Qian-Yun Zhou 0000-0003-0157-7752.

Author contributions: Zhou QY designed the research, collected and analyzed data, and wrote the paper.

Institutional review board statement: This study was approved by the Ethics Committee of Peking University Shougang Hospital (approval number: IRBK-2021-010-01).

Informed consent statement: Written informed consent was waived by the Ethics Committee of Peking University Shougang Hospital for retrospective nature of the study.

Conflict-of-interest statement: We have no financial relationships to disclose.

Data sharing statement: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Supported by the Key Medical Projects of Technical College Development of Shijingshan District.

Country/Territory of origin: China

Qian-Yun Zhou, Department of Critical Care Medicine, Peking University Shougang Hospital, Beijing 100144, China

Corresponding author: Qian-Yun Zhou, MD, Doctor, Department of Critical Care Medicine, Peking University Shougang Hospital, No. 9 Jinyuan Zhuang Road, Shijingshan District, Beijing 100144, China. 13521349450@163.com

Abstract

BACKGROUND

Castleman disease (CD) and TAFRO syndrome are very rare in clinical practice. Most clinicians, especially non-hematological clinicians, do not know enough about the two diseases, so it often leads to misdiagnosis or missed diagnosis.

AIM

To explore the clinical features and diagnosis of CD and TAFRO syndrome.

METHODS

We retrospectively collected the clinical and laboratory data of 39 patients who were diagnosed with CD from a single medical center.

RESULTS

Clinical classification identified 18 patients (46.15%) with unicentric Castleman disease (UCD) and 21 patients (53.85%) with multicentric Castleman disease (MCD), the latter is further divided into 13 patients (33.33%) with idiopathic multicentric Castleman disease-not otherwise specified (iMCD-NOS) and 8 patients (20.51%) with TAFRO syndrome. UCD and iMCD are significantly different in clinical manifestations, treatment, and prognosis. However, a few patients with MCD were diagnosed as UCD in their early stage. There was a correlation between two of Thrombocytopenia, anasarca and elevated creatinine, which were important components of TAFRO syndrome. In UCD group, the pathologies of lymph modes were mostly hyaline vascular type (13/18, 72.22%), however plasma cell type or mixed type could also appear. In iMCD-NOS group and TAFRO syndrome group, the pathologies of lymph mode shown polarity of plasma cell type and hyaline vascular type respectively. Compared with patients with TAFRO syndrome, patients with iMCD-NOS were diagnosed more difficultly.

CONCLUSION
The clinical and pathological types of CD are not completely separate, there is an intermediate situation or mixed characteristics between two ends of clinical and pathological types. The clinical manifestations of patients with CD are determined by their pathological type. TAFRO syndrome is a special subtype of iMCD with unique clinical manifestations.

Key Words: Castleman disease; Diagnosis; Lymph node biopsy; TAFRO syndrome

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

INTRODUCTION

Emergency medicine is a symptomatic discipline. The diagnosis and differential diagnosis of diseases need the combination of general thinking and specialized knowledge, while lymph node enlargement is an area often involved in the differential diagnosis of diseases. A disease in this field has gained increasing attention of doctors in recent years, namely, Castleman disease (CD). CD is reactive lymphadenopathy with unknown causes. It was first officially reported by Professor Castleman in 1954. The reported lesion was a tumor-like mass confined to the mediastinum. Histology showed obvious hyperplasia of lymphoid follicles and capillaries[1]. In 1969, Flendrig et al.[2] proposed another morphological subtype of CD characterized by plasma cell proliferation and often accompanied by systemic symptoms. With the deepening of clinical and pathological research, CD was clinically divided into unicentric CD (UCD) and multicentric CD (MCD)[3,4]; Pathologically, it was divided into hyaline vascular type, plasma cell type, and mixed type. UCD generally involves only a single lymph node region, and the pathological type is mostly hyaline vascular type, mainly relying on surgical treatment. MCD mostly involves multiple lymph node regions. The pathological type is mostly plasma cell type, accompanied by systemic symptoms. Drugs are the main treatment.

From 2004 to 2005, Kojima et al.[5,6] reported many cases of cryptogenic MCD and pointed out that unlike Western researchers who reported that MCD was mostly human herpesvirus (HHV)-8 positive, Japanese MCD was mostly HHV-8 negative, that is, idiopathic multicentric Castleman disease (iMCD). In 2008, Kojima et al.[7] classified 28 patients with iMCD into idiopathic plasmacytic lymphadenopathy (IPL) and non-IPL according to their pathological characteristics and summarized their clinical characteristics. In 2010, Takai et al.[8] first named TAFRO syndrome: T (thrombocytopenia), A (anasarca), F (fever), R (reticulin fibrosis), and O (organomegaly). In 2012, the Fukushima and Nagoya conferences in Japan clearly defined TAFRO syndrome as a systemic inflammatory disease accompanied by a series of clinical symptoms such as thrombocytopenia, systemic edema, myelofibrosis, renal dysfunction, and organ enlargement[9]. Studies have found that the non-IPL MCD reported by Carbone et al.[10] is highly similar to TAFRO syndrome in clinical features, therefore, TAFRO syndrome is also called Castleman–Kojima disease. In 2016, Iwaki et al.[11] divided iMCD into TAFRO syndrome and unspecified iMCD (idiopathic multicentric Castleman disease-not otherwise specified, iMCD-NOS).
TAFRO syndrome was first proposed by Japanese scholars, and subsequent reports and studies were mainly from Japan\cite{12}. At present, the most authoritative diagnostic criteria for TAFRO syndrome were put forward by Iwaki et al\cite{11} and Masaki et al\cite{13} respectively in 2016, and Masaki et al\cite{14} updated the diagnostic criteria in 2019.

The research on iMCD and TAFRO syndrome is still in the clinical exploration stage, and its etiology and pathogenesis are unclear. TAFRO syndrome or MCD is rare clinically, patients often seek medical treatment with systemic symptoms, and non-hematological doctors often do not know enough about this disease. Hence, it is easy to cause misdiagnosis or missed diagnosis. In 2020, we reported two consecutive cases who were diagnosed with TAFRO syndrome according to their findings of lymph node and renal biopsy\cite{15}. To further understand the clinical features of various types of CD and the internal relationship between TAFRO syndrome and iMCD, we collected CD cases diagnosed and treated in Peking University People's Hospital in the last 5 years and retrospectively analyzed their clinical data.

MATERIALS AND METHODS

Ethics

This study was approved by the Ethics Committee of Peking University Shougang Hospital (approval number: IRBK-2021-010-01). Written informed consent was waived by the Ethics Committee of Peking University Shougang Hospital for retrospective nature of the study.

Criteria

The selection of CD cases mainly depended on the pathological diagnosis. Patients with single or multiple lymph node enlargement in a single region were classified as UCD, and patients with lymph node enlargement in two or more regions were classified as MCD.

The diagnosis criteria of TAFRO syndrome adopted the updated Masaki standard in 2019\cite{14} which were shown in Table 1.

Patients

Using "Castleman disease" or "TAFRO syndrome" as the key words, with either of them included in discharge diagnosis, we searched in the inpatient medical record system from January 2015 to October 2019. 48 cases were eligible. The exclusion criteria were as follows: (1) no lymph node biopsy results, and CD was a clinically suspected diagnosis; (2) CD was a previous diagnosis, not the cause of this admission; (3) other definite diagnosis were present, such as POEMS syndrome (P, polyneuropathy; O, organomegaly; E, endocrinopathy; M, monoclonal; S, skin changes), lymphoma, systemic lupus erythematosus (SLE), etc.; (4) authoritative pathological institutions denied the diagnosis of CD; and (5) age < 18 years. A total of nine cases (including one case of POEMS syndrome, one case of lymphoma, two cases of SLE, one case of Sjogren's syndrome, one case with a past history of CD, one case without lymph node biopsy, and two cases with uncertain clinical diagnosis). Finally, 39 cases were enrolled.

Statistical analysis

SPSS 23.0 was used for statistical analysis. Counting data were expressed as a constituent ratio or percentage, and measurement data were expressed as mean ± SD (normal-distribution data) or median and quartile (non-normal-distribution data). The difference analysis was performed using t test (normal-distribution measurement data), nonparametric test (non-normal-distribution measurement data), and Fisher accurate test (sample size less than 40, counting data or classified variables). P < 0.05 indicated that the difference was statistically significant.

RESULTS

See Table 2. The enrolled patients were all Chinese, mainly distributed in North China. Both HHV-8 and human immunodeficiency virus (HIV) were negative. The rage of age was from 21 years to 80 years. The average age of the three groups was not statistically significantly different. But the minimum and maximum age were distributed in...
Table 1 Diagnostic criteria for TAFRO syndrome proposed by Masaki et al (updated in 2019)

<table>
<thead>
<tr>
<th>Diagnostic criteria for TAFRO syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary criteria</td>
</tr>
<tr>
<td>Edema: Including pleural and abdominal effusion and systemic edema</td>
</tr>
<tr>
<td>Thrombocytopenia: Platelet count ≤ 10^5/uL before myelosuppression</td>
</tr>
<tr>
<td>Systemic inflammation: Fever of unknown origin, body temperature exceeding 37.5°C, and/or serum CRP ≥ 2 mg/dL</td>
</tr>
<tr>
<td>Secondary criteria</td>
</tr>
<tr>
<td>Pathological manifestations of CD-like lymph nodes</td>
</tr>
<tr>
<td>Bone marrow reticular fibrosis and/or increased bone marrow megakaryocyte count</td>
</tr>
<tr>
<td>Mild organ enlargement: Including liver, spleen, and lymph node enlargement</td>
</tr>
<tr>
<td>Progressive renal dysfunction</td>
</tr>
</tbody>
</table>

TAFRO syndrome can be diagnosed after meeting at least two of all three main criteria and four secondary criteria, and excluding malignant tumor, autoimmune disease, infection, POEMS syndrome, liver cirrhosis, TTP/HUS, etc.

CRP: C-reactive protein; CD: Castleman disease; TTP: Thrombotic thrombocytopenic purpura; HUS: Hemolytic uremic syndrome.

the iMCD-NOS group, including the only child patient (< 18 years old) enrolled in this study. The ratio of male and female in three grops was similar. Urban patients were dominant in the UCD group, while rural patients were dominant in the TAFRO syndrome group. A statistically significant difference was found between the two groups.

UCD
Most patients with UCD were diagnosed by chance or by physical examination (10/18, 55.56%), followed by symptoms caused by enlarged lymph node compression, including irritating dry cough (3/18, 16.67%), local pain (2/18, 11.11%), obstructive jaundice (1/18, 5.56%), and chest tightness (1/18, 5.56%). The distribution of enlarged lymph nodes is shown in Figure 1. Only a few patients also had a fever (2/18, 11.11%).

The patients with intraperitoneal lymphadenopathy would be at risk to have more complicated conditions than those with lymphadenopathy in other areas. 5 of 18 cases had complications, which were pancreatic cancer, paraneoplastic pemphigus and bronchiolitis obliterans, acute myeloid leukemia-M2, thyroid cancer, and bronchiolitis obliterans respectively. The locations of lymphadenopathy in the first 3 patients with complications were retroperitoneal and/or intraperitoneal.

Because C-reative protein, direct antiglobulin test, interleukin (IL)-6, and vascular endothelial growth factor (VEGF) were not tested in most cases, we hadn’t made statistical analysis for these indicators. All 18 patients underwent a lymph node biopsy. Most of them were hyaline vascular type (13/18, 72.22%), and a few were plasma cell type/mixed type (5/18, 27.78%). Compared with patients with hyaline vascular type, patients with plasma cell type/mixed-type UCD were more prone to have laboratory abnormalities and complications, as shown in Figure 2.

iMCD
Most patients with iMCD (18/21, 85.71%) had a fever, and fever was the first symptom in 15 patients (71.43%). Skin complications (10/39, 25.64%) were recorded in the course of 9 cases diagnosed with iMCD, including red papules (7/21, 33.33%) which were often treated as an allergy, mouth ulcer or skin blisters at hand which were diagnosed with paraneoplastic pemphigus (2/21, 4.76%). Kidney involvement was common, and most patients showed positive urine protein and/or occult blood (14/21, 66.67%), among which three cases had massive proteinuria (urine protein level more than 2 g in 24 h). The creatinine levels increased in 9 cases, of which two patients were treated with renal replacement therapy and the other seven patients had an slight and transient elevation of creatinine level.

TAFRO syndrome
By analyzing the clinical manifestations of patients with iMCD, we found that the triad of thrombocytopenia, anasarca (polyserositis and edema) and renal insufficiency, which were exactly the core components of TAFRO syndrome, often occurred at the
Table 2 Basic clinical data of 39 patients with Castleman disease (n = 39)

<table>
<thead>
<tr>
<th></th>
<th>UCD (n = 18)</th>
<th>IMCD-NOS (n = 13)</th>
<th>TAFRO (n = 8)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>41.17 ± 18.23</td>
<td>47.23 ± 22.09</td>
<td>40.50 ± 9.04</td>
<td>0.530</td>
</tr>
<tr>
<td>Male/female</td>
<td>10/8</td>
<td>7/6</td>
<td>4/4</td>
<td>1.000</td>
</tr>
<tr>
<td>Rural/urban</td>
<td>5/13<sup>a</sup></td>
<td>6/7</td>
<td>6/2<sup>b</sup></td>
<td>0.085</td>
</tr>
<tr>
<td>Time of diagnosis (median, months)</td>
<td>NA</td>
<td>12</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Systemic manifestations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Edema/polyserous cavity effusion</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bronchiolitis obliterans</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Paraneoplastic pemphigus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Abnormal renal function</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Laboratory examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White blood cell<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Raise</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>Decrease (n)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (g/L)</td>
<td>132.00 ± 19.985</td>
<td>99.31 ± 27.41</td>
<td>79.57 ± 21.08</td>
<td></td>
</tr>
<tr>
<td>Platelet<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased</td>
<td>0</td>
<td>3</td>
<td>8<sup>t</sup></td>
<td></td>
</tr>
<tr>
<td>Raise</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>NA</td>
<td>91.09 ± 59.14</td>
<td>141.55 ± 64.31</td>
<td>0.000</td>
</tr>
<tr>
<td>Albumin (g/L)<sup>1</sup></td>
<td>39.6 ± 5.52</td>
<td>31.65 ± 7.39</td>
<td>22.79 ± 9.26</td>
<td>0.000</td>
</tr>
<tr>
<td>Direct anti-human ball test was positive (n, %)</td>
<td>NA</td>
<td>9/13</td>
<td>6/6</td>
<td></td>
</tr>
<tr>
<td>IL-6 (median, pg/mL) (n)</td>
<td>NA</td>
<td>47.35 (8)</td>
<td>12.65 (8)</td>
<td>0.040</td>
</tr>
<tr>
<td>VGEF (median, pg/mL) (n)</td>
<td>NA</td>
<td>NA</td>
<td>> 800 (5)</td>
<td></td>
</tr>
<tr>
<td>Ferritin > five times normal value</td>
<td>NA</td>
<td>4/13</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Elevated ALP<sup>2</sup></td>
<td>1/18</td>
<td>3/13</td>
<td>6/8</td>
<td></td>
</tr>
<tr>
<td>ANA positive (titer > 1:40)</td>
<td>2/18</td>
<td>8/13</td>
<td>2/8</td>
<td></td>
</tr>
<tr>
<td>Elevated polyclonal immunoglobulin</td>
<td>0</td>
<td>9/13</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>Hemophilia syndrome</td>
<td>0</td>
<td>0</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>Pathological type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyaline vascular type</td>
<td>13</td>
<td>0</td>
<td>5/8</td>
<td></td>
</tr>
<tr>
<td>Plasma cell type</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mixed type</td>
<td>2</td>
<td>9</td>
<td>2/8</td>
<td></td>
</tr>
<tr>
<td>No evidence of lymph node biopsy</td>
<td>0</td>
<td>0</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biopsy only, treatment unknown</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Symptomatic treatment only & 0 & 0 & 1 \\
Simple surgical resection & 18 & 0 & 0 \\
Glucocorticoid alone & 0 & 2 & 3 \\
Hormones combined with chemotherapy2 & 0 & 53 & 2 \\
Hormone combined with rituximab & 0 & 0 & 1 \\
Hormone combined with tozumab & 0 & 1 & 1 \\
Prognosis & & & \\
Loss of contact & 0 & 3 & 0 \\
Improved & 16 & 6 & 7 \\
Relapse & 0 & 0 & 1 \\
Solid cancer occurred during the follow-up & 2a & 1b & 0 \\
Transformation into lymphoma & 0 & 1c & 0 \\
Death & 0 & 2 & 0 \\

aA statistically significant difference between the two groups.

bTwo cases with pancreatic head cancer and thyroid.

cOne case with pancreatic cancer.

dOne case with non-Hodgkin lymphoma.

1Normal reference value: white blood cell count 3.5–9.5 × 109/L; hemoglobin 130–175 g/L (male), 115–150 g/L (female); platelet count 125–350 × 109/L; 40–55 g/L albumin.

2Chemotherapy regimens included CP (cyclophosphamide + prednisone), COP (cyclophosphamide + ciac/vincristine + prednisone), and CHOP (cyclophosphamide + doxorubicin + vincristine + prednisone).

iMCD-NOS: Idiopathic multicentric Castleman disease—not otherwise specified; UCD: Unicentric Castleman disease; ALP: Alkaline phosphatase; ANA: Antinuclear antibody; CRP: C-reactive protein; IL-6: Interleukin 6; LDH: Lactate dehydrogenase; VGEF: Vascular endothelial growth factor.

Figure 1 Distribution of enlarged lymph nodes in patients unicentric Castleman disease (n = 18).
Complications include paraneoplastic pemphigus, malignant tumor, bronchiolitis obliterans, etc.

in our hospital, so the records of serum VEGF levels only could be found in five patients diagnosed with TAFRO syndrome, all of the five patients showed significantly elevated serum VEGF levels (four cases > 800 pg/mL, one case 231.47 pg/mL); (2) Diagnosis process: The median time interval from onset to diagnosis in iMCD-NOS group was significantly prolonged than that in TAFRO syndrome group. In TAFRO syndrome group, except for one patient who rejected the suggestion of lymph node biopsy and renal biopsy at 1 mo after the onset of his symptoms; the other seven patients were all diagnosed within 1 to 1.5 mo after the onset of their symptoms. Among patients with iMCD-NOS, the median interval from the onset of their symptoms to the diagnosis of CD was 12 mo with the minimum and maximum being 1 mo and 4 years respectively. The average time of lymph node biopsies and pathological consultations of iMCD-NOS group (1.69 and 2.38, respectively) were more than those of TAFRO syndrome group (1 and 1.375, respectively) ($P < 0.05$), and the poor consistencies of consultations were more likely happened in iMCD-NOS group (Figure 5).

Renal biopsies were performed in three patients who were diagnosed with TAFRO syndrome. Those findings of biopsies of lymph nodes and renal were thrombotic microangiopathy (TMA) and hyalin vascular type, TMA and absence, and membrano proliferative glomerulonephritis and mixed type, respectively.
DISCUSSION

The study of CD has gone through the following stages: naming of CD for the first time[1]-the discovery of plasma cell type[2]-the discovery of MCD[3]-recognition of HIV as one of the causes of MCD[16,17]-proposal of the concept of iMCD[18] -proposal of the concept of TAFRO syndrome[8]. Although more than 60 years have passed since CD was proposed, the understanding of CD is still in the exploratory stage. What is the nature of CD? What are the internal relations and differences between different clinical and pathological types of CD? Can UCD tranform into MCD? TAFRO syndrome is a special subtype of iMCD? Or is it just a new special group whose clinical manifestations overlap with iMCD and are different from iMCD? The aforementioned problems are the focus of discussion in our study.

UCD and MCD are significantly different in clinical manifestations, treatment, and prognosis. However, these two clinical types are not completely independent: (1) There is an intermediate situation existing between single lymph node enlargement and multicentric lymph node enlargement, that is, multiple lymph node enlargement in a single region. At present, the latter is still classified as UCD, but what we need to think about is whether this single-region multiple lymph node enlargement is an intermediate or transitional state between single lymph node enlargement and...
multicenter lymph node enlargement. Oksenhendler et al.19 compared 38 cases of UCD with single lymph node enlargement and 19 cases of UCD with multiple lymph node enlargement in a single center. The results showed that five cases with fever and two cases with death all distributed in the latter; (2) UCD may be the early stage of MCD: Two patients diagnosed with MCD were enrolled in our study that were diagnosed with UCD and underwent surgical resection in their past history. Therefore, for patients diagnosed with UCD, the scan of systemic lymph nodes and the careful follow-up should be necessary to rule out MCD; (3) Some clinical manifestations of UCD and iMCD overlap, such as PNP and ANA positive, which also suggests that UCD and iMCD are not completely independent20.

The pathological types of CD, namely hyaline vascular type and plasma cell type, are not completely independent too. Typical hyaline vascular type and plasma cell type are two extremes of a pathological spectrum consistent with a CD, which are characterized by hyalinization of small blood vessels and interfollicular plasmacytosis respectively. However many patients may show mixed characteristics, that is mixed type. Patients with hyaline vascular type usually could have a definite diagnosis according to its specific morphology. Nevertheless, plasma cell type is not a specific morphological feature of CD. Many diseases, such as autoimmune diseases (SLE and IgG4-related diseases), POEMS syndrome, plasma cell tumor, and non-Hodgkin lymphoma, all can show pathological features similar with plasma cell type of CD. Therefore, the diagnosis of CD of plasma cell type must require the combination of clinical and pathology21,22. Our study also showed that the patients with iMCD-NOS usually lacked specific clinical manifestations, and their lymph node pathology often needed to be differentiated from reactive lymph node hyperplasia and plasmacytoma /Lymphoma, which led to a significantly longer time interval from onset to diagnosis and a less consistency of diagnosis from different institution than those with TAFRO syndrome.

TAFRO syndrome was first proposed as a special subtype of iMCD8. The patients with TAFRO syndrome usually showed a group of similar clinical features which included thrombocytopenia, renal dysfunction, systemic edema and polyserous cavity effusion. Compared with those with iMCD-NOS, they were more likely to have a more acute course of disease, a worse general condition at the time of onset, smaller lymph nodes, not-elevated blood immunoglobulin levels, lower IL-6 levels in the serum, and higher levels of VEGF in the serum11. The lymph node pathology of patients with TAFRO syndrome reported in the literature was usually hyaline vascular type or mixed type, while the pathology of patients with iMCD-NOS was usually plasma cell type13,23. At present, the most authoritative diagnostic criteria for TAFRO syndrome are the Iwaki’s criteria and the Masaki’s criteria. These two diagnostic criteria have divergence on whether the pathological feature of lymph node in conformity with CD being necessary of diagnosis. Iwaki et al.11 advocated that TAFRO syndrome should be classified as a special subtype of iMCD, and pathological compliance with CD should be a necessary part of diagnosis of TAFRO syndrome. In Iwaki’s criteria, the pathological features of lymph node of patients with TAFRO syndrome were defined as atrophy of the germinal center with enlargement of endothelial cell nucleus, proliferation of interfollicular endothelial vein, and rare mature plasma cells. Masaki et al13,14 believed that the clinical manifestations of patients with TAFRO syndrome were quite different from those with iMCD, so they advocated that TAFRO syndrome might be a special group that overlapped with iMCD but was different from iMCD. In Masaki’s criteria, pathological feature of lymph node was only regarded as one of the four secondary criteria rather than an essential part of diagnosis. Their explanation was that biopsy of lymph node might be unachievable for some patients due to anasarca, bleeding tendency or the smallness of the target lymph node, however early diagnosis and appropriate treatment without delay would be essential for favorable outcomes. We don’t think the two diagnostic criteria are in conflict in essence. The pathological features of patients with TAFRO syndrome reported by Masaki et al.13 were consistent with those reported by Iwaki et al.11. Masaki et al.13 reported that the pathological classifications of most patients with TAFRO syndrome were mixed type, and a few were hyaline vascular type. Our study also confirmed that the special clinical manifestations of patients with TAFRO syndrome were determined by their pathological features. In our study, we screened patients whose clinical characteristics were in conformity with the definition of TAFRO syndrome (thrombocytopenia, multiple serosal effusion/edema, and renal insufficiency). The results showed that the pathological types of lymph nodes of 7 patients with TAFRO syndrome whose pathology of lymph nodes were achievable were as hyaline vascular type (5/8, 62.5%) and mixed type (2/8, 25%).
Except the role of pathological features, there are two other differences between Iwaki’s criteria and Masaki’s criteria which are gamma globulinemia and renal insufficiency. The level of gamma globulin in the serum being not-elevated was regarded as one major category in Iwaki’s criteria but was not mentioned in Masaki’s criteria. On the contrary, progressive renal insufficiency was regarded as one minor category in Masaki’s criteria as with pathological features but while was not mentioned in Iwaki’s criteria. We advocate that whether patients be diagnosed with TAFRO syndrome should be based on the combination of clinical manifestations and pathological features of patients, and the focus should be on the nature of the syndrome rather than be confined to a specific diagnosis item. In the series of TAFRO syndrome cases of our study, one patient was diagnosed according to his massive proteinuria and TMA feature of renal biopsy although biopsy of lymph node was absent. Another patient was diagnosed according to his typical clinical manifestations (thrombocytopenia, renal dysfunction, anasarca and polyserous cavity effusion) and pathological feature of lymph node being hyaline vascular type although the polyclonal gamma globulin level was slightly elevated.

The present study has several obvious limitations. First, it was a retrospective study and some laboratory data were not available. Second, A bias is inevitable because the CD patient population come from a single medical centre and the sample size is small. Despite these limitations, this study provides a useful panoramic view of CD and attempt to probe into the internal relationship between various types of CD.

CONCLUSION
In conclusion, the etiology and pathogenesis of both CD and TAFRO syndrome remain unclear. Further clinical and pathophysiological evidence are necessary for understanding this new entity. At the same time, clinicians, especially non-hematology specialists, should pay more attention to this entity and improve the awareness of diagnosis.

ARTICLE HIGHLIGHTS
Research background
Castleman disease (CD) and TAFRO syndrome are very rare in clinical practice. Most clinicians, especially non-hematological clinicians, do not know enough about the two diseases, so it often leads to misdiagnosis or missed diagnosis.

Research motivation
What is the nature of CD? What are the internal relations and differences between different clinical and pathological types of CD? Can unicentric Castleman disease (UCD) transform into multicentric Castleman disease (MCD)? TAFRO syndrome is a special subtype of idiopathic MCD (iMCD)? Or is it just a new special group whose clinical manifestations overlap with iMCD and are different from iMCD? The aforementioned problems are the research motivation of our study.

Research objectives
This study aimed to explore the clinical features and diagnosis of CD and TAFRO syndrome.

Research methods
We retrospectively collected the clinical and laboratory data of 39 patients who were diagnosed with CD from a single medical center.

Research results
UCD and iMCD are significantly different in clinical manifestations, treatment, and prognosis. However, a few patients with MCD were diagnosed as UCD in their early stage. There was a correlation between two of Thrombocytopenia, anasarca and elevated creatinine, which were important components of TAFRO syndrome. In UCD group, the pathologies of lymph modes were mostly hyaline vascular type (13/18, 72.22%), however plasma cell type or mixed type could also appear. In iMCD-NOS group and TAFRO syndrome group, the pathologies of lymph mode shown polarity of
plasma cell type and hyaline vascular type respectively. Compared with patients with TAFRO syndrome, patients with iMCD-NOS were diagnosed more difficultly.

Research conclusions

The clinical and pathological types of CD are not completely separate, there is an intermediate situation or mixed characteristics between two ends of clinical and pathological types. The clinical manifestations of patients with CD are determined by their pathological type. TAFRO syndrome is a special subtype of iMCD with unique clinical manifestations.

Research perspectives

In the future, further research should be carried out on the pathological manifestations of lymph nodes and kidneys in patients with CD and TAFRO syndrome.

REFERENCES

Observational Study

Correlation of myopia onset and progression with corneal biomechanical parameters in children

Li-Li Lu, Xiao-Juan Hu, Yan Yang, Shen Xu, Shi-Yong Yang, Cui-Yu Zhang, Qing-Ya Zhao

ORCID number: Li-Li Lu 0000-0003-2713-1150; Xiao-Juan Hu 0000-0003-0562-8908; Yan Yang 0000-0002-4313-8275; Shen Xu 0000-0002-4650-6125; Shi-Yong Yang 0000-0001-5687-2818; Cui-Yu Zhang 0000-0001-5278-5629; Qing-Ya Zhao 0000-0003-0743-9430.

Author contributions: Lu LL contributed to study conception, design, and writing of the article; Hu XJ, Yang Y contributed to collection of clinical data; Xu S, Yang SY contributed to data acquisition, data analysis, and interpretation; Zhang CY, Zhao QY contributed to editing, reviewing, and final approval of the article.

Institutional review board statement: This study was approved by the Cangzhou Aier Eye Hospital Ethics Committee.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors declare that there is no conflict of interest to disclose.

Data sharing statement: No additional data are available.

STROBE statement: The authors

Abstract

BACKGROUND

Recent epidemiological studies have shown that general eye measurement parameters and corneal biomechanical properties can predict the speed of myopic progression in children.

AIM

To investigate the correlation between the onset and progression of myopia and corneal biomechanical parameters in children.

METHODS

The study included 102 cases in the emmetropia group, 207 cases in the myopic group, and 109 cases in the hyperopic group. The correlation between the change in corneal biomechanical indexes and the change in general ocular measurement parameters was analyzed. A one-way ANOVA test compared general ocular measurement and corneal biomechanical parameters. Pearson’s correlation coefficient was analyzed to correlate corneal biomechanical and general ocular measurement parameters.

RESULTS

The general ophthalmometric parameters: Spherical equivalent (SE), intraocular pressure (IOP), and axial length (AL), differed significantly among subjects in myopia, emmetropia, and hyperopic groups. Children’s SE positively correlated with corneal biomechanical parameters: Second velocity of applanation (A2V), peak distance (PD), and deformation amplitude (DA) ($P < 0.05$), and second applanation length (A2L) ($P < 0.05$). But it was negatively correlated with PD, DA and integral radius (IR) ($P < 0.05$). Also, IOP was negatively correlated with A2L and IR ($P < 0.05$). AL positively correlated with A2V and negatively correlated with second applanation time (A2T), highest concavity, and PD. Central corneal thickness positively correlated with first applanation length, first applanation...
have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.

Country/Territory of origin: China

Specialty type: Ophthalmology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works upon this work non-commercially, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Received: October 15, 2021
Peer-review started: October 15, 2021
First decision: December 1, 2021
Revised: December 15, 2021
Accepted: December 31, 2021
Article in press: December 31, 2021
Published online: February 16, 2022

P-Reviewer: Baird PN, Lee CH
S-Editor: Wang JL
L-Editor: A
P-Editor: Wang JL

INTRODUCTION

Refractive error is one of the leading causes of visual impairment in Chinese school-age children and is associated with a significant decrease in self-perceived visual function[1]. Patients with myopia, especially those with high myopia, could be much more likely to have serious complications, such as retinal detachment and open-angle glaucoma, than normal patients. Their reduced visual acuity and impaired visual function greatly affect their work, study, and daily activities. The progression of myopia is closely related to an increased eye axis. One possible reason for the accelerated growth of the eye axis is the weakening of the structure or function of the corneoscleral[2-5]. Therefore, the development of myopia may be related to corneoscleral stiffness, and the mechanical properties of the biological tissue play an important role in the increase of the ocular axis. Reducing scleral matrix metalloproteinase activity, decreasing the loss of extracellular matrix, and enhancing scleral biomechanical strength may slow down myopia progression. Therefore, it is crucial to learn about the correlation among children’s ocular parameters, including corneal biomechanical parameters, and their alterations in children’s myopia development. This study aimed to investigate the correlation between the occurrence and progression of myopia and corneal biomechanical parameters in children.

MATERIALS AND METHODS

General information
The study included elementary school students aged 9–11 years who visited our
hospital from November 2019 to April 2020. Our hospital ethics committee approved the study, and all enrolled subjects provided informed consent. Inclusion criteria: (1) best-corrected vision acuity ≥ 0.5 (LogMAR); and (2) no history of wearing special glasses, such as keratoplasty lenses. Exclusion criteria: (1) other eye diseases, such as amblyopia, strabismus, cone cornea, and lid entropion; (2) history of previous ophthalmic surgery, such as retinal, congenital cataract, and ptosis surgery; and (3) systemic diseases affecting the eye, such as diabetes mellitus. We grouped the subjects according to their spherical equivalent lens degree: (1) myopic group: SE < -0.50 D; (2) emmetropia group: -0.50 D ≤ SE ≤ + 0.50 D; and (3) hyperopic group: SE > + 0.50 D. There were 207 cases in the myopic group, including 142 males and 65 females, with a mean age of 10.23 ± 0.58 years. There were 102 cases in the emmetropia group, including 61 males and 41 females, with a mean age of 10.04 ± 0.64 years. There were 109 cases in the hyperopia group, including 59 males and 50 females, with a mean age of 10.19 ± 0.84 years. We followed up on patients in the myopia group every 3 mo, recording the axial measurement, medical optometry, and corneal biomechanical parameters. After 1 year of follow-up, we compared changes in corneal biomechanical indexes and other clinical characteristics.

Methods
After enrollment, all subjects underwent routine ophthalmic examinations, including naked eye visual acuity, best-corrected visual acuity, anterior segment, fundus, medical optometry, and other ophthalmic examinations. Subjects’ intraocular pressure (IOP), anterior chamber depth, corneal curvature, spherical equivalent (SE), flat-axis corneal curvature, and steep-axis corneal curvature were recorded. IOLMaster measured axial length (AL). Corvis ST measured corneal biomechanical parameters and biological parameters, including the first velocity of applanation (A1V), first applanation length (A1L), first applanation time (A1T), first applanation deformation amplitude (A1DA), the second velocity of applanation (A2V), second applanation length (A2L), second applanation time (A2T), second applanation deformation amplitude (A2DA), time from the start until the highest concavity (HCT), central curvature radius at highest concavity (HCR), peak distance (PD), deformation amplitude (DA), central corneal thickness (CCT), integrated radius (IR), ambrosia relational thickness-horizontal (ARTh), first applanation stiffness parameter (SP-A1), corvis biomechanical index (CBI), and topographic and biomechanics index (TBI).

Statistical analysis
The Kolmogorov–Smirnov test analyzed the distribution of variables. Normally, distributed data were expressed as the mean ± SD. The one-ANOVA test compared the three groups’ general ocular measurement and corneal biomechanical parameters. Correlations between corneal biomechanical and general ocular measurement parameters were analyzed using a Pearson correlation coefficient. All statistical analyses were performed using the SPSS 23.0 software package and MedCalc 15.2.2 software. P < 0.05 was considered a statistically significant difference.

RESULTS

Comparison of general ocular measurement parameters among the three groups of subjects
There were statistically significant (P < 0.05) differences in the general ocular measurement parameters SE, IOP, and AL among subjects in three groups. However, there were no significant differences in the general ocular measurement parameters CCT and Km among subjects in three groups (P > 0.05), as shown in Table 1.

Comparison of corneal biomechanical parameters among the three groups of subjects
The corneal biomechanical parameters A1V, A1L, A1T, A1DA, A2V, A2DA, HCR, PD, IR, ARTh, SP-A1, CBI, and TBI were significantly different (P < 0.05) among subjects in three groups. However, the corneal biomechanical A2L, A2T, HCT, DA were not significantly different subjects in three groups (P > 0.05, Table 2).
Correlation of general ocular measurement parameters with corneal biomechanical parameters in children

Children’s general ocular measurement parameter SE positively correlated with corneal biomechanical parameters A2V and A2L while negatively correlated with PD, DA, and IR. In children, the general ocular measurement parameter IOP was positively correlated with corneal biomechanical parameters PD and DA and negatively correlated with A2L and IR. The general ocular measurement parameter AL positively correlated with corneal biomechanical parameter A2V and negatively correlated with A2T, HCT, and PD. The general ocular measurement parameter CCT in children was positively correlated with corneal biomechanical parameters A1L, A1T, A1DA, A2V, A2DA, HCR, PD, DA, IR, ARTh, SP-A1, CBI, and TBI and negatively correlated with A1V. Children’s general ocular measurement parameter Km positively correlated with corneal biomechanical parameters DA and IR but negatively correlated with A2L, HCR, and PD (all P < 0.05), as shown in Table 3.

The general ocular measurement parameters ΔIOP was positively correlated with the corneal biomechanical parameters ΔDA, ΔIR, and negatively with ΔA2L, and increased ΔAL was positively correlated with corneal biomechanical parameters ΔA2V and ΔPD.

Correlation between myopia development and corneal biomechanical parameters in children

There was a positive correlation between the increase in general ocular measurement ΔSE and the change in corneal biomechanical parameters ΔA2V and ΔA2L and a negative correlation with ΔIR. There was a positive correlation between ΔIOP and ΔDA and a negative correlation between ΔA2L and ΔIR. There was a positive correlation between the increase in the general ocular measurement parameter ΔAL and the change in the corneal biomechanical parameters ΔA2V and ΔPD in children. There was a positive correlation between the general ocular measurement parameter ΔCCT and the corneal biomechanical parameters ΔA1L, ΔA1T, ΔA2V, ΔA2L, ΔA2T, ΔA2DA, ΔHCR, ΔPD, ΔDA, ΔIR, ΔARTh, ΔSP-A1, ΔCBI, and ΔTBI and a negative correlation with ΔA1V. There was a positive correlation between the increase in general ocular measurement parameter ΔKm and the change in corneal biomechanical parameters ΔDA and ΔIR and a negative correlation with ΔHCR and ΔPD in children (all P < 0.05), as shown in Table 4.

The corneal biomechanical parameters A1V, A1L, A1T, A1DA, A2V, A2DA, HCR, PD, IR, ARTh, SP-A, CBI, and TBI were statistically different in the myopic, emmetropic, and hyperopic groups (all P < 0.05).

DISCUSSION

The prevalence of myopia is rather high worldwide, reaching 80% in some Asian populations[6]. Well-documented changes in myopia include prolonged AL, deeper anterior chamber and vitreous depth, thinner retina, higher incidence of retinal detachment, and reduced scleral thickness and elasticity[6]. This study measured general ocular and corneal biomechanical parameters in myopic, emmetropic, and hyperopic children. The analysis revealed statistically significant (P < 0.05) differences in general ocular measurement parameters SE, IOP, and AL among subjects in three groups. Corneal biomechanical parameters A1V, A1L, A1T, A1DA, A2V, A2DA, HCR,
Table 2 Comparison of corneal biomechanical parameters among the three groups of subjects

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>A1V (ms⁻¹)</th>
<th>A1L (mm)</th>
<th>A1T (ms)</th>
<th>A1DA (mm)</th>
<th>A2V (ms⁻¹)</th>
<th>A2L (mm)</th>
<th>A2T (ms)</th>
<th>A2DA (mm)</th>
<th>HCT (ms)</th>
<th>HCR (mm)</th>
<th>PD (mm)</th>
<th>DA (mm)</th>
<th>IR</th>
<th>ARTh</th>
<th>SP-A1</th>
<th>CBI</th>
<th>TBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myopia group</td>
<td>207</td>
<td>0.13 ± 0.02</td>
<td>1.85 ± 0.29</td>
<td>7.63 ± 0.29</td>
<td>0.12 ± 0.01</td>
<td>21.33 ± 0.37</td>
<td>16.70 ± 0.08</td>
<td>5.97 ± 0.08</td>
<td>3.42 ± 0.98</td>
<td>9.23 ± 0.09</td>
<td>472.03 ± 1.61</td>
<td>102.01 ± 3.52</td>
<td>0.53 ± 0.25</td>
<td>0.56 ± 0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emmetropia group</td>
<td>102</td>
<td>0.15 ± 0.05</td>
<td>1.93 ± 0.33</td>
<td>7.41 ± 0.22</td>
<td>0.13 ± 0.01</td>
<td>17.05 ± 0.41</td>
<td>16.73 ± 0.09</td>
<td>6.42 ± 0.92</td>
<td>3.77 ± 0.99</td>
<td>9.05 ± 0.09</td>
<td>451.61 ± 2.61</td>
<td>114.31 ± 1.26</td>
<td>0.33 ± 0.23</td>
<td>0.33 ± 0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperopia group</td>
<td>109</td>
<td>0.14 ± 0.03</td>
<td>1.77 ± 0.29</td>
<td>7.39 ± 0.29</td>
<td>0.13 ± 0.02</td>
<td>16.35 ± 0.47</td>
<td>16.59 ± 0.66</td>
<td>6.69 ± 0.61</td>
<td>3.02 ± 0.99</td>
<td>11.34 ± 0.10</td>
<td>256.45 ± 1.34</td>
<td>46.34 ± 1.45</td>
<td>0.07 ± 0.06</td>
<td>0.12 ± 0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>13.57</td>
<td>6.258</td>
<td>36.89</td>
<td>29.34</td>
<td>5.780</td>
<td>1.610</td>
<td>1.706</td>
<td>37.52</td>
<td>1.267</td>
<td>78.85</td>
<td>21.67</td>
<td>60.79</td>
<td>47.99</td>
<td>145.7</td>
<td>6.681</td>
<td>150.6</td>
<td>158.2</td>
</tr>
<tr>
<td>P value</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>0.0033</td>
<td>0.2011</td>
<td>0.1829</td>
<td>< 0.0001</td>
<td>0.2829</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>0.014</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1V: First velocity of applanation; A1L: First applanation length; A1T: First applanation time; A1DA: First applanation deformation amplitude; A2V: Second velocity of applanation; A2L: Second applanation length; A2T: Second applanation time; A2DA: Second applanation deformation; HCT: Time from the start until the highest concavity; HCR: Central curvature radius at highest concavity; PD: Peak distance; DA: Deformation amplitude; IR: Integrated radius; ARTh: ambrosia relational thickness-horizontal; SP-A1: First applanation stiffness parameter; CBI: Corvis biomechanical index; TBI: Topographic and biomechanics index.

PD, IR, ARTh, SP-A1, CBI, and TBI were significantly different (P < 0.05) in three groups. Despite the limited tracking time and the number of participants compared to the large scale of clinic studies, our data were effectively valid because of highly professional supervision and appropriate statistics.

IOP is an important biometric parameter in myopic eyes. Previous studies have shown that thinner corneas may lead to underestimation errors in IOP measurements [7]. However, recent studies have found significantly higher mean IOP values in myopic children than in non-myopic children [8]. In this study, children’s general eye measurement parameter IOP was positively correlated with corneal biomechanical parameters PD and DA and negatively correlated with A2L and IR. The change in ΔIOP was positively correlated with the corneal biomechanical parameter ΔDA and negatively correlated with ΔA2L and ΔIR (all P < 0.05). Glaucoma is a blinding eye disease and the major ocular disease causing vision loss and blindness worldwide that shows characteristic damage to the optic nerve and loss of visual function [9]. Primary open-angle glaucoma is the most common form of glaucoma globally, where the degree of visual field damage is already severe, and the damage to visual acuity and visual field is irreversible [10]. Elevated IOP is considered the most important risk factor for developing and progression of primary open-angle glaucoma [11]. Therefore, alterations in DA in myopia development in children can be used as potential markers for glaucoma development.

In the present study, the general ocular measurement parameter CCT in children positively correlated (P < 0.05) with the corneal biomechanical parameters A1L, A1T, A2V, A2L, A2T, A2DA, HCR, PD, DA, IR, ARTh, SP-A1, CBI, and TBI, while it was
Table 3 Correlation of corneal biomechanical parameters with general ocular measurement parameters

<table>
<thead>
<tr>
<th>SE (D)</th>
<th>IOP (mmHg)</th>
<th>AL (mm)</th>
<th>CCT (μm)</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>P value</td>
<td>p</td>
<td>P value</td>
<td>p</td>
</tr>
<tr>
<td>A1V</td>
<td>-0.042</td>
<td>0.3917</td>
<td>0.053</td>
<td>0.2797</td>
</tr>
<tr>
<td>A1L</td>
<td>0.033</td>
<td>0.5010</td>
<td>-0.061</td>
<td>0.2133</td>
</tr>
<tr>
<td>A1T</td>
<td>0.024</td>
<td>0.6246</td>
<td>-0.091</td>
<td>0.0631</td>
</tr>
<tr>
<td>A1DA</td>
<td>0.038</td>
<td>0.4384</td>
<td>-0.073</td>
<td>0.1362</td>
</tr>
<tr>
<td>A2V</td>
<td>0.235</td>
<td>< 0.0001</td>
<td>0.0917</td>
<td>0.302</td>
</tr>
<tr>
<td>A2L</td>
<td>0.124</td>
<td>0.0112</td>
<td>-0.139</td>
<td>0.0044</td>
</tr>
<tr>
<td>A2T</td>
<td>0.093</td>
<td>0.0575</td>
<td>-0.088</td>
<td>0.0723</td>
</tr>
<tr>
<td>A2DA</td>
<td>0.041</td>
<td>0.4031</td>
<td>-0.038</td>
<td>0.4383</td>
</tr>
<tr>
<td>HCT</td>
<td>0.004</td>
<td>0.9350</td>
<td>-0.008</td>
<td>0.8705</td>
</tr>
<tr>
<td>HCR</td>
<td>0.009</td>
<td>0.8705</td>
<td>-0.039</td>
<td>0.4265</td>
</tr>
<tr>
<td>PD</td>
<td>-0.130</td>
<td>0.0078</td>
<td>0.117</td>
<td>0.0167</td>
</tr>
<tr>
<td>DA</td>
<td>-0.119</td>
<td>0.0149</td>
<td>0.193</td>
<td>0.0001</td>
</tr>
<tr>
<td>IR</td>
<td>-0.204</td>
<td>< 0.0001</td>
<td>0.244</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>ARTh</td>
<td>0.062</td>
<td>0.2059</td>
<td>-0.072</td>
<td>0.1417</td>
</tr>
<tr>
<td>SP-A1</td>
<td>0.032</td>
<td>0.5141</td>
<td>-0.024</td>
<td>0.6246</td>
</tr>
<tr>
<td>CBI</td>
<td>0.039</td>
<td>0.4265</td>
<td>-0.019</td>
<td>0.6985</td>
</tr>
<tr>
<td>TBI</td>
<td>0.027</td>
<td>0.5820</td>
<td>-0.020</td>
<td>0.6835</td>
</tr>
</tbody>
</table>

SE: Spherical equivalent; IOP: Intraocular pressure; AL: Axial length; CCT: Central corneal thickness; A1V: First velocity of applanation; A1L: First applanation length; A1T: First applanation time; A1DA: First applanation deformation amplitude; A2V: Second velocity of applanation; A2L: Second applanation length; A2T: Second applanation time; A2D: Second applanation deformation; HCT: Time from the start until the highest concavity; HCR: Central curvature radius at highest concavity; PD: Peak distance; DA: Deformation amplitude; IR: Integrated radius; ARTh: Ambrosia relational thickness-horizontal; SP-A1: First applanation stiffness parameter; CBI: Corvis biomechanical index; TBI: Topographic and biomechanic index.

The refractive error results from a mismatch between various optical components of the eye, one of the most important parts of which is AL[13]. In the present study, there was a positive correlation between the general ocular measurement parameter ΔCCT and the change in the corneal biomechanical parameter ΔA1V (P < 0.05) with A1V. The general ocular measurement parameter ΔCCT in children positively correlated with corneal biomechanical parameters ΔA1L, ΔA1T, ΔA2V, ΔA2L, ΔA2T, ΔA2DA, ΔHCR, ΔPD, ΔDA, ΔIR, ΔARTh, ΔSP-A1, ΔCBI, and ΔTBI (P < 0.05), while negatively correlated with ΔA1V (P < 0.05). Studies of CCT in children of different ages have shown that CCT increases with age so that the average CCT is thicker in older than in young children[12]. CCT and the change in CCT positively correlated with most corneal biomechanics except for A1V and ΔA1V, so these corneal biomechanical parameters may also increase with the child’s age.

The refractive error results from a mismatch between various optical components of the eye, one of the most important parts of which is AL[13]. In the present study, there was a positive correlation between the general ocular measurement parameter AL and the corneal biomechanical parameter A2V (P < 0.05) and a negative correlation with A2T, HCT, and PD (P < 0.05) in children. There was a positive correlation between the increased general ocular measurement parameter ΔAL and the change in the corneal biomechanical parameter ΔA2V and ΔPD in children (P < 0.05). This usually corresponds to an AL ≥ 26 mm, which significantly increases the risk of serious complications later in life, including myopic macular degeneration, retinal detachment, and glaucoma[14,15]. The mean AL of the subjects in the myopic group included in this study was 25.61 ± 0.77 mm. Therefore, the corneal biomechanical parameters A2V, A2T, HCT, and PD may identify children at low risk. The application of corneal biomechanical parameters will allow clinicians to implement preventive measures to minimize the further increase in AL. These measures include pharmacological agents, such as atropine, and optical applications, such as multifocal contact lenses. There are still limitations in this study, including that this study is a prospective study and cannot determine the causal relationship between various variables. At the same time, this study only collected children from the same hospital, and the sample size is small. There may still be other influencing factors that have not been considered in this study.
Table 4 Correlation between spherical equivalent, intraocular pressure, and axial length growth and the change in corneal biomechanical parameters in subjects in the myopic group

<table>
<thead>
<tr>
<th>ΔSE (D)</th>
<th>ΔIOP (mmHg)</th>
<th>ΔAL (mm)</th>
<th>CCT (μm)</th>
<th>Km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>P value</td>
<td>p</td>
<td>P value</td>
</tr>
<tr>
<td>ΔA1V</td>
<td>-0.0391</td>
<td>0.5758</td>
<td>0.0460</td>
<td>0.5107</td>
</tr>
<tr>
<td>ΔA1L</td>
<td>0.0357</td>
<td>0.5962</td>
<td>-0.0673</td>
<td>0.3350</td>
</tr>
<tr>
<td>ΔA1T</td>
<td>0.0257</td>
<td>0.7133</td>
<td>-0.0917</td>
<td>0.1889</td>
</tr>
<tr>
<td>ΔA1DA</td>
<td>0.0344</td>
<td>0.6230</td>
<td>-0.0586</td>
<td>0.4013</td>
</tr>
<tr>
<td>ΔA2V</td>
<td>0.2027</td>
<td>0.0034</td>
<td>-0.1075</td>
<td>0.1232</td>
</tr>
<tr>
<td>ΔA2L</td>
<td>0.1397</td>
<td>0.0446</td>
<td>-0.1459</td>
<td>0.0360</td>
</tr>
<tr>
<td>ΔA2T</td>
<td>0.0772</td>
<td>0.2691</td>
<td>-0.0718</td>
<td>0.3042</td>
</tr>
<tr>
<td>ΔA2DA</td>
<td>0.0462</td>
<td>0.5089</td>
<td>-0.0321</td>
<td>0.6459</td>
</tr>
<tr>
<td>ΔHCT</td>
<td>0.0035</td>
<td>0.3961</td>
<td>-0.0073</td>
<td>0.9171</td>
</tr>
<tr>
<td>ΔHCR</td>
<td>0.0801</td>
<td>0.9073</td>
<td>-0.0323</td>
<td>0.6446</td>
</tr>
<tr>
<td>ΔPD</td>
<td>-0.1331</td>
<td>0.0559</td>
<td>0.1361</td>
<td>0.1361</td>
</tr>
<tr>
<td>ΔDA</td>
<td>-0.1130</td>
<td>0.1049</td>
<td>0.1814</td>
<td>0.0889</td>
</tr>
<tr>
<td>ΔIR</td>
<td>-0.1841</td>
<td>0.0079</td>
<td>0.2674</td>
<td>0.0001</td>
</tr>
<tr>
<td>ΔARTh</td>
<td>0.0542</td>
<td>0.4378</td>
<td>-0.0671</td>
<td>0.3365</td>
</tr>
<tr>
<td>ΔSP-A1</td>
<td>0.0372</td>
<td>0.5951</td>
<td>-0.0209</td>
<td>0.7655</td>
</tr>
<tr>
<td>ΔCBI</td>
<td>0.0321</td>
<td>0.6461</td>
<td>-0.0160</td>
<td>0.8187</td>
</tr>
<tr>
<td>ΔTBI</td>
<td>0.0234</td>
<td>0.7378</td>
<td>-0.0187</td>
<td>0.7888</td>
</tr>
</tbody>
</table>

SE: Spherical equivalent; IOP: Intraocular pressure; AL: Axial length; CCT: Central corneal thickness; A1V: First velocity of applanation; A1L: First applanation length; A1T: First applanation time; A1DA: First applanation deformation amplitude; A2V: Second velocity of applanation; A2L: Second applanation length; A2T: Second applanation time; A2D: Second applanation deformation; HCT: Time from the start until the highest concavity; HCR: Central curvature radius at highest concavity; PD: Peak distance; DA: Deformation amplitude; IR: Integrated radius; ARTh: Ambrosia relational thickness-horizontal; SP-A1: First applanation stiffness parameter; CBI: Corvis biomechanical index; TBI: Topographic and biomechanics index.

been found. The age range of children included in this study is not large enough. In addition, due to time constraints, the children were not followed up for a longer time.

CONCLUSION

Myopia development in children was associated with multiple corneal biomechanical parameters. These findings may help clinics take preventive measures to minimize the further increase in myopic children’s axial length.

ARTICLE HIGHLIGHTS

Research background

Patients with myopia, especially those with high myopia, are much more likely to have serious complications such as retinal detachment and open-angle glaucoma than normal patients. High myopia may have a degenerative disorder, including cornea, sclera, choroid, optic disc, vitreous, macula, and peripheral retina.

Research motivation

The increasingly high incidents of myopia in children and the association with multiple corneal biomechanical parameters in local community and worldwide.
Research objectives
This study is to determine the change of corneal biomechanical parameters after onset and progression of myopia.

Research methods
A total of 207 myopic subjects were enrolled according to local clinic criteria and one-way ANOVA test was applied to determine whether there is statistical evidence between different general ocular measurement parameters.

Research results
There is a correlation between the development of myopia and various corneal biomechanical parameters in children.

Research conclusions
There are positive and negative correlations between myopia and general eye measurement parameters, corneal biomechanical parameters and other multiple parameters.

Research perspectives
Corneal ophthalmometric parameters and biomechanical properties including multiple baselines may be able to predict the development of myopia.

REFERENCES

META-ANALYSIS

Intensive vs non-intensive statin pretreatment before percutaneous coronary intervention in Chinese patients: A meta-analysis of randomized controlled trials

Xian Yang, Xi Lan, Xin-Lin Zhang, Zhong-Lin Han, Si-Min Yan, Wen-Xiao Wang, Biao Xu, Wei-Hong Ge

Xian Yang, Si-Min Yan, Wei-Hong Ge, Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, China

Xian Yang, Si-Min Yan, Wei-Hong Ge, Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing 210000, Jiangsu Province, China

Xi Lan, Xin-Lin Zhang, Zhong-Lin Han, Biao Xu, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, China

Wen-Xiao Wang, Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China

Corresponding author: Wei-Hong Ge, MS, Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Gulou District, Nanjing 210000, Jiangsu Province, China. wh.ge.drumtower@outlook.com

Abstract

BACKGROUND
The results of intensive statin pretreatment before percutaneous coronary intervention (PCI) is inconsistent between Chinese and Western populations, and there are no corresponding meta-analyses involving hard clinical endpoints in the available published literature.

AIM
To evaluate the efficacy and safety of high-dose statin loading before PCI in Chinese patients through a meta-analysis.

METHODS
Relevant studies were identified by searching the electronic databases of PubMed, Embase and Cochrane’s Library to December 2019. The outcomes included an assessment of major adverse cardiovascular event (MACE), non-fatal myocardial infarction (MI), cardiac death, target vessel revascularization (TVR), myalgia/myasthenia and abnormal alanine aminotransferase (ALT) in all enrolled patients. Random effect model and fixed effect model were applied to combine
Yang X et al. Intensive statin before PCI in Chinese

the data, which were further analyzed by χ² test and P test. The main outcomes were then analyzed through the use of relative risks (RR) and its 95% confidence interval (95%CI).

RESULTS

Eleven studies involving 3123 individuals were included. Compared with patients receiving placebo or no statin treatment before surgery, intensive statin treatment was associated with a clear reduction of risk of MACE (RR = 0.44, 95%CI: 0.31-0.61, P < 0.00001). However, compared with the patients receiving moderate-intensity statin before surgery, no advantage to intensive statin treatment was seen (RR = 1.04, 95%CI: 0.82-1.31, P = 0.74). In addition, no significant difference was observed between intensive statin therapy and non-intensive statin therapy on the incidence of TVR (RR = 0.43, 95%CI: 0.18-1.02, P = 0.06), myalgia/myasthenia (RR = 1.35, 95%CI: 0.30-5.95, P = 0.69) and abnormal alanine aminotransferase (RR = 1.47, 95%CI: 0.54-4.02, P = 0.45) except non-fatal MI (RR = 0.54, 95%CI: 0.33-0.88, P = 0.01).

CONCLUSION

Compared with placebo or no statin pretreatment, intensive statin before PCI displayed reduced incidence of MACE. However, there was no significant benefit between high and moderate-intensity statin. In addition, no significant difference was observed between intensive statin therapy and non-intensive statin therapy on the incidence of TVR, myalgia/myasthenia and abnormal alanine aminotransferase except non-fatal MI.

Key Words: Intensive; Non-intensive; Statin; Percutaneous coronary intervention; Chinese; Meta-analysis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: As the cornerstone of primary and secondary prevention of arteriosclerotic cardiovascular disease, statins have been widely used in clinical practice. However, whether intensive statin therapy before percutaneous coronary intervention (PCI) could benefit the Chinese population remains debatable. A meta-analysis was performed to evaluate the efficacy and safety of the strategy. The results showed that compared with placebo or no statin pretreatment, Chinese patients receiving intensive statin therapy before PCI could further reduce the incidence of major adverse cardiovascular events. In addition, there was no significant benefit to using high-intensity and moderate-intensity statin therapy.

DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1557

INTRODUCTION

At present, the burden of cardiovascular and cerebrovascular disease is very heavy in China. There are about 290 million patients presenting with these conditions, including 11 million patients with coronary heart disease[1]. Despite the rapid development of percutaneous coronary intervention (PCI), which has increased from 500000 in 2014 to more than 915000 in 2018, and also surpassed the numbers of presenting cases in the United States[2], the overall mortality rate of coronary heart disease and acute myocardial infarction in China is still on the rise[1]. This suggests that there is room for optimizing perioperative therapy.
As the cornerstone of primary and secondary prevention of arteriosclerotic cardiovascular disease, statins have been widely used in clinical practice. In recent years, a number of studies in Europe and the United States suggested that intensive statin therapy before PCI could significantly reduce the level of postoperative myocardial damage markers and reduce the incidence of perioperative myocardial infarction and short-term cardiovascular events[3-5].

However, whether the strategy could benefit the Chinese population remains debatable. The ALPACS study, which included the Chinese population, suggested that patients did not benefit from intensive statin therapy as compared with a control population in major adverse cardiovascular events (MACE) (P = 0.80)[6]. The ISCAP study also found no difference in the incidence of MACE between treatment with high-intensity and moderate-intensity statins after 30 d and 6 mo of follow-up (P = 0.43 and P = 0.63, respectively)[7]. Considering the differences in lipid metabolism between Chinese and Western populations, it was unknown whether or not race influences the outcome of intensive statin treatment[8]. Thus, the lack of available meta-analyses of clinically defined hard endpoints has affected the general perioperative application of statins in China.

This current article intended to evaluate the efficacy and safety of intensive statin therapy as compared to non-intensive statin pretreatment before PCI in the Chinese population through a meta-analysis investigation.

MATERIALS AND METHODS

Search strategy

A comprehensive search of electronic databases including PubMed, EMBASE and the Cochrane Library was performed by two researchers. The search was limited from inception of the database collections up to December 2019 and of the English language. Search terms included “intensive,” “intensity,” “high,” “load,” “loading,” “statin,” “atorvastatin,” “rosuvastatin,” “percutaneous coronary intervention” and “PCI” and connected using the logical search modifiers “AND” or “OR” in standard Boolean search strategies. It is worth mentioning that in order to inadvertently avoid missing important literature, the retrieval type did not include some terms such as “China” or “Chinese.” We checked the location of the research center and the specific inclusion criteria in the article to comprehensively determine that the patient was indeed Chinese. The references of the identified articles and relevant reviews were screened to include other potentially suitable trials.

Inclusion and exclusion criteria

Studies satisfying the following criteria were eligible: (1) Randomized controlled trials (RCTs); (2) The patient was Chinese; (3) The patient presented with an emergency or elective PCI; (4) Preoperative interventions for intensive and non-intensive statin therapy, which included moderate-intensity statin therapy, placebo and no statin pretreatment; (5) High-intensity statin therapy that referred to atorvastatin ≥ 40 mg/d or rosuvastatin ≥ 20 mg/d and moderate-intensity statin therapy that referred to atorvastatin < 40 mg/d or rosuvastatin < 20 mg/d or an equivalent dose of the statin; (6) Outcome indicators that included effectiveness and safety of the treatment. The former referred to MACE and the latter referred to myalgia/myasthenia and abnormal alanine aminotransferase (ALT) levels. MACE is defined as cardiac death, non-fatal myocardial infarction (MI) and target vessel revascularization (TVR). Abnormal ALT is defined as ALT levels that increased more than three-fold the upper limit of the normal reference range; (7) The follow-up lasted for 1-3 mo after PCI; and (8) The published literature language was English. Exclusion criteria included any of the following: chronic high-intensity statin therapy before PCI; abnormal liver enzymes [ALT or aspartate aminotransferase that exceeded 40 U/L]; blood creatinine levels > 2 mg/dL; or a history of muscle disease. The studies were reviewed by two independent investigators to determine whether they met the set inclusion criteria. In the case of any disagreement, this was resolved by consensus.

Data extraction

The baseline data involving study characteristics (i.e. first author, year of publication, sample size, intervention and follow-up time), patient characteristics (i.e. clinical presentation and statin medication history) and outcome indicators were extracted directly from the articles. Differences in assessments were resolved by discussion with a third investigator.
Quality assessment
The RCTs were evaluated according to the following methodological criteria as recommended by the Cochrane Collaboration: sequence generation, concealment of allocation, blinding, incomplete outcome data, selective outcome reporting and other sources of bias.

Statistical analysis
We used RevMan (Version 5.3; Cochrane Collaboration, Oxford, UK) and Stata software (version 12.0; Stata Corporation, College Station, TX, United States) for meta- and statistical analyses. Dichotomous data were presented as risk ratios (RR) with 95% confidence intervals (CI). The heterogeneity was evaluated using I^2 and P value that was based on the χ^2 test. $P \leq 50\%$ or $P \geq 0.1$ did not demonstrate significant heterogeneity, and a fixed-effects model was used. $P > 50\%$ or $P < 0.1$ indicated significant heterogeneity, and thus a random-effects model was applied. Potential publication bias was assessed with a funnel plot and Egger’s regression asymmetry test. All P values were twosided, and the results were considered statistically significant at an alpha value of $P < 0.05$.

The statistical methods of this study were reviewed by Xue B, who is an assistant researcher from the department of Cardiology, Nanjing Drum Tower Hospital.

RESULTS

Study selection and quality assessment
As shown in Figure 1, 4020 potentially relevant articles were identified in the initial analysis. Among them, 3418 articles were identified after removal of duplicate studies. Only 27 articles were retained after screening the title and abstract. Of note, one study was excluded as there was zero occurrence of each of the six conditions considered in both treated and control[9]. Finally, 11 studies involving 3123 patients were included in the present metaanalysis[7,10-19]. Among them, 1524 patients belonged to the intensive statin treatment group, and 1599 patients belonged to the non-intensive statin treatment group. Furthermore, the non-intensive statin treatment group that received moderate-intensity statin therapy, the placebo group and the no statin pretreatment group, included 738, 244 and 617 patients, respectively. All patients were female in one study[17]. A meta-analyses was not performed for cardiac death because of an extremely low occurrence, only one case in all studies. The characteristics of the included studies are shown in Table 1. The baseline clinical, angiographic and procedural characteristics of the patients are listed in Table 2. Quality assessment results are described in Table 3.

Effectiveness analysis
There were seven studies that compared the effects of preoperative high-intensity statin therapy and placebo or no statin therapy on the incidence of MACE[10,11,13-15,17,19]. The results showed that the incidence of MACE (RR = 0.44, 95%CI: 0.31-0.61, $P < 0.00001$, Figure 2) between the two groups were statistically significant. In addition, there were two studies that compared the effects of preoperative high-intensity statin therapy and moderate-intensity statin therapy on the incidence of MACE[7,16]. The indicator was not statistically significant (RR = 1.04, 95%CI: 0.82-1.31, $P = 0.74$, Figure 3).

Due to the limitations of the included literature, it was difficult to perform meta-analysis between the high-intensity statin group with placebo or no statin group or moderate-dose statin group in non-fatal MI and TVR. Therefore, we compared intensive statin therapy and non-intensive statin therapy for these endpoints. The results showed that the incidence of TVR[7,12-14,16,17,19] (RR = 0.43, 95%CI: 0.18-1.02, $P = 0.06$, Figure 4) between the two groups were not statistically significant, while there was a significant difference in the incidence of non-fatal MI[7,10,11,13-15,17,19] (RR = 0.54, 95%CI: 0.33-0.88, $P = 0.01$ Figure 5).

Safety analysis
There were two studies that compared the effects of preoperative intensive statin therapy and non-intensive statin therapy on the incidence of myalgia/myasthenia[10,12] and abnormal ALT[10,18]. No significant difference was observed between the groups (RR = 1.35, 95%CI: 0.30-5.95, $P = 0.69$, Figure 6A; RR = 1.47, 95%CI: 0.54-4.02, $P = 0.45$, Figure 6B, respectively).
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Sample size (intensive/non-intensive statin)</th>
<th>Clinical presentation</th>
<th>Statin medication history</th>
<th>Primary/elective PCI</th>
<th>Statin regimen before PCI</th>
<th>Statin regimen after PCI</th>
<th>Follow-up (d)</th>
<th>Outcome indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu et al [10], 2016</td>
<td>616 (307/309)</td>
<td>Stable angina, ACS</td>
<td>Statin-naive or atorvastatin ≤ 20 mg/d, or equivalent dose statin</td>
<td>Elective PCI</td>
<td>Atorvastatin 80 mg 12 h before PCI vs no statin pretreatment</td>
<td>40 mg/d vs 20 mg/d</td>
<td>30</td>
<td>MACE, non-fatal MI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Myalgia/myasthenia</td>
</tr>
<tr>
<td></td>
<td>182 (93/89)</td>
<td>STEMI</td>
<td>Statin-naive or atorvastatin ≤ 20 mg/d, or equivalent dose statin</td>
<td>Primary PCI</td>
<td>Atorvastatin 80 mg just before primary PCI vs no statin pretreatment</td>
<td>40 mg/d vs 20 mg/d</td>
<td>90</td>
<td>ALT</td>
</tr>
<tr>
<td>Jiao et al [11], 2015</td>
<td>72 (33/39)</td>
<td>NSTE-ACS</td>
<td>Not mentioned</td>
<td>Elective PCI</td>
<td>Rosuvastatin 20 mg 12 h before PCI + 20 mg just before PCI vs no statin pretreatment</td>
<td>10 mg/d</td>
<td>30</td>
<td>MACE, cardiac death, non-fatal MI, TVR</td>
</tr>
<tr>
<td>Jiao et al [12], 2015</td>
<td>126 (62/64)</td>
<td>NSTE-ACS</td>
<td>Not mentioned</td>
<td>Elective PCI</td>
<td>Rosuvastatin 20 mg 12 h before PCI + 20 mg just before PCI vs no statin pretreatment</td>
<td>10 mg/d</td>
<td>30</td>
<td>Myalgia/myasthenia</td>
</tr>
<tr>
<td>Zheng et al [7], 2015</td>
<td>1202 (573/629)</td>
<td>Stable angina, NSTE-ACS</td>
<td>Statin-naive or atorvastatin ≤ 20 mg/d or equivalent dose statin</td>
<td>Elective PCI</td>
<td>Atorvastatin 80 mg at night before PCI for 2 d vs atorvastatin ≤ 20 mg or equivalent dose statin at night before PCI</td>
<td>40 mg/d vs ≤ 20 mg/d or equivalent dose statin</td>
<td>30</td>
<td>MACE, cardiac death, non-fatal MI, TVR</td>
</tr>
<tr>
<td>Xie et al [13], 2014</td>
<td>159 (79/80)</td>
<td>NSTE-ACS</td>
<td>Statin-naive</td>
<td>Elective PCI</td>
<td>Rosuvastatin 20 mg 12 h before PCI + 20 mg 2 h before PCI vs no statin pretreatment</td>
<td>10 mg/d</td>
<td>30</td>
<td>MACE, cardiac death, non-fatal MI, TVR</td>
</tr>
<tr>
<td>Luo et al [14], 2013</td>
<td>67 (31/36)</td>
<td>NSTE-ACS</td>
<td>Statin-naive</td>
<td>Elective PCI</td>
<td>Rosuvastatin 20 mg 12 h before PCI + 20 mg 2 h before PCI vs no statin pretreatment</td>
<td>10 mg/d</td>
<td>30</td>
<td>MACE, cardiac death, non-fatal MI, TVR</td>
</tr>
<tr>
<td>Wang et al [15], 2013</td>
<td>125 (62/63)</td>
<td>NSTE-ACS</td>
<td>Statin-naive</td>
<td>Elective PCI</td>
<td>Rosuvastatin 20 mg 2-4 h before PCI vs placebo 2-4 h before PCI</td>
<td>10 mg/d</td>
<td>30</td>
<td>MACE, cardiac death, non-fatal MI, TVR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al [16], 2013</td>
<td>215 (106/109)</td>
<td>Stable angina</td>
<td>Regular statin for at least 3 mo</td>
<td>Elective PCI</td>
<td>Atorvastatin 80 mg 12 h before PCI vs 20 mg 12 h before PCI</td>
<td>20 mg/d</td>
<td>30</td>
<td>MACE, cardiac death, non-fatal MI, TVR</td>
</tr>
<tr>
<td>Gao et al [17], 2012</td>
<td>117 (59/58)</td>
<td>NSTE-ACS</td>
<td>Statin-naive</td>
<td>Elective PCI</td>
<td>Rosuvastatin 20 mg 12 h before PCI + 10 mg 2 h before PCI vs placebo 12 h before PCI + 2 h before PCI</td>
<td>10 mg/d</td>
<td>90</td>
<td>MACE, cardiac death, non-fatal MI, TVR</td>
</tr>
<tr>
<td>Li et al [18], 2012</td>
<td>161 (78/83)</td>
<td>STEMI</td>
<td>Statin-naive</td>
<td>Primary PCI</td>
<td>Atorvastatin 80 mg 1.5 h before PCI vs placebo 1.5 h before PCI</td>
<td>40 mg/d</td>
<td>30</td>
<td>ALT</td>
</tr>
<tr>
<td>Yu et al [19], 2011</td>
<td>81 (41/40)</td>
<td>NSTE-ACS</td>
<td>Statin-naive</td>
<td>Elective PCI</td>
<td>Atorvastatin 80 mg 12 h before PCI + 40 mg 2 h before PCI vs placebo 12 h before PCI</td>
<td>20 mg/d</td>
<td>30</td>
<td>MACE, cardiac death, non-fatal MI, TVR</td>
</tr>
</tbody>
</table>
Publication bias

The plots were symmetrical on visual inspection, indicating a risk of publication bias (Figure 7). Egger’s regression test also demonstrated risk of publication bias ($P = 0.004$; Figure 8). The small number of studies included in the overall population and subgroup might represent one of the key reasons for publication bias.

DISCUSSION

Some studies have completed investigations of intensive statin therapy before PCI. In 2013, the ALPACS study took the lead in exploring similar work in Asia[6]. This was a prospective, multicenter, randomized, open-label study involving 499 patients with Non-ST segment elevation acute coronary syndrome (26 clinical centers in China and South Korea). None of the enrolled patients had previously received statins. The intensive treatment group received additional atorvastatin loading doses of 80 mg at 12 h and 40 mg at 2 h pre-PCI. The conventional treatment group was only treated with atorvastatin at a dose of 40 mg/d after PCI. The results suggested that the intensive treatment group failed to significantly reduce the occurrence of MACE at 30 d after PCI as compared with the conventional treatment group (15.7% vs 14.7%; $P = 0.80$). The study also demonstrated that the Asian population could tolerate high-intensity atorvastatin during the perioperative period.

Unfortunately, the ALPACS were not included in this meta-analysis because of the mixed data from the Korean population. The ISCAP study that was subsequently published in 2015 was a large-scale, multicenter, randomized, prospective, open-label, blinded, parallel controlled clinical study with Chinese patients[7]. Follow-up results showed no significant differences in the incidence of MACE at 30 d when comparing the intensive statin treatment group and the conventional treatment group (19.4% vs 18.3%; $P = 0.43$). When followed up at 6 mo, there was still no difference between the groups (20.1% vs 18.3%; $P = 0.63$). In terms of safety, no significant differences were found in terms of liver enzymes, creatine kinase levels and other objective indicators.

In addition to multicenter clinical studies, many scholars have attempted to identify further answers with meta-analyses. In 2013, Guo[20] conducted a meta-analysis on the impact of sequential statin therapy on the prognosis of Chinese patients with PCI. Ten studies that included 1015 patients were investigated. The results from that published study suggested a significant reduction in the incidence of MACE within 6 mo. Since some patients in the experimental group only received intensive statin treatment after PCI, the subjects were not entirely consistent with the characteristics discussed in this paper. In 2017, a systematic review and meta-analysis involving 11
Table 2 Baseline clinical, angiographic and procedural characteristics in the overall population

<table>
<thead>
<tr>
<th>Variable</th>
<th>High-intensity statin/population (%)</th>
<th>Moderate-intensity statin/population (%)</th>
<th>Placebo or no statin pretreatment/population (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>1524/3123 (48.8)</td>
<td>738/3123 (23.6)</td>
<td>861/3123 (27.6)</td>
</tr>
<tr>
<td>Male</td>
<td>1052/1524 (69.0)</td>
<td>521/738 (70.6)</td>
<td>566/861 (65.7)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>944/1524 (61.9)</td>
<td>489/738 (66.3)</td>
<td>533/861 (61.9)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>435/1429 (30.7)</td>
<td>232/758 (30.6)</td>
<td>246/778 (31.6)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>193/758 (25.7)</td>
<td>147/649 (22.7)</td>
<td>75/201 (37.3)</td>
</tr>
<tr>
<td>Smokers</td>
<td>537/1524 (35.2)</td>
<td>279/758 (16.8)</td>
<td>280/881 (31.8)</td>
</tr>
<tr>
<td>Previous MI</td>
<td>88/610 (14.4)</td>
<td>0/20 (0)</td>
<td>84/632 (13.3)</td>
</tr>
<tr>
<td>Previous PCI</td>
<td>1524/3123 (48.8)</td>
<td>738/3123 (23.6)</td>
<td>861/3123 (27.6)</td>
</tr>
<tr>
<td>Previous CABG</td>
<td>6500 (1.2)</td>
<td>0/0 (0)</td>
<td>6496 (1.2)</td>
</tr>
<tr>
<td>Stable angina</td>
<td>230/506 (45.5)</td>
<td>109/109 (100)</td>
<td>118/398 (29.6)</td>
</tr>
<tr>
<td>NSTE-ACS</td>
<td>518/767 (67.5)</td>
<td>0/0 (0)</td>
<td>539/778 (69.3)</td>
</tr>
<tr>
<td>STEMI</td>
<td>203/478 (42.5)</td>
<td>0/20 (0)</td>
<td>204/301 (40.7)</td>
</tr>
<tr>
<td>Single vessel</td>
<td>59/172 (34.3)</td>
<td>0/20 (0)</td>
<td>55/200 (27.5)</td>
</tr>
<tr>
<td>Double vessel</td>
<td>66/172 (38.4)</td>
<td>0/20 (0)</td>
<td>71/200 (35.5)</td>
</tr>
<tr>
<td>More than three and triple vessels</td>
<td>47/172 (27.3)</td>
<td>0/20 (0)</td>
<td>54/200 (27.0)</td>
</tr>
<tr>
<td>Target vessel LM</td>
<td>36/877 (4.1)</td>
<td>25/629 (4.0)</td>
<td>7/320 (2.2)</td>
</tr>
<tr>
<td>Target vessel LAD</td>
<td>622/1018 (61.1)</td>
<td>418/649 (64.4)</td>
<td>249/483 (51.6)</td>
</tr>
<tr>
<td>Target vessel LCX</td>
<td>326/1018 (32.2)</td>
<td>199/649 (30.7)</td>
<td>155/483 (32.1)</td>
</tr>
<tr>
<td>Target vessel RCA</td>
<td>346/1018 (34.0)</td>
<td>234/649 (36.1)</td>
<td>164/483 (34.0)</td>
</tr>
<tr>
<td>B2/C lesions</td>
<td>346/609 (56.8)</td>
<td>0/0 (0)</td>
<td>333/615 (54.1)</td>
</tr>
<tr>
<td>Multivessel lesions</td>
<td>47/172 (27.3)</td>
<td>0/20 (0)</td>
<td>54/200 (27.0)</td>
</tr>
<tr>
<td>Multivessel intervention</td>
<td>224/773 (31.6)</td>
<td>215/629 (4.0)</td>
<td>62/201 (30.8)</td>
</tr>
<tr>
<td>Aspirin</td>
<td>1375/1491 (92.2)</td>
<td>622/738 (84.3)</td>
<td>802/822 (97.6)</td>
</tr>
<tr>
<td>Clopidogrel/Ticlopidine</td>
<td>1300/1385 (93.9)</td>
<td>541/629 (86.0)</td>
<td>807/822 (98.2)</td>
</tr>
<tr>
<td>β-blockers</td>
<td>1104/1491 (74.0)</td>
<td>495/738 (67.1)</td>
<td>630/822 (76.6)</td>
</tr>
<tr>
<td>ACEI/ARB</td>
<td>1045/1491 (70.1)</td>
<td>404/738 (54.7)</td>
<td>667/822 (81.1)</td>
</tr>
<tr>
<td>Glycoprotein IIb/IIa inhibitors</td>
<td>89/350 (25.4)</td>
<td>0/20 (0)</td>
<td>101/380 (29.7)</td>
</tr>
<tr>
<td>DES</td>
<td>822/851 (96.6)</td>
<td>701/738 (95.0)</td>
<td>176/179 (98.3)</td>
</tr>
</tbody>
</table>

MI: Myocardial infarction; PCI: Percutaneous coronary intervention; CABG: Coronary artery bypass grafting; NSTE-ACS: Non-ST segment elevation acute coronary syndrome; STEMI: ST segment elevation myocardial infarction; LM: Left main; LAD: Left anterior descending; LCX: Left circumflex; RCA: Right coronary artery; ACEI: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin receptor blockers; DES: Drug-eluting stent.

RCTs with 802 patients was performed by Ye et al.[21]. Compared with preoperative rosuvastatin 10 mg/d therapy, it was found that using a loading dose of 20 mg/d before PCI significantly reduced cardiac troponin T and high sensitivity C-reactive protein levels by 24 h and low-density lipoprotein cholesterol, total cholesterol and triglyceride levels by 30 d after PCI. However, the clinical indicators that were analyzed and evaluated in this article were surrogate indicators, which did not involve cardiovascular endpoint events nor did they examine the safety. In 2018, Cao et al.[22] discussed the effectiveness of high-dose statin therapy before PCI in reducing cardiovascular events in Asian populations. The systematic review included 7 RCTs involving 1381 patients, all of whom were Chinese or Korean. The results indicated that the incidence of MACE and perioperative MI in the intensive statin group were significantly lower than those in the control group. This article did not discuss the benefits of treatment to the Chinese population through subgroup analysis.
Table 3 Assessment of randomized controlled trials

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Randomization sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants, personnel and outcome assessors</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Other sources of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu et al [10], 2016</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Jiao et al [11], 2015</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Jiao et al [12], 2015</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Zheng et al [7], 2015</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Xie et al [13], 2014</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Luo et al [14], 2013</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Wang et al [15], 2013</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Li et al [16], 2013</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Gao et al [17], 2012</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Li et al [18], 2012</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Yu et al [19], 2011</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
</tr>
</tbody>
</table>

Compared with the previously published meta-analysis, this article was improved in the following ways. First, four new studies published after 2014 were included in this paper[7,10-12]. The full paper included 11 RCTs with 3123 patients, which meant that the total number of studies and patients exceeded any previously published meta-analysis. Second, the population studied in this paper were all Chinese; thus, the interference of other Asian populations such as inclusion of the Korean population was removed. Third, new outcome indicators such as TVR were established to make the data more complete.

An important finding of this study is that the benefits of differential treatment were inconsistent. Compared with patients receiving placebo or no statin treatment before surgery, intensive statin treatment was associated with a clear reduction of risk of MACE. This conclusion was consistent with the results of previous studies involving Western populations. However, compared with the patients receiving moderate-intensity statin before surgery, no advantage to intensive statin treatment was seen, which suggested that both regimens promoted a consistent effect on short-term outcomes. In fact, there is a lack of data on the effect of high-intensity and moderate-intensity statins in Western populations.

Racial differences in the pharmacokinetics of statins have also been reported. With a single dose of 20 mg or 40 mg rosuvastatin, the area under the curve and peak blood concentration of Chinese patients were 1.79, 1.89, 2.31 and 2.36 times that of Caucasians, respectively[23,24]. Birmingham also found that relative to Caucasians the mean area under the curve was 86% higher for single oral doses of rosuvastatin 20 mg and 53% higher for atorvastatin 40 mg in Chinese subjects. In addition, the geometric mean maximum drug concentration was proportionally higher for each statin[25]. Differences in race sensitivity to statins might also be related to genetic factors. Common polymorphisms in genes encoding drug transporters such as ABCB1, ABCG2 and SLCO1B1 between Chinese and Caucasian populations might partially account for this phenomenon[26]. However, based on the results of this paper and those of prior studies, we did not find any racial differences in terms of the efficacy and safety of preoperative intensive statin therapy.

Another thing that introduces attention was that the data for the meta-analysis comparing high-intensity statins and moderate-intensity statins virtually all come from one study: ISCAP, which was the largest clinical study to date targeting Chinese
patients. Although negative results were obtained, we also noticed there might be some confounding factors that affected the final conclusions. First, about 60% of enrolled patients had previously taken low-intensity and even moderate-intensity statins, and only 40% were statin-naïve patients. It was unclear whether statin history could have dampened the benefits from the effects of intensive treatment in Chinese patients. Secondly, the timing of drug administration in ISCAP was performed at night before the operation, and it was not exactly fixed. Distinct from the aforementioned...
observations, the timing was found to be 2-4 h or 12 h before elective PCI and was relatively fixed in other trials\[9-12,14-17,19\]. On the one hand, the regimen in ISCAP was more consistent with actual clinical practice. On the other hand, it was uncertain whether the timing of statin administration could affect the benefits of intensive statin therapy. Finally, the characteristics of patients enrolled in ISCAP were a higher proportion of multiple lesions, higher average number of stents, longer average length of stents and a higher incidence of MACE at 30 d following PCI; all indicated that the complexity of a coronary lesion might reduce the effectiveness of high-dose statin treatment.

The guidelines and consensus underwent a process of deeper understanding on whether the patients should receive preoperative intensive statin therapy in the
Study limitations

This current article has the following limitations and deficiencies: (1) The quality of the included studies were generally not high, and the evidence was not sufficiently robust. The included RCTs were single-center studies and lacked rigorous trial design with the exception of ISCAP, which was not described in detail in randomization, blinding and data analysis. We also need to recognize that ISCAP was an open-label trial. Although it had all of the outcome events adjudicated by a blinded Clinical Event

Figure 6 Forest plot. A forest plot of myalgia/myasthenia (A) and abnormal alanine aminotransferase (B) with preoperative intensive and non-intensive statin therapy in acute coronary syndrome patients. M-H: Mantel-Haenszel method; CI: Confidence interval.

Figure 7 Funnel plot of major adverse cardiovascular events with preoperative high-intensity and placebo or no statin therapy in acute coronary syndrome patients.

Chinese population. Based on evidence from Western populations, expert consensus that was released in 2014 recommended that all patients with acute coronary syndrome undergoing PCI, including emergency and elective PCI, should initiate high-dose statin treatment immediately before PCI, such as treatment with atorvastatin 80 mg/d[27]. Furthermore, since ALPACS and ISCAP were published in succession, guidelines issued in 2016 concluded that in the absence of additional evidence of high-quality RCTs with hard endpoints, it was not recommended that acute coronary syndrome patients receive intensive statin therapy before PCI[28,29]. The results of this meta-analysis were consistent with the recommendations of the guidelines and further strengthened the foundations of evidence-based medicine.
Committee group and all laboratory tests were done by blinded laboratory staff, the investigators and subjects were not blinded to the treatment arms of this trial. As such, both might tend to report more adverse events in the experiment arm, and this might subsequently lead to increased withdrawal from the study in this group. This trend could still have some undesirable effects on the results of the study. Hence, more studies with a sufficient level of statistical power are needed to investigate the effects of high-dose statin loading before PCI in the context of Chinese patients; (2) Subgroup analysis was not performed. Limited by the included literature, we did not implement subgroup analysis involving some factors, such as statin medication history (i.e. patients with chronic statin therapy or statin-naïve patients), categories of statin (i.e. atorvastatin or rosuvastatin), timing of statin administration (12 h before surgery or at other times) and the timing of revascularization (emergency PCI or elective PCI). It is also crucial to further explore the limitations by dividing the population into different subgroups as described above; and (3) Due to the lack of RCTs in Western populations, the influence of race could not be analyzed. Therefore, further studies are required to confirm whether or not high-intensity statin preloading before PCI might play a different role in Chinese and Western peoples, not only in terms of the incidence of MACE but also in terms of cholesterol levels and inflammatory markers levels[30].

CONCLUSION

Available evidence suggested that when compared with placebo or no statin pretreatment, Chinese patients receiving intensive statin therapy before PCI have a reduced incidence of MACE. However, there was no significant benefit on using high-intensity and moderate-intensity statin therapy. In addition, no significant difference was observed between intensive statin therapy and non-intensive statin therapy on the incidence of TVR, myalgia/myasthenia and abnormal ALT except non-fatal MI. To summarize, our findings indicated that it may be reasonable for Chinese patients to receive at least moderate-intensity statin pretreatment before commencing PCI.

ARTICLE HIGHLIGHTS

Research background

At present, the burden of cardiovascular and cerebrovascular disease is very heavy in China. Despite the rapid development of percutaneous coronary intervention (PCI), the overall mortality rate of coronary heart disease and acute myocardial infarction in China is still on the rise. This suggests that there is room for optimizing perioperative therapy.
Yang X et al. Intensive statin before PCI in Chinese

Research motivation
In China, patients with acute coronary syndrome regularly received intensive statin (such as atorvastatin 40 mg/d or rosuvastatin 20 mg/d) after PCI. Because of the very limited data, the guidelines do not give a positive recommendation for preoperative intensity statin therapy, which was inconsistent with Western people. As members of the medical team in a Coronary Care Unit, we are eager to know if intensive statin before PCI can benefit Chinese patients.

Research objectives
To evaluate the efficacy and safety of intensive statin therapy as compared to non-intensive statin pretreatment before PCI in the Chinese population through a meta-analysis investigation.

Research methods
Relevant studies were identified by searching the electronic databases of PubMed, Embase and Cochrane’s Library to December 2019. The outcomes included an assessment of major adverse cardiovascular events, non-fatal myocardial infarction, cardiac death, target vessel revascularization, myalgia/myasthenia and abnormal alanine aminotransferase in all enrolled patients. Random effect model and fixed effect model were applied to combine the data, which were further analyzed by \(\chi^2 \) test and \(I^2 \) test.

Research results
Compared with patients receiving placebo or no statin treatment before surgery, intensive statin treatment was associated with a clear reduction of risk of major adverse cardiovascular events [risk ratio (RR) = 0.44, 95% confidence interval (CI): 0.31-0.61, \(P < 0.00001 \)]. However, compared with the patients receiving moderate-intensity statin before surgery, no advantage to intensive statin treatment was seen (RR = 1.04, 95%CI: 0.82-1.31, \(P = 0.74 \)). In addition, no significant difference was observed between intensive statin therapy and non-intensive statin therapy on the incidence of target vessel revascularization (RR = 0.43, 95%CI: 0.18-1.02, \(P = 0.06 \)), myalgia/myasthenia (RR = 1.35, 95%CI: 0.30-5.95, \(P = 0.69 \)) and abnormal alanine aminotransferase (RR = 1.47, 95%CI: 0.54-4.02, \(P = 0.45 \)) except non-fatal myocardial infarction (RR = 0.54, 95%CI: 0.33-0.88, \(P = 0.01 \)).

Research conclusions
Our finding was significant that when compared with placebo or no statin pretreatment, intensive statin before PCI displayed reduced incidence of major adverse cardiovascular events. However, there was no significant benefit between high and moderate-intensity statin.

Research perspectives
It is likely to promote at least the use of moderate-intensity statin before PCI instead of no statin pretreatment in Chinese patients.

REFERENCES

Giant nodular fasciitis originating from the humeral periosteum: A case report

Shi-Li Yu, Ping-Li Sun, Jian Li, Meng Jia, Hong-Wen Gao

ORCID number: Shi-Li Yu 0000-0002-8741-6097; Ping-Li Sun 0000-0002-7511-3080; Jian Li 0000-0001-9510-4205; Meng Jia 0000-0001-9440-5110; Hong-Wen Gao 0000-0002-8974-4975.

Author contributions: Sun PL designed the review; Yu SL collected the data and prepared the draft; Li J and Jia M participated in data interpretation; Sun PL and Gao HW provided research fund; all authors read and approved the final manuscript.

Informed consent statement: Informed written consent was obtained from the patient for publication of this case report.

Conflict-of-interest statement: The authors declare that they have no competing interests to disclose.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by Jilin Province Department of Finance Project, No. 2019SCZT005, No. 2019SJC007 and No. 2020SCZT007; National Natural Science Foundation of China, No. 81902342; and Health Commission of Jilin Province, No. 2019Q002.

Abstract

BACKGROUND
Nodular fasciitis (NF) is a self-limiting tumor that mostly occurs in the subcutaneous superficial fascia. NF originating from the appendicular periosteum is extremely rare. A large NF lesion of periosteal origin can be misdiagnosed as a malignant bone tumor and may cause overtreatment.

CASE SUMMARY
A right axillary mass was found in a 46-year-old man and was initially diagnosed intraoperatively as low-grade sarcoma, but later diagnosed as NF after post-resection histopathological evaluation. Furthermore, fluorescence in situ hybridization analysis revealed a USP6 gene rearrangement that confirmed the diagnosis. To the best of our knowledge, this is the first case of NF in the humeral periosteum.

CONCLUSION
NF poses a diagnostic challenge as it is often mistaken for sarcoma. Postoperative histopathological examination of whole sections can be combined with immunohistochemical staining and, if necessary, the diagnosis can be confirmed by molecular detection, and thus help avoid overtreatment.

Key Words: Nodular fasciitis; Periosteum; Differential diagnosis; USP6; Fluorescence in situ hybridization; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Yu SL et al. Giant NF originating from humeral periosteum

INTRODUCTION

Nodular fasciitis (NF) was first described as a pseudosarcomatous fasciitis by Konwaler et al[1] in 1955. Similar to other soft-tissue sarcomas, NF is a rapidly growing, benign proliferation of fibroblasts and myofibroblasts displaying abundant, spindle-shaped cells and high mitotic activity. NF presents most typically in the upper extremities (46%), trunk (20%), and head and neck (18%)[2]. The peak incidences of NF are seen at ages 20 and 40, often presenting with tenderness, and it is a rare disease in children[3]. Most NF lesions are small, measuring less than 2 cm in diameter[2,4]. Periosteal fasciitis is considered a rare subtype of NF, with some case reports in the published literature and most of those were published over 20 years ago; only one case of periosteal fasciitis has been published recently, in 2017. The frequently reported sites of periosteal fasciitis are the maxilla and the hand; however, there are no reports of periosteal fasciitis in the limbs, and all reported cases described tumors that were smaller than 5 cm.

As NF has a nonspecific immunohistochemical profile[4], its histomorphological characteristics are the primary diagnostic criteria. Therefore, it remains a challenge to distinguish NF from other spindle cell lesions, particularly those of the myofibroblastic lineage.

In 2011, Erickson-Johnson et al[5] reported the rearrangement of the USP6 gene on chromosome 17p13 as a recurrent and specific finding in NF. Subsequently in 2013, Amary et al[6] found USP6 gene rearrangements in 91% of the 34 NF cases in their study, thereby making USP6 fluorescence in situ hybridization (FISH) analysis a reliable and useful ancillary diagnostic test for NF.

This report presents findings from the first case of large-sized NF originating from the humeral periosteum. We emphasize the importance of highlighting this rare clinical entity, which usually represents a diagnostic dilemma.

CASE PRESENTATION

Chief complaints
Intermittent pain in the right axilla for 1 mo.

History of present illness
The patient had intermittent right axillary pain with no obvious cause of for 1 mo. And he found a lump under his axilla. Magnetic resonance imaging (MRI) showed a lesion measuring 62 mm × 58 mm × 44 mm, with relatively well-demarcated margins, and the lesion encircled the humerus, with localized thinning of the humeral cortex, and was closely related to the radial artery. The clinician recommended surgical treatment.

History of past illness
There was no history of past illness.

Personal and family history
There was no personal and family history.

Physical examination
A tough mass was locally palpable on the medial side of the upper right arm and was approximately 7 cm in size.
Figure 1 Imaging and gross examination. A: Magnetic resonance imaging showed patchy low signal in the medial humerus (T1WI); B: Magnetic resonance imaging showed a high signal intensity on the humerus, with local thinning of the humeral cortex (T2WI); C: The root of the mass extended laterally below the biceps brachii and was closely related to the humerus; D: The mass was nodular, with a diameter of 7.5 cm, a relatively clear boundary, and a reddish gray appearance on cross section.

Laboratory examinations
No abnormalities were found in routine laboratory tests.

Imaging examinations
An MRI scan showed a high signal intensity in the agglomerated pressure-fat phase near the right axillary region. The MRI images showed a lesion measuring 62 mm × 58 mm × 44 mm, with relatively well-demarcated margins. The lesion encircled the humerus, with localized thinning of the humeral cortex, and was closely related to the radial artery.

FINAL DIAGNOSIS
NF.

TREATMENT
Surgical tumor resection.

Diagnostic work-up
The differential diagnosis of sarcoma was made, and the patient underwent surgical tumor resection. Intraoperatively, we identified a mass with an approximate diameter of 7 cm that was closely related to the humerus, with a relatively clear boundary that separated it from the surrounding tissue. The tumor was completely separated from the periosteum. The surgical specimen was intraoperatively subjected to rapid histopathological examination. Gross examination revealed a gray nodule measuring 7.5 cm × 4 cm × 4 cm that had a reddish gray surface appearance on cross section and relatively tough texture (Figure 1). Microscopically, the lesion mainly comprised spindle-shaped fibroblast-like cells, with mucinous degeneration, mild atypia of some cells, and 3-4 mitotic figures per 10 high power fields. The intraoperative provisional
pathological diagnosis was a mesenchymal neoplasm; the final diagnosis would be definitively based on the postoperative pathology. The postoperative histopathology of the lesions revealed spindle-shaped tumor cells with abundant extracellular mucoid matrix (Figure 2B and F); similarly, on examination of the frozen sections, some areas showed fibrous hyperplasia and hyaline degeneration (Figure 1A), whereas other areas had extravasation of red blood cells (Figure 2D). Tumor cells in areas with relatively high cellularity showed mild atypia (Figure 2C and D) and mitotic figures (Figure 2C). Immunohistochemistry showed that the specimen stained negative for CD34, S100, and β-catenin and positive for CD10 and SMA (Figure 3). FISH analysis revealed a USP6 gene fracture rearrangement (Figure 4) with signal patterns as follows: 1G1R1F 16.5%, 1G1R 8.5%, 2F 35.5%, 1F 25.0%, 1G1F 7.0%, and 1R1F 7.5%.

OUTCOME AND FOLLOW-UP

The patient had an uneventful recovery after surgery and no further treatment was given. There was no recurrence during the 20-mo follow-up period.
DISCUSSION

The published literature describes NF as a benign myofibroblastic proliferation, which was initially reported in 1955 as a pseudosarcomatous fibromatosis or fasciitis. The NF lesion typically develops in the subcutaneous superficial fascia of the upper limbs (46%), especially over the volar aspect of the forearm, followed by the head and neck (20%), trunk (18%), and lower extremities (16%). There are no gender differences in NF incidence, and all reported lesions measure less than 5 cm in diameter.

Periosteal fasciitis, a subtype of NF, is characterized by periosteal overgrowth and reactive new bone formation. There are only a few case reports (10 cases) of periosteal fasciitis in the literature, most of which were reported in the 1970s and 1980s, although one case was recently reported in 2017. Among those ten cases (four males; six females), four occurred in the jaw (one in the maxilla, three in the mandible) and six in the hand. The largest reported tumor diameter was approximately 5 cm. Most of the cases were diagnosed by histomorphological features, and FISH was undertaken in only one case in the recent literature and showed USP6 gene-related heterotopia. All patients were followed, and there are no reports of recurrence (Table 1). In our case, NF was initially diagnosed by histomorphology and immunohistochemistry; however, because of the unusually large tumor and its periosteal origin, we undertook a USP6 FISH examination. The results showed USP6-related ectopia, which further confirmed a diagnosis of NF. The patient has shown no recurrence on follow-up for 10 mo. This report presents a rare case of clinical NF of the humeral periosteum with a tumor diameter of 7.5 cm.

Due to its fast and infiltrative growth pattern, NF remains one of the most commonly misdiagnosed benign spindle cell neoplasms. A common differential diagnosis of NF is low-grade malignant myofibroblastic tumors because, despite their large size, the tumor cells are characterized by mild atypia; positive staining for actin, desmin, calponin, and CD34 (focal), and negative staining for S100 and nuclear β-
Table 1 Published studies reporting periosteal fasciitis

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Number of cases</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Symptom presence and duration</th>
<th>Location</th>
<th>Treatment</th>
<th>Size (cm)</th>
<th>USP6 gene</th>
<th>Follow-up (mo)</th>
<th>Recurrence</th>
<th>Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lääveri et al [11], 2017</td>
<td>1</td>
<td>Female</td>
<td>7</td>
<td>No</td>
<td>Mandible</td>
<td>Local resection</td>
<td>3</td>
<td>Yes</td>
<td>36</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rankin et al [12], 1991</td>
<td>1</td>
<td>Female</td>
<td>39</td>
<td>No</td>
<td>Hand</td>
<td>Local resection</td>
<td>5</td>
<td>NA</td>
<td>10</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mostofi et al [13], 1987</td>
<td>1</td>
<td>Male</td>
<td>46</td>
<td>No</td>
<td>Mandible</td>
<td>Local resection</td>
<td>3</td>
<td>NA</td>
<td>30</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sato et al [14], 1981</td>
<td>1</td>
<td>Male</td>
<td>31</td>
<td>Pain for 2 mo</td>
<td>Maxillary</td>
<td>Local resection</td>
<td>4</td>
<td>NA</td>
<td>8</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>McCarthy et al [15], 1976</td>
<td>1</td>
<td>Male</td>
<td>40</td>
<td>No</td>
<td>Ring finger</td>
<td>Amputation</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Johnson and Lawrence [16], 1975</td>
<td>1</td>
<td>Male</td>
<td>38</td>
<td>Pain and swelling for 3 mo</td>
<td>Metacarpal and ring finger</td>
<td>Local resection</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Goncalves [17], 1974</td>
<td>1</td>
<td>Female</td>
<td>23</td>
<td>Pain and swelling for 2 wk</td>
<td>Index finger</td>
<td>Amputation</td>
<td>NA</td>
<td>NA</td>
<td>60</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lumerman et al [18], 1972</td>
<td>1</td>
<td>Female</td>
<td>31</td>
<td>Pain for 3 d</td>
<td>Mandible</td>
<td>Local resection</td>
<td>2</td>
<td>NA</td>
<td>30</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Carpenter and Lublin [19], 1967</td>
<td>1</td>
<td>Female</td>
<td>32</td>
<td>Pain and swelling for 7 mo</td>
<td>Proximal and middle phalanges, ring finger</td>
<td>Amputation</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mallory [20], 1933</td>
<td>1</td>
<td>Female</td>
<td>28</td>
<td>Pain, swelling for 4 wk</td>
<td>4th and 5th metacarpals</td>
<td>Incomplete local resection</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

NA: Not available.

Figure 4 Fluorescence in situ hybridization analysis showing a USP6 rearrangement as separated red and green signals.

catenin[7-9]. However, FISH shows no USP6 gene-related ectopia, and myofibroblastic tumors have a high recurrence after surgical resection.

Sometimes, it may be difficult to distinguish low-grade myxofibrosarcoma from NF, especially in cases with small tumor volume and without specific immunohistochemical markers. Nonetheless, curvilinear thin-walled blood vessels and pseudolipoblasts suggest the possibility of a myxofibrosarcoma, and FISH examination shows no USP6 gene-related ectopia.

Low-grade malignant fibromyxoid sarcoma is another differential diagnosis of NF. The identification can be comprehensively evaluated by immunohistochemical staining and molecular detection. Immunohistochemistry shows EMA positivity from focally to 80%, and MUC4 positivity has high sensitivity and specificity for the detection of fibromyxoid sarcoma[10]. Molecular genetics show FUS-CREB3L2 or FUS-CREB3L1 gene fusion (Table 2).
Immunohistochemical staining has no specific significance in the identification of NF; however, it can be used as an auxiliary and differential diagnostic tool because spindle cells in NF often diffusely express SMA, and are negative for desmin. Recent studies have shown that USP6 in situ hybridization has higher specificity and sensitivity in the diagnosis of NF[6], particularly in cases with uncharacteristic morphology.

Furthermore, NF can be accurately diagnosed by combining tumor morphological characteristics, immunohistochemical findings, and USP6 detection, thereby avoiding misdiagnosis and overtreatment of patients.

CONCLUSION

NF poses a diagnostic challenge as it is often mistaken for a sarcoma, or easily misdiagnosed as a sarcomatous lesion such as malignant fibrous histiocytoma or fibrosarcoma, because of its rapid growth, rich cellularity, and poorly circumscribed nature. NF is a tumor with rapid growth and relatively clear boundary, but it is sometimes difficult to distinguish from low-grade sarcoma under the microscope. When the tumor location is atypical and volume is large, the possibility of the disease should also be considered, especially during the operation, which can avoid excessive treatment. Postoperative histopathological examination of whole sections can be combined with immunohistochemical staining and, if necessary, the diagnosis can be confirmed by molecular detection.

REFERENCES

17 **Goncalves D**. Fast growing non-malignant tumour of a finger. *Hand* 1974; **6**: 95-97 [PMID: 4523580 DOI: 10.1016/0072-968x(74)90019-9]

Tumor-related cytokine release syndrome in a treatment-naïve patient with lung adenocarcinoma: A case report

Peng-Bo Deng, Juan Jiang, Cheng-Ping Hu, Li-Ming Cao, Min Li

Abstract

BACKGROUND
Cytokine release syndrome (CRS) is defined as systemic inflammation that usually occurs following chimeric antigen receptor T-cell therapy administration; however, it has not been reported in patients with untreated non-small cell lung cancer to date.

CASE SUMMARY
A 44-year-old nonsmoking woman presented to the hospital due to fever, palpitation, nausea, and cough for 1 mo and was diagnosed with stage cT3N3M0 (IIIc) adenocarcinoma of the lung. Auxiliary examinations revealed elevated cytokine [tumor necrosis factor-α, interleukin (IL)-1β, and IL-6] and inflammatory factor levels, which decreased after treatment with corticosteroids and immunoglobulin and when tumor growth was controlled following chemotherapy, radiotherapy, and antiangiogenesis therapy. However, tumor recurrence was observed. After administration of nivolumab as third-line treatment, the patient’s

Informed consent statement: Informed written consent was obtained from the patient and her family for publication of this report and any accompanying images.

Conflict-of-interest statement: All authors declare no conflicts of interests.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by: National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases (Lung Cancer); National Key R&D Program of China, No.
INTRODUCTION

Cytokine release syndrome (CRS) is defined as systemic inflammation that usually occurs after the initiation of chimeric antigen receptor (CAR) T-cell therapy[1]. Several case reports have shown that patients treated with immune checkpoint inhibitors (ICIs) such as pembrolizumab[2] and nivolumab[3] anti-programmed cell death-1 (antibody) can develop CRS. To our knowledge, CRS has not been previously reported in treatment-naïve patients with lung cancer. Based on the results of our follow-up on patients with non-small cell lung cancer, the present patient’s primary CRS was attributed to lung cancer, which usually recurs due to the development of tumors and an increase in tumor burden. Moreover, the patient developed CRS after being administered nivolumab, which led to rapid death (Table 1). This finding suggests that tumor-related CRS may be associated with ICI-related adverse events (irAEs) and poor prognosis among patients treated with nivolumab.

CASE PRESENTATION

Chief complaints

A 44-year-old nonsmoking woman visited our hospital (Xiangya Hospital, Central South University, Changsha, Hunan Province, China) in October 2017 due to fever (maximum, 41 °C), palpitation, nausea, and cough for 1 mo.

History of present illness

The patient had fever (maximum, 41 °C), palpitation, nausea, and cough for 1 mo.

History of past illness

No special history of past illness.
Table 1 Timeline

<table>
<thead>
<tr>
<th>Time</th>
<th>Syndrome or treatment</th>
<th>Oncologic response</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2017</td>
<td>Fever (maximum 41 °C), palpitation, nausea and cough for 1 mo</td>
<td></td>
</tr>
<tr>
<td>October 2017</td>
<td>Diagnosed as medium differentiated adenocarcinoma lung cancer with EGFR and ALK gene mutations negative by CT-guided puncture biopsy</td>
<td></td>
</tr>
<tr>
<td>November 2017</td>
<td>Considered have primary CRS with related to lung cancer, and treated with DXM, gamma globulin and other supporting treatments. The patient stopped fever soon</td>
<td></td>
</tr>
<tr>
<td>December 2017 to February 2018</td>
<td>Four cycles of chemotherapy with pemetrexed + cisplatin</td>
<td>PR</td>
</tr>
<tr>
<td>June 11, 2018</td>
<td>Recurrent fever for 10 d with CT showed tumor progressed again</td>
<td>PD</td>
</tr>
<tr>
<td>July 2018 to August 2018</td>
<td>Radiotherapy then stated to take</td>
<td>PR</td>
</tr>
<tr>
<td>August 2018</td>
<td>Anlotinib</td>
<td>PR</td>
</tr>
<tr>
<td>May 2019</td>
<td>Nivolumab for 5 cycles</td>
<td>PR</td>
</tr>
<tr>
<td>April 2019</td>
<td>Died</td>
<td>PD</td>
</tr>
</tbody>
</table>

EGFR: Epidermal growth factor receptor; ALK: Anaplastic lymphoma kinase; CT: Computed tomography; CRS: Cytokine release syndrome; DXM: Dexamethasone; PR: Partial remission; PD: Progressive disease.

Personal and family history
No special personal or family history was reported.

Physical examination
The patient had palpable right-sided supraclavicular lymph nodes, low breath sounds on the right lung, and the absence of rales.

Laboratory examinations
The patient was diagnosed with partially differentiated adenocarcinoma of the lung with negative epidermal growth factor receptor and anaplastic lymphoma kinase gene mutations based on the results of computed tomography (CT)-guided puncture biopsy. The patient exhibited characteristics similar to those of CRS based on her clinical manifestations (high fever, tachycardia, nausea, appetite loss, and malaise) and laboratory examination results (elevated cytokines [tumor necrosis factor α (TNFα) and interleukin (IL)-1β], IL-6, and IL-10 levels (Figure 1), organ dysfunction (liver), and elevated ferritin levels)[4]. We excluded other conditions that may have caused similar symptoms, such as tumor lysis syndrome (no hyperkalemia, uric acidemia, etc.), infection, and hemophagocytic syndrome (absence of hematopoietic cells on bone marrow biopsy).

Imaging examinations
CT on October 9, 2017 revealed a thick-walled cavity in the upper right lobe (Figure 2A). Tumor stage was cT3N3M0 (IIic).

FINAL DIAGNOSIS
Lung adenocarcinoma (stage T3N3M) and CRS.

TREATMENT
We speculated that the patient may have primary CRS related to lung cancer and administered a 10 mg intravenous infusion of dexamethasone qd for 7 d, 20 g intravenous infusion of gamma globulin for 3 d, and other supportive treatments. The patient’s fever eventually subsided, her general condition improved, the levels of inflammatory factors and cytokines decreased (Figure 1), and the Eastern Cooperative
Figure 1 Curve showing the changes in the levels of cytokines and inflammatory factors. Curve showing the changes in the levels of cytokines and inflammatory factors. **TNF-α**: Tumor necrosis factor α; IL-1β: Interleukin-1β; IL-6: Interleukin-6; IL-10: Interleukin-10; PCT: Procalcitonin; CRP: C-reactive protein; WBC: White blood cell; N: Neutrophil; L: Lymphocyte; E: Eosinophil; M: Monocyte.

Figure 2 Computed tomography of the lung. A: First computed tomography (CT) scan showing thickening of the upper right lobe cavity (October 9, 2017); B: Figure showing reduction of the tumor and enlarged cavity after 4 cycles of chemotherapy (pemetrexed + cisplatin); C: Increase in tumor size 4 mo after the last chemotherapy session (June 11, 2018); D: After the patient had received radiotherapy, CT showed that the tumor began to shrink, (August 2, 2018) the tumor had reduced in size, and anlotinib was initiated (orally, 12 mg once daily from days 1 to 14 of a 21-d cycle); E: On May 1, 2019, the tumor started to enlarge but cavity enlargement was resolved; hence, nivolumab treatment was started (5 times, from May 6, 2019 to August 19, 2019); F: In August 12, 2019, the upper right lung mass was significantly smaller than that observed before the cavity enlarged.

Oncology Group (ECOG) score improved. Four cycles of chemotherapy with pemetrexed and cisplatin were initiated. The patient achieved partial remission (PR) at 1-mo follow-up according to the Response Evaluation Criteria in Solid Tumors, version 1.1 (Figure 2B). The patient had an ECOG score of 1, and her routine blood tests and cytokine and inflammatory factor levels had returned to normal (October 1, 2017) (Figure 1).
On June 11, 2018, she experienced recurrent fever for 10 d, and CT showed tumor progression (Figure 2C). The levels of cytokine and inflammatory factors began to increase (Figure 1), and we excluded the possibility of infectious fever and considered recurrent CRS. As the patient had stage IIIC adenocarcinoma, she was treated with radiotherapy from July 2018 to August 2018, and anlotinib therapy was initiated. The patient did not develop fever during this period. In October 2018, follow-up CT was performed, which revealed that the tumor had shrunk (Figure 2D); however, the size of the tumor started to increase in May 2019 (Figure 2E). Hence, five cycles of nivolumab treatment was administered. CT was performed in August 2019 and showed that the patient had achieved PR (Figure 2F).

OUTCOME AND FOLLOW-UP

Seventeen days after receiving the last dose of nivolumab, the patient was sent to the emergency department due to exacerbation of sudden dyspnea, high fever, respiratory failure, and sudden cardiac arrest. The patient eventually died on September 8, 2019, with laboratory tests showing elevated cytokine and inflammatory factor levels (Figure 1).

DISCUSSION

The exact mechanism of CRS has not been fully elucidated. Cytokines are released when the tumor interacts with immune effector cells, and they can originate not only from the CAR T cells but also from host immune cells, such as macrophages[5]. Previous studies have shown that lung cancer cells can directly release inflammatory cytokines, including IL-1, IL-6, TNFα, and interferon (IFN)[6]. Tumor necrosis can also release a large number of cytokines, such as TNF[7]. The patient had obvious necrotic cavities in her lungs which may have been the cause of cytokine release.

This clinical experience demonstrates that corticosteroids are an effective treatment for CRS, and steroids can be rapidly tapered within several days without CRS recurring. Another drug, tocilizumab, is a humanized immunoglobulin G1+ (IgG1+) anti-human IL-6R monoclonal antibody which can usually resolve fever and hypotension within a few hours in patients with CRS and may induce a response more quickly than corticosteroids[8]. In the present case, corticosteroids and immunoglobulin were administered, and a significant therapeutic effect was achieved. With subsequent chemotherapy and other treatments to control lung cancer, CRS also improved, suggesting that antitumor therapy is also an important treatment for tumor-related CRS. Moreover, targeted immunosuppressive agents are also available to inhibit TNFα and IL-1, both of which may contribute to CRS, such as anti-TNFα monoclonal antibodies (infliximab), soluble TNFα receptor (etanercept), and IL-1R-based inhibitors (anakinra).

This patient was administered nivolumab as third-line treatment and experienced exacerbation of CRS-like symptoms and eventually passed away after showing an oncologic response following nivolumab administration. ICI-related CRS can develop 2 d to 4 mo after treatment, and before or after achieving a significant antitumor response to ICI therapy[2,3]; this type of CRS is related to tumor lysis through the induction of pyroptosis in target cells[9]. Based on the patient’s symptoms and results of auxiliary examinations combined with her previous CRS, her disease progression may have been related to nivolumab treatment. A series of recent studies suggest inflammatory cytokines are potential biomarkers for irAEs, and one study found that patients treated with nivolumab who had a high level of soluble IL-2 measured at the initial tumor evaluation had a significantly increased risk of developing grade 3-4 nivolumab-related irAEs[10]. The above phenomena suggest that the use of ICIs in patients with tumor-associated CRS may induce the onset or aggravation of CRS or serious irAEs, which may be life-threatening.

CONCLUSION

We believe that CRS can occur in treatment-naive patients with lung cancer. Corticosteroids, immunoglobulins, and subsequent antitumor treatments have played important roles in the control of tumor-related CRS. Patients with tumor-related CRS
may be at risk of CRS recurrence, aggravation, and onset of irAEs when treated with ICIs; therefore, it is necessary to carefully evaluate whether the patient has CRS prior to initiating ICI treatment.

REFERENCES

Submucosal protuberance caused by a fish bone in the absence of preoperative positive signs: A case report

Wei-Wei Du, Tao Huang, Guo-Dong Yang, Jing Zhang, Jing Chen, Ying-Bang Wang

Abstract

BACKGROUND
Submucosal protuberance caused by fish bone insertion into the digestive tract has rarely been reported. These cases usually include patients with clear signs such as a history of fish intake, pain, and dysphagia, as well as positive findings on endoscopy and imaging. Here, we report a case of a fish bone hidden in the submucosal protuberance of the gastric antrum during endoscopic submucosal dissection without preoperative obvious positive signs.

CASE SUMMARY
A 58-year-old woman presented with epigastric pain for the past 20 d and a submucosal protuberance. Abdominal computed tomography and endoscopic ultrasonography did not indicate the presence of a fish bone. We assumed the cause to be an ordinary submucosal eminence and performed an endoscopic submucosal dissection to confirm its essence. During the operation, a fish bone approximately 20 mm in length was found incidentally.

CONCLUSION
Our report could potentially prevent the oversight of embedded fish bones and associated adverse effects in patients with similar presentation.

Key Words: Gastric submucosal protuberance; Endoscopic mucosal dissection; Computed tomography; Endoscopic ultrasonography; Case report
Ingested fish bones appear as high-density shadows and hyperechoic structures on computed tomography and endoscopic ultrasonography scans. Patients typically present with symptoms or positive findings on ancillary examinations. Herein, we present a case of a fish bone hidden in the submucosal protuberance of the gastric antrum without the usual positive signs. In this rare case, we identified the reasons for the fish bone being overlooked in the diagnosis process. This report could potentially prevent the future oversight of embedded fish bones and associated adverse effects.

Case Presentation

Chief complaints
A 56-year-old woman presented with epigastric pain without heartburn, acid reflux, or abdominal distension and in a good overall condition. Her diet, faeces, and urine were normal, and she had no recent changes in body weight.

History of present illness
The patient experienced epigastric pain for the past 20 d.

History of past illness
The patient had a history of cervical spondylosis and had undergone bilateral pterygium surgery in the past. There was no history of drinking or smoking.

Personal and family history
No special personal or family history.

Physical examination
The patient’s vital signs were stable and physical examination was unremarkable.

Laboratory examinations
Preoperative blood tests, such as routine blood examination, liver function, and serum
tumour markers of the digestive system, showed no abnormalities.

Imaging examinations

Gastroscopy revealed a submucosal protuberance of the gastric antrum approximately 15 mm in diameter that had a smooth surface, scattered congestion, and an opening at the top (Figure 1A). EUS revealed a submucosal protuberance of approximately 1.19 cm × 0.89 cm (Figure 1B) on the posterior wall of the gastric antrum. The protuberance was round, similar to mixed echogenic masses, predominately hypoechoic with unclear boundaries, and originating from the submucosa. We considered the possibility of a heterotopic pancreas. An abdominal CT scan showed no obvious abnormal thickening or enhancement shadow of the gastric antrum (Figure 1C). Surgical contraindications were absent, and endoscopic submucosal dissection was performed with informed consent from the patient and her family. The lesion was located on the posterior wall of the gastric antrum. After marking and submucosal injection of methylene blue, glycerine fructose, adrenaline, and sodium hyaluronate, the lesion was cut with a dual knife (KD-650L; Olympus, Tokyo, Japan) and peeled off layer by layer. The recovered tissue was biopsied. While inspecting the wound, a strip of white foreign body was found under the wound that could not be pulled out using forceps (Figure 2A).

FINAL DIAGNOSIS

The final diagnosis of the present case was a fish bone submucosal protuberance of the gastric antrum.

TREATMENT

The fish bone, approximately 20 mm in length, was removed using a dual knife (Figure 2B), and the wound was clamped with a haemostatic clamp. No perforation or bleeding was observed, and the operation was concluded. Postoperatively, a gastric tube was placed for continuous gastrointestinal decompression. The patient underwent primary nursing, fasting, acid suppression (Esomeprazole Sodium 40mg ivgtt bid), haemostasis (Aminocaproic Acid and Sodium Chloride Injection 100 mL ivgtt qd), infection prevention (Cefuroxime Sodium 0.75 g ivgtt temporary twice), and fluid replacement. There were no changes in intervention and without other concurrent interventions.

OUTCOME AND FOLLOW-UP

Pathology results revealed hyperplastic polyps of the antral mucosa with irregular, dilated, hyperaemia of the vascular lumen in the lamina propria. Unexpected discovery of the fish bone prompted us to question the patient again for a more detailed history. The patient recollected having recurrent epigastric pain as early as 6 years after eating fish with no effective diagnosis or examination. We proceeded by inviting senior radiologists to review the patient’s imaging studies. Upon careful review, the radiologists noticed a dot-like high-density shadow, which indicated a fish bone approximately 2.0 cm long on CT reconstruction (Figure 3). Finally, the patient improved and discharged.

DISCUSSION

The present case helps to highlight the importance of careful surgical wound inspection. In our case, the patient denied any recent ingestion of fish and diagnostic exams including endoscopy, CT, and EUS also showed no evidence of fish bones. A surgeon is most likely to think of a common submucosal protuberance as the likely aetiology given the present clinical scenario. Left unnoticed, the fish bone may form an inflammatory hyperplastic protuberance and cause recurring abdominal pain in the patient again. In more severe cases, delayed perforation, mediastinal abscess, or even severe fatal peritonitis can occur.[9,10] Therefore, careful inspection of the surgical
Du WW et al. Accidental discovery of ingested fish bone

Figure 1 Preoperative imaging examinations. A: Gastroscopy revealing a submucosal protuberance of the gastric antrum; B: Endoscopic ultrasonography indicating a round mixed echogenic mass with a size of approximately 1.19 cm × 0.89 cm; C: Abdominal computed tomography scan showing no obvious abnormal thickening or enhancement shadow of the gastric antrum.

Figure 2 Surgical images. A: During the endoscopic submucosal dissection, a white strip of a foreign body was found under the wound; B: A fish bone approximately 20 mm in length was removed using a dual knife.

wound is a critical step in uncovering possible embedded fish bones or other FBs in the mucosa.

Gastric submucosal protuberances are often asymptomatic and are found accidently by gastroscopy due to other diseases. Acute abdominal pain, fever, or acute submucosal changes on gastroscopy, especially purulent changes, are signs that often alert clinicians to the possibility of FB ingestion. In our case, the patient presented with chronic abdominal pain, and the lesion seen on endoscopy had a smooth mucosa similar to the submucosal uplift caused by a stromal tumour, heterotopic pancreas, or leiomyoma. In view of these findings, the possibility of FB ingestion would rarely be considered. Few reported cases of digestive tract protuberances were caused by fishbone, and most were accompanied by abdominal pain[1,11]. Therefore, patients with chronic abdominal pain and submucosal protuberance must also be questioned regarding any intake of fish or FBs. Such questioning takes an extremely short time. When a patient’s history is indicative of fishbone intake, surgeons need to be careful in peeling off the submucosal protuberance to avoid cutting the fishbone too short and thus requiring additional surgery, which will eventually bring burden and risk to the patients.
When hard FBs such as fish bones, jujube shells, or chicken bones enter the gastric cavity accidentally or are pushed into the open gastric space during endoscopy, they may be discharged from the body spontaneously through the peristaltic movements of the digestive tract[12]. In cases where the FB is sharp in nature, embedding into the gut can occur, which may lead to serious complications and unavoidable surgery. Thus, timely removal of the FB is perhaps more conducive to long-term patient prognosis.

There may be several reasons why the patient in our case did not show any obvious signs of fish bone ingestion upon ancillary examination. First, ingested fish bones are usually very small, and the superficial changes can easily be mistaken as calcifications and surgical suture[13], or ignored altogether due to the influence of gastric content. Second, if the fish bone was from a cartilaginous species of fish, it would have low density on CT and be hypoechogenic on EUS, thus making it difficult to differentiate it from surrounding soft tissue and hard to identify using CT imaging modalities. Third, when the length of the fish bone is perpendicular to the CT scan section, the punctuate changes seen would evade conclusive diagnosis. In one study, thoracic CT revealed an irregular high-density shadow in an oesophageal mucosal lesion[1], which was ultimately identified as a fish bone structure by three-dimensional CT reconstruction. Therefore, CT reconstruction is mandatory in scanning such lesions. Fourth, careful EUS examination of every gastrointestinal protuberance in all directions including longitudinal as well as transverse scanning during radial or linear echoendoscopic examination should be emphasized to avoid missing such fish bones.

CONCLUSION

Ingested fish bones appear as high-density shadows and hyperechoic structures on CT tomography and EUS, and patients typically present with symptoms or positive findings on ancillary examinations. Herein, we present a case of a fish bone hidden in the submucosal protuberance of the gastric antrum without the usual positive signs. Thus, the size, type, and course of the fish bone, as well as the diligence of the doctor, may all play a role and affect the patient’s eventual outcome and clinical course.

REFERENCES

Du WW et al. Accidental discovery of ingested fish bone

Misdiagnosis of unroofed coronary sinus syndrome as an ostium primum atrial septal defect by echocardiography: A case report

Jin-Ling Chen, Cai-Gui Yu, Dai-Jiao Wang, Hong-Bin Chen

Abstract

BACKGROUND
Unroofed coronary sinus syndrome (UCSS) is a rare congenital heart disease, which has variable morphologic features and is strongly associated with persistent left superior vena cava (PLSVC). However, it is often difficult to visualize the left-to-right shunt pathway through the CS by transthoracic echocardiography (TTE).

CASE SUMMARY
A 37-year-old female was admitted to the hepatological surgery department of a hospital with complaint of subxiphoid pain that had started 1 wk prior. Physical examination revealed a grade 3/6 systolic murmur at the left margin of the sternum, between the 2nd and 3rd intercostal cartilage. The patient underwent echocardiography and was diagnosed with ostium primum atrial septal defect (ASD); thus, she was subsequently transferred to the cardiovascular surgery department. A second TTE evaluation before surgery showed type IV UCSS with secundum ASD. Right-heart contrast echocardiography (RHCE) showed that the right atrium and right ventricle were immediately filled with microbubbles, but no microbubble was observed in the CS. Meanwhile, negative filling was observed at the right atrium orifice of the CS and right atrium side of the secundum atrial septal. RHCE identified UCSS combined with secundum ASD but without PLSVC in this patient.

CONCLUSION
This rare case of UCSS highlights the value of TTE combined with RHCE in confirming UCSS with ASD or PLSVC.

Key Words: Congenital heart disease; Coronary sinus; Atrial septal defect; Persistent left
quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Received: August 10, 2021
Peer-review started: August 10, 2021
First decision: October 16, 2021
Revised: October 24, 2021
Accepted: January 11, 2022
Article in press: January 11, 2022
Published online: February 16, 2022

P-Reviewer: Ong LT
S-Editor: Wang JJ
L-Editor: A
P-Editor: Wang JJ

Core Tip: Unroofed coronary sinus syndrome (UCSS) is difficult to diagnose. Transthoracic echocardiography (TTE) of a 37-year-old female revealed ostium primum atrial septal defect (ASD). A second TTE showed type IV UCSS with secundum ASD. Right-heart contrast echocardiography (RHCE) confirmed UCSS and ASD with no persistent left superior vena cava (PLSVC). The patient was misdiagnosed because the defect location was near the endocardial cushions, which was mistaken for a defect of the ostium primum atrial septum. This case highlights the special value of TTE and RHCE for a rare case of type IV UCSS combined with ASD but without PLSVC.

INTRODUCTION
Unroofed coronary sinus syndrome (UCSS) is a rare congenital heart disease, in which left atrial to right atrial shunt occurs through a partial or complete defect of the roof of the CS[1]. UCSS has variable morphologic features and the clinical syndrome of UCSS varies from symptomless to severe right heart failure, which is mainly determined by the size of the defect between the CS and other associated anomalies, such as persistent left superior vena cava (PLSVC) and atrial septal defect (ASD). UCSS is strongly associated with PLSVC in about 75% of cases[2], and UCSS in the terminal portion (Kirklin and Barratt-Boyes type IV) without PLSVC or other anomalies is classified as a type of ASD, which comprises less than 1% of all ASD cases[1]. However, it is often difficult to visualize the left-to-right shunt pathway through the CS by transthoracic echocardiography (TTE), which can lead to misdiagnosis or a missed diagnosis[3].

We present a rare case of UCSS combined with secundum ASD but without PLSVC, which was misdiagnosed as ostium primum ASD identified by TTE.

CASE PRESENTATION

Chief complaints
A 37-year-old female was admitted to the hepatological surgery department of the hospital with subxiphoid pain that had started 1 wk prior.

History of present illness
The patient's symptoms of intermittent subxiphoid pain began 5 years prior and had recurled and worsened over the past week. She also reported having experienced chest distress occasionally.

History of past illness
Five years ago, the patient began having intermittent subxiphoid pain and was hospitalized due to subxiphoid pain for 1 wk. Ultrasound examination showed a gallstone. Physical examination revealed grade 3/6 systolic murmur at the left margin of the sternum, between the 2nd and 3rd intercostal cartilage. Laboratory examination showed increased arterial partial pressure of oxygen (PaO₂; 146 mmHg) but normal partial pressure of carbon dioxide (PCO₂; 146 mmHg) and oxygen saturation (SaO₂; 99%).
Personal and family history
The patient had no previous or family history of similar illnesses.

Physical examination
Physical examination revealed grade 3/6 systolic murmur at the left margin of the sternum, between the 2nd and 3rd intercostal cartilage.

Laboratory examinations
Blood analyses showed increased arterial PaO₂ (146 mmHg) but normal PCO₂ (146 mmHg) and SaO₂ (99%).

Imaging examinations
The patient underwent echocardiography and was diagnosed with ostium primum ASD; thus, she was subsequently transferred to the cardiovascular surgery department.

Before surgery, TTE was performed again. TTE showed: Enlargement of the right heart and pulmonary artery, with mildly increased systolic pulmonary arterial flow [velocity 177 cm/s, pressure gradient (PG) 12.5 mmHg]; moderate-to-severe tricuspid valve regurgitation; mild-to-moderate pulmonary hypertension [pulmonary arterial systolic pressure (PASP) 56 mmHg]; a secundum ASD (1.1 cm); and obvious broadening of the CS, with partial defect of the CS roof (3.3 cm × 2.0 cm), through which the left atrial to right atrial shunt occurred (velocity 100 cm/s, PG 4 mmHg) (Figures 1A-1H). There was no ectopic pulmonary vein drainage.

To find evidence of PLSVC, which is the most common associated anomaly, right-heart contrast echocardiography (RHCE) was performed. After agitated 50% glucose was injected into the left antecubital vein, the right atrium and right ventricle were immediately filled with microbubbles but no microbubble was observed in the CS.
Figure 2 Imaging during the operation. A: Obvious broadening of the coronary sinus (CS) with a partial defect of the CS roof in the terminal portion (3.0 cm × 2.1 cm) was seen upon incision of the right atrium; B: The defect of the CS in the terminal portion was repaired.

Negative filling was observed at the right atrium orifice of the CS and right atrium side of the secundum atrial septum. The microbubbles were not observed in the left ventricle or the left atrium. RHCE did not identify PLSVC in this patient (Figure 1I).

Chest X-ray examination showed an increased heart shadow and no abnormality in the aorta, but the pulmonary artery segment showed extrusion.

RESPIRATORY EXAMINATIONS
Pulmonary function tests showed that the diffusing capacity of the lung for carbon monoxide was mildly decreased (78%), but the forced expiratory volume in 1 s and ratio of forced expiratory volume to forced vital capacity remained normal.

ELECTROCARDIOGRAM EXAMINATION
Electrocardiogram (ECG) examination showed that the patient had sinus rhythm, a normal ECG axis, and incomplete right bundle branch block.

GENETIC TESTING
No genetic testing was performed.

MULTIDISCIPLINARY EXPERT CONSULTATION
No multidisciplinary expert consultation was conducted.

FINAL DIAGNOSIS
Type IV UCSS combined with secundum ASD.
Figure 3 Transthoracic echocardiography at 1 wk after surgery. A: The repaired atrial septum was continuous and complete on apical four-chamber view (arrow); B: The repaired coronary sinus (CS) roof was continuous and complete on apical four-chamber view (arrow); C: There was no shunt from the left atrium to right atrium on apical four-chamber view (arrow); D: Trace tricuspid regurgitation (Vmax = 223 cm/s, pressure gradient = 20 mmHg, pulmonary artery systolic pressure = 25 mmHg). RA: Right atrium; RV: Right ventricle; LA: Left atrium; LV: Left ventricle; CS: Coronary sinus.

TREATMENT
The patient underwent repair surgery for the CS roof defect, secundum ASD closure, and tricuspid annuloplasty. During the operation, obvious broadening of the CS with partial defect of the roof of the CS (3.0 cm × 2.1 cm) and secundum ASD near the oval foramen (1.1 cm) were detected (Figures 2A and 2B). When perfused through the CS, the perfusate reflowed to both the left atrium and right atrium. The moderate-to-severe tricuspid valve regurgitation was due to a significantly dilated tricuspid annulus.

OUTCOME AND FOLLOW-UP
The patient was in good condition and no complications occurred after surgery. The patient was discharged from the hospital about 2 wk after surgery. TTE before discharge showed no shunt through the UCSS or ASD from the left atrium to right atrium, mild tricuspid valve regurgitation (velocity 223 cm/s, PG 20 mmHg), and normal PASP (25 mmHg) (Figures 3A-3D). At the 6-mo follow-up visit, the patient was in good condition.

DISCUSSION
UCSS is a rare congenital heart disease characterized by communication between the CS and the left atrium through the partial or complete absence of the CS roof. According to the location of the absence, UCSS is classified into the following four morphological types: Completely unroofed with PLSVC (type I); completely unroofed without PLSVC (type II); partially unroofed in the midsection (type III); and partially unroofed in the terminal portion (type IV)[1,4].
In general, UCSS is strongly associated with a PLSVC, which remains the most common association\cite{2}. Moreover, it can also be associated with other congenital heart abnormalities, such as cor triatriatum, canal defects, tetralogy of Fallot, abnormal atrioventricular connection, pulmonary atresia or stenosis, and anomalous pulmonary venous return\cite{5}.

TTE is the most widely used noninvasive technique for the diagnosis of UCSS; although posterior structures such as the pulmonary veins or CS may not be seen well in some patients. RHCE using agitated saline or glucose injection through the left arm vein may help indicate PLSVC, the most common association which is characterized by microbubbles in the CS prior to its appearance in the right atrium.

However, it is not easy to determine the type of UCSS due to difficulties in detecting the exact location of the unroofed portion. In the present case, the defect of CS was partially unroofed in the terminal portion (type IV); this UCSS type was misdiagnosed at the first TTE because the location of the defect was near the endocardial cushions on apical four-chamber view, which was mistaken for a defect of the ostium primum ASD. On the second TTE, the defect of the CS in the terminal portion and normal endocardial cushions were detected on apical four-chamber view by scanning backward. Moreover, the CS was significantly dilated and the CS roof structure was not always seen while a shunt from the left atrium was passed through the dilated CS to the right atrium. All evidence led to the diagnosis of UCSS. Meanwhile, a small shunt through the secundum ASD was detected, with the exception of an atrial-level UCSS shunt.

In the present case, RHCE worked in two ways. When injected through the left arm vein, microbubbles first entered the right atrium but no microbubble appeared in the CS, indicating that there was no PLSVC. Moreover, negative filling was observed at the right atrium orifice of the CS and right atrium side of the secundum atrial septal during RHCE, confirming the diagnosis of UCSS and secundum ASD. Although TTE of suitable image sections is the first-line examination to evaluate UCSS, it should be more frequently used in combination with RHCE in these cases.

CONCLUSION

We highlight a rare case of type IV UCSS combined with secundum ASD but without PLSVC, which was misdiagnosed as ostium primum ASD identified by TTE. TTE combined with RHCE is of value in confirming UCSS with or without ASD and PLSVC.

REFERENCES

Uncommon complication of nasoenteral feeding tube: A case report

Yong-Po Jiang, Sheng Zhang, Rong-Hai Lin

Abstract

BACKGROUND
The jejunal nutrition tube has increasingly been used in clinical practice, and the results in frequent complications.

CASE SUMMARY
We present the case of a 74-year-old male patient who had been admitted to the intensive care unit for aspiration pneumonia and respiratory failure. When confirming the position of the jejunal tube by X-ray, we found that the feeding tube had been placed into the chest. The complications was a disaster, though the misplacement of jejunal feeding tube are uncommon.

CONCLUSION
We introduced a way of ultrasound-guided jejunum feeding tube placement to avert the disaster, which was convenient and economical.

Key Words: Nasoenteral feeding tube; Nutritional support; Complication; Ultrasound-guided; Feeding tube placement; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We report a case of a patient who has a serious complication during the catheterization of the jejunal tube and introduce a way of using of bedside ultrasound to guide the placement of the jejunal tube to avert the disaster, which was convenient and economical.

Citation: Jiang YP, Zhang S, Lin RH. Uncommon complication of nasoenteral feeding tube: A case report. World J Clin Cases 2022; 10(5): 1598-1601
INTRODUCTION

Early enteral nutrition in critically ill patients who cannot eat by mouth is widely recommended by the clinical practice guidelines of nutrition[1]. For patients at high risk of aspiration and who were intolerant of oral or gastric feeding the advice is to place a post-pyloric feeding tube[2,3]. Complication of jejunal feeding tubes are rare. A recent report revealed that a jejunal tube caused gastrointestinal perforation[4]. In this case report, we will present a case where a jejunal feeding tube was placed into the chest and provide a brief overview of a method to avoid the complication of placing a jejunal feeding tube. Written informed consent was obtained from the patient’s family for publication of this manuscript and any accompanying images.

CASE PRESENTATION

Chief complaints

A 74-year-old male patient with a history of chronic obstructive pulmonary disease (COPD) was admitted to the intensive care unit (ICU) for aspiration pneumonia and respiratory failure.

History of present illness

He had a prolonged course of treatment and a nasoduodenal feeding tube blind placed at the bedside.

Imaging examinations

A chest X-ray revealed that the position of the nasoduodenal feeding tube was in the chest (Figure 1A). An abdominal X-ray also made it clear that the nasoduodenal feeding tube was not placed in the abdomen (Figure 1B). Visual laryngoscopy revealed that the tube entered the airway together with the windpipe (Figure 2).

FINAL DIAGNOSIS

The patient suffered from pneumothorax due to tracheal pleura leakage, which occurred when the feeding tube was immediately removed.

TREATMENT

We administered chest drainage in the middle of the clavicle and second ribs.

OUTCOME AND FOLLOW-UP

However, the patient died as a result of the aggravation of the lung infection.

DISCUSSION

The most commonly used non-invasive method of enteral nutrition is a nasogastrojejunal tube. The jejunal nutrition tube has increasingly been used in clinical practice, and the results in frequent complications[4,5]. The traditional method of intubation depends on the operator experience, X-ray, and gastroscope. Nasogastrojejunal tube insertion based on a minimally invasive catheterization procedure, combined with ultrasound guidance, is becoming more prevalent[6]. The use of bedside ultrasound to guide the placement of the jejunal tube is safe, convenient and economical. One of the common complications of indwelling jejunal tubes is the misplaced airway as reported in this case. How can we avoid it? When the cannula is about 30 cm, we need to
Figure 1 X-ray after placement of the feeding tube. A: Abdominal X-ray shows there is no jejunal tube in the abdomen, and the jejunal tube is on the diaphragm; B: Chest X-ray shows the jejunal tube is in the chest.

Figure 2 Visual laryngoscopy after placement of the feeding tube. The blue arrow is feeding tube and the orange arrow is windpipe.

observe the patient's response and ventilator condition. Even neck ultrasound determines access to the esophagus. If the patient has a severe cough response or a leak and a high pressure alarm, it may suggest that the tube has entered the airway. When the tube is placed around 50 cm, we need to complete a test of pumping. If you can hear the gas over water (bubble sound), then the catheter head has entered the stomach. If not, the patient should be reintubated.

CONCLUSION
The complication of blind bedside jejunal feeding tube placement was a disaster. Ultrasound guidance under visualization can avoid serious complications. Practitioners need to pay attention to patient response and the ventilator during catheterization.

REFERENCES

Treatment of extracranial internal carotid artery dissecting aneurysm with SUPERA stent implantation: Two case reports

Min-Jian Qiu, Bao-Rong Zhang, Shui-Jiang Song

Abstract

BACKGROUND
There is no standard endovascular treatment for extracranial internal carotid artery dissecting aneurysms. In the past, stent-graft isolation and stent-assisted coil embolization were commonly used for wide-necked and fusiform aneurysms. Here, we present two cases of extracranial internal carotid artery dissecting aneurysms treated successfully using the SUPERA stent.

CASE SUMMARY
Case 1 was a 57-year-old male patient with sudden right limb weakness and vague speech and diagnosed with cerebral infarction in February 2019. Cervical computed tomographic angiography (CTA) revealed left internal carotid artery dissection with stenosis. CTA at 2 mo showed an eccentric wide-necked dissecting aneurysm (5 mm × 5 mm × 12 mm, 10-mm neck) that was enlarged at 4 mo (7 mm × 6 mm × 12 mm, 11-mm neck). The patient underwent SUPERA stent implantation. His condition was stable in July 2020. Case 2 was a 57-year-old man who suddenly felt dizzy and developed unsteady walking in November 2019. Cervical CTA suggested right internal carotid artery dissecting aneurysm (11 mm × 9 mm × 31 mm) complicated with severe lumen stenosis (95%). The patient underwent SUPERA stent implantation. The patient had no residual symptoms and was stable in December 2020.

CONCLUSION
SUPERA stent implantation might achieve good results in treating wide-necked or long fusiform internal carotid artery dissecting aneurysms.

Key Words: Extracranial; Internal carotid artery; Dissecting aneurysm; Stent; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: There is no standard endovascular treatment for extracranial internal carotid artery dissecting aneurysms. Stent-graft isolation and stent-assisted coil embolization are commonly used for wide-necked and fusiform aneurysms, but safety and effectiveness can be unsatisfactory. The SUPERA stent is a braided metal stent especially designed for arterial stenosis of the lower extremities. Here, we present two cases of extracranial internal carotid artery dissecting aneurysms treated successfully using the SUPERA stent. Hence, SUPERA stent implantation might achieve good results in treating wide-necked or long fusiform internal carotid artery dissecting aneurysms.

INTRODUCTION

Carotid artery dissections account for about 2.5% of all strokes[1], and the incidence of extracranial carotid dissection with dissecting aneurysms is about 9.1%[2]. About 10.7% of patients with extracranial carotid dissection develop a new dissecting aneurysm within 3 mo[2]. Patients under medical therapy for recurrent neurologic episodes and persistent high-grade stenosis or growing aneurysms are considered candidates for surgery or endovascular therapy[2]. There is no recognized endovascular treatment for extracranial internal carotid artery dissecting aneurysms. In the past, stent-graft isolation and stent-assisted coil embolization were commonly used for wide-necked and fusiform aneurysms, but safety and effectiveness could possibly improve the safety and effectiveness of endovascular therapy. Inspired by the flow diverter for intracranial wide-necked aneurysms, we looked for a metal stent with a similar treatment mechanism to treat two complex internal carotid dissecting cases aneurysm, i.e., wide-necked or long fusiform dissecting aneurysms. It is expected that through the implantation of a dense mesh stent to change the local hemodynamics, the aneurysm would shrink and disappear[6]. The SUPERA stent is a braided metal stent especially designed for arterial stenosis of the lower extremities. When the stent is released, the wire density at the aneurysm is increased by the push-pull technique. In theory, it can change the aneurysm cavity’s blood flow state like a flow diverter so that the aneurysm can be gradually reduced and cured.

Here we introduce for the first time two cases of extracranial internal carotid artery lesions treated successfully using the SUPERA stent system implantation.

CASE PRESENTATION

Chief complaints
Case 1: Weakness of right limb and vague speech for 4 mo.

Case 2: Dizziness and unsteady walking for 1 mo.

History of present illness
Case 1: A 57-year-old male patient with sudden right limb weakness and vague speech was diagnosed with cerebral infarction in February 2019 at the Department of Neurology of The Second Affiliated Hospital of Zhejiang University School of Medicine. Cervical computed tomographic angiography (CTA) revealed left internal carotid artery dissection with stenosis. Blood glucose, blood lipids, and routine blood and biochemistry examinations were all within the normal ranges. The patient received antiplatelet therapy with aspirin (100 mg) and clopidogrel (75 mg). In April 2019, i.e., 2 mo after medical treatment, cervical CTA showed that the left internal carotid artery dissecting stenosis had disappeared but turned into an eccentric wide-necked dissecting aneurysm (Figure 1A and B). The size of the aneurysm was 5 mm ×
Case 1 was a 57-year-old male patient with sudden right limb weakness and vague speech and was diagnosed with cerebral infarction in February 2019. He was ultimately treated using a SUPERA stent. A: Cervical computed tomographic angiography (CTA) volume reconstruction; B: curved surface reconstruction show that the wide-necked dissecting aneurysm was situated on the upper segment of the left internal carotid artery; C: confirmed by digital subtraction angiography (DSA); D and E: The patient underwent SUPERA stent endovascular therapy, the arrow shows the dense stent mesh; F and G: Three months later, cervical CTA showed that the aneurysm had disappeared completely. H: One year later, DSA showed that the internal carotid artery was repaired perfectly.

5 mm × 12 mm, and its neck was 10 mm. In June 2019, i.e., 4 mo after medical treatment, the aneurysm had enlarged to 7 mm × 6 mm × 12 mm, and its neck was 11 mm.

Case 2: The patient was a 57-year-old man who suddenly felt dizzy and developed unsteady walking in November 2019 and was admitted to the Department of Neurology of The Second Affiliated Hospital of Zhejiang University School of Medicine. MRI showed cerebral infarction in the right frontal lobe and parietal lobe. The left lower limb's muscle strength was grade 4, and the left Babinski sign was positive. Blood glucose, blood lipids, and routine blood and biochemistry examinations were all within the normal ranges. Cervical CTA suggested right internal carotid artery fusiform dissecting aneurysm complicated with severe lumen stenosis (Figure 2A). The size of the aneurysm was 11 mm × 9 mm × 31 mm, and the degree of stenosis was about 95%. The patient received antiplatelet therapy with aspirin (100 mg) and clopidogrel (75 mg).

FINAL DIAGNOSIS

Case 1: Wide-necked dissecting aneurysm of left internal carotid artery.

Case 2: Fusiform dissecting aneurysm of right internal carotid artery with severe lumen stenosis.
Figure 2 Case 2 was a 57-year-old man who suddenly felt dizzy and developed unsteady walking in November 2019. He was ultimately treated using a SUPERA stents. A: Cervical computed tomographic angiography (CTA) volume reconstruction; B: digital subtraction angiography (DSA) showed a fusiform dilated dissecting aneurysm with severe stenosis located in the upper segment of the right internal carotid artery, involving the petrous segment; C and D: It was treated with SUPERA stent endovascular treatment, the arrow shows the dense stent reticular wire; E: Three months later, cervical CTA showed that the aneurysm had disappeared completely, and the lumen of the internal carotid artery was unobstructed; F: One year later, DSA showed that the internal carotid artery was repaired perfectly.

TREATMENT

Case 1: Endovascular treatment was considered because of the enlarging aneurysm and the risk of rupture. Under local anesthesia, a 5F puncture sheath (Terumo Corporation, Hatagaya, Tokyo, Japan) was inserted into the right femoral artery. A 6F90cm sheath (Cook Medical, Bloomington, IN, United States) was exchanged and inserted into the left internal carotid artery. Intraoperative digital subtraction angiography (DSA) showed the wide-necked aneurysm in the carotid segment of the left internal carotid artery (Figure 1C), and the proximal artery wall was not smooth, which was considered to be fibromuscular dysplasia with dissecting aneurysm. Heparin (3000 IU) was injected intravenously. A 0.014 Synchro microwire (Stryker Neurovascular, West Valley City, CA, United States) and a Rebar27 microcatheter (Micro Therapeutics Inc, Irvine, CA, United States) were inserted to the cavernous sinus segment of the internal carotid artery through the guide catheter, followed by the exchange of an 0.018 Steelcore guidewire (Abbott, Santa Clara, CA, United States). A 6 mm × 40 mm SUPERA stent (Abbott Vascular, Santa Clara, CA, United States) was inserted along the guidewire and released at the appropriate position (Figure 1D-E). The stent was released by the push-pull technique, and the stent wire was compacted in the aneurysm segment. Repeated angiography showed that the contrast medium in the lumen was unobstructed, and the blood flow in the aneurysm was slowed down. There were no postoperative complications.

Case 2: Because the stroke in this patient was associated with severe internal carotid artery stenosis shown by CTA and ipsilateral cerebral infarction shown by MRI, SUPERA stent implantation was considered and performed in December 2019. Under local anesthesia, the right femoral artery was punctured, an 8F sheath (Terumo Corporation, Hatagaya, Tokyo, Japan) was placed, and an 8F guide catheter (Boston Scientific Corporation, Marlborough, MA, United States) was inserted into the right common carotid artery. Intraoperative DSA confirmed the severe stenosis and dissecting aneurysm of the right internal carotid artery (Figure 2B). Heparin (3000 IU) was injected intravenously. A 0.014 Synchro microwire (Stryker Neurovascular, West Valley City, CA, United States) and a Rebar27 microcatheter (Micro Therapeutics Inc, Irvine, CA, United States) were inserted across the stenosis to the cavernous sinus segment of the internal carotid artery through the guide catheter. After exchanging for an 0.018 Steelcore guidewire (Abbott Vascular, Santa Clara, CA, United States), a 5 mm × 20 mm fast exchange balloon catheter (Abbott Vascular, Santa Clara, CA, United States) was inserted across the stenosis to the cavernous sinus segment of the internal carotid artery through the guide catheter. After exchanging for an 0.018 Steelcore guidewire (Abbott Vascular, Santa Clara, CA, United States), a 5 mm × 60 mm SUPERA stent was implanted by the same technique. Repeated DSA showed that the stenosis was significantly improved, the contrast medium in the lumen was unobstructed, and the blood flow in the aneurysm was slowed down (Figure 2C and D).
OUTCOME AND FOLLOW-UP

Case 1: Three months later, in September 2019, CTA showed that the dissecting aneurysm had disappeared completely (Figure 1F–G). The patient reported no new symptoms and was able to take care of himself. Muscle strength of the left limb remained decreased, and speech was slow. At 1 year after the operation, in July 2020, DSA showed that the lumen was completely repaired (Figure 1H). The symptoms remained the same.

Case 2: There were no postoperative complications, and the patient recovered well after the operation. Three months later, in April 2020, CTA showed that the dissecting aneurysm had disappeared completely (Figure 2E). DSA showed that the lumen was repaired entirely in December 2020 (Figure 2F). This patient had no residual abnormal symptoms during follow-up.

DISCUSSION

Endovascular treatment of extracranial cervical dissecting aneurysm is controversial because of the possible operative complications, and there is a possibility that the risks of treatment will be greater than the benefits to the patients\(^2\,8\). Cothren \textit{et al}\(^9\) reported a 21\% (4/19) complication rate and a documented occlusion rate of 45\% (8/18) in the endovascular treatment of pseudoaneurysms from extracranial carotid dissections. They claim that the risks outweigh the benefits in the treatment of carotid dissecting pseudoaneurysms\(^9\). Nevertheless, there is no doubt that the incidence of complications is very low in the available case series of selective endovascular therapy reported in the literature, and the short- and long-term benefits are probably significant\(^4,5,10\,12\). These previous studies highlighted the importance of selecting the right patients and using the right materials and tools in an individualized manner. In previous reports, endovascular treatment of extracranial cervical dissecting aneurysm included endovascular exclusion with a covered stent, stent-assisted coil embolization, and multi-stent overlap. A self-expanding covered stent is the first choice for treatment because of its immediate and long-term effect\(^4\). On the other hand, internal carotid artery dissections are usually located in the upper part of the extracranial internal carotid artery, and it is technically challenging to transport a covered stent for treating dissecting aneurysms near or involving the petrous segment. In contrast, balloon-dilated covered stents might be easier to transport, but there is a possible danger of acute closure after external force compression, and the adhesion of balloon stents is often not as good as that of self-expanding stents. Hence, it is suggested that balloon dilatation stents should not be used in extracranial carotid arteries, which are prone to external force compression. For wide-necked or fusiform dissecting aneurysms, bare carotid artery stents used alone often have difficulties eliminating the dissecting aneurysms. Balloon embolization is the only option for the treatment of this type of aneurysm. Later, it was found that coil-assisted embolization stent implantation can effectively eliminate dissecting aneurysm, but it is expensive and a residual space-occupying effect cannot be avoided.

The SUPERA stent is a braided metal stent specially designed for arterial stenosis of the lower extremities\(^7\). In theory, it can change the aneurysm cavity’s blood flow state like a flow diverter so that the aneurysm can be gradually reduced and cured. We used this braided bare metal stent to treat two cases of extracranial internal carotid artery dissecting aneurysms, which were a wide-necked aneurysm and a long fusiform aneurysm with severe lumen stenosis. There were no postoperative complications in the two cases. The symptoms of cerebral ischemia disappeared, and there was no recurrence of stroke during the follow-up period. The lumen was anatomically repaired perfectly. The aneurysms had entirely disappeared at 3 mo, and there was no residual space-occupying effect. One year after the operation, DSA showed that the lumen was repaired well and there was no restenosis. Satisfactory results have been achieved. The literature presents studies of its use in femoropopliteal disease\(^13\) and the subclavian artery\(^14\). Previous studies used different bare-metal stents (other than the SUPERA stent) to manage the carotid disease successfully\(^15,16\). The SUPERA stent might be easier to implant and have better outcomes, but the study is still necessary.

The SUPERA Stent System has moderate flexibility, convenient delivery, and uncomplicated release and can change the stent mesh size. We believe that it is a suitable choice to treat wide-necked dissecting aneurysms and long fusiform aneurysms. Nevertheless, several aspects must be mentioned. First, it is an over-to-
wire catheter system, and the inner core will move back and forth when the stent is released. If a distal protected device has been used, it will be challenging to maintain the system's stability. Therefore, we did not use remote embolization protection devices. Second, this stent system is best used in patients with straight parent arteries, and we have not tried it on very circuitous arteries. Only two cases were reported here. Additional studies with larger numbers of patients are necessary to determine the benefits of the SUPERA stent in managing extracranial internal carotid artery dissecting aneurysms.

CONCLUSION

In conclusion, according to the treatment and follow-up of these two cases, SUPERA stent implantation might achieve good results in treating a wide-necked or long fusiform internal carotid artery dissecting aneurysms. Still, additional studies are necessary to confirm these observations.

REFERENCES

Qiu MJ et al. SUPERA stent for extracranial ICA aneurysms

Combination of atezolizumab and chidamide to maintain long-term remission in refractory metastatic extranodal natural killer/T-cell lymphoma: A case report

Juan Wang, Yong-Sheng Gao, Kun Xu, Xiao-Dong Li

ORCID numbers: Juan Wang 0000-0002-0508-8895; Yong-Sheng Gao 0000-0003-0095-8836; Kun Xu 0000-0003-2692-0107; Xiao-Dong Li 0000-0002-6934-2303.

Author contributions: Li XD designed the research study; Wang J collected data of the study; Gao YS advised on the pathological report; and Xu K wrote the manuscript; all authors have read and approve the final manuscript.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Country/Territory of origin: China

Specialty type: Hematology

Provenance and peer review: Unsolicited manuscript; Externally peer reviewed.

Abstract

BACKGROUND
The prognosis of refractory extranodal natural killer/T-cell lymphoma (ENKTL) is poor. Recent data have indicated that immune checkpoint blockade with a programmed cell death protein-1 (PD-1) antibody in combination with administration of histone deacetylase inhibitors represents a potentially effective treatment strategy. Compared with PD-1 antibodies, programmed death-ligand 1 antibodies have fewer side effects. Here, we present a rare case of a patient with refractory metastatic ENKTL who achieved sustained remission of approximately 10 mo with minor adverse effects after combination therapy with atezolizumab, chidamide, and radiotherapy.

CASE SUMMARY
A 56-year-old woman underwent resection of a tumour in her left nasal cavity and was diagnosed with ENKTL (nasal type). Medical examination revealed tumours observed in the bilateral nasal mucosa, the subcutaneous soft tissue of the inner side of the left eye, the soft tissue of the nasopharynx, the bilateral tonsils, and the left preauricular, right hilar, bilateral neck lymph nodes and bone marrow. However, tomography/computed tomography showed increased metabolism of...
the bilateral nasal mucosa and subcutaneous soft tissue of the inner side of the left eye and newly increased metabolism of the left cervical lymph node after chemotherapy. Therefore, combination therapy with chidamide, atezolizumab, and radiotherapy was performed. Fortunately, the patient achieved a complete response following 10 mo of combination therapy.

CONCLUSION

The outcome in this case suggests that the combination of atezolizumab, chidamide, and radiotherapy is a promising regimen for treating refractory metastatic ENKTL following chemotherapy treatment failure.

Key Words: Long-term remission; Refractory metastatic extranodal natural killer/T-cell lymphoma; Histone deacetylase; Programmed death-ligand 1 antibody; Radiotherapy; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

The bilateral nasal mucosa and subcutaneous soft tissue of the inner side of the left eye and newly increased metabolism of the left cervical lymph node after chemotherapy. Therefore, combination therapy with chidamide, atezolizumab, and radiotherapy was performed. Fortunately, the patient achieved a complete response following 10 mo of combination therapy.

CONCLUSION

The outcome in this case suggests that the combination of atezolizumab, chidamide, and radiotherapy is a promising regimen for treating refractory metastatic ENKTL following chemotherapy treatment failure.

Key Words: Long-term remission; Refractory metastatic extranodal natural killer/T-cell lymphoma; Histone deacetylase; Programmed death-ligand 1 antibody; Radiotherapy; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

The bilateral nasal mucosa and subcutaneous soft tissue of the inner side of the left eye and newly increased metabolism of the left cervical lymph node after chemotherapy. Therefore, combination therapy with chidamide, atezolizumab, and radiotherapy was performed. Fortunately, the patient achieved a complete response following 10 mo of combination therapy.

CONCLUSION

The outcome in this case suggests that the combination of atezolizumab, chidamide, and radiotherapy is a promising regimen for treating refractory metastatic ENKTL following chemotherapy treatment failure.

Key Words: Long-term remission; Refractory metastatic extranodal natural killer/T-cell lymphoma; Histone deacetylase; Programmed death-ligand 1 antibody; Radiotherapy; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

The bilateral nasal mucosa and subcutaneous soft tissue of the inner side of the left eye and newly increased metabolism of the left cervical lymph node after chemotherapy. Therefore, combination therapy with chidamide, atezolizumab, and radiotherapy was performed. Fortunately, the patient achieved a complete response following 10 mo of combination therapy.

CONCLUSION

The outcome in this case suggests that the combination of atezolizumab, chidamide, and radiotherapy is a promising regimen for treating refractory metastatic ENKTL following chemotherapy treatment failure.

Key Words: Long-term remission; Refractory metastatic extranodal natural killer/T-cell lymphoma; Histone deacetylase; Programmed death-ligand 1 antibody; Radiotherapy; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: extranodal natural killer/T-cell lymphoma (ENKTL) is a subtype of non-Hodgkin lymphoma with poor outcomes because ENKTL cells express high levels of P-glycoprotein that mediate tumour multidrug resistance. Furthermore, the standard treatment modality for chemotherapy-resistant ENKTL remains debated. We have experienced a patient with refractory metastatic ENKTL who was resistant to conventional DDGP chemotherapy. Following systemic therapy with atezolizumab and chidamide in combination with local radiotherapy, the patient achieved sustained remission of approximately 10 mo with minor adverse effects.

INTRODUCTION

Extranodal natural killer (NK)/T-cell lymphoma (ENKTL) is a distinct subtype of mature T-cell and NK-cell lymphoma that is prevalent in regions of East Asia and South America[1-3]. ENKTL progresses rapidly and has a poor prognosis. Although options for therapy continue to evolve, their curative effects remain unsatisfactory. Because ENKTL cells express high levels of P-glycoprotein that mediate tumour multidrug resistance, conventional chemotherapy regimens such as CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) have poor outcomes. Thus, nonanthracycline-based chemotherapy has become the main therapeutic strategy. However, in patients for whom L-asparaginase-based regimens are ineffective, progression-free survival (PFS) after relapse or first progression was only 4.1 mo[4].

Recently, several studies have reported that HDAC inhibitors (HDACis) combined with anti-death protein-1 (PD-1) immunotherapy showed encouraging efficacy, thus representing a new treatment strategy for relapsed/refractory (r/r) ENKTL[5,6]. However, the combination of death-ligand 1 (PD-L1) antibody and HDACi for r/r ENKTL has not yet been investigated. Here, we report the case of a patient with refractory metastatic ENKTL who achieved a durable response following systemic therapy with PD-L1 antibody and chidamide in combination with local radiotherapy.

CASE PRESENTATION

Chief complaints

A 56-year-old woman had been diagnosed with ENKTL (nasal type) for one month.
History of present illness
The patient underwent resection of a tumour in her left nasal cavity and was diagnosed with ENKTL (nasal type). Before being transferred to our hospital, she accepted her first cycle chemotherapy with CHOPE (cyclophosphamide 1000 mg Day 1 + vincristine 2 mg Day 1 + epirubicin 100 mg Day 1 + etoposide 100 mg Days 1-3 + prednisone acetate 100 mg Days 1-5) and developed grade IV myelosuppression.

History of past illness
The patient had a free previous medical history.

Personal and family history
Personal and family history was non-contributory.

Physical examination
The patient’s temperature was 36.4 °C, heart rate was 102 beats/min, respiratory rate was 25 breaths/min, and blood pressure was 122/95 mmHg. The clinical examination revealed facial strut and pain.

Laboratory examinations
The tumour cells stained positive for CD3, CD56, TIA-1, and Ki-67 (approximately 40%) but were negative for CD20 (Figure 1). Bone marrow examination was performed. Flow cytometry revealed 0.71% NK cells with the following abnormal immunophenotypes: CD2+, CD7+, CD56+, CD94+, CD161+, CD5-, CD16-, and CD8+/-.

Imaging examinations
Positron emission tomography/computed tomography (PET/CT) was performed for staging, and increased 18F-fluorodeoxyglucose (FDG) uptake was observed in the bilateral nasal mucosa, the subcutaneous soft tissue of the inner side of the left eye, the soft tissue of nasopharynx, the bilateral tonsils, and the left preauricular, right hilar, and bilateral neck lymph nodes. These patterns were consistent with the infiltration of malignant lymphoma (Figure 2).

FINAL DIAGNOSIS
The patient was diagnosed with ENKTL (nasal type). Disease was evaluated as Ann Arbor stage IVE A, the prognostic index for NK/T-cell lymphoma, including Epstein-Barr virus DNA load (PINK-E), was calculated as 3, and disease was classified as high risk.

TREATMENT
Radiotherapy, chidamide, and nivolumab were concurrently administered. The target volume included the partial frontal sinus, the right maxillary sinus, all ethmoid sinuses, the sphenoid sinus, the left orbit and eye contents, the left maxillary sinus, the nasopharynx, the left preauricular lymphoid drainage area, and the bilateral neck level Ib, 2, 3, 4, and 5 Lymphatic drainage areas. The radiation dose was 50 Gy/25 fractions. The patient developed transient rash on the third day after nivolumab treatment and grade 4 thrombocytopenia following the first cycle of combination therapy. Therefore, the PD-1/PD-L1 inhibitor was changed to atezolizumab for subsequent immunotherapy after her haemogram recovered.

OUTCOME AND FOLLOW-UP
After four cycles of chidamide and atezolizumab, PET/CT showed slightly higher metabolism of the nasal cavity. Treatment was continued as planned. Fortunately, PET/CT showed no obvious FDG uptake after 11 cycles of combination therapy with chidamide and atezolizumab (Figure 2). Grade 3 adverse events, including neutropenia and thrombocytopenia, were manageable and resolved during maintenance treatment.
DISCUSSION

ENKTL is a subtype of non-Hodgkin lymphoma with poor outcome. The standard treatment modality for refractory ENKTL is still debated, especially for chemotherapy-resistant tumours[4]. Here, we present the case of a patient with refractory metastatic ENKTL who was resistant to conventional DDGP chemotherapy. Following systemic therapy with a PD-L1 inhibitor and chidamide in combination with local radiotherapy, the patient achieved sustained remission of approximately 10 mo with minor adverse effects.

Previous studies suggested that NKTL was resistant to anthracycline[7]. Thus, pegaspargase, gemcitabine, or other non-anthracycline-based chemotherapy regimens are generally used for the first-line treatment of patients with newly diagnosed refractory NKTL[8,9]. Additionally, as described in previous reports, allogeneic stem cell transplantation (allo-SCT) may be beneficial for patients with ENKTL[10,11]. However, PFS in the subset of patients who maintained remission following allo-SCT was only approximately 10.0 mo. There has been no randomized, prospective study to evaluate the safety and efficacy of allo-SCT in ENKTL[12].

Recently, radiotherapy, PD-1 inhibitors, and HDACis (alone or in combination) have shown promising efficacy in treating r/r ENKTL. Chidamide is a novel benzamide-type HDACi that can selectively block HDAC1, 2, 3, and 10[13]. Recent data demonstrated that chidamide induced growth inhibition and apoptosis in NK/T lymphoma cells[14]. A phase II clinical trial of chidamide for r/r peripheral T-cell lymphoma showed median PFS and overall survival of 2.1 and 21.4 mo, respectively[15]. In this study, 16 ENKTL patients were enrolled and showed lower response rates compared with other studies: one patient achieved a complete response (CR), and two patients achieved partial responses (PRs).

PD-1/PD-L1 inhibitors are additional new agents for the treatment of r/r ENKTL. In previous reports (Table 1), combining PD-1 antibody with chemotherapy or chidamide obtained satisfactory results, and most of the cases achieved complete response and sustained curative effects[16-21]. The anti-PD-1 antibody (sintilimab) plus chidamide regimen was evaluated in a phase 1b/II clinical trial[22], where the CR rate was 44.4% in 41 r/r-NKTCL patients. A previous study demonstrated that anti-
Table 1 Reports regarding the application of death protein-1/death-ligand 1 inhibitors in refractory or relapsed extranodal natural killer/T-cell lymphoma

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Number of cases</th>
<th>Age mean year (range)</th>
<th>Gender</th>
<th>Treatment</th>
<th>Stage</th>
<th>Response</th>
<th>OS or PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGehee et al [16] 2021</td>
<td>1</td>
<td>72</td>
<td>1 M</td>
<td>Pembrolizumab plus RT</td>
<td>IV</td>
<td>CR</td>
<td>33 mo, alive</td>
</tr>
<tr>
<td>Du et al [17] 2020</td>
<td>3</td>
<td>52 (51-54)</td>
<td>3 M</td>
<td>PD-1 antibody, plus Chidamide, etoposide, and thalidomide</td>
<td>1 (33.3%) IV; 1 (33.3%) III; 1 (33.3%) II</td>
<td>2 (66.7%) CR; 1 (33.3%) PD</td>
<td>-</td>
</tr>
<tr>
<td>Kwong et al [18] 2017</td>
<td>7</td>
<td>49 (31-68)</td>
<td>7 M</td>
<td>Pembrolizumab</td>
<td>5 (71.4%) IV; 2 (28.6%) III; 2 (28.6%) PR</td>
<td>2 (66.7%) CR; 2 (28.6%) PR</td>
<td>-</td>
</tr>
<tr>
<td>Li et al [19] 2018</td>
<td>7</td>
<td>47 (17-61)</td>
<td>4 M; 3 F</td>
<td>Pembrolizumab</td>
<td>2 (28.6%) IV; 3 (42.9%) II; 1 (14.3%) III; 1 (14.3%) IIE; 1 (14.3%) IIE</td>
<td>2 (28.6%) CR; 2 (28.6%) PR</td>
<td>5 mo OS; 4.8 mo PFS</td>
</tr>
<tr>
<td>Diab et al [20] 2021</td>
<td>1</td>
<td>82</td>
<td>M</td>
<td>Pembrolizumab</td>
<td>IV</td>
<td>CR</td>
<td>21 mo, alive</td>
</tr>
<tr>
<td>Lai et al [21] 2017</td>
<td>1</td>
<td>37</td>
<td>F</td>
<td>Pembrolizumab</td>
<td>IV</td>
<td>CR</td>
<td>-</td>
</tr>
<tr>
<td>Gao et al [22] 2020</td>
<td>41</td>
<td>48 (20-72)</td>
<td>27 M; 14 F</td>
<td>Sintilimab plus chidamide</td>
<td>26 (70.3%) IV; 15 (29.7%) Non-IV</td>
<td>16 (44.4%) CR; 5 (13.9%) PR</td>
<td>-</td>
</tr>
<tr>
<td>Kim et al [24] 2020</td>
<td>21</td>
<td>≤ 60 16; > 60 5</td>
<td>13 M; 8 F</td>
<td>Avelumab</td>
<td>-</td>
<td>5 (23.8%) CR; 3 (14.3%) PR</td>
<td>-</td>
</tr>
</tbody>
</table>

OS: Overall survival; PFS: Progression-free survival; M: Male; F: Female; Non-IV: Non-stage IV patients; RT: Radiotherapy.

PD-L1 antibodies have better efficacy and fewer adverse effects [23]. In particular, an open-label phase 2 study demonstrated that a PD-L1 antibody as a single agent induced tumour remission in a subset of patients. CRs were observed in 24% of patients, and the overall response rate was 38%; the study was terminated because of a lower than expected response rate [24]. Five responders in this study continued to show sustained responses, and the only adverse events observed were grades 1 or 2. However, to our knowledge, there have been no case reports evaluating the effects of PD-L1 antibody for r/r-ENKTL patients who could not tolerate previous treatment with PD-1 antibody.

Recently, multiple lines of evidence have demonstrated that HDACis could enhance the therapeutic effects of PD-1 antibodies [25,26]. Epigenetic modification could regulate T cell trafficking and reactivation, thus enhancing the efficacy of the PD-1 antibody. A few case reports suggested that the combination of PD-1 antibodies and HDACis might be effective in patients with refractory ENKTL [5,6]. However, the antitumour effect of combination therapy with PD-L1 antibody and chidamide has not been demonstrated for refractory ENKTL. The patient described here was successfully treated with local radiotherapy and systemic therapy with chidamide and PD-L1 antibodies. Evaluation 10 mo following the end of radiation therapy showed a sustained CR. We presume that the sustained therapeutic efficacy observed in this patient may result from synergistic effects of PD-L1 antibody, chidamide, and local radiotherapy. Studies with larger numbers of patients are needed to evaluate the efficacy and safety of this combination therapy regimen for refractory ENKTL.

CONCLUSION

We present a rare case of a patient with refractory ENKTL who was successfully treated with a combination of radiotherapy, chidamide, and PD-L1 antibody. Additional evidence is needed to evaluate the potential activity and safety of this regimen.
Figure 2 Imaging at diagnosis, after four cycles of chemotherapy with DDGP (cisplatin, dexamethasone, gemcitabine, and pegasparagase), and 10 mo posttreatment with death-ligand 1 antibody and chidamide. A: Positron emission tomography showing hypermetabolism in the bilateral nasal mucosa, the subcutaneous soft tissue of the inner side of the left eye, the soft tissue of the nasopharynx, the bilateral tonsil, and the left preauricular, bilateral neck, and right hilar lymph nodes; B: After four cycles of DDGP chemotherapy, increased metabolism of the lesions was observed except in the right hilar lymph nodes; C: Patient achieved sustained remission for approximately 10 mo.

ACKNOWLEDGEMENTS

We thank the patient and her family for providing signed informed consent.

REFERENCES

Wang J et al. Combination therapy with atezolizumab and chidamide.

Medicine (Baltimore) 2021; 100: e24824 [PMID: 33725836 DOI: 10.1097/MD.00000000000024824]

Wang J et al. Combination therapy with atezolizumab and chidamide

Hemangioma in the lower labial vestibule of an eleven-year-old girl: A case report

Ashwag Yagoub Aloyouny, Afrah Jaber Alfaifi, Shahad Mohammed Aladhyani, Ahad Ali Alshalan, Hadeel Mohammed Alfayadh, Hend Mahmoud Salem

Abstract

BACKGROUND
Hemangioma is a vascular benign tumour of endothelial origin. It appears commonly in the first decade of life with increases incidence in females. Hemangioma is not common to happen in the oral cavity and it is extremely rare to appear in the labial vestibule.

CASE SUMMARY
We present a case of an 11-year-old girl who complained of a painful, slowly growing mass which was consistent with the capillary hemangioma in the left mandibular vestibule. Vascular tumor such as hemangioma in the mandibular vestibule is extremely rare; hence, the clinical definitive diagnosis is very challenging. Therefore, radiographic imaging and histopathologic analysis are crucial to reach to the final diagnosis for proper management.

CONCLUSION
Comprehensive clinical evaluation, proper diagnostic imaging and microscopic analysis of the mass establish a precise diagnosis of the hemangioma for better management.

Key Words: Capillary hemangioma; Vascular malformation; Labial vestibule; Childhood; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Although hemangioma rarely occurs in the oral cavity, it should be considered in the diagnosis of a red-bluish isolated mass. In this case report, the patient presented with a painful, slowly growing mass in the left labial vestibule which resulted in asymmetry and swelling of the lower lip. The final diagnosis of the mass was consistent with capillary hemangioma in the mandibular vestibule. Early detection and treatment of oral masses is essential to avoid any complications.

DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1617

INTRODUCTION

Hemangioma commonly appears early in life with increase incidence in females more than males. It usually gets smaller with time until it completely disappears. Mulliken et al. [1] (1982) published the novel classification of vascular lesion and the International Society for the Study of Vascular Anomalies (2018) has provided updated guidelines for vascular anomalies classification. Accordingly, the vascular anomalies have been classified into vascular malformations and vascular tumors. Vascular tumors include non-harmful, locally destructive, and malignant lesions, whereas vascular malformations include simple and combined malformations.

Hemangiomas are vascular benign tumors of endothelial origin, presenting clinically with varying sizes and shapes. In some cases, hemangioma could cause functional disability and disfiguring appearance, which may lead to psychological issues. Histologically, hemangioma has another classification, into either cavernous or capillary types.

Hemangioma is uncommon to occur in the oral cavity and it is extremely rare to appear in the labial vestibule. To our knowledge and based on the review of English literature (PubMed), this case is the first report of capillary hemangioma in the mandibular vestibule. In this report, we present an 11-year-old girl patient complaining of a slowly growing mass that caused labial swelling and asymmetry. The diagnosis was consistent with capillary hemangioma in the mandibular vestibule.

CASE PRESENTATION

Chief complaints
An 11-year-old healthy girl was referred to the oral and maxillofacial surgery clinic for evaluation of labial asymmetry and swelling.

History of present illness
The patient had a two-month-history of a slowly growing lesion in the left side of the lower labial vestibule accompanied with persistent mild pain. The patient and her parents reported no history of trauma at the site of the mass.

History of past illness
The patient was healthy and did not undergo any surgeries.

Personal and family history
The parents revealed no significant family history and no genetic abnormalities.

Physical examination
Physical and systemic examination: The patient was healthy and had only taken Tylenol 15 mg as needed for fever.

Extraoral examination: Extraoral examination showed lower lip asymmetry and swelling in the left side.
Intraoral examination: Intraoral examination showed a 2.0-1.5 cm, solitary, fluctuant, bluish, smooth, palpable submucosal mass, rubbery in consistency, tender, and blanch on pressure (positive diascopy test). The submucosal mass located in the left mandibular vestibule opposite to tooth number 32 and 33 (23 and 33, according to the FDI World Dental Federation Notation) (Figure 1).

Imaging examinations
A panoramic radiograph showed normal structures with no significant pathologic findings. Additionally, Color-Doppler-ultrasound was performed to confirm the nature of the lesion. The imaging interpretation revealed a slow-flow vascular lesion in the left lower vestibule and attached to the lower orbicularis oris muscle.

FINAL DIAGNOSIS
The final diagnosis was based on histopathological analysis. The histopathological diagnosis was consistent with capillary hemangioma in the labial vestibule (Figure 2).

TREATMENT
Complete surgical removal of the lesion to reduce the risk of the recurrence.

OUTCOME AND FOLLOW-UP
At two-, four- and eight-week-follow up, the site of the surgery healed well with no sign of bleeding, infection, and swelling. At one- and three-year- follow up, there was no recurrence of the lesion or complications noted. Additionally, the patient was in a good health.

DISCUSSION
In 1982, vascular anomalies were categorised into two main categories: Vascular malformations and vascular tumors. Hemangiomas are true neoplasms represented by increased rate and proliferation of endothelial cell turnover. On the other hand, vascular malformations are localised abnormality and disorganisation of the blood vessel caused by defects in vascular development[1-3]. Simple vascular malformations are classified histologically, based on the vessel size, into capillary, venous, lymphatics, arteriovenous fistula, and arteriovenous malformations. Vascular lesions are further categorised into non-harmful, locally destructive, and malignant lesions[4]. Namely, hemangioma is a neoplasm of endothelial origin which is commonly found in the early years of life and then the neoplasm regresses gradually with age[5]. Intraoral and intramuscular hemangiomas are rare, dissimilar to cutaneous and subcutaneous hemangiomas. Oral hemangiomas could occur in more than 6% of infants and have high prevalence in female presenting 3:1 (female:male). Infants are more likely to develop oral hemangiomas if they fall in one of the following conditions; infants who are born to older mothers, twins or triplets, premature, or have low birth weight[6]. Hemangioma is a common vascular benign tumor which falls under the category of benign vascular tumors and it is further divided into capillary and cavernous hemangioma[2].

Capillary hemangioma is a common lesion, but it rarely occurs in the oral cavity. According to Matsumoto et al[7], 45.2% of capillary hemangiomas occur on buccal mucosa, 35.5% on the tongue, and only a small percentage occur in the lip, gingiva and palate. Capillary hemangiomas are firm in consistency and have a limited history of symptoms. Although the exact cause of oral hemangioma is not fully understood, hormonal changes, embolic phenomenon and genetic mutations are believed to play an important role in the tumor development[8].

Hemangiomas are hypothesised to develop because of both angiogenesis and vasculogenesis through three different stages, as follows: Endothelial cell proliferation stage, rapid growth stage and spontaneous disappearance. Endothelial cell proliferation is stimulated by many factors, such as basic fibroblast growth factor, vascular
endothelial growth factor and transforming growth factor-beta. Then, the quantity of endothelial cells is sustained, and each cell increases in size, leading to comprehensive enlargement of the structure size. At the end, spontaneous involution occurs when the endothelial cells are replaced by connective tissue, adipose, and fibroblast, and the number of small vessels decrease in quantity[9].

Hemangioma could be classified clinically as congenital or infantile (previously named strawberry or juvenile). Congenital hemangioma presents at birth and does not demonstrate proliferation stage. In contrast, infantile hemangioma may develop at the first months of the infant life and show a proliferative phase during the period of six to twelve months; then, most cases spontaneously regress between the age of six to nine years. High percentage of hemangiomas disappear completely in childhood, with < 20% carrying on to puberty[10,11]. Oral hemangioma presents as a solitary, soft, fluctuant, compressible, smooth, red, or bluish submucosal mass. Significant variations may present based on the depth and site of the mass. Superficial masses are easy to visualise and may present as pedunculated, sessile, or lobulated and reddish in colour. In contrast to deeper masses, they appear as a dark blue discolouration recognisable from surrounding normal colour mucosa. It also reveals tenderness on palpation and blanch on compression with glass slide (positive diascopy test)[12]. In this case, the differential diagnosis of the tumor was written down as vascular anomalies, including hemangioma, and vascular malformation, including venous, capillary, lymphatic and arterial malformations. Salivary gland tumor, mucocele and angioleiomyoma were also considered.
It is worth mentioning that vascular malformations, salivary gland tumor, mucocele and angioleiomyoma were all excluded because the lesion showed a slow-flow vascular lesion by using Colour-Doppler-ultrasound, which is highly consistent with hemangioma.

Histological analysis of vascular anomalies, including capillary hemangioma, is still the most acceptable and accurate method of diagnosis[3]. Microscopic description of capillary hemangioma illustrates several dilated capillaries lined by endothelial cells, filled with blood, and surrounded by inflammatory infiltrate.

Hemangioma is mostly characterised by its benign feature and has high tendency of involution by itself over time. However, sometimes hemangioma requires intervention, especially in case of impairment in breathing, swallowing and speech. The first line of evaluation and diagnosis would be by Color-Doppler ultrasound imaging. This imaging modality is non-invasive, cost-effective and has no risk of radiation. If intraosseous lesion is anticipated, other imaging modalities could be useful for the diagnosis, such as a contrast-enhanced magnetic resonance imaging (MRI), computed tomography (CT), and angiography[13]. A contrast-enhanced MRI and CT imaging identify the shape, size, and calcification of the tumor. The Color-Doppler ultrasound imaging modality was the suitable choice for the patient due to many factors, such as financial issues and the age of the patient[14].

Choosing a suitable method for managing hemangioma is based on multiple factors such as the aesthetic consideration, clinical nature, size, site, growth rate, accessibility, extent of the tumor, and age of the patient. Hemangioma could be managed by different ways; for instance, surgical excision of the tumor, embolization, electrosurgery, cryosurgery, laser, steroid injection, or sclerosing materials. In case of small oral hemangioma, the commonly used method is the total surgical excision of the whole mass to decrease the potential risk of recurrence[15]. However, if the lesion is large and located in a significant part of the mouth, such as the tongue, in this case the surgical excision of the lesion would not be preferred, so as to avoid post-surgical complications in swallowing and speech. Sclerotherapy is recommended to manage large hemangiomas in the oral cavity in which 3% sodium tetradecyl sulfate or ethanolamine olate is injected into the main vessels of the lesion to destroy the endothelial cells, leading to lesion destruction. Precautionary measures should be taken to avoid bleeding during the surgical procedure or afterward during recovery phase. In the present case, the tumor was excised surgically with a thin rim of the attached orbicularis oris muscle to decrease the risk of recurrence[16,17].

CONCLUSION

Although hemangioma rarely appears in the oral cavity, it should be considered in the diagnosis of a red-blush isolated mass. Comprehensive clinical evaluation, proper diagnostic imaging and microscopic analysis of the mass establish a precise diagnosis of the hemangioma for better treatment.

REFERENCES

3 Larsen AK, Damsgaard TE, Hedelund L. [Classification of vascular anomalies]. Ugeskr Laeger 2018; 180 [PMID: 30187855]
Aloyouny AY et al. Hemangioma in the lower labial vestibule.

Primary orbital monophasic synovial sarcoma with calcification: A case report

Ming-Yu Ren, Jing Li, Rui-Miao Li, Yi-Xiang Wu, Rui-Juan Han, Chi Zhang

ORCID number: Ming-Yu Ren 0000-0002-8270-0523; Jing Li 0000-0002-0769-5891; Rui-Miao Li 0000-0002-9146-1624; Yi-Xiang Wu 0000-0002-1175-2699; Rui-Juan Han 0000-0003-0017-0483; Chi Zhang 0000-0002-4641-9830.

Author contributions: Ren MY conceptualized this study, made the literature review and wrote the first draft of this paper; Li J, Li RM, Wu YX, Han RJ, and Zhang C made the literature review; all authors revised the paper and approved the final version for submission.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by the Science and Technology Planning Project of Xingtai, No.2019ZC246.

Country/Territory of origin: China

Abstract

BACKGROUND
Synovial sarcoma is a malignant mesenchymal neoplasm with variable epithelial differentiation. Most synovial sarcoma cases are reported in young adults and can arise in any body site. Notably, primary orbital synovial sarcoma is rare.

CASE SUMMARY
An 8-year-old east Asian girl with 1-month history of gradual painless proptosis and lacrimation of the right eye was admitted. The patient presented with painless proptosis, downward eyeball displacement, and upward movement disorders. According to clinical manifestations, imaging examinations and postoperative immunohistochemical examinations, the diagnosis was monophasic synovial sarcoma with calcification. The patient underwent anterior orbitotomy procedure for removal of the right orbital mass under general anesthesia. The diagnosis of monophasic synovial sarcoma with calcification was confirmed finally through histological and immunohistochemical exam. The follow-up period was 6 mo, and no recurrence was observed during this period.

CONCLUSION
Primary orbital monophasic synovial sarcoma with calcification is a rare sarcoma, and clinical manifestations and imaging results are not specific. The tumor may present similar features as a benign tumor. Comprehensive analysis of clinical, radiological, and pathological findings is critically important for making the right diagnosis. Conventional treatment approach for synovial sarcoma is surgical resection with adjuvant or neoadjuvant radiotherapy, which is highly effective for localized tumors.

Key Words: Orbital tumor; Synovial sarcoma; Calcification; Histological; Case report
We describe a patient with 1-month history of gradual painless proptosis and lacrimation of the right eye. The patient underwent anterior orbitotomy procedure for removal of the right orbital mass under general anesthesia. The diagnosis of monophasic synovial sarcoma with calcification was confirmed finally through histological and immunohistochemical exam. The follow-up period was 6 mo, and no recurrence was observed during this period. This case illustrates the tumor may present similar features as a benign tumor. Comprehensive analysis of clinical, radiological, and pathological findings is critically important for making the right diagnosis.

Citation: Ren MY, Li J, Li RM, Wu YX, Han RJ, Zhang C. Primary orbital monophasic synovial sarcoma with calcification: A case report. World J Clin Cases 2022; 10(5): 1623-1629
DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1623

INTRODUCTION

Synovial sarcoma is a malignant mesenchymal neoplasm with variable epithelial differentiation. It mainly occurs in young adults and can arise at several sites [1]. It mainly commonly occurs in deep soft tissue of the extremities in adolescents and young adults[2]. Synovial sarcoma of the head and neck region is very rare, and only a few cases of sarcoma arising from the orbit have been reported[3,4]. The current study reports a case of primary orbital monophasic synovial sarcoma which was characterized by calcification in an 8-year old patient.

CASE PRESENTATION

Chief complaints
An 8-year-old east Asian girl with 1-mo history of gradual painless proptosis and lacrimation of the right eye was admitted to our hospital.

History of present illness
The patient presented with gradual painless proptosis and lacrimation of the right eye for 1 mo. The proptosis was gradual and painless. No special treatment was performed, and there was no other significant change in ocular symptoms.

History of past illness
The patient had no history of any previous disease.

Personal and family history
There was no family history of malignant neoplasm.

Physical examination
Physical examination showed no neurological signs. The patient presented with painless proptosis, downward eyeball displacement, and upward movement disorders. Ocular examination showed that the binocular best-corrected visual acuity was 20/20. Eye examination did not show any significant eyelid, conjunctival, corneal and lenticular abnormalities, and fundus examination did not show any abnormalities. Hertel exophthalmometry analysis showed that the right eye was 18 mm and whereas the left eye was 13 mm, and the interorbital distance was 91 mm. Intraocular pressure of the right eye was 13 mmHg and 11 mmHg in the left eye.

Laboratory examinations
Blood and urine tests were normal.
Imaging examinations

A/B-scan showed moderate echogenic lesions in the right eye orbital. Echoes were uneven, well-distributed and sound transmission normal. Patchy strong echoes and sound shadows were detected (Figure 1). Orbital CT scan showed a well-defined soft tissue density mass in the right orbit, with flaky high-density shadows observed inside the right orbit. The size of the mass was approximately 20 mm × 20 mm × 19 mm, and exophthalmos; extraocular muscles and optic nerve were compressed (Figure 2). Orbital magnetic resonance imaging showed a circular-like mass in the right orbit. T1-weighted images (T1WI) showed moderate signals, whereas T2-weighted images (T2WI) showed mixed signals, with high number of moderately high signals. T1WI and T2WI were characterized by low-signal regions. Most part of the lesion was significantly and unevenly enhanced, whereas local lesions did not exhibit any enhancement (Figure 3).

Primary diagnosis

Based on the findings described above, the preliminary diagnosis was rhabdomyosarcoma or other malignant neoplasm.

FINAL DIAGNOSIS

Histological examination showed that the tumor was monophasic synovial sarcoma with calcification. Immunohistochemical analysis showed positive staining for CD34, CD99, Bcl-2, CK-pan, TLE1, INI-1 and Ki-67 (25%), and negative staining for SMA, Vimentin, Myogenin, Myoglobin, Syn, CgA, NSE, S-100, PGP9.5, EMA, CK7, CK (AE1/AE3), CD68, Calretinin, TTF1 and MUC-4 (Figure 4).

TREATMENT

After preoperative examination, the patient underwent anterior orbitotomy procedure for removal of the right orbital mass under general anesthesia. The operation showed an oval tumor above the optic nerve in the right orbit. The tumor margins were well defined, however, it was significantly large, reddish, unmovable, and adhesive to the levator palpebrae muscle (Figure 5). The levator palpebrae muscle was cut along its path, the tumor was carefully separated from the muscle and removed. The levator palpebrae muscle was sutured before the end of the operation. After treatment, the patient was transferred to the tumor hospital and underwent systemic chemotherapy.

OUTCOME AND FOLLOW-UP

The follow-up period was 6 mo, and no recurrence was observed during this period.

DISCUSSION

Synovial sarcoma accounts for 10%-20% of soft tissue sarcomas. It is a high-grade soft-tissue sarcoma occurring mainly in older children and young adults. Approximately 7% of soft tissue sarcoma cases occur in the head and neck region, and synovial sarcoma represents less than 0.1% of all head and neck cancers[5,6]. Orbital synovial sarcoma is a rare kind of malignancy. Therefore, diagnosis of orbital synovial sarcoma in clinical practice is challenging, and required an integrated approach that incorporates specific clinical, histological, immunohistochemical, and molecular analyses.

Synovial sarcoma is a rare kind of orbital tumor and the clinical characteristics have not been fully elucidated. Clinical manifestations include gradual painless proptosis, eyelid swelling, a palpable painless mass, epiphora, ptosis, and periorbital spontaneous pain or tenderness. However, these clinical manifestations are not unique to synovial sarcoma. Characteristic findings are not reported in current imaging studies due to the small number of cases. A case of monophasic synovial sarcoma primarily arising in the left supero-nasal orbital region was reported in a 24-year-old woman, which was clinically mistaken for a periocular cyst[6]. However, the lesion
Figure 1 A/B-scan showed moderate echogenic lesions in the right eye orbital.

Figure 2 Orbital computed tomography scan showed a well-defined soft tissue density mass in the right orbit, with a hyperdense speck suggestive of coarse calcification. A: Axial computed tomography (CT) scans; B: Coronal CT scans.

was characterized by calcification similar to the current case.

The calcification can be pathologically divided into dystrophic calcification and metastatic calcification. In the current case, the growth of the lesion was relatively rapid, resulting in ischemia and necrosis of the tumor. Significant calcification of the lesion may be caused by dystrophic calcification. Occurrence of a lesion with calcification in orbit of a pediatric patient, orbital tumor such as vascular lesions or malformations, and orbital malignancies should be explored when carrying out diagnosis. Irregular calcification is common in malignant tumors and partially benign tumors. Cases of orbital tumors, in children are associated with higher incidence of rhabdomyosarcoma[7]. In addition, most common soft-tissue sarcoma cases in children are reported in the head and neck with 10% of all cases occurring in the orbit. Notably, a detailed history is essential if a child is suspected to have rhabdomyosarcoma[8]. A case of recurrent primary orbital calcified synovial sarcoma in a young lady was previously reported[4]. In addition, diagnosis should distinguish the primary lesion from metastatic lesion, as metastatic synovial sarcomas are characterized by poor prognosis[9]. Notably, the case reported in the current study showed no other systemic lesions, was primary tumor, and not a recurrent case.

Orbital tumor such as vascular lesions, vascular malformations, other benign lesions and orbital malignancies should be considered when there is a lesion characterized by calcification in the orbit during childhood. Irregular calcification is common in malignant tumors and partially benign lesions. In the current case, orbital computed
Figure 3 Orbital magnetic resonance imaging showed a circular-like mass in the right orbital. A: T1-weighted images showed moderate signals, mixed with low-signal regions; B: T2-weighted images showed mixed signals, with high number of moderately high signals, and mixed with low-signal regions; C and D: Most part of the lesion was significantly and unevenly enhanced, whereas local lesions did not exhibit any enhancement.

tomography and magnetic resonance imaging scans showed a well-defined soft tissue density mass in the right orbital. The tumor may present similar features as benign tumors. Differential diagnosis may identify findings that do not perfectly fit preliminary diagnosis of benign tumors. In such cases comprehensive consideration of clinical, radiological, and pathological findings is critically important[10].

Synovial sarcoma is a type of highly malignant soft tissue sarcoma, with poor survival of patients. Conventional treatment approach is surgical resection with adjuvant or neoadjuvant radiotherapy, which are highly effective for localized tumors. Synovial sarcoma is relatively sensitive to chemotherapy. Ifosfamide and ifosfamide combinations are effective for treatment of synovial sarcoma[5,11,12]. A combinatory treatment of doxorubicin and ifosfamide is the preferred first-line therapy for patients with metastatic cases. On the other hand, sequential doxorubicin and ifosfamide can be considered for localized tumors. Pazopanib and trabectedin are effective as second-line therapies and for subsequent treatment[11].

A previous study reported high local recurrence rates despite surgical and postoperative radiotherapy, adjuvant chemotherapy and distant metastasis rates were not reduced by these approaches[2]. The disease is characterized by early and late recurrences, and the 10-year disease-free survival is approximately 50%[5]. Several new approaches for treatment of metastatic synovial sarcoma are currently under investigation, both at preclinical and clinical levels, including receptor tyrosine kinase inhibitors, epigenetic modulators, compounds interfering with DNA damage response (DDR), and immunotherapy[11].

Histological analysis shows that synovial sarcoma is monophasic, biphasic, or poorly differentiated and exhibits a specific chromosomal translocation t (X; 18) (p11.2; q11.2) in > 95% of cases[6]. Genetic analysis shows that synovial sarcoma tumors have a characteristic fusion protein, SS18-SSX, implicated in promoting disease development. BRD9 is a component of SS18-SSX containing BAF complexes in synovial sarcoma cells. Studies report that BRD9 is implicated in oncogenic
mechanisms underlying the SS18-SSX fusion in synovial sarcoma and targeted degradation of BRD9 is a potential therapeutic approach for treatment of synovial sarcoma[13].

CONCLUSION
These findings show that primary orbital synovial sarcoma cases with calcification are rare, and clinical manifestations and imaging results are not specific. The tumor may exhibit similar features as a benign tumor. Therefore, these cases require comprehensive clinical, radiological, and pathological analysis to achieve the right diagnosis. The conventional treatment approach for surgical resection with adjuvant or neoadjuvant radiotherapy, which are highly effective for localized tumors. However, a longer follow-up time is required to determine effectiveness of the treatment.
Figure 5 It presented as a well-defined, reddish, with irregularly shaped soft tissue density mass.

REFERENCES

Small-cell carcinoma of the prostate with negative CD56, NSE, Syn, and CgA indicators: A case report

Hong-Jin Shi, Zhi-Nan Fan, Jin-Song Zhang, Bo-Bo Xiong, Hai-Feng Wang, Jian-Song Wang

ORCID number: Hong-Jin Shi 0000-0001-9883-270X; Zhi-Nan Fan 0000-0003-4547-4202; Jin-Song Zhang 0000-0003-3271-3454; Bo-Bo Xiong 0000-0001-6121-9565; Hai-Feng Wang 0000-0003-0360-1402; Jian-Song Wang 0000-0002-2140-1618.

Author contributions: Shi HJ and Fan ZN collected the data, reviewed the literature, and contributed to manuscript drafting; Xiong BB performed the histological analyses and interpretation; Zhang JS and Wang HF was responsible for the revision of the manuscript for important intellectual content; all authors issued final approval for the version to be submitted.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by the National Natural Science Foundation of China, No.

Hong-Jin Shi, Zhi-Nan Fan, Jin-Song Zhang, Bo-Bo Xiong, Hai-Feng Wang, Jian-Song Wang, Department of Urology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650000, Yunnan Province, China

Corresponding author: Jin-Song Zhang, Doctor, Doctor, Department of Urology, The Second Affiliated Hospital, Kunming Medical University, No. 374 Dianmian Road, Kunming 650000, Yunnan Province, China. 94593392zjs@sina.com

Abstract

BACKGROUND
Small-cell carcinoma of the prostate (SCCP) is a clinically rare malignant tumor, accounting for < 1% of all prostate tumors. However, negativity for all SCCP neuroendocrine markers is rare. Herein, we report a case of SCCP with completely negative neuroendocrine markers and explore its clinicopathologic features, thus improving the understanding of its clinical diagnosis and management.

CASE SUMMARY
We report the case of a 48-year-old patient with SCCP negative for common sensitive neuroendocrine-staining indicators. Dysuria was the first symptom, and rectal examination revealed a hard prostate, palpable nodules, diffuse prostate enlargement, no pressure pain, no blood staining in the finger sleeve, 1.33 ng/mL total prostate-specific antigen level, and a free-to-total prostate-specific antigen ratio of 0.21 ng/mL. Ultrasound suggested a prostate size of 5.3 cm × 5.8 cm × 5.6 cm, and magnetic resonance imaging suggested prostate cancer. The lower posterior bladder wall, rectal mesentery, and bilateral seminal vesicles were invaded, with multiple lymph node metastases in the pelvis. A whole-body bone scan suggested an abnormally active multiple bone metabolism and possible bone metastases. Head and lungs computed tomography revealed no significant nodal shadow. Following a pathological diagnosis of SCCP after a prostate puncture, with negative indicators of common sensitive neuroendocrine staining, chemotherapy was administered; the patient died 4-5 mo after SCCP diagnosis.

CONCLUSION
SCCP is a rare disease characterized by atypical clinical symptoms, limited treatment options, a short survival period, and a poor prognosis.

Key Words: Prostate cancer; Small cell carcinoma; Neuroendocrine tumor; Therapeutics; Diagnosis; Case report
©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Small cell carcinoma of the prostate (SCCP) is a very rare type of prostate tumor, generally characterized by low differentiation, high malignancy, rapid growth, easy diffusion, and poor prognosis. Among SCCP types, mixed SCCP is relatively common, completely simple SCCP is rarely reported, and SCCP with negative neuroendocrine markers is even rarer. This study reports a rare case of SCCP with completely negative neuroendocrine markers, and it found SCCP to be characterized by atypical clinical symptoms, limited treatment options, a short survival period, and a poor prognosis, requiring pathological examination to confirm its diagnosis.

INTRODUCTION

Small-cell carcinoma of the prostate (SCCP) is one of the rarest types of prostate tumors. It is generally characterized by low differentiation, high malignancy, rapid growth, easy spread, and poor prognosis[1]. It has been reported on a case-by-case basis in both domestic and international literature, with more cases of mixed SCCP than those of completely simple SCCP being reported[2]. SCCP is generally characterized by neuroendocrine granules in the cytoplasm, and immunohistochemistry suggests at least one positive neuroendocrine marker, predominantly in small-cell neuroendocrine carcinoma of the prostate[3], whereas SCCP negativity for almost all neuroendocrine markers is even rarer. SCCP diagnosis and treatment have not yet been standardized internationally and are still being explored. Herein, we report the treatment of a patient with SCCP who was negative for almost all neuroendocrine markers. By reviewing the relevant literature from recent years, we analyzed and summarized SCCP diagnosis and treatment, aiming to deepen the understanding of this disease.

CASE PRESENTATION

Chief complaints
A 48-year-old man was admitted to our hospital on January 7, 2019, due to dysuria that lasted for 10 d.

History of present illness
A 48-year-old man was admitted to our hospital on January 7, 2019, due to dysuria that lasted for 10 d. No gross hematuria or acute urinary retention, and no treatment in other hospitals.

History of past illness
The patient had no history of surgery, trauma, or other diseases.

Personal and family history
There was no history of hereditary diseases. No family members had similar symptoms.

Physical examination
On rectal examination, the prostate was hard and diffusely enlarged, the nodules were palpable, no pressure pain was experienced, and the finger sleeve was not stained with blood.
Laboratory examinations
Laboratory tests revealed that the total prostate-specific antigen level and free-to-total prostate-specific antigen ratio were 1.33 ng/mL (reference range: 0-4 ng/mL) and 0.21 ng/mL (reference range: 0-0.944 ng/mL), respectively. Liver and kidney function was normal. Serum tumor markers were in the normal range.

Imaging examinations
B-mode ultrasound revealed a prostate size of 5.3 cm × 5.8 cm × 5.6 cm, echogenicity in the prostate was heterogeneous, and the envelope was not smooth.

Computed tomography (CT) imaging of the abdomen exhibited heterogeneous density within the prostate and heterogeneous enhancement after enhancement, suggesting possible prostate cancer, possible pelvic lymph node metastasis, pelvic floor fascia, and rectal wall and seminal vesicle invasion (Figure 1A).

Prostate magnetic resonance imaging confirmed mixed signals in the prostate, with possible prostate tumor invasion of the lower posterior bladder wall, rectal mesentery and bilateral seminal vesicles, and multiple lymph node metastases in the pelvis (Figure 1B-D).

Whole-body bone scan revealed multiple abnormalities in bone metabolism, with possible bone metastases (Figure 2), and CT of the head and lung suggested no obvious nodal shadow.

We strongly recommend that the patient use 68Ga-PSMA PET/CT to look for small lesions around the prostate bed or extra-prostatic lymph node metastases. However, the patient and his family declined our offer due to the high cost.

Further diagnostic work-up
The patient was advised to initially undergo prostate puncture biopsy. The tumor cells appeared oval to spindle-shaped, with obvious heterogeneity and a mixture of oval and spindle-shaped cells (Figure 3). The immunophenotypes were as follows: CKPAN (foci +), Ki67 (60%), AR (-), PSA (-), PSAP (-), P504S (-), CK5/6 (-), CKH (-), GATA3 (-), Vimentin (-), CEA (-), CK7 (-), CK20 (-), villin (-), NSE (-), Syn (-), CD56 (-), P40 (-), P63 (-), LCA (-), CD38 (-), CD138 (-), EMA (-), MUM1 (-), CD30 (-), Desmin (-), HMB45 (-), Melan-A (-), S100 (-), and MyoD1 (-) (Figure 4A and B). Hence, the initial diagnosis was small cell malignancy.

FINAL DIAGNOSIS
On combining the initial diagnosis with immunohistochemical markers, undifferentiated carcinoma was considered. On further combining with the adjuvant examination and clinical manifestations, the patient was finally diagnosed with advanced SCCP.

TREATMENT
The current treatment modality recommended radiotherapy; however, the patient and family declined radiotherapy and finally selected the etoposide combined with cisplatin (EP) chemotherapy regimen as follows: Cisplatin 80 mg on day 1 of chemotherapy as well as etoposide 100 mg on days 1-3 and 21-28 for one cycle, in a course of 6 cycles.

OUTCOME AND FOLLOW-UP
A repeat of CT imaging of the lung on February 14, 2019, revealed the following: Multiple nodal shadows, suggesting possible SCCP metastasis (Figure 5A and B). Further CT imaging of the abdomen on March 17, 2019, suggested an irregular enlargement of SCCP, exhibiting a tendency to infiltrate, bilateral involvement of the inner segment of the urethral bladder wall, dilatation and fluid retention in the urinary tract, multiple bone destruction in the pelvis (Figure 5C and D), and creatinine increase to 301 μmol/L, and the patient was treated with bilateral nephrostomy.

As the patient developed insensitivity to the EP regimen, EP was replaced with the gemcitabine combined with oxaliplatin (GEMOX) regimen, which was administered as
Figure 1 Computed tomography imaging and magnetic resonance imaging. A: Computed tomography imaging of the abdomen: Heterogeneous density within the prostate and heterogeneous enhancement after enhancement, suggesting possible prostate cancer, possible pelvic lymph node metastasis, pelvic floor fascia, and rectal wall and seminal vesicle invasion; B-D: Prostate magnetic resonance imaging: Mixed signals in the prostate, with possible prostate tumor invasion of the lower posterior bladder wall, rectal mesentery, and bilateral seminal vesicles, with multiple lymph node metastases in the pelvis.

follows: Gemcitabine 1 g on day 1 of chemotherapy as well as oxaliplatin 60 mg on days 1-5 and 21-28 in a course of 6 cycles. On April 25, 2019, the patient was admitted to the hospital for further chemotherapy, with routine blood work suggesting normal hemoglobin and central granulocytes, normal platelets, hemoglobin level of 48 g/L, and creatinine concentration of 156 μmol/L. After a blood transfusion, hemoglobin concentration rose to 110 g/L. The patient’s general condition was extremely poor (dyspnea, intolerable bone pain, and extreme wasting), and they could not tolerate further chemotherapy. The family decided to abandon the treatment, and the patient died of respiratory failure on May 20, 2019.

DISCUSSION

The lung is the most common site of small-cell carcinoma, and its most common site outside the lung is the prostate, accounting for approximately 3% of cases [4]. SCCP is a rare malignancy in clinical practice, accounting for less than 1% of all prostate tumors [4]. Despite having a low incidence, SCCP exhibits high malignancy and poor prognosis [5], and often metastasizes to tissues and organs, such as the brain, lung, liver, and bone via blood circulation [6]. At present, three hypotheses regarding the origin of SCCP exist: (1) The abnormal differentiation of prostatic adenocarcinoma into small-cell carcinoma after endocrine therapy [7]; (2) Derivation of the different types of adenocarcinoma and small-cell carcinoma of prostatic epithelium from pluripotent stem cells; and (3) Neuroendocrine cells in the prostatic epithelium. Prostatic neuroendocrine carcinoma includes prostate cancer with neuroendocrine differentiation,
The above hypotheses have a certain degree of validity, and additional molecular genetic studies have identified multiple mechanisms involved in the pathogenesis of SCCP, including TMPRSS2-ERG gene rearrangement; RB1 gene deletion; MYCN and AURK4 gene overexpression and amplification; Akt, β-catenin, and P13k gene inactivation; P53 signaling pathway inactivation; upregulation of the EZH2 gene; and down-regulation of DUSP1 expression, among others [9,10].
The early stage of SCCP is typical without specific clinical symptoms. As the tumor progresses, it may invade the bladder and rectum, potentially causing difficult urination, hematuria, and perineal discomfort. In addition, signs of metastases may appear, involving the brain, lung, bone, and lymph nodes\cite{11}. Very few patients produce ectopic endocrine hormones and exhibit paraneoplastic syndrome\cite{2}, including Cushing’s syndrome, neurological symptoms, and hypercalcemia, among others\cite{12}. In this case, the patient was 48 years old and predominantly exhibited lower urinary tract obstruction symptoms; therefore, it is necessary to maintain a suspicious mindset and perform a rectal examination in middle-aged men with combined lower urinary tract obstruction symptoms.

SCCP diagnosis relies mainly on pathological examination. Microscopically, cells are observed as small round shapes, arranged in sheets or nests, with little cytoplasm, and the nucleoli are unclear with visible nuclear fission\cite{13}. Immunohistochemistry is the main method of confirming SCCP diagnosis, and the typical sensitive neuroendocrine staining markers are NSE, Syn, CD56, and CgA\cite{14}, in addition to TTF-1, insulinoma-associated protein 1 (INSM1)\cite{14}, and FOXA2\cite{15}, among others. SCCP is a type of prostate neuroendocrine tumor that can be diagnosed provided one or more of the following indicators are positive: NSE, Syn, CD56, CgA, TTF-1, INSM1, and FOXA2. AR, PSA, PSAP, P504S, and other classical immune indicators of prostate adenocarcinoma are also widely expressed in poorly differentiated adenocarcinoma, whereas in SCCP, they are almost not expressed; therefore, they can be used to distinguish SCCP from poorly differentiated adenocarcinoma\cite{16}. The patient described in this paper exhibited negative NSE, Syn, CD56, CgA, AR, PSA, PSAP, and P504S indexes, and due to equipment limitations in the hospital pathology department, TTF-1, INSM1, and FOXA2 immune indexes were not assessed, rendering the final diagnosis rather limited. While the final diagnosis was SCCP (undifferentiated carcinoma), the author still considered neuroendocrine small-cell carcinoma based on current relevant tests and related examinations. Overall, the probability that
the most sensitive immune indicators, such as NSE, Syn, CD56, and CgA, would be simultaneously negative in prostate neuroendocrine small-cell carcinoma was considerably low.

Currently, there is no unified standard treatment for SCCP. Clinically, the treatment plan of lung small-cell carcinoma is generally referred to, which is mainly combined with chemotherapy, supplemented by surgery and radiotherapy[3]. Surgery is suitable for early-stage SCCP without metastasis or local progression. Relevant studies have concluded that for early-stage or locally progressive SCCP, early surgery and postoperative combined chemotherapy can effectively improve patient survival or even cure[17]. However, SCCP progresses rapidly, and most patients are at an advanced stage, losing the opportunity for surgery, and palliative surgery potentially improves patients’ quality of life. Chemotherapy is based on the EP regimen, with an efficiency of up to 61.0%[18]. If ineffective, other regimens can alternatively be used. In this case, the patient was not sensitive to the EP regimen; thus, it was subsequently replaced with the GEMOX regimen, which was unsatisfactory. Hence, the chemotherapy regimen for SCCP is still currently being explored. Radiotherapy combined with chemotherapy may improve the patient’s prognosis. Radiotherapy alone is ineffective and is generally used in patients with bone metastases to control pain symptoms caused by these metastases[19]. In this case, the patient declined radiotherapy, and the patient and family accepted chemotherapy in consideration of the toxic reactions in the urinary tract and rectum caused by radiotherapy.

The application of 68Ga-PSMA PET/CT in the whole diagnosis of prostate cancer has developed rapidly, which plays a vital role in assisting clinical tumor staging. It can accurately detect local lesions, lymph node metastasis, and distant metastasis in prostate cancer, with high sensitivity and specificity. It also has the advantage that this test can be performed at a low PSA value (< 0.5 ng/mL)[20]. The patient described in this article refuses to undergo 68Ga-PSMA PET/CT examination, when the patient's CT scan finds the lesions in the lung as a metastatic site, but we do not know about the function of the lesion. Parghane and Basu[21] used Dual-tracer (68Ga-PSMA and 18F-FDG) PET/CT in the case of metastatic SCCP. Interestingly, whereas metastatic SCCP transformed pelvic and penile lesions were nonavid with 68Ga-PSMA but avid with 18F-FDG. Therefore, the role of new tracer 18F-FDG in metastatic SCCP should not be underestimated. The bone and pelvic lesions demonstrated a favorable response to a multimodal therapeutic approach (177Lu-PSMA radioligand therapy and radiotherapy), a trend toward a decrease in PSA level[21]. 177Lu-PSMA radioligand therapy shows promising prospects for metastatic SCCP patients who progress after conventional therapy. For patients with metastatic SCCP patients that progress after chemotherapy, 177Lu-PSMA radioligand therapy is expected to change the status quo of patients with short survival and poor quality of life[22]. 68Ga-PSMA PET/CT is used to screen patients suitable for 177Lu-PSMA radioligand therapy, and then 177Lu-PSMA radioligand therapy for the suitable patients for targeted therapy, can intuitively and visually dynamic evaluation of efficacy. Tumor staging is carried out to realize the integration of diagnosis and treatment, which embodies the precision and personalized diagnosis and treatment concept of nuclear medicine. Despite urgent clinical needs, 177Lu-PSMA radioligand therapy for metastatic SCCP has yet to be approved by the FDA and the European Medicines Agency. However, with the accumulation of global research data, it is expected to become an extension and complement to the clinical routine treatment of metastatic SCCP.

In recent years, targeted therapies have emerged through continued research into the molecular mechanisms of SCCP. AURKA plays an important role in the treatment development of SCCP, and AURKA inhibitors (danusertib, CD532, and MLN8237) improve patient outcomes[6]. Fifty percent of SCCP samples have been found to have fusion rearrangements of TMPRSS2-ERG. PARP1 inhibitor (olaparib) potentially improves the sensitivity of tumor cells to radiotherapy, thus improving the effect of chemoradiotherapy on SCCP[23]. Researchers have continued to explore the molecular mechanisms of SCCP to establish a pathway for precision therapy.

The current patient was 48 years old and was admitted to the hospital with symptoms of dysuria. On combining the initial diagnosis with the medical history and relevant investigations, the patient was considered to have advanced primary SCCP, with negative CD56, NSE, Syn, and CgA indicators, which is a rare phenomenon. The treatment strategy was to consider the patient’s young age and use preoperative chemotherapy, await tumor shrinkage before surgery, and subsequently combine radiotherapy after surgery to improve the patient’s survival; however, the patient’s preoperative chemotherapy was not effective and failed to control tumor progression. A few studies have investigated SCCP with negative CD56, NSE, Syn, and CgA indicators, and whether it is insensitive to EP chemotherapy and effective with...
targeted therapy warrants full elucidation.

CONCLUSION

In summary, SCCP is a rare malignant tumor, and SCCP with negative CD56, NSE, Syn, and CgA indexes is even rarer, with no specific symptoms in the early stage. Further, it is often detected in its advanced stage, with diagnosis relying on pathological examination. An in-depth study of the molecular mechanism of SCCP may provide a new basis for the diagnosis and treatment of SCCP.

REFERENCES

CASE REPORT

Disseminated peritoneal leiomyomatosis with malignant transformation involving right ureter: A case report

Chen-Yueh Wen, Herng-Sheng Lee, Jen-Tai Lin, Chia-Cheng Yu

ORCID number: Chen-Yueh Wen 0000-0002-1256-698X; Herng-Sheng Lee 0000-0002-1596-2304; Jen-Tai Lin 0000-0001-7702-5562; Chia-Cheng Yu 0000-0002-2620-1914.

Author contributions: Wen CY and Yu CC were involved in case management; Lee HS helped with the pathological interpretation; The images were collected and the main text was written by Wen CY; and all authors helped with data collection and preparation for submission of the final article.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Country/Territory of origin: Taiwan

Specialty type: Medicine, research and experimental

Provenance and peer review: Unsolicited article; Externally peer reviewed

Abstract

BACKGROUND
Disseminated peritoneal leiomyomatosis (DPL) with myxoid leiomyosarcoma is a rare variant of leiomyosarcoma, and hematuria as a presenting symptom has never been reported. Through this case report, we emphasize the investigation of the etiology, clinical presentation, diagnosis, treatment, and prognosis of DPL with malignant changes mimicking metastatic urinary tract cancer and to help develop further clinical management.

CASE SUMMARY
We describe a case of DPL with malignant transformation involving the right ureter after laparoscopic hysterectomy. An exploratory laparotomy was performed and all visible nodules were surgically removed. DPL with focal malignant transformation to myxoid leiomyosarcoma was confirmed based on pathology results.

CONCLUSION
Professionals who preoperatively diagnose DPL with malignant change to myxoid leiomyosarcoma involving the genitourinary tract should consider symptoms of abdominal pain, hematuria, and imaging of disseminated pelvic tumors in women, especially those with prior history of laparoscopic hysterectomy. Early complete removal of all tumors is the cornerstone to prevent DPL from malignant changes.

Key Words: Disseminated peritoneal leiomyomatosis; Leiomyosarcoma; Laparoscopic
Disseminated peritoneal leiomyomatosis (DPL) is a rare disease characterized by the presence of multiple nodules composed of smooth muscle cells located in both peritoneal and extraperitoneal spaces of the abdomen. Malignant changes in DPL correspond to a rare variant of leiomyosarcoma characterized by aggressive behavior. We describe a case of DPL with malignant transformation involving the right ureter after laparoscopic hysterectomy, mimicking urothelial carcinoma with peritoneal carcinomatosis. The aim of our case report is to investigate the etiology, clinical presentation, diagnosis, treatment, and prognosis of DPL and to help develop further clinical management of this disease.

INTRODUCTION
Disseminated peritoneal leiomyomatosis (DPL) is a rare disease characterized by the presence of multiple nodules composed of smooth muscle cells located in both the peritoneal and extraperitoneal spaces of the abdomen[1]. This disease is usually observed in women of reproductive age. To date, hundreds of cases have been reported[2,3]. However, malignant changes in DPL with myxoid leiomyosarcoma are rare, and hematuria as a presenting symptom has never been reported[4,5]. Herein, we present a case of DPL with malignant transformation involving the right ureter after laparoscopic hysterectomy. The aim of our case report is to investigate the etiology, clinical presentation, diagnosis, treatment, and prognosis of DPL with malignant changes mimicking metastatic urinary tract cancer and to help develop further clinical management.

CASE PRESENTATION
Chief complaints
A 72-year-old woman presented with gross hematuria one month before visiting our hospital.

History of present illness
This patient also noted intermittent abdominal cramping pain for half a year. The patient reported no urinary urgency, dysuria, flank pain, or fever.

History of past illness
The patient had undergone laparoscopic hysterectomy for uterine leiomyoma at another institution 2 years ago prior to her visit. Prior medical histories of hypertension, diabetes mellitus, and gout were noted.

Personal and family history
The patient had no relevant personal or family history.

Physical examination
Physical examination revealed multiple painful hard subcutaneous nodules in the lower abdomen.
Laboratory examinations
Laboratory examination revealed an elevated leukocyte count of 15109/mL, hemoglobin count of 12.9 g/dL, and C-reactive protein count of 3.72 mg/dL. Urine cytology, urinalysis, blood coagulation, kidney function, and liver function were all within normal range.

Imaging examinations
Abdominal computed tomography (CT) suggested urothelial carcinoma of the right lower third ureter with hydronephrosis and multiple seeding lesions at the anterior abdominal wall, subcutaneous fat, and bilateral inguinal areas (Figure 1).

FINAL DIAGNOSIS
Percutaneous ultrasound-guided biopsy of the most superficial lesion in the right lower quadrant of the abdomen was performed first. The tumor cells showed smooth muscle cell differentiation, which was compatible with leiomyoma as evidenced by pathology results.

TREATMENT
Because of persistent lower abdominal pain, the patient requested all tumors to be removed. An exploratory laparotomy was conducted with a lower midline incision, and multiple tumors of different sizes were found attached to the rectus muscle, bilateral inguinal areas, right ureter, and sigmoid colon (Figure 2). All nodules were meticulously dissected and resected with margins. Segmental resection of the right ureter, ureteroneocystostomy, partial resection of the sigmoid colon wall with primary closure, and transverse colostomy were also performed. The postoperative convalescence was uneventful. Final pathology revealed DPL with focal malignant transformation to myxoid leiomyosarcoma. Microscopically, the tumor was composed of malignant spindle cells with moderate to abundant eosinophilic cytoplasm arranged in interlacing fascicles (Figure 3).

OUTCOME AND FOLLOW-UP
Abdominal discomfort and pain improved significantly postoperatively. The transverse colostomy was closed after 3 mo. Adjuvant systemic chemotherapy was recommended, with periodic follow-up imaging; however, the patient opted for active surveillance only. The patient was doing well without evidence of recurrence 24 mo after the operation.
DISCUSSION

The etiology and pathophysiology of DPL are not yet well-established. Most reported cases are related to a history of laparoscopic hysterectomy or uterine myomectomy. Iatrogenic contamination after morcellation of myoma during laparoscopic surgery is considered to be a possible cause of DPL[1]. In the current case, the patient underwent laparoscopic hysterectomy 2 years ago; the use of a power morcellator may enhance potential for tumor implantation and dissemination[6,7].

Most patients with DPL are asymptomatic. In these patients, DPL is found incidentally through imaging. Several non-specific symptoms, including abdominal pain, distension, menostaxis, and bleeding from the rectum or vagina have been reported[7-9]. In the present case, the patient reported abdominal pain for one month, which is the most common manifestation of DPL. In addition, she first complained of gross hematuria and was referred to our urology outpatient department. To the best of our knowledge, this is the first report of DPL with hematuria as an initial presentation that could mimic urothelial cancer with peritoneal carcinomatosis[10,11]. Preoperative diagnosis of DPL is challenging, and only histopathologic examination can discriminate DPL from peritoneal metastatic malignancies or benign metastasizing leiomyoma[9,12]. Hence, we performed percutaneous ultrasound-guided biopsy of the abdominal wall lesion to delineate the nature of these tumors, and pathology showed a smooth muscle tumor compatible with leiomyoma.
Histological appearance of disseminated peritoneal leiomyomatosis tumor. A: The tumor has hypercellular areas with focal myxoid matrix, composed of spindle-shaped neoplastic cells arranged in interfacing fascicles and storiform growth pattern (original magnification, 200×); B: Myxoid matrix infiltrated into adipose tissue (original magnification, 100×).

DPL is histologically benign but can transform into a malignant leiomyosarcoma. The duration between the initial diagnosis of DPL and malignant changes varies from 1 mo to 8 years\[4,13\]. This duration can be under- or overestimated because malignant change may occur focally and insidiously, which makes histological sampling difficult. In the current case, the duration of malignant transformation was speculated to be less than 2 years according to the patient’s operative history. Nevertheless, the focal tumor specimen involving the right ureter revealed a smooth muscle tumor with infiltrative borders, rich myxoid matrix, spindle-shaped neoplastic cells arranged in interfacing fascicles, mitotic activity up to 4 mitoses in 10 high-power fields, and foci of tumor necrosis. These findings are compatible with DPL with focal malignant transformation to myxoid leiomyosarcoma.

Standard treatment for DPL is debated. Since most DPLs are found in women of reproductive age, conservative treatment should be considered. Treatment of DPL includes a variety of treatments, such as active surveillance, hormone therapy, debulking surgery, chemotherapy, and radiation therapy, while surgical removal remains the mainstay because of its malignant potential\[13,14\]. In our case, no adjuvant chemotherapy or radiotherapy was administered.

CONCLUSION

In conclusion, we present a case of DPL with focal malignant transformation involving the right ureter, mimicking urothelial carcinoma with peritoneal carcinomatosis. Preoperative diagnosis of malignancy is usually challenging. DPL with malignant change to myxoid leiomyosarcoma involving the genitourinary tract should be weighed against differential diagnoses in women presenting with abdominal pain and hematuria with imaging of disseminated pelvic tumors, especially those with prior history of laparoscopic hysterectomy. Early complete surgical resection of all tumors is the most important factor in preventing malignant transformation of DPL, even though it has a relatively favorable outcome.

REFERENCES

Arthroscopic surgery for synovial chondroma of the subacromial bursa with non-traumatic shoulder subluxation complications: Two case reports

Xiong-Feng Tang, Yan-Guo Qin, Xian-Yue Shen, Bo Chen, Ying-Zhi Li

Abstract

BACKGROUND
Synovial chondromatosis is a disease originating from the synovium and characterized by the presence of metaplastic cartilaginous nodules in synovial cavities. The exact prevalence of synovial chondromatosis remains unknown, and the involvement of the shoulder joint is very rare. Synovial chondromatosis accompanied by subluxation of the humeral head without a history of trauma is rarely encountered, and to our knowledge, no published reports describe this condition.

CASE SUMMARY
We present two cases of synovial chondromatosis in the shoulder joint, accompanied by subluxation of the humeral head, in two arthroscopically managed adult patients. We performed arthroscopic labrum fixation and removal of the loose body from the shoulder joint. To identify primary and secondary categories, pathological analysis was arranged. Clinical and radiographic evaluations at the 1-mo follow-up were satisfactory.

CONCLUSION
The biomechanical function of the shoulder joint requires attention, especially following the detection of loose bodies, as observed with synovial chondroma occurring in rare sites. Arthroscopic management is successful in patients with synovial chondromatosis combined with shoulder subluxation.

Key Words: Synovial chondromatosis; Shoulder; Subluxation; Arthroscopic surgery; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

Synovial chondromatosis is a disease of unknown etiology, originating from the synovium and characterized by the presence of metaplastic cartilaginous nodules in synovial cavities, bursa, or tendon sheaths[1-3]. Synovial chondromatosis commonly presents in young to middle-aged men[4], and usually involves large joints, including the knee, hip, and elbow, but can occur in any synovial joint throughout the body. The disease most commonly affects the knee joint, followed by the hip and elbow; however, the occurrence of synovial chondromatosis in either the shoulder or ankle joints is extremely rare[3,5,6].

A diagnosis of synovial chondromatosis is often delayed due to initially mild and nonspecific symptoms[7]. If the intra-articular fragments are not adequately calcified, synovial chondromatosis can go undetected for years[8]. The complaints associated with synovial chondromatosis typically include joint pain, joint swelling, decreased mobility, and loose bodies[9]. However, synovial chondromatosis accompanied by subluxation of the humeral head in the absence of any history of trauma is rare and, to our knowledge, has not yet been reported in the literature, and the mechanism of subluxation has not ever been analyzed.

The most commonly recommended treatment for synovial chondromatosis is the surgical removal of loose bodies to ameliorate the associated symptoms. Currently, an arthroscopic approach is recommended for most shoulder pathologies[10,11]. The primary advantages of using arthroscopic approaches include decreased morbidity, synchronous visualization, and the ability to treat both intra- and extra-articular pathologies. Hypertrophic synovia and multiple loose bodies are typical arthroscopic findings[12,13].

In this report, we present two cases of synovial chondromatosis in the shoulder joint accompanied by subluxation of the humeral head treated with arthroscopic management in adult patients and discuss the potential underlying mechanisms involved in disease development.

CASE PRESENTATION

Chief complaints

Case one: A 56-year-old woman experienced severe right shoulder pain and decreased range of motion for 3 d without any history of trauma.

Case two: A 56-year-old woman experienced severe left shoulder pain with limited mobility for 3 mo, which worsened over the past 4 d, without any history of trauma prior to presence at our hospital.

History of present illness

Case one: As reported by the patient, the right shoulder pain was accompanied by limited mobility and significant swelling due to slight external force over the previous...
The pain and swelling continued to increase without systemic treatment, and the patient was referred to our hospital for further treatment. After physical examination, imaging examinations, and a review of the patient’s medical history, the patient was diagnosed with right shoulder joint dislocation.

Case two: The patient described left shoulder joint pain without an obvious cause and limited joint movement, which started 3 mo prior to presentation. Conservative treatments, such as acupuncture and therapeutic massage at a local hospital, did not provide symptom relief, and the pain had become aggravated over the past 4 d without any trauma.

History of past illness
Case one: The patient’s medical history was unremarkable, and she was in generally good health.

Case two: The patient’s medical history showed a 3-year history of hypertension, reaching as high as 160/100 mmHg, without regular oral antihypertensive medication, resulting in poorly controlled hypertension.

Physical examination
Case one: The physical examination revealed obvious swelling in the right shoulder, with an empty glenoid cavity and obvious deformity. Tenderness was detected in the spinous process of the cervical spine and in front of and above the right shoulder. Mobility was limited, and the Dugas sign was positive.

Case two: Physical examination revealed obvious swelling of the left shoulder joint, mild atrophy of surrounding muscles, positive tenderness in front of and above the left shoulder joint, positive Jobe sign, positive arm drop test, positive pain arc sign, and positive Dugas sign.

Imaging examinations
Case one: Radiographs showed subluxation of the shoulder joint (Figure 1A). Computed tomography (CT) indicated that the right humerus head was dislocated anteriorly and inferiorly. The joint space was narrowed, the shadow of the surrounding tissue was thick, and the shadow of the fluid density was visible within the joint cavity. A point-striped bone density shadow was observed near the pelvis of the right shoulder. Magnetic resonance imaging (MRI) examination of the shoulder joint indicated a quasi-circular, short T2 weighted signal in the shoulder cavity, with a large area of long T1 and long T2 liquid signals observed in the subacromial bursa (Figure 1B).

Case two: Radiography of the shoulder joint showed a dislocated left shoulder joint and the presence of multiple bone-like loose bodies within the glenohumeral joint space (Figure 2A). On three-dimensional CT, the left humeral head could be observed surrounded by sheet-like, low-density shadows. The CT value was approximately 25 HU, and the surrounding lipolysis remained clear, with multiple sheet-like, bone-like dense shadows visible. The head position was slightly lower than the normal anatomical relationship of the left humerus (Figure 2B and C). MRI examination of the shoulder joint showed a round, short T2-weighted signal, an irregular shape for the supraspinatus muscle, and patchy proton density-weighted image hyperintensity at the attachment point of the supraspinatus tendon in the joint cavity. Sheet-like long T1 and long T2 fluid signals in the subacromial space of the deltoid synovial sac were observed (Figure 3).

Pathological diagnosis
Case one: The pathological analysis showed right shoulder joint disease of the synovium and exfoliated cartilage. Hyperplastic cartilage tissue was submitted for inspection, which revealed degenerative local necrosis and ossification in some areas; the subacromial lesion synovium and loose bodies were submitted for inspection as suspected hyperplastic cartilage. The surface of the tissue was covered in a small amount of synovial membrane, consistent with synovial chondroma (Figure 4).

Case two: Upon pathological examination, the specimen was identified as a cartilaginous nodule surrounded by fibrous tissue with local calcification. Fragments of articular cartilage or subchondral lamellar bone were observed (Figure 5).
Figure 1 Imaging examinations of case one. A: Plain radiograph in anteroposterior view of the right shoulder, showing subluxation of the humeral head; B: Magnetic resonance imaging examination of the shoulder joint, showing multiple intra-articular loose bodies and joint effusion.

Figure 2 Imaging examinations of case two. A–C: Plain radiographs and three-dimensional computed tomography (3D-CT) reconstruction of the left shoulder, showing multiple intra-articular loose bodies and the subluxation of the humeral head; D–F: Postoperative radiographic re-examination and 3D-CT reconstruction showed no loose bodies in the subacromial space. The humeral head returned to a normal anatomical relationship.

FINAL DIAGNOSIS

Case one: The final diagnosis was subluxation and synovial chondroma of the right shoulder joint.

Case two: Subluxation and synovial chondroma, along with calcified tendinitis of the left shoulder joint.

TREATMENT

Case one: We performed arthroscopic labrum fixation and removal of the loose body
Figure 3 Magnetic resonance imaging of the shoulder joint showed multiple intra-articular loose bodies and joint effusion.

Figure 4 Pathological examination of case one. A: Lobulated areas of hyaline cartilage just below the synovial surface were easily identified by hematoxylin-eosin staining (magnification: 20 ×); B: Chondrocytes were found clustered together and were not uniformly distributed throughout the ground substance (magnification: 100 ×).

Figure 5 Pathological examination of case two. A: Fragments of articular cartilage or subchondral lamellar bone were present in loose bodies identified by hematoxylin-eosin staining (magnification: 20 ×); B: Chondrocytes were found in the zonal and ring-like units together and were uniformly distributed throughout the ground substance (magnification: 100 ×).

From the shoulder joint. After successful anesthesia induction, the patient was placed in a left-sided lying position, the right limb was placed in an abduction position, and a traction weight of 4 kg was applied. The standard posterior approach was used for glenohumeral arthroscopy, which showed a large quantity of cartilaginous debris in the joint cavity (Figure 6). Arthroscopy revealed a free cartilage sheet, obvious synovial hyperplasia, massive exfoliation of the articular surface of the humeral head, scapular glenoid cartilage, degeneration of the long head of the biceps, an inferior anterior labrum, and separation of the joint capsule from the glenoid. During arthroscopy, both superior and anterior approaches were used to remove all free cartilage and exfoliate the cartilage from the articular head to proliferate the synovium.
Figure 6 From the standard posterior portal, the arthroscopic view revealed a large number of cartilaginous loose bodies in the region of the subscapularis.

The anterior inferior joint capsule and labrum were loosened, and 2.9 mm anchors were implanted at the 5:30, 4:30, and 3:00 o’clock positions. The anterior inferior joint capsule and labrum were sutured by lifting and repositioning. The humeral head was located in the center of the joint, and the glenoid labrum was reset. The arthroscope was then moved to the subacromial space, which showed large amounts of synovial hyperplasia under the acromion, accompanied by cartilaginous fragments and free loose bodies, the proliferation of the subacromial capsule, and inflammatory changes. The proliferative synovial membrane, cartilage debris, and loose bodies were removed and sent for pathological examination. The joint cavity and subacromial space were washed with a large volume of normal saline. After checking the gauze and instruments, the incision was sutured, and the affected limb was suspended. After hanging and fixation, the operation was complete.

Case two: The loose bodies were removed from the shoulder joint under arthroscopic guidance through the following steps. After successful anesthesia induction, the patient was placed in the right decubitus and left limb abduction position, and a traction weight of 4 kg was applied. A standard posterior approach was utilized for glenohumeral arthroscopy after routine disinfection and draping were performed. Under arthroscopic guidance (Figure 7), the synovia of the joints were observed, featuring hyperplasia, with degeneration of the articular surface of the humeral head, scapula, biceps, and long head muscles; intact subscapularis, supraspinatus, and small round muscles; and degenerative lesions detected on the subspinal muscles. Two loose bodies were observed in the joint space, which were removed using nucleus pulposus forceps. An arthroscopic anterior approach was established to remove the synovial hyperplasia. The arthroscope was repositioned to the subacromial space, which revealed the hyperplasia of the outer edge of the front shoulder bone and subacromial bursa and inflammatory changes. After establishing a posterolateral approach, a synovial resection line was determined, and acromioplasty was performed. The joint cavity was washed with a large volume of physiological saline. After checking the gauze and instrument inventory, the incisions were sutured, covered with sterile dressing, and the limb was suspended.
Figure 7 From the standard posterior portal, the arthroscopic view revealed a large number of cartilaginous loose bodies and synovial capsule hyperplasia, with inflammatory changes in the region of the subscapularis.

OUTCOME AND FOLLOW-UP

Case one: Re-examination by postoperative radiography showed no loose bodies in the subacromial space. The humeral head returned to a normal anatomical relationship. The swelling and pain of the shoulder joint gradually disappeared, and shoulder joint function returned to normal. Range of movement exercises were started as soon as the patient was comfortable. At the 1-mo follow-up, the patient had pain-free range of movement in the right shoulder that was comparable to that in the left shoulder, with no remaining preoperative symptoms.

Case two: Postoperative radiographic re-examination showed no loose bodies in the subacromial space. The humeral head returned to its normal anatomical relationship (Figure 2D–F). The swelling and pain of the shoulder joint gradually disappeared, and shoulder joint function generally returned to normal. At the 1 mo follow-up, normal shoulder function was restored.

DISCUSSION

Synovial chondromatosis of the joints is a rare clinical condition with an unclear definition and diagnostic criteria[14], resulting in limited available knowledge regarding this condition. Synovial chondromatosis can be divided into primary and secondary categories[15]. Primary synovial chondromatosis involves no prior basic bone or joint lesions and is generally regarded as a benign neoplastic disease rather than synovial metaplasia, with a reported incidence of approximately 5%[16]. By contrast, secondary membrane chondromatosis typically occurs secondary to trauma, osteoarthritis, or rheumatoid arthritis[17,18]. Clinically, the signs and symptoms are nonspecific and may be suggestive of several pathological conditions. In most cases, the symptoms comprise pain or range of motion loss. Shoulder pain is one of the first symptoms, followed by the locking of the joint in some cases[18,19]. However, dislocation is not a typical feature. Both of our patients experienced a painful range of motion, with signs and symptoms typical of shoulder joint subluxation.

Most previously reported investigations have not described synovial chondromatosis accompanied by subluxation, and no previous literature reports have reported any clinical manifestations of joint subluxation; despite the presence of many loose
bodies, no cases of joint dislocation have been reported. Koichi et al retrieved more than 200 loose bodies from a young female patient with a rare condition of secondary synovial chondromatosis in her right shoulder[20]. Hiroyuki extracted 17 free bodies from the subscapularis bursa of a confirmed case of synovial chondromatosis in a 12-year-old boy[21]. Therefore, we questioned the occurrence of shoulder dislocation in our patients, who were characterized by the presence of relatively few loose bodies. To our knowledge, previous case reports and studies have focused on the characteristic symptoms caused by loose bodies, such as joint pain, swelling, and limited mobility, without examining the biomechanical function of the shoulder joint. The emergence of loose bodies, such as those observed with synovial chondroma in unusual locations, disrupts the stabilization mechanism of the shoulder joint. The lever effect occurs during specific movements, resulting in shoulder joint dislocation.

The biomechanics of the glenohumeral joints depend on interactions between both static and dynamic stabilizing structures[22]. Static stabilizers include the bony anatomy, negative intra-articular pressure, glenoid labrum, and the glenohumeral ligaments, along with the joint capsule. The dynamic stabilizing structures include the rotator cuff muscles and other muscular structures surrounding the shoulder joint. The combined functions of these stabilizers serve to support multiple degrees of motion within the glenohumeral joint. When any one of these mechanisms fails, shoulder joint pathology, such as subluxation or dislocation, can occur[22,23].

Whether the observed synovial cartilage tumors observed in our patients represent primary or secondary hyperplasias and the order in which dislocation and synovial chondroma developed are other concerns. Histopathological identification is needed to differentiate between primary and secondary synovial chondromatosis[18]. According to Villacin et al[24], who delineated the histologic criteria for differentiating between primary and secondary synovial chondromatosis, in primary lesions, the chondrometaplasia foci in the synovium and loose bodies are characterized by a markedly disorganized pattern, with many binucleate, plump chondrocytes, and patchy, diffuse calcification. By contrast, in secondary lesions, fragments of articular cartilage or subchondral lamellar bone may be present in the loose bodies, and the pattern of calcification is zonal and ring-like, with uniform, evenly distributed chondrocytes[20,24]. Milgram suggested that primary synovial chondromatosis has three phases: (1) Active intrasynovial disease, without loose bodies; (2) transitional lesions, characterized by both active intrasynovial proliferation and loose bodies; and (3) multiple free bodies, without intrasynovial disease[25]. Combined with the operative findings of multiple loose bodies and the histologic absence of intrasynovial disease, patient 1 in our case report may have had phase 3 primary synovial chondromatosis, whereas patient 2 may have had a secondary synovial chondromatosis.

The treatment decision is made according to the patient’s age, symptoms, and the disease stage[6]. Preventing missed diagnoses and misdiagnoses and performing a differential diagnosis when loose bodies are detected are important concerns, especially when rotator cuff injuries are suspected. The differentiation between a loose body and an avulsion fracture is also necessary. If the intra-articular fragments are not adequately calcified, synovial chondromatosis can go undetected for years[26]. Obtaining a detailed medical history and performing complete physical examinations and MRI scans can contribute to the accurate diagnosis and treatment of synovial chondromatosis.

CONCLUSION

We believe that the biomechanical function of the shoulder joint should be considered, especially when loose bodies are detected, as observed with synovial chondroma occurring in rare sites. Arthroscopic management was successful in two patients with synovial chondromatosis combined with shoulder subluxation. In such conditions, subluxation is usually transient, and the humeral head returns spontaneously to its normal position after the operation.

REFERENCES

2. McFarland EG, Neira CA. Synovial chondromatosis of the shoulder associated with osteoarthritis:
Chondromatosis of the Ankle with Tarsal Tunnel Syndrome: A Rare Case Report.

Isbell JA, Milgram JW. Histopathologic and clinicoradiologic differences.

CASE REPORT

Wilkie's syndrome as a cause of anxiety-depressive disorder: A case report and review of literature

Raluca Cristina Apostu, Lucian Chira, Doina Colcear, Andrei Lebovici, Georgiana Nagy, Radu Razvan Scurtu, Radu Drasovean

Abstract

BACKGROUND
Superior mesenteric artery syndrome is a disease with a complex diagnosis, and it is associated with complications that make it even harder to identify. Currently, a frequent association with psychiatric disorders has been noted. Despite numerous case reports and case series, the variability of the disease has not allowed the development of protocols regarding diagnosis and management.

CASE SUMMARY
A 33-year-old woman presented with abdominal pain, nausea, and bile vomiting over the last 15 mo, associated with a 15-kg weight loss over the last three months. After the onset of the symptoms, the patient was diagnosed with anxiety-depressive disorder and treated appropriately. Standard examinations excluded an organic cause, and the cause of the symptoms was considered psychogenic. The persistence of symptoms, even under treatment, prompted a computer tomography angiography examination of the abdomen and pelvis. The examination identified emergence at a sharp angle of 13.7° of the superior mesenteric artery, with a reduced distance between the artery and the anterior wall of the aorta up to a maximum of 8 mm. A diagnosis of aortomesenteric clamp was established. Surgical treatment by laparoscopic duodenojejunostomy was performed. Postoperative evolution was marked by a patent anastomosis at 1 mo.
A 33-year-old female patient presented to the emergency department for diffuse, progressive abdominal pain, nausea, bile vomiting, loss of appetite, and weight loss of 10 kg. She was admitted for a 10-kg weight gain and improvement of the associated anxiety.

CONCLUSION
This case report underlines two major aspects. One aspect refers to the predisposition of patients with superior mesenteric artery syndrome to develop psychiatric disorders, with an excellent outcome when proper treatment is administered. The second aspect underlines the key role of a multidisciplinary approach and follow-up.

Key Words: Wilkie’s syndrome; Weight loss; Anxiety-depressive disorder; Duodenal jejunoscopy; Laparoscopy; Case report

Core Tip: Wilkie’s syndrome is a rare vasculo-intestinal obstructive pathology that is difficult to diagnose due to nonspecific symptoms and the ability to mimic or coexist with other functional disorders. Its association with psychiatric eating disorders makes its differential diagnosis even more complex, allowing it to progress toward late, chronic stages. Untreated disease is associated with significant morbidity and mortality due to complications. It is important to consider its impact on psychosocial status and the appropriate approach to make an exclusion diagnosis.

INTRODUCTION
Superior mesenteric artery (SMA) syndrome is a rare cause of proximal small bowel obstruction, defined as compression of the third part of the duodenum between the aorta and superior mesenteric artery [1]. The syndrome has been given many names, including chronic duodenal ileus, Wilkie’s syndrome, arteriomesenteric duodenal compression syndrome, and cast syndrome [1, 2].

Its incidence ranges between 0.005 and 0.3% [1-3, 7]. In fluoroscopic studies, the reported incidence is 0.01% [8]. A reported incidence of 0.8% was reported by Neri et al. [9] in a prospective study, while other reports mention a frequency of up to 2.4% [10]. In patients with gastric bypass surgery, the reported prevalence is 0.6% [11].

There are approximately 400 cases reported in the literature. SMA syndrome diagnosed after Roux-en-Y gastric bypass has been reported for 14 cases, while one case was reported after sleeve gastrectomy [12].

Despite numerous case reports, no large trials have been published, the diagnosis is often delayed, and patients are treated with ineffective symptomatic therapies [1, 13].

The importance of this pathology is derived from its association with significant morbidity and mortality due to a delayed diagnosis. This is why it is considered an important differential diagnosis, especially in a setting of recent weight loss [1]. Additionally, the choice of treatment requires individual evaluation.

We present the case of a 33-year-old female patient diagnosed with Wilkie’s syndrome 15 mo after the onset of symptoms, initially assumed to be anxiety-depressive disorder.

CASE PRESENTATION

Chief complaints
A 33-year-old female patient presented to the emergency department for diffuse, progressive abdominal pain, nausea, bile vomiting, loss of appetite, and weight loss of...
15 kg in the last three months. The pain was characteristically located in the epigastrium, with diffuse extension in the rest of the abdomen, after food ingestion.

History of present illness
The symptoms began in the last year, after the initiation of a planned weight loss diet. Over time, her food tolerance gradually decreased, accentuating the symptoms. She presented multiple times to the emergency department with the same symptoms. At every evaluation, an organic cause was excluded, fluid resuscitation was performed, and a psychogenic origin of the symptoms was suspected, given her past medical history.

History of past illness
She was previously diagnosed with Hashimoto thyroiditis and was under levothyroxine replacement therapy at 125 µg/d. After the onset of her symptoms, she was diagnosed with major anxiety-depressive disorder and placed under treatment with alprazolam 0.5 mg, 1 mg/24 h, and escitalopram 10 mg, 25 mg/24 h.

Personal and family history
The patient had a history of irregular diets, with attempts to lose weight under normal weight conditions. Her history included surgical repair of bilateral inguinal hernia and an episode of acute pancreatitis of unknown cause.

Physical examination
Physical examination revealed a cachectic patient with an anxious face and a body mass index (BMI) of 17.8 kg/m² (normal level 18.5-24.9 kg/m²) at 45 kg and 159 cm height, with tenderness in the epigastrium.

Laboratory examinations
Laboratory results showed an elevated hemoconcentration [hemoglobin 16.8 g/dL (n.v. 12-15.5 g/dL), hematocrit 48.8% (n.v. 37%-47%)], with hyposodemia [131 mmol/L (n.v. 136-146 mmol/L)], and hypocloremia [91 mmol/L (n.v. 101-109 mmol/L)], which were easily corrected with fluid resuscitation.

Imaging examinations
Upper digestive endoscopy: Given her symptoms in the superior abdomen, upper digestive endoscopy was performed, and esophagitis and gastritis secondary to bile reflux in the gastric antrum were detected. The first and second parts of the duodenum also had acute erosion and flattened folds. Biopsies were performed to exclude celiac disease and confirm chronic duodenitis. Treatment was initiated with proton pump inhibitor 40 mg, 80 mg/24 h, sucralfate 2 tb/12 h, and prokinetic domperidone 10 mg, 30 mg/24 h. Vitamins were prescribed.

Angio-computed tomography: After one month, given the persistence of the symptoms, computer tomography angiography (Angio-CT) of the abdomen and pelvis was performed. The results revealed emergence at a sharp angle of 13.7° of the superior mesenteric artery, with a reduced distance between the SMA and the anterior wall of the aorta up to a maximum of 8 mm (Figure 1). In this clinical-biological context, a diagnosis of aortomesenteric clamp was established.

Further diagnostic work-up
A psychiatric consultation was performed, and the diagnosis of major anxiety-depressive disorder was confirmed. Treatment was continued with alprazolam 0.5 mg, 1 mg/24 h and escitalopram 10 mg, 25 mg/24 h, and regular evaluations were scheduled.

MULTIDISCIPLINARY EXPERT CONSULTATION

Georgiana Nagy, MD, PhD, Assistant Professor of Gastroenterology, Department of Gastroenterology, "Iuliu Hatieganu" University of Medicine and Pharmacy

The patient presented with a long history (over 1 year) of vomiting, bloating and abdominal pain, symptoms that worsened over the last 3 mo, leading to severe weight loss and the development of a mixed anxiety-depressive disorder. Considering the symptoms, radiologic criteria and failed conservative therapy, we concluded that a
surgical approach was the only appropriate treatment.

Radu Drasovean, MD, PhD, Assistant Professor of General Surgery, Department of Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy

Given the long period of persisting symptoms, the severity of the weight loss and the absence of major dehydration or electrolyte abnormalities upon admission, due to fluid resuscitation, nutritional and vitamin supplements used in the period before the diagnosis, the patient shows an indication for surgical treatment with laparoscopic duodenojejunostomy.

Andrei Lebovici, MD, PhD, University Lecturer, Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy

The angio-CT images helped narrow the differential diagnosis by showing some characteristic features of aortomesenteric clamp without any other morphological changes on CT to suggest other pathological conditions.

Doina Colcear, MD, PhD, Psychiatrist, Clinical Infectious Disease Hospital, Cluj-Napoca, Romania

Repeated psychiatric evaluations prior to the diagnosis of Wilkie’s syndrome revealed the presence of an anxiety-depressive disorder that was attributed to somatic symptoms. These psychiatric symptoms persisted after the somatic disease was clarified. Pre- and postoperative antidepressant and anxiolytic treatment with 10 mg/d escitalopramum and 0.5 mg/d alprazolamum helped to relieve the symptoms. Specialized monitoring of the progression of her emotional state after discharge with re-evaluation of treatment is recommended.

FINAL DIAGNOSIS

The final preoperative diagnosis of the presented case was Wilkie’s syndrome in a 33-year-old female patient with a secondary anxiety-depressive disorder.

TREATMENT

Laparoscopic duodenojejunostomy was performed. A standard surgical technique was followed. After pneumoperitoneum was induced, four ports were placed: A periumbilical 10 mm optic port, 5 mm port in the right lower quadrant, 12 mm working port in the left quadrant, midclavicular line, at the level of the umbilicus, and a 5 mm port in the left upper quadrant, below the costal margin. During exploration, a dilated duodenum in the first and second parts was noticed, with a collapsed third part,
without ascites or other pathological changes (Figure 2). The second portion of the duodenum was mobilized by a partial Kocher maneuver. At 25 cm distal to the ligament of Treitz, a jejunal loop was prepared and positioned near the duodenum. A side-to-side duodenojejunostomy was performed using a -60 mm endoscopic liner articulated stapler (Figure 3). The common enterotomy was closed with 3-0 polydioxanone absorbable sutures (Figure 4).

OUTCOME AND FOLLOW-UP

The postoperative course was uneventful, and the patient was discharged home. Nutritional and gastroenterological monitoring was initiated, while psychiatric monitoring was continued. At the 1-mo evaluation, the patient presented a 10 kg weight gain, with complete remission of symptoms (Figure 5). A barium study was conducted showing a free passage of the contrast through the anastomosis (Figure 6).

At the 5-mo follow-up, the patient was asymptomatic, with a 15 kg weight gain. Considering the favorable postoperative outcome and the degree of weight recovery, the patient continued nutritional and psychiatric monitoring, and psychiatric treatment ceased. Long-term evaluation will establish the degree of involvement of psychiatric pathology in the clinical picture, and final conclusions will be drawn.

DISCUSSION

Superior mesenteric artery syndrome occurs preferentially in young adults and adolescents, with an age range of 10 to 39 years, but cases in 88-year-old patients have also been reported[14]. It occurs more commonly in women, with a 3:2 ratio compared to men[1,4,13].

The primary reported cause of this disease is the loss of the fat pad between the aorta and SMA, resulting in a narrower angle between the vessels and compression of the duodenum[1,12]. This syndrome can be congenital or acquired[1]. Based on this fact, two types of SMA syndrome have been described. The irreversible one (either repeated or permanent) is caused by congenital or developmental factors, such as high insertion of the ligament of Treitz, a low origin of the SMA[5], a short ligament of Treitz, abnormal rotation of the intestines, adhesions due to surgery or duodenal stenosis due to inflammation. Abdominal aortic aneurysms or mesenteric root neoplasms have also been reported to be linked[1,15]. For this type, surgery has been reported as essential for treatment. The reversible type (transient), caused by gravity, for example, can be treated with a conservative approach, including positional changes, intestinal tract decompression and improved nutrition[15]. Furthermore, there might be a genetic component, as suggested by Castro et al[16], while 40% of cases have no identifiable risk factors[10].

A rare association has been reported after inferior vena cava (IVC) filter placement with a local inflammatory response and compression of the duodenum between the IVC and the SMA[17].

The main difficulty in establishing the diagnosis of SMA syndrome resides in the fact that patients tend to be asymptomatic until significant weight loss is registered, secondary to intentional dieting or illness. The most frequently reported cause used to be the corrective treatment of scoliosis, where a relative shortening of the spine increases the tension on the mesentery and narrows the angle between the vessels[13]. Today, things tend to be different, with the majority of published reports suggesting a very common association with a psychiatric disease[4,13]. SMA syndrome can appear secondary to the disease but can also cause psychological and social problems, including depression and anorexia, due to the severity of the disease[2].

This case report is an example of SMA syndrome as a cause of anxiety-depressive disorder. In this patient, the persistence of symptoms for a long period of time, without identifying an organic cause, led to the development of an anxiety-depressive disorder that was interpreted as the source of the symptoms. The condition’s progression, with the persistence of symptoms despite treatment of the anxiety, triggered extension of the investigations, with the establishment of a final diagnosis.

A characteristic of this disease is significant weight loss, described in different situations as cachexia (AIDS, malabsorption, cancer, paraplegia), hypermetabolism or dietary conditions (anorexia nervosa, drug use). Patients usually register a marked weight loss of > 5 kg[7]. Less frequent reports are incriminating weight loss following surgery, secondary to bariatric surgery, esophagectomy or abdominal trauma, in its
etiology[1,12,13,18,19].

The diagnosis is based on symptoms and radiological testing[1]. It needs a high index of suspicion because of its vague and nonspecific symptoms[12]. Additionally, the measurements performed on imaging investigations must also be correlated with the clinical complaints[8], and even this diagnostic approach cannot exclude all motility disorder cases[4]. Thus, a realistic diagnosis can only be established with a comprehensive panel of investigations, a specific history of symptoms and characteristic imaging changes.

The most frequently reported symptoms are abdominal pain (92%), nausea, vomiting (77%), and weight loss (69.2%)[1,4,13,20,21], while in some cases, a predominance of vomiting (70%), nausea (66.3%), abdominal pain (65%), anorexia (33.8%), postprandial fullness (33.8%), and early satiety (12.5%) was reported[3,22]. Another reported characteristic is epigastric pain, which worsens in the supine position[1,4,10]. A sign that can help suggest the diagnosis is the relief of the patient’s symptoms when leaning forward[12] or in the left lateral decubitus position[13]. In our case, weight loss was followed by abdominal pain, nausea, and vomiting, a vicious cycle followed by a
marked reduction in weight.

The heterogeneous presentation is aggravated by the presence of comorbidities, such as mental and behavioral disorders (21.3%), infectious disorders (12.5%), and disorders of the nervous system (11.3%)[6].

An acute course of the disease has been described with life-threatening dilatation of the stomach[1]. Despite that, a long-standing onset seems to be more characteristic, with symptom persistence between 6 and 24 mo[7,13], while a time lag of 1 to 51 mo until diagnosis is often described[4,6].

Usually, physical examination and laboratory findings are nonspecific[3]. Despite the marked weight loss, patients have serum albumin and serum proteins within normal limits, while frequent electrolyte abnormalities are encountered[13].

The most commonly used imaging modalities are contrast-enhanced computed tomography and MRA[23]. Computed tomography (CT) angiography is a more specific investigation, while endoscopy and ultrasound are adjunctive diagnostic methods[6].

CT angiography measures the aortomesenteric angle and the distance between the two vessels. A normal aortomesenteric angle is between 25° and 87° with different subintervals in different reports[1-4,8,10,13,17]. The normal reported distance between the two vessels is 10 mm-34 mm[2,3,8,21], confirmed by imaging studies[8]. The mean reported angle measurements are 12°[13] and 13.5°[8], with a mean measured distance of 4.4 mm[8]. However, there are variations regarding the angle dimensions, between 6°-22° in different reports[1,3,4,8,10,13,21], while reported variations regarding
distance are between 2 mm and < 10 mm[1-4,8,10,13,21]. It has been suggested that the distance is more accurate for SMA diagnosis than the angle[7].

Cases with SMA syndrome with an angle and distance overlapping the normal range have also been reported. An aortomesenteric angle < 8°-46° and a distance < 8 mm have been specifically reported, compared to 25°-87° and 10-34 mm identified in control groups as normal values. In these cases, other diagnostic methods must be considered, such as gastric-emptying scintigraphy[23].

Reports suggest an association of the degree of angulation with (BMI)[10,24]. Alzervi found a significant reduction in the aortomesenteric angle and distance in patients with SMA syndrome compared to other patients with acute or chronic abdominal pain, while BMI was positively correlated with the aortomesenteric angle and distance. Thus, BMI could be used as a screening factor for SMA syndrome[21].

Characteristic CT findings are not just numerical cutoff but also distension of the stomach and proximal duodenum or narrowing of the duodenum at the SMA level. Association with compression of the left renal vein, isolated left renal vein thrombosis, engorgement of the left gonadal vein, or left-sided venous collaterals are additional elements to consider for a positive diagnosis[8].

Rotational CT from the supine to prone position can demonstrate improved outflow passing the SMA[12]. Additionally, CT has replaced magnetic resonance enterography (MRE) as a standard investigation[1,21]. The advantage of showing anatomical variants and consequences, such as delayed transit and obstruction, is highlighted in limited reports using MRE[25].

Diagnosis can also be confirmed by mesenteric artery ultrasonography[12]. Color Doppler ultrasound can also measure the aortomesenteric angle[23]. Endoscopy is useful to diagnose complications, such as esophagitis, reflux gastritis, stasis, and chronic duodenal obstruction[1,13,21]. However, a suspicion of obstruction of the third part of the duodenum is raised only in some cases during endoscopy[13]. A more specific finding for the diagnosis is pulsatile extrinsic compression of the duodenum, excluding other diseases of the superior digestive tract[23].

Barium or gastrografin contrast studies are classic diagnostic procedures, and specific findings are dilatation of the stomach and the first and second parts of the duodenum and the failure of contrast passage in the third part of the duodenum, with antiperistaltic flow[13,23,26]. However, these changes are not specific to SMA syndrome[23].

Gastric-emptying scintigraphy is a known imaging modality to evaluate gastroparesis and gastric motility, and it might be of great value for a differential diagnosis between SMA syndrome and gastric motility disorders, especially in patients with diabetes. This investigation provides a qualitative and quantitative analysis of gastric motility, which might allow differential diagnosis of similar diseases and an assessment of the degree of obstruction or stenosis[23]. Other differentials include internal hernia, adhesive disease, intussusception[12], and megaduodenum[13].

Another difficult situation occurs in cases associated with systemic scleroderma, in which gastrointestinal involvement creates a clinical picture similar to SMA syndrome, with progression toward malnutrition[27]. Another rare condition that has to be differentiated is aortoduodenal syndrome, namely, obstruction of the third portion of the duodenum by a large abdominal aortic aneurysm[28].

If the disease is unrecognized and left untreated, severe complications may occur, such as malnutrition, dehydration, electrolyte abnormalities, gastric pneumatosis and portal venous gas, gastric perforation, duodenal compromise, ischemia, necrosis[1,17], or gastrointestinal hemorrhage[1]. Patients with severe hypokalemia, metabolic alkalosis, and acute kidney injury resulting in cardiorespiratory arrest have also been described[29]. Recognition of the condition, even in advanced stages with massive gastric dilatation and gastric ischemia lesions, can lead to remission of the pathological changes with decompression and endoscopic surveillance[15,30], without the need for surgery.

The management of SMA syndrome is individualized, with either conservative treatment and nutritional support or invasive treatment[3]. Multidisciplinary management is necessary[1]. Given that there is a common association with psychiatric disease or dietary conditions[1,4,13], psychotherapy is an important part of treatment [31], while patients should also be educated on lifestyle changes. Most patients require a dietary consultation for their significant weight loss[1] and a close clinical follow-up by a gastroenterologist and a nutritionist[23].

In the conservative approach, the primary focus should be on weight regain with mass restoration while monitoring the caloric needs with care to avoid refeeding syndrome and recovery of the electrolyte balance[2,3]. Treatment includes nasogastric decompression, prokinetic agents, fluid resuscitation, electrolyte correction, parenteral
nutrition, nasogastric tube insertion, nutritional support through hyperalimentation [1], and the removal of precipitating factors. Nutrition may be provided by small, frequent meals or nasojejunal feeding, with the aim of providing a high-calorie diet to increase the mesenteric fat and expand the angle[26]. Positional changes and different maneuvers have also been reported as aids in tolerating enteral feeds, such as the prone position, left lateral decubitus, knee-chest maneuver, or Hayes maneuver. In cases of failure, parenteral nutrition should be considered[5].

Retrospective studies have reported successful treatment of SMA syndrome in short-term follow-up with enteral nutrition[15,17,26,30-34]. After a mean period of 10 mo with enteral therapy, 65% of patients were without symptoms, while in 15%, their symptoms had improved. Nutrition was administered via a nasal jejunal tube and percutaneous endoscopic gastrostomy with a jejunal extension tube. The reported complications were all catheter-related[35]. The success rates for medical management are reported to be between 14% and 83% [6,10], with a 71.3% success rate at a 5-mo follow-up[35]. Predictors of a poor response are a chronic course of disease, prolonged medical treatment, or associated psychosocial disorders[6].

In children, successful treatment was in most reports obtained by the medical approach, with a decline in the need for surgery from 70% to 14%. An acute presentation was most often registered, while weight loss was not a necessary condition. The expected outcome in these cases was excellent[36]. However, as the syndrome progresses, nutritional support becomes less successful, and surgical correction is necessary[17]. Recently, many studies have suggested an earlier surgical approach, since prolonged medical therapy is associated with multiple admissions, a lower success rate, and increased disease recurrence. They recommended no more than 3 mo for a trial of conservative management[6,22]. More than 75% of patients with SMA syndrome require surgical intervention[24]. Surgery usually follows a period of refeeding and the correction of electrolyte disorders. Although significant preoperative weight loss is a known risk factor for postoperative complications, there are no data about an optimal period for nutritional support, either enteral or parenteral, or indications for its use. According to some reports, surgery may be safely performed in the presence of normal serum proteins using preoperative nutritional supplementation on an individual basis. Other reports suggest nasogastric decompression and total parenteral nutrition for 7 d before surgery[2].

Several procedures have been described as a possible surgical treatment for SMA syndrome: duodenal circular drainage, derotation procedure, transposition of the SMA to the infrarenal aorta, anterior transposition of the third part of the duodenum, Billroth II gastrectomy, gastrojejunostomy, Ladd’s procedure, Strong’s operation and transabdominal or laparoscopic duodenojejunostomy[1,6,13]. All of these procedures are associated with nutritional loss, blind loop syndrome, gastric bile reflux[2,5] or a risk of duodenal entrapment between the pancreaticoduodenal arteries and a persistence of the symptoms in 25% of cases after the Strong procedure[5,10,13]. Based on their possible complications, these procedures have all been abandoned, except for duodenojejunostomy[6]. Duodenojejunostomy can significantly improve symptoms, physical activity, emotional well-being, and social functioning[12]. Laparoscopic duodenojejunostomy has the advantages of an acceptable operating time, a faster recovery, reduced postoperative pain, shorter hospitalization, reduced risk of incisional hernia, and a good cosmetic outcome[1,4,6,10,16,26], which makes it important in young patients with associated psychosocial symptoms secondary to the severity of their disease[2]. Blind loop syndrome is the most common complication after this type of procedure[13].

To close the common enterotomy, a mini laparotomy and a manual suture were performed in most of the reported cases to avoid a narrowed anastomosis. An alternative to this approach is to close the enterotomy with a laparoscopic suture or a linear stapler in a complete laparoscopic maneuver[26], as was done in our patient.

The success rate of surgical treatment is reported to be as high as 75%-100%[1,4,8,10,16]. Minimally invasive procedures, including robotic and single-port approaches[37], have reported a success rate of more than 90% with a 7% complication rate[6], while laparoscopic duodenojejunostomy alone has a success rate of 96%[1,10].

In Lee et al[22]’s case series, where half of the patients presented with associated diseases, a medical treatment success rate of 71.3%, with a 15.8% recurrence rate, was reported, while surgical management had a 92.9% success rate.

The postoperative course is marked by a major weight gain, usually registered during the first postoperative 6 mo with a mean gain between 5 and 15 kg[13].
Intermediate follow-up results were reported by Chang et al[4] for 26 patients treated with laparoscopic or robotic duodenojejunostomy, with the majority of cases secondary to psychiatric disease. Only 33.3% declared resolution or improvement of their symptoms, while 30% of patients were still severely symptomatic, with 19% of patients still requiring nutritional supplementation. Recurrence was associated with a patent anastomosis and the concomitant presence of dysmotility disorders, such as gastroparesis or global intestinal dysmotility, with an indication for intestinal transplant[4]. An important conclusion was that radiographic findings of SMA syndrome should not automatically be assumed to exclude intestinal dysmotility syndrome[4,20]. Given the overlapping symptomatology, gastrointestinal transit studies should always be included in the preoperative workup[4].

Although there are several reports of SMA syndrome, diagnosed as a complication of anorexia nervosa, only a few of them emphasize the evolution of psychiatric disease. Kurisu et al[38] pointed out that surgical treatment must be cautiously considered in cases of anorexia nervosa, as the long-term results are unclear. They also reported the case of a patient with anorexia nervosa and SMA syndrome treated with surgery, without postoperative improvement. In this case, a psychological approach was necessary to be continued[38]. On the other hand, Kornmehl et al[39] emphasized the overdiagnosis of anorexia nervosa, while SMA syndrome should be considered in these cases. The novelty of our case is represented by the absence of a history of psychiatric diseases, a diagnosis of the disorder after the onset of symptoms, while a restoration of her body weight was registered postoperatively, and psychiatric treatment was stopped.

In their case series, Sun et al[4] reported a mean weight gain of 3.8 kg at mid-term follow-up, with reported complications such as infection and dumping syndrome.

Cienfuegos et al[20] presented long-term results (median follow-up of 94 mo) after laparoscopic latero-lateral duodenojejunostomy, with excellent results in 61.5% of cases. Long-term results were also evaluated by Jain et al[6] with weight gain, complete symptom remission, and no recurrence.

Even though this pathology is rarely described in elderly patients, for this category and in those with significant comorbidities, endoscopic ultrasound-guided gastroenterostomy (EUS-GE) was reported as an appropriate procedure[14,40]. EUS-GE using lumen-apposing metal stents seems to be a safe and effective option[40], with a success rate of 90%, adverse events in 5% of patients and a reintervention rate of 11%[41]. A rate of 83% in preventing surgery was reported, with a mean period of 8.5 mo until symptom resolution and removal of the LAMS and a 5.6% rate of recurrent symptoms[42]. A comparison between EUS gastrojejunoanastomosis and laparoscopic gastrojejunostomy was performed, showing a similar success rate and a significantly higher rate of complications for the surgical procedure[43-45].

In addition to the specificity of this complex pathology, some rare associations have been reported in the literature. One of them is the nutcracker syndrome[13,31]. The most commonly reported causes of this rare syndrome are anatomical variants such as posterior renal ptosis, a high course of the left renal vein and abnormal SMA branching, but the two syndromes can coexist in the context of major weight loss. Treatment for nutcracker syndrome varies from conservative management to different surgical procedures, with the best results reported after laparoscopic extravesical titanium stent placement[5].

In a small number of cases, an association with cystic fibrosis has been reported. In these cases, BMI below the 5th percentile is the best predictor of SMA syndrome. The diagnosis is difficult because of the risk of cystic fibrosis enteropathy[24]. Other rare associations are hyperthyroidism-related sympathetic hyperstimulation, vasculopathy and cerebellar infarction[46] and diabetic patients with excessive body weight loss and associated ketoacidosis after using sodium-glucose cotransporter 2 inhibitors[47]. Rare associations with rheumatoid arthritis and rheumatoid cachexia have also been reported[48].

This case report highlights the importance of SMA syndrome, especially regarding the consequences when left undiagnosed and untreated for a long period of time, as well as the numerous possibilities of its overlapping with other functional diseases or even being the cause of their onset.

The major limitation of this case report is the short follow-up, which allowed us to register the resolution of the anxiety disorder. Only a long-term follow-up will confirm that the syndrome can be a cause for the psychiatric disorder and not the other way around.
CONCLUSION

SMA syndrome is a rare occlusive pathology that needs an extensive diagnostic workup since it is hampered by a specific mimicry of psychiatric or motility disorders. The vicious cycle of its progression can be interrupted by knowing and considering the large number of differential diagnostic possibilities while individualizing the treatment. Since favorable results depend on the treatment of multiple systems, multidisciplinary management is mandatory.

REFERENCES

McCarty TR, Garg R, Thompson CC, Rustagi T. Efficacy and safety of EUS-guided gastroenterostomy for benign and malignant gastric outlet obstruction: a systematic review and meta-
Apostu RC et al. Wilkie syndrome

Gastric schwannoma misdiagnosed as gastrointestinal stromal tumor by ultrasonography before surgery: A case report

Qing-Qing Li, Dong Liu

ORCID number: Qing-Qing Li 0000-0002-3166-3195; Dong Liu 0000-0001-8285-2394.

Author contributions: Li QQ reviewed the literature and helped draft the manuscript; Liu D revised the manuscript for important intellectual content and analyzed and interpreted the imaging findings; All authors approved the submitted manuscript.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by the National Natural Science Foundation of China, No. 82001819.

Country/Territory of origin: China

Specialty type: Radiology, nuclear medicine and medical imaging

Provenance and peer review: Original research

Abstract

BACKGROUND
Gastric origin tumors were diagnosed and evaluated preoperatively by gastroscopy, endoscopic ultrasonography, computed tomography (CT) or magnetic resonance imaging. Currently, transabdominal high-resolution ultrasound combined with gastrointestinal contrast agent can be used to diagnose stomach tumors effectively and without invasive procedures or radiation. However, although an appreciable number of cases of gastric schwannoma (GS) have been reported since the first description of such in 1988, the ongoing lack of a comprehensive list of ultrasonic characteristics has limited the accuracy of preoperative ultrasound diagnosis.

CASE SUMMARY
A 64-year-old female patient presented to our hospital with dizziness and head discomfort. During an abdominal ultrasound, a hypoechoic gastric mass was found, having clear and regular boundaries and no observable blood flow. Based on these characteristics, a gastrointestinal stromal tumor was suspected. Results from an endoscopic ultrasound biopsy and accompanying immunohistochemical analysis, coupled with abdominal CT findings indicating lymph node enlargement around the stomach, led to diagnosis of GS but did not exclude malignancy. After surgical resection of the tumor, the final diagnosis of GS without lymph node metastasis was made. No recurrence has occurred in the 6 years of follow-up.

CONCLUSION
A clearly defined ultrasonic characteristic profile of GS is important to improve diagnostic accuracy.

Key Words: Gastric schwannoma; Gastrointestinal stromal tumor; Gastrointestinal ultrasound; Endoscopic ultrasonography; Computed tomography; Case report
Core Tip: Gastrointestinal stromal tumor (GIST) is the most common gastrointestinal mesenchymal tumor. Since the concept of gastric schwannoma (GS) was proposed in 1988, the incidence of cases has amassed. Transabdominal high-resolution ultrasound combined with abdominal gastrointestinal contrast agent has a unique advantage in gastrointestinal disease diagnosis as it can effectively diagnose tumors non-invasively without radiation. Although ultrasonographic characteristics of GIST have been reported, the literature lacks series of cases of GS and a clear summary of the ultrasonographic characteristics. A summarized ultrasonographic characteristic profile of GS will improve accuracy of differential diagnosis from to other types of gastrointestinal mesenchymal tumor.

INTRODUCTION

In the past, gastric tumors were diagnosed by gastroscopy, computed tomography (CT), or magnetic resonance imaging (MRI). However, with the development of gastrointestinal ultrasound and the use of gastrointestinal contrast agent [1,2], transabdominal high-resolution ultrasound has attracted more clinical attention in the diagnosis of gastrointestinal diseases. Transabdominal high-resolution ultrasound can provide overall information on the lesions, is non-invasive, and does not expose the patient to radiation. In this paper, a patient with a gastric schwannoma was misdiagnosed as gastrointestinal stromal tumor (GIST) by ultrasound before surgery, due in part to a lack of compiled information on the ultrasonic characteristics of GS. As such, we have provided a summarization of the clinical and imaging characteristics of GIST and GS in order to improve the diagnostic accuracy of GS.

CASE PRESENTATION

Chief complaints

A 64-year-old female of Han nationality visited the outpatient clinic on January 19, 2015, after experiencing dizziness and head discomfort for 3 d. The patient had been diagnosed with hypertension for more than 20 years, and at the time of this visit, her blood pressure was 190/100 mmHg.

History of present illness

The outpatient doctor performed relevant examinations and advised her to take medication regularly to control blood pressure. The patient also underwent an abdominal ultrasound, which identified a hypoechoic lesion between the upper pole of the spleen and the abdominal aorta that measured 4.7 cm × 4.4 cm, with a clear and regular boundary and no evident blood flow (Figure 1). The ultrasound findings indicated that the lesion had possibly originated from the stomach and was a GIST. The patient presented no abdominal distention, abdominal pain, hematemesis, melena, or dysphagia.

History of past illness

Hypertension for more than 20 years. She took oral nifedipine controlled release tablet 60 mg daily, bisoprolol fumarate tablet 10 mg daily, and indapamide tablet 1.25 mg daily. The patient had no hepatitis B, hepatitis and other infectious diseases.

Personal and family history

The patient had no family history of gastrointestinal cancer.
Li QQ et al. Gastric schwannoma misdiagnosed by ultrasound

Figure 1 Conventional abdominal ultrasound examination. A: Gray-scale sonography showed a hypoechoic lesion (orange arrow), size 4.7 cm × 4.4 cm, with clear and regular boundary, between the upper pole of the spleen and the abdominal aorta; B: Color Doppler showed no evident blood flow.

Physical examination
After the patient’s blood pressure was stabilized, she was admitted to the general surgery department for treatment of the gastric tumor. At the time of admittance, her temperature was 36.4 °C, heart rate was 60 beats/min, respiration was 18 breaths/min, and blood pressure was 130/75 mmHg. No enlarged lymph nodes were palpable on either clavicle. The abdomen appeared flat, and no peristaltic waves (in esophagus or stomach) were observed. Upon palpation, the abdomen was soft, with no tenderness, muscle tension, or rebound pain.

Laboratory examinations
Results from routine blood and fecal tests, occult blood test, and blood biochemistry panels were all within normal limits. Tumor marker tests did not reveal any obvious abnormalities.

Imaging examinations
February 5, 2015: Abdominal CT plain and contrast-enhanced scans showed a local soft tissue density mass in the gastric wall with a smooth boundary, sized 5.5 cm × 4.3 cm. There was local protrusion observed outside the contour of the stomach, with obvious enhancement. The surrounding lymph nodes were enlarged, with the larger ones measuring 1.0 cm in diameter. CT did not exclude malignancy (i.e. GIST with peripheral lymph node metastasis) (Figures 2 and 3).

February 10, 2015: Endoscopy confirmed a hemispherical eminence on the fundus of the stomach, with a smooth surface. Endoscopic ultrasonography showed a hypoechoic and heterogeneous mass, sized 3.7 cm × 4.4 cm, derived from the mucous muscularis. Color Doppler showed no evident blood flow. Gastroscopy and endoscopic ultrasonography suggested the possibility of GIST (Figure 4A and B).

February 10, 2015: Fine needle aspiration (FNA) under endoscopic ultrasound guidance (Figure 4C) primarily showed coagulation and calcification, with a small amount of gastric mucosal tissue and few spindle cells, suggesting that spindle cell tumor should be excluded (Table 1).

March 4, 2015: Since the pathological diagnosis was unclear, the FNA was repeated (again under endoscopic ultrasound guidance). Subsequent immunohistochemical examination was performed and indicated GS (Table 1).

FINAL DIAGNOSIS
Benign GS.

TREATMENT
Given the very few malignant cases of GS reported in the literature[3], and the presence of peripheral lymph nodes indicated by CT in this case, malignant GS was not excluded. Therefore, the patient was admitted to the hospital for elective surgery. An upper abdominal midline incision was made, with a length of about 20 cm. The organs around the lesion were explored. No other abnormality was found in the
Table 1 Results of two endoscopic and endoscopic puncture biopsies

<table>
<thead>
<tr>
<th>Date</th>
<th>Where</th>
<th>Echo</th>
<th>Cumulative level</th>
<th>Homogeneity or not</th>
<th>Border</th>
<th>Blood supply</th>
<th>FNA pathological</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 10, 2015</td>
<td>Inpatient</td>
<td>Low</td>
<td>Mucosal muscularis</td>
<td>Heterogeneous, with calcification</td>
<td>Smooth</td>
<td>No</td>
<td>Few spindle cells</td>
</tr>
<tr>
<td>March 4, 2015</td>
<td>Outpatient</td>
<td>Low</td>
<td>Mucosal muscularis</td>
<td>Heterogeneous, with calcification</td>
<td>Smooth</td>
<td>No</td>
<td>Immunohistochemical examination indicated GS</td>
</tr>
</tbody>
</table>

FNA: Fine needle aspiration; GS: Gastric schwannoma.

Figure 2 Abdominal computed tomography plain scan and enhancement. A: Plain computed tomography (CT) showed a local soft tissue density mass in gastric wall (orange arrow), smooth boundary, local protrusion outside the contour of the stomach, with surrounding enlarged lymph nodes (white arrow); B: Enhanced CT showed a markedly enhanced mass (orange arrow), with surrounding enlarged lymph nodes (white arrow).

Figure 3 Coronal computed tomography. A: Computed tomography (CT) showed a mass on the fundus of the stomach (orange arrow); B: CT showed enlarged lymph nodes around the mass (orange arrow).

peritoneum, and no ascites were found. However, a lesion of 4 cm diameter was identified in the anterior wall of the fundus near the greater curvature of the gastric body, with no obvious infiltration of the serous layer. In addition, enlarged lymph nodes were felt around the stomach. As treatment, a radical proximal subtotal gastrectomy was performed (proximal subtotal gastrectomy + radical abdominal lymph node dissection + esophagogastric end-to-end anastomosis) yielding status of R0 (no microscopic residue after resection) and D2 (lymph nodes at the second station completely cleared).

OUTCOME AND FOLLOW-UP

The tumor observed intraoperatively on the anterior wall of the greater curvature of the gastric fundus was a swollen mass, of 6.0 cm × 5.0 cm × 4.5 cm in size, protruding into the serosal side and having a complete capsule and a grayish and yellowish
section. Subsequent histological examination defined it as a gastric submucosal spindle cell tumor, with nuclear division of < 5/50 per high power field and immunohistochemistry marker signature of CD117 (-), CD34 (-), DOG-1 (-), S-100 (+), actin (-), and desmin (-). These findings were consistent with GS (Figure 5). A total of 12 large, curved lymph nodes and four small, curved lymph nodes were observed, all of which showed reactive hyperplasia. According to the 2010 World Health Organization (WHO) Clinicopathological Classification Guidelines for gastric neoplasms, the clinicopathological stage was T0N0M0. All annual CT re-examinations have shown no recurrence over the 6-year period of follow-up.

DISCUSSION

GS was first reported by Daimaru et al[4] in 1988. It is a rare tumor of gastric stromal origin, accounting for 0.2% of all gastric tumors and 6.3% of all gastric stromal tumors. GS has a good prognosis and rarely relapses, but malignant lesions have been reported [3,5,6]. GIST is the most common gastric tumor, accounting for about 80% of all[7], followed by gastric leiomyoma, lymphoma, etc. In clinical practice, gastric stromal tumors are generally classified as GIST. Clinically, only 10%-30% of GISTs are malignant, but all GISTs have malignant potential[8,9]. Preoperative differential diagnosis of GS and GIST is difficult, and the auxiliary examinations lack specificity. So far, only pathological and immunohistochemical results are reliable, and genetic tests can be performed when necessary[5].

Upper gastrointestinal angiography, gastroscopy, endoscopic ultrasonography, abdominal CT, abdominal MRI, and other examinations were previously used to diagnose gastric tumors. At present, transabdominal high-resolution ultrasound and gastric contrast agent is routinely applied for the diagnosis of gastric diseases[1,2]. This type of imaging is non-invasive, non-radiative, convenient, fast, repeatable, and safe for the preliminary screening of gastric diseases. Under optimal conditions, it can identify the layered structure of the gastric wall from which the lesions originate. However, to date, transabdominal ultrasound examinations of GS have only been reported in individual case reports, and its ultrasonic characteristics have not yet been clearly summarized.

According to literature reports, a small number of patients have symptoms, such as upper abdominal pain or discomfort, melena, hematemesis, anemia, weight loss, etc., which are mostly seen in female patients aged 50-60 years[5,6,10]. However, most GS patients have no obvious complaints of discomfort. GS is occasionally identified in abdominal ultrasound, abdominal CT, upper gastrointestinal angiography, and gastroscopy. In abdominal ultrasound, the characteristics of GS are local hypoechoic lesion in the gastric wall, with complete mucosal and serous layers and clear boundaries. The lesions are regular or lobulated in shape and lack a blood supply[11]. On CT, GS is characterized by local low-density lesions in the gastric wall, with clear boundaries. The lesions are regular or lobulated and can be enhanced. CT can also provide information about the enlargement of lymph nodes around the lesion. This enlargement is unique to GS but can easily be confused for gastric malignant tumors with peripheral lymph node enlargement[12,13]. Diagnosis of GS is based on immunohistochemical pathology; the tumors are positive for S-100 protein and negative for c-kit, CD34, CD117, actin, desmin, SMA, and DOG-1. Pathological features of GS include
spindle cells arranged in bundles in the tumor center and the surrounding lymphocyte sleeve[14]. The lymphocyte sleeve is a characteristic manifestation of GS, and the formation of a lymphocyte mantle may be caused by lymphocyte chemotaxis due to cytokines secreted by tumor cells. This mechanism can also be used to explain why GS is often accompanied by peripheral lymph node enlargement[15].

GIST can occur in any part of the digestive tract but most commonly are found in the stomach (60%-70% of the cases), followed by the small intestine (25%-35%), and the colorectum (5%-10%). Less than 2% of GISTs occur in the esophagus, and a few are found in the mesentery, omentum, and retroperitoneum[15]. On ultrasound, GIST is characterized by irregular thickening of the gastrointestinal wall. It can present as either isoechoic or hypoechoic and the mass can be spherical, lobulated or irregular, with a clear boundary. The internal echo can be either uniform or uneven, accompanied by anechoic necrosis and have either a rich or poor blood supply[16].

The concept of GIST was proposed by Mazur et al[17] in 1983 based on the differentiation characteristics of tumors. In the past, due to the limitations of pathological techniques and the presence of smooth muscle or nerve bundles in many spindle cell tumors of the gastrointestinal tract, which were similar to other types of tumors in histological morphology, they were considered as smooth muscle or neurogenic tumors and were classified as leiomyoma, leiomyoblastoma, or leiomyosarcoma.

Recent clinical and pathological studies have shown that GIST may originate from astrocytes of the gastrointestinal interstitial region, with special immunophenotype and histological characteristics, and is characterized by multidirectional differentiation, which can differentiate or disorient toward smooth muscle and nerve[18]. Its biological characteristics are difficult to predict. It is, however, classified as a type of gastrointestinal submucosal tumor with malignant potential[8,9]. GIST pathology indicates that cell morphology can be divided into spindle type, epithelioid type, or mixed type, of which spindle cells are the most common[19], but there is no lymphocyte sleeve. Immunohistochemical findings include cells that are positive for CD117, CD34, DOG-1, Ki-67, and succinate dehydrogenase B. C-kit proto-oncogene mutations are common in GIST, mainly in exons 9, 11, 13, and 17. In addition, the PDGFRA gene is also frequently mutated in GIST, mainly in exons 12 and 18[19-21]. GS does not exhibit c-kit proto-oncogene and PDGFRA gene mutations[10].

The gastric wall is divided into five layers under transabdominal high-resolution ultrasound, and the echo from inside to outside is in the order of high-low-high-low-high, corresponding to the interface of the gastric wall and the mucosal epithelium, muscularis mucosa, submucosa, muscularis propria, and serosal layer, respectively. The origin and level of involvement were determined according to the continuous relationship between the lesion and the five-layer structure of the gastric wall[22]. GS may originate from mucosa or muscularis propria. Gastric cancer primarily includes mucosal neoplasms, originating from the mucosal layer. Other gastric parietal layers are not involved in the early stage, while the whole gastric wall is involved in the late stage. Most GISTs originate from the muscularis propria. Gastric primary lymphoma mainly originates from the mucosa. Gastric nerve fibroma is a localized nerve fibroma or nerve fibroma disease, and typically involves isolated nerve fibroma from the lower mucosal layer. By identifying the layer of origin, GS may be better distinguished from GIST and other gastric tumors.
CONCLUSION

The characteristics of gastric wall tumors can be observed by transabdominal high-resolution and endoscopic ultrasonography (Figure 6), with two-dimensional and color Doppler ultrasound. The wall layer that the tumor involves can help to preoperatively determine whether the gastric wall tumor originates from the epithelium or the stroma. If the tumor originates from gastric stroma, GIST should be considered first, and then the possibility of GS should be considered. The reported rate of GS is not very low but the actual incidence remains to be confirmed by large-scale studies. The ultrasound and clinical characteristics of GIST and GS should be actively summarized in future work, in order to provide guidance for the preoperative diagnosis of gastric stromal tumors.

GS are generally benign tumors, and only a few malignant cases have been reported. GS is often accompanied by peripheral lymph node enlargement, which is not an indication of malignancy. In our case, lymph nodes around the lesion were confirmed as reactive hyperplasia, and there was no recurrence during the 6-year follow-up. After the preliminary diagnosis of GS but before confirmation from histopathological tests after surgery, the treatment is as follows: (1) Complete surgical resection is recommended, which can be performed under endoscopy or laparotomy according to the tumor size, location, and relationship with surrounding organs; and (2) Simultaneous resection is recommended for patients with locally enlarged lymph nodes.

ACKNOWLEDGEMENTS

We greatly appreciate the patient for allowing us to use the medical documents and information.

REFERENCES

Giant retroperitoneal lipoma presenting with abdominal distention: A case report and review of the literature

Zhi-Yan Chen, Xian-Long Chen, Qi Yu, Qing-Bo Fan

ORCID number: Zhi-Yan Chen 0000-0002-1695-1455; Xian-Long Chen 0000-0002-3677-4281; Qi Yu 0000-0001-9737-5957; Qing-Bo Fan 0000-0002-8745-1132.

Author contributions: Chen ZY wrote and revised the manuscript; Chen ZY and Fan QB were part of the clinical team that treated the patient; Chen XL participated in the review of the pathology; Yu Q and Fan QB revised the manuscript and supervised the study.

Informed consent statement: Informed written consent was obtained from the patient for publication of this case report and any accompanying images.

Conflict-of-interest statement: No conflict of interests exists to any of the authors.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by the National Key Research and Development Program, No. 2018YFC1002105.

Country/Territory of origin: China

Specialty type: Obstetrics and gynecology

Abstract

BACKGROUND
Retroperitoneal lipomas are extremely rare tumors and tend to be large in size (>10 cm) when diagnosed, causing various clinical manifestations. Preoperative diagnosis of retroperitoneal lipomas is difficult. There is a lack of relevant information about the management and prognosis of these benign tumors due to limited reports.

CASE SUMMARY
A 53-year-old woman who complained about progressive abdominal distention and aggravating satiety was referred to the gynecological outpatient department of Peking Union Medical College Hospital. Computerized tomography (CT) revealed an immense mass with fat density, measuring 28.6 cm×16.6 cm in size. Adjacent organs, including the intestinal tract and uterus, were squeezed to the right side of the abdomen. An exploratory laparotomy was performed with suspicion of liposarcoma. Intraoperatively, a giant yellowish lobulated mass was found occupying the retroperitoneum and it was removed by tumor debulking. Postoperative histopathological results confirmed the diagnosis of retroperitoneal lipoma.

CONCLUSION
Retroperitoneal lipoma is a very rare condition and is difficult to differentiate from well-differentiated liposarcoma. Radiographic investigations, especially CT and magnetic resonance imaging, are important for preoperative diagnosis. Surgical resection is the fundamental treatment, which is difficult due to its size and relation to neighboring structures.

Key Words: Retroperitoneal lipoma; Well-differentiated liposarcoma; Retroperitoneal
tumors; Treatment; Prognosis; Case report

Core Tip: Retroperitoneal lipomas are rare benign tumors originating from adipose tissues and they tend to have large sizes. Imaging examinations, especially computerized tomography and magnetic resonance imaging, are fundamental diagnostic tools for these tumors. Surgical resection is the main treatment method. **En bloc** resection is commonly required. Postoperative histopathology determines the final diagnosis, and immunohistochemical analysis could be useful in the differentiation of liposarcomas. Regular follow-ups are also required for the patients.

INTRODUCTION

Lipomas are a category of benign tumors originating from well-differentiated adipocytes. Their predilection sites are subdermal tissues of the trunk and extremities [1,2]. Retroperitoneal lipomas are a rare condition, with just 22 case reports describing the tumour in adults in the previous literature of PubMed since 1970[3-22]. They account for 2.9% of primary retroperitoneal tumors, approximately 80% of which are known as malignant[5,23,24]. Unlike subcutaneous lipomas, which are related to obesity, hyperlipidaemia, and injuries, retroperitoneal lipomas have an unknown aetiology[5,25-27]. On account of the rarity and limited knowledge of these tumors, further reports and investigations are necessary. In this report, we describe the case of a 53-year-old postmenopausal woman who presented with a massive fatty retroperitoneal mass measuring 28.6 cm×16.6 cm and weighing 7.126 kg.

CASE PRESENTATION

Chief complaints

A 53-year-old postmenopausal woman who complained about progressive abdominal distention and aggravating satiety was referred to the department of gynaecology in our center.

History of present illness

The patient started to feel intensifying abdominal distention and satiety for the last 2 mo. She also found a significant increase in abdominal circumference and thinning of the limbs. The patient denied other discomforts, including fever, abdominal pain, nausea, and vomiting. The patient had been postmenopausal for 5 years and did not report abnormal vaginal bleeding.

History of past illness

The patient had a 10-year history of hypertension and took Loxone once per day, with stable control of blood pressure. The patient denied any history of diabetes, coronary heart disease, or malignancy. She also reported no drug allergy or other physical impairment. Additionally, the patient did not receive regular physical examinations, and the last medical examination had occurred more than 10 years prior.

Personal and family history

No noteworthy personal or family history was reported by the patient.
Physical examination
The patient’s height was 161 cm, and her weight was 60 kg (body mass index: 23.3, within the normal range). The physical examination revealed a palpable giant abdominal mass reaching the xiphisternum with a rubbery consistency. Other clinical symptoms, including tenderness, rebound tenderness, and mobile turbid sounds, were found.

Laboratory examinations
After hospitalization, the patient received a series of laboratory examinations for testing liver and kidney function, faecal occult blood, blood coagulation factors, electrolyte panel, and tumor biomarkers. The laboratory findings fell within the normal range.

Imaging examinations
The patient had received a computed tomography (CT) plain scan at another hospital, and was re-evaluated by ultrasonography at our hospital. A massive hyperechoic mass, approximately 30 cm × 17 cm in size, was visualized via ultrasound. The mass was clearly defined and had internal echogenicity, filled with stripe-like structures. Minimal blood signals were detected by colour Doppler ultrasound (Figure 1). A CT plain scan demonstrated a giant homogeneous mass mainly consisting of fatty tissue and thin septa. It measured 16.6 cm × 28.6 cm in volume and pushed the peritoneal contents, such as the bowel loops and uterus, to the right part of the abdomen (Figure 2).

FINAL DIAGNOSIS
Based on the clinical manifestations, normal laboratory examinations, and imaging examinations indicating its adipose origin, the clinicians considered the mass to be a giant retroperitoneal lipoma. However, the possibility of malignancy cannot be overlooked due to its large size.

TREATMENT
After completing the examinations and preoperative assessments, the patient underwent an exploratory laparotomy with the suspicion of malignancy, most likely retroperitoneal liposarcoma. During the operation, a bulky yellowish tumor originating from perirenal fatty tissues in the left retroperitoneal region was found to occupy the retroperitoneum. The uterus and adnexa were displaced by the mass. The mass adhered to the left psoas major muscle and wrapped around the left ureter, making it unfeasible to perform en bloc resection. After carefully separating the left ureter, we performed tumor debulking and resection of the left adnexa, which was also tightly adhered to the tumor. The total weight of the mass was 7.126 kg (Figure 3). The frozen pathological results suggested that the mass mainly consisted of adipose tissues, and a retroperitoneal lipomatous tumor was considered.

After 1 wk of uneventful hospitalization, the patient was discharged from the hospital with full recovery from her clinical symptoms. The final paraffin pathology showed that the tumor was composed of mature adipose tissues and hematopoietic cells, without cytologic atypia, and confirmed the diagnosis of multiple lipomas and multiple myelolipomas (Figure 4).

OUTCOME AND FOLLOW-UP
The patient reported no relevant clinical symptoms after the operation. During a series of follow-ups for 18 mo, the laboratory tests and imaging examinations were normal and indicated no signs of relapse.

DISCUSSION
We herein report a massive retroperitoneal lipoma, which consisted of multiple
Figure 1 Abdominal ultrasonography of the mass. A giant hyperechoic mass filling the abdomen was presented on grey-scale ultrasound. The mass had a relative clear margin and internal septas.

Figure 2 Abdominal computed tomography in the axial plane. Computed tomography imaging showed a giant homogenous mass, mainly consisting of fatty tissue measuring 16.6 cm × 28.6 cm with thin septa, pushing the peritoneal containing such as bowel loops and uterus to the right part of abdomen.

conventional lipomas and multiple myelolipomas. Retroperitoneal lipomas are rare mesenchymal-originated tumors. It was first reported in 1947[22], and since then, a total of 22 cases have been reported in adults sporadically (Table 1). The peak incidence of adult retroperitoneal lipomas occurs between the ages of 40 and 60, with no discernible gender predisposition. According to the morphologic characteristics, lipomas can be subdivided into conventional lipoma, fibrolipoma, angiolipoma, spindle cell lipoma, pleomorphic lipoma, and myelolipoma[7], of which, almost all myelolipomas have been identified inside the adrenal gland, with just about 50 cases of myelolipomas being identified in extra-adrenal locations, such as the retroperineum[28]. The exact underlying aetiology of retroperitoneal lipomas is not well understood. Seeding after fibroid excision, exogenous hormone treatment, or chronic abnormalities in glucose homeostasis have all been blamed for these benign tumors. And genetic factors are thought to have an important role in adipocyte proliferation[5].

Retroperitoneal tumors are often asymptomatic for a long period of time throughout their early clinical course, owing to the vast potential spaces in the retroperitoneum. Local compression of surrounding organs and tissues, which can manifest obstructive urinary/bowel symptoms such as stomach pain, fullness, early satiety, or lower extremity oedema, may occur once the tumors have grown to gigantic sizes. The
Table 1 Summary of all case reports describing retroperitoneal lipomas resected in adults

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Age</th>
<th>Sex</th>
<th>Symptoms</th>
<th>Imaging methods</th>
<th>Tumor size (cm)</th>
<th>Tumor weight</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattell et al.[22], 1947</td>
<td>55</td>
<td>Female</td>
<td>12 cm in diameter</td>
<td>CT</td>
<td>10 cm in diameter</td>
<td>12700 g</td>
<td></td>
</tr>
<tr>
<td>Cattell et al.[22], 1947</td>
<td>61</td>
<td>Female</td>
<td>Epigastric distress and bloating</td>
<td>Barium enema, CT</td>
<td>11 × 8 × 3</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Deppe et al.[21], 1985</td>
<td>24</td>
<td>Female</td>
<td>Flank pain</td>
<td>NA</td>
<td>50 cm in diameter</td>
<td>19500 g</td>
<td>4 yr</td>
</tr>
<tr>
<td>Zhang et al.[20], 1987</td>
<td>65</td>
<td>Male</td>
<td>Weight gain, leg edema</td>
<td>MRI</td>
<td>7 × 6 × 2</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Acheson et al.[19], 1997</td>
<td>76</td>
<td>Female</td>
<td>Swollen leg</td>
<td>CT, MRI</td>
<td>20 × 20 × 12</td>
<td>576 g</td>
<td></td>
</tr>
<tr>
<td>Matsuhashi et al.[18], 2000</td>
<td>65</td>
<td>Male</td>
<td>Abdominal pain, distention, orthopnea</td>
<td>CT</td>
<td>12 × 13</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Marshall et al.[17], 2001</td>
<td>47</td>
<td>Male</td>
<td>Abdominal pain</td>
<td>CT</td>
<td>NA</td>
<td>4990 g</td>
<td></td>
</tr>
<tr>
<td>Forte et al.[15], 2002</td>
<td>61</td>
<td>Male</td>
<td>Urinary frequency, urgency and nocturia</td>
<td>CT</td>
<td>10.5 × 9.5 × 2</td>
<td>145 g</td>
<td></td>
</tr>
<tr>
<td>Fea et al.[16], 2002</td>
<td>52</td>
<td>Male</td>
<td>Abdominal pain</td>
<td>CT</td>
<td>20 × 15 × 10</td>
<td>790 g</td>
<td></td>
</tr>
<tr>
<td>Raftopoulos et al.[14], 2002</td>
<td>62</td>
<td>Male</td>
<td>Abdominal pain</td>
<td>CT</td>
<td>13 × 12</td>
<td>3400 g</td>
<td>17 yr</td>
</tr>
<tr>
<td>Martinez et al.[12], 2003</td>
<td>32</td>
<td>Female</td>
<td>Abdominal pain</td>
<td>US, barium enema</td>
<td>20 × 13 × 10</td>
<td>3400 g</td>
<td></td>
</tr>
<tr>
<td>Drop et al.[13], 2003</td>
<td>60</td>
<td>Female</td>
<td>Abdominal pain, gastrointestinal symptoms</td>
<td>US, CT</td>
<td>13 × 12</td>
<td>1100 g</td>
<td></td>
</tr>
<tr>
<td>Drop et al.[13], 2003</td>
<td>72</td>
<td>Female</td>
<td>Abdominal pain, sickness</td>
<td>US, CT</td>
<td>12 × 9 × 4</td>
<td>18 mo</td>
<td></td>
</tr>
<tr>
<td>Ida et al.[11], 2008</td>
<td>65</td>
<td>Male</td>
<td>Painless swelling in left inguinal region</td>
<td>CT</td>
<td>22 × 14 × 5</td>
<td>18 mo</td>
<td></td>
</tr>
<tr>
<td>Ukita et al.[10], 2009</td>
<td>61</td>
<td>Female</td>
<td>Gluteal pain</td>
<td>MRI</td>
<td>25 × 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singh et al.[9], 2011</td>
<td>65</td>
<td>Male</td>
<td>Inguinal pain</td>
<td>CT</td>
<td>15.6 cm in diameter</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Chander et al.[8], 2012</td>
<td>36</td>
<td>Female</td>
<td>13.6 × 11.2 × 9.1</td>
<td>CT</td>
<td>1300 g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wei et al.[4], 2013</td>
<td>25</td>
<td>Female</td>
<td>Flank pain</td>
<td>US</td>
<td>20 × 12 × 10</td>
<td>1650 g</td>
<td>6 mo</td>
</tr>
<tr>
<td>Saito et al.[7], 2013</td>
<td>65</td>
<td>Male</td>
<td>Flank pain</td>
<td>US, CT</td>
<td>30 cm in diameter</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Weniger et al.[5], 2015</td>
<td>73</td>
<td>Female</td>
<td>Abdominal swelling, pain, and obesitas</td>
<td>CT</td>
<td>55 × 40 × 10</td>
<td>8950 g</td>
<td></td>
</tr>
<tr>
<td>Al-Ali et al.[3], 2019</td>
<td>34</td>
<td>Female</td>
<td>Abdominal distention and back pain</td>
<td>US, CT</td>
<td>45 × 48 × 13</td>
<td>1200 g</td>
<td>6 mo</td>
</tr>
<tr>
<td>Mitchell et al.[3], 2020</td>
<td>29</td>
<td>Female</td>
<td>Abdominal pain, distention, orthopnea</td>
<td>MRI</td>
<td>28 × 14 × 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CT: Computerized tomography; MRI: Magnetic resonance imaging; US: Ultrasonography; NA: Not available.

Clinical presentations tend to be variable and nonspecific[4]. Hence, imaging examinations play an essential role in the diagnosis of these lesions. Ultrasound is generally used for the initial diagnosis and screening of abdominal masses. Radiography, especially CT and magnetic resonance imaging (MRI), is a crucial diagnostic tool for further evaluation of retroperitoneal tumors. The characteristics of adipose tissues are consistent on CT and MRI, but they differ on ultrasonography depending on the physical properties and histologic types. The fatty content is the fundamental feature to identify fat-containing retroperitoneal tumors during imaging examinations. Typical lipomas appear as extensive hyperechoic lesions on ultrasound, while they appear as homogeneous fat-containing masses with thin septa on CT and MRI. Retroperitoneal lipomas are difficult to identify preoperatively since they mimic liposarcomas, which account for the majority of fat-containing retroperitoneal tumors. Liposarcomas present heterogeneous signal intensity and variable appearances on MRI and CT due to the varying subtypes, which included well-differentiated liposarcoma (WDLPS), dedifferentiated liposarcoma, myxoid/round cell liposarcoma, pleomorphic liposarcoma, and mixed liposarcoma. The increased vascularity in liposarcomas that present as low-intensity signals on T1-weighted images can be used for differentiation. However, both lipomas and WDLPS are accompanied by a large amount of fat and minimal soft tissue and have identical appearances on CT and MRI, making it hard to distinguish lipomas from well-differentiated liposarcomas preoperatively.
During the operation, a bulky yellowish tumor, originating from the left retroperitoneal region, was found to occupy the retroperitoneum. The mass weighted 7.126 kg. Due to the large size, the measurement of retroperitoneal tumors by preoperative imaging examinations can be inaccurate. Despite their typical presentations on CT and MRI, both imaging modalities may not rule out the possibility of WDLPS.[29] Approximately 80% of retroperitoneal tumors appear to be malignant, most of which are soft-tissue sarcomas, a category of very uncommon neoplasms, with an overall incidence of 0.3% to 0.4% per 100000 people[10]. Liposarcomas account for 41% of sarcomas, and the majority of the cases are malignant from the start. A few outliers arise from benign lipomas in the early stages[30]. The final diagnosis of lipomas depends on histopathology. Tissue for pathology can be acquired by fine-needle aspiration or core-needle biopsy, but it is nearly impossible to distinguish lipoma-like WDLPS and lipomas due to the limited tissue sample obtained by these methods for detecting atypia and hyperchromatic cells. Postoperative histopathology remains the gold standard for diagnosis. Histologic characteristics for WDLPS include mature adipocytes punctuated with big atypical hyperchromatic cells. However, WDLPS are likely to be misdiagnosed, because atypia may be localized, especially in deep lesions with tiny samples. Murine double minute (MDM2, located at 12q14-15) and cyclin-dependent kinase 4 gene are regularly amplified in WDLPS, which cannot be observed in benign lipomas. Hence, fluorescence in situ hybridization has emerged as a promising method for differential diagnosis[11,16,18].

It is of great importance to discern tumor characteristics intraoperatively and make decisions about the resection extent subsequently. In cases of the pathological diagnosis of liposarcoma, resection with negative margins (R0) is crucial. If infiltrative growth is detected by frozen pathology, a broad excision should be performed. Surgeons should also tailor personalized surgical strategies for patients with important involved adjacent structures who are unsuitable for an entire resection. Commonly, en
CONCLUSION

Retroperitoneal lipomas are rare benign tumors originating from adipose tissues and they tend to have large sizes. Imaging examinations, especially CT and MRI, are fundamental diagnostic tools for these tumors. Surgical resection is the main treatment method. En bloc resection is commonly required. Postoperative histopathology determines the final diagnosis, and immunohistochemical analysis could be useful in the differentiation of liposarcomas. Regular follow-ups are also required for the patients.

ACKNOWLEDGEMENTS

The authors are deeply grateful to Dr. Zhao H and Dr. Shi J for their help in reviewing the postoperative pathology.
REFERENCES

Chen ZY et al. Giant retroperitoneal lipoma

Pneumothorax during retroperitoneal laparoscopic partial nephrectomy in a lupus nephritis patient: A case report

Yi Zhao, Xiao-Qiang Xue, Di Xia, Wei-Feng Xu, Guang-Hua Liu, Yi Xie, Zhi-Gang Ji

Abstract

BACKGROUND
Downgrading target treatment and laparoscopic partial nephrectomy have become increasingly popular in patients with renal cell carcinomas. Rare as it is, pneumothorax is one of the most severe intraoperative complications which needs immediate recognition. On the other hand, as a rheumatological disease, lupus nephritis requires a long period of hormone therapy. Cases of pneumothorax in hormone-consuming renal cancer patients are even fewer.

CASE SUMMARY
A 39-year-old woman was admitted to our department to take a laparoscopic partial nephrectomy. The patient had a medical history of lupus nephritis and renal clear cell carcinoma with hormone and target treatment. Her blood oxygen saturation dropped to 92% during the operation, and pneumothorax was detected by ultrasound. O₂ inhalation and lung dilation were performed. Her vital signs were monitored closely throughout the operation. The operation was accomplished, and she regained consciousness smoothly. A postoperative bedside chest X-ray was conducted after she was transferred to the urosurgery ward, while no evidence of further pneumothorax or rib injury was observed.

CONCLUSION
Pneumothorax is a severe complication in laparoscopic or robotic-assisted laparoscopic operations, especially in retroperitoneal ones. It is easily neglected unless the injury of the diaphragm is found. Low insufflation pressure and shorter operation time are necessary for patients with a history of long-term hormone consumption or chronic immune system disease.

Key Words: Pneumothorax; Laparoscopic partial nephrectomy; Lupus nephritis; Case
Controling the gas pressure in the abdomen or retroperitoneum is an essential issue in laparoscopic operations. High gas pressure may lead to the injury of the diaphragm and, thereafter, pneumothorax. This article presents a case with accidental pneumothorax during the operation. The novelties are: First, this patient may be at high risk of pneumothorax due to long-term hormone application, and this article could arouse everyone's attention to this issue by sharing a clinical example; second, our early recognition and quick reaction to the pneumothorax could provide precious data for peers. Overall, this case should have enlightening significance for managing surgical patients with long-term application of hormones.

Citation: Zhao Y, Xue XQ, Xia D, Xu WF, Liu GH, Xie Y, Ji ZG. Pneumothorax during retroperitoneal laparoscopic partial nephrectomy in a lupus nephritis patient: A case report. *World J Clin Cases* 2022; 10(5): 1684-1688

URL: https://www.wjgnet.com/2307-8960/full/v10/i5/1684.htm

DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1684

INTRODUCTION

Laparoscopic partial nephrectomy and robotic-assisted laparoscopic partial nephrectomy have been widely used with features of less invasiveness and quicker recovery. However, some complications such as pneumothorax or potential bleeding are uncommon but lethal. The approximate incidence rate of pneumothorax was 1%. Moreover, it could be detected in almost all laparoscopic or robotic operations and calls for prompt treatment[1]. There are many reasons for pneumothorax, amongst which spontaneous diaphragm injury is one of the most difficult to discover. We present a lupus nephritis case with a long-term target treatment and hormone therapy who developed a pneumothorax during the operation.

CASE PRESENTATION

Chief complaints

A 39-year-old woman demanded the resection of her primary renal carcinoma after receiving 6-mo target therapy.

History of present illness

The patient was diagnosed with renal clear cell carcinoma with bone metastasis half a year ago. After receiving 6-mo target therapy, manifestations of bone lesions disappeared while the size of the renal mass increased. A partial nephrectomy was recommended for the treatment of her primary renal tumor.

History of past illness

The patient had been on hormone for lupus nephritis treatment for 17 years.

Personal and family history

The patient had no markable personal and family history.

Physical examination

On arrival at the urosurgery ward, the patient’s blood pressure (BP) was 128/76 mmHg, and her pulse rate was 77 beats per minute (bpm). No percussion pain was detected alongside her urinary system.
Laboratory examinations

Nothing abnormal was shown in the laboratory examinations.

Imaging examinations

A mass with mixing density was found on her left kidney on the enhanced computed tomography (CT). Its size was about 5.6 × 4.4 × 4.8 cm.

INTRAOPERATIVE PNEUMOTHORAX

Hydrocortisone was prescribed as a premedication preoperatively. The patient's electrocardiogram, blood oxygen saturation (SpO₂), heart rate (HR), BP, body temperature, and end-tidal carbon dioxide (EtCO₂) were monitored. Anesthesia was induced with 150 mg of propofol, 10 mg of oxycodone, and 40 mg of rocuronium. The endotracheal intubation depth was 21 cm from the incisors. The anesthesia was maintained by inhaled sevoflurane and intravenous remifentanil. Ventilation parameters were set to volume-controlled mode (tidal volume at 6-8 mL/kg, respiratory rate at 10-12 times/min). As a result, the EtCO₂ partial pressure was about 31-44 mmHg, and airway pressure was maintained between 20-25 mmHg.

The patient was set to the right lateral position for laparoscopic partial nephrectomy. After establishing the retroperitoneal space, continuous CO₂ insufflation was adopted to maintain the pneumoperitoneal pressure at 14 mmHg. The operation went on smoothly for half an hour, then suddenly, the patient's SpO₂ dropped to 92%, while her HR increased to 106 bpm, and her BP increased from 80-90/60-65 mmHg to 106/80 mmHg. We paused the operation to recheck all equipment to make sure they were working well. Minutes later, her SpO₂ decreased to 85%-88%, and BP dropped to 80-85/50-60 mmHg like in a roller coaster. On the contrary, her HR increased to 116-125 bpm. The auscultation revealed that no breath sound of her right lung could be heard. Intraoperative pneumothorax was suspected, whereas pulmonary embolism could not be excluded, either.

The operation had to be ceased temporarily to set the patient's body position to supine. The anesthetist withdrew all intravenous medications and maximized the O₂ supply to 100%. Lung dilation was also conducted. However, after a 5-min resuscitation, her highest SpO₂ could only reach 92%. Arterial blood gas analysis showed that her partial CO₂ pressure was 47.5 mmHg, and blood lactic acid was 1.0 mmol/L. Due to the shielding of the metal part of the operating table, intraoperative X-ray was not feasible in this case. Intraoperative ultrasound of the right lung was conducted, and the result showed an advection requisition on M-mode (Figure 1).

With this evidence, intraoperative pneumothorax was diagnosed. Residual retroperitoneal CO₂ was released immediately. The patient's SpO₂ could be maintained at 94%-98%, and intraarterial pressure was controlled at 90-100/60-70 mmHg after 30 min of pure O₂ flow and lung dilation. Finally, her breath sound of the right lung could be heard again.

After careful evaluation, the patient was again set to the right lateral position, and the retroperitoneal CO₂ pressure was lowered to 10-12 mmHg. Laparoscopic exploration proved the integrity of the diaphragm: No injury or damage was found. The surgery was finished within the next hour, and the patient's SpO₂ could still be around 90%-94% after turning her back to a supine position. An extra 30-min pure O₂ insufflation and lung dilation were performed until her SpO₂ reached 100%. We transferred the patient to the post-anesthesia care unit and monitored her vital signs for more than 1 h. The patient claimed mild pain in her right chest during the monitoring. She was sent back to the urosurgery ward after her SpO₂ was sustained at 100% and all other vital signs were steady.

As soon as she entered the ward, she received low-flow oxygen support with a nasal cannula, and her SpO₂ was maintained at 100%. A bedside chest X-ray (Figure 2) was ordered, whereas no evidence of pneumothorax or rib injury was found. Her spontaneous breathing SpO₂ was about 96%-98% on the first day after surgery. There were no other complications till the patient was discharged.

FINAL DIAGNOSIS

The final diagnosis of the presented case was left renal cell carcinoma with a history of bone metastasis. Intraoperative pneumothorax was diagnosed in this patient.
Figure 1 Ultrasound showed an advection level sign on M-mode during the operation. Red square indicates the advection level sign on M-mode, whereas no B line could be detected on ultrasonography.

Figure 2 Bedside chest X-ray result after the patient had been transferred to the urosurgery ward. No evidence of pneumothorax or lobe injury was found after the lung dilation.

TREATMENT
After pure O₂ flowing, lung dilation, and lowering the retroperitoneal CO₂ pressure, the patient’s breath sound of the right lung could be heard again. Laparoscopic partial nephrectomy was performed successfully for this patient.

OUTCOME AND FOLLOW-UP
The patient reported no shortness of breath or chest pain at her first and second postoperative outpatient visits.

DISCUSSION
Pneumothorax is one of the most dangerous complications during laparoscopic or robot-assisted laparoscopic operations. The literature review showed 11 cases of intraoperative pneumothorax that happened[2-3]. The diagnosis of a pneumothorax always depends on ultrasound, X-ray, or chest CT scanning. Chest X-ray is usually the initial tool to detect potential cases. However, its application is limited in the operation room due to the inconvenience of fetching the equipment and low accuracy.

In contrast, transthoracic ultrasound has been reported to be a cheaper, more efficient, and more accurate source of evidence than chest X-ray with an 81% sensitivity and 100% specificity[4]. The typical manifestation of pneumothorax under ultrasound is the multiple advection levels on M-mode, and the pleura moves without line B. X-ray or CT scan reveals the compression or atrophy of the lung. Intraoperative pneumothorax may result from: (1) Intraoperative diaphragm injury, including sharp instrument puncturing or thermal burning; (2) the congenital defect of the
diaphragm, which was not discovered before the operation[5], and (3) high insufflation pressure and long surgery time[6].

Pneumothorax is sometimes misdiagnosed or confused with pulmonary embolism. In this case, we performed the arterial blood gas analysis to assess the patient’s condition and exclude pulmonary embolism. An intraoperative ultrasound examination of the lung was also performed to seek more evidence of the pneumothorax. In this case, no injury or damage to the diaphragm was found before or during the operation. However, intraoperative exploration showed that her connective tissues and vessels were extremely fragile. Considering that cases had been sporadically reported, a 12-15 mmHg pneumoperitoneum pressure might cause intraoperative pneumothorax[3,7], while the insufflation pressure was set to 14 mmHg in this case. Given that this patient had a medical history of lupus nephritis and had been on hormone therapy for more than 10 years, we supposed that this might be the reason for the development of the pneumothorax, as CO₂ could transfer from the retroperitoneal space to the chest under a higher insufflation pressure and a longer operation time.

The treatment of the pneumothorax should be adjusted dynamically according to its cause and severity. Regardless, the CO₂ insufflation should be discontinued, whereas endotracheal intubation, hyperventilation, and higher positive end-expiratory pressure should be maintained for lung dilation[8]. In this patient, an insufflation pressure of 10-12 mmHg might be feasible as her renal tumor was located in the middle to lower kidney, where there was a relatively wider retroperitoneal space. However, in those where the tumors are particularly close to the diaphragm, lowering the retroperitoneal CO₂ pressure might interfere with the operation.

CONCLUSION

Pneumothorax is a rare but severe complication in laparoscopic or robot-assisted laparoscopic operations. It is sometimes neglected unless the injury or damage of the diaphragm is found. Intraoperative ultrasound is a convenient method for diagnosis. Low insufflation pressure and shorter operation time might be necessary for patients with a long-term hormone treatment history or chronic immune systematic disease.

REFERENCES

7 Aravind A, Shroff P, Dewoolkar L. Epigastric pain caused by pneumothorax following extubation in a case of transperitoneal laparoscopic nephrectomy. Intern J Anesthesiol 2006; 13 [DOI: 10.5580/1ca1]
Bulbar conjunctival vascular lesion combined with spontaneous retrobulbar hematoma: A case report

Jia-Ying Lei, Hong Wang

ORCID number: Jia-Ying Lei 0000-0001-9972-0988; Hong Wang 0000-0001-8460-0529.

Author contributions: Lei JY presented the idea, learned about optic neuritis, hepatitis B virus, and immune complex disease, she also wrote the manuscript; Wang H reviewed and corrected the manuscript; and all authors have approved the manuscript and agree with submission to journal.

Informed consent statement: Written informed consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Country/Territory of origin: China
Specialty type: Ophthalmology
Provenance and peer review: Unsolicited article; Externally peer reviewed.

Abstract

BACKGROUND
Orbital hemorrhage can be classified as traumatic or spontaneous depending on its cause. Spontaneous orbital hemorrhage refers to an internal orbital hemorrhage without apparent cause. Therefore, we aimed to describe a case of an orbital hematoma after a severe cough the night before due to inhalation of cooking oil fumes.

CASE SUMMARY
A 46-year-old woman was referred to our hospital with a complaint of exophthalmos accompanied by blurred vision, pain, binocular diplopia, and dizziness lasting for 5 h noted on waking in the morning. She also experienced nausea and vomiting due to high pressure of orbit and dizziness. Based on the auxiliary examination and her medical history, the patient was finally diagnosed with bulbar conjunctival vascular lesion combined with spontaneous retrobulbar hematoma. The patient was administered tobramycin and dexamethasone eye ointment, and applied pressure dressing on the left eye to stop the bleeding. Simultaneously, we administered intravenous etamsylate, oral Yunnan Baiyao capsule, intravenous mannitol to reduce orbital pressure, and intravenous dexamethasone injection at 10 mg/dL combined with neurotrophic therapy to reduce tissue edema. Among them, the Yunnan Baiyao capsule is a traditional Chinese herbal medicine to remove stasis and stop bleeding; thus, it promotes blood circulation and relieves pain resulting in reduced edema of the lesion site. The symptoms did not improve significantly during the first 2 d of treatment. We speculate that high orbital pressure and binocular diplopia induced frequent nausea and vomiting in the patient, causing increased pressure on the superior vena cava and leading to repeated orbital bleeding. After the second day, the symptoms started gradually improving.

CONCLUSION
This case further emphasizes the importance of comprehensive, detailed medical
INTRODUCTION
Orbital hemorrhage can be classified as traumatic or spontaneous depending on its cause. Spontaneous orbital hemorrhage refers to internal orbital hemorrhage without apparent cause with sudden onset, manifesting as proptosis, ophthalmoplegia, ocular distension, pain, increased intraocular pressure, vision loss, diplopia, loss of pupillary reflexes, and optic disc or retinal pallor[1]. Spontaneous orbital hemorrhage is an extremely rare and vision-threatening condition. It may occur due to various systemic predisposing factors such as hypertension, atherosclerosis, intraorbital vascular malformation, and hematologic diseases (abnormal platelet aggregation, hemophilia, and deficiency of human coagulation factor IX). Hass et al[2] reported that the Valsalva maneuver (when caused by vomiting and coughing) is another uncommon etiologic factor. Orbital hemangioma is the most common benign orbital tumor involving one eye, accounting for 24% of orbital tumors. It usually occurs in the muscle cone and is caused by congenital vascular anomalies and can be diagnosed using magnetic resonance imaging (MRI) or computed tomography (CT). Treatment aims to lower the intraorbital pressure and protect the optic nerve from damage. Pharmacotherapy may be considered in cases with minor retrobulbar hemorrhage; however, if the pain in the patient's eye or head is intolerable, or corneal function and vision are significantly affected, surgery is required[1].

Therefore, we report a patient with bulbar conjunctival vascular malformation combined with a spontaneous retrobulbar hematoma that was mistaken for anemia when admitted to a local hospital.

CASE PRESENTATION
Chief complaints
A 46-year-old woman was referred to our hospital on February 16, 2021, for left eye protrusion combined with blurred vision, pain, binocular diplopia, and dizziness lasting for 5 h noted on waking in the morning. She also experienced nausea and vomiting due to high intraocular pressure and dizziness.

History of present illness
The patient recalled having a severe cough the night before the hospital visit, due to inhalation of cooking oil fumes. Upon initial admission to a local hospital, her complete blood count suggested anemia, and her left eye subconjunctival vascular

Key Words: Bulbar conjunctival vascular lesion; Spontaneous retrobulbar hematoma; Intraorbital hemorrhage; Nontraumatic orbital hemorrhage; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
malformation was mistaken as being caused by a hemorrhage. The local hospital discovered a retrobulbar hematoma and suspected that it was caused by a blood system disease; therefore, she was referred to our hospital for a systematic examination.

History of past illness
The patient had a history of heavy menstrual bleeding, lasting approximately 15 d. She denied other medical and surgical histories.

Personal and family history
The patient’s personal and family histories were negative.

Physical examination
The visual acuity of the right eye was 0.04 (-7.00/-0.75 × 100 = 0.8), the left eye was 0.08 (-7.50/-2.00 × 65 = 0.3). The bilateral intraocular pressure was 19 mmHg and 21 mmHg, respectively. There was no redness or swelling in the left eyelid, but the lift was limited, and the upper eyelid covered the upper half of the pupil. The left eyeball protruded forward and was lowered (Figure 1A), the eye movements were limited to up gaze. Slit-lamp examination revealed that her left conjunctiva was not congestible, and curled blood vessels were seen under the conjunctiva on the temporal side, with a dark purple color and a range of approximately 1 cm × 1 cm (Figure 1B). Pupillary reflexes were insensitive, and no obvious abnormalities were observed in the fundus. The exophthalmos of the right and left eye were 14.5 mm and 23 mm, respectively, and the distance between the lateral margin of both orbitals was 100 mm.

Laboratory examinations
Screening showed a hemoglobin concentration of 76 g/L, hematocrit of 29.1%, mean erythrocyte volume of 67.2 fl, a ferritin level of 4.69 ng/mL, and coagulation profile was within normal limits.

Imaging examinations
Gynecological B-ultrasound examination revealed multiple uterine fibroids.

A CT scan indicated left eye protrusion, and orbital near the bottom side showed a clumpy high-density mass (88 HU); the cross-section of this shadow was approximately 2.3 cm × 1.5 cm. No obvious disruption of the orbital wall bone structure was observed.

MRI scans of the orbits showed protrusion of the left eye and an elliptical long-short T1 Long-short T2 signal focus was observed in the lateral optic nerve of the left orbital muscle cone, with smooth edges and low signal on diffusion-weighted imaging. The left hyperdense retrobulbar mass displaced the optic nerve superomedially (Figure 2).

Ocular ultrasound showed uneven echo of the posterior eyeball mass of the left eye that disappeared while the gain reduced, suggestive of goiter of the left orbit (Figure 3).

FINAL DIAGNOSIS
Based on the auxiliary examination and medical history, the diagnoses were as follows: (1) Spontaneous retrobulbar hematoma; (2) Bulbar conjunctival vascular lesion; (3) Anemia; (4) Myopia of both eyes; and (5) Multiple uterine fibroids.

TREATMENT
The patient received tobramycin and dexamethasone eye ointment, and the left eye was bandaged with pressure. Simultaneously, intravenous etamsylate, oral Yunnan Baiyao capsule, intravenous mannitol to reduce orbital pressure, and intravenous dexamethasone injection at 10 mg/dL combined with neurotrophic therapy to reduce tissue edema, were administered.
Figure 1 The slit-lamp examination of left eye. A: The left eyeball protruded forward; B: The slit-lamp examination found that her left conjunctiva was not congestible and curled blood vessels were seen under the conjunctiva in the temporal side, which color was dark purple, with a range of about 1 cm × 1 cm.

OUTCOME AND FOLLOW-UP

Two days after the initial treatment, symptoms had not improved significantly. The high orbital pressure was suspected of having induced frequent nausea and vomiting of the patient, increasing the pressure on the superior vena cava, leading to repeated orbital bleeding. However, her symptoms started to improve after the second day gradually. Considering that the visual acuity and corneal function were not significantly affected and the high risk of surgical treatment, we continued with a conservative (wait and see) treatment. After seven days, the visual acuity of the left eye was 0.08 (-5.25/-2.00 × 80 = 0.8), and the intraocular pressure in both eyes was 19 mmHg and 20 mmHg, respectively. The exophthalmos of the left eye was less severe than at the beginning of hospitalization; the right eye was 14.5 mm, and the left was 18 mm, and the distance between the lateral margin of both orbitals was 100 mm. Visual field examination revealed a visual field defect below the temporal of the left eye (Figure 4). MRI revealed a small reduction in the size of the lesion (1.8 cm × 1.3 cm). Prior to discharge, improvements were observed in the patient’s visual acuity and exophthalmos.

DISCUSSION

Orbital hemorrhage can be classified as traumatic or spontaneous according to its cause. In 2000, Sullivan et al[3] reviewed the records of 115 patients diagnosed with non-traumatic orbital hemorrhage and found that underlying vascular anomalies were present in 104 (90%), usually younger patients. Acute onset painful proptosis, associated with lid swelling or mass, was the most common presentation. Among these patients, only 7% underwent surgery for optic nerve compression, while 89% had complete or partial spontaneous resolution of the hemorrhage.

When the patient was first admitted to a local hospital, laboratory findings suggested anemia. Furthermore, the left eye subconjunctival vascular malformation was mistaken as being caused by the hemorrhage, supported by the orbital CT, which revealed an orbital hematoma in the left eye. Therefore, a spontaneous retrobulbar hematoma was suspected caused by a blood system disease and was then referred to our hospital for a systematic examination to determine the cause.
Figure 2 Magnetic resonance imaging scans of orbits. A-C: Magnetic resonance imaging scans of orbits showed that the left eye was protruding, and an elliptical long-short T1 long-short T2 signal focus was observed in the lateral optic nerve of the left orbital muscle cone, with smooth edges and low signal on DWI. The left hyperdense retrobulbar mass displaced optic nerve superomedial.

Figure 3 Ocular ultrasound of the left eye. A, B: Ocular Ultrasound showed that the echo of the posterior eyeball mass of the left eye is uneven, and it disappears while the gain reduced, suggesting there was a goitre of the left orbit.

In this case, we found that the patient had a congenital venous vascular mass of the temporal bulbar subconjunctival malformation of the left eye. She recalled having a severe cough the night before due to the inhalation of cooking oil fumes. Therefore, it was considered more likely that the orbital hematoma was caused by rupture of the malformed intraorbital vessels rather than anemia. Due to the abnormal congenital development of these malformed vessels, the structure of their walls is defective; hence, they become weaker after luminal congestion. Any factor that causes increased internal jugular venous pressure may lead to rupture and bleeding of the vessels. In 2018, the International Society for the Study of Vascular Anomalies divided vascular anomalies into tumors and malformations. Vascular tumors were divided into three
subtypes: benign, locally aggressive or borderline and malignant. Vascular malformations were divided into simple vascular malformation, mixed vascular malformation, well-known macrovascular malformation, vascular malformation combined with other lesions, vascular changes not yet classified and PIK3CA-related overgrowth spectrum [4]. Strictly speaking, to determine the origin of the vascular tissue of the patient's subconjunctival and intraorbital anomalies, a histopathological study is necessary. However, after conservative treatment, the patient's condition was controlled and to avoid further bleeding, pathological samples were not taken.

The onset of spontaneous orbital hemorrhage is usually sudden and can manifest as proptosis, ophthalmoplegia, pain, pressure, vision loss, diplopia, loss of pupillary reflexes, optic disc, retinal pallor, nausea, and vomiting [2,5]. The clinical presentation of our patient was therefore typical and comprehensive.

The Valsalva maneuver has been reported to be a cause of non-traumatic orbital hemorrhage. In 2004, Hass et al [2] investigated the incidence of orbital hemorrhage following cosmetic eyelid surgery and found that among 26433 patients, 149 developed orbital hemorrhage. This development was most common within the first 3 h after surgery and related to hypertension, perioperative aspirin use, postoperative vomiting, and increased physical activity. Liovic et al [6] reported a case of a 24-year-old female patient with nontraumatic subperiosteal orbital hemorrhage in the 25th week of pregnancy, presenting with painless left globe proptosis and blurred vision after vomiting. Considering that the patient was pregnant and without any signs of optic nerve compression, conservative treatment was adopted.

In the present case, the patient's symptoms did not improve significantly within the first 2 days of treatment. High orbital pressure was thought to induce frequent nausea and vomiting in the patient, which increased the intra-abdominal and intrathoracic pressure, which in turn increased the pressure in the superior vena cava. Since orbital veins do not contain valves, increased pressure in the superior vena cava would cause a rapid increase in orbital vessel pressure and lead to repeated orbital bleeding [1].

Both CT and MRI can be used to observe orbital structures and identify lesion types; however, while MRI is better than CT for enabling faster detection of vascular lesions, CT is the first choice for head and face emergencies (such as retrobulbar hemorrhage [7]).

There are three main options for the treatment of spontaneous retrobulbar hematoma [7]. First, conservative treatment is preferred if the hematoma scope is small and the early stage of the disease has little effect on visual function. Conservative treatments, such as hemostasis, corticosteroids, mannitol, and other treatments can be provided to reduce edema, orbital pressure and subsequently relieve the compression of the optic nerve and blood vessels. It is important to observe the patient's condition closely, and if there is a clear etiology, such as hypertension or blood system disease, the cause should be treated. Second, puncture of hematoma is preferred for a simple hematoma with high ocular prolapse, eye pain, unbearable headache, serious corneal
function, and vision endangering. This procedure is performed under ultrasound guidance or after CT scan positioning, after which pressurized bandages are applied for several days. The main purpose of the pressure dressing is to prevent a sudden decrease in orbital pressure after the puncture, as this may lead to vascular dilatation and rebleeding. Third, orbital decompression is for orbital hematoma complicated with vascular lesions. Surgical treatment should be performed as early as possible to resolve the orbital lesions while the hematoma is being treated. For simple old hematomas with coagulated blood that are difficult to puncture or have a deep location, anterior or lateral wall orbital surgery is often needed. In the case of fresh active bleeding during the operation, adequate hemostasis should be performed, and attention should be paid to protecting the orbital tissue from injury. A drainage bar should be placed 24–48 h after the operation. Sharma et al.[8] suggested that all non-traumatic spontaneous orbital hemorrhage cases should be urgently assessed for orbital compartment syndrome or optic nerve compression. Urgent lateral cantholysis and division of the orbital septum are necessary.

In our case, considering that the patient’s visual acuity recovered significantly after conservative treatment, with a gradual decrease of the ocular protrusion; while also considering that both ultrasound-guided puncture hematoma and surgical treatment have greater risks, we decided to continue the conservative treatment.

Spontaneous retrobulbar hematoma should be differentiated from the following diseases: (1) traumatic intraorbital hemorrhage, most patients have a clear history of trauma, with a rapidly protruding eyeball often accompanied by facial tissue swelling, periorbital fracture, eyelid enclosure, disturbance of eye movement, and diplopia[9]; (2) intraorbital cystic tumors, which include epidermoid cysts, dermoid cysts, and cystic schwannomas. On CT, intraorbital cystic tumors present regular or irregular low-density shadows in homogeneous soft tissue density, while the intraorbital hematoma appears as a soft tissue mass. Enhanced CT or MRI should be performed when the differential diagnosis is difficult. On enhanced CT, the tumors are mostly enhanced overall, while on MRI, long T1 and T2 signals can be seen[10]; (3) orbital cellulitis, a secondary infection of the adjacent orbital tissues, in which sinus infection, especially in the ethmoid sinus, is the most common source of periorbital infection. Other sources include oral, tooth, gingival, or maxillofacial infections[11]. Spontaneous orbital hemorrhage often has no apparent predisposing factor; therefore, it may be misdiagnosed as orbital cellulitis if bleeding progresses rapidly; and (4) sinus mucous cysts, which are primarily found in the frontal and ethmoid sinuses. If the cyst bone wall is weak or disappears, then once the cyst ruptures, cystic fluid easily flows into the orbit, causing rapid protrusion of the eyeball. If the cyst is large, it can protrude directly into the orbit. In addition to the intraorbital mass, the mass connected to the sinus cyst can also be detected through imaging examination. The signal or density of both masses was similar, and the sinus cavity of the affected sinus was enlarged[12].

CONCLUSION

This case report suggests that patients with malformed periorbital vasculature should be alert for the risk of spontaneous intraorbital hemorrhage. In previous literature, we found reports of retrobulbar hematomas caused by sneezing or vomiting[2]. However, to the best of our knowledge, this is the first reported case of apparent bulbar conjunctival vascular malformation combined with retrobulbar hematoma caused by severe coughing.

REFERENCES

Lei JY et al. Bulbar conjunctival vascular lesion

Hepatitis B virus in cerebrospinal fluid of a patient with purulent bacterial meningitis detected by multiplex-PCR: A case report

Dai-Quan Gao, Yong-Qiang Hu, Xin Wang, Yun-Zhou Zhang

Abstract

BACKGROUND
Bacterial meningitis (BM) is a common central nervous system inflammatory disease. BM may cause serious complications, and early diagnosis is essential to improve the prognosis of affected patients.

CASE SUMMARY
A 37-year-old man was hospitalized with purulent meningitis because of worsening headache for 12 h, accompanied by vomiting, fever, and rhinorrhea. Head computed tomography showed a lesion in the left frontal lobe. Infectious disease screening showed positivity for hepatitis B surface antigen, hepatitis B e antigen, and hepatitis B core antigen. Cerebrospinal fluid (CSF) leak was suspected based on clinical history. Streptococcus pneumoniae (S. pneumoniae) was detected in CSF by metagenomic next-generation sequencing (mNGS) technology, confirming the diagnosis of purulent BM. After treatment, multiplex PCR indicated the presence of hepatitis B virus (HBV) DNA and absence of S. pneumoniae DNA in CSF samples.

CONCLUSION
We report a rare case of HBV in the CSF of a patient with purulent BM. Multiplex PCR is more sensitive than mNGS for detecting HBV DNA.

Key Words: Purulent meningitis; Streptococcus pneumoniae; Hepatitis B virus; Multiplex PCR; Cerebrospinal fluid; Case report
Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification
Grade A (Excellent): 0
Grade B (Good): 1
Grade C (Fair): 0
Grade D (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works upon this work non-commercially, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License/s/by-nc/4.0/

Received: September 8, 2021
Peer-review started: September 8, 2021
First decision: October 27, 2021
Revised: November 26, 2021
Accepted: January 8, 2022
Article in press: January 8, 2022
Published online: February 16, 2022
P-Reviewer: Kao JT, Kumar R, Pham TTT
S-Editor: Li X
L-Editor: Wang TQ
P-Editor: Li X

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The advantages of multiplex PCR are rapid detection and high sensitivity and accuracy. Multiplex PCR can assist in the diagnosis of bacterial and viral meningitis in culture-negative cerebrospinal fluid (CSF). Furthermore, this technique can improve the accuracy of diagnosis of acute bacterial meningitis (BM) in the clinical setting in culture-positive or culture-negative CSF. We report a rare case of hepatitis B virus (HBV) in the CSF of a patient with purulent BM and demonstrate that multiplex PCR is more sensitive than metagenomic next-generation sequencing for detecting HBV DNA.

Citation: Gao DQ, Hu YQ, Wang X, Zhang YZ. Hepatitis B virus in cerebrospinal fluid of a patient with purulent bacterial meningitis detected by multiplex-PCR: A case report. World J Clin Cases 2022; 10(5): 1697-1701
URL: https://www.wjgnet.com/2307-8960/full/v10/i5/1697.htm
DOI: dx.doi.org/10.12998/wjcc.v10.i5.1697

INTRODUCTION

Bacterial meningitis (BM) is a common central nervous system (CNS) inflammatory disease[1] that usually affects infants and immunocompromised adults[2,3]. BM can cause headache, nausea, fever, altered mental status, and sudden death[4] and is diagnosed by cerebrospinal fluid (CSF) examination. Most meningitis patients survive; however, one-fifth to one-third of survivors, especially newborns and children, have long-term neurological sequelae[5]. BM can be caused by different bacterial pathogens, and several bacterial species have become more prevalent in the past few decades, including Streptococcus pneumoniae (S. pneumoniae)[6], Haemophilus influenzae[7], and Neisseria meningitidis[8]. Gram-positive S. pneumoniae is the main causative agent of BM in many developing countries[9]. Although the mechanism by which S. pneumoniae crosses the blood-brain barrier (BBB) is incompletely understood, bacterial adhesion to the vascular endothelium is a crucial event in meningitis progression[10]. Therefore, timely diagnosis and treatment of BM are imperative because of the possibility of severe CNS complications[11].

The gold standard test for detecting BM is CSF bacterial culture[12]. Nonetheless, this method has limitations, including low sensitivity and delayed microbial growth, affecting clinical decision-making. Consequently, other methods are necessary for the diagnosis of meningitis. Metagenomic next-generation sequencing (mNGS) is widely used to detect pathogen nucleic acids in clinical samples[13]. Furthermore, multiplex PCR is fast and highly accurate and sensitive[14]. The early detection and diagnosis of BM are fundamental to improve long-term prognosis in affected patients. In the present case, CSF samples were analyzed by mNGS and multiplex PCR, and our patient had BM and co-infection with hepatitis B virus (HBV).

CASE PRESENTATION

Chief complaints
On 15 December 2020, a 37-year-old man was admitted to the hospital with purulent BM associated with worsening headache for 12 h and altered consciousness for 7 h.

History of present illness
Twelve hours before admission, the patient had a persistent headache without obvious cause, accompanied by nausea, vomiting, fever, and rhinorrhea. His body temperature was 37.8 °C.

History of past illness
Medical history showed that the patient had fractured the skull and ribs in a car accident 15 years prior. And he was diagnosed with purulent BM accompanied by rhinorrhea and CSF leak 5 years prior.
Personal and family history
The patient had a free previous personal and family history.

Physical examination
The patient was hospitalized at Huairou Hospital (Beijing, China) 4 h later. Head computed tomography (CT) examination showed a lesion in the left frontal lobe. Routine blood examination showed a white blood cell count ≥ 10.02 × 10⁹/L, neutrophil count ≥ 89.10%, and procalcitonin ≥ 1.62 ng/mL. The results of liver and renal function, coagulation test, blood ammonia, and blood gas analysis were unremarkable.

Laboratory examinations
The results of infectious disease screening indicated positivity for hepatitis B surface antigen (HBsAg) (250 IU/mL), hepatitis B e antigen (HBeAg) (211.40 S/CO), and hepatitis B core antigen (HBcAg) (1.2 S/CO), confirming the diagnosis of purulent BM. CSF samples were collected by lumbar puncture. *S. pneumoniae* was detected using mNGS, confirming the diagnosis of purulent BM. Bacterial infection was controlled with vancomycin and meropenem. On January 14, multiplex PCR indicated the presence of HBV DNA and absence of *S. pneumoniae* DNA in CSF samples.

Imaging examinations
CT scanning indicated that intracranial hemorrhage secondary to intracranial infection was observed, accompanied by hearing disorders (Figure 1).

FINAL DIAGNOSIS
The patient was diagnosed with purulent BM and HBV detected in CSF.

TREATMENT
Symptoms worsened, and the patient presented altered consciousness and restlessness. He was given ceftriaxone, acyclovir, diazepam, and dexamethasone to reduce cerebral edema; however, there was no clinical improvement. The patient was transferred to Xuanwu Hospital (Beijing, China). At the emergency department, his body temperature was 39.1 °C, and hospitalization was recommended.

OUTCOME AND FOLLOW-UP
The patient was discharged from the hospital when clinical symptoms disappeared and CSF test returned to normal status. And a liver specialist treatment was recommended after discharge.

DISCUSSION
In this case, the detection of *S. pneumoniae* in CSF samples by mNGS confirmed the diagnosis of purulent BM. Infectious disease screening indicated positivity for HBsAg, HBeAg, and HBcAg. After treatment, multiplex PCR indicated the presence of HBV DNA and absence of *S. pneumoniae* DNA in CSF samples, demonstrating the high sensitivity of this molecular technique.

Twelve hours before hospitalization, the patient had worsening headache, altered consciousness, rhinorrhea, then intracranial hemorrhage secondary to intracranial infection accompanied by hearing disorders, and was diagnosed with purulent BM. Medical history showed that the patient had fractured the skull in a car accident and was diagnosed with purulent BM 5 years prior. *S. pneumoniae* was detected in the CSF by mNGS, confirming the diagnosis of purulent BM.

S. pneumoniae is one of the most common human pathogens and the causative agent of meningitis and other diseases[16]. Our findings are supported by a previous study, wherein the risk of late-onset BM was higher in adults with head surgeries[17], and the present patient had fractured the skull before. HBV was not detected in the CSF by
mNGS, consistent with the literature. mNGS has high sensitivity and specificity for detecting S. pneumoniae but is less sensitive than RT-PCR for the diagnosis of encephalitis[18].

After antibiotic treatment, multiplex PCR results showed positivity for HBV DNA and negativity for S. pneumoniae DNA in the CSF. In this respect, it was reported that HBsAg and HBV viral load were differentially detected in the CSF and blood[19]. Additionally, HBV was detected in the CSF of patients with S. pneumoniae infections, demonstrating that HBV can cross the BBB. However, whether HBV can cause more severe complications is unknown.

The advantages of multiplex PCR are rapid detection and high sensitivity and accuracy[20]. Albuquerque et al[14] have revealed that multiplex PCR can assist in the diagnosis of bacterial and viral meningitis in culture-negative CSF. Furthermore, this technique can improve the accuracy of diagnosis of acute BM in the clinical setting in culture-positive or culture-negative CSF.

CONCLUSION

We report a rare case of HBV in the CSF of a patient with purulent BM and demonstrate that multiplex PCR is more sensitive than mNGS for detecting HBV DNA.

REFERENCES

7. Sawardekar KP. Haemophilus influenzae Type a Meningitis in Immunocompetent Child, Oman,

Aseptic abscess in the abdominal wall accompanied by monoclonal gammopathy simulating the local recurrence of rectal cancer: A case report

Yan Yu, Yong-Dong Feng, Chao Zhang, Ran Li, De-An Tian, Huan-Jun Huang

Abstract

BACKGROUND
Infectious abscesses in the abdominal wall can be secondary to retained foreign bodies (e.g., stones, use of artificial mesh, use of silk yarn in surgical suture), inflammatory diseases (e.g., acute appendicitis), and perforated malignancies of the digestive tract (particularly the colon). Aseptic abscesses (AAs) are relatively rare. To the best of our knowledge, this is the first report of an AA in the abdominal wall accompanied by monoclonal gammopathy of undetermined significance (MGUS) at 5 years after laparoscopic proctectomy.

CASE SUMMARY
A 72-year-old female patient presented with an enlarged painless mass in the lower abdomen for 1 year. She had a history of obesity, diabetes, and MGUS. Her surgical history was laparoscopic resection for rectal cancer 6 years prior, followed by chemotherapy. She was afebrile. Abdominal examination revealed a smooth abdomen with a clinically palpable solid mass under a laparotomy scar in the left lower quadrant. No obvious tenderness or skin redness was spotted. Laboratory data were not remarkable. Computed tomography scan revealed a...
manuscript was prepared and revised according to the CARE Checklist (2016).

Country/Territory of origin: China

Specialty type: Medicine, research and experimental

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Received: September 21, 2021
Peer-review started: September 21, 2021
First decision: December 2, 2021
Revised: December 7, 2021
Accepted: December 31, 2021
Article in press: February 16, 2022

P-Reviewer: Shiryajev YN, Tsimogiannis K
S-Editor: Fan JR
L-Editor: A
P-Editor: Fan JR

low-density mass of 4.8 cm in diameter in the lower abdominal wall, which showed high uptake on positron emission tomography. The preoperative diagnosis was an abscess or tumor, and surgical resection was recommended. The mass was confirmed to be an AA by microbiological and pathological examinations. The patient recovered well after surgery. There was no evidence of recurrence 2 years later.

CONCLUSION
It is important to consider underlying conditions (diabetes, chemotherapy, MGUS) which may contribute to AA formation in the surgical wound.

Key Words: Aseptic abscess; Monoclonal gammopathy of undetermined significance; Abdominal wall; Rectal cancer; Laparoscopic resection; Case report

Core Tip: We report a case of aseptic abscess (AA) in the abdominal wall accompanied by monoclonal gammopathy of undetermined significance (MGUS) at 5 years after laparoscopic proctectomy. This case report describes the clinical characteristics, laboratory findings, computed tomography images, and treatment, and discusses the possible relationship between AAs and a medical history that includes past surgery, MGUS, diabetes, or chemotherapy.

DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1702

INTRODUCTION
Infectious abscesses in the abdominal wall can be secondary to retained foreign bodies (e.g., stones, use of artificial mesh, use of silk yarn in surgical suture)[1], inflammatory diseases (e.g., acute appendicitis[2]), and perforated malignancies of the digestive tract (particularly in the colon)[3]. Patients often present with a painful anterior abdominal wall mass, sometimes with purulent discharge and systemic symptoms (e.g., fever)[2]. A diagnosis is made based on abdominal computed tomography (CT) and is confirmed by surgical pathology[3]. Aseptic abscesses (AAs) are relatively rare. To the best of our knowledge, this is the first report of a sterile AA in the abdominal wall accompanied by monoclonal gammopathy of undetermined significance (MGUS) at 5 years after laparoscopic resection for rectal cancer. The atypical symptoms and imaging findings of an AA mimic a tumor, posing a diagnostic dilemma. The underlying diseases contributing to AA formation and treatments are discussed.

CASE PRESENTATION
Chief complaints
A 72-year-old woman presented to the outpatient department of our hospital complaining of a painless mass in the left lower quadrant of the abdomen.

History of present illness
The patient’s symptoms began 10 mo prior and had worsened in the last 1 mo. She denied any changes in bowel habits. She was systemically well, with a good appetite and no fever.

History of past illness
The patient had a history of obesity, hypertension, coronary heart disease, and poorly
controlled type 2 diabetes. She had been diagnosed with MGUS 1 year prior. Regular medications included ramipril, amlodipine, aspirin, and gliclazide. Her surgical history included percutaneous coronary intervention in 2009 and laparoscopic radical resection for rectal cancer approximately 6 years and 4 mo prior to her present admission. Postoperative histopathological examination revealed moderately differentiated adenocarcinoma of the rectum with direct invasion to the deep muscular layer of the intestinal wall. All surgical margins were free of disease, and four lymph nodes were retrieved and found to be non-malignant. The pathological staging was pT3N0M0 stage II, according to American Joint Committee on Cancer Staging. The postoperative course was uneventful. The patient received seven cycles of chemotherapy (capecitabine 3000 mg/d) after surgery with curative intent. She was followed up and free of cancer recurrence at 56 mo after surgery.

Physical examination

The patient was afebrile (36.3 °C). Her body mass index (BMI) was 30 kg/m2, and her blood pressure and pulse were 127/88 mmHg and 80 beats per min, respectively. Abdominal examination at presentation revealed a smooth abdomen with a clinically palpable solid mass (approximately 4 cm in diameter) under a laparotomy scar in the left lower quadrant. No obvious tenderness, skin redness, swelling, or increased skin temperature was observed around the mass. Abdominal auscultation revealed normal bowel sounds.

Laboratory examinations

Serum levels of glycosylated hemoglobin [8.9%, normal range (NR): 4%-6%), triglycerides (6.79 mmol/L, NR: 0.9-1.7 mmol/L), and glucose (12.6 mmol/L, NR: 4.1-6.0 mmol/L) were elevated. Hemoglobin levels (114 g/L, NR: 115-150 g/L) were decreased. Serum immunofixation electrophoresis revealed the presence of M-protein (11%, NR: 0%) and elevation of monoclonal immunoglobulin G (IgG) lambda (2.36 g/L, NR: 0.9-2.1 g/L). Other laboratory tests were within NR. The laboratory data were not either indicative of acute inflammation (white blood cell count of 5400 cells/μL; neutrophil bands of 66%, serum C-reactive protein level of 0.7 mg/dL) or tumor recurrence (carcinoembryonic antigen level of 2.8 ng/mL).

Imaging examinations

Ultrasonography of the left lower quadrant of the abdominal wall demonstrated a relatively well-demarcated, oval-shaped mass with mixed echogenicity (relatively more hypoechoic) and dimensions of 4.8 cm × 2.2 cm. Blood flow signals were seen in the hypoechoic area. Contrast-enhanced abdominal CT showed a low-density mass with rim enhancement adjacent to the rectus abdominis in the lower abdominal wall (Figure 1A), and 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET)/CT revealed high uptake of fluorodeoxyglucose, with a maximum standardized uptake value of 6.0 (Figure 1B). Colonoscopy showed no cancer recurrence. These findings suggested the possibility of either delayed abscess formation or abdominal wall recurrence of rectal cancer with central necrosis.

FINAL DIAGNOSIS

AA in the abdominal wall.

TREATMENT

Complete resection of the mass for therapeutic and diagnostic purposes was proposed. The patient consented to surgery. She subsequently underwent exploratory laparotomy through a midline incision in an elliptical fashion to include the affected abdominal wall part in the specimen. The lesion was confirmed to be an abscess. Upon exploration, a grey white and irregular-shaped mass with central purulent necrosis in the center was found within the abdominal wall (Figure 2). Postoperative transvenous cefoperazone (2.0 g, twice daily) was administered for 3 d. Pathological examination of the specimen revealed a large number of infiltrated neutrophils, lymphocytes, and macrophages in the adipose and connective tissues, accompanied by focal abscess, inflammatory granulation tissue formation, and interstitial fibrosis (Figure 2C and D). Giant epithelioid cells, granuloma, amyloid substance, un-absorbable yarn, or a
Figure 1 Images of the mass by contrast-enhanced abdominal computed tomography and 18F-fluorodeoxyglucose-positron emission tomography. A: Computed tomography (CT) shows a low-density mass with rim enhancement adjacent to the rectus abdominis in the lower abdominal wall; B: 18F-fluorodeoxyglucose-positron emission tomography/CT shows high uptake of fluorodeoxyglucose by the mass, with a maximum standardized uptake value of 6.0. The white arrows indicate the mass.

foreign body were not found in the specimen. A pus culture produced no bacterial or fungal growth after 7 d. The patient was discharged on the fourth postoperative day.

OUTCOME AND FOLLOW-UP

The patient was in good health at the 2-year follow-up.

DISCUSSION

AA is an inflammatory condition characterized by deep sterile collections of neutrophils, clinically mimicking bacterial abscess\cite{4}. The diagnosis is established by excluding other diseases in differentials\cite{4}. AA can arise in many parts of the body, including the abdominal cavity\cite{5}, liver\cite{6}, spleen\cite{6}, brain\cite{7}, lung\cite{8}, and extremities\cite{9}.

Although the causes of AA are not completely clear, it is known to be accompanied by some conditions such as inflammatory bowel disease (IBD)\cite{6}, surgery\cite{5}, drug usage (trastuzumab, crizotinib, vaccine)\cite{7,10,11}, and MGUS\cite{8}, with IBD being by far the most frequently associated condition\cite{6}. AA can antedate, be concomitant with, or follow the diagnosis of IBD\cite{6}; however, AA does not appear to be strongly associated with the disease activity\cite{6}. In our case, ileocolonoscopy was performed, and no IBD was found. Cholecystectomy has been mentioned in intra-abdominal AA, secondary to foreign body reaction to dropped gallstones in gallbladder leakage\cite{5,12,13}. The time of AA presentation can range from 4 years to 8 years after surgery\cite{5,13}. For example, Hawasli et al\cite{12} reported a sterile abscess in the abdominal wall containing gallstones at 4 years and 4 mo after an elective laparoscopic cholecystectomy. In the present case, the AA appeared 5 years after laparoscopic resection for rectal cancer, and was located in the laparoscopic wound. Although no foreign body was retained in the wound, high BMI, diabetes mellitus, and chemotherapy might prevent wound healing, causing local inflammation\cite{14}. Moreover, drug usage is suspected to be one cause as well, as an intracranial AA was formed after the first cycle of trastuzumab in a breast cancer patient\cite{7}. Our patient had received seven cycles of capecitabine and developed AA approximately 4 years after her last chemotherapy treatment. To date, no paper has reported AA as a side effect of capecitabine.

There is evidence suggesting an association between AA and MGUS. MGUS is a condition characterized by the presence of a monoclonal gammopathy in which the clonal mass has not reached a predefined state in which the condition is considered malignant\cite{15}. It is a precursor to conditions such as multiple myeloma or lymphoma at a rate of approximately 1\% per year\cite{15}. MGUS is associated with infections, fractures,
Abdominal wall AA after proctectomy

Figure 2 Gross appearance of the mass in surgery. A: The mass was grey white with an irregular shape; B: There were purulent exudates in the center of the mass; C and D: Pathological examination of the specimen revealed a large number of infiltrated neutrophils, lymphocytes, and macrophages in the adipose and connective tissues, accompanied by focal abscess, inflammatory granulation tissue formation, and interstitial fibrosis.

Peripheral neuropathy, and thromboembolism[16,17]. Only 4 cases of aseptic organ abscesses (spleen, liver, lung, and pancreas) occurring with MGUS have been reported [6,8]. Neutrophilic dermatoses, which are characterized by neutrophil infiltration in the skin, have been reported in monoclonal gammopathy[18,19]. The strongest association is between IgA monoclonal gammopathies and pyodermagangrenosum, a non-infectious neutrophilic dermatosis[18,20,21]. Interestingly, an abnormal neutrophil increase has also been observed in MGUS patients. A leukemoid reaction presenting as neutrophilic leukocytosis can occur with MGUS, which is attributable to cytokine release by neoplastic plasma cells[22,23]. The prompt and long-lasting regression of neutrophilia observed after short-term chemotherapy suggests that the present case should also be considered as a case of plasma-cell dyscrasia-associated neutrophilia [22]. In our case, one could postulate that the poor healing of the surgical wound may have served as an inducing factor and was enhanced by MGUS-associated neutrophil abnormality, ultimately leading to AA formation.

Pain is the most common symptom in patients with AA[13]. Symptoms vary among the organs involved[8,9]. Weight loss, abdominal pain, nausea, and fatigue suggest involvement of the digestive system[9]. In patients with MGUS, the prevalence of symptomatic neuropathy is 8% to 36%[18]. Most patients with neuropathy and IgG monoclonal gammopathy have IgG MGUS[18]. Both MGUS and diabetes can cause neuropathy, which might explain why the AA was painless in our patient. Multiple lesions in the spleen, liver, and skin are present in IBD and prone to relapse[6,9]. Anti-tumor drugs can cause multiple[10] or single[7] AAs. Surgery or a foreign body can cause a single AA and no recurrence has been reported[13]. Recurrences have occurred with anti-tumor drug usage and vaccination[10,11]. With MGUS, multiple AA lesions have been found in the lung and relapse[8]. In some cases, high fever, weight loss, and pain are the most frequent clinical manifestations associated with severe inflammatory response and elevated polymorphonuclear leukocyte count[6]. Elevated inflammatory markers are mostly seen in patients with IBD[4]. Conversely, the absence of fever or
abdominal pain or lack of a raised leukocyte count does not exclude the possibility of AA[6]. Acute inflammatory symptoms are not obvious and have been observed in patients after surgery[13], anti-tumor drug usage[10], and vaccination[11]. Laboratory tests are unremarkable in patients with AA due to surgery or foreign body[13]. The absence of remarkable inflammatory indicators and pain make it difficult to distinguish AAs from the recurrence of cancer.

Abdominal CT is a very valuable tool for detecting locally advanced colon cancer and its invasion along the tissue planes, which may result in the formation of abdominal wall abscess (AWA)[24]. However, CT is not adequate in distinguishing inflammation and carcinoma in the abdominal wall, especially when the original tumor is absent. Although 18F-FDG-PET/CT is a powerful tool for detecting cancer, 18 FDG uptake is not tumor-specific[25]. Our case highlights that sterile AWA-complicating MGUS post-surgery may pose a diagnostic dilemma mimicking tumors due to their similar radiologic and laboratory appearance.

AA does not respond to antibiotic therapy[9], however, its response to steroids is excellent[8]. In some cases, AA completely resolves with the combination of cyclophosphamide and prednisone or anti-tumor necrosis factor-alpha therapy in patients with IBD[6]. For surgery-associated AA, en bloc resection is also a treatment[5, 12, 13]. However, for relapsing patients, special attention should be paid to pathologic changes to avoid iterative surgical procedures. The limitation of our case was that corticosteroids were not applied, because the patient had a history of rectal cancer and the lesion could not be preoperatively excluded from a tumor. Therefore, we lack experience on steroid usage in patients with AA. However, our case suggests that AA associated with surgical wound and MGUS can be treated by en bloc resection without the aid of corticosteroids.

In conclusion, if local recurrence is suspected by symptoms and imaging modalities in the postoperative period for colorectal cancer patients, although rare, the possibility of AA formation should be considered. Likewise, it is important to consider underlying diseases such as diabetes, chemotherapy, and MGUS, which may contribute to AA formation in the surgical wound, regardless of the time elapsed from surgery. The atypical manifestations of AA lead to difficulties in differentiating from cancer based on the results of imaging modalities. AA associated with surgical wound and MGUS can be treated by en bloc resection without the aid of corticosteroids. Greater knowledge of AA among physicians will promote early diagnosis and effective treatment.

CONCLUSION

We reported a rare case of an aseptic AWA with MGUS at 5 years after laparoscopic radical resection for rectal cancer. This case study described the clinical characteristics, laboratory results, imaging findings, and treatment. We also discussed the possible relationship among aseptic abscesses, MGUS, and laparoscopic surgery. We believe that this case provides a foundation for further studies on the relationship between MGUS, neutrophils and AA.

REFERENCES

6 André MFJ, Piette JC, Kémény JL, Ninet J, Jego P, Delévaux I, Wechsler B, Weiller PJ, Francès C,

Tacrolimus treatment for relapsing-remitting chronic inflammatory demyelinating polyradiculoneuropathy: Two case reports

Wen-Jia Zhu, Yu-Wei Da, Hai Chen, Min Xu, Yan Lu, Li Di, Jian-Ying Duo

BACKGROUND
This study describes the efficacy of a tacrolimus treatment regimen used to treat two patients with relapsing-remitting chronic inflammatory demyelinating polyradiculoneuropathy (CIDP).

CASE SUMMARY
Two patients (17-year-old female and 27-year-old male) were enrolled in the current study and were followed up for 12 mo. The first patient was administered tacrolimus (2 mg/d) for 12 mo and prednisolone (40 mg/d) for six months. The second patient was administered tacrolimus (3 mg/d) for six months. Both patients were followed up for 12 mo and the degree of recurrent weakness or normalized motor function was monitored. In addition, nerve conduction studies and tacrolimus levels were recorded. Following tacrolimus treatment, both patients showed marked improvement in clinical outcomes. In the first patient, prednisolone treatment was successfully withdrawn after six months. Sensory as well as motor nerve conduction velocities showed evident recovery following treatment. However, conduction velocities did not completely return to normal, suggesting that electrophysiological recovery can be slower than clinical recovery.

CONCLUSION
Neither patient exhibited any adverse effects due to the tacrolimus therapy. Therefore, tacrolimus can be effective for the treatment of patients with steroid-resistant CIDP.

Key Words: Chronic inflammatory demyelinating polyradiculoneuropathy; Prednisolone; Tacrolimus; Relapsing-remitting; Treatment; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated motor sensory neuropathy that is characterized by demyelination of the peripheral nerves and secondary axonal damage. Tacrolimus is mainly used in organ transplant patients and autoimmune diseases. Here, we investigate the efficacy of tacrolimus in two CIDP patients. Our results demonstrate the efficacy of tacrolimus treatment without significant adverse events. Therefore, tacrolimus can be used as an alternative treatment option if first line treatments are not effective or in refractory CIDP patients.

Case 1: A 17-year-old female was hospitalized with recurrent episodes of numbness and weakness of the limbs occurring over the previous 11 mo.

Case 2: A 27-year-old male was admitted to our department complaining of recurrent weakness and numbness in the limbs for 60 mo.

History of present illness

Case 1: In December 2016, the patient presented with numbness in both hands, weakness in the upper extremities, difficulty combing her hair, and difficulty dressing. The patient’s symptoms presumably began after she suffered from a common cold. In April 2017, her weakness worsened, and the patient could no longer lift her upper extremities and had trouble sitting upright. The numbness in both hands gradually progressed to the distal lower extremities.

Case 2: A 27-year-old male was admitted to our department complaining of recurrent weakness and numbness in the limbs for 60 mo. The patient had a history of recurrent episodes of numbness and weakness in the limbs over the previous 11 mo.

Chief complaints

Case 1: A 17-year-old female was hospitalized with recurrent episodes of numbness and weakness of the limbs occurring over the previous 11 mo.

Case 2: A 27-year-old male was admitted to our department complaining of recurrent weakness and numbness in the limbs for 60 mo.

INTRODUCTION

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated motor sensory neuropathy that is characterized by demyelination of peripheral nerves and secondary axonal damage[1], and CIDP patients usually present with numbness and weakness of the extremities as well as a loss of reflexes[2]. The exact pathogenesis of CIDP is not fully understood, but it involves an attack of the myelin sheath by components of both cellular and humoral immunity, ultimately leading to demyelination of nerve fibers[3].

There are several treatment options for CIDP including plasma exchange or the administration of corticosteroids (CS) and intravenous immunoglobulin (IVIg)[4,5]. The failure of first-line treatment strategies to obtain satisfactory outcomes can lead to the consideration of immunosuppressive agents. Immunosuppressive agents include azathioprine, methotrexate, interferon alpha (IFN-α), cyclosporine (CyA), cyclophosphamide, mycophenolate mofetil, rituximab and stem cell transplantation[6-8]. Accumulating evidence has demonstrated that CyA, a calcineurin inhibitor, can selectively inhibit cytokines produced by helper T cells with a quick onset of action[9-11]. However, CyA has also been associated with side effects that may include nephrotoxicity[12]. Tacrolimus, another calcineurin inhibitor, is more bioavailable with a faster onset of action and lower nephrotoxicity than CyA[13]. Tacrolimus has been widely used in organ transplantation and for the treatment of autoimmune diseases[14].

In 1998, Ahlmén et al[15] reported the treatment of a patient with CIDP using a combination of glucocorticoids and tacrolimus. However, detailed information regarding the efficacy and safety of tacrolimus in CIDP remains unknown. In this study, the clinical response and follow up evaluation of two CIDP patients treated with tacrolimus were reported.

CASE PRESENTATION

Chief complaints

Case 1: A 17-year-old female was hospitalized with recurrent episodes of numbness and weakness in both hands, difficulty combing her hair, and difficulty dressing. The patient’s symptoms presumably began after she suffered from a common cold. In April 2017, her weakness worsened, and the patient could no longer lift her upper extremities and had trouble sitting upright. The numbness in both hands gradually
progressed toward the proximal extremities. Upon admission, the patient was diagnosed with CIDP at her local hospital, and she was administered methylprednisolone (1000 mg/d for 3 d) and IVIg (0.4/kg/d for 5 d; Table 1). Following treatment, her symptoms subsided and she was discharged with no follow-up treatment. In July 2017, the patient presented with another episode of finger numbness and extremity weakness. After three days, the patient could not walk, and she was admitted to her local hospital. The patient was treated with IVIg (0.4/kg/d for 5 d) and her condition improved. Then, in November 2017 (11 mo after initial onset of symptoms), the patient presented with another CIDP episode and was admitted to our inpatient department one week after symptom onset.

Case 2: The patient presented with gradually progressive numbness and weakness in his extremities and was diagnosed with relapsing-remitting CIDP in February 2014. The patient was treated with multiple courses of IVIg (0.4/kg/d for 5 d, n = 12) and methylprednisolone (1000 mg/d for 3 d) therapy with subsequent dosage reductions. During the steroid treatment periods, the patient’s weight increased from 70 kg to 103 kg [body mass index (BMI) of 30.86] and he developed secondary diabetes, hypertension, and hyperlipidemia. In October 2018, he again developed weakness in his extremities that gradually worsened.

History of past illness

Cases 1 and 2: The patient used to be in a good health and had no previous medical history.

Personal and family history

Cases 1 and 2: There were no negative personal habits or customs, and no special family history to note.

Physical examination

Case 1: The patient showed proximal extremity muscle strength values of 2-3 out of 5, distal extremity strength values of 3-4 out of 5, and an absence of tendon reflexes. However, her superficial/deep sensation was normal.

Case 2: The physical examination revealed obesity, an inability to walk on the toes, an inability to squat, a proximal/distal extremity muscle strength of 3 out of 5, and the absence of tendon reflexes as well as sensory anesthesia.

Laboratory examinations

Case 1: Lumbar puncture was performed and the results showed an elevated protein level (59 mg/dL). Routine blood, urine, and stool examinations were normal. Thyroid function, infection, immune findings (ESR, anti-nuclear antibody spectrum, anti-neutrophil cytoplasmic antibody, and anti-cardiolipin antibodies) and tumor screening results were normal. Immunofixation electrophoresis and anti-ganglioside ester antibodies were absent. Nerve conduction velocities were recorded.

Case 2: Lumbar puncture results showed an elevated protein level (82 mg/dL). Routine blood, urine, and stool examinations were normal. Thyroid function, infection, immune findings (ESR, anti-nuclear antibody spectrum, anti-neutrophil cytoplasmic antibody, and anti-cardiolipin antibodies) and tumor screening results were normal. Immunofixation electrophoresis and anti-ganglioside ester antibodies were absent. Nerve conduction velocities were recorded.

Imaging examinations

Case 1: The brain and spinal MRI scan did not reveal any abnormalities. The chest and abdominal Computed tomography (CT) scans were normal.

Case 2: The brain and spinal MRI scan did not reveal any abnormalities. The chest CT scan was normal. The abdominal CT scan showed fatty liver disease.

FINAL DIAGNOSIS

The final diagnosis of both patients was relapsing-remitting CIDP.
Table 1 Clinical features and therapeutic status of two patients with chronic inflammatory demyelinating polyradiculoneuropathy

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex/age</th>
<th>Disease Course (mo)</th>
<th>Number of recurrences</th>
<th>Pretreatment medication</th>
<th>Prednisone usage and dosage before tacrolimus</th>
<th>Tacrolimus Dosage (mg/d)</th>
<th>Length of treatment (mo)</th>
<th>Before Tacrolimus</th>
<th>After 6 mo treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F/17</td>
<td>11</td>
<td>4</td>
<td>IVIg; steroids</td>
<td>40 mg 4 wk, 35 mg 4 wk, 30 mg was associated with onset of symptoms</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>M/27</td>
<td>60</td>
<td>4</td>
<td>IVIg; steroids</td>
<td>-</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

ONLS: Overall neuropathy limitation scale; IVIg: Intravenous immunoglobulin.

TREATMENT

Case 1

Following admission, the patient’s weakness continued to progress and she was treated with IVIg (0.4/kg/d for 5 d) for the third time. Her extremity weakness and numbness quickly improved. However, her weakened left upper extremity and absence of right knee reflexes persisted. To prevent recurrence, oral prednisone (40 mg/d, reduced by 5 mg per month) was prescribed in November 2017.

Case 2

The patient could not continue steroid pulse therapy or the expensive IVIg treatments. Therefore, oral tacrolimus (3 mg/d) was administered for six months, and his body weight was strictly controlled.

OUTCOME AND FOLLOW-UP

Case 1

In January 2018, the prednisone dose was reduced to 30 mg, but the patient had gained 12 kg (BMI of 26.67). Then, she developed bilateral fingertip numbness and weakness for the fourth time. Physical examination revealed bilateral digital opposition, an extensor strength of 4 out of 5, and extremity tendon reflex attenuation. Other physical examination findings were normal. The patient was treated with tacrolimus (2 mg/d) and prednisone (40 mg/d) was added to her treatment regimen. During treatment, the serum concentration of tacrolimus fluctuated between 1.6 and 2.9 ng/μL (Table 1). Following the initiation of treatment with tacrolimus, the numbness disappeared in the second week, and prednisone was reduced by 5 mg every two weeks. In April 2018, prednisone was decreased to 15 mg and then gradually reduced for discontinuation, but tacrolimus was maintained at 2 mg/d until the end of the 12-month treatment course (January 2019). Prior to treatment, the overall neuropathy limitation scale (ONLS)[9] score was 1 point and it improved to 0 points after six months of treatment (Table 1). In addition, nerve conduction studies were recorded before and after treatment (Table 2). At the one-year follow-up appointment in January 2019, the patient was asymptomatic and the sensory as well as motor nerve conduction velocities had recovered, but did not completely return to normal, suggesting that electrophysiological recovery can be slower than clinical recovery (Table 2).

Case 2

After two months, the patient’s weight dropped to 83 kg, and the extremity weakness was markedly improved. His diabetes, hypertension, and hyperlipidemia were controlled with medication. Physical examination revealed symmetrical biceps muscle strength and a finger extension strength ratio of 4/5, a finger abduction/adduction muscle strength of 5/5, a hip flexion and toe dorsiflexion strength ratio of 4/5, muscle strength of 5/5 in the other extremities, and the absence of tendon reflexes. Prior to tacrolimus treatment, the ONLS scores were 2 points, which improved after six months of treatment (Table 1). During treatment, the serum concentration of tacrolimus fluctuated between 5.1 and 6.8 ng/μL. At the one-year follow-up
Table 2 Comparison of nerve conduction velocities before and after treatment in both patients

<table>
<thead>
<tr>
<th>Nerve</th>
<th>Case 1 (one-year)</th>
<th>Case 2 (one-year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>MNCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>5.9</td>
<td>4.7</td>
</tr>
<tr>
<td>Velocity (m/s)</td>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>Tibial</td>
<td>6.8</td>
<td>7.3</td>
</tr>
<tr>
<td>SNCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>Not elicited</td>
<td>2.9</td>
</tr>
<tr>
<td>Velocity (m/s)</td>
<td>Not elicited</td>
<td>47</td>
</tr>
<tr>
<td>Tibial</td>
<td>5.5</td>
<td>Not performed</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Not performed</td>
</tr>
</tbody>
</table>

MNCV: Motor nerve conduction velocity; SNCV: Sensory nerve conduction velocity.

appointment, the sensory and motor nerve conduction velocities had recovered but did not completely return to normal, supporting the suggestion that electrophysiological recovery is slower than clinical recovery (Table 2).

DISCUSSION

In this study, two patients were clinically diagnosed with relapsing-remitting CIDP characterized by extremity numbness and weakness, electrophysiological findings consistent with demyelinating peripheral neuropathy, and lumbar puncture findings indicative of cerebrospinal fluid protein-cell separation. Both patients were young and childless (17 and 27 years of age), and the disease courses were 11 and 60 mo in patients 1 and 2, respectively. All other related diseases were excluded.

At the time of admission, both patients experienced CIDP symptoms that had recurred for the fourth time. The clinical features of case 1 were characterized by rapid progression after each recurrence. Following CS and IVIg treatment, her disability score improved by 4 points within five to seven days. However, the patient experienced weight gain following prednisone (40 mg/d) treatment and therefore she disliked the option of long-term CS use. Likewise, the second patient (case 2) developed obesity, diabetes, hypertension, and hyperlipidemia following long-term CS use. Their families could no longer afford the cost of IVIg and plasma exchange. Therefore, a quick-onset non-hormonal immunosuppressive agent was selected.

Ahlmén et al.[15] used tacrolimus (also known as FK506) in 1998 to treat a 28-year-old woman with relapsing-remitting CIDP. In that particular patient, high-dose IVIg, cyclophosphamide, and azathioprine were ineffective. She had a favorable outcome with high-dose prednisone but she relapsed after discontinuation of the prednisone. Reduction therapy involving a combination of plasma exchange and a high dose of prednisone (80 mg/d) was effective, but the patient developed steroid myopathy. Therefore, she was administered a high dose of tacrolimus (0.42 mg/BMI/d) that was later reduced to 0.08 mg/BMI/d after 1.5 years, and prednisone (40 mg/d) was discontinued after the first six months. This treatment course had a favorable outcome, and the patient did not relapse within the one year of observation. Nevertheless, that patient developed side effects including diarrhea and hand tremors during the high-dose tacrolimus treatment course, but those symptoms disappeared when the tacrolimus dose was reduced[15].

The combination of tacrolimus and FK506 binding protein (FKBP) forms the FK506-FKBP-12 complex, which can prevent T cell proliferation, decrease T-cell mediated tissue damage, and play an immunosuppressive role through the inhibition of various lymphocyte products, such as IL-2[16]. Tacrolimus has been widely used in organ transplantation and may be an effective treatment strategy for CIDP patients. However, several organ transplant patients using tacrolimus developed reversible demyelinating peripheral neuropathy[17-19]. Nevertheless, those symptoms were observed in only 3% of organ transplant patients, and may be attributed to the high doses of tacrolimus that were administered (5-10 mg/d)[20].
In this study, both patients were young adults and childless. Due to possible reproductive toxicity, cyclophosphamide and azathioprine were not optimal treatment options in these younger patients[21,22]. Therefore, the patients preferred treatment with tacrolimus due to its relatively mild side effects and quick onset of action. Among the nonhormonal immunosuppressive agents, tacrolimus has the fastest onset of action [11,13]. In this study, case 2 used a single dose of tacrolimus (3 mg/d) for six months, and the severity of extremity weakness was significantly improved. On the other hand, case 1 used a slightly lower dose of tacrolimus (2 mg/d) for 12 mo. In case 1, although the serum concentration of tacrolimus was lower (fluctuating from 1.6 to 2.9 ng/μL), we were still able to reduce the concentration of prednisone and prevent side effects attributed to prolonged CS treatment. However, this suggests that the serum concentration of tacrolimus is not the only factor that determines the efficacy of treatment, but this point will be addressed in future studies.

CONCLUSION

In conclusion, these results demonstrate the efficacy and safety of low-dose tacrolimus in the treatment of CIDP if first-line treatment options were ineffective or contraindicated. Nevertheless, future multi-center studies that enroll a greater number of patients will be necessary to fully evaluate the role of tacrolimus in the treatment of CIDP.

ACKNOWLEDGEMENTS

Thanks due to the two young patients’ support and the trust in our hospital.

REFERENCES

CASE REPORT

Vedolizumab-associated diffuse interstitial lung disease in patients with ulcerative colitis: A case report

Jie Zhang, Mei-Hong Liu, Xue Gao, Chang Dong, Yan-Xia Li

ORCID number: Jie Zhang 0000-0002-4244-3660; Mei-Hong Liu 0000-0002-0061-0373; Xue Gao 0000-0002-3894-7561; Chang Dong 0000-0001-5203-0891; Yan-Xia Li 0000-0002-1586-5352.

Author contributions: Dong C and Zhang J reviewed the literature and contributed to manuscript drafting; Liu MH performed the collection and interpretation of the clinical data and material; Gao X analyzed and interpreted the pathological findings; Li YX was responsible for the revision of the manuscript for important intellectual content; all authors contributed to the manuscript and approved the final version to be submitted.

Informed consent statement: Informed written consent was obtained from the patient's proxy for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by the Dalian Municipal

Abstract

BACKGROUND
Vedolizumab, a newer class of integrin antagonist biological agents, has been applied to treat patients with moderate-to-severe Crohn’s disease (CD) and ulcerative colitis (UC), especially for patients who are refractory to traditional therapies and tumor necrosis factor antagonists. However, some rare but life-threatening adverse effects warrant pharmacovigilance. We describe the first fatal case of vedolizumab-associated severe diffuse interstitial lung disease in China.

CASE SUMMARY
We present a case of new-onset diffuse parenchymal lung disease developing under treatment with vedolizumab in a patient with UC. After two doses of vedolizumab, he developed persistent fever and progressively worsening dyspnea. Extensive workups, including bronchoalveolar lavage, transbronchial lung biopsy and metagenomic next-generation sequencing, identified no infectious causes, and other potential causes (such as tumors and cardiogenic pulmonary edema) were also excluded. As a result, a diagnosis of vedolizumab-related interstitial lung disease was established. Unfortunately, although corticosteroids and empiric antibiotics were administered, the patient eventually died of respiratory failure.

CONCLUSION
Vedolizumab-related interstitial lung disease in patients with UC is rare but potentially lethal. Gastroenterologists and pulmonologists should be aware of vedolizumab-related adverse drug reactions.
Key Words: Vedolizumab; Adverse effects; Ulcerative colitis; Inflammatory bowel disease; Interstitial lung disease; Case report

Core Tip: Vedolizumab is the treatment of choice for patients with moderate-to-severe ulcerative colitis who are refractory to tumor necrosis factor antagonists. However, some rare but potentially lethal drug-associated adverse effects warrant pharmacovigilance. We present a case of new-onset diffuse parenchymal lung disease development under treatment with vedolizumab in a patient with ulcerative colitis. After two doses of vedolizumab, he developed persistent fever, progressively worsening dyspnea and eventually died of respiratory failure. The patient was eventually diagnosed with vedolizumab-related interstitial lung disease, in spite of the few case reports found after reviewing the literature. We aim to raise gastroenterologists’ and pulmonologists’ vigilance to this uncommon adverse event.

INTRODUCTION
Vedolizumab is a fully humanized monoclonal antibody. It is currently the only intestinal selective biological agent in the field of inflammatory bowel disease (IBD) that targets α4β7 gastrointestinal integrin receptors and blocks the receptor’s interaction with mucosal addressin cell adhesion molecule-1, thereby inhibiting the migration of T lymphocytes into the intestinal parenchymal tissue in order to reduce inflammation[1]. In March 2020, vedolizumab produced by Takeda Pharmaceutical Company was approved for marketing in China for the first time. Although the clinical effectiveness of this brand has been continuously verified and recognized[2], safety and adverse events have also attracted negative attention. Here, we describe one fatal case of vedolizumab-associated severe interstitial lung disease in a patient with ulcerative colitis (UC). We also reviewed the existing literature in English and found only seven case reports of vedolizumab-associated lung diseases, mainly in patients with IBD.

CASE PRESENTATION

Chief complaints
A 61-year-old Chinese male was initially admitted to the gastroenterology department of our hospital with chief complaints of recurrent abdominal pain, diarrhea, mucopurulent hematochezia and weight loss.

History of present illness
The patient was diagnosed with UC 12 years prior to admission, and he had been treated with multiple conventional therapies, including, oral and topical aminosalicylates, dexamethasone enema, oral corticosteroids, selective leukocyte absorption treatment and intestinal flora adjustment treatment. In spite of these treatments, he experienced frequent flare-ups and was admitted to the hospital 3 times over the past 9 mo. Due to these failed conventional therapies, the patient was administered adalimumab 160 mg by subcutaneous injection. However, the symptoms continued with 10 to 20 bowel movements daily, and the modified Truelove and Witts severity index suggested moderately to severely active UC. As a result, the patient was started on vedolizumab. After the first dose of vedolizumab (300 mg intravenous infusion), fever at 39 °C and fatigue occurred the next day. He was treated with intravenous
mezlocillin, foscarnet sodium, and ornidazole, but the fever persisted. The second dose of vedolizumab was administered 2 wk later, and the patient responded well regarding his intestinal symptoms; however, he presented with new-onset dyspnea at rest and nonproductive cough 2 d after the second vedolizumab treatment. Half a month later, the patient was admitted to the Department of Respiratory and Intensive Care Unit (RICU) due to severe dyspnea.

History of past illness
There was no significant medical history.

Physical examination
Upon arrival to the RICU, a body temperature of 36.8 degrees Celsius, a blood pressure of 128/90 mmHg, a heart rate of 97 beats/min, and a respiratory rate of 28 times/min were noted. The remaining physical examination was unremarkable except for diffuse inspiratory crackles in both lungs.

Laboratory examinations
Lab data revealed the following: white blood cells 11.10×10^9 L, neutrophils 68.6%, lymphocytes 23.2%, hemoglobin 130 g/L and platelets 328×10^9 /L. Serum C-reactive protein was increased at 111 mg/L (normal range ≤ 8 mg/L), erythrocyte sedimentation rate at 64 mm/h (normal range ≤ 15 mm/h), fecal calprotectin at 250.9 ug/g (normal range 0-50 ug/g) and procalcitonin was normal at 0.07 ng/mL (normal range ≤ 0.5 ng/mL). A fecal occult blood test showed positive occult blood with 0-1 white blood cells per high-power field. Stool cultures for *Salmonella*, *Shigella* and *Campylobacter* were all negative. Arterial blood gas analysis showed that pO_2 was 41 mmHg breathing ambient air. Extensive microbiology assays (blood and sputum culture, 1,3-beta-D-glucan, galactomannan testing, aspergillus antibody, cryptoccocal capsular polysaccharide antigen, mycoplasma antibody, human immunodeficiency virus antibody, cytomegalovirus, Epstein–Barr virus, A and B influenza virus PCR assays, and, antibodies of Toxoplasma gondii, rubella, herpes simplex virus and legionella) identified no infectious causes. Serologic examination included rheumatoid factor, antinuclear antibody panel, ds-DNA antibodies, anti-extractable nuclear antigen antibodies, myositis antibody panel, antineutrophil cytoplasmic antibody panel, and immunoglobulin, which were not elevated to pathologic levels. Cardiogenic pulmonary edema was excluded due to normal myocardial enzymes, B-type natriuretic peptide, echocardiogram and echocardiography. Some tumor markers, including, carcinoma embryonic antigen, cytokeratin 19 fragment and neuron-specific enolase, were increased at 7.68 ng/mL (normal range 0-5 ng/mL), 12.37 ng/mL (normal range 0-3 ng/mL) and 26.61 ng/mL (normal range 0-24 ng/mL), respectively, while alpha-fetoprotein and carcinoma antigen 125 and 199 were in the normal range. Bronchoalveolar lavage (BAL) and transbronchial lung biopsy (TBLB) were also performed. Cultures from the BAL were negative for bacteria, mycobacteria and fungi. Samples from the BAL and the peripheral blood were sent together for metagenomic next-generation sequencing (mNGS). This sequencing uses an untargeted DNA/RNA sequencing method to detect all potential pathogens, including, bacteria, fungi, viruses, and parasites[3]. In brief, the negative results of both mNGS and multiple microbiological cultures together effectively excluded infection.

Imaging examinations
On high-resolution computed tomography (HRCT), new-onset diffuse infiltrates, interlobular thickening and fibrosis were noted compared to a HRCT from one month prior (Figure 1).

Pathology
On histopathology, irregular glandular structures in the hyperplastic fibrous tissue were noted with scattered lymphocytes infiltrated in the interstitium. Intranuclear vacuoles, nuclear fragmentation, binuclear cells were seen (Figure 2). No tumor cells were noted and immunohistochemistry showed that adenoid structures were positive for cytokeratin AE1/AE3; epithelial cells were positive for the epidermal growth factor receptor (EGFR), p53 and negative for vimentin; positive immunostaining for Ki67 in some larger epithelial cells accounted approximately 15%; negative immunostaining for desmin was detected.
Figure 1 High-resolution computed tomography of the patient before and after vedolizumab administration. A and B: The lung window of the patient in the high-resolution computed tomography (HRCT) before vedolizumab administration was basically normal except for some scattered miliary nodules and localized emphysema; C and D: the lung window of the patient in the HRCT after two doses of vedolizumab administration showed the new-onset severe diffuse infiltrates, interlobular thickening and fibrosis.

Figure 2 Pathology of transbronchial lung biopsy. A: Irregular glandular structures in the hyperplastic fibrous tissue and infiltrated lymphocytes scattered throughout the interstitium were noted (H&E, x200); B: The glandular cavity was covered with single or stratified epithelium, the epithelial cells were cubic or polygonal, some of the cells had large nuclei and slightly dense chromatin. Intranuclear vacuoles, nuclear fragmentation and binuclear cells were noted. The focal gland cavity contains histiocytes, and the interstitium was infiltrated with scattered lymphocytes. No tumor cells were noted (H&E, x400).

FINAL DIAGNOSIS

A diagnosis of vedolizumab-associated interstitial lung disease was made. The Naranjo adverse drug reaction scale [4] was calculated to be 6 (causality: probable).

TREATMENT

Vedolizumab was discontinued, and the patient was started on methylprednisolone 80 mg/day. Three days later, intubation and mechanical ventilation was initiated due to refractory hypoxia. The anti-infective treatment was adjusted to linezolid, meropenem, caspofungin, compound sulfamethoxazole tablets and foscarnet sodium without any response.
OUTCOME AND FOLLOW-UP

Unfortunately, after nine days of hospitalization, the patient died due to respiratory failure.

DISCUSSION

The efficacy and safety of vedolizumab in patients with moderate to severe IBD have been confirmed in several pivotal clinical trials[5,6]. An integrated study analyzed 2830 IBD patients who used vedolizumab from 2009 to 2013 and showed that vedolizumab did not increase their risk of infection or malignancy, and the most common adverse events were nasopharyngitis, abdominal pain, headache and joint pain[7]. However, in the past 4 years, 7 cases of noninfectious lung injury related to vedolizumab have been reported, including 4 cases of UC and 3 cases of CD. In 2017, Sudheer et al[8] first reported a 58-year-old white man with UC who developed acute respiratory distress syndrome requiring intubation and mechanical ventilation after receiving 3 doses of vedolizumab. By withholding vedolizumab and applying the steroid, the patient was successfully discharged home. Another case was described by Eva et al[9] of a 52-year-old female with UC who suffered from new onset dyspnea and dry cough with chest CT showing diffuse ground-glass opacities. She was being treated with intravenous vedolizumab every 8 weeks for 2 years. Laboratory work did not identify infection, and the pathology of TBLB showed small bronchiole injury with debris and accumulation of mononuclear cells, macrophages and histiocytes. The fact that a complete resolution of symptoms and radiographic abnormalities was achieved by discontinuation of vedolizumab without any other treatments highly suggested vedolizumab-induced lung toxicity. Another recently published case has a similar clinical course as ours. A 39-year-old male diagnosed with UC presented with acute severe interstitial lung injury while receiving vedolizumab treatment[10]. While vedolizumab cessation and systemic steroid administration helped this patient, our patient was refractory to his therapy and finally passed away. Cucinotta et al[11] reported the off-label use of vedolizumab in a 13-year-old child with UC, and after three doses of vedolizumab, the child developed a persistent cough that resolved after vedolizumab discontinuation.

Strictly speaking, drug-induced pulmonary toxicity is not an extraintestinal manifestation of IBD[9,12]. Even so, over half of interstitial lung disease and granulomatous lung disease cases in IBD patients are drug-related; therefore, more differential diagnoses are necessary[13]. On that basis, we also reviewed 3 case reports of patients with CD. They presented with dyspnea, dry cough or fever with new-onset abnormal chest CT results (including pulmonary nodules, ground-glass opacities, pulmonary infiltrates or pleural effusions) after receiving 3-4 doses of vedolizumab[14-16]. On histopathology, lung biopsies from all 3 cases revealed noncaseating granulomatous inflammation. In terms of clinical outcome, 2 patients were successfully treated with prednisone, 1 patient failed systemic steroid treatment but was responsive to infliximab treatment, and complete resolution of pulmonary disease was achieved in all three cases.

In our case, we made a diagnosis of vedolizumab-induced lung injury for the following reasons. First, the patient had no respiratory symptoms or interstitial changes on his previous chest CT, even though his UC was actively relapsing during the past 9 months. Second, the new symptoms following the application of vedolizumab and new-onset diffuse parenchymal changes on CT highly suggested an adverse drug reaction. Third, the resolution of intestinal symptoms and the evolution of respiratory injury occurring directly after the administration of vedolizumab may be attributed to the drug mechanism of vedolizumab itself. One study suggested that vedolizumab could induce an upregulation of β1 expression on lymphocytes (which is an integrin component involved in pulmonary homing)[14], thereby facilitating the development of pulmonary inflammation and injury. Fourth, the abnormalities in the chest CT of our case were the most severe when compared to the above published cases. The reason our patient was not responsive to systemic corticosteroid treatment was due to the devastating damage of the lung tissue and the delay in time to a diagnosis. Last, in addition to conventional microbiological tests, we also utilized the advanced mNGS technique, which has a much higher sensitivity than that of conventional tests in mixed pulmonary infection diagnoses[17]. It has been reported that the sensitivity of mNGS for pathogen detection was 97.1%, with a negative predictive value of 94.1%[18]. Moreover, extensive anti-infective therapy aiming to cover all
possible pathogens was administered without any improvement of symptoms. All the facts discussed above basically excluded the possibility of infection. To the best of our knowledge, this is the first fatal case of vedolizumab-associated interstitial lung disease reported in China. There was an additional death reported in which a 70-year-old man with a UC flare was being treated with prednisone and vedolizumab, but this patient had previously had mild chronic shortness of breath with chest CT showing bilateral interstitial fibrosis before receiving vedolizumab; therefore, we cannot confirm that it was vedolizumab-related[19].

CONCLUSION

Vedolizumab-related interstitial lung diseases in patients with IBD can be potentially fatal (as in our case presentation). Gastroenterologists and pulmonologists should raise their awareness regarding these cases. Timely diagnosis, early discontinuation of the offending drug and systemic corticosteroid treatment could prevent irreversible fibrosis.

REFERENCES

19 **Collins HW**, Frye JW. Interstitial Lung Disease in a 70-Year-Old Man with Ulcerative Colitis. *ACG Case Rep J* 2018; **5**:e28 [PMID: 29670924 DOI: 10.14309/crj.2018.28]
Unusual magnetic resonance imaging findings of brain and leptomeningeal metastasis in lung adenocarcinoma: A case report

Na Li, Yu-Jun Wang, Fang-Mei Zhu, Shui-Tang Deng

ORCID number: Na Li 0000-0003-2224-050X; Yu-Jun Wang 0000-0003-3701-0598; Fang-Mei Zhu 0000-0003-0110-455X; Shui-Tang Deng 0000-0002-2858-7400.

Author contributions: Li N and Wang YJ designed research; Li N and Zhu FM performed research; Li N, Zhu FM, Deng ST analyzed data; Li N wrote the letter; Zhu FM and Wang YJ revised the letter.

Informed consent statement: Informed consent was obtained from the patient’s guardian for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by: the Medical and Health Science and Technology Planning Project, No. 2019319609.

Country/Territory of origin: China

Specialty type: Neuroimaging

Provenance and peer review: Unsolicited manuscript; Externally peer reviewed.

Abstract

BACKGROUND
Metastatic tumors are the most common malignancies of central nervous system in adults, and the frequent primary lesion is lung cancer. Brain and leptomeningeal metastases are more common in patients with non-small-cell lung cancer harboring epidermal growth factor receptor mutations. However, the coexistence of brain metastasis with leptomeningeal metastasis (LM) in isolated gyriform appearance is rare.

CASE SUMMARY
We herein presented a case of a 76-year-old male with an established diagnosis as lung adenocarcinoma with gyriform-appeared cerebral parenchymal and leptomeningeal metastases, accompanied by mild peripheral edema and avid contrast enhancement on magnetic resonance imaging. Surgical and pathological examinations confirmed the brain and leptomeningeal metastatic lesions in the left frontal cortex, subcortical white matter and local leptomeninges.

CONCLUSION
This case was unique with respect to the imaging findings of focal gyriform appearance, which might be caused by secondary parenchymal brain metastatic tumors invading into the leptomeninges or coexistence with LM. Radiologists should be aware of this uncommon imaging presentation of tumor metastases to the central nervous system.

Key Words: Brain metastasis; Leptomeningeal metastasis; Magnetic resonance imaging; Lung cancer; Epidermal growth factor receptor; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Patients with non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR) mutations were more susceptible to develop into brain or leptomeningeal metastases when compared to those with wild-type EGFR. However, parenchymal brain metastasis combined with leptomeningeal metastasis (LM) in isolated gyriform appearance is rare. We herein presented a case of a 76-year-old male with EGFR-mutated lung adenocarcinoma metastases of the brain with isolated gyriform appearance in imaging findings. We speculated that the focal gyriform lesions were likely to be caused by secondary leptomeningeal invasion from parenchymal brain metastatic tumors or coexisting of parenchymal brain metastasis with LM.

Citation: Li N, Wang YJ, Zhu FM, Deng ST. Unusual magnetic resonance imaging findings of brain and leptomeningeal metastasis in lung adenocarcinoma: A case report. World J Clin Cases 2022; 10(5): 1723-1728
DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1723

INTRODUCTION
Metastatic tumors account for the majority of central nervous system (CNS) neoplasms, which outnumber the primary brain tumors, and the most common source for these is lung cancer[1]. CNS metastasis involves brain parenchyma, dura or leptomeninges. Neuroimaging findings often indicate metastatic diseases. In particular, the gadolinium-enhanced magnetic resonance imaging (MRI) of the brain is regarded beneficial for the detection of leptomeningeal metastasis (LM)[2]. Herein, we presented a case of a 76-year-old male with epidermal growth factor receptor (EGFR) mutated lung adenocarcinoma metastases of the brain with unique appearance in imaging findings.

CASE PRESENTATION
Chief complaints
A 76-year-old male patient with nausea and vomiting without obvious inducement, and dizziness, headache and fatigue was admitted to our hospital for further evaluation.

History of present illness
Patient’s symptoms started 3 d ago.

History of past illness
In 2014, the patient underwent radical resection of the right middle lobe lung cancer for the first time. The postoperative diagnosis showed lung adenocarcinoma (T1aN0M0, stage Ia), without adjuvant radiotherapy and chemotherapy. In January 2019, the patient underwent a puncture biopsy because of the newly discovered ground-glass nodule in the right lower lung, and postoperative pathology confirmed lung adenocarcinoma. Polymerase chain reaction of tumor specimens showed EGFR mutations at exon 21. Radiofrequency ablation of right lung cancer was performed after the surgery. At this time, MRI of brain showed no metastatic tumors in the central nervous system.

Personal and family history
The patient had no particular individual or family history.

Physical examination
Neurological examination was conducted, which revealed no obvious pathological signs of tumor metastasis.
Laboratory examinations
The patient underwent cerebrospinal fluid (CSF) tests 2 mo after craniotomy. The CSF results were as follows: Glucose: 0.7 mmol/L; Chloride: 117.4 mmol/L; β-trace protein: 2283 mg/L; White cell: 220 × 10⁶/L; Neutrophils: 20%; and Lymphocytes: 80%. The Pandy’s test was positive, and CSF cytology showed malignant epithelial cells in the CSF (Figure 1).

Imaging examinations
In October 2019, MRI of the brain (Figure 2) revealed a cortical and subcortical isolated gyriform mass in the left frontal lobe, with T₂/FLAIR hyperintensities, obvious contrast enhancement, subtle perilesional edema, and restricted diffusion, which was unusual for metastatic tumors. Therefore, it was misdiagnosed as glioma or subacute cerebral infarction. In addition, T₁WI enhancement also revealed local leptomeningeal lesions (Figure 2E), which were missed in the process of imaging diagnosis. Magnetic resonance angiography (MRA) showed no obvious abnormalities in the intracranial blood vessels.

Further diagnostic work-up
Due to ambiguity in imaging findings, craniotomy was performed to establish the diagnosis. During operation, the mass was shown to be located in the left frontal lobe and adjacent leptomeninges, with a local gray-white tumor tissue, wherein a small part of it appeared pink fish-like, and had abundant blood supply. Resection of tumor tissue was performed in the frontal lobe, and then along the cerebral gyrus and sulcus to remove the invasive residual tumors and leptomeningeal lesions. The pathological examination results revealed abnormal epithelioid cell nests in the brain tissue (Figure 1). Immunohistochemical stains were positive for cytokeratin 7, thyroid transcription factor-1, Napsin-A, and epithelial membrane antigen and negative for glial fibrillary acidic protein, P53, S-100, Vim and ALK, which was consistent with that of primary lung metastasis. Also 40% proliferative activity was reported with Ki-67.

FINAL DIAGNOSIS
The final diagnosis of the presented case was brain and leptomeningeal metastases in EGFR-mutated lung adenocarcinoma.

TREATMENT
After surgery, the patient's condition was stabilized, but his consciousness was still clouded.

OUTCOME AND FOLLOW-UP
The patient did not receive chemotherapy after surgery and died due to acute brain failure two months later.

DISCUSSION
Lung cancer is the most common primary tumor associated with CNS metastases, and it eventually develops into CNS metastases in 23%-36% of lung cancer patients[3]. LM is rare and occurs in 3%-5% of patients with advanced non-small-cell lung cancer[4]. Patients with non-small-cell lung cancer harboring EGFR mutations were more susceptible to develop brain or leptomeningeal metastases when compared with those bearing wild-type EGFR[5,6]. Patterns of brain metastasis might vary in non-small cell lung cancer patients, as it depends on the tumor nodules and is more or less related to cystic and necrotic lesions[7,8]. However, parenchymal brain metastasis combined with LM in the appearance of isolated gyriform are rare. After all, LM usually presents as more diffused tumor involvement, and isolated one is not frequently seen. A case of EGFR-mutated lung adenocarcinoma with brain parenchymal and leptomeningeal metastases in a focal gyriform appearance was herein presented.
Figure 1 Results of pathologic diagnosis and cerebrospinal fluid cytology. A: H&E staining, magnification 100×, demonstrated abnormal epithelioid cell nests in the left frontal lesion; B: Cerebrospinal fluid (CSF) cytology revealed malignant cells in the CSF.

Figure 2 76-year-old male with brain and leptomeningeal metastases. Magnetic resonance imaging (3.0 T) demonstrated a predominately T2/FLAIR hyperintense gyriform mass in the left frontal lobe (A: T2WI; B: Axial FLAIR), which is associated with minimal peripheral edema, mild restricted diffusion (C: Diffusion-weighted image), and avid contrast enhancement (D: Non-contrasted Axial T1WI; E: Sagittal T1WI after gadolinium administration). Leptomeningeal lesions were also observed (black arrow), (F: Axial post contrast).

The lesions of left frontal cortex, subcortex and local leptomeninges, forming an isolated gyriform, were shown with avid contrast enhancement in our case, which was considered to be rare in tumor metastasis into the CNS. Making a diagnosis of LM is difficult, which is relied on cerebrospinal fluid (CSF) analysis result, and clinical and radiographic findings. CSF cytology remains the gold standard for diagnosing LM, but it is invasive and associated with relatively low sensitivity[9]. Gadolinium-enhanced MRI of the brain is considered to be the best imaging technique for evaluating LM, and the images of LM appear as nodular, linear, arched, focal or diffuse intensification[2, 10]. The clinical manifestations of the patient in this case were non-specific, and cytological examination of CSF was not performed before operation. LM was also neglected during preoperative MRI diagnosis. Compared with T1WI enhancement sequence, the contrast-enhanced T2-weighted FLAIR sequence is more sensitive to detect leptomeningeal tumoral or infective-inflammatory involvement. A limitation of
this study was that other smaller areas of metastasis on the leptomeningeal surface may be ignored because contrast-enhanced T₁-weighted FLAIR was not taken. LM was eventually discovered during the surgery. CSF cytology examination also showed malignant tumor cells 2 months later. In fact, preoperative T₁WI enhancement in the present case had significantly revealed LM (Figure 2E).

Similar to the pathophysiology of brain metastases, LM was likely to be a multistep biological process[11]. The spread of cancer cells to leptomeninges might occur via multiple routes, including direct metastatic brain tumors infiltration, hematogenous dissemination of tumors, or via endoneurial/perineural and perivascular pathways [12]. The imaging and intraoperative findings of this case confirmed the seeding of tumors into the brain parenchyma and leptomeninges. Therefore, we speculated that the isolated gyriform lesions were likely metastatic brain parenchymal tumors with secondary leptomeningeal infiltration or a coexistence of brain metastasis with LM.

Moreover, the patient’s MR imaging showed only mild white matter edema below the lesions, which was different from the extensive edema surrounding the typical metastatic tumors. The extracellular space of white matter was wider than that of the gray matter, so white matter was prone to edema. It was speculated that the mild peritumoral edema was related to tumors mainly located in the cortex.

The prognosis of non-small cell lung carcinoma with LM remained poor, and the median overall survival was only 3 mo [3]. Systemic chemotherapy is the preferred treatment choice for lung cancer patients with LM[13]. In this case, the patient had brain and leptomeningeal metastases, and underwent surgical resection without postoperative adjuvant chemotherapy. His condition worsened after surgery and died due to brain failure 2 mo after the diagnosis of CNS metastasis.

Intracranial focal gyriform lesions should be distinguished from cerebral infarction in elderly patients. In subacute infarction, cortical edema and necrosis may lead to enhanced gyral lesions, and may even lead to leptomeningeal enhancement lesions due to meningeal inflammation and early fibrosis[14]. But the enhanced lesions of subacute cerebral infarction demonstrated no obvious mass effect, and the cerebral parenchyma around the enhanced lesions also showed varying degrees of ischemia. However, the mass effect of intracranial enhancement lesions in the present case was obvious, and no adjacent brain parenchyma was involved. Moreover, the clinical manifestations of this patient included only nausea and vomiting, and no symptoms of stroke.

Besides, the diagnosis of this case should be differentiated from high-grade gliomas on imaging. High-grade gliomas tend to occur in the subcortical white matter, and large tumors can cause white matter necrosis, showing circular enhancement images. Furthermore, metastatic peritumoral edema is purely vasogenic, and no infiltrating tumor cells are present outside the perivascular space, which leads to hypoperfusion, with relatively normal magnetic resonance spectrum (MRS) in the peritumoral edema area. The peritumoral edema of high grade gliomas, on the other hand, is a mixture of vasogenic edema, infiltrating neoplastic cells and feeding blood vessels, which is expected to have an increased blood perfusion and higher Cho/NAA and Cho/Cr ratios on MRS, compared to solitary brain metastases[15,16]. Therefore, perfusion-weighted imaging and MRS of peritumoral edema could assist in differential diagnosis of high-grade gliomas versus brain metastases, but the patient didn't receive these tests.

In addition, this case should also be differentiated from cases of leptomeningeal involvement diseases, such as primary central nervous system vasculitis (PCNSV) and tuberculous meningitis (TBM). Unlike the isolated cortical mass in this case, the common MRI features of PCNSV are multiple bilateral supratentorial lesions, involving the gray and white matter, predominantly in the subcortex, deep white matter and corpus callosum, accompanied with focal cerebral infarction[17]. Although PCNSV images could manifest as irregular linear enhancement on subcortical white matter and leptomeninges, there was no obvious mass effect. TBM tended to occur at basal areas, with multiple bilateral foci and obstructive hydrocephalus, which could be differentiated from CNS metastases.

CONCLUSION

A rare case of EGFR-mutated lung adenocarcinoma with cerebral parenchymal and leptomeningeal metastases characterized by isolated gyriform appearance was reported. We speculated that this unique appearance is likely to be due to the induction of secondary leptomeningeal invasion from parenchymal brain metastasis or
coexisted with LM. Therefore, when patients with a history of lung adenocarcinoma were dealt, radiologists should be aware of this uncommon imaging presentation of CNS metastases and carefully observe for the existence of leptomeningeal lesions on T1 enhancement to avoid missed diagnosis.

REFERENCES

Diffuse invasive signet ring cell carcinoma in total colorectum caused by ulcerative colitis: A case report and review of literature

Zhi Zhang, Peng-Fei Yu, Guo-Li Gu, Yu-Hui Zhang, Yu-Ming Wang, Zhi-Wei Dong, Hai-Rui Yang

Abstract

BACKGROUND
Diffuse invasive signet ring cell carcinoma of the colorectum is extremely rare clinically. This type of colorectal cancer has certain clinical, pathological and biological characteristics that are different from ordinary colorectal cancer.

CASE SUMMARY
A 31-year-old young woman was admitted to the hospital for nearly 1 wk due to recurrent symptoms of mucopurulent bloody stools and abdominal distension. Preoperative colonoscopy showed a ring-shaped intestinal wall mass 10 cm from the rectum to the anus. Three pieces of tumor tissue were removed for examination. The pathological results showed rectal mucinous adenocarcinoma. The patient underwent laparoscopic exploration under general anesthesia, and then laparoscopic total colorectal resection, ileal pouch–anal anastomosis and ileostomy were performed. The patient was switched to a FOLFOX + cetuximab regimen. After the fifth cycle, the patient was unable to tolerate further treatment due to tumor progression and multiple organ dysfunction, and died at the end of May 2020. Overall survival was 7 mo.

CONCLUSION
Carcinogenesis of ulcerative colitis is different from sporadic colon cancer, and the overall prognosis is extremely poor.

Key Words: Ulcerative colitis; Colorectal cancer; Signet ring cell carcinoma; Case report
Core tip: Primary signet-ring cell carcinoma (SRCC) of the colorectum is extremely rare clinically. This type of colorectal cancer has certain clinical, pathological and biological characteristics that are different from ordinary colorectal cancer. We report a rare case of ulcerative colitis leading to diffuse infiltrating SRCC of the colorectum, and review the relevant literature studying the disease.

DOI: https://dx.doi.org/10.12998/wjcc.v10.i5.1729

INTRODUCTION
Ulcerative colitis (UC) is a chronic nonspecific disease that is immune mediated and has multiple causes[1]. The disease was previously thought to be prevalent in western countries, with a prevalence of about 79–268/10^5 per year[2]; however, the number of cases reported in China has gradually increased in recent years, and it has become a more common gastrointestinal disease. The inflammation of the disease occurs mostly in the colonic mucosa and submucosa, usually involving the rectum first, then spreading to the entire colon. Typical clinical manifestations of the disease include mucopurulent bloody stools, abdominal pain, and diarrhea. A retrospective analysis of a large sample of cases of UC in China in 2007 found that extraintestinal manifestations were rare, causing only 0.4% of cases of colon cancer[3], and about 15% of patients with UC required colectomy[4]. In this paper, we report a rare case of UC leading to diffuse infiltrating signet ring cell carcinoma (SRCC) of the colorectum, and review the relevant literature.

CASE PRESENTATION

Chief complaints
A 31-year-old young woman presented with bloody stools.

History of present illness
The patient was admitted to the hospital for nearly 1 wk due to recurrent symptoms of mucopurulent bloody stools and abdominal distension.

History of past illness
The patient presented to the local hospital 8 years ago with symptoms of mucopurulent bloody stools and abdominal distension. After colonoscopy, she was diagnosed with UC. After taking prednisone acetate tablets orally for > 1 mo and sulfasalazine enteric coated tablets orally for about 1 year according to the doctor’s advice, the symptom of bloody stools was largely controlled, and no review or further treatment was performed.

Personal and family history
The patient had no specific history of genetic diseases.

Physical examination
The whole abdomen had mild tenderness and no rebound pain. Digital rectal examination: No obvious mass was palpable on the fingertips, and the fingertips were stained with blood.

Laboratory examinations
Tumor markers: carcinoembryonic antigen: 16.03 ng/mL↑, cancer antigen 72-4: 17.94
The patient underwent genetic testing before surgery (gene capture hybridization combined with high-throughput sequencing technology). Reference genome: GRCH37/hg19. The number of target genes exceeded 20000. The results are shown in Tables 1 and 2. A test found that the patient’s tumor mutational burden (TMB) was 26.2/Mb. A high TMB type that suggested that the patient was more likely to benefit from PD-1 antibody monotherapy.

Imaging examinations

Preoperative colonoscopy: A ring-shaped intestinal wall mass was seen 10 cm from the rectum to the anus (Figure 1). Three pieces of tumor tissue were removed for examination. The pathological results showed rectal mucinous adenocarcinoma.

Preoperative computed tomography (CT): There were no obvious abnormalities in the scan of the chest and upper and lower abdomen. The enhanced CT scan of the pelvis showed that the rectal wall thickened uniformly in stages, visibly strengthened mucosal layer, blurred fat spaces around the intestines, and a small amount of effusion (Figure 2).

FINAL DIAGNOSIS

Rectal cancer caused by UC.

TREATMENT

After discussion by the multidisciplinary team for gastrointestinal tumors in our hospital, the patient underwent laparoscopic exploration under general anesthesia on December 2, 2019. During the operation, there was inflammatory exudative ascites in the abdominal and pelvic cavity, obvious inflammatory hyperplasia and edema throughout the entire sigmoid colon and rectum, cancerous umbilical changes at the peritoneal reflexion in the middle of the rectum, and obvious dilatation and edema of part of the bowel. Scattered small patchy changes could be seen on the surface of the mesentery (Figure 3). Tissue was taken from the peritoneal reflex and sent for pathological examination, which showed SRCC. Laparoscopic total colorectal resection, ileal pouch–anal anastomosis (IPAA) and ileostomy were performed.

Postoperative pathological examination: The rectum and entire colon showed diffuse invasive SRCC. Rectal tumors invaded the submesangial adipose tissue, and colon tumors were confined to the mucosa and submucosa. Intravascular tumor thrombus and nerve invasion could be seen. The full thickness of the appendix showed SRCC, with visible metastasis to lymph nodes around the bowel (36/37) (Figure 4). The pathological stage was IVB (T4N2bM1c).

The patient started XELOX chemotherapy on the day 23 after surgery (oxaliplatin: Intravenous infusion for 3 h, day 1; capecitabine: Oral, 2 times/d, days 1-14). The first cycle of chemotherapy ended on January 7, 2020. Follow-up treatment was carried out at the local hospital.

OUTCOME AND FOLLOW-UP

Due to the impact of the COVID-19, the time for patients to receive follow-up chemotherapy was delayed by about 6 wk. After the end of the third cycle of chemotherapy, the patient was examined by imaging, the effects were evaluated as progressive disease, and the patient was switched to a FOLFOX + cetuximab regimen. After the fifth cycle, the patient was unable to tolerate further treatment due to tumor progression and multiple organ dysfunction, and died at the end of May 2020. Overall survival was 7 mo.

DISCUSSION

SRCC is a rare histological subtype of adenocarcinoma that contains abundant intracytoplasmic mucin that displaces the nuclei to the periphery, thereby giving the characteristic appearance of an SRC[6]. Primary SRCC of the colon is extremely rare
Table 1 Mutations of gene detection results

<table>
<thead>
<tr>
<th>Mutant gene</th>
<th>Abundance (%)</th>
<th>Exon</th>
<th>cDNA</th>
<th>Protein</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTOR</td>
<td>0.61</td>
<td>47</td>
<td>c.6617A>G</td>
<td>p.N2206S</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>HRAS</td>
<td>0.85</td>
<td>2</td>
<td>c.81T>C</td>
<td>p.H27H</td>
<td>Synonymous</td>
</tr>
<tr>
<td>SLC11A2</td>
<td>0.79</td>
<td>6</td>
<td>c.597C>T</td>
<td>p.F199F</td>
<td>Synonymous</td>
</tr>
<tr>
<td>AKT1</td>
<td>0.57</td>
<td>3</td>
<td>c.103T>C</td>
<td>p.F35L</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>TP53</td>
<td>0.5</td>
<td>8</td>
<td>c.840A>G</td>
<td>p.R280R</td>
<td>Synonymous</td>
</tr>
<tr>
<td>STK11</td>
<td>0.51</td>
<td>4</td>
<td>c.524A>T</td>
<td>p.K175M</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>XRCC1</td>
<td>0.66</td>
<td>10</td>
<td>c.1196A>G</td>
<td>p.Q399R</td>
<td>Non-synonymous</td>
</tr>
<tr>
<td>VHL</td>
<td>13.95</td>
<td>2</td>
<td>c.355T>C</td>
<td>p.F119L</td>
<td>Non-synonymous</td>
</tr>
</tbody>
</table>

Table 2 Mutations of gene detection results

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mutation detection results</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS</td>
<td>Wild</td>
</tr>
<tr>
<td>NRAS</td>
<td>Wild</td>
</tr>
<tr>
<td>BRAF</td>
<td>Wild</td>
</tr>
<tr>
<td>NTRK</td>
<td>Not detected</td>
</tr>
<tr>
<td>BAT25</td>
<td>Not detected</td>
</tr>
<tr>
<td>BAT26</td>
<td>Not detected</td>
</tr>
<tr>
<td>NR21</td>
<td>Not detected</td>
</tr>
<tr>
<td>NR24</td>
<td>Not detected</td>
</tr>
<tr>
<td>NR27</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Figure 1 Preoperative colonoscopy. The surface showed nodular or cauliflower-like changes; the rectal mucosa was congested and showed edema; the surface showed longitudinal changes, with many scattered small ulcers and a little mucus-like white coating on the surface or a small amount of bleeding. The intestinal cavity was so narrow that the endoscope was unable to pass.

[7]. A study in the 20th century[8] found that only 11 cases of primary SRCC of the colon were found out of 12000 cases of primary colon cancer, with an incidence rate < 1/1000 cases of common colorectal adenocarcinoma. In about 80% of cases[9], the lesions are seen in the left colon at the distal end of the splenic flexure. This rare colorectal cancer has certain clinical, pathological and biological characteristics that are different from those of ordinary colorectal cancer, and which can be recognized as a stage-independent prognostic factor for adverse outcomes in colorectal cancer[10].
Following Laufman and Saphir[11] who first reported SRCC that occurred in the colon in 1951, new cases have been continuously reported[12-16]. Most cases are basically similar in general type, consisting of invasive tumors involving the entire thickness of the colon or rectal wall, leading to obvious thickening and induration. The lesions generally infiltrate the entire cecal wall and involve the proximal part of the appendix. Due to the infiltrative growth and highly aggressive nature of the tumor, most patients are found at an advanced stage, and the overall prognosis is extremely poor[13]. The difference between this patient and previous cases is that she had a clear history of UC, protracted course of disease and irregular follow-up treatment, providing a suitable environment for the later occurrence and development of tumors. Pontes et al[17] also reported a similar case to the present one: That patient had a 9-year history of UC, and although undergoing close endoscopic examination and treatment, he was eventually diagnosed with cancer. The pathological examination of the excised specimen showed SRCC of the sigmoid colon. Current research suggests that the
occurrence of carcinoma in UC is positively correlated with the duration, degree of inflammation and extent of involvement of the patient\cite{18}; and its occurrence and development experience the process of inflammation-low-grade intraepithelial neoplasia to high-grade intraepithelial neoplasia-carcinogenesis\cite{19}, which is different from the mode of gene mutation adenoma canceration of sporadic colorectal cancer \cite{20}. In the same way, the mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) in this patient were all positive and microsatellite stable, and no mutations closely related to colorectal cancer were detected by genetic testing, yet advanced bowel cancer was detected at such a young age. In addition to the rarity of the case itself, it was more related to the history of UC.

As mentioned earlier, UC is a major type of inflammatory bowel disease (IBD). In the past two decades, the overall incidence of UC in China has been increasing year by year\cite{3}, but a consensus has not yet been reached on the exact pathogenesis. It is now believed that a combination of genetic, environmental, intestinal flora and host immune system factors contribute to the development of the disease\cite{21-24}. Studies have shown\cite{25,26} that 8%-14% of patients with UC have a family history of IBD, and the risk of first-degree relatives suffering from the disease is four times higher than that of the general population. To date, genome-wide association studies have confirmed the presence of nearly 200 disease risk genes for IBD; most of which can
cause both UC and Crohn’s disease[27,28]. At present, research on IBD susceptibility genes is mainly focused on Crohn’s disease, and the internal molecular mechanism of the pathogenesis of UC has not been fully elucidated[29]. Compared with Crohn’s disease, UC has a weaker correlation with disease inheritance. Mantovani found that combination of CXC motif chemokine ligand (CXCL) 1 and CXC motif chemokine receptor (CXCR) 2 participates in the malignant behavior of solid and hematological tumors, and these two ligands indirectly act on tumor angiogenesis by regulating the transport of leukocytes that produce angiogenic factors and a variety of inflammatory cytokines[30]. The CXCL1/CXCR2 signaling pathway can regulate inflammation, promote tumor cell proliferation, invasion and transvascular metastasis, and play an important role in the progression of inflammation[31]. In animal experiments, Thaker et al[32] found that IDO1 indoleamine 2,3 dioxygenase (IDO)-1 metabolites activate β-catenin signaling to promote the proliferation of mouse cancer cells and induce colitis-related tumors in mice, indicating that IDO1 may play an important role in the progression of colon cancer caused by UC. In addition, the lack of cell regulatory factors, especially anti-inflammatory factors, plays an increasingly important role in the pathogenesis of UC[33-35]. In a study of nearly 2000 subjects, Franke tested > 400000 single nucleotide polymorphisms through genome-wide association and found that interleukin-10 dysfunction is the core cause of UC[36]. With the gradual deepening of research, new susceptibility genes are constantly being discovered, but genetic studies can only explain 7.5% of the disease differences, and the correlation between UC genotype and clinical phenotype is not clear[28,37], indicating that the disease has obvious genetic heterogeneity and a complex genetic background.

CONCLUSION

Primary SRCC of the colorectum is extremely rare clinically. This type of colorectal cancer has certain clinical, pathological and biological characteristics that are different from ordinary colorectal cancer.

REFERENCES

Studies to Identify Novel Gene Signatures in Ulcerative Colitis.

Chen ZA

10.1038/nature11582

inflammatory bowel disease.

Vermeire S, Barrett JC, Cho JH. Host-microbe interactions have shaped the genetic architecture of

H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M,

Zhao H; International IBD Genetics Consortium (IIBDGC), Silverberg MS, Annese V, Hakonarson

Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget

O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M,

Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T,

Cohain A, Cichon S, D'Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D,

V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Büning C,

Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleyen J, Theatre E, Spain SL, Raychaudhuri S,

Jostins L

Huang LJ

Pedersen J

20

Moller FT

6311394 DOI: 10.1002/1097-0142(19880115)52:8<1323::aid-cncr2820520819>3.0.co;2-9

DOI: 10.1002/1097-0142(19851201)56:11<2723::aid-cncr2820561137>3.0.co;2-n

33 Heller F, Fuss JJ, Nieuwenhuis EE, Blumberg RS, Strober W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. *Immunity* 2002; 17: 629-638 [PMID: 12433369 DOI: 10.1016/s1074-7613(02)00453-3]

Neurothekeoma located in the hallux and axilla: Two case reports

Wan-Ying Huang, Yi-Qi Zhang, Xiang-Hong Yang

ORCID number: Wan-Ying Huang 000000174399825; Yi-Qi Zhang 000000312407062; Xiang-Hong Yang 0000-0001-9223-3677.

Author contributions: Huang WY and Yang XH designed the study; Huang WY analysed the pathology images and wrote the manuscript; Zhang YQ helped prepare the clinical information; all authors read and approved the final manuscript.

Informed consent statement: Written informed consent was obtained from the patients for the publication of this case report and accompanying images.

Conflict-of-interest statement: The authors have no conflicts of interest to report.

CARE Checklist (2016) statement: We have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Supported by the National Natural Science Foundation of China, No. 81773108.

Country/Territory of origin: China

Specialty type: Pathology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Abstract

BACKGROUND

Neurothekeomas (NTKs) are rare benign soft tissue tumours that typically occur in the head, trunk, and upper limbs and are rare in other parts of the body.

CASE SUMMARY

Herein, we present two rare cases in which primary NTKs were located in the hallux and axilla. A 47-year-old woman complained of a verrucous bulge on the plantar side of the left hallux. The surface skin of the tumour was abraded due to poor wound healing. A 6-year-old boy complained of a gradually growing subcutaneous mass in the axilla. The tumours of both patients were completely resected, and the diagnosis of NTK was confirmed by histopathology. At the one-year follow-up, both patients had a good prognosis without local recurrence.

CONCLUSION

To date, NTKs located in the hallux and axilla have rarely been reported in the literature. We describe NTKs that occurred in unconventional areas and summarize the challenges in their diagnosis and differential diagnosis.

Key Words: Neurothekeoma; Hallux; Armpit; Histopathological examination; Immunohistochemical staining; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In these patients, the lack of specificity of clinical symptoms and imaging examination findings as well as the unusual location of neurothekeomas increased the difficulty in diagnosis and treatment. Histopathological examination and immunohistochemical staining may help confirm the diagnosis, but there are still many challenges...
INTRODUCTION

Neurothekeomas (NTKs) are rare, benign, superficial soft tissue tumours that typically present as solitary nodules with a predilection for the head, neck, and upper limbs of females[1,2]. Due to the low prevalence and undefined clinical symptoms of NTKs, it is difficult to accurately distinguish them from other skin tumours. NTKs rarely occur in the lower limbs or axillae and have been reported only once in the areas of the toes and axillae[3,4]. In this report, we describe two different types of NTKs arising in the hallux of a 47-year-old female and the axilla of a 6-year-old boy. Both patients underwent surgical resection, and the final diagnosis was confirmed through histopathological examination.

CASE PRESENTATION

Chief complaints
Case 1: A 47-year-old woman complained of a painless, verrucous bulge on the plantar side of the left hallux for 3 years.
Case 2: A 6-year-old boy visited our hospital and complained of a gradually increasing subcutaneous mass in the axilla for 2 years.

History of present illness
Case 1: The verrucous mass appeared on the plantar side of the left hallux three years previously, and the surface skin of the tumour was abraded due to poor wound healing. Inflammatory granulation tissue formation was observed in the wound. The patient intermittently adhered to conservative treatment, but her condition was not relieved.
Case 2: The subcutaneous mass was found in the axilla two years previously, and the colour of the mass was the same as that of the normal skin. The mass was only 1 cm in diameter when it was first discovered but gradually grew to 2 cm within two years.

History of past illness
Case 1: The patient was diagnosed with tuberculous pleurisy 20 years previously and was cured, and she underwent uterine fibroid surgery 1 year previously.
Case 2: The patient did not complain of any prior specific symptoms.

Personal and family history
Cases 1 and 2: Both patients denied any history of smoking, drinking, or drug abuse. Underlying systemic disease and family genetic history were denied.

Physical examination
Case 1: The patient's general condition was stable with normal vital signs (body temperature 36.8 °C, blood pressure 140/80 mmHg, pulse 110 bpm). A red solid mass with a diameter of 0.8 cm was found on the plantar side of the left hallux with a tough texture, normal skin temperature, and good dorsal artery pulsation.
Case 2: The patient's general condition was stable with normal vital signs (body temperature 36.7 °C, blood pressure 95/65 mmHg, pulse 103 bpm). A subcutaneous mass with a diameter of 2 cm was observed in the left armpit with good mobility, normal surface skin colour and temperature, and mild palpable pain. The superficial
lymph nodes were not enlarged.

Laboratory examinations

Case 1: Laboratory tests revealed signs of inflammation in the urinary system, and the percentage of neutrophils (73.9%) in blood and white blood cell (99.6/μL) and bacterial (1014.5/μL) counts in urine were slightly elevated.

Case 2: No obvious abnormality was noted in the laboratory examination results.

Imaging examinations

Case 1: An ultrasound from the local hospital showed a solid nodule on the plantar side of the left hallux with abundant blood supply.

Case 2: An ultrasound from the local hospital showed a round, well-demarcated soft tissue mass in the left armpit with no significant alterations in the surrounding tissue.

Histopathological examination

Case 1: In general, the red, solid, verrucous mass was approximately 0.8 cm in diameter and had a tough texture (Figure 1A). Histopathological examination of the specimen showed that the tumour tissue was in the form of multiple small nodules or clusters. The nodules, which were composed of oval and spindle tumour cells, were abundant in some areas and sparse in other areas. In the cellular area, oval cells were relatively uniform in size with a rich and eosinophilic cytoplasm, a visible nucleolus, and a mild to moderate degree of mitotic activity. In the intermediate area, spindle cells were arranged in bundles and exhibited a benign morphology. Myxoid matrix could be observed in the nodules or interstitium (approximately 40%) (Figure 1B-D). Immunohistochemical examination revealed positive staining for CD10, CD99, transcription factor binding to IGHM enhancer-3 (TFE3) and CD163, indicating NTK (Figure 1E-H). Negative staining for S-100, cytokeratin (CK), epithelial membrane antigen, smooth muscle actin (SMA), desmin, Stat6, anaplastic lymphoma kinase (ALK), and neuron-specific enolase (NSE) can be helpful in differential diagnosis, as this profile distinguishes NTKs from other soft tissue tumours such as dermal nerve sheath myxomas (DNSMs), smooth muscle cell-derived tumours, solitary fibrous tumours, epithelioid fibrous histiocytomas (EFHs), and neuroblastomas (Figure 1I-N). CD34 staining suggested vascular hyperplasia, and the Ki-67 proliferation index was approximately 20% (Figure 1O and P).

Case 2: Histopathological examination of the specimen showed that the tumour tissue was composed of multiple small nodules, and the nodules were separated by hyalinized collagen fibres (Figure 2A). The nodules were composed mainly of uniformly sized eosinophilic oval cells, in which nucleoli and mitosis were observed. A small number of multinucleated giant cells infiltrated the nodules, and no myxoid matrix was observed in the interstitium (Figure 2B and C). Immunohistochemical examination revealed positive staining for CD10, CD68, TFE3, p63 and vimentin (Figure 2D-H) and negative staining for S-100, CK, SMA, glial fibrillary acidic protein (GFAP) and CD1a (Figure 2I-M). The Ki-67 proliferation index was approximately 15% (Figure 2N).

FINAL DIAGNOSIS

Case 1
NTK, mixed subtype (left hallux).

Case 2
Cellular NTK (left axilla).

TREATMENT

Case 1
Surgical treatment was performed with local infiltration anaesthesia. The 0.8-cm tumour was located in the superficial layer of the flexor tendon and had an incomplete capsule. The tumour was completely resected and submitted for pathological
Figure 1 Macropathological and histological analyses of the tumour tissue in case 1. A: Macroscopic image of the verrucous bulge; B-D: Haematoxylin and eosin staining showing the tumour cells (× 200); E-H: Positive immunohistochemical staining for CD10, CD99, transcription factor binding to IGHM enhancer-3 and CD163 (× 200); I-N: Negative immunohistochemical staining for S-100, cytokeratin, EMA, smooth muscle actin, Desmin, Stat6, ALK and NSE (× 200); O and P: Immunohistochemical staining for CD34 and Ki-67 (× 200).

examination.

Case 2
Surgical treatment was performed with local infiltration anaesthesia. The solid, well-defined, 2-cm tumour was located in the subcutaneous soft tissue of the armpit and seemed to lack a defined capsule. After complete removal of the tumour and complete haemostasis, the incision was sutured.

OUTCOME AND FOLLOW-UP
At the 12-mo follow-up, both patients had maintained a favourable postoperative clinical evolution without local pain or motion limitation. The surgical incisions had healed well, and neither patient showed signs of recurrence or metastasis.
Huang WY et al. Neurothekeoma in the hallux and axilla

[Images of histological sections and immunostaining results]

https://www.wjgnet.com
DISCUSSION

NTKs are rare, benign soft tissue tumours that were first described by Gallager and Helwig in 1980[5]. NTKs were initially considered to be neurogenic tumours originating from Schwann cells, and NTKs were diagnosed and reported for many years as one of the subtypes of dermal nerve sheath myxomas[6]. Recently, studies have shown that, unlike DNSMs, NTKs do not express the S-100 protein[7]. Further analysis of gene expression profiles shows that DNSMs are similar to schwannomas, while NTKs show evidence of myofibroblastic differentiation and possible relation to dermatofibromas[8]. Therefore, NTK was classified as an independent disease for diagnosis. NTKs clinically manifest primarily as painless, slow-growing subcutaneous nodules with good mobility. Clinical diagnosis of these rare neoplasms is challenging because NTKs are not distinctive in physical examinations and imaging examinations. NTK is often mistaken for a sebaceous cyst, a Spitz naevus, a fibrous histiocytoma, a basal cell carcinoma, or a skin adnexal tumour (mainly pilomatrixoma)[9,10], and an accurate diagnosis depends on histopathological and immunohistochemical examination.

Histopathologically, NTK is a poorly circumscribed nodule typically composed of fascicles of spindle-shaped and epithelioid tumour cells with a sparse or no mucinous matrix[10]. Epithelioid cells, which present as oval or polygonal eosinophilic cells, are
Table 1 Main points in the differential diagnosis between neurothekeomas and several other diseases

<table>
<thead>
<tr>
<th></th>
<th>NTK</th>
<th>DNSM</th>
<th>PFH</th>
<th>EFH</th>
<th>Spitz nevus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age</td>
<td>Adult/teenager</td>
<td>Adult</td>
<td>Teenager</td>
<td>Adult/teenager</td>
<td>Teenager/adult under 35</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Both</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>Predilection site</td>
<td>Head/upper limbs/trunk</td>
<td>Finger/lower limbs</td>
<td>Upper limbs/trunk</td>
<td>Lower limbs</td>
<td>Face/head/lower limbs</td>
</tr>
<tr>
<td>Tumour boundary</td>
<td>Blurred</td>
<td>Clear</td>
<td>Clear</td>
<td>Clear</td>
<td>Clear</td>
</tr>
<tr>
<td>Arrangement of tumour cells</td>
<td>Lobular/nodular/clump/whirlpool like</td>
<td>Lobular/nodular</td>
<td>Nodular/clump</td>
<td>Mosaic or whirlpool-like</td>
<td>Nested</td>
</tr>
<tr>
<td>Tumour cell morphology</td>
<td>Round/oval/spindle</td>
<td>Round/oval/spindle</td>
<td>Round/oval/spindle</td>
<td>Round/oval</td>
<td>Polygon/spindle</td>
</tr>
<tr>
<td>Atypia of tumour cells</td>
<td>Mild-moderate</td>
<td>Rare</td>
<td>Rare</td>
<td>Rare</td>
<td>Rare</td>
</tr>
<tr>
<td>Mitosis of nucleus</td>
<td>0-25/WHPF</td>
<td>-</td>
<td>Rare</td>
<td>Rare</td>
<td>Rare</td>
</tr>
<tr>
<td>Immunohistochemical phenotype</td>
<td>CD10(+); CD63(+); mitf(+)</td>
<td>S-100(+) ; GFAP (+); SOX10 (+)</td>
<td>S-100(+) ; vimentin (+); lysozyme (+)</td>
<td>ALK (+); TFE3 (+); S-100 (+)</td>
<td>S-100 (+); HMB-45 (+)</td>
</tr>
</tbody>
</table>

WHPF: Wide high-power field eyepiece 22 mm, sp 40x objective; NTK: Neurothekeoma; DNSM: Dermal nerve sheath myxoma; PFH: Plexiform fibrous histiocytoma; EFH: Epithelioid fibrous histiocytoma; GFAP: Glial fibrillary acidic protein.

rich in the cytoplasm and arranged in a nodular or plexiform pattern; spindle-shaped cells are arranged in bunches or swirls and have a benign morphology. The stroma is composed of hyalinized collagen fibres often accompanied by mucoid degeneration. Depending on the amount of myxoid matrix, NTKs have been subclassified into three types: myxoid (myxoid matrix > 50%), mixed (10% < myxoid matrix ≤ 50%) and cellular (myxoid matrix < 10%). The myxoid matrix can occasionally superficially infiltrate skin or muscle tissue. The nuclei can show mild to moderate atypia, and approximately 0-25 mitotic nuclei per high power field can be observed.

Immunohistochemical examination demonstrates that tumour cells express CD10, CD63 (NKI/C3), and mitf. Most tumours also express CD99. A few tumours express SMA and are negative for S-100, cytokeratin, Melan-A, and SOX-10 staining[11,12], indicating that NTKs are associated with scattered histiocytes.

Accurate diagnosis of NTKs is essential given that these lesions can be mistaken for malignancies, leading to unnecessary treatment. The differential diagnosis includes mainly various types of cysts, DNSMs, plexiform fibrous histiocytomas (PFHs), EFHs, Spitz nevi, etc. The clinical manifestations of these diseases are similar, but the pathological characteristics are different: subcutaneous cysts contain keratinized or necrotic material without tumour cells; DNSMs express S-100, GFAP and SOX10, as assessed by immunohistochemistry[13]; PFHs have spindle-shaped fibroblasts around the nodular-arranged tumour cells[14]; EFH tumour cells are mostly diffusely arranged and do not express CD63[15]; and Spitz nevi are composed of epithelioid or spindle-shaped pigment cells and express S-100[16]. The differential diagnosis of these diseases is shown in Table 1.

CONCLUSION

Herein, we report two rare NTKs; both were completely resected after clinical evaluation, and an accurate diagnosis was obtained after the histopathological and immunohistochemical examination. In addition, we provide a summary of the differential diagnosis and the possible diagnostic pitfalls. The diagnostic and therapeutic experience reported here can be used as a reference for other surgeons and pathologists.

REFERENCES

Huang WY et al. Neurothekeoma in the hallux and axilla

Subclavian artery stenting via bilateral radial artery access: Four case reports

Tao Qiu, Sheng-Qi Fu, Xiao-Yong Deng, Ming Chen, Xiao-Yan Dai

Abstract

BACKGROUND
Subclavian artery stenosis refers to the stenosis in the lumen caused by the presence of plaque or thrombus in the subclavian artery. It is a common problem in endovascular interventions. In fact, conventional subclavian artery stenting via the femoral artery approach is effective and safe. Nevertheless, because femoral artery puncture is not easy to stop bleeding, it requires longer femoral artery compression or more expensive hemostatic materials, such as staplers. Patients need to be catheterized and bedridden for a longer time, which may lead to many complications, such as pseudoaneurysm.

CASE SUMMARY
Herein, we reported a new interventional therapy of subclavian artery. From March 1, 2020 to August 31, 2021, we operated on four patients with subclavian artery stenting via bilateral radial artery access.

CONCLUSION
After reviewing four cases of successful placement of clavicular artery stents via bilateral radial arteries, we concluded that bilateral radial artery approach is feasible. Clavicular artery stenting is safe, effective, and timesaving. It is an excellent alternative to the traditional femoral artery procedure, with few complications and high comfort degree.

Key Words: Subclavian artery stenosis; Bilateral radial artery; Stenting; Subclavian artery steal syndrome; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Subclavian artery stenosis refers to the stenosis in the lumen caused by the presence of plaque or thrombus in the subclavian artery. Its prevalence in the general population is less than that in the patients with peripheral artery stenosis (2% vs 11.5% to 19%) [1]. Occlusion or stenosis in the subclavian artery can lead to some serious complications that endanger the upper extremities, brain and heart [2]. For example, subclavian steal syndrome (SSS) can result in ischemia of the vertebrobasilar system, with the manifestation of vertigo, syncope, diplopia, blurred vision, dysarthria, and tinnitus. The treatment of subclavian artery stenosis mainly includes open surgery, percutaneous transluminal angioplasty (PTA) and percutaneous transluminal stenting. Currently, endovascular intervention is more commonly accepted by clinicians and patients because of its minimal trauma, rapid recovery, and few complications [3].

Traditionally, the right femoral artery is the preferred therapeutic approach for subclavian artery stenting. However, the traditional femoral artery approach still has many limitations, including the need to expose the patient’s private site, bed rest, and increased financial burden [4,5]. Moreover, there are also some rare complications, such as retroperitoneal hemorrhage. PTA and subclavian artery stenting via brachial approach has also been attempted to overcome those shortcomings [6]. However, previous studies have shown that brachial artery is mainly used as the blood supply to the upper extremity, with a high incidence of complications in access sites and ischemic complications [7]. Therefore, it is considered less favorable. In this case report, we described a new interventional therapy of subclavian artery. Subclavian artery stenting via bilateral radial artery access is an excellent alternative to the traditional femoral artery procedure, with few complications and high comfort degree.

CASE PRESENTATION

Chief complaints

Treating Subclavian artery stenosis. From March 1, 2020 to August 31, 2020, we operated on four patients with subclavian artery stenting via bilateral radial artery access. All participants signed the informed consent. When necessary, the legal guardian of volunteers signed the informed consent on their behalf. The case report was as follows.

Case 1: A male patient, 68 years old, had hypertension for 10 years and smoking history for 40 years. He was admitted to the hospital after 10 d of dysphonia with right-sided limb weakness. Magnetic resonance imaging (MRI) showed left pontocerebral lacunar cerebral infarction. The blood pressure of the right upper extremity was 186/92 mmHg, and that of the left upper extremity was 156/85 mmHg. Transcranial color Doppler (TCD) suggested steal of the left subclavian artery at stage 2. On March 30, 2020, the patient underwent subclavian artery stenting via bilateral radial artery access (Figure 1A-C). Consumables included 5F radial artery sheath (Terumo, Terumo Corporation, Tokyo, Japan), 6F radial artery sheath, 2.6 m long 0.035 guidewire, 5F Simon2 contrast catheter (Terumo, Terumo Corporation, Tokyo, Japan). Moreover, dynamic 9/25 mm ball expansion stent (Biotronika, Ackerstrasse, Bulach, Switzerland) and pressure pump were also used. The total procedure took 13 min.
Figure 1 The imaging of cases. A-C: Case 1. At 15:29, right radial artery puncture was inserted into 5F arterial sheath, and Simon2 catheter was selected for left subclavian artery angiography (A); At 15:33, the left radial artery was punctured and a 6F arterial sheath was inserted. A 2.6 m 0.035 guidewire was used for stenting to the left subclavian artery ulcerated plaque with stenosis under Simon2 catheterization positioning (B); At 15:42, 12 ATM dilated the balloon to release the stent. The stent was in good shape. The total procedure took 13 min (C); D and E: Case 2. At 15:45, the right radial artery was punctured and inserted into the 5F arterial sheath, and the Simon2 catheter was selected for left subclavian artery angiography (D); At 15:53, the 6F arterial sheath was inserted via left radial artery puncture. The stent was guided into the place with a 2.6-length 0.035 guidewire and successfully released under Simon2 catheter angiographic positioning. Its morphology was good (E); F-H: Case 3. At 18:35, the right radial artery was punctured and a 5F arterial sheath was inserted. The Simon2 catheter was selected for left subclavian artery angiography (F); At 18:41, the 6F arterial sheath was inserted by left radial artery puncture. A 2.6-length 0.035 guidewire was used to guide the stent to the subclavian artery stenosis under Simon2 catheterization positioning (G); At 18:44, 13 ATM dilated balloon to release the stent. Its morphology was good (H); I-K: Case 4. At 13:28, the left radial artery was punctured and a 5F arterial sheath was inserted. The Simon2 catheter was selected into the unnamed artery for imaging (I); At 13:39, the 6F arterial sheath was inserted through the right radial artery puncture. A 2.6-length 0.035 guidewire was used to guide the stent into place.
Case 2: A female patient, 66 years old, had hypertension for three years. She was admitted to the hospital with dizziness for 10 d. On admission, the blood pressure of the right upper extremity was 130/73 mmHg, and that of the left upper extremity was 103/58 mmHg. TCD suggested steal in the left subclavian artery at stage 2. On June 2, 2020, the patient underwent subclavian artery stenting via bilateral radial artery access (Figure 1D and E). Consumables included 5F radial artery sheath, 6F radial artery sheath, 2.6 m long 0.035 guidewire (APT, Hunan, China), 5F Simon2 contrast catheter (Yixinda, Shenzhen, China), Omnilink Elite9/19mm ball Expandable stent (Abbott Vascular, Santa Clara, CA, United States), and pressure pump. The total procedure took 9 min.

Case 3: A male patient, 81 years old, had hypertension for three years. He was admitted to the hospital with recurrent dizziness for 15 d. On admission, the blood pressure of the right upper extremity was 137/85 mmHg, and that of the left upper extremity was 115/61 mmHg. TCD suggested steal of the left subclavian artery at stage 2. On July 28, 2021, he received subclavian artery stenting via bilateral radial artery access (Figure 1F-H). Consumables included 5F radial artery sheath, 6F radial artery sheath, 2.6 m long 0.035 guidewire (APT, Hunan, China), 5F Simon2 contrast catheter (Yixinda, Shenzhen, China), Omnilink Elite8/29mm ball-expandable stent (Abbott Vascular, Santa Clara, CA, United States), and pressure pump. The total procedure took 9 min.

Case 4: A female patient, 91 years old, had hypertension for five years. She was admitted to the hospital with recurrent dizziness for six months and exacerbated for two d. On admission, the blood pressure of right upper limb was 95/52 mmHg and that of the left upper limb was 146/78 mmHg. TCD suggested steal of right subclavian artery at stage 3. On August 30, 2021, she received subclavian artery stenting via bilateral radial artery access (Figure 1I-K). Consumables included 5F radial artery sheath, 6F radial artery sheath, 2.6 m long 0.035 guidewire, 5F Simon2 contrast catheter, Omnilink Elite10/29 mm ball Expandable stent (Abbott Vascular, Santa Clara, CA, United States), and pressure pump. The total procedure took 20 min.

History of present illness
Case 1: He was admitted to the hospital after 10 d of dysphonia with right-sided limb weakness.
Case 2: She was admitted to the hospital with dizziness for 10 d.
Case 3: He was admitted to the hospital with recurrent dizziness for 15 d.
Case 4: She was admitted to the hospital with recurrent dizziness for six months and exacerbated for 2 d.

History of past illness
Case 1: He had hypertension for 10 years and smoking history for 40 years.
Cases 2 and 3: The patients had hypertension for 3 years.
Case 4: She had hypertension for 5 years.

Laboratory examinations
Case 1: The blood pressure of the right upper extremity was 186/92 mmHg, and that of the left upper extremity was 156/85 mmHg.
Case 2: On admission, the blood pressure of the right upper extremity was 130/73 mmHg, and that of the left-sided upper extremity was 103/58 mmHg.
Case 3: On admission, the blood pressure of the right upper extremity was 137/85 mmHg, and that of the left upper extremity was 115/61 mmHg.
Case 4: On admission, the blood pressure of right upper limb was 95/52 mmHg and that of the left upper limb was 146/78 mmHg.
Imaging examinations

Case 1: MRI showed left pontocerebral lacunar cerebral infarction. TCD suggested steal of the left subclavian artery at stage 2.

Cases 2 and 3: TCD suggested steal in the left subclavian artery at stage 2.

Case 4: TCD suggested steal of right subclavian artery at stage 3.

FINAL DIAGNOSIS

There were satisfactory results and without any complications. The patients were able to get out of bed right after the operation with high comfort degree. Moreover, the radial artery access procedure allows the use of no-guiding catheter.

TREATMENT

The patients underwent subclavian artery stenting via bilateral radial artery access.

OUTCOME AND FOLLOW-UP

There were satisfactory results and without any complications. The patients were able to get out of bed right after the operation with high comfort degree. Moreover, the radial artery access procedure allows the use of no-guiding catheter. It avoids the use of hemostatic devices, such as vascular blockers or anastomoses.

DISCUSSION

Nowadays, transradial artery access has been widely used in interventional treatment of the heart. Numerous studies have proven that radial artery puncture is safe and feasible[7,8]. Although the radial artery is small, it is superficial and easy to puncture, and the actual puncture success rate is similar to that of the femoral artery[9-11]. Moreover, the access to the subclavian artery from the radial artery is very easy, especially for the right subclavian artery in type 3 arch. The problem that needs to be addressed is how to deliver larger-diameter stents. In a Korean study, the radial artery diameter was 2.74 ± 0.41 mm in men and 2.26 ± 0.42 mm in women[12]. There is no problem matching the radial artery with an arterial sheath of 6F, with maximum inner diameter of 2.2 mm and outer diameter of 2.46 mm. Furthermore, 8F arterial sheath (2.67 mm ID) is not matched in most people. The only option available to us is the 6F arterial sheath. However, the diameter of the stent needed for subclavian artery stenosis is usually above 8 mm. How to deliver the stent to the stenosis is a problem.

There are currently two options. One is to choose a long 6F sheath (2.2-mm inner diameter and 2.6-mm outer diameter). Due to the large outer diameter, a large percentage of patients are not suitable. Another way is to deliver the stent directly to the stenosis site through the guide wire guidance. Since the upper extremity vessels are generally straight, it is relatively easy to stent in place, and it is more advantageous for the right subclavian artery in type 3 arch. However, because there is no guiding catheter, it is not possible to do the angiographic localization. Therefore, it is necessary to first do a good map of the pathway through the angiographic catheter or localize it using bony markers. After delivery, the balloon or stent is dilated or released under the guidance of the roadmap or bony marker. However, actual patient movement, vascular pulsation, and respiration can cause the roadmap to shift from its actual position. Moreover, as the guidewire and stent are delivered, the vessel morphology will change accordingly. The road map and bony markers do not represent the actual vascular situation, which can easily lead to inaccurate stent positioning. Herein, we thought to perform a dual access procedure, with a Simon2 catheter to access the subclavian artery. A 6F arterial sheath is inserted through the radial artery on the side of the lesion, and a guidewire is passed directly through the stenosis to guide the balloon and stent to the stenosis.
We actually reviewed the relevant literatures and found few reports. A single-center Croatian study on subclavian artery stenosis with a total of 50 SSS was basically performed through the femoral and brachial arteries[1]. The right femoral approach was the most commonly used (62%), followed by the left brachial approach (17%), without transradial procedures. In an Italian study, the opening of the left subclavian artery via unilateral radial access was performed with a stent positioned using bony markers, which was clearly more blinded[13]. A relatively large number of Canadian study have been reported[14]. From February 2010 to February 2015, there were 54 patients with stenosis or chronic occlusion of the subclavian artery. In 35 patients, a bilateral radial artery approach was used. However, a 6F guiding catheter was used on the lesion side in all cases, which is different from the present study. A single ipsilateral radial artery approach was used in the other 19 patients. The procedural success rate was 97% in the bilateral group in comparison with 95% in the single group. None of them had major complications except for a small hematoma. It was effective and safe with single femoral access or combined femoral and brachial access, with vascular complications (6.3%) and neurological complications (0.6%-9%).

We have performed more than 2000 cases of whole brain angiography via radial artery access in our hospital. We are very proficient in both left radial artery and right radial artery puncture. In combination with the above studies, we demonstrated that it is safe and effective to perform subclavian stenting with bilateral radial artery access. After the approval of the hospital ethics committee, we performed four cases of subclavian stenting via bilateral radial artery access. There were satisfactory results and without any complications. The patients were able to get out of bed right after the operation with high comfort degree. Moreover, the radial artery access procedure allows the use of no-guiding catheter. It avoids the use of hemostatic devices, such as vascular blockers or anastomoses. Excluding the cost of an additional radial artery sheath, the cost of per patient is reduced by approximately $500.

CONCLUSION

The case report suggested that subclavian artery stenting can be done quickly from either left or right subclavian artery via bilateral radial artery puncture. Through the application experience and literature review, we believe that the treatment of the clavicular artery via bilateral radial artery access is safe, effective, and timesaving, with few complications and high comfort degree. It deserves further studies to confirm its safety and efficacy in comparison with the femoral artery.

REFERENCES

