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Abstract
Torque teno virus (TTV) has been proposed as a surrogate biomarker for immune 
monitoring in different patient cohorts. Historically, TTV has been associated with 
different liver diseases such as post-transfusion hepatitis, hepatitis B, and 
hepatitis C, but the virus's pathogenicity is controversial. TTV is a ubiquitous 
DNA virus, highly prevalent and mostly indolent in the general population. Thus, 
TTV viral load is more relevant than prevalence to understand TTV infection. In 
the context of liver transplantation, TTV viral load is modulated by the immune, 
viral, and inflammatory status. After liver transplantation, the TTV viral load 
positively correlates with the intensity of immunosuppression (IS), and low TTV 
viral burden is a predictor of acute rejection episodes, making it an attractive 
marker for the efficacy of IS. However, the TTV role as a single or a panel 
biomarker needs to be evaluated in further independent prospective trails.

Key Words: Torque teno virus; Solid-organ transplantation; Biomarker; Liver disease; 
Liver transplant; Immune system
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Core Tip: Torque teno virus (TTV) is a ubiquitous, highly prevalent, and mostly 
indolent DNA virus in the general population. Historically, it has been associated with 
different liver diseases, but the virus's pathogenicity is controversial. TTV viral load is 
modulated by immune, viral, and inflammatory status. TTV viral load positively 
correlates with the intensity of immunosuppression, making it an attractive surrogate 
biomarker for immune monitoring in different patient cohorts, including liver 
transplant recipients. However, the TTV role as a single or a panel biomarker needs to 
be evaluated in further trials.
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INTRODUCTION
The presence of torque teno virus (TTV) DNA has been proposed as a novel and 
attractive surrogate biomarker for the efficacy of immunosuppression in different 
patient cohorts[1-3]. In solid-organ transplant recipients, immunosuppressive therapy is 
aimed to prevent rejection and increase organ and patient survival. Usually, a 
combination of drugs with different action mechanisms is used to control the immune 
system and prevent/treat the rejection[4,5]. However, the immune monitoring strategies 
are still based on rough surrogates such as the immunosuppressive drug levels, liver 
function tests, and biopsies. Other currently available tools are still suboptimal or 
impractical for the assessment of personalized immune system control[6-8]. In an 
attempt to optimize the immune system's control, a search for an optimal monitoring 
tool (e.g., a biomarker) is an ongoing challenge.

TTV
TTV is a non-enveloped, circular single-strand deoxyribonucleic acid (DNA) virus, 
first identified in Japanese patients with acute post-transfusion hepatitis in 1997[9]. TTV 
is a member of the Anellovirus family, together with two additional viruses, torque 
teno mini virus and torque teno midi virus, thus named because of their smaller 
genomes[10]. Its biological significance is still unknown and evolving. TTV has a high 
genetic diversity with five genogroups and 29 genotypes identified so far[11]. TTV is 
ubiquitous, present in water, air, soil, and different human samples[12,13]. The virus's 
replication has been demonstrated in hematopoietic cells, mononuclear cells and 
granulocytes, lymphocytes, hepatocytes, and lungs[14-19], reaching far beyond the 
initially assumed viral hepatotropism. There is no generally standardized diagnostic 
algorithm for TTV. Polymerase chain reaction (PCR) methods that target TTV can be 
distinguished as universal, which amplifies most, if not all, the human TTVs, and 
species-specific, which permits grouping of the virus in one of the 29 TTV genotypes. 
The diagnosis is focused on the possible pathologic consequence of TTV infection and 
is performed to measure the kinetics of TTV viremia in selected populations, such as 
patients treated with immunosuppressive therapy[12].

TTV AND LIVER DISEASES
The first reports on TTV showed low prevalence rates in the general population and 
patients with liver diseases, most likely due to the use of inappropriate PCR 
primers[20]. More recent reports demonstrate significantly higher prevalence rates in 
various liver patients: 77% hepatitis C virus (HCV), 77.7 % hepatitis A virus, 87.6% 
hepatitis E virus(HEV) and 92% non-A-E hepatitis patients[21]. Historically TTV, has 
been associated with different liver diseases from post-transfusion hepatitis, HCV, and 
hepatitis B virus (HBV); however, the pathogenicity of the virus is controversial[13]. The 
fast-growing evidence shows that the virus infects a great majority of people without 
causing overt disease. More recent epidemiological studies showed that TTV viremia 
prevalence rates are over 80%-90% in some populations[22-25], with higher viral load in 
immunosuppressed patients compared to a healthy population[26]. In addition, the 
results of one Italian study suggested TTV's role in immune senescence and the 
prediction of all-cause mortality risk in the elderly. Three-year survival differed 
significantly by TTV load in a cohort of 379 elderly subjects. The proportion of patients 
that died after 3 years was estimated to be 21.9% for patients with TTV DNA copies ≥ 
4.0 log and 5.4% for patients with TTV copies < 4.0 log. These results indicated that 
TTV may represent an additional virus that establishes latency after primary infection 
and reactivates in aging when the immune system is compromised[27].

https://www.wjgnet.com/2220-3230/full/v10/i11/291.htm
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TTV AND LIVER TRANSPLANTATION
Regardless of the high prevalence and mostly indolent role in the general population, 
the TTV role in immunocompromised populations needs to be further elucidated. 
Given the high global prevalence, TTV viral load is more relevant than the prevalence 
itself to understand the TTV infection[28]. In patients with compromised immune 
response, TTV viral load increases as the replication of the virus is inversely correlated 
with the number and function of T lymphocytes[26,29-31]. A substantial body of evidence 
supports that TTV is more an associated co-factor, but not a major pathogen itself, in 
the development of post-transplant outcomes. In immunocompromised patients, the 
low TTV viral burden has been associated with the development of acute rejection 
episodes in populations after different organ transplantations[32-34]. In addition, higher 
TTV levels, isolated from the post-transplant lymphoproliferative disease (PTLD) 
tissues, are shown to predict independently predict death within 5 years of PTLD 
diagnosis[35]. Studies show that TTV viral load is modulated by immune, viral, and 
inflammatory status after liver transplantation (LT). Studies evaluating TTV viral load 
in pediatric[28] and adult LT[3,26,30,36-39] provided evidence that in the early post-LT period, 
the viral load is higher than before the transplant. Accordingly, the TTV viral load 
positively correlates with the intensity of immunosuppression[3,26,37]. It progressively 
increases and peaks around 3 mo post-transplant[3,26,30,37]. After that, the viral load 
declines, reflecting the progressive reduction of immunosuppressive drugs, to reach a 
baseline level, on average, after the 1st year of transplant[3]. The viral load is lower in 
pat ients  with  post -LT chronic  hepat i t i s  and HEV immunoglobul in  
M/immunoglobulin G positive patients[28], possibly because the liver is one of the sites 
of TTV replication. The TTV viral load, however, is not associated with the level of 
liver enzymes[28]. The pre-transplant TTV status inversely correlates with the acute 
cellular rejection (ACR) episodes, suggesting that higher immunocompetence in TTV 
negative patients before the transplant could be responsible for the higher incidence of 
ACR within 1 year post-LT[38]. Moreover, as confirmed in other transplant populations, 
lower TTV viral load is associated with the ACR in LT recipients. TTV DNA shows 
high sensitivity and negative predictive value in the diagnosis of ACR and therefore 
could be regarded as a non-invasive tool to rule out moderate ACR episodes[3]. 
Besides, TTV viral loads are associated with the recipient cytomegalovirus (CMV) 
status; lower levels are present in CMV negative patients[3,30], and early TTV viral load 
(0-10 d post-LT) is a predictor of CMV reactivation within first 4 mo post-LT[30]. In the 
context of HBV reactivation in immunocompromised patients including LT recipients, 
TTV viral load in addition to HBV viral load and HBV genotype are not associated 
with the development of acute liver/graft failure[40]. Multiple genogroups are 
frequently found in a single individual infected with TTV. Their distribution differs 
before and after transplantation, yet it does not affect LT outcomes[28]. Major key points 
of the LT studies are presented in Table 1.

CONCLUSION
Sophisticated and non-invasive tools to define and/or predict properly the immune-
related events in the post-transplant period are still lacking. The currently available 
instruments are based on the occurrence of robust clinical events such as rejection or 
infection episodes. The development and implementation of non-invasive and reliable 
biomarkers to personalize the immune system's control after transplant remain a 
challenge. In a search for such a biomarker, collaborative effort over the past decade 
has brought TTV to the frontline of the medical literature as a promising marker of 
immune status.  The TTV association with the immune status in the 
immunocompromised transplant population is indisputable. However, we are still 
looking to understand the impact and the mechanisms behind this interplay. The TTV 
role as a single or a panel biomarker needs to be evaluated in further independent 
prospective trials.
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Table 1 Torque teno virus in the context of liver transplantation: Major key points

Population, n TTV prevalence Study key points Ref.

German, adult, 104 17.3% pre-LT; 24% 
post-LT

TTV DNA prevalence not associated with the number of transfused blood products Schroter 
et al[36], 1998

British, adult, 37 16% pre-LT; 46% 
post-LT

prevalence and TTV viral load increased after LT; no correlation of TTV viral load with liver enzyme levels Shang 
et al[39], 2000

Italian, adult, 25 100% pre-LT TTV viral load increased significantly after LT (P < 0.001); TTV viral load was higher in patients on CNI + AZA/MMF vs CNI alone (P = 0.04) at 3 mo after LT; no 
differences in viral load in regard to the etiology of liver disease; no correlation of viral load and TTV genotype with ALT or histological liver damage

Burra et al[37], 
2008

Canadian, pediatric, 80 68% healthy control; 
71% pre-LT; 98%-
99% post-LT

TTV viral load post-LT was higher than in pre-LT (P < 0.001) and healthy controls (P < 0.0001); TTV viral load was lower in post-LT chronic hepatitis; TTV viral 
load decreased during the post-LT follow-up; no correlation between TTV viral load and ALT or number of transfusions; TTV viral load was lower in anti-HEV 
IgM/IgG positive patients

Béland 
et al[28], 2014

Italian, adult, 46 100% pre-LT TTV viral load increased after LT; low CNI + ECP protocol was associated with the lowest increase in TTV viral load compared to CNI only protocol (P < 0.01) or 
CNI + AZA/MMF protocol (P < 0.01)

Focosi 
et al[26], 2014

Swiss, adult, 39 74% pre-LT TTV viral load increased significantly 6 mo post-LT vs pre-LT (P < 0.0001) and decreased 12 mo post-LT vs 6 mo post-LT; 1-yr cumulative incidence of rejection 
was lower (21%) in TTV positive vs 70% in TTV negative patients (P = 0.0042)

Simonetta 
et al[37], 2017

German, adult, 136 84.6% post-LT 
(serum); 66.6% post-
LT (urine)

TTV viral load negatively correlated with the BKV viral load (P = 0.038), but had no impact on renal impairment Herrmann 
et al[1], 2018

Italian, adult, 134 92% pre-LT TTV viral load progressively increased to a maximum at day 80 post-LT; TTV viral load was higher on Cyc vs on Tac (P = 0.016); TTV viral load did differ between 
different Tac levels (within or beyond the therapeutic range); TTV viral load was lower in CMV DNA negative vs positive patients (P = 0.001); TTV viral load at 
day 0-10 post-LT predicts CMV reactivation (OR: 1.5, 95%CI: 1.0-2.3)

Maggi 
et al[30], 2018

Spanish, adult, 63 93.7% pre-LT; 100% 
post-LT

TTV viral load progressively increased peaking at month 3 and then decreased during months 6-12 post-LT; patients on triple IS had higher viremia vs on double 
IS (P < 0.001); no differences in TTV viremia according to the type of CNI; TTV viral load was lower during ACR (4.41 vs 5.95 log10 copies/mL; P = 0.002) and 
higher during CMV infections (5.79 vs 6.59 log10 copies/mL; P = 0.009); the area under the ROC curve of TTV viral load for moderate ACR was 0.869, with a 
sensitivity and negative predictive value of 100%, respectively, for a cut-off point of 4.75 log10 copies/mL; TTV viral load did not differ in long-term or tolerant 
patients and healthy controls

Ruiz et al[3], 
2019

German, immunosuppressed 
patients with HBV reactivation, 
87 (20 LT recipients)

TTV viral load did not differ between patients with ALF vs non-ALF; no differences in TTV viral loads diagnosed during vs after IS (P = 0.740), nor after HBV 
resolution vs chronic HBV (P = 0.727)

Anastasiou 
et al[40], 2019

ACR: Acute cellular rejection; ALF: Acute liver failure; ALT: Alanine aminotransferase; AZA: Azathioprine; BKV: BK virus; CI; Confidence interval; CMV: Cytomegalovirus; CNI: Calcineurin inhibitor; Cyc: Cyclosporine; DNA: 
Deoxyribonucleic acid; ECP: Extracorporeal photopheresis; HBV: Hepatitis B virus; Ig: Immunoglobulin; IS: Immunosuppression; LT: Liver transplant; MMF: Mycophenolate-mofetil; OR: Odds ratio; Tac: Tacrolimus; TTV: Torque teno 
virus.

REFERENCES
Herrmann A, Sandmann L, Adams O, Herrmann D, Dirks M, Widera M, Westhaus S, Kaiser R, di 
Cristanziano V, Manns MP, Korth J, Richter N, Anastasiou O, Timm J, von Hahn T, Ciesek S. Role of BK 
polyomavirus (BKV) and Torque teno virus (TTV) in liver transplant recipients with renal impairment. J 
Med Microbiol 2018; 67: 1496-1508 [PMID: 30136921 DOI: 10.1099/jmm.0.000823]

1     

Jaksch P, Kundi M, Görzer I, Muraközy G, Lambers C, Benazzo A, Hoetzenecker K, Klepetko W, 2     

http://www.ncbi.nlm.nih.gov/pubmed/30136921
https://dx.doi.org/10.1099/jmm.0.000823


Mrzljak A et al. Torque teno virus and liver

WJT https://www.wjgnet.com 295 November 28, 2020 Volume 10 Issue 11

Puchhammer-Stöckl E. Torque Teno Virus as a Novel Biomarker Targeting the Efficacy of 
Immunosuppression After Lung Transplantation. J Infect Dis 2018; 218: 1922-1928 [PMID: 30053048 DOI: 
10.1093/infdis/jiy452]
Ruiz P, Martínez-Picola M, Santana M, Muñoz J, Pérez-Del-Pulgar S, Koutsoudakis G, Sastre L, Colmenero 
J, Crespo G, Navasa M. Torque Teno Virus Is Associated With the State of Immune Suppression Early After 
Liver Transplantation. Liver Transpl 2019; 25: 302-310 [PMID: 30375165 DOI: 10.1002/lt.25374]

3     

Enderby C, Keller CA. An overview of immunosuppression in solid organ transplantation. Am J Manag 
Care 2015; 21: s12-s23 [PMID: 25734416]

4     

Holt CD. Overview of Immunosuppressive Therapy in Solid Organ Transplantation. Anesthesiol Clin 2017; 
35: 365-380 [PMID: 28784214 DOI: 10.1016/j.anclin.2017.04.001]

5     

Kowalski RJ, Post DR, Mannon RB, Sebastian A, Wright HI, Sigle G, Burdick J, Elmagd KA, Zeevi A, 
Lopez-Cepero M, Daller JA, Gritsch HA, Reed EF, Jonsson J, Hawkins D, Britz JA. Assessing relative risks 
of infection and rejection: a meta-analysis using an immune function assay. Transplantation 2006; 82: 663-
668 [PMID: 16969290 DOI: 10.1097/01.tp.0000234837.02126.70]

6     

Cabrera R, Ararat M, Soldevila-Pico C, Dixon L, Pan JJ, Firpi R, Machicao V, Levy C, Nelson D, Morelli 
G. Using an immune functional assay to differentiate acute cellular rejection from recurrent hepatitis C in 
liver transplant patients. Liver Transpl 2009; 15: 216-222 [PMID: 19177434 DOI: 10.1002/lt.21666]

7     

Levitsky J, Asrani SK, Schiano T, Moss A, Chavin K, Miller C, Guo K, Zhao L, Kandpal M, Bridges N, 
Brown M, Armstrong B, Kurian S, Demetris AJ, Abecassis M; Clinical Trials in Organ Transplantation - 14 
Consortium. Discovery and validation of a novel blood-based molecular biomarker of rejection following 
liver transplantation. Am J Transplant 2020; 20: 2173-2183 [PMID: 32356368 DOI: 10.1111/ajt.15953]

8     

Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) 
associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem 
Biophys Res Commun 1997; 241: 92-97 [PMID: 9405239 DOI: 10.1006/bbrc.1997.7765]

9     

International Committee on Taxonomy of Viruses (ICTV).   Available from: https://talk.ictvonline.org/ 
Accessed 2020-05-15

10     

Martelli F, Macera L, Spezia PG, Medici C, Pistello M, Guasti D, Romagnoli P, Maggi F, Giannecchini S. 
Torquetenovirus detection in exosomes enriched vesicles circulating in human plasma samples. Virol J 2018; 
15: 145 [PMID: 30236130 DOI: 10.1186/s12985-018-1055-y]

11     

Focosi D, Antonelli G, Pistello M, Maggi F. Torquetenovirus: the human virome from bench to bedside. Clin 
Microbiol Infect 2016; 22: 589-593 [PMID: 27093875 DOI: 10.1016/j.cmi.2016.04.007]

12     

Rezahosseini O, Drabe CH, Sørensen SS, Rasmussen A, Perch M, Ostrowski SR, Nielsen SD. Torque-Teno 
virus viral load as a potential endogenous marker of immune function in solid organ transplantation. 
Transplant Rev (Orlando) 2019; 33: 137-144 [PMID: 30981537 DOI: 10.1016/j.trre.2019.03.004]

13     

Kosulin K, Kernbichler S, Pichler H, Lawitschka A, Geyeregger R, Witt V, Lion T. Post-transplant 
Replication of Torque Teno Virus in Granulocytes. Front Microbiol 2018; 9: 2956 [PMID: 30555452 DOI: 
10.3389/fmicb.2018.02956]

14     

Kikuchi K, Miyakawa H, Abe K, Kako M, Katayama K, Fukushi S, Mishiro S. Indirect evidence of TTV 
replication in bone marrow cells, but not in hepatocytes, of a subacute hepatitis/aplastic anemia patient. J 
Med Virol 2000; 61: 165-170 [PMID: 10745251 DOI: 
10.1002/(SICI)1096-9071(200005)61:1<165::AID-JMV27>3.0.CO;2-F]

15     

Rodríguez-Iñigo E, Casqueiro M, Bartolomé J, Ortiz-Movilla N, López-Alcorocho JM, Herrero M, 
Manzarbeitia F, Oliva H, Carreño V. Detection of TT virus DNA in liver biopsies by in situ hybridization. 
Am J Pathol 2000; 156: 1227-1234 [PMID: 10751348 DOI: 10.1016/S0002-9440(10)64993-0]

16     

Tanaka Y, Mizokami M, Orito E, Ohno T, Nakano T, Kato T, Iida S, Ueda R. Lack of integrated TT virus 
(TTV) genomes in cellular DNA in infected human hematopoietic cells. Leuk Lymphoma 2000; 38: 411-417 
[PMID: 10830749 DOI: 10.3109/10428190009087033]

17     

Mariscal LF, López-Alcorocho JM, Rodríguez-Iñigo E, Ortiz-Movilla N, de Lucas S, Bartolomé J, Carreño 
V. TT virus replicates in stimulated but not in nonstimulated peripheral blood mononuclear cells. Virology 
2002; 301: 121-129 [PMID: 12359452 DOI: 10.1006/viro.2002.1545]

18     

Focosi D, Macera L, Boggi U, Nelli LC, Maggi F. Short-term kinetics of torque teno virus viraemia after 
induction immunosuppression confirm T lymphocytes as the main replication-competent cells. J Gen Virol 
2015; 96: 115-117 [PMID: 25304651 DOI: 10.1099/vir.0.070094-0]

19     

Reshetnyak VI, Maev IV, Burmistrov AI, Chekmazov IA, Karlovich TI. Torque teno virus in liver diseases: 
On the way towards unity of view. World J Gastroenterol 2020; 26: 1691-1707 [PMID: 32351287 DOI: 
10.3748/wjg.v26.i15.1691]

20     

Magu SK, Kalghatgi AT, Bhagat MR. Incidence and clinical implication of TT virus in patients with 
hepatitis and its frequency in blood donors in India. Med J Armed Forces India 2015; 71: 340-344 [PMID: 
26663961 DOI: 10.1016/j.mjafi.2015.06.023]

21     

Tri Rinonce H, Yano Y, Utsumi T, Heriyanto DS, Anggorowati N, Widasari DI, Ghozali A, Utoro T, Lusida 
MI, Soetjipto, Prasanto H, Hayashi Y. Prevalence and genotypic distribution of GB virus C and torque Teno 
virus among patients undergoing hemodialysis. Mol Med Rep  2017; 15: 2843–2852 [DOI: 
10.3892/mmr.2017.6281]

22     

Elesinnla AR, Adeleye IA, Ayolabi CI, Bessong PO. Prevalence of torque viruses in HIV-infected and non-
HIV-infected Nigerian subjects: analysis of near-full-length genome sequences. Arch Virol 2020; 165: 571-
582 [PMID: 32030535 DOI: 10.1007/s00705-020-04538-1]

23     

Vasilyev EV, Trofimov DY, Tonevitsky AG, Ilinsky VV, Korostin DO, Rebrikov DV. Torque Teno Virus 
(TTV) distribution in healthy Russian population. Virol J 2009; 6: 134 [PMID: 19735552 DOI: 
10.1186/1743-422X-6-134]

24     

Sarairah H, Bdour S, Gharaibeh W. The Molecular Epidemiology and Phylogeny of Torque Teno Virus 
(TTV) in Jordan. Viruses 2020; 12 [PMID: 32023916 DOI: 10.3390/v12020165]

25     

Focosi D, Macera L, Pistello M, Maggi F. Torque Teno virus viremia correlates with intensity of 
maintenance immunosuppression in adult orthotopic liver transplant. J Infect Dis 2014; 210: 667-668 [PMID: 

26     

http://www.ncbi.nlm.nih.gov/pubmed/30053048
https://dx.doi.org/10.1093/infdis/jiy452
http://www.ncbi.nlm.nih.gov/pubmed/30375165
https://dx.doi.org/10.1002/lt.25374
http://www.ncbi.nlm.nih.gov/pubmed/25734416
http://www.ncbi.nlm.nih.gov/pubmed/28784214
https://dx.doi.org/10.1016/j.anclin.2017.04.001
http://www.ncbi.nlm.nih.gov/pubmed/16969290
https://dx.doi.org/10.1097/01.tp.0000234837.02126.70
http://www.ncbi.nlm.nih.gov/pubmed/19177434
https://dx.doi.org/10.1002/lt.21666
http://www.ncbi.nlm.nih.gov/pubmed/32356368
https://dx.doi.org/10.1111/ajt.15953
http://www.ncbi.nlm.nih.gov/pubmed/9405239
https://dx.doi.org/10.1006/bbrc.1997.7765
https://talk.ictvonline.org/
http://www.ncbi.nlm.nih.gov/pubmed/30236130
https://dx.doi.org/10.1186/s12985-018-1055-y
http://www.ncbi.nlm.nih.gov/pubmed/27093875
https://dx.doi.org/10.1016/j.cmi.2016.04.007
http://www.ncbi.nlm.nih.gov/pubmed/30981537
https://dx.doi.org/10.1016/j.trre.2019.03.004
http://www.ncbi.nlm.nih.gov/pubmed/30555452
https://dx.doi.org/10.3389/fmicb.2018.02956
http://www.ncbi.nlm.nih.gov/pubmed/10745251
https://dx.doi.org/10.1002/(SICI)1096-9071(200005)61:1<165::AID-JMV27>3.0.CO;2-F
http://www.ncbi.nlm.nih.gov/pubmed/10751348
https://dx.doi.org/10.1016/S0002-9440(10)64993-0
http://www.ncbi.nlm.nih.gov/pubmed/10830749
https://dx.doi.org/10.3109/10428190009087033
http://www.ncbi.nlm.nih.gov/pubmed/12359452
https://dx.doi.org/10.1006/viro.2002.1545
http://www.ncbi.nlm.nih.gov/pubmed/25304651
https://dx.doi.org/10.1099/vir.0.070094-0
http://www.ncbi.nlm.nih.gov/pubmed/32351287
https://dx.doi.org/10.3748/wjg.v26.i15.1691
http://www.ncbi.nlm.nih.gov/pubmed/26663961
https://dx.doi.org/10.1016/j.mjafi.2015.06.023
https://dx.doi.org/10.3892/mmr.2017.6281
http://www.ncbi.nlm.nih.gov/pubmed/32030535
https://dx.doi.org/10.1007/s00705-020-04538-1
http://www.ncbi.nlm.nih.gov/pubmed/19735552
https://dx.doi.org/10.1186/1743-422X-6-134
http://www.ncbi.nlm.nih.gov/pubmed/32023916
https://dx.doi.org/10.3390/v12020165


Mrzljak A et al. Torque teno virus and liver

WJT https://www.wjgnet.com 296 November 28, 2020 Volume 10 Issue 11

24688076 DOI: 10.1093/infdis/jiu209]
Giacconi R, Maggi F, Macera L, Pistello M, Provinciali M, Giannecchini S, Martelli F, Spezia PG, Mariani 
E, Galeazzi R, Costarelli L, Iovino L, Galimberti S, Nisi L, Piacenza F, Malavolta M. Torquetenovirus 
(TTV) load is associated with mortality in Italian elderly subjects. Exp Gerontol 2018; 112: 103-111 [PMID: 
30223047 DOI: 10.1016/j.exger.2018.09.003]

27     

Béland K, Dore-Nguyen M, Gagné MJ, Patey N, Brassard J, Alvarez F, Halac U. Torque Teno virus in 
children who underwent orthotopic liver transplantation: new insights about a common pathogen. J Infect Dis 
2014; 209: 247-254 [PMID: 23922368 DOI: 10.1093/infdis/jit423]

28     

Christensen JK, Eugen-Olsen J, SŁrensen M, Ullum H, Gjedde SB, Pedersen BK, Nielsen JO, Krogsgaard 
K. Prevalence and prognostic significance of infection with TT virus in patients infected with human 
immunodeficiency virus. J Infect Dis 2000; 181: 1796-1799 [PMID: 10823787 DOI: 10.1086/315440]

29     

Maggi F, Ricci V, Bendinelli M, Nelli LC, Focosi D, Papineschi F, Petrini M, Paumgardhen E, Ghimenti M. 
Changes In CD8+57+ T lymphocyte expansions after autologous hematopoietic stem cell transplantation 
correlate with changes in torquetenovirus viremia. Transplantation 2008; 85: 1867-1868 [PMID: 18580484 
DOI: 10.1097/TP.0b013e31817615e6]

30     

Görzer I, Jaksch P, Kundi M, Seitz T, Klepetko W, Puchhammer-Stöckl E. Pre-transplant plasma Torque 
Teno virus load and increase dynamics after lung transplantation. PLoS One 2015; 10: e0122975 [PMID: 
25894323 DOI: 10.1371/journal.pone.0122975]

31     

De Vlaminck I, Khush KK, Strehl C, Kohli B, Luikart H, Neff NF, Okamoto J, Snyder TM, Cornfield DN, 
Nicolls MR, Weill D, Bernstein D, Valantine HA, Quake SR. Temporal response of the human virome to 
immunosuppression and antiviral therapy. Cell 2013; 155: 1178-1187 [PMID: 24267896 DOI: 
10.1016/j.cell.2013.10.034]

32     

Blatter JA, Sweet SC, Conrad C, Danziger-Isakov LA, Faro A, Goldfarb SB, Hayes D Jr, Melicoff E, 
Schecter M, Storch G, Visner GA, Williams NM, Wang D. Anellovirus loads are associated with outcomes 
in pediatric lung transplantation. Pediatr Transplant 2018; 22 [PMID: 29082660 DOI: 10.1111/petr.13069]

33     

Schiemann M, Puchhammer-Stöckl E, Eskandary F, Kohlbeck P, Rasoul-Rockenschaub S, Heilos A, 
Kozakowski N, Görzer I, Kikić Ž, Herkner H, Böhmig GA, Bond G. Torque Teno Virus Load-Inverse 
Association With Antibody-Mediated Rejection After Kidney Transplantation. Transplantation 2017; 101: 
360-367 [PMID: 27525643 DOI: 10.1097/TP.0000000000001455]

34     

Dharnidharka VR, Ruzinova MB, Chen CC, Parameswaran P, O'Gorman H, Goss CW, Gu H, Storch GA, 
Wylie K. Metagenomic analysis of DNA viruses from posttransplant lymphoproliferative disorders. Cancer 
Med 2019; 8: 1013-1023 [PMID: 30697958 DOI: 10.1002/cam4.1985]

35     

Schröter M, Feucht HH, Schäfer P, Zöllner B, Laufs R, Knödler B. TT virus viremia and liver 
transplantation: no significant increase of the prevalence. Blood 1998; 92: 4877-4878 [PMID: 9988547 DOI: 
10.1182/blood.V92.12.4877]

36     

Burra P, Masier A, Boldrin C, Calistri A, Andreoli E, Senzolo M, Zorzi M, Sgarabotto D, Guido M, Cillo U, 
Canova D, Bendinelli M, Pistello M, Maggi F, Palù G. Torque Teno Virus: any pathological role in liver 
transplanted patients? Transpl Int 2008; 21: 972-979 [PMID: 18564988 DOI: 
10.1111/j.1432-2277.2008.00714.x]

37     

Simonetta F, Pradier A, Masouridi-Levrat S, van Delden C, Giostra E, Morard I, Mueller N, Muellhaupt B, 
Valli PV, Semmo N, Seebach J, Chalandon Y, Kaiser L, Roosnek E; Swiss Transplant Cohort Study (STCS). 
Torque Teno Virus Load and Acute Rejection After Orthotopic Liver Transplantation. Transplantation 2017; 
101: e219-e221 [PMID: 28263221 DOI: 10.1097/TP.0000000000001723]

38     

Shang D, Lin YH, Rigopoulou I, Chen B, Alexander GJ, Allain JP. Detection of TT virus DNA in patients 
with liver disease and recipients of liver transplant. J Med Virol 2000; 61: 455-461 [PMID: 10897063 DOI: 
10.1002/1096-9071(200008)61:4<455::aid-jmv7>3.0.co;2-p]

39     

Anastasiou OE, Theissen M, Verheyen J, Bleekmann B, Wedemeyer H, Widera M, Ciesek S. Clinical and 
Virological Aspects of HBV Reactivation: A Focus on Acute Liver Failure. Viruses 2019; 11 [PMID: 
31527514 DOI: 10.3390/v11090863]

40     

http://www.ncbi.nlm.nih.gov/pubmed/24688076
https://dx.doi.org/10.1093/infdis/jiu209
http://www.ncbi.nlm.nih.gov/pubmed/30223047
https://dx.doi.org/10.1016/j.exger.2018.09.003
http://www.ncbi.nlm.nih.gov/pubmed/23922368
https://dx.doi.org/10.1093/infdis/jit423
http://www.ncbi.nlm.nih.gov/pubmed/10823787
https://dx.doi.org/10.1086/315440
http://www.ncbi.nlm.nih.gov/pubmed/18580484
https://dx.doi.org/10.1097/TP.0b013e31817615e6
http://www.ncbi.nlm.nih.gov/pubmed/25894323
https://dx.doi.org/10.1371/journal.pone.0122975
http://www.ncbi.nlm.nih.gov/pubmed/24267896
https://dx.doi.org/10.1016/j.cell.2013.10.034
http://www.ncbi.nlm.nih.gov/pubmed/29082660
https://dx.doi.org/10.1111/petr.13069
http://www.ncbi.nlm.nih.gov/pubmed/27525643
https://dx.doi.org/10.1097/TP.0000000000001455
http://www.ncbi.nlm.nih.gov/pubmed/30697958
https://dx.doi.org/10.1002/cam4.1985
http://www.ncbi.nlm.nih.gov/pubmed/9988547
https://dx.doi.org/10.1182/blood.V92.12.4877
http://www.ncbi.nlm.nih.gov/pubmed/18564988
https://dx.doi.org/10.1111/j.1432-2277.2008.00714.x
http://www.ncbi.nlm.nih.gov/pubmed/28263221
https://dx.doi.org/10.1097/TP.0000000000001723
http://www.ncbi.nlm.nih.gov/pubmed/10897063
https://dx.doi.org/10.1002/1096-9071(200008)61:4<455::aid-jmv7>3.0.co;2-p
http://www.ncbi.nlm.nih.gov/pubmed/31527514
https://dx.doi.org/10.3390/v11090863


WJT https://www.wjgnet.com 297 November 28, 2020 Volume 10 Issue 11

World Journal of 

TransplantationW J T
Submit a Manuscript: https://www.f6publishing.com World J Transplant 2020 November 28; 10(11): 297-306

DOI: 10.5500/wjt.v10.i11.297 ISSN 2220-3230 (online)

OPINION REVIEW

Lenvatinib as first-line therapy for recurrent hepatocellular 
carcinoma after liver transplantation: Is the current evidence 
applicable to these patients?

Federico Piñero, Marcos Thompson, Juan Ignacio Marín, Marcelo Silva

ORCID number: Federico Piñero 
0000-0002-9528-2279; Marcos 
Thompson 0000-0002-3815-4967; 
Juan Ignacio Marín 0000-0001-6954-
8910; Marcelo Silva 0000-0002-2287-
7351.

Author contributions: All authors 
contributed equally to this paper in 
conception and design of the 
study, literature review, drafting, 
critical revision and editing. All 
authors have approved the final 
version.

Conflict-of-interest statement: 
Piñero F has received Advisory 
Board and speaker honoraria and 
he is a consultant for RAFFO, 
BAYER Cono Sur and BAYER 
Andina; research grants from the 
Argentinean National Institute of 
Cancer (INC ID-190), Argentinean 
National Ministry of Science and 
Technology Development (PICT 
2017, FONCYT) and from the Latin 
American Liver Research 
Educational and Awareness 
Network (LALREAN). Marin J has 
received Advisory Board and 
speaker honoraria from BAYER 
and GILEAD. Silva M has received 
speaker honoraria and is a 
consultant for Abvie, Gador, 
Bristol-Myers Squibb, Merck, 
BAYER and has received research 
grants from the Argentinean 

Federico Piñero, Hepatology and Liver Transplant Unit, Hospital Universitario Austral, Buenos 
Aires B1629HJ, Argentina

Federico Piñero, Marcos Thompson, Marcelo Silva, Hospital Universitario Austral, Facultad de 
Ciencias Biomédicas, Universidad Austral, Buenos Aires B1629HJ, Argentina

Federico Piñero, Marcelo Silva, Latin American Liver Research Educational and Awareness 
Network (LALREAN), Buenos Aires B1629HJ, Argentina

Juan Ignacio Marín, Hepatology and Liver Transplantation Unit, Hospital Pablo Tobón Uribe, 
Medellín 240, Colombia

Corresponding author: Federico Piñero, MD, MSc, Academic Research, Doctor, Hepatology 
and Liver Transplant Unit, Hospital Universitario Austral, Av. Presidente Perón 1500, Pilar, 
Buenos Aires B1629HJ, Argentina. fpinerof@cas.austral.edu.ar

Abstract
Liver transplantation (LT) is one of the leading curative therapies for 
hepatocellular carcinoma (HCC). Despite recent optimization of transplant 
selection criteria, including alpha-feto protein, HCC recurrence after LT is still the 
leading cause of death in these patients. During the last decades, effective 
systemic treatments for HCC, including tyrosine kinase inhibitors and 
immunotherapy, have been approved. We describe the clinical scenario of a 
patient with recurrence of HCC five years after LT, who received lenvatinib as 
first-line systemic therapy to introduce systemic treatment options in this clinical 
setting. In this opinion review, we detail first and second-line systemic treatment 
options, focusing on those feasible for patients with recurrent HCC after LT. 
Several trials have evaluated new drugs to treat HCC patients in first and second-
line therapy, but patients with recurrent HCC after LT have been excluded from 
these trials. Consequently, most of the evidence comes from observational 
retrospective studies. Whether tyrosine kinase inhibitors will remain the primary 
therapeutic approach in these patients, due to a relative contraindication for 
immunotherapy, may be clarified in the near future.

Key Words: Liver transplantation; Recurrence; Systemic therapies; Hepatocellular 
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Core Tip: Post-transplant hepatocellular carcinoma (HCC) recurrence is a significant 
negative predictor of survival. There is no consensus on the treatment of recurrence. If 
possible, resection should be attempted. The use of systemic chemotherapy after 
transplant is limited to small retrospective cohort studies. Immunotherapy with 
checkpoint inhibitors in the post-transplant setting is challenging due to the potentially 
increased risk of allograft rejection. This opinion review illustrates a late post-
transplant HCC recurrence treated with lenvatinib, with good tolerance and overall 
survival after lung and adrenal metastasis resections in a patient previously intolerant 
to sorafenib.

Citation: Piñero F, Thompson M, Marín JI, Silva M. Lenvatinib as first-line therapy for 
recurrent hepatocellular carcinoma after liver transplantation: Is the current evidence applicable 
to these patients? World J Transplant 2020; 10(11): 297-306
URL: https://www.wjgnet.com/2220-3230/full/v10/i11/297.htm
DOI: https://dx.doi.org/10.5500/wjt.v10.i11.297

INTRODUCTION
Hepatocellular carcinoma (HCC) recurrence is a dramatic event with a dismal 
prognosis after liver transplantation (LT)[1]. Despite recent optimization of LT selection 
criteria, HCC recurrence still develops in approximately 8%-20% of these patients[1,2], 
being the most frequent cause of death among LT HCC patients[3-6].

Although transplant consensus recommends surveillance for recurrent HCC after 
LT[7,8], its prompt diagnosis after LT has not been associated with improved survival or 
reduced cancer-related mortality. This scenario is probably related to the lack of 
curative treatments in these patients.

Moreover, recurrence occurring during the first 2 years after transplant has been 
associated with even worse post-recurrence survival (PRS)[6,9-11]. Early recurrences may 
represent an aggressive HCC with worse biological behavior after transplantation.

The cost-effectiveness of surveillance for recurrent HCC remains uncertain. Several 
groups have proposed risk-based surveillance. The RETREAT score incorporates three 
variables in its model: Explant tumor burden, microvascular invasion, and α-
fetoprotein levels determine whether HCC surveillance after LT is warranted and 
identifies patients who may benefit from future adjuvant therapies[12,13].

To date, it is unknown whether early recurrences are associated with a continuum 
of metastatic disease, not adequately assessed or unknown before LT, or with 
aggressive biological behavior. Indeed, early recurrences have not been linked to any 
known associated pre-LT or explant-based risk variable[14,15] and may have completely 
different oncogenic mutations or activated pathways than the original location[16].

On the other hand, there is no efficient or specific treatment for HCC recurrence. 
Indeed, heterogeneous data have been published, including locoregional therapies, 
liver resection, endovascular and systemic therapies[17]. The efficacy of each therapy for 
post-LT recurrence is not well defined, and most of the evidence comes from 
retrospective uncontrolled published data. Despite the fact that some authors have 
proposed locoregional approaches, even in the setting of extrahepatic metastasis[11], 
whether these therapies or in combination with systemic treatment are effective is still 
uncertain[18]. Indeed, most of these patients have been excluded from randomized 
controlled trials (RCTs) assessing the efficacy of systemic therapies. However, 
recurrent HCC is an excellent opportunity to address and evaluate precision oncology as 
tumor pathology is available at explant analysis and with metastatic tumor recurrence. 
Consequently, targeted therapies may be the future in these patients[19,20].

CASE PRESENTATION
We describe the clinical scenario of a real-world patient with recurrence of HCC five 
years after LT, who received lenvatinib as first-line systemic therapy to introduce 
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systemic treatment options in this clinical setting. A non-cirrhotic male patient with 
chronic hepatitis C infection with sustained viral response after treatment with Peg-
Interferon and ribavirin, developed a large HCC of 8 cm in diameter during 2011. He 
underwent a right lobe hepatectomy and was enrolled in a double-blind RCT 
evaluating the effect of adjuvant therapy with sorafenib over placebo[21]. He developed 
intolerance to adjuvant therapy (unknown arm). Eighteen months later, a 
multinodular recurrent HCC was diagnosed with two liver nodules smaller than 2 cm, 
both treated with radiofrequency ablation. Ten months later, another single 
intrahepatic HCC recurrence was observed, and a second ablation therapy was 
performed, achieving a complete response. However, a year later, he presented with 
two new intrahepatic recurrences smaller than 2 cm; thus, liver transplantation was 
proposed after excluding vascular or extrahepatic disease, and without any tumor 
progression during a waitlist observation period of 6 mo. Liver transplantation was 
performed in September 2013 (at the age of 66). There were two nodules at explant 
pathology, one nodule with complete necrosis and the other was a well-differentiated 
HCC nodule 6 mm in diameter without microvascular invasion.

The patient was followed with biannual computed tomography scans and serum 
alpha-feto protein (AFP) evaluation and received immunosuppressive treatment with 
tacrolimus. Five years after LT, a single pulmonary nodule was observed, and video-
assisted thoracoscopic surgery was performed. A lung HCC metastasis was 
histologically confirmed with complete resection. He was offered sorafenib, but he 
refused due to prior intolerance. No other metastatic sites were observed, and a strict 
follow-up was proposed. Immunosuppression continued with tacrolimus 
monotherapy with blood trough levels between 3-4 ng/mL. Ten months after 
pulmonary resection, a small tumor was observed near the left suprarenal gland 
(Figure 1), which was resected and HCC was confirmed by pathology examination. He 
started lenvatinib 12 mg/day on May 20th 2019, as tumor bleeding was observed 
during adrenal gland resection. The patient showed adequate tolerance without any 
significant adverse events, and there was no need for tacrolimus dose adjustments. 
Only high blood pressure was observed, which was well controlled with amlodipine 5 
mg/day. The patient is still receiving lenvatinib (September 14, 2020).

SYSTEMIC TREATMENT FOR RECURRENT HEPATOCELLULAR 
CARCINOMA: WHEN, HOW AND TO WHOM?
During the last decade, enormous improvement in the treatment of advanced HCC 
has been achieved, with unthinkable survival rates years ago (Figure 2)[22]. Sorafenib, a 
tyrosine multikinase inhibitor was the first drug to show a survival benefit over 
placebo (SHARP and Asia-Pacific trials)[23,24]. High serum AFP values (> 200 ng/mL), 
macroscopic vascular invasion, and a low neutrophil/leukocyte ratio are baseline 
variables associated with poor prognosis in these patients, but even in these 
subgroups, sorafenib showed a survival benefit vs placebo[25].

In several retrospective cohort studies, sorafenib has shown a heterogeneous effect 
on PRS[18]. In some series, treatment effects were assessed without a control group or 
adjustment for prognostic baseline variables. Whether the same prognostic factors in 
the non-transplant setting apply to the post-LT setting, such as hepatitis C, no-
extrahepatic disease or a low neutrophil to lymphocyte ratio[25], is unknown. 
Nevertheless, these patients lead with other prognostic issues that may confound or 
modify each treatment effect.

Firstly, performance status may be better or even worse after LT than in the non-
transplant setting. This depends on LT complications, over-immunosuppression, and 
opportunistic infections. In this regard, retrospective cohort studies reporting 
sorafenib after LT have not entirely addressed liver function and performance status at 
HCC recurrence as prognostic variables[6,9-11]. Nevertheless, poor nutritional status has 
been suggested to be a surrogate marker of shorter PRS[26].

Secondly, time to recurrence (TTR) is thought to be an independent prognostic 
factor that may modify the treatment effect. Indeed, in several retrospective cohort 
studies, early recurrences (during the first year after LT) have been associated with 
poorer PRS[6,9-11]. The problem with TTP in the context of LT is that it has been reported 
with different information and selection bias, as there is no standardized surveillance 
policy for HCC recurrence. Besides, the diagnosis of HCC recurrence either with 
imaging alone or with tumor biopsy confirmation has not been homogenously 
reported. Despite these methodological issues, it seems that in the post-LT setting, TTR 
correlates with PRS[6,9-11].
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Figure 1  Metastatic site of hepatocellular recurrence after liver transplantation in a patient who received lenvatinib.

Figure 2  First- and second-line therapies for advanced hepatocellular carcinoma that may be applicable in the post-liver transplantation 
setting.

Other prognostic variables have been reported at the time of HCC recurrence 
following LT. Tumor location and serum AFP value at recurrence have been associated 
with PRS[9-11,27,28]. Multi-organ sites at recurrence or bone metastasis have been 
associated with poorer PRS in some studies[9,10,27], but not in others[6]. Serum AFP values 
at HCC recurrence diagnosis were also reported to be associated with PRS. Although 
Harimoto et al[28] did not report the adjusted effect in a multivariable model[28], 
Sapisochin et al[11] reported that AFP values higher than 100 ng/mL were 
independently associated with higher rate of death after recurrence[11].

Finally, these prognostic factors should adjust the treatment effect associated with 
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reported therapies for post-transplant HCC recurrence. Adjusted effects were reported 
in some studies, but not in all, particularly considering TTR as the most critical 
confounder factor or effect modifier[9-11,27,28]. Moreover, in most available observational 
studies, the treatment was not allocated randomly, and baseline prognostic factors 
should have adjusted the effect on PRS. None of these studies have addressed this 
issue, not even with propensity score matching analysis[29].

Table 1 describes studies reporting the effect of sorafenib in recurrent HCC after LT. 
Long PRS has been reported, with significant confounding effects regarding TTR[30]. 
Indeed, early recurrent HCC may not have the expected PRS as those with longer TTR. 
Whether this represents a selection bias or better tumor behavior is uncertain.

Hepatitis C, absence of extrahepatic disease, and low neutrophil/lymphocyte ratio 
(< 3) have been linked to predictive factors of better outcomes with sorafenib[25]. 
Although dermatological events during the first 60 d of treatment were associated 
with better overall survival (OS) in the non-LT setting, this must be confirmed in post-
LT patients[31]. Better PRS predictive factors after treatment with sorafenib are also 
lacking in the post-LT setting.

The REFLECT phase III, open-label RCT, showed non-inferior survival of lenvatinib 
(8 mg/day if < 60 kg or 12 mg/day if > 60 kg) vs sorafenib[32]. This tyrosine kinase 
inhibitor blocks VEGF as well as FGF and PDGF pathways. In this trial, eligibility 
criteria excluded patients with main portal trunk tumor invasion and those with > 50% 
of total liver volume involvement[32,33]. Median survival was 13.6 mo with lenvatinib vs 
12.3 mo with sorafenib [HR: 0.92 (CI: 0.79-1.06)][32]. TTP, as well as higher rates of 
partial response and objective response rates were observed with lenvatinib. Higher 
rates of severe adverse events were observed in the lenvatinib arm (57% vs 49%), 
mainly hypertension, hypothyroidism, and proteinuria.

The REFLECT trial modified the future therapeutic options in patients with 
advanced HCC. It remains unclear which subgroup of patients will obtain benefits by 
being treated with lenvatinib or sorafenib. Indeed, similar prognostic and predictive 
variables for lenvatinib have recently been published[34,35].

Unfortunately, there are no reported data regarding lenvatinib in the post-LT 
setting. To date, this is the first reported case treated with lenvatinib, at least in the 
non-Asian population. Our patient reported similar adverse events to those originally 
reported in the REFLECT trial, with initial hypertension during the first weeks of 
therapy and hypothyroidism presenting at week 4 of treatment and 13-mo therapy. 
There were no severe events, tolerance was appropriate and we did not observe liver 
function test abnormalities. In addition, blood tacrolimus levels were stable during the 
entire follow-up period. Although in this particular case, the real benefit on post-
recurrence survival of lenvatinib vs surgical resection is still uncertain, and prognosis 
might have been associated with a more extended TTR presentation.

Three potential scenarios can develop during first-line systemic treatment, which 
determines the subsequent patient’s management: (1) Tolerance or intolerance; (2) 
Radiological progression; and (3) Symptomatic progression[22]. In HCC recurrence after 
LT, higher discontinuation rates and lower tolerance were reported with sorafenib 
(Table 1). However, this figure was not reported in a recently published study of 
sequential systemic therapy with sorafenib-regorafenib in the post-LT setting[36]. 
Whether adverse events are higher in the post-LT setting with lenvatinib is unknown.

More recently, immunotherapy has evolved as a potential first-line systemic option. 
Nivolumab was tested against sorafenib in the first-line setting (Check-Mate 459 study; 
NCT02576509) and failed in both co-primary endpoints. Another phase III, open-label, 
randomized trial evaluating atezolizumab, another immune-checkpoint inhibitor, with 
bevacizumab, an anti-VEGF monoclonal antibody, was superior to sorafenib in both 
co-primary endpoints of OS and progression free survival (PFS)[37]. Nevertheless, this 
therapy may not be applicable for post-LT patients as a higher risk of graft rejection 
has been reported[38,39] (Figure 2).

Currently, regorafenib[40], cabozantinib (CELESTIAL phase III RCT)[41] and 
ramucirumab (REACH I and REACH II phase III RCTs)[42] have demonstrated second-
line efficacy. Neither pembrolizumab nor nivolumab, immune-checkpoint inhibitors, 
are recommended in the post-LT setting as previously mentioned[43,44]. The RESORCE 
phase III RCT included patients with advanced HCC who were tolerant and 
progressed under sorafenib[40]. The median OS was 10.6 mo (CI: 9.1-12.1) for 
regorafenib and 7.8 mo (CI: 6.3-8.8) for placebo, with a HR of 0.62 (95%CI: 0.50-0.79)[40]. 
Likewise, regorafenib was beneficial for TTP[40]. Overall, 93% of the patients receiving 
regorafenib developed AEs (i.e., high blood pressure, fatigue, diarrhea and hand–foot 
skin reaction), 46% grade III, and 4% grade IV, with drug discontinuation due to 
intolerance in 10% of the patients[40].

There is no reported data regarding the safety and efficacy of these second line 
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Table 1 Studies reporting the effect and safety of sorafenib after liver transplantation for recurrent hepatocellular carcinoma

Ref. Design Population SOR/BSC mTOR SOR 
duration(mo)

Adverse events with 
SOR

PRS with SOR 
(mo)

Bhoori et al[16] Case report Single patient with HCC 
recurrence

1 (1/-) 1/1 4 HFS 8

Yoon et al[47] Retrospective 
cohort

HCC-R with SOR median 
TTR (12.3 mo)

13 (13/-) 1/13 2.4 HFS 5.4

Kim et al[48] Retrospective 
cohort

HCC-R with SOR 9 (9/-) 7/9 2.8 - -

Staufer et al[49] Retrospective 
cohort

HCC-R with SOR 20 (13/7) 9/18 5.5 Grade 3-4 92%. Diarrhea 
77% Discontinuation

19

Gomez-Martín 
et al[50]

Retrospective 
cohort

HCC-R with SOR + mTOR 
median TTR (22.6 mo)

31 (31/-) 31/31 - Diarrhea 19

Weinmann 
et al[51]

Retrospective 
cohort

HCC-R with SOR median 
TTR (37.5 mo)

11 (11/-) 9/11 8.9 Diarrhea 20

Vitale et al[52] Retrospective 
cohort

HCC-R with SOR median 
TTR (7 mo)

27 (10/-) 10/27 10 Diarrhea 30%, 
Discontinuation

18

Zavaglia 
et al[53]

Retrospective 
cohort

HCC-R with SOR 11 (11/-) 7/11 2.2 Fatigue 5

Waghray
et al[54]

Retrospective 
cohort

HCC-R 34 (17/17) 10/34 10.2 Diarrhea 7

Sposito et al[30] Retrospective 
cohort

HCC-R with SOR 39 (15/24) 7/39 6.9 HFS 10.6 vs 2.2 median 
TTR 20.6 vs 15.5 
mo

Alsina et al[55] Retrospective 
cohort

HCC-R with/without SOR 22 (9/13) 10.2 Rash 42 vs 16 since LT

PRS: Post-recurrence survival; HCC: Hepatocellular carcinoma; TTR: Time to recurrence; LT: Liver transplantation; HFS: Hemifacial spasm.

therapies in patients with recurrent HCC after LT except for regorafenib[36]. Iavarone 
et al[36] reported the safety and outcomes of 28 patients treated with sequential systemic 
sorafenib-regorafenib after LT. Almost all patients developed adverse events, with 
43% being severe events and 68% needing dose reductions[36]. The most common grade 
3/4 adverse events were fatigue and hand-foot skin reaction. Interaction between 
CYP3A4 metabolism was reported with higher plasma levels of immunosuppressive 
drugs. The median regorafenib duration of treatment was 6.5 mo, with a median 
survival after regorafenib therapy of 12.9 mo and was 38.4 mo after sorafenib-
regorafenib sequential treatment. This latter outcome is longer than previously 
reported in a retrospective analysis from the RESORCE trial[45]. However, it should be 
noted that these post-LT outcomes were assessed in a population with a better 
prognosis compared to patients with early recurrence. Indeed, the median TTR in that 
study was 26.4 mo[36].

Finally, neither neo-adjuvant nor adjuvant therapies have decreased the incidence of 
HCC recurrence following LT[46]. Whether sorafenib or other systemic therapy may be 
effective as adjuvant post-LT therapy is uncertain[47-55]. In the non-transplant setting, 
the STORM trial has not shown the benefit of sorafenib in decreasing the risk of HCC 
recurrence[21]; other trials evaluating immunotherapy in this setting are ongoing.

CONCLUSION
Recurrent HCC after LT has been associated with a dismal prognosis. Particularly in 
patients with recurrences during the first year after LT. Attempts have been made with 
radical therapies, some of them associated with better PRS. However, evidence 
supporting such radical therapies is low to very low quality. This is similar to the 
reported outcomes with systemic therapies.

Moreover, there are no appropriate adjustment treatment effects with other 
prognostic variables, such as TTR. Whether more efficient therapies are yet to be 
identified and applied to these patients remains unknown. In this scenario, 
surveillance for HCC recurrence is still controversial due to a lack of reduction in 
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mortality rates. However, after LT, surveillance for recurrence is demanded from a 
social point of view, triggering areas of improvement in the LT selection processes.
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Abstract
Due to advances in modern medicine, liver transplantation has revolutionised the 
prognosis of many previously incurable liver diseases. This progress has largely 
been due to advances in immunosuppressant therapy. However, despite the 
judicious use of immunosuppression, many liver transplant recipients still 
experience complications such as rejection, which necessitates diagnosis via 
invasive liver biopsy. There is a clear need for novel, minimally-invasive tests to 
optimise immunosuppression and improve patient outcomes. An emerging 
biomarker in this ‘‘precision medicine’‘ liver transplantation field is that of donor-
specific cell free DNA. In this review, we detail the background and methods of 
detecting this biomarker, examine its utility in liver transplantation and discuss 
future research directions that may be most impactful.

Key Words: Biomarkers; Precision medicine; Donor-specific cell-free DNA; Liver 
transplantation; Rejection; Review
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Core Tip: Donor-specific cell-free DNA is a biomarker with promising clinical utility in 
liver transplantation. It demonstrates stereotypic dynamics in states of graft health, and 
is an early and accurate marker of acute rejection. This has been demonstrated in other 
solid-organ transplantations, where certain assays have progressed to commer-
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cialisation. Further studies examining donor-specific cell free DNA in liver 
transplantation, such as a randomised controlled trial or in combination with other 
assays, will assist with its translation into clinical practice. Ultimately, this emerging 
biomarker will need to be used in an integrated manner by experienced clinicians so as 
to improve patient outcomes.
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INTRODUCTION
Liver transplantation (LT) is a crucial treatment option for many patients with 
advanced liver disease. Since it was first performed in 1963[1], LT has evolved so 
significantly that it has revolutionised the prognosis of previously incurable 
conditions. Today, recipients have overall survival rates of 96% at one year, 71% at 10 
years and–remarkably–52% at 20 years post-LT[2]. In line with these excellent 
outcomes, the number of LTs performed each year continues to rise. In 2017, more 
than 32000 LTs occurred worldwide–representing 23.5% of the total organs 
transplanted and a 16.5% increase in LTs since 2015[3].

Long-term, the success of a LT depends on a fine balance: Adequately suppressing 
the immune system to avoid organ rejection, whilst maintaining it at a level that 
prevents complications and minimises side effects. Notably, the level of 
immunosuppression required post-LT can vary substantially between recipients. 
Whilst some patients are highly prone to rejection[4], others can successfully wean off 
immunosuppression entirely–achieving ‘‘operational tolerance’‘[5]. Despite the 
judicious use of immunosuppression, up to 27% of LT recipients still develop an 
episode of acute rejection and 68% encounter infective complications[6-8]. LT recipients 
also experience increased rates of malignancy, renal impairment and metabolic 
syndrome compared to the general population[9-11]. These issues can threaten graft and 
patient survival, impair quality of life and prove costly to manage[12-14].

Currently, the standard of care post-LT involves commencing recipients on empiric 
doses of immunosuppression, which are adjusted according to changes in liver 
function tests (LFTs), serum drug levels or the onset of an adverse clinical event. Whist 
LFTs are an extremely sensitive test for detecting organ injury, they are poorly specific 
for LT complications[15]. Moreover, no clear LFT thresholds exist that are diagnostic of 
rejection or reflective of its severity[16]. Similarly, there are no defined therapeutic 
ranges for serum calcineurin inhibitor (CNI) levels[17], as these have been shown to 
poorly correlate with clinical effects–particularly in LT[18]. Therefore, these tests often 
lead to a series of radiological and endoscopic investigations, that culminate in a liver 
biopsy to diagnose rejection. Not only is this process time-consuming and resource-
heavy, but liver biopsies are inherently subjective and invasive[19]. Approximately 1 in 
100 result in major complications and 2 in 1000 lead to patient death[20,21].

Clearly, innovative tools are needed to optimise immunosuppression and improve 
patient outcomes post-LT. Ideally, such tests should be both sensitive and specific for 
LT complications, as well as minimally invasive and cost-effective[22]. These tests also 
need to be easily accessible and rapidly performed, as changes in a LT recipient’s 
condition can occur quickly[23], and clinicians need to make prompt decisions in real 
time. To date, there has been considerable research into identifying biological markers 
that could enable clinicians to more precisely tailor immunosuppression regimens to 
individual patients[24-26]. One such emerging biomarker in this field of ‘‘precision 
medicine’‘ is that of circulating free DNA from the donor graft (i.e. ‘‘donor-specific 
cell-free DNA’‘). In this review, we detail the background and methods of detecting 
this biomarker, examine its utility in LT, and discuss future research directions that 
may be most impactful.
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DONOR-SPECIFIC CELL-FREE DNA
Background
Unencapsulated or ‘‘cell-free’‘ DNA was first discovered in human plasma by Mandel 
and Metais in 1948[27]. Following a resurgence of interest into its clinical potential in the 
1990s[28], the scientific community has since learnt much about the biology of cell-free 
DNA. The majority originates from haematopoetic cells such as leukocytes[29,30], and is 
released into the circulation during apoptosis and necrosis[31-33]. These fragments of 
DNA are then rapidly cleared from plasma by the liver, spleen and kidneys[34,35]. As a 
result, cell-free DNA has a short half-life of approximately 1.5 h[36,37]–rendering it a 
‘‘real-time’‘ marker of cellular injury. Subsequently, scientists identified that lower 
levels of this circulating free DNA were also being released during normal 
physiological turnover[38-40].

Given these characteristics, cell-free DNA has emerged as a useful biomarker in 
multiple clinical settings. This was particularly notable in those where a genetic 
difference could be exploited, such as oncology, obstetrics or solid-organ 
transplantation. In cancer patients, researchers isolated circulating free DNA 
characterised by mutations specific to particular malignancies[41-43]. This gave rise to the 
notion of a ‘‘liquid biopsy’‘ for diagnostic and management purposes[44-47]. Similarly, in 
the plasma of pregnant women, researchers detected fragments of DNA unique to the 
foetus[28], and subsequently analysed these for genetic conditions[48]. Today, ‘‘non-
invasive pre-natal testing’‘ has replaced the need for chorionic villus sampling with a 
simple blood test[49], which is commercially available throughout the world[50]. In solid-
organ transplantation, genetic differences become fundamentally intertwined. With 
the exception of an identical twin donor-recipient pair, this procedure places a unique 
genome within the recipient–theoretically creating the ideal environment for detecting 
circulating free donor DNA via minimally-invasive blood sampling. Moreover, this 
biomarker could plausibly reflect graft integrity at low levels, and cellular death when 
elevated. A particular focus has emerged regarding the dynamics of this DNA during 
rejection, given it is this element of solid-organ transplantation that currently 
necessitates invasive biopsies. This is particularly the case in LT, where routine 
biopsies are considered controversial–and often only performed if clinically 
indicated[51,52]. Clearly, a liquid biopsy could be revolutionary in this setting.

Methods of detection
In order to critically appraise studies examining the clinically utility of donor-specific 
cell-free DNA in LT, it is important to understand the scientific advancements that 
have enhanced its detection.

Y-chromosome specific sequences
The first group to detect circulating free donor DNA in transplant recipient plasma 
were Lo et al[53] in 1998. In their landmark study, they isolated fragments of donor 
DNA in the plasma of 36 liver or kidney transplant recipients–including six females 
who had received livers from male donors. In this subset of participants, the authors 
isolated genetic sequences unique to the Y-chromosome, which they amplified using 
polymerase chain reaction (PCR) and visualised using gel electrophoresis. In so doing, 
they provided ground-breaking data proving the concept of donor-specific cell-free 
DNA, depicted in Figure 1. However, this methodology was limited to male-to-female 
engraftments only–just as a subsequent Rhesus (Rh) gene quantitative PCR (qPCR) 
assay was restricted to positive-to-negative transplantations[54]. As such, a focus on 
identifying other genetic targets that differed more broadly between individuals 
subsequently emerged.

Next generation sequencing
The following decade, the advent of next generation sequencing (NGS) completely 
revolutionised gene discovery. By enabling massive genetic throughputs[55], multiple 
genetic loci that were highly heterogeneous within the population could now be 
identified. The most common of these were ‘‘single nucleotide polymorphisms’‘ 
(SNPs)–where DNA sequences differed by one adenine, thymine, guanine or cytosine 
molecule between individuals[56]. By using NGS to analyse multiple SNPs, researchers 
could now detect genetic sequences likely to differ between the vast majority of donor-
recipient pairs. The first group to achieve this were Snyder et al[57] in 2011, who 
analysed blood samples from heart transplant donors and recipients, and detected 
circulating free donor DNA using a genome-wide SNP assay[57]. Since then, three other 
groups have published more targeted NGS methodology in this field[58-60], two of which 
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Figure 1  The concept of donor-specific cell-free DNA in liver transplantation.

circumvented this need for baseline donor blood sampling by using computational 
techniques[59,60]. However, in clinical practice, NGS assays have several key limitations. 
Not only are they highly complex and expensive, but they can take up to seven days to 
process[57]–rendering them potentially futile as a real-time transplantation biomarker.

Droplet-digital polymerase chain reaction
Given this, an interest in developing more accessible, affordable and rapid assays 
arose. This coincided with the commercial availability of droplet digital PCR (ddPCR), 
which had a six hour turnaround time, and could more precisely quantify DNA than 
previous qPCR techniques[61]. Researchers began designing new ddPCR probes and 
primers to detect donor-specific sequences. Y-chromosome and SNP targets were 
revisited, but new sites included regions of the human leukocyte antigen (HLA) gene 
and ‘‘deletion insertion polymorphisms’‘ (DIPs). At a population level, HLA genes are 
characterised by high levels of heterogeneity[62]. However, as donor-recipient pairs are 
often HLA ‘‘matched’‘[63], this target is potentially problematic in transplantation. DIPs, 
conversely, remain a promising option–as these are regions of the genome 
characterised by the absence or presence of certain nucleotides, leading to common 
allelic differences between individuals[64]. Ultimately, understanding these 
methodologies highlights the relative complexity of genetic tests, compared to more 
standard biochemistry such as LFTs[65]. Accordingly, each assay for circulating free 
donor DNA requires validation, in order to establish its utility in the clinical setting.

STUDIES IN LIVER TRANSPLANTATION
Publications to date
A total of 12 publications have studied donor-specific cell-free DNA in LT, as 
summarised in Table 1. These studies differ in their size (n = 1-115), design and assay 
methodologies. However, they all demonstrate that this biomarker shows promise in 
monitoring graft health and detecting injury–especially when caused by acute 
rejection.

Fifteen years after Lo et al[53] first demonstrated the presence of Y-specific donor 
DNA fragments in LT recipient plasma, Beck et al[66] went on to establish three 
additional key findings. In their 2013 study, they used probe-based ddPCR to 
scrutinise a panel of 40 SNPs and detect donor-specific sequences in 10 newly 
transplanted and seven stable LT recipients. These fragments of donor DNA were then 
quantified in terms of relative abundance and expressed as a percentage of total cell-
free DNA. Firstly, Beck et al[66] observed high levels of circulating free donor DNA 
post-engraftment (approximately 90%), which fell exponentially and stabilised within 
10 d in recipients without complications. Secondly, this DNA was elevated (> 60%) in 
two newly transplanted patients with biopsy-proven acute rejection (BPAR), yet not in 
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Table 1 Publications examining donor-specific cell-free DNA in liver transplantation recipients (prior to census data of July 1st, 2020)

Ref. Year Assay method Genetic marker(s) Study design and sample size ‘‘Healthy’’ threshold Diagnostic accuracy

Lo et al[53] 1998 PCR and gel electrophoresis Y chromosome Prospective, cross-sectional (n = 8) - -

Beck et al[66] 2013 ddPCR(probe-based) SNP Prospective, cross-sectional (n = 10) and 
longitudinal (n = 7)

10% -

Macher et al[68] 2014 qPCR(probe-based) Y chromosome Prospective, longitudinal (n = 10) 150 ng/mL -

Macher et al[54] 2016 qPCR(probe-based) Rhesus gene Prospective, longitudinal (n = 17) - -

Kanzow et al[69] 2014 ddPCR(probe-based) SNP Retrospective, longitudinal (n = 1) 10% -

Oellerich et al[70] 2014 ddPCR(probe-based) SNP Prospective, longitudinal (n = 10) 10% -

Schütz et al[71] 2017 ddPCR(probe-based) SNP Prospective, longitudinal (n = 115) 10% AUC for BPAR 0.97

Goh et al[79] 2017 ddPCR(probe-free) DIP Prospective, longitudinal (n = 3) - -

Ng et al[80] 2018 NGS(targeted) Y chromosome Prospective, longitudinal (n = 2) 0.1 -

Goh et al[78] 2019 ddPCR(probe-free) DIP Prospective, longitudinal (n = 20) and cross-
sectional (n = 20)

898 copies/mL AUC for tBPAR 0.97

Ng et al[81] 2019 qPCR(probe-free) SNP Prospective, longitudinal (n = 2) 0.1 -

Ng et al[82] 2019 NGS(targeted) and automated 
electrophoresis

Y chromosome, DNA fragments < 145 
bp

Prospective, longitudinal (n = 11) 0.1, 0.6 (S/L fragments) -

PCR: Polymerase chain reaction; ddPCR: Droplet digital PCR; SNP: Single nucleotide polymorphism; qPCR: Quantitative PCR; DIP: Deletion insertion polymorphism; BPAR: Biopsy-proven acute rejection; tBPAR: Treated BPAR with 
rejection activity index > 3; NGS: Next generation sequencing; bp: Base pairs; S/L fragments: Short to long fragment ratio; AUC: Area under the receiver operating characteristic curve.

another with obstructive cholestasis. Notably, this DNA began to increase several days 
prior to LFTs in those cases with rejection. Thirdly, the authors identified a ‘‘healthy’‘ 
threshold of donor-specific cell-free DNA of < 10% in the stable LT recipients. 
Additional benefits of this assay included its same-day turnaround and lack of a need 
for donor blood sampling. However, its limitations included the use of PCR 
preamplification and post-PCR handling, which can introduce several forms of bias 
and pose a high contamination risk, respectively[67].

The next year, Macher et al[68] published a longitudinal study using qPCR to detect 
Y-specific DNA fragments in 10 gender-mismatched LT recipients. As with Beck 
et al[66], the authors also found that this circulating free donor DNA was elevated 
immediately post-LT, then rapidly decreased in recipients without complications and 
remained stable[68]. Macher et al[68] also identified a threshold reflective of organ 
health–however as their assay was one of absolute quantification, this was expressed 
as 150 ng/mL. The authors made the novel observation that these fragments of donor 
DNA were also elevated in recipients who experienced cholangitis and vascular 
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complications. Unfortunately, this study proved too small to examine the dynamics of 
this DNA in acute rejection, as no patients experienced this endpoint. As such, Macher 
et al[54] subsequently published an additional study in 2016. This time, they measured 
circulating free donor DNA by using qPCR to detect Rh-positive sequences in 17 Rh-
mismatched LT recipients. Here, in the patients who experienced BPAR, levels of 
donor-specific cell-free DNA were found to rise compared to those without 
complications. However, as these two qPCR assays targeted restrictive genetic 
differences only, they intrinsically had limited clinical utility.

Between 2014 and 2017, the Beck group published three additional studies using 
their more expansive SNP methodology[69-71]. The first of these was a case study, which 
described a LT recipient of a marginal graft, who had experienced multiple 
complications post-operatively–and retrospectively undergone donor-specific cell-free 
DNA analysis[69]. Kanzow et al[69] demonstrated that levels rapidly became elevated in 
the following settings: BPAR, traumatic liver haematoma and cytomegalovirus 
infection. They also made the pioneering observation that circulating free donor DNA 
subsequently fell post successful treatment of each complication. The authors 
concluded that this biomarker was useful for monitoring organ health.

Next, Oellerich et al[70] prospectively measured circulating free donor DNA and CNI 
levels in 10 receipts during the first month post-LT. They aimed to identify the 
minimum trough tacrolimus concentration that was associated with graft integrity. 
Using the pre-established healthy threshold of < 10%, the authors observed significant 
segregation and determined the lower limit of the therapeutic tacrolimus range to be 8 
ug/L. Although larger studies with longer follow up were still needed, Oellerich 
et al[70] postulated the assay could be useful in monitoring for graft injury in LT 
recipients whose immunosuppression was being weaned.

This unmet need was addressed by the third study, published by Schütz et al[71] In 
their multicentre prospective trial, donor-specific cell-free DNA was measured in 115 
LT recipients at seven timepoints during the first year post-LT, plus whenever 
rejection was suspected. The stereotypic exponential fall of this DNA was seen in 88 
stable recipients, who had a median level of 3.3%. In 17 recipients with BPAR, median 
levels were elevated at 29.6%. Moreover, this circulating free donor DNA was found to 
be an accurate and early marker of BPAR–with a superior area under the receiver 
operating characteristic curve (AUC) of 0.97 compared to LFTs (0.83-0.96), and levels 
increasing up to two weeks prior to diagnosis on liver biopsy. In patients with 
infective complications, median donor-specific cell-free DNA was slightly higher than 
in stable recipients, but lower than in BPAR (5.3%-5.7%) – similar to patterns seen by 
other authors[68,69]. In patients with cholestasis alone, levels remained < 10%[71]. On 
multivariate logistic regression, Schütz et al[71] found that this biomarker provided 
independent information regarding graft integrity.

Whilst the benefits of the Beck et al[72] assay they utilised prevailed, there were 
several limitations to this study[71]. These were highlighted by two cases, where 
patients had BPAR, but circulating free donor DNA levels remained < 10%. In the first 
patient, who had a marked leukocytosis, Schütz et al[71] acknowledged that this factor 
may have ‘‘masked’‘ the percentage of cell-free DNA from the donor present in 
recipient plasma, due to an increase in the denominator of total cell-free DNA. Indeed, 
expressing circulating free donor DNA in terms of relative abundance renders it 
innately susceptible to this form of error–including in other circumstances where cell-
free DNA increases such as infection[73], obesity[74] and exercise[75]. In the second patient 
with BPAR but circulating free donor DNA below the ‘‘healthy’‘ threshold, the authors 
attributed this to the fact that the rejection was only mild histologically, with a 
rejection activity index (RAI) of 1/9, and did not require treatment[71]. This case 
demonstrates the limited clinical utility of BPAR as an endpoint–compared to treated 
BPAR (tBPAR) of RAI ≥ 3, which is now widely utilised in clinical trials[76,77].

These limitations, however, were not present in the Goh et al[78] publication from 
2019. This group originally validated their probe-free ddPCR assay in 2017, when they 
successfully targeted a panel of nine DIPs and achieved absolute quantification of 
circulating free donor DNA in three LT recipients[79]. Two years later, they used this 
technique to examine 40 recipients divided into two cohorts[78]: Longitudinal (n = 20), 
who had donor-specific cell-free DNA measured at five timepoints during the first six 
weeks post-LT; and cross-sectional, who were either undergoing a liver biopsy at least 
one-month post-LT (n = 16), or stable and at least one-year post-LT (n = 4). The authors 
demonstrated findings in keeping with the aforementioned literature. In the 
longitudinal group, levels of circulating free donor DNA fell exponentially and 
stabilised in the 14 recipients without complications. Elevated levels of this DNA were 
observed in three recipients with tBPAR, but not in three with cholestasis alone. In the 
cross-sectional cohort, elevated levels of this DNA accurately identified six patients 
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with tBPAR, with an AUC of 0.97 that was again superior to LFTs. A healthy threshold 
of < 898 copies/mL was identified in the 14 cross-sectional patients without rejection 
and found to be reliable in the longitudinal cohort from day 14 post-LT onward. By 
using primer sets to hybridize across allelic breakpoints, Goh et al[78] had also 
eliminated the need for costly florescent probes. However, the assay called for a donor 
blood sample for optimal processing and the study was ultimately underpowered.

Most recently, Ng et al[80-82] pioneered the measurement of circulating free donor 
DNA in live donor LT (LDLT). These authors utilised different assays to detect the 
relative abundance of this DNA in paediatric recipients from day 0-60 post-LDLT. 
First, NGS was used to detect Y-specific sequences in two gender-mismatched 
LDLTs96. Next, a qPCR SNP assay was examined in two additional LDLT recipients97. 
In both publications, Ng et al[82] found that circulating free donor DNA exponentially 
fell and stabilised at < 0.1, as seen with the Beck et al[66] group. Finally, the initial NGS 
Y-specific assay was used in 7 gender-mismatched LDLTs to detect circulating free 
donor DNA, which was then profiled according to its fragment size[82]. Here, the 
authors made the innovative observation that donor DNA fragments were ‘‘short’‘ 
(105-145 bp), compared to the ‘‘long’‘ fragments of recipient DNA (> 160-170 bp). NGS 
and automated electrophoresis was then used to detect these short donor DNA 
fragments in four gender-matched LDLT recipients. The authors also noted that the 
ratio of short to long (S/L) fragments correlated with the circulating free donor DNA 
levels–and identified a healthy S/L fragment threshold of < 0.6. Interestingly, in the 
oncology and obstetric research settings, the fragments of DNA from tumour cells or 
from the foetus are also shorter (i.e. than those from non-malignant or maternal cells 
respectively) but the mechanism behind this is unclear[83,84]. Certainly, this Ng et al[80-82] 
fragment size-based assay was quicker and less restrictive than targeting the Y-
chromosome. However, its methodology was still slower (24 h) and more expensive 
than PCR. Furthermore, these three studies were limited by their small sample size of 
uneventful LDLTs[80-82]–precluding insights into the dynamics of their assays during 
complications.

DISCUSSION 
In summary, these studies show that donor-specific cell-free DNA is a biomarker with 
promising clinical utility in LT. It consistently demonstrates stereotypic dynamics in 
states of graft health[54,66,68,71,78]. As such, it could be used to rule out organ injury as part 
of a diagnostic workup post-LT. In the setting of acute rejection, circulating free donor 
DNA repeatedly outperforms LFTs in terms of both its discriminatory and timely 
detection of this LT complication[71]. Given this, it could be used to prompt early 
adjustments to therapy if rising in the setting of an immunosuppression 
wean–potentially preventing an episode of tBPAR. It could also be used to avoid a 
liver biopsy when present at low levels, enabling clinicians to observe recipients or 
investigate less invasively knowing tBPAR is highly unlikely. Ultimately, further 
studies are required to fully establish the potential of donor-specific cell-free DNA as a 
‘‘liquid biopsy’‘ in LT. In particular, a focus on identifying thresholds diagnostic of 
acute rejection, or reflective of its effective treatment, would be of high clinical value.

Reflecting on the biology underlying these results also yields further insights. 
Firstly, the researchers who discovered that circulating free donor DNA was more 
sensitive and specific for acute rejection than LFTs have postulated as to why this is 
the case[71,78]. Both Schütz et al[71] and Goh et al[78] concluded that, compared to LFTs, 
elevated levels of this novel biomarker reflect a relatively simple process–that of donor 
organ cellular death, releasing DNA into the recipient circulation. Conversely, 
bilirubin and the liver enzymes can rise due to a number of complex pathways. 
Secondly, other researchers have shown that levels of circulating free donor DNA also 
rise in infective and vascular complications post-LT[68,69,71]. Whilst these are also 
potential causes of graft cell death, other studies have indicated that inflammatory 
states might affect cell-free DNA levels[85]. Therefore, as a potential biomarker, these 
donor-specific assays need to be carefully interpreted by expert clinicians within the 
clinical context. Finally, in contrast to LFTs, circulating free donor DNA levels were 
noted in several studies to remain stable in the setting of cholestasis alone[66,71,78]. Whilst 
the reasons for this remain unclear, potential explanations could include the different 
vasculature of the biliary tree compared to hepatocytes, or its drainage system into the 
duodenum.

Additional issues that have been addressed include the impact of ‘‘blood 
microchimerism’‘ from donor leukocytes, or of blood transfusions from other/pooled 
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donors. In their landmark study, Lo et al[53] did not detect any haematopoietic donor 
cells in the recipients’ circulation. Subsequently, Schütz et al[71] analysed a subset of 12 
patients, and found donor leukocytes were either absent or barely present (0%-
0.068%). Both authors therefore concluded that blood microchimerism could be 
excluded as a confounding source of circulating free donor DNA[53,71]. Conversely, an 
additional case report by Goh et al[86] found that their assay was affected by blood 
transfusions. In this LT recipient, with no other evidence of graft injury, donor-specific 
cell-free DNA rapidly rose and fell post receiving fresh frozen plasma (FFP). As such, 
the authors suspected the FFP had temporarily confounded their results. However, 
given the short half-life of unencapsulated DNA, this could potentially be controlled 
for by performing assays for circulating free donor DNA several hours post such 
transfusions.

Ultimately, these LT studies represent just one aspect of the broader donor-specific 
cell-free DNA literature. In a recent systematic review, Knight et al[25] identified 47 
studies examining this biomarker in solid-organ transplantation (census date June 
2018). Most were in kidney (38.3%) or heart (23.4%) transplant recipients, and a 
smaller number were from the lung (10.6%) and kidney-pancreas (2.1%) setting. As 
with the LT literature, these studies varied in their design, size (n = 1-384) and assay 
methodologies. In five studies, the same assay was validated across multiple organs. 
In their narrative analysis, the reviewers found comparable results across multiple 
organs–with a few specific nuances. In all 21 studies that examined newly transplanted 
patients, circulating free donor DNA fell and stabilised by day 10. However, liver and 
lung recipients had higher baseline mean levels (2%-5%) than kidney and heart 
recipients (0.06%-1.2%)–potentially due to their larger graft size. Of the 41 studies that 
examined this biomarker in acute rejection, the vast majority observed levels to 
increase (97.5%), yet less than half reported diagnostic accuracy data (46.3%). 
Interestingly, of all organs studied, circulating free donor DNA rose to higher 
thresholds and with greater accuracy for BPAR in LT. Whilst no studies identified 
thresholds diagnostic of BPAR, several noted that levels returned to baseline post 
successful treatment. Overall, Knight et al[25] concluded that donor-specific cell-free 
DNA was a valid biomarker in all organ types.

Since then, the literature has continued to rapidly evolve. At the time of writing, 
more than 25 additional studies examining circulating free donor DNA had been 
published–including several from large cohorts of kidney (n = 107-189)[87,88], heart (n = 
241-773)[89,90] and lung (n = 106)[91] transplant recipients. Additional developments have 
included the publication of new guidelines regarding optimal laboratory processing of 
cell-free DNA[92]. There has also been an emerging interest in other cell-free genetic 
targets, such as hepatocyte-specific methylation markers[93,94], and mitochondria-
derived DNA (mDNA)[95,96]. Finally, some of these studies have led to the 
commercialisation of particular dsfDNA assays. AlloSure® and AlloMap® (CareDx, 
Inc., Brisbane CA) have been validated in large cohorts of kidney and heart transplants 
recipients respectively[89,97-99]. Prospera® (Natera, Inc., San Carlos CA) has also been 
validated in a renal transplant study[100]. Yet, as these three assays are all NGS-based, 
their routine use in clinical practice remains problematic. More recently, 
myTAIHEART® (TAI Diagnostics, Inc., Wauwatosa WI), which targets SNPs with 
qPCR to quantify circulating free donor DNA in relative abundance, was validated in 
heart transplant recipients[89,90]. However, as baseline thresholds and diagnostic 
accuracy of these assays can differ across organ types, they require further validation 
prior to their potential use in LT.

CONCLUSION
Given the rising number of LT recipients who require long-term monitoring[2,3], further 
donor-specific cell-free DNA research in this field could be of high clinical impact. 
Currently, there are two large prospective trials underway further examining 
AlloSure® in kidney transplantation (ClinicalTrials.gov Identifier: NCT03326076), and 
its use in conjunction with AlloMap® in heart transplantation (ClinicalTrials.gov 
Identifier: NCT03695601). Clearly, the commercialisation and larger scale analysis of 
circulating free donor DNA in LT is also required. Following this, next steps should 
include a randomised controlled trial (RCT) comparing standard of care post-LT to 
precision medicine additionally guided by changes in donor-specific cell-free DNA 
levels. Ideally, this RCT should also include a comparative cost analysis of these two 
models of care. Lastly, LT studies combining this biomarker with other novel tests 
would be particularly impactful–such as those quantifying immune function[77], or 



McClure T et al. Donor-specific cell-free DNA in LT

WJT https://www.wjgnet.com 315 November 28, 2020 Volume 10 Issue 11

machine learning algorithms[26]. Ultimately, the use of innovative tools in an integrated 
manner could enable clinicians to continue the legacy of exceptional progress and 
further improve patient outcomes post-LT.
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Abstract
An increasing number of childbearing agewomen undergo liver transplantation 
(LT) in the United States. Transplantation in this patient subgroup poses a 
significant challenge regarding the plans for future fertility, particularly in terms 
of immunosuppression and optimal timing of conception. Intrapartum LT is only 
rarely performed as the outcome is commonly dismal for the mother or more 
commonly the fetus. On the other hand, the outcomes of pregnancy in LT 
recipients are favorable, and children born to LT recipients are relatively healthy. 
Counseling on pregnancy should start before LT and continue after LT up until 
pregnancy, while all  pregnant LT recipients must be managed by 
amultidisciplinary team, including both an obstetrician and a transplant 
hepatologist. Additionally, an interval of at least 1-2 years after successful LT is 
recommended before considering pregnancy. Pregnancy-induced hypertension, 
pre-eclampsia, and gestational diabetes mellitus are reported more commonly 
during the pregnancies of LT recipients than in the pregnancies of non-transplant 
patients. As adverse fetal outcomes, such asmiscarriage, abortion, stillbirth, or 
ectopic pregnancy, may occur more often than in the non-transplant population, 
early planning or delivery either through a planned induction of labor or cesarean 
section is critical to minimize the risk of complications. No significant long-term 
physical or phycological abnormalities have been reported in children born to LT 
recipients.
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Core Tip: An important number of childbearing age women undergo liver 
transplantation (LT) in the United States. Intrapartum LT is rarely performed as the 
outcome is commonly dismal for either the mother or the fetus. On the other hand, the 
outcomes of pregnancy in LT recipients are favorable, and children born to LT 
recipients are relatively healthy. An interval of at least 1-2 years after successful LT is 
recommended before considering pregnancy. As adverse fetal outcomes may occur 
more often than in the non-transplant population, early planning or delivery either 
through a planned induction of labor or cesarean section is crucial.

Citation: Ziogas IA, Hayat MH, Tsoulfas G. Obstetrical and gynecologic challenges in the liver 
transplant patient. World J Transplant 2020; 10(11): 320-329
URL: https://www.wjgnet.com/2220-3230/full/v10/i11/320.htm
DOI: https://dx.doi.org/10.5500/wjt.v10.i11.320

INTRODUCTION
The first successful liver transplantation (LT) in humans was reported in 1963[1]. Since 
then, owing to the numerous advances in surgical technique, organ preservation, 
immunosuppression, anesthesia, and pre- and post-operative care, LT has gradually 
become the mainstay of treatment for the management of end-stage liver disease[2] 
withincreased survival and quality of life[3]. Out of the 173801 theLT performed in the 
United Sates over the past 30+ years (1988-2020), 20129 (11.6%) were in women of 
reproductive age (18-49 years) (based on Organ Procurement and Transplant Network 
data as of February 17, 2020). Transplantation in this patient subgroup poses a 
significant challenge regarding the plans for future fertility, particularly in terms of 
immunosuppression and optimal timing of conception[4, 5], and thus obstetric 
consultation plays a vital role in the care of this patient subgroup. The aim of this 
review is to summarize the current state of evidence on (1) the association of the 
female reproductive system and end-stage liver disease; (2) the role and outcomes of 
LT during pregnancy; and (3) the outcomes of pregnancy after LT.

FEMALE REPRODUCTIVE SYSTEM AND END-STAGE LIVER DISEASE
It is well known that liver dysfunction can lead to infertility, sexual dysfunction, 
amenorrhea, and irregular menstrual bleeding in women of childbearing age[6, 7]. This 
effect is mostly attributed to alterations in the hypothalamic-pituitary-gonadal axis 
and the metabolism of sex steroid hormones, which lead to hormonal imbalances, 
including hypogonadotropic hypogonadism and elevated estrogen levels[7, 8]. Even 
though these alterations can be seen in chronic liver disease of any etiology, continuing 
alcohol consumption, particularly in the setting of alcohol-induced liver disease, may 
further exacerbate this dysfunction of the hypothalamic-pituitary-gonadal axis in 
female patients[9]. A survey assessing the incidence of menstrual cycle abnormalities in 
women before LT showed that 28% of the women reported irregular menses and 
another 30% amenorrhea, and these rates were lower in the chronic liver disease group 
compared to women with acute liver disease[10]. In addition, Sorrell et al[11] reported 
that around56% of women with severe liver disease were no longer sexually active at 
the time of evaluation for LT, while about 42% of them had decreased interest in being 
sexually active. The authors also mentioned that these high rates of sexual 
dysfunction, based on patient interviews, were mostly due to their chronic illness, 
fatigue, and change in their body image[11]. In contrast, in a survey conducted by Mass 
and colleagues[10], 77% of the women reported being sexually active before LT.

LT DURING PREGNANCY
Mild liver dysfunction is a phenomenon commonly observed during normal 
pregnancy[12], however, severe liver dysfunction is a rare occurrence that is associated 
with significant mortality for both the fetus and the mother[13]. Severe liver dysfunction 
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during pregnancy can be precipitated by (1) thestate of pregnancy itself; (2) pre-
existing disorders;and (3) a condition impacting the liver coincidentally(Table 1)[14]. 
Severe liver disease, regardless of the etiology, in rare cases, necessitatesLT as the only 
definitive therapy[7]either during pregnancy or in the puerperium. For instance, while 
the overall mortality of the hemolysis, elevated liver enzymes, low platelet count 
syndrome is 2%-3%, the presence of overt hepatic complications increases the maternal 
mortality upto 50%, and in such cases LT may be considered[7]. However, it is essential 
to diagnose carefully the underlying pathologyand decide upon whether we can resort 
to medical treatment or early delivery.

Only a few case reports have described the rare instances where LT was performed 
during pregnancy or during the puerperium. The first intrapartum LT case was 
performed in 1989 at 27 wk of gestation, and the indication was drug-induced 
fulminant hepatic failure[15]. The outcome was favorable for the mother, but neonatal 
death was reported due to premature delivery. Since then, only a few such cases have 
been published to date. The first LT case during the puerperium was reported by 
Ockner et al[16] in 1990and was performedfor the management of multisystem failure 
due to acute fatty liver of pregnancy3 dpost-partum after a 37-wk gestation. A healthy 
child was delivered without any adverse event for the mother.

LT during pregnancy has been associated with several adverse effects for either the 
mother or the fetus/newborn. According to the previously published case reports on 
LT during pregnancy, maternal survival has been shown to be optimal in most 
occasions with graft rejection (25%), cholestasis (22%), infections (13%), and impaired 
renal function (6%) being the most common reported adverse events[14, 15, 17-33]. On the 
other hand, fetal/neonatal outcomes after LT during pregnancy are not encouraging 
due to the high rates of intrauterine fetal death, induced abortion due to the 
anticipation of severe fetal complications, pre-term delivery, and intrauterine growth 
restriction[14, 15, 17-33]. However, thorough and elaborative discussions should be 
conducted with the mother in terms of maintaining pregnancy, as in some instances, 
fetal survival without any compromise was proven to be feasible.

PREGNANCY AFTER LT
Restoration of the female reproductive system after LT
The first successful childbirth after LT took place in 1978 and, despite the decreased 
birth weight, was accompanied by optimal fetal and maternal outcomes[34]. Since then, 
several reports have demonstrated the feasibility of pregnancy after LT[35-47]. Notably, 
the restoration of menstruation and childbearing potential is successful in around 97% 
of previously fertile female LT recipients[48, 49]. It has been reported that within some 
months after LT (in a significant number of cases even within 1 mo[6]), sex hormone 
levels and sexual function normalize either partially or completely with amenorrhea 
reported in 26%, irregular bleeding in 26%, and regular menses restoration in 48% of 
the female LT recipients of childbearing age[50, 51]. While the resumption of normal cycle 
is commonly seen in a few months after LT, recipients are recommended to avoid 
conception up until a year due to potentially worse outcomes[52, 53]. Hence, family 
planning and consultation by a multidisciplinary team including a transplant 
hepatologist are pivotal for the well-being of these patients. Consultation should begin 
before LT. Naturally, these patients are prescribed combined oral contraceptives and 
transdermal contraceptive patches, which have traditionally resulted in no 
pregnancies and no overall changes in biochemistries, rendering them safe post-
LT[54, 55]. Asingle-center cross-sectional survey study demonstrated that only 35% (n = 
28/80) of the women received appropriate recommendations for effective 
contraception post-transplant and only 28% of them (n = 8/28) did use effective birth 
controlafter consultation[56]. Although the study showed no important change in the 
distribution of contraceptive methods used post-LT, it revealed an increase in the rate 
of hormonal contraception (pre-LT: 2% vs post-LT: 10%, P = 0.044), and the most 
common contraceptive method was condoms both pre- and post-LT (pre-LT: 66% vs 
post-LT: 55%, P = 0.223)[56]. Although barrier methods are easy to use and decrease the 
risk of transmission of sexually transmitted diseases and fertility is immediately 
restored with cessation, the failure rate is quite high. Hormonal contraception is more 
effective but may take a few months for fertility to restore after cessation, may induce 
withdrawal symptoms, and increase the risk of venous thromboembolism (if 
combined estrogen/progestin). The maindifferences between the oral contraceptive 
pills and the transdermal patches include lower effectiveness in women weighing ≥ 
90kg, local reaction or visibility, and a higher rate of dysmenorrhea and breast pain[57]. 
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Table 1 Causes of severe liver dysfunction during pregnancy

Provoked by pregnancy1 Pre-existing disorders Coincidental conditions2

Acute fatty liver of pregnancy Alcoholic liver disease Acute viral hepatitis A and 
E

Eclampsia-related liver disease Non-alcoholic steatosis hepatitis Herpes simplex viruses

Hemolysis, elevated liver enzymes, low platelet count(HELLP) 
syndrome

Human immunodeficiency and hepatitis B and C 
viruses

Drug toxicities

Intrahepatic cholestasis of pregnancy Coagulation disorders Budd-Chiari syndrome

1Mostly in last trimester.
2Impact non-pregnant patients as well, but are associated with higher mortality and morbidity when coexisting with pregnancy.

Lastly, intrauterine devices offer the highest level of effectiveness with a low incidence 
of uterus perforation but have not been well-studied in LT recipients to date.

Mass et al[10] showed that the percentage of women being sexually active after LT 
slightly decreased from 77% to 72% post-LT. Notably, a cross-sectional study failed to 
show any significant differences in the incidence of sexual activity, dyspareunia, 
satisfaction with sex life, amenorrhea, and dysmenorrhea when comparing female 
patients pre- and post-LT[58]. A meta-analysis investigating the effect of LT on post-
transplant quality of life reported significant improvements in sexual function after LT 
compared to the pre-LT state[59].

Risk of immunosuppression during pregnancy
All LT recipients are on post-transplant immunosuppression in order to decrease the 
risk of organ rejection. All immunosuppressive agents are known to cross theplacenta 
and can enter thefetal circulation, with a possibility of resulting in deleterious fetal 
outcomes. However, there is evidencesuggesting that the use of immunosuppressive 
agents, such as asazathioprine and cyclosporine, during pregnancy was not 
associatedwith a significantly increased risk of birth defects[42, 60]. In fact, an analysis of 
the National Transplantation Pregnancy Registry showed that the incidence of birth 
defects among live births with cyclosporine exposure was 4.9% and with tacrolimus 
exposure was 4.2%, which are comparable to the 3%-5% incidence in the general 
population of the United States[61]. On the other hand, data support that exposure to 
mycophenolic acid in utero resulted in a 24% incidence of birth defects and in a 
significant increase of spontaneous abortions[62, 63]. Common immunosuppression 
medication regimens used after LT and their potential adverse maternal and fetal 
outcomes are shown in Table 2[64, 65]. In a recent meta-analysis[66], the most commonly 
used immunosuppressive agents after LT in pregnant womenwere tacrolimus (60%), 
sirolimus (27%), cyclosporine (20%), azathioprine (16%), and mycophenolate mofetil 
(3%). On meta-regression, the authors showed that sirolimus was less likely to lead to 
a live birth[66].

Mycophenolate mofetil is a commonly administered anti-proliferative agent that is 
used mostly as a second-line immunosuppressant in adults. There is a growing body 
of evidence suggesting that the use of mycophenolate mofetil in the first trimester can 
lead to spontaneous abortion (33%-45%) and congenital malformations (e.g., cleft lip 
and palate)[67]. Therefore, mycophenolate mofetil and sirolimus are currently 
contraindicated in pregnancy[5]. A study showed that patients on cyclosporine were 
more likely to develop renal dysfunction than patients on tacrolimus[42], while another 
study showed that premature delivery and cesarean section were more commonly 
reported in patients on tacrolimus than on cyclosporine[68]. Calcineurin inhibitors 
(cyclosporine and tacrolimus) are generally considered safe during pregnancy, but the 
data in LT recipients are scarce[69-71]. The decision on the immunosuppressive regimen 
for the pregnant LT recipient is challenging and should always be made in accordance 
to maternal allograft function and after a thorough risk-benefit analysis. Regardless of 
the choice of immunosuppression regimen, it is recommended that maternal and fetal 
care is prioritized by obtaining frequent serial medication levels to assure therapeutic 
levels and to assess hepatic function, while avoiding toxicity. The Food and Drug 
Administration has graded the commonly used immunosuppressive regimens as 
shown in Table 2[72]. Since there is a risk of pregnancy while an LT recipient is still on 
immunosuppressive therapy, it is very important for the patient to be well-informed 
about the detrimental effects of these medications on the fetus and the mother[73].
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Table 2 Potential adverse maternal and fetal outcomes of immunosuppressive medication in pregnant liver transplant recipients

Immunosuppressive medication Adverse outcome FDA pregnancy 
category

Calcineurin inhibitors, e.g. 
cyclosporine, tacrolimus

Maternal diabetes; Hypertension; Pre-eclampsia; Renal dysfunction; Fetal perinatal 
hyperkalemia

C

Azathioprine Fetal anemia, thrombocytopenia, leukopenia; Decreased fetal immunoglobulin levels; 
Neonatal infection and sepsis; Pre-term delivery; Low birth weight

D

Corticosteroids Gestational hypertension; Gestational diabetes; Fetal adrenal insufficiency; Fetal cleft lip 
and palate

B

Mycophenolate mofetil Increased first trimester pregnancy loss; Fetal cleft lip and palate; Microtia; Absence of 
auditory canals

D

FDA: Food and Drug Administration.

Outcomes of pregnancy after LT
According to the available evidence, LT recipients have not been reported to 
experience higher rates of maternal mortality compared to the non-transplant 
population[64]. Studies examining the outcomes of pregnancy post-LT reported that the 
rate of graft rejection during pregnancy varies between 0%-20%[47, 64]. Data have 
suggested the following to besignificant predictors of graft rejection during pregnancy: 
Age < 18 years at LT, Caucasian race, anddiagnosis of viral hepatitis[53]. Although there 
is no compelling evidence to date, studies suggest that a minimum of 1 year should 
pass after LT before considering pregnancy to allow for stabilization of graft function 
and immunosuppression requirements[67, 74].

In a review article by Parhar et al[64], pregnancy-induced hypertension was reported 
in 2%-43%, pre-eclampsia in2%-22%, and gestational diabetes mellitus in 0%-37.5%. In 
a more recent meta-analysis, the respective rates were 18.2%, 12.8%, and 7%, while 
eclampsia was observed in 2% of all post-LT pregnancies[66].

Generally, the rate of cesarean delivery is higher in LT recipients compared to the 
general non-transplant population (20%-100%), and a plausible explanation may be 
the higher rates of hypertension and pre-eclampsia during pregnancy[64]. Data from a 
meta-analysis showed that cesarean delivery and vaginal delivery are performed at 
similar rates in LT recipients (42.2% and 42.4%, respectively)[66]. Moreover, pre-term 
birth is seen in 27.8% of post-LT pregnancies[66] and ranges between 12.5%-50%[64].

The majority of pregnancies in LT recipients have a positive outcome, with a high 
rate of live births (fixed-effects meta-analysis: 77%, random-effects meta-analysis: 86%)
[66]. Evidence suggests that the indication for LT is generally not associated with 
adverse pregnancy outcomes, except for Wilson’s disease, which has been associated 
with lower live birth rates[66]. However, 7.8% of LT recipients experience miscarriage, 
5.7% abortion, 3.3% stillbirth, and 1.7% ectopic pregnancy[66]. Fetal distress is more 
often seen in LT recipients (10.3%-40%), while low birth weight (< 2500 g) is 
anotherfrequent complication (4.8%-57%) [64]. On the other hand, congenital 
abnormalities are relatively uncommon, and the rate is only slightly increased 
compared to that of the non-transplant population (0%-16.7%)[64].

As expected, designing a study evaluating the long-term outcomes of children born 
to LT recipients is challenging, and thus the data on long-term pediatric outcomes are 
scarce. Wu et al[43] followed six children until the age of 4 years, and reported that all of 
them had achieved all appropriate milestones and had normal physical and 
psychological development. Ville et al[75] followed children for longer varied periods (3 
mo to 5 years post-partum), andno abnormal physical development, adrenal or 
respiratory insufficiency, or lymphopeniawas reported.

The data from the National Transplantation Pregnancy Registry for about 2000 solid 
organ transplant recipients indicate favorable outcomes forLT recipients compared to 
other solid organ transplant recipients (Table 3)[76].

Breastfeeding
The benefits of breastfeeding are well-described, particularly regarding the 
immunologic components of colostrum and breast milk. However, certain factors 
should be considered in LT recipients, as immunosuppressive medication are present 
in breast milk[77]. The levels of such medication in breast milk arelower than those 
during pregnancy, and hence the risk is slightly decreased (i.e. only 0.1% of each 
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Table 3 National Transplantation Pregnancy Registry maternal and neonatal outcome data according to transplanted organ type[76]

Kidney, % Liver, % Kidney/Pancreas, % Heart, % Lung, %

Maternal complications

Hypertension 53-64 17-40 41-95 28-51 52

Preeclampsia 30-32 20-24 22-32 10-25 5

Diabetes 5-12 2-13 0-5 0-4 26

Rejection 1-2 2-11 0-14 3-21 16

Graft loss within 2 yr 6-9 2-8 10-17 0-4 14

Pregnancy outcomes

Spontaneous abortion 12-25 15-20 8-31 19-44 27

Live birth 71-77 72-82 64-79 48-70 58

Prematurity, < 37 wk 52-53 30-48 65-84 8-54 63

Mean gestational age in wk 35.3-35.9 36-37.3 33.7-34.8 36.1-37.8 33.9

Cesarean delivery 43-57 29-45 61-69 30-57 32

steroid dose reaches the breast milk)[78]. In fact, maternal use of prednisone during 
breast-feeding is allowed according to the American Academy of Pediatrics[79]. An 
analysis of the National Transplantation Pregnancy Registry showed that among 23 
breast-feeding mothers of 29 infants (22 exposed to tacrolimus, three exposed to 
cyclosporine, four exposed to cyclosporine USP) gestational age was 26-41 wk and 
birth weight was 680-4097 g, while no serious adverse events were reported[77]. 
Currently, breast-feeding is not contraindicated in LT recipients on tacrolimus or 
cyclosporine. Additionally, there is not sufficient evidence to suggest that breast-
feeding should be contraindicated in LT recipients on azathioprine[78, 79]. Nevertheless, 
it is advised that when the mother is on tacrolimus, cyclosporine, corticosteroids, or 
azathioprine, the infant’s serum levels be monitored after the initial 1-2 wk of breast-
feeding, as earlier may be due to in utero exposure or levels from colostrum, and if 
significantly high, breastfeeding should cease[77]. Lastly, caution is warranted for 
medication of uncertain safety profile, including betalacept, sirolimus, and 
everolimus[77].

CONCLUSION
In conclusion, an increasing number of LTs in the United States are being performed in 
women of childbearing age. Several indicationsnecessitatingLT as an intervention 
mayinclude pregnancy-specific (e.g., acute fatty liver of pregnancy and hemolysis, 
elevated liver enzymes, low platelet count syndrome)or pre-existing conditions (e.g., 
alcoholic or non-alcoholic liver disease). However, careful consideration is warranted 
in such cases as the maternal and fetal outcomes may be dismal. On the contrary, 
pregnancy outcomes in LT recipients are favorable, and newborns to pregnant LT 
recipients are relatively healthy. Discussions on pregnancy should be part of 
theregular pre-LT consultations in all females of childbearing potential. Current 
recommendations suggest an interval of at least 1-2 years after successful LT before 
considering pregnancy. All pregnant LT recipients should be managed by a 
multidisciplinaryteam, including both an obstetrician and a transplant hepatologist. 
As adverse fetal outcomes may occur more often than in the non-transplant 
population, early planning or delivery either through a planned induction of labor or 
cesarean sectionmightbecritical to minimize the risk of complications. Future studies 
examining long-term pregnancy-related outcomes of LT recipients and their children 
could advance the current state of knowledge.

REFERENCES
Starzl TE, Marchioro TL, Vonkaulla KN, Hermann G, Brittain RS, Waddell WR. Homotransplantation of 
the liver in humans. Surg Gynecol Obstet 1963; 117: 659-676 [PMID: 14100514]

1     

http://www.ncbi.nlm.nih.gov/pubmed/14100514


Ziogas IA et al. Obstetrical and gynecologic challenges in LT

WJT https://www.wjgnet.com 326 November 28, 2020 Volume 10 Issue 11

Russo FP, Ferrarese A, Zanetto A. Recent advances in understanding and managing liver transplantation. 
F1000Res 2016; 5 [PMID: 28105300 DOI: 10.12688/f1000research.8768.1]

2     

Black CK, Termanini KM, Aguirre O, Hawksworth JS, Sosin M. Solid organ transplantation in the 21st

 century. Ann Transl Med 2018; 6: 409 [PMID: 30498736 DOI: 10.21037/atm.2018.09.68]
3     

Szymusik I, Szpotanska-Sikorska M, Mazanowska N, Ciszek M, Wielgos M, Pietrzak B. Contraception in 
women after organ transplantation. Transplant Proc 2014; 46: 3268-3272 [PMID: 25498036 DOI: 
10.1016/j.transproceed.2014.09.104]

4     

Women in Hepatology Group. AISF position paper on liver transplantation and pregnancy: Women in 
Hepatology Group, Italian Association for the Study of the Liver (AISF). Dig Liver Dis 2016; 48: 860-868 
[PMID: 27267817 DOI: 10.1016/j.dld.2016.04.009]

5     

Parolin MB, Rabinovitch I, Urbanetz AA, Scheidemantel C, Cat ML, Coelho JC. Impact of successful liver 
transplantation on reproductive function and sexuality in women with advanced liver disease. Transplant 
Proc 2004; 36: 943-944 [PMID: 15194326 DOI: 10.1016/j.transproceed.2004.03.124]

6     

Heneghan MA, Selzner M, Yoshida EM, Mullhaupt B. Pregnancy and sexual function in liver 
transplantation. J Hepatol 2008; 49: 507-519 [PMID: 18715668 DOI: 10.1016/j.jhep.2008.07.011]

7     

Charni-Natan M, Aloni-Grinstein R, Osher E, Rotter V. Liver and Steroid Hormones-Can a Touch of p53 
Make a Difference? Front Endocrinol (Lausanne) 2019; 10: 374 [PMID: 31244779 DOI: 
10.3389/fendo.2019.00374]

8     

Van Thiel DH, Kumar S, Gavaler JS, Tarter RE. Effect of liver transplantation on the hypothalamic-
pituitary-gonadal axis of chronic alcoholic men with advanced liver disease. Alcohol ClinExp Res 1990; 14: 
478-481 [PMID: 2116098 DOI: 10.1111/j.1530-0277.1990.tb00507.x]

9     

Mass K, Quint EH, Punch MR, Merion RM. Gynecological and reproductive function after liver 
transplantation. Transplantation 1996; 62: 476-479 [PMID: 8781613 DOI: 
10.1097/00007890-199608270-00009]

10     

Sorrell JH, Brown JR. Sexual functioning in patients with end-stage liver disease before and after 
transplantation. Liver Transpl 2006; 12: 1473-1477 [PMID: 16741902 DOI: 10.1002/Lt.20812]

11     

Mishra N, Mishra VN, Thakur P. Study of Abnormal Liver Function Test during Pregnancy in a Tertiary 
Care Hospital in Chhattisgarh. J ObstetGynaecol India 2016; 66: 129-135 [PMID: 27651591 DOI: 
10.1007/s13224-015-0830-6]

12     

Pandey CK, Karna ST, Pandey VK, Tandon M. Acute liver failure in pregnancy: Challenges and 
management. Indian J Anaesth 2015; 59: 144-149 [PMID: 25838585 DOI: 10.4103/0019-5049.153035]

13     

Kimmich N, Dutkowski P, Krähenmann F, Müllhaupt B, Zimmermann R, Ochsenbein-Kölble N. Liver 
Transplantation during Pregnancy for Acute Liver Failure due to HBV Infection: A Case Report. Case Rep 
ObstetGynecol 2013; 2013: 356560 [PMID: 24383021 DOI: 10.1155/2013/356560]

14     

Morris CV, Goldstein RM, Cofer JB, Solomon H, Klintmalm GB. An unusual presentation of fulminant 
hepatic failure secondary to propylthiouracil therapy. ClinTranspl 1989; 311 [PMID: 2487587]

15     

Ockner SA, Brunt EM, Cohn SM, Krul ES, Hanto DW, Peters MG. Fulminant hepatic failure caused by 
acute fatty liver of pregnancy treated by orthotopic liver transplantation. Hepatology 1990; 11: 59-64 [PMID: 
2403963 DOI: 10.1002/hep.1840110112]

16     

Laifer SA, Abu-Elmagd K, Fung JJ. Hepatic transplantation during pregnancy and the puerperium. J Matern 
Fetal Med 1997; 6: 40-44 [PMID: 9029384 DOI: 
10.1002/(SICI)1520-6661(199701/02)6:1<40::AID-MFM8>3.0.CO;2-S]

17     

Lo CM, Gertsch P, Fan ST. Living unrelated liver transplantation between spouses for fulminant hepatic 
failure. Br J Surg 1995; 82: 1037 [PMID: 7648145 DOI: 10.1002/bjs.1800820811]

18     

Kato T, Nery JR, Morcos JJ, Gyamfi AR, Ruiz P, Molina EG, Tzakis AG. Successful living related liver 
transplantation in an adult with fulminant hepatic failure. Transplantation 1997; 64: 415-417 [PMID: 
9275105 DOI: 10.1097/00007890-199708150-00007]

19     

Moreno EG, García GI, Gómez SR, González-Pinto I, Loinaz SC, Ibáñez AJ, Pérez Cerdá F, Riaño D, 
Colina E, Cisneros C. Fulminant hepatic failure during pregnancy successfully treated by orthotopic liver 
transplantation. Transplantation 1991; 52: 923-926 [PMID: 1949180 DOI: 
10.1097/00007890-199111000-00036]

20     

Sequeira E, Wanyonyi S, Dodia R. Severe propylthiouracil-induced hepatotoxicity in pregnancy managed 
successfully by liver transplantation: A case report. J Med Case Rep 2011; 5: 461 [PMID: 21929775 DOI: 
10.1186/1752-1947-5-461]

21     

Jankovic Z, Stamenkovic D, Duncan B, Prasad R, Davies M. Successful outcome after a technically 
challenging liver transplant during pregnancy. Transplant Proc 2007; 39: 1704-1706 [PMID: 17580226 DOI: 
10.1016/j.transproceed.2007.02.090]

22     

Maddukuri VC, Stephenson CD, Eskind L, Ahrens WA, Purdum P, Russo MW. Liver transplantation for 
acute liver failure at 11-week gestation with successful maternal and fetal outcome. Case Rep Transplant 
2012; 2012: 484080 [PMID: 23227416 DOI: 10.1155/2012/484080]

23     

Simsek Y, Isik B, Karaer A, Celik O, Kutlu R, Aydin NE, Yilmaz S. Fulminant hepatitis A infection in 
second trimester of pregnancy requiring living-donor liver transplantation. J ObstetGynaecol Res 2012; 38: 
745-748 [PMID: 22379955 DOI: 10.1111/j.1447-0756.2011.01757.x]

24     

Thornton SL, Minns AB. Unintentional chronic acetaminophen poisoning during pregnancy resulting in 
liver transplantation. J Med Toxicol 2012; 8: 176-178 [PMID: 22415886 DOI: 10.1007/s13181-012-0218-2]

25     

Anders M, Quiñonez E, Goldaracena N, Osatnik J, Fernández JL, Viola L, Jeanes C, Illia R, Comignani P, 
McCormack L, Mastai R. [Liver transplantation during pregnancy in a patient with acute liver failure]. Acta 
Gastroenterol Latinoam 2010; 40: 268-270 [PMID: 21053487]

26     

Catnach SM, McCarthy M, Jauniaux E, Fitt S, Tan KC, Nicolaides K, Williams R. Liver transplantation 
during pregnancy complicated by cytomegalovirus infection. Transplantation 1995; 60: 510-511 [PMID: 
7676503 DOI: 10.1097/00007890-199509000-00019]

27     

Eguchi S, Yanaga K, Fujita F, Okudaira S, Furui J, Miyamoto M, Kanematsu T. Living-related right lobe 
liver transplantation for a patient with fulminant hepatic failure during the second trimester of pregnancy: 

28     

http://www.ncbi.nlm.nih.gov/pubmed/28105300
https://dx.doi.org/10.12688/f1000research.8768.1
http://www.ncbi.nlm.nih.gov/pubmed/30498736
https://dx.doi.org/10.21037/atm.2018.09.68
http://www.ncbi.nlm.nih.gov/pubmed/25498036
https://dx.doi.org/10.1016/j.transproceed.2014.09.104
http://www.ncbi.nlm.nih.gov/pubmed/27267817
https://dx.doi.org/10.1016/j.dld.2016.04.009
http://www.ncbi.nlm.nih.gov/pubmed/15194326
https://dx.doi.org/10.1016/j.transproceed.2004.03.124
http://www.ncbi.nlm.nih.gov/pubmed/18715668
https://dx.doi.org/10.1016/j.jhep.2008.07.011
http://www.ncbi.nlm.nih.gov/pubmed/31244779
https://dx.doi.org/10.3389/fendo.2019.00374
http://www.ncbi.nlm.nih.gov/pubmed/2116098
https://dx.doi.org/10.1111/j.1530-0277.1990.tb00507.x
http://www.ncbi.nlm.nih.gov/pubmed/8781613
https://dx.doi.org/10.1097/00007890-199608270-00009
http://www.ncbi.nlm.nih.gov/pubmed/16741902
https://dx.doi.org/10.1002/Lt.20812
http://www.ncbi.nlm.nih.gov/pubmed/27651591
https://dx.doi.org/10.1007/s13224-015-0830-6
http://www.ncbi.nlm.nih.gov/pubmed/25838585
https://dx.doi.org/10.4103/0019-5049.153035
http://www.ncbi.nlm.nih.gov/pubmed/24383021
https://dx.doi.org/10.1155/2013/356560
http://www.ncbi.nlm.nih.gov/pubmed/2487587
http://www.ncbi.nlm.nih.gov/pubmed/2403963
https://dx.doi.org/10.1002/hep.1840110112
http://www.ncbi.nlm.nih.gov/pubmed/9029384
https://dx.doi.org/10.1002/(SICI)1520-6661(199701/02)6:1<40::AID-MFM8>3.0.CO;2-S
http://www.ncbi.nlm.nih.gov/pubmed/7648145
https://dx.doi.org/10.1002/bjs.1800820811
http://www.ncbi.nlm.nih.gov/pubmed/9275105
https://dx.doi.org/10.1097/00007890-199708150-00007
http://www.ncbi.nlm.nih.gov/pubmed/1949180
https://dx.doi.org/10.1097/00007890-199111000-00036
http://www.ncbi.nlm.nih.gov/pubmed/21929775
https://dx.doi.org/10.1186/1752-1947-5-461
http://www.ncbi.nlm.nih.gov/pubmed/17580226
https://dx.doi.org/10.1016/j.transproceed.2007.02.090
http://www.ncbi.nlm.nih.gov/pubmed/23227416
https://dx.doi.org/10.1155/2012/484080
http://www.ncbi.nlm.nih.gov/pubmed/22379955
https://dx.doi.org/10.1111/j.1447-0756.2011.01757.x
http://www.ncbi.nlm.nih.gov/pubmed/22415886
https://dx.doi.org/10.1007/s13181-012-0218-2
http://www.ncbi.nlm.nih.gov/pubmed/21053487
http://www.ncbi.nlm.nih.gov/pubmed/7676503
https://dx.doi.org/10.1097/00007890-199509000-00019


Ziogas IA et al. Obstetrical and gynecologic challenges in LT

WJT https://www.wjgnet.com 327 November 28, 2020 Volume 10 Issue 11

report of a case. Transplantation 2002; 73: 1970-1971 [PMID: 12131701 DOI: 
10.1097/00007890-200206270-00025]
Fair J, Klein AS, Feng T, Merritt WT, Burdick JF. Intrapartum orthotopic liver transplantation with 
successful outcome of pregnancy. Transplantation 1990; 50: 534-535 [PMID: 2402806 DOI: 
10.1097/00007890-199009000-00041]

29     

Finlay DE, Foshager MC, Longley DG, Letourneau JG. Ischemic injury to the fetus after maternal liver 
transplantation. J Ultrasound Med 1994; 13: 145-148 [PMID: 7932960 DOI: 10.7863/jum.1994.13.2.145]

30     

Hamilton MI, Alcock R, Magos AL, Mallett S, Rolles K, Burroughs AK. Liver transplantation during 
pregnancy. Transplant Proc 1993; 25: 2967-2968 [PMID: 8212297]

31     

Jarufe N, Soza A, Pérez-Ayuso RM, Poblete JA, González R, Guajardo M, Hernandez V, Riquelme A, 
Arrese M, Martínez J. Successful liver transplantation and delivery in a woman with fulminant hepatic failure 
occurring during the second trimester of pregnancy. Liver Int 2006; 26: 494-497 [PMID: 16629654 DOI: 
10.1111/j.1478-3231.2006.01246.x]

32     

Laifer SA, Darby MJ, Scantlebury VP, Harger JH, Caritis SN. Pregnancy and liver transplantation. 
ObstetGynecol 1990; 76: 1083-1088 [PMID: 2234717]

33     

Walcott WO, Derick DE, Jolley JJ, Snyder DL. Successful pregnancy in a liver transplant patient. Am J 
ObstetGynecol 1978; 132: 340-341 [PMID: 360844 DOI: 10.1016/0002-9378(78)90906-7]

34     

Haagsma EB, Visser GH, Klompmaker IJ, Verwer R, Slooff MJ. Successful pregnancy after orthotopic liver 
transplantation. ObstetGynecol 1989; 74: 442-443 [PMID: 2668820]

35     

Christopher V, Al-Chalabi T, Richardson PD, Muiesan P, Rela M, Heaton ND, O'Grady JG, Heneghan MA. 
Pregnancy outcome after liver transplantation: a single-center experience of 71 pregnancies in 45 recipients. 
Liver Transpl 2006; 12: 1138-1143 [PMID: 16799943 DOI: 10.1002/Lt.20810]

36     

Sibanda N, Briggs JD, Davison JM, Johnson RJ, Rudge CJ. Pregnancy after organ transplantation: a report 
from the UK Transplant pregnancy registry. Transplantation 2007; 83: 1301-1307 [PMID: 17519778 DOI: 
10.1097/01.tp.0000263357.44975.d0]

37     

Kubo S, Uemoto S, Furukawa H, Umeshita K, Tachibana D; Japanese Liver Transplantation Society. 
Pregnancy outcomes after living donor liver transplantation: results from a Japanese survey. Liver Transpl 
2014; 20: 576-583 [PMID: 24478123 DOI: 10.1002/lt.23837]

38     

Rupley DM, Janda AM, Kapeles SR, Wilson TM, Berman D, Mathur AK. Preconception counseling, 
fertility, and pregnancy complications after abdominal organ transplantation: a survey and cohort study of 
532 recipients. Clin Transplant 2014; 28: 937-945 [PMID: 24939245 DOI: 10.1111/ctr.12393]

39     

Patapis P, Irani S, Mirza DF, Gunson BK, Lupo L, Mayer AD, Buckels JA, Pirenne J, McMaster P. 
Outcome of graft function and pregnancy following liver transplantation. Transplant Proc 1997; 29: 1565-
1566 [PMID: 9123426 DOI: 10.1016/s0041-1345(96)00676-8]

40     

Jain A, Venkataramanan R, Fung JJ, Gartner JC, Lever J, Balan V, Warty V, Starzl TE. Pregnancy after liver 
transplantation under tacrolimus. Transplantation 1997; 64: 559-565 [PMID: 9293865 DOI: 
10.1097/00007890-199708270-00002]

41     

Nagy S, Bush MC, Berkowitz R, Fishbein TM, Gomez-Lobo V. Pregnancy outcome in liver transplant 
recipients. ObstetGynecol 2003; 102: 121-128 [PMID: 12850617 DOI: 10.1016/s0029-7844(03)00369-7]

42     

Wu A, Nashan B, Messner U, Schmidt HH, Guenther HH, Niesert S, Pichmayr R. Outcome of 22 successful 
pregnancies after liver transplantation. Clin Transplant 1998; 12: 454-464 [PMID: 9787957]

43     

Scantlebury V, Gordon R, Tzakis A, Koneru B, Bowman J, Mazzaferro V, Stevenson WC, Todo S, Iwatsuki 
S, Starzl TE. Childbearing after liver transplantation. Transplantation 1990; 49: 317-321 [PMID: 2305462 
DOI: 10.1097/00007890-199002000-00018]

44     

Armenti VT, Ahlswede KM, Ahlswede BA, Jarrell BE, Moritz MJ, Burke JF. National transplantation 
Pregnancy Registry--outcomes of 154 pregnancies in cyclosporine-treated female kidney transplant 
recipients. Transplantation 1994; 57: 502-506 [PMID: 8116032 DOI: 10.1097/00007890-199402000-00004]

45     

Radomski JS, Moritz MJ, Muñoz SJ, Cater JR, Jarrell BE, Armenti VT. National Transplantation Pregnancy 
Registry: analysis of pregnancy outcomes in female liver transplant recipients. Liver TransplSurg 1995; 1: 
281-284 [PMID: 9346583 DOI: 10.1002/Lt.500010502]

46     

Armenti VT, Radomski JS, Moritz MJ, Gaughan WJ, Hecker WP, Lavelanet A, McGrory CH, Coscia LA. 
Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after 
transplantation. ClinTranspl 2004; 103-114 [PMID: 16704142]

47     

Cundy TF, O'Grady JG, Williams R. Recovery of menstruation and pregnancy after liver transplantation. 
Gut 1990; 31: 337-338 [PMID: 2323601 DOI: 10.1136/gut.31.3.337]

48     

Jacobs AK, Anderson JL, Halperin JL. The evolution and future of ACC/AHA clinical practice guidelines: a 
30-year journey: a report of the American College of Cardiology/American Heart Association Task Force on 
Practice Guidelines. J Am Coll Cardiol 2014; 64: 1373-1384 [PMID: 25103073 DOI: 
10.1016/j.jacc.2014.06.001]

49     

Jabiry-Zieniewicz Z, Cyganek A, Luterek K, Bobrowska K, Kamiński P, Ziółkowski J, Zieniewicz K, 
Krawczyk M. Pregnancy and delivery after liver transplantation. Transplant Proc 2005; 37: 1197-1200 
[PMID: 15848667 DOI: 10.1016/j.transproceed.2005.01.011]

50     

Burra P, De Bona M. Quality of life following organ transplantation. TransplInt 2007; 20: 397-409 [PMID: 
17403143 DOI: 10.1111/j.1432-2277.2006.00440.x]

51     

McKay DB, Josephson MA, Armenti VT, August P, Coscia LA, Davis CL, Davison JM, Easterling T, 
Friedman JE, Hou S, Karlix J, Lake KD, Lindheimer M, Matas AJ, Moritz MJ, Riely CA, Ross LF, Scott JR, 
Wagoner LE, Wrenshall L, Adams PL, Bumgardner GL, Fine RN, Goral S, Krams SM, Martinez OM, 
Tolkoff-Rubin N, Pavlakis M, Scantlebury V; Women's Health Committee of the American Society of 
Transplantation. Reproduction and transplantation: report on the AST Consensus Conference on 
Reproductive Issues and Transplantation. Am J Transplant 2005; 5: 1592-1599 [PMID: 15943616 DOI: 
10.1111/j.1600-6143.2005.00969.x]

52     

Coscia LA, Constantinescu S, Moritz MJ, Frank A, Ramirez CB, Maley WL, Doria C, McGrory CH, 
Armenti VT. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy 

53     

http://www.ncbi.nlm.nih.gov/pubmed/12131701
https://dx.doi.org/10.1097/00007890-200206270-00025
http://www.ncbi.nlm.nih.gov/pubmed/2402806
https://dx.doi.org/10.1097/00007890-199009000-00041
http://www.ncbi.nlm.nih.gov/pubmed/7932960
https://dx.doi.org/10.7863/jum.1994.13.2.145
http://www.ncbi.nlm.nih.gov/pubmed/8212297
http://www.ncbi.nlm.nih.gov/pubmed/16629654
https://dx.doi.org/10.1111/j.1478-3231.2006.01246.x
http://www.ncbi.nlm.nih.gov/pubmed/2234717
http://www.ncbi.nlm.nih.gov/pubmed/360844
https://dx.doi.org/10.1016/0002-9378(78)90906-7
http://www.ncbi.nlm.nih.gov/pubmed/2668820
http://www.ncbi.nlm.nih.gov/pubmed/16799943
https://dx.doi.org/10.1002/Lt.20810
http://www.ncbi.nlm.nih.gov/pubmed/17519778
https://dx.doi.org/10.1097/01.tp.0000263357.44975.d0
http://www.ncbi.nlm.nih.gov/pubmed/24478123
https://dx.doi.org/10.1002/lt.23837
http://www.ncbi.nlm.nih.gov/pubmed/24939245
https://dx.doi.org/10.1111/ctr.12393
http://www.ncbi.nlm.nih.gov/pubmed/9123426
https://dx.doi.org/10.1016/s0041-1345(96)00676-8
http://www.ncbi.nlm.nih.gov/pubmed/9293865
https://dx.doi.org/10.1097/00007890-199708270-00002
http://www.ncbi.nlm.nih.gov/pubmed/12850617
https://dx.doi.org/10.1016/s0029-7844(03)00369-7
http://www.ncbi.nlm.nih.gov/pubmed/9787957
http://www.ncbi.nlm.nih.gov/pubmed/2305462
https://dx.doi.org/10.1097/00007890-199002000-00018
http://www.ncbi.nlm.nih.gov/pubmed/8116032
https://dx.doi.org/10.1097/00007890-199402000-00004
http://www.ncbi.nlm.nih.gov/pubmed/9346583
https://dx.doi.org/10.1002/Lt.500010502
http://www.ncbi.nlm.nih.gov/pubmed/16704142
http://www.ncbi.nlm.nih.gov/pubmed/2323601
https://dx.doi.org/10.1136/gut.31.3.337
http://www.ncbi.nlm.nih.gov/pubmed/25103073
https://dx.doi.org/10.1016/j.jacc.2014.06.001
http://www.ncbi.nlm.nih.gov/pubmed/15848667
https://dx.doi.org/10.1016/j.transproceed.2005.01.011
http://www.ncbi.nlm.nih.gov/pubmed/17403143
https://dx.doi.org/10.1111/j.1432-2277.2006.00440.x
http://www.ncbi.nlm.nih.gov/pubmed/15943616
https://dx.doi.org/10.1111/j.1600-6143.2005.00969.x


Ziogas IA et al. Obstetrical and gynecologic challenges in LT

WJT https://www.wjgnet.com 328 November 28, 2020 Volume 10 Issue 11

after transplantation. ClinTranspl 2009; 103-122 [PMID: 20524279]
Jabiry-Zieniewicz Z, Bobrowska K, Kaminski P, Wielgos M, Zieniewicz K, Krawczyk M. Low-dose 
hormonal contraception after liver transplantation. Transplant Proc 2007; 39: 1530-1532 [PMID: 17580181 
DOI: 10.1016/j.transproceed.2007.02.063]

54     

Paulen ME, Folger SG, Curtis KM, Jamieson DJ. Contraceptive use among solid organ transplant patients: a 
systematic review. Contraception 2010; 82: 102-112 [PMID: 20682148 DOI: 
10.1016/j.contraception.2010.02.007]

55     

Szpotanska-Sikorska M, Pietrzak B, Wielgos M. Contraceptive awareness and birth control selection in 
female kidney and liver transplant recipients. Contraception 2014; 90: 435-439 [PMID: 24909634 DOI: 
10.1016/j.contraception.2014.04.014]

56     

Zieman M, Guillebaud J, Weisberg E, Shangold GA, Fisher AC, Creasy GW. Contraceptive efficacy and 
cycle control with the Ortho Evra/Evra transdermal system: the analysis of pooled data. FertilSteril 2002; 77: 
S13-S18 [PMID: 11849631 DOI: 10.1016/s0015-0282(01)03275-7]

57     

Gomez-Lobo V, Burgansky A, Kim-Schluger L, Berkowitz R. Gynecologic symptoms and sexual function 
before and after liver transplantation. J Reprod Med 2006; 51: 457-462 [PMID: 16846082]

58     

Bravata DM, Olkin I, Barnato AE, Keeffe EB, Owens DK. Health-related quality of life after liver 
transplantation: a meta-analysis. Liver TransplSurg 1999; 5: 318-331 [PMID: 10388505 DOI: 
10.1002/lt.500050404]

59     

Jabiry-Zieniewicz Z, Szpotanska-Sikorska M, Pietrzak B, Kociszewska-Najman B, Foroncewicz B, Mucha 
K, Zieniewicz K, Krawczyk M, Wielgos M. Pregnancy outcomes among female recipients after liver 
transplantation: further experience. Transplant Proc 2011; 43: 3043-3047 [PMID: 21996220 DOI: 
10.1016/j.transproceed.2011.08.070]

60     

Deshpande NA, Coscia LA, Gomez-Lobo V, Moritz MJ, Armenti VT. Pregnancy after solid organ 
transplantation: a guide for obstetric management. Rev ObstetGynecol 2013; 6: 116-125 [PMID: 24826201]

61     

Sifontis NM, Coscia LA, Constantinescu S, Lavelanet AF, Moritz MJ, Armenti VT. Pregnancy outcomes in 
solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplantation 2006; 
82: 1698-1702 [PMID: 17198262 DOI: 10.1097/01.tp.0000252683.74584.29]

62     

Kim M, Rostas S, Gabardi S. Mycophenolate fetal toxicity and risk evaluation and mitigation strategies. Am 
J Transplant 2013; 13: 1383-1389 [PMID: 23617812 DOI: 10.1111/ajt.12238]

63     

Parhar KS, Gibson PS, Coffin CS. Pregnancy following liver transplantation: review of outcomes and 
recommendations for management. Can J Gastroenterol 2012; 26: 621-626 [PMID: 22993734 DOI: 
10.1155/2012/137129]

64     

Saarikoski S, Seppälä M. Immunosuppression during pregnancy: transmission of azathioprine and its 
metabolites from the mother to the fetus. Am J ObstetGynecol 1973; 115: 1100-1106 [PMID: 4348000 DOI: 
10.1016/0002-9378(73)90559-0]

65     

Marson EJ, Kamarajah SK, Dyson JK, White SA. Pregnancy outcomes in women with liver transplants: 
systematic review and meta-analysis. HPB (Oxford) 2020; 22: 1102-1111 [PMID: 32636057 DOI: 
10.1016/j.hpb.2020.05.001]

66     

Armenti VT, Radomski JS, Moritz MJ, Gaughan WJ, Gulati R, McGrory CH, Coscia LA. Report from the 
National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. 
ClinTranspl 2005; 69-83 [PMID: 17424726]

67     

Kamarajah SK, Arntdz K, Bundred J, Gunson B, Haydon G, Thompson F. Outcomes of Pregnancy in 
Recipients of Liver Transplants. Clin Gastroenterol Hepatol 2019; 17: 1398-1404. e1 [PMID: 30529735 
DOI: 10.1016/j.cgh.2018.11.055]

68     

Westbrook RH, Yeoman AD, Agarwal K, Aluvihare V, O'Grady J, Heaton N, Penna L, Heneghan MA. 
Outcomes of pregnancy following liver transplantation: The King's College Hospital experience. Liver 
Transpl 2015; 21: 1153-1159 [PMID: 26013178 DOI: 10.1002/lt.24182]

69     

Jain AB, Reyes J, Marcos A, Mazariegos G, Eghtesad B, Fontes PA, Cacciarelli TV, Marsh JW, de Vera 
ME, Rafail A, Starzl TE, Fung JJ. Pregnancy after liver transplantation with tacrolimus immunosuppression: 
a single center's experience update at 13 years. Transplantation 2003; 76: 827-832 [PMID: 14501862 DOI: 
10.1097/01.TP.0000084823.89528.89]

70     

Kainz A, Harabacz I, Cowlrick IS, Gadgil SD, Hagiwara D. Review of the course and outcome of 100 
pregnancies in 84 women treated with tacrolimus. Transplantation 2000; 70: 1718-1721 [PMID: 11152103 
DOI: 10.1097/00007890-200012270-00010]

71     

Kim SC, Hernandez-Diaz S. Editorial: Safety of immunosuppressive drugs in pregnant women with systemic 
inflammatory diseases. Arthritis Rheumatol 2014; 66: 246-249 [PMID: 24504795 DOI: 10.1002/art.38258]

72     

Casele HL, Laifer SA. Association of pregnancy complications and choice of immunosuppressant in liver 
transplant patients. Transplantation 1998; 65: 581-583 [PMID: 9500638 DOI: 
10.1097/00007890-199802270-00023]

73     

Josephson MA, McKay DB. Considerations in the medical management of pregnancy in transplant 
recipients. Adv Chronic Kidney Dis 2007; 14: 156-167 [PMID: 17395118 DOI: 10.1053/j.ackd.2007.01.006]

74     

Ville Y, Fernandez H, Samuel D, Bismuth H, Frydman R. Pregnancy in liver transplant recipients: course 
and outcome in 19 cases. Am J ObstetGynecol 1993; 168: 896-902 [PMID: 8384405 DOI: 
10.1016/s0002-9378(12)90841-8]

75     

Coscia LA, Constantinescu S, Moritz MJ, Frank AM, Ramirez CB, Maley WR, Doria C, McGrory CH, 
Armenti VT. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy 
after transplantation. ClinTranspl 2010; 65-85 [PMID: 21698831]

76     

Thiagarajan KM, Arakali SR, Mealey KJ, Cardonick EH, Gaughan WJ, Davison JM, Moritz MJ, Armenti 
VT. Safety considerations: breastfeeding after transplant. Prog Transplant 2013; 23: 137-146 [PMID: 
23782661 DOI: 10.7182/pit2013803]

77     

Jabiry-Zieniewicz Z, Dabrowski FA, Pietrzak B, Wyzgal J, Bomba-Opoń D, Zieniewicz K, Wielgos M. 
Pregnancy in the liver transplant recipient. Liver Transpl 2016; 22: 1408-1417 [PMID: 27197796 DOI: 
10.1002/lt.24483]

78     

Hammoud GM, Almashhrawi AA, Ahmed KT, Rahman R, Ibdah JA. Liver diseases in pregnancy: liver 79     

http://www.ncbi.nlm.nih.gov/pubmed/20524279
http://www.ncbi.nlm.nih.gov/pubmed/17580181
https://dx.doi.org/10.1016/j.transproceed.2007.02.063
http://www.ncbi.nlm.nih.gov/pubmed/20682148
https://dx.doi.org/10.1016/j.contraception.2010.02.007
http://www.ncbi.nlm.nih.gov/pubmed/24909634
https://dx.doi.org/10.1016/j.contraception.2014.04.014
http://www.ncbi.nlm.nih.gov/pubmed/11849631
https://dx.doi.org/10.1016/s0015-0282(01)03275-7
http://www.ncbi.nlm.nih.gov/pubmed/16846082
http://www.ncbi.nlm.nih.gov/pubmed/10388505
https://dx.doi.org/10.1002/lt.500050404
http://www.ncbi.nlm.nih.gov/pubmed/21996220
https://dx.doi.org/10.1016/j.transproceed.2011.08.070
http://www.ncbi.nlm.nih.gov/pubmed/24826201
http://www.ncbi.nlm.nih.gov/pubmed/17198262
https://dx.doi.org/10.1097/01.tp.0000252683.74584.29
http://www.ncbi.nlm.nih.gov/pubmed/23617812
https://dx.doi.org/10.1111/ajt.12238
http://www.ncbi.nlm.nih.gov/pubmed/22993734
https://dx.doi.org/10.1155/2012/137129
http://www.ncbi.nlm.nih.gov/pubmed/4348000
https://dx.doi.org/10.1016/0002-9378(73)90559-0
http://www.ncbi.nlm.nih.gov/pubmed/32636057
https://dx.doi.org/10.1016/j.hpb.2020.05.001
http://www.ncbi.nlm.nih.gov/pubmed/17424726
http://www.ncbi.nlm.nih.gov/pubmed/30529735
https://dx.doi.org/10.1016/j.cgh.2018.11.055
http://www.ncbi.nlm.nih.gov/pubmed/26013178
https://dx.doi.org/10.1002/lt.24182
http://www.ncbi.nlm.nih.gov/pubmed/14501862
https://dx.doi.org/10.1097/01.TP.0000084823.89528.89
http://www.ncbi.nlm.nih.gov/pubmed/11152103
https://dx.doi.org/10.1097/00007890-200012270-00010
http://www.ncbi.nlm.nih.gov/pubmed/24504795
https://dx.doi.org/10.1002/art.38258
http://www.ncbi.nlm.nih.gov/pubmed/9500638
https://dx.doi.org/10.1097/00007890-199802270-00023
http://www.ncbi.nlm.nih.gov/pubmed/17395118
https://dx.doi.org/10.1053/j.ackd.2007.01.006
http://www.ncbi.nlm.nih.gov/pubmed/8384405
https://dx.doi.org/10.1016/s0002-9378(12)90841-8
http://www.ncbi.nlm.nih.gov/pubmed/21698831
http://www.ncbi.nlm.nih.gov/pubmed/23782661
https://dx.doi.org/10.7182/pit2013803
http://www.ncbi.nlm.nih.gov/pubmed/27197796
https://dx.doi.org/10.1002/lt.24483


Ziogas IA et al. Obstetrical and gynecologic challenges in LT

WJT https://www.wjgnet.com 329 November 28, 2020 Volume 10 Issue 11

transplantation in pregnancy. World J Gastroenterol 2013; 19: 7647-7651 [PMID: 24282354 DOI: 
10.3748/wjg.v19.i43.7647]

http://www.ncbi.nlm.nih.gov/pubmed/24282354
https://dx.doi.org/10.3748/wjg.v19.i43.7647


WJT https://www.wjgnet.com 330 November 28, 2020 Volume 10 Issue 11

World Journal of 

TransplantationW J T
Submit a Manuscript: https://www.f6publishing.com World J Transplant 2020 November 28; 10(11): 330-344

DOI: 10.5500/wjt.v10.i11.330 ISSN 2220-3230 (online)

MINIREVIEWS

Extracellular vesicles as mediators of alloimmunity and their 
therapeutic potential in liver transplantation

Sotiris Mastoridis, Marc Martinez-Llordella, Alberto Sanchez-Fueyo

ORCID number: Sotiris Mastoridis 
0000-0001-7689-2330; Marc 
Martinez-Llordella 0000-0003-1939-
4102; Alberto Sanchez‐Fueyo 0000-
0002-8316-3504.

Author contributions: Mastoridis S 
wrote the manuscript with support 
and consultation from Martinez-
Llordella M and Sanchez-Fueyo A; 
all authors approve the final 
manuscript.

Conflict-of-interest statement: 
There are no conflicts of interest to 
be reported.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Transplantation

Sotiris Mastoridis, Department ofSurgery, Oxford University Hospitals, Oxford OX37LE, 
United Kingdom

Marc Martinez-Llordella, Institute of Liver Studies, King's College Hospital, Medical Research 
Council (MRC) Centre for Transplantation, London SE59NU, United Kingdom

Alberto Sanchez-Fueyo, Department of Liver Sciences, King's College Hospital, Medical 
Research Council (MRC) Centre for Transplantation, London SE59NU, United Kingdom

Corresponding author: Sotiris Mastoridis, MBBS, PhD, Doctor, Department of Surgery, Oxford 
University Hospitals, Churchill Hospital, Old Road, Oxford, Oxford OX37LE, United 
Kingdom. sotiris.mastoridis@googlemail.com

Abstract
Extracellular vesicles (EVs) are a heterogenous group of nanosized, membrane-
bound particles which are released by most cell types. They are known to play an 
essential role in cellular communication by way of their varied cargo which 
includes selectively enriched proteins, lipids, and nucleic acids. In the last two 
decades, wide-ranging evidence has established the involvement of EVs in the 
regulation of immunity, with EVs released by immune and non-immune cells 
shown to be capable of mediating immune stimulation or suppression and to 
drive inflammatory, autoimmune, and infectious disease pathology. More 
recently, studies have demonstrated the involvement of allograft-derived EVs in 
alloimmune responses following transplantation, with EVs shown to be capable of 
eliciting allograft rejection as well as promoting tolerance. These insights are 
necessitating the reassessment of standard paradigms of T cell alloimmunity. In 
this article, we explore the latest understanding of the impact of EVs on 
alloresponses following transplantation and we highlight the recent technological 
advances which have enabled the study of EVs in clinical transplantation. 
Furthermore, we discuss the rapid progress afoot in the development of EVs as 
novel therapeutic vehicles in clinical transplantation with particular focus on liver 
transplantation.
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Core Tip: Extracellular vesicles (EVs) are key contributors to T cell alloimmunity 
through the transfer of major histocompatibility alloantigens to host antigen presenting 
cells (APCs) thereby initiating alloresponses and acute rejection. Strong circumstantial 
evidence suggests that under certain conditions EV-mediated cross-dressing of 
recipient APCs can also tolerance responses and allay allograft rejection–for instance 
in the context of liver transplantation. We anticipate improved mechanistic 
understanding of these processes will facilitate design of novel EV therapies in 
transplantation. A number of clinical trials assessing the safety and efficacy of EVs are 
underway. The substantial developments in engineered Good Manufacture Practices-
grade EVs hold promise for novel EV-therapeutics in transplantation and beyond.
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INTRODUCTION
The adaptive immune response to an allograft is initiated upon activation of T 
lymphocytes recognising donor major histocompatibility (MHC) antigens principally 
via two distinct mechanisms which can occur concurrently but differ in the origin of 
antigen presenting cell (APC) and in their contribution to the alloresponse over time 
(Figure 1). The first of these, direct allorecognition, occurs without the need for antigen 
processing by APCs, and involves the interaction of recipient T cells with intact 
allogeneic MHC-peptide complexes (pMHC) displayed on the surface of transplanted 
cells. It has been widely accepted, until recently, that ‘passenger leukocytes’, dendritic 
cells (DCs) in particular, transported within transplanted tissues and trafficking to 
recipient secondary lymphoid organs (SLOs) are primarily responsible for triggering 
the recipient immune response via the direct pathway[1]. The second, indirect 
allorecognition, occurs upon recipient T cell recognition of processed donor peptides 
presented by recipient antigen presenting cells. Given that thymic selection of T cells is 
not directed either in favour or against any given non-self MHC, the frequency of T 
cells recognising intact allogeneic MHC can be as high as 10% of the total population 
and so the direct pathway is considered the driving force behind acute allograft 
rejection[2,3]. In contrast, the frequency of T cells exhibiting alloreactivity to any given 
allopeptide which is processed and subsequently presented by APCs is low (< 
1/100000) and so, though this indirect pathway is less likely to be pivotal in acute 
rejection, there is circumstantial evidence of its role in governing alloantibody 
production and chronic rejection[4].

Recent studies have called into question the centrality of passenger leukocytes in the 
generation of the direct alloresponse following transplantation. Mounting data from 
both vascularised and non-vascularised animal models demonstrate that in the early 
post-transplant period few if any such cells are found in SLOs[5,6]. Rather, within hours 
of transplantation, a far greater number of recipient APCs carry intact allogeneic MHC 
on their surface capable of being presented directly, without further antigen 
processing, to cognate T cells. As we will show, recent work demonstrates that the 
presence of donor MHC on host-APCs is in large part attributable to extracellular 
vesicles (EVs) released by the allograft. Here, we review current understanding of the 
role of EVs in the transfer of donor MHC following transplantation, and we assess the 
impact on graft rejection and tolerance. Drawing on this, we go on to consider the 
potential of EVs as therapeutic vehicles in transplantation with reference to the 
significant progress afoot in this area of novel biotherapeutics.

EV-mediated MHC transfer and its impact on alloresponses
Most cells, including graft parenchymal, endothelial, and immune cells, release 
nanosized particles delimited by a lipid bilayer membrane which have come to be 
known collectively as EVs. Owing to their small size, durability, and capacity to 
transport a variety of biomolecules, EVs function as important mediators of 
intercellular communication, across a spectrum of tissues and biofluids. EV subtypes, 
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Figure 1 Extracellular vesicle biogenesis and composition. Exosomes are generated by inward budding of endosomal membrane which result in the 
formation of intra-luminal vesicles (ILVs) within multivesicular bodies (MVB). ILVs are released from MVBs as exosomes upon MVB fusion with the plasma 
membrane. Exosomes are smaller and more uniform in size in comparison to microvesicles, which form by directly pinching-off from the plasma membrane. The 
molecular composition of extracellular vesicles, which includes nucleic acids, proteins, and lipids, is dependent on their particular mode of biogenesis in addition to 
their parental cell of origin and its activation state. MHC: Major histocompatibility; PDL1: Programmed Death-Ligand 1; TGF: Transforming growth factor; CTLA4: 
Cytotoxic lymphocyte antigen 4; MVB: Multivesicular bodies; IL: Interleukin.

have been categorised variably according to their particular mode of biogenesis, size, 
morphological characteristics, and/or cell of origin. With the expansion of tools and 
assays for their isolation, characterisation, and functional assessment, their 
classification and nomenclature continues to evolve[7-9]. Exosomes are the smallest of 
described EV subtype, with a diameter of 30-150 nm, and are formed within the 
lumens of multivesicular bodies (MVBs). The mechanisms responsible for their 
formation are now well understood and involve the Endosomal Sorting Complex 
Required for Transport (ESCRT), as well as ESCRT-independent mechanisms such as 
the tetraspanin family of proteins. The precise complement of these and other proteins 
likely affects the final composition of released exosomes (Figure 1). Microvesicles are 
larger, between 100-1000 nm in diameter, and form by pinching off directly from the 
plasma membrane. This outward budding is heavily dependent on the molecular 
composition of the plasma membrane. Apoptotic bodies, which tend to be larger still 
(up to 2000 nm in diameter), are also formed directly from the plasma membrane, 
however this occurs specifically at the time of apoptosis of the parental cell. 
Differences in their mode of biogenesis govern to a certain extent the size, cargo 
repertoire, and morphological features of EV subtypes. The repertoire of cargo of 
microvesicles is thought to reflect the parental cell of origin more closely than 
exosomes which undergo more selective enrichment. Though exosome and 
microvesicle biogenesis occurs at distinct sites within the cell and by different modes, 
in broad terms there is substantial overlap in the sorting machineries involved as well 
as in basic morphologic features such as their size and buoyant density. This can make 
isolation and distinction between them technically challenging[10-13]. In recent years, 
‘omics’ analyses have revealed the diversity of the molecular composition of different 
EV subsets, of EVs released by different cells, and indeed of EVs release by single cells 
exposed to different environmental stimuli. Thus, the extensive repertoire of EV 
proteins, nucleic acids, and lipids is as much a reflection of the parental cell and its 
particular activation state as it is of the particular mode of EV biogenesis[14].
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The exchange of molecules such as antigens and surface immunoglobulins between 
immune cells was first observed over four decades ago and, following this, the transfer 
of MHC complexes between leukocytes was described in 1974[15]. In the early 2000s, the 
acquisition of intact donor-derived allogeneic MHC by recipient APCs, DCs in 
particular, was described in the context of transplantation[16,17]. These ‘cross-dressed’ 
APCs, i.e. those host APCs noted to have acquired allogeneic MHC, were 
demonstrated to have the capacity to activate alloreactive T cells in vitro as well as in 
vivo, in what represented a novel, third pathway for alloantigen presentation which 
came to be known as the semi-direct pathway (Figure 2). Cross-dressing was at first 
understood to be dependent on cell-cell contact, occurring by a process of cell nibbling 
or trogocytosis. In pivotal work from groups including that of Raposo, it was however 
noted that among their surface protein cargo, EVs also carry intact MHC class I and 
class II as well as pMHC[18]. Though it was later established that this conferred to EVs 
the capacity to activate T cells directly, two seminal studies from 2016 also 
demonstrated EVs to be responsible for the transfer of intact allogeneic pMHC from 
the allograft to recipient APCs, and laid bare the biological relevance of this mode of 
cross-dressing in the generation of alloresponses[5,6].

In first of these studies, Benichou and colleagues revisited the passenger leukocyte 
hypothesis in skin-grafted mice. Using highly sensitive cytometric, microscopic, and 
genotypic approaches, they confirmed the absence of donor leukocytes in recipient 
SLOs[6]. Considering that it typically takes 5 d or more for the neolymphangiogenesis 
required for passenger leukocyte trafficking to occur, the authors argue that it would 
be counterintuitive to expect this to be the mechanism responsible for the triggering of 
T cell alloresponses–often detectable within 48 h of transplantation. Rather than 
finding donor MHC present on passenger leukocytes, what the group observed upon 
examining recipient SLOs were large numbers of host APCs cross-dressed with donor 
MHC molecules. Using advanced imaging flow cytometry, a technique which permits 
the microscopic visualisation of fluorescently labelled flow-sorted single cells 
(Figure 3), the group were also able to determine that trafficking EVs were the likely 
source of graft-derived donor MHC. In the second of these reports from the same year, 
using a murine model of cardiac transplantation, Morelli and colleagues corroborated 
the paucity of passenger leukocytes in the period after transplantation, but also went a 
step further in affirming the ultra-structural mechanism of MHC transfer through their 
use of immuno-electron microscopy. This clearly demonstrated the way in which 
recipient APCs acquire donor MHC by capturing clusters of EVs bearing the 
characteristic marker CD63[5].

Having confirmed the route of allo-pMHC transfer to recipient SLOs, the 
researchers went on to demonstrate the centrality of cross-dressed APCs in initiating 
the alloresponses leading to acute allograft rejection. Flow-sorted conventional DCs 
cross-dressed by donor EVs were isolated and shown to be capable of the semi-direct 
priming of alloreactive CD8 T cells, as well as the indirect activation of naïve CD4 T 
cells in vitro (mixed lymphocyte reactions) and in vivo in mice[5]. These observations are 
in keeping with the ‘three-cell’ model proposed by Lechler and colleagues in 2004[16]. 
Adaptive CD8 T cell immunity is the principle arm of the cellular alloimmune 
response, but its development requires help. This can be provided by CD4 T cells that 
recognise alloantigen indirectly. According to the three-cell model, cross-dressed APC 
can indirectly prime an allospecific CD4 T cell which in turn can provide help for the 
semi-direct activation of CD8 T cells by the same APC (Figure 4A)[1,16]. Corroboration 
of the salience of crossed-dressed APCs as the main initiators of direct T cell 
allorecognition was provided when in vivo depletion of recipient DCs was shown to 
dramatically reduce alloreactive T cell priming and to delay acute rejection in murine 
heart transplantation[5,19]. Similarly, in skin-grafted mice, Smyth and colleagues show 
the acquisition of MHC by DCs to be the main source of alloantigen driving cytotoxic 
responses and alloimmunity[20].

Taken together, these studies in experimental animal models of vascularised and 
non-vascularised solid organ transplantation support the view that the release of EVs 
bearing donor MHC and its subsequent presentation by cross-dressed APCs triggers 
the T-cell alloresponses involved in acute rejection.

EV-mediated MHC transfer in clinical transplantation
The pursuit of non-invasive biomarkers of allograft rejection led to the investigation of 
EVs from a range of biofluids, employing bulk analyses of their varied cargo, and 
yielding markers of varying specificity, sensitivity, and utility[21-23]. More recently, in 
order to achieve allograft-specificity, a number of researchers have turned to 
investigate EVs bearing donor-human lymphocyte antigen (HLA) in particular as 
biomarkers of allograft function. In 2016, Gunasekaran and colleagues demonstrated 
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Figure 2 Three pathways of allorecognition. Schematic illustration of the three major pathways of allorecognition: Direct, indirect, and semidirect. In the direct 
pathway, intact non-self major histocompatibility (MHC) Class I and Class II on donor antigen-presenting cells (APCs) activates CD8 and CD4 T cells respectively. In 
indirect recognition, recipient APCs present processed donor allogeneic peptides in the context of self-MHC to recipient T cells. In the semidirect pathway, recipient 
APCs are cross-dressed with donor MHC, acquired from donor-origin extracellular vesicles for instance, which upon encounter activates recipient T cells. Created 
with BioRender.com. APC: Antigen-presenting cell; MHC: Major histocompatibility; EV: Extracellular vesicle.

the presence of donor-derived EVs bearing donor HLA in the serum of two transplant 
recipients undergoing bronchiolitis obliterans syndrome; however, their presence was 
neither reported nor discussed among the control or acute rejection cohorts studied[24]. 
The following year, Kim et al[25] investigated the presence of donor-specific EVs bearing 
donor HLA in a single patient having undergone hand-transplantation[25]. Their data 
suggested that donor-EVs increased in the serum with worsening clinical rejection. 
However, this study was significantly limited in its small sample size, the lack of a 
control group, and its reliance on conventional flow cytometry–a method known to be 
incapable of detecting EVs less than 200 nm in size, which make up the bulk of EVs. In 
the same year, Vallabhajosyula and colleagues provided the first comprehensive 
demonstration of circulating EVs bearing donor HLA in patients having undergone 
islet transplantation[26]. Allograft-specific EVs bearing donor HLA class I were noted 
among all of the 5 study participants analysed at a single post-operative time-point. 
Though the impact of rejection on donor-derived EVs was demonstrated by the group 
in a murine model of islet transplantation, such analyses were not undertaken in their 
clinical cohort. EV characterisation was performed using nanoparticle tracking 
analysis (NTA) by NanoSight which, whilst enabling small EV detection well below 
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Figure 3 Advanced imaging flow cytometry by ImageStreamx. Analysis by ImageStreamx (ISx) enables the accurate detection of particles of diameter as 
low as 20 nm, including small extracellular vesicles. Furthermore, the combination of microscopic imaging with fluorescence detection enables the morphometric and 
photometric assessment of whole cells. This is of particular utility in assessing major histocompatibility cross-dressing. Representative images acquired by ISx of 
three recipient cells [bearing recipient human lymphocyte antigen (HLA), red] cross-dressed with donor-HLA (yellow) following liver transplantation. The discrete foci 
of donor alloantigen point to the vesicular nature of transfer.

the limits of cFCM, achieves only semi-quantitative enumeration of donor-HLA EVs.
These studies, which are among the first attempts to characterise circulating donor-

specific EVs, demonstrate the major challenge in the field to find sensitive and robust 
technological platforms by which to study EVs on a vesicle-by-vesicle basis. This is 
particularly true for small EVs (sEVs) including exosomes and smaller microvesicles 
which are less than 200 nm in diameter. Techniques which permit sEV visualization, 
such as electron microscopy or atomic force microscopy, preclude the analysis of sEVs 
in large numbers and, in so doing, limit robust statistical assessments. Western 
blotting, lipidomics, proteomics, and flow cytometry of bead-captured vesicles are 
useful methods in the analysis of bulk isolates but are unable to distinguish variations 
in the number of vesicles from changes in molecular composition, and are incapable of 
multiparametric analysis of single sEVs[27]. Pioneering work, in particular by groups 
such as that of Lannigan and Erdbrügger, established the potential of imaging flow 
cytometry (iFCM) using ImageStreamx (ISx) (EMD Millipore) in the characterisation of 
sEVs. ISx has all the advantages of traditional flow cytometry, including high-
throughput and multiparametric analysis, with the added value of providing a 
microscopic image of individual cells/particles upon which fluorescence can be 
overlayed (Figure 3)[28-31]. This is achieved using spatially registered charged camera 
coupled (CCD) which, unlike photomultiplier tubes found on cFCMs, exhibit the 
larger dynamic range and lower ‘noise’ required for accurate detection of small EVs. 
Furthermore, the advanced ISx fluidics enable the slower flow rates required for the 
avoidance of coincident detection of multiple sEVs.

In 2018, our group demonstrated the use of ISx in the multiparametric analysis of 
circulating small EV subtypes, including exosomes[27]. Furthermore, we set out to 
explore the utility of the approach in the detection and characterisation of circulating 
tissue/organ-specific sEVs. The EVs of 3 Liver allograft recipients’ circulating EVs 
were labelled with a pan-EV marker, a bona fide marker of exosomes (CD63), and 
probes for donor and recipient HLA. Donor-specific allograft-derived sEVs were 
confirmed to be detectable in circulation after liver transplantation. Further 
multiparametric analyses were employed to interrogate gated donor-sEVs for co-
stimulatory/inhibitory molecules, thereby providing additional support for the 
application’s potential for characterisation and functional insights. In a study from 
2020, we applied this approach to the detection of allograft-derived EVs in a larger 
cohort of liver or kidney transplant recipients[32]. Analyses of circulating cross-dressed 
cells and passenger leukocytes were also performed. We showed, for the first time, 
that cross-dressed recipient leukocytes can be found in the circulation following liver 
transplantation and that their numbers far exceed those of passenger leukocytes in 
keeping with the experimental animal models. The presence of circulating cross-
dressed cells coincided with a rise in circulating allograft-derived sEVs in the early 
post-transplant period. This was a transient phenomenon, with numbers of both 
circulating donor-sEVs and cross-dressed cells rapidly waning and becoming 
undetectable by day 30 post-transplant. We speculate that, as shown in murine 
models, following clinical organ transplantation recipient APC cross-dressing 
continues to occur in the allograft and/or secondary lymphoid tissues for prolonged 
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Figure 4 Three-cell model of semi-direct allorecognition. A: Adaptive CD8 T cell immunity is the principle arm of the cellular alloimmune response, but its 
development requires help. This can be provided by CD4 T cells that recognise alloantigen indirectly. Extracellular vesicle (EV) cross-dressing of recipient antigen-
presenting cells (APCs) can precipitate the simultaneous presentation of intact donor peptide-major histocompatibility complex (pMHC) and of processed alloantigen 
on self-MHC. The resultant cooperation that can occur between CD4 T cells and CD8 effector cells enables delivery of the essential help for generating the cytotoxic 
alloresponses forming the basis for allograft rejection; B: Under certain conditions, within the hepatic microenvironment for instance, it is possible that similar co-
presentation of EV-derived alloantigen can promote CD4 regulatory T cell (Treg) suppression of effector T cells and promotion of tolerance (upper panel). Tolerance 
to alloantigen may also occur as a consequence of EV co-transport of nucleic acids triggering recipient APCs to upregulate immunoinhibitory molecules such as 
Programmed Death-Ligand 1 (middle panel), or indeed due to the tandem transfer of such intact immunoinhibitory molecules which then colocalise at the 
immunological synapse (lower panel). Created with BioRender.com. PD-L1: Programmed Death-Ligand 1; EV: Extracellular vesicle; APC: Antigen presenting cell; 
pMHC: Peptide-major histocompatibility complex.

periods of time, and detection in circulation wanes[5,6,20,26,33]. For obvious reasons, 
corroboration of this in clinical contexts presents a challenge given limited availability 
of such tissues to perform detailed cross-dressing analyses upon. Employing in vitro 
functional analyses using human cells, we determined that DCs which had undergone 
EV-mediate MHC cross-dressing acquired the capacity to elicit the proliferation of 
syngeneic CD8 T cells.

In summary, developments in EV analytic approaches have, in recent years, enabled 
the description of the kinetics of donor-specific allograft-derived EV release following 
clinical transplantation, and evidenced the capacity for these to cross-dress recipient 
APCs through the transfer of donor MHC. Given the pre-eminence of cross-dressed 
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cells in experimental and clinical transplantation and bearing in mind the recognised 
impact of these on alloresponse generation, it is likely important these pathways be 
considered when designing tolerance-promoting protocols.

The role of EVs and cross-dressing in liver transplant tolerance
In models of transplantation cross-dressing of APCs with allo-MHC is a highly 
immunogenic phenomenon. Several factors can govern the nature and magnitude of 
the immune response induced by any given antigen. The dose, the proximity of other 
signals, and the state of the presenting cell are among just a few factors which might 
influence whether the response is directed towards immunity or tolerance. The same 
might be expected of a given alloantigen transported upon EVs. Whether the 
alloresponse is directed towards rejection or tolerance might therefore depend on the 
quantity of EVs released from a given organ, cell of origin, vesicle subtype, other co-
transported EV cargo, the state of the APC which acquires it, and the wider context 
within which the APC presents the antigen. One related consideration is the site at 
which cross-dressing occurs. While cross-dressed APCs have principally been 
observed within SLOs, cross-dressing has also been described within allografts 
themselves. Thus, in rodent models of islet and kidney transplantation, engagement of 
effector T cells with cross-dressed graft-infiltrating recipient DCs preceded rejection[34]. 
However, in a mouse model of spontaneous tolerance following MHC-mismatched 
liver transplantation, recipient DCs cross-dressed with donor EVs markedly 
suppressed host alloreactive responses[33]. In this model, crossed-dressed DCs 
constituted approximately 60% of the intrahepatic DC population, expressed high 
levels of Programmed Death-Ligand 1 (PD-L1), and induced an exhausted phenotype 
among donor-reactive CD8 T cells.

These studies also highlight the potential for different organs to produce 
qualitatively different EVs. The PD-1: PD-L1 axis has emerged as a critical inhibitory 
signalling pathway involved in the regulation of T cell responses and in the 
maintenance of peripheral tolerance[35]. PD-L1 is particularly highly expressed among 
liver parenchymal and non-parenchymal cells. It contributes to local protolerogenic 
pathways essential to the liver-which is seated at the crossroads between the portal 
venous system and the systemic circulation-to prevent the induction of immunity 
against innocuous antigens such as intestinal bacterial degradation products and 
neoantigens arising from metabolic processing[36]. Intrahepatic PD-L1 expression is 
upregulated following liver transplantation in both mice and humans and has been 
implicated in the establishment of liver allograft tolerance via inhibition of alloreactive 
T cell activation and induction of regulatory cell subtypes[33,37,38]. In our analysis of 
circulating sEVs following clinical liver transplantation, but not kidney 
transplantation, we observed that donor-derived sEVs carried significantly more PD-
L1 than did sEVs of recipient origin. Furthermore, recipient cells which became cross-
dressed also exhibited higher levels of PD-L1 than did recipient cells which had not 
been cross-dressed. PD-L1 was noted to co-localise on the APC surface with donor-
HLA, which would be in support of their tandem transport on EVs though other 
groups have reported global upregulation of PD-L1 (potentially due to EV-miRNA 
transfer) following cross-dressing[39].

Work from the Burlingham laboratory expands further on the tolerogenic potential 
of EVs via the upregulation of PD-L1 on DCs. Their work focuses primarily on 
maternal microchimerism, whereby a tiny population of immune cells are transferred 
from mother to offspring during pregnancy and breastfeeding and result in the 
persistent detection of maternal cells throughout adult life[40]. These maternal cells 
contribute to the induction and maintenance of tolerance against non-inherited 
maternal antigens (NIMAs) which they bear, including MHC. For example, kidney 
grafts expressing NIMA-MHC will exhibit longer survival than grafts expressing 
unrelated MHC. The group demonstrate that the effects of such a small population of 
maternal cells are mediated and amplified by their avid production of EVs bearing 
NIMAs which subsequently are taken up by host DCs. The resultant cross-dressed 
DCs are noted to globally upregulate PD-L1, which the researchers suggest is due to 
co-transported EV-miRNA, and in doing so inducing NIMA-specific T cell anergy[39,40]. 
This is of added relevance to our discussion since the establishment of donor 
chimerism following liver transplantation in particular has long been recognised. 
Though its beneficial effects on outcome are widely acknowledged, the mechanisms 
underlying the pro-tolerogenic effect have remained uncertain[41,42].

It would appear then, that under certain circumstances allo-EVs promote tolerance 
while in others they drive rejection. The three-cell model described above offers a 
mechanistic framework by which to understand this apparent dichotomy. While allo-
MHC transferred intact to an APC will activate CD8 effector T cells via the semi-direct 
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pathway, the fate of processed peptides presented indirectly by the same APCs can 
result in the recruitment either of CD4 cells which will assist in the activation of the 
effector cell and drive rejection (Figure 4A), or of CD4 regulatory T cells (Tregs) which 
will inhibit effector cell activation and so promote tolerance (Figure 4B, upper 
panel)[43]. Proponents of this model would hold that the propensity towards Treg 
associations is determined by, for instance, the wider setting in which APC cross-
dressing has occurred. In the liver, where there is high expression of molecules such as 
PD-L1 and anti-inflammatory cytokines such as interleukin (IL)-10, one might expect 
Treg recruitment to be more likely.

An alternative is that particular EVs are enriched in cargo capable, once transported 
to APCs, of contributing to the inhibition of T cells. As discussed, this could take the 
form of intact molecules transported in tandem or of nucleic acids which induce 
expression of regulatory molecules in recipient cells. Thus, Burlingham et. al. outline a 
scenario in which certain EVs (they suggest of maternal cell or of liver allograft origin) 
induce global PD-L1 expression in APCs via the co-transfer of miRNAs. This PD-L1 
induces anergy of indirect pathway CD4 T cells, which then fail to help direct pathway 
CD8 T cells (Figure 4B, middle panel)[39]. In our analyses, we demonstrated that EVs 
derived from liver transplant recipients were able to transiently inhibit CD8 effector 
responses following uptake by DCs. Given that we observed allograft-derived EVs to 
be particularly enriched in PD-L1, and PD-L1 to colocalise with allo-MHC on the 
cross-dressed APC, it could be the case that effector cell inhibition was due to the 
proximity of intact, co-transported inhibitory signalling (Figure 4B, lower panel)[32]. 
These are not, it must be emphasized, mutually exclusive scenarios, and future work 
should delineate the contribution of both. An understanding of the factors that can tip 
the balance toward tolerance will likely be critical in the advancement of EV-based 
immunotherapeutics.

EVs as novel therapeutics in transplantation
By virtue of their varied bioactive cargo, stability, capacity for tissue-specific targeting, 
ability to cross biological barriers, and safety profile, EVs have been identified as 
having significant therapeutic potential. There are currently over ten clinical trials in 
progress assessing the efficacy and safety of EV therapies[44]. Therapeutic EVs can 
broadly be subdivided into those derived from unmodified cellular subsets, and those 
which have been bioengineered.

Unmodified cell-derived EVs
EV-based therapeutics have, for the most part, turned to the utilisation of EVs derived 
from stem cell and regulatory cell subsets. Mesenchymal stem cells (MSCs) are among 
the earliest and most widely employed examples. MSCs were at first believed to 
mediate protective properties via their capacity to differentiate into and to replace 
injured tissue. For instance, following cardiac injury, delivered MSCs were understood 
to ameliorate damage by differentiate into healthy myocardium. However, it has 
recently been noted that the effects of MSCs are in large part due to their paracrine 
effects on surrounding tissues which, in part, are mediated by secreted EVs[45-48]. Since 
this discovery, the capacity for MSC-EVs to attenuate inflammation and to promote 
tissue regeneration has been demonstrated in pre-clinical models of respiratory, 
pancreatic, renal, musculoskeletal, neurological, and of liver diseases (reviewed 
elsewhere[49,50]). The use of MSC-EVs as an alternative to MSCs confers a number of 
potential advantages including the ability to cross biological barriers, target-specificity, 
avoidance of entrapment in microvascular beds, stability in storage, reduced potential 
for phenotypic alteration upon delivery, relatively lower immunogenicity and 
tumorigenicity, and improved safety profiles on repeated dosing.

Several experimental studies have demonstrated MSC-EVs to play a therapeutic role 
in liver ischaemia-reperfusion injury (IRI) through regenerative, autophagic, and 
immunomodulatory processes[51-54]. These rodent models employ variations of in vivo, 
in situ, vascular occlusion to replicate IRI. It remains to be seen what the impact of 
such therapies would be on the prolongation of allograft survival in models of liver 
transplantation. In the clinical context, ex-vivo machine perfusion of organs prior to 
transplantation under either normothermic (NMP) or hypothermic (HMP) conditions 
has improved assessment of organ viability, enabled the reconditioning of organs 
which might otherwise have been discarded, but also provided a platform upon which 
novel therapeutics can be developed and trialled. Very few studies have investigated 
the application of EVs in this context; though interest is growing rapidly. While 
studies have demonstrated beneficial effects of MSC-EVs in rodent models of lung and 
kidney perfusion, the first such demonstration in liver was by Rigo and colleagues in 
2018[55-57]. Using a murine model of ex-vivo NMP, the group demonstrated the 
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favourable outcomes in organs treated with human liver stem cell-derived EVs (HLSC-
EVs), in terms of a reduction in histological damage and of enzyme markers of 
cytolysis. Several limitations are inherent in these studies including not performing 
onward transplantation to determine the effects on allograft outcomes, providing little 
mechanistic evidence of the mode by which EVs exert their effect or whether EVs of 
alternative origin would differ, and the lack of comprehensive uptake and dose-
response analyses. Further investigation is warranted in experimental animal models, 
but it is also anticipated that trials will arise in perfused human organs with onward 
progression into phase I/II studies[58].

In addition to stem cell derived EVs, it is important to also mention Treg-derived 
EVs. Progress has been made in the implementation of adoptive Treg cell therapy in a 
number of scenarios which include type 1 diabetes, rheumatoid arthritis, inflammatory 
bowel disease, graft-versus-host disease (GvHD) following bone marrow 
transplantation (BMT), and organ transplant rejection[59,60]. Similar to MSCs, 
considerable barriers have been faced in the ex-vivo expansion of Treg, in maintaining 
their phenotypic characteristics once delivered, in delivering sufficient numbers 
particularly in the context of concomitant immunosuppressive therapies, in their 
oncogenic potential, and in their immunogenicity[61]. In their seminal paper, Okoye and 
colleagues showed Tregs to release large quantities of EVs carrying a distinct cargo of 
miRNA, and went on to demonstrate that blocking the release of these EVs abrogated 
the Tregs’ ability to suppress Th1 cell proliferation and thereby their immuno-
regulatory capacity[62]. These findings were independently reasserted by Aiello and 
colleagues, who also went on to demonstrate the capacity of Treg-EVs to prolong 
kidney allograft survival in vivo[63]. In recent months, Smyth and colleagues have 
shown the capacity for Treg-EVs to inhibit T effector cell responses, to affect changes 
in effector cell cytokine production via cargo miRNAs, and to protect against rejection 
in a humanised mouse skin transplant model[64].

Studies are lacking which aim specifically to investigate the tolerogenic potential in 
transplantation of therapeutically delivered EVs which serve to mediate APC cross-
dressing. The recent work of Patel et al[65]. serves to demonstrate the potential of such 
an approach. Donor bone marrow derived EVs bearing allo-MHC were delivered in a 
non-human primate model of heart and kidney co-transplantation with prior 
conditioning by thymic irradiation, antithymocyte globulin, and immunosuppression. 
While design and sample size limit interpretations of functional outcomes, their data 
shows that delivered EVs are capable of generating stable cross-dressing. They suggest 
that such EVs might be used in place of whole bone marrow as a tolerance induction 
strategy and perhaps reduce the need for recipient conditioning[65]. We anticipate that 
similar approaches might prove more practicable through the development of 
engineered EVs enriched in specific desired molecules and alloantigens.

Engineered EVs
Broadly, there are two distinct approaches to selective EV cargo loading: (1) 
Exogenous, after EV isolation from the parent cell; and (2) Endogenous, during EV 
biogenesis[66]. Methods to achieve the former include techniques such as 
electroporation and sonication. Methods towards the latter involve exploiting the 
parent cell’s EV sorting machinery. Desired cargo can be directly transfected into the 
parent cell or can be engineered to be stably expressed. Fusion of the therapeutic of 
interest with molecules enriched in EVs will optimise its loading onto them. While 
examples of engineering approaches to endogenous EV loading and optimisation of 
delivery have been comprehensively outlined elsewhere[44], one particularly elegant 
example is that from Sutaria and colleagues who achieved the 65-fold increase of 
miRNA-199a-3p by associating its production to Lamp2a within the membrane of EVs 
produced by a HEK293T cell line[67]. Though no applications of engineered EVs have 
been reported in the literature with regards to liver IRI or tolerance induction, their 
recent implementation in diverse inflammatory, autoimmune, and oncological 
conditions, both in experimental models and in limited clinical trials (Table 1), 
demonstrate their potential.

Engineered EVs offer significant advantages over alternative synthetic drug 
delivery systems such as liposomes, nanocapsules, and micelles, which have often 
proven inefficient, poorly targeted, cytotoxic, and/or immunogenic. Nevertheless, 
widespread clinical utilisation of engineered EVs also faces a number of obstacles. 
Among these are: (1) The need for GMP-compliant up-scaling of production and 
isolation processes; (2) The better understanding of uptake kinetics, targeting, 
bioavailability, and dosing; and (3) The selection ofappropriate assays and biomarkers 
for the purpose of monitoring function. The significant progress underway in each of 
these areas has been reviewed elsewhere[44,68-71].
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Table 1 Clinical trials of engineered extracellular vesicle-based therapies

Treatment target Trial 
phase Source of EVs EV manipulation Results

Pancreatic cancer (NCT03608631) Phase I MSC, allogeneic siRNA direct loading Not yet recruiting

Colon cancer[72] Phase I Plant origin Curcumin direct loading Active

Melanoma[73] Phase I Immature DCs, 
autologous

Tumor antigen (peptide) direct 
loading

Safe, well tolerated, mixed 
responses.

Non-small cell lung cancer 
(NCT01159288)

Phase II Mature DCs, autologous Tumor antigen (peptide) direct 
loading

Safe, well tolerated, mixed 
responses.

Non-small cell lung cancer[74] Phase I Immature DCs, 
autologous

Tumor antigen (peptide) direct 
loading

Safe, well tolerated, mixed 
responses.

Malignant ascites (NCT01854866) Phase II Tumor derived Chemotherapeutic agent loading Unknown

Acute ischaemic stroke (NCT03384433) Phase I/II MSCs, allogeneic miRNA loading Completed

EVs: Extracellular vesicles; MSC: Mesenchymal stem cell; DCs: Dendritic cells.

CONCLUSION
EVs have emerged as key contributors to T cell alloimmunity. Progress in the accurate 
identification and analysis of these nano-sized vesicles has confirmed their capacity to 
transport graft-derived alloantigen to recipient APCs in both experimental models of 
transplantation and in the clinical setting. While the consequence can be the initiation 
of strong inflammatory responses leading to acute graft rejection, it is possible in 
certain settings that tolerogenic responses are mediated and allograft injury allayed. 
EVs are emerging as potent therapeutic entities with innate potential for use as 
vehicles for the targeted delivery of small-molecule drugs, nucleic acid species, and 
therapeutic proteins including alloantigen. Improved understanding of their role in 
immune homeostasis, tolerance, and rejection, and optimised methods of production 
make it likely that EVs will serve diverse roles a future platform for biophar-
maceuticals in transplantation and beyond.
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Abstract
BACKGROUND 
Thromboembolic complications are relatively common causes of increased 
morbidity and mortality in the perioperative period in liver transplant patients. 
Early postoperative portal vein thrombosis (PVT, incidence 2%-2.6%) and early 
hepatic artery thrombosis (HAT, incidence 3%-5%) have a poor prognosis in 
transplant patients, having impacts on graft and patient survival. In the present 
study, we attempted to identify the predictive factors of these complications for 
early detection and therefore monitor more closely the patients most at risk of 
thrombotic complications.

AIM 
To investigate whether intraoperative thromboelastography (TEG) is useful in 
detecting the risk of early postoperative HAT and PVT in patients undergoing 
liver transplantation (LT).

METHODS 
We retrospectively collected thromboelastographic traces, in addition to known 
risk factors (cold ischemic time, intraoperative requirement for red blood cells and 
fresh-frozen plasma transfusion, prolonged operating time), in 27 patients, 
selected among 530 patients (≥ 18 years old), who underwent their first LT from 
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January 2002 to January 2015 at the Liver University Transplant Center and 
developed an early PVT or HAT (case group). Analyses of the TEG traces were 
performed before anesthesia and 120 min after reperfusion. We retrospectively 
compared these patients with the same number of nonconsecutive control patients 
who underwent LT in the same study period without developing these 
complications (1:1 match) (control group). The chosen matching parameters were: 
Patient graft and donor characteristics [age, sex, body mass index (BMI)], 
indication for transplantation, procedure details, United Network for Organ 
Sharing classification, BMI, warm ischemia time (WIT), cold ischemia time (CIT), 
the volume of blood products transfused, and conventional laboratory 
coagulation analysis. Normally distributed continuous data are reported as the 
mean ± SD and compared using one-way Analysis of Variance (ANOVA). Non-
normally distributed continuous data are reported as the median (interquartile 
range) and compared using the Mann-Whitney test. Categorical variables were 
analyzed with Chi-square tests with Yates correction or Fisher’s exact test 
depending on best applicability. IBM SPSS Statistics version 24 (SPSS Inc., 
Chicago, IL, United States) was employed for statistical analysis. Statistical 
significance was set at P < 0.05.

RESULTS 
Postoperative thrombotic events were identified as early if they occurred within 
21 d postoperatively. The incidence of early hepatic artery occlusion was 3.02%, 
whereas the incidence of PVT was 2.07%. A comparison between the case and 
control groups showed some differences in the duration of surgery, which was 
longer in the case group (P = 0.032), whereas transfusion of blood products, red 
blood cells, fresh frozen plasma, and platelets, was similar between the two study 
groups. Thromboelastographic parameters did not show any statistically 
significant difference between the two groups, except for the G value measured at 
basal and 120’ postreperfusion time. It was higher, although within the reference 
range, in the case group than in the control group (P = 0.001 and P < 0.001, 
respectively). In addition, clot lysis at 60 min (LY60) measured at 120’ 
postreperfusion time was lower in the case group than in the control group (P = 
0.035). This parameter is representative of a fibrinolysis shutdown (LY60 = 0%-
0.80%) in 85% of patients who experienced a thrombotic complication, resulting in 
a statistical correlation with HAT and PVT.

CONCLUSION 
The end of surgery LY60 and G value may identify those recipients at greater risk 
of developing early HAT or PVT, suggesting that they may benefit from intense 
surveillance and eventually anticoagulation prophylaxis in order to prevent these 
serious complications after LT.

Key Words: Thromboelastography; Hepatic artery thrombosis; Portal vein thrombosis; 
Liver transplantation; Risk factors; Cirrhosis
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Core Tip: In this study, factors associated with an increased risk of early hepatic artery 
(HAT) and portal vein thrombosis (PVT) after adult liver transplantation (LT) were 
identified. In particular, basal and 120’ postreperfusion G value (increased net clot 
strength), and LY60 measured at 120’ postreperfusion time, were predictors of early 
HAT and PVT. Longer cold ischemic time was also significantly correlated with these 
complications. Intraoperative blood products transfusion was not associated with an 
increased risk of thrombosis. Increased daily surveillance by Doppler ultrasound 
should be considered for the possible prevention or early detection of HAT after LT for 
patients at increased risk of early HAT and PVT.
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INTRODUCTION
In recent years, patient survival after liver transplantation (LT) has increased due to 
improvements in surgical and anesthetic procedures. However, thromboembolic 
complications (hepatic artery and portal vein thrombosis, pulmonary embolism, 
intracardiac thrombosis) still affect the perioperative period of LT, representing 
relatively frequent causes of increased mortality. The percentage increase in mortality 
varies between 45% and 68% for pulmonary embolism, 50% for early hepatic artery 
thrombosis (HAT) and between 32% and 60% for portal vein thrombosis (PVT)[1-3].

Several causes of thrombosis have been recognized in LT: Surgical causes (difficult 
and prolonged arterial reconstruction, kinking of the artery for HAT, preceding PVT 
or splenectomy, small size of the portal vein), the donor’s characteristics, and 
prolonged cold ischemia time (CIT) and warm ischemia time (WIT)[4]. Moreover, 
intrinsic factors such as the patient’s genetics and underlying disease, hemodynamic 
modifications and intraoperative transfusions are other important causal effects.

Less attention has been paid to modification of the recipient's coagulation profile 
during LT[5]. The traditional concept of cirrhosis as a hypocoagulable condition has 
been replaced by the new idea of rebalanced hemostasis obtained by a parallel decline 
in pro and antihemostatic drivers[6,7]. This precarious balance can readily tip toward 
either hemorrhage or a prothrombotic state during LT, both for endogenous and 
exogenous factors. During this surgical procedure, von Willebrand factor (vWF) levels 
remain elevated increasing its functional capacity during surgery[8]. At the same time, 
the plasmatic concentration of ADMTS13 cleaving protease decreases, modifying the 
normal ratio of vWF/ADMATS13 in favor of vWF, possibly increasing the thrombotic 
risk. Abnormally increased levels of factor VIII, due to decreased degradation and 
reduced protein C, have also been observed[9,10].

During the anhepatic phase and after reperfusion of the liver graft, a temporary 
hyperfibrinolysis, attributed to changes in t-PA, PAI, and TAFI activity, can develop, 
but it usually corrects spontaneously as the liver graft begins to function[10,11]. However, 
a huge  increment in plasminogen activator inhibitor type 1 (PAI-1) develops at the 
end of the surgery, causing a hypofibrinolytic condition usually lasting up to 5 d after 
the surgical procedure[12].

Traditional coagulation tests, such as prothrombin time/international normalized 
ratio, activated partial thromboplastin time, fibrinogen, and platelet count have several 
limitations in recognizing significant coagulopathies or prothrombotic conditions. In 
contrast, viscoelastic tests such as thromboelastography (TEG) and thrombo-
elastometry (ROTEM) have been shown to be ideal tests for rapid diagnosis of 
coagulation balance, offering physicians better indicators for the clinical management 
of liver transplant patients[10,12]. They provide visual information on the coagulation 
process, assessing the viscoelastic properties of whole blood with particular reference 
to maximal fibrin clot formation, fibrinolysis and the tendency to hypercoagulability. 
As TEG properties can demonstrate the recipients’ coagulation balance, we 
hypothesized that intraoperatively performed thromboelastographic tracing could 
identify those patients at an increased risk of developing vascular early thrombotic 
(HAT and PVT) complications after LT.

MATERIALS AND METHODS
Following institutional review committee approval (No. 139/14 approved on October 
29, 2014), 530 patients (≥ 18 years old) who underwent their first LT performed at the 
Liver University Transplant Center of Policlinico of Modena (Italy) from January 2002 
to January 2015 were included in the study. Retransplantations and all combined liver 
and kidney transplant procedures were excluded. All data of the patients who 
underwent LT were retrospectively extracted from their medical records.

Early HAT and early PVT were defined as thrombotic complications that occurred 
within the first 21 d.

The patients with thrombotic complications were compared in a 1:1 match with the 
same number of nonconsecutive control patients who underwent LT in the same study 
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period without developing these complications. The chosen matching parameters 
were: Patient graft and donor characteristics (age, sex, BMI), indication for 
transplantation, procedure details, United Network for Organ Sharing (UNOS) 
classification, body mass index (BMI), WIT, CIT, the volume of blood products 
transfused, and conventional laboratory coagulation analysis.

Liver transplants were performed following a standardized anesthetic protocol: The 
patients were monitored with two invasive radial artery blood pressure gauges. A 
two-lumen (14 Gauge) central venous catheter was inserted into the left jugular vein 
under echo-guidance, and a Swan-Ganz catheter was placed in the right jugular vein. 
General anesthesia induction was obtained with fentanyl (2-3 µg/kg), propofol (2-3 
mg/kg) and cisatracurium (0.1-0.2 mg/kg), and maintained with desflurane following 
Bispectral Index monitoring (BIS, Medtronic®).

Additionally, a standard protocol for TEG (Thromboelastograph coagulation 
analyzer 5000C; Haemoscope Inc., Skokie, IL, United States) execution was followed: 
Native and heparinase TEGs were performed after radial artery placement before 
laparotomy, during the anhepatic phase, and 30, 60, 120 or 180 min postreperfusion. 
The number of postreperfusion TEG evaluations varied depending on the patient’s 
clinical condition and the length of the procedure. Additional TEGs were also 
performed per clinical need. Blood samples were always handled by the same three 
anesthesiologists. TEG tracings were started within 4 min after sampling. Clot 
formation was triggered by contact activation, and heparinase was used only after 
reperfusion in all cases to avoid interference from heparin coming from the liver graft. 
TEG variables analyzed were reaction time (R-time; nr: 12-26 min), clot formation time 
(K-time; nr: 3-13 min), α angle (nr: 14°-46°), maximum amplitude (MA; nr: 42-63 mm) 
and clot lysis 60 min after maximal amplitude (LY; nr: 0.81%-2.99%). The normal 
ranges for each of these variables, for native whole-blood samples, were obtained from 
the Haemoscope Corporation®.

Fibrinolysis, considered as the percentage of clot lysis 60 min after maximal 
amplitude (LY60) on baseline TEG, was differently classified in accordance to its 
value[13]: Fibrinolysis shutdown (FS) (LY60, 0%-0.80%), physiologic fibrinolysis (LY60, 
0.81%-2.99%), and hyperfibrinolysis (LY60, ≥ 3.00%). All TEG MA data were converted 
to their respective G values before the analysis with a mathematical transformation: G 
= 5000 × MA (100-MA) where G is a unit of force (nr: 3200-7100 dyne/cm2). G value 
was considered an indicator of hypercoagulability if it was > than 7100 dyne/cm2. In 
all patients studied, basal and 120’ postreperfusion TEG values were retrieved from 
our hospital’s database.

The management of coagulopathy during surgery was led by TEG and based on the 
same hospital transfusion algorithm in both groups. We transfused erythrocyte 
concentrates to maintain hemoglobin levels at 8-9 g/dL. This policy was consistent 
throughout the study period.

The anesthesia team (3 anesthetists) and the surgical team (two main surgeons plus 
surgical fellows) did not change during the study period. All surgical procedures were 
performed using the piggy-back technique for graft implantation. Arterial 
reconstruction and portal vein anastomosis were similarly performed by the surgeons 
in the team. Additional anastomoses were required in cases of aberrant or complex 
vascular anatomy. Intraoperative Doppler ultrasound scans were always performed 
after hepatic artery and portal vein reconstruction.

In the postoperative period, all patients received thromboprophylaxis therapy with 
oral aspirin (75 mg/d, starting as soon as their platelet count was above 50 × 109/L), 
and low molecular weight heparin (0.5 mg/kg daily adjusted for renal function) as 
soon as any bleeding risk was excluded, usually starting on the second postoperative 
day.

We also evaluated other risk factors for HAT and PVT such as recipient 
characteristics, including age, sex, BMI, etiology of liver disease, UNOS status, and the 
presence or absence of hepatocellular carcinoma. Donor age, CIT, and WIT were 
evaluated as well. For surgical characteristics, the presence of a complex arterial 
reconstruction (placement of an arterial interposition graft or multiple anastomoses), 
presence of preoperative PVT, and intraoperative blood product transfusions (packed 
red blood cells, platelets, fresh-frozen plasma) were recorded and evaluated for 
correlations with thrombotic events.

Missing data for each variable analyzed were less than 95%.
Normally distributed continuous data are reported as the mean ± SD and compared 

using one-way Analysis of Variance (ANOVA). Non-normally distributed continuous 
data are reported as the median (interquartile range) and compared using the 
Mann–Whitney test. Categorical variables were analyzed with Chi-square tests with 
Yates correction or Fisher’s exact test depending on best applicability. IBM SPSS 
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Statistics version 24 (SPSS Inc., Chicago, IL, United States) was employed for statistical 
analysis. Statistical significance was set at P < 0.05. The study was reviewed by our 
expert biostatistician, Montalti Roberto.

RESULTS
Five hundred and thirty adult patients underwent a first LT during the study period. 
Twenty-seven (5.09%) patients had postoperative early thrombosis. Early HAT was 
recorded in 16 (3.02%) patients, while early PVT developed in 11 patients (2.07%). The 
characteristics and preoperative laboratory findings of the patients with thrombotic 
complications and control cases with their indications for LT are displayed in Table 1.

There were no donor or graft characteristics associated with the diagnosis of HAT or 
PVT. Among the surgical-related characteristics, a longer duration of surgery was 
registered in the case group (390 ± 123 min vs 324 ± 95 min, P = 0.032) (Table 2).

The number of patients transfused and the volumes of blood and blood products 
transfused were similar between the two groups (Table 3).

TEG Analysis
The preoperative and 120’ postreperfusion TEG values are shown in Table 4. No 
statistically significant differences in these values were observed between the two 
groups except for mean lysis 60 value at 120’ postreperfusion and basal and 120’ 
postreperfusion G value (Table 4). This value was higher in the case group compared 
to the control group (P = 0.001 and P < 0.001, respectively), although it did not indicate 
hypercoagulability at any time (Table 4). Lysis 60 at 120’ postreperfusion was lower in 
the case group (P = 0.035), showing a FS phenotype in 23 patients (85%) in the case 
group vs 15 patients (55%) in the control group (P = 0.043).

FS was the dominant fibrinolysis phenotype both at baseline (56%; 15/27 in the 
thrombosis group and 48%; 13/27 in the control group, P = 0.785) and at 120’ 
postreperfusion in both groups (85%; 23/27 in the case group and 55%; 15/27 in the 
control group P = 0.037) (Table 5). Postoperative early HAT occurred in 15 of 16 (94%) 
recipients with the FS phenotype at 120’ postreperfusion TEG, while only one patient 
with early HAT had a physiologic fibrinolysis phenotype. Postoperative early PVT 
occurred in 8 (72%) recipients with the FS phenotype at 120’ postreperfusion TEG, 
while physiologic fibrinolysis and hyperfibrinolysis phenotypes were recorded in 2 
(18%) and 1 (9%) patients, respectively, who had this portal complication (Table 5).

With regard to the other TEG values analyzed, in the case group, 19 of 27 patients 
(70%) and 20 of 27 patients (74%) in the control group had normal or faster clot 
formation (normal or minor R value) at the basal time (P = 1) (Table 5). The mean R 
value measured at 120’ postreperfusion was not significantly different between the 
two groups (P = 0.407) and was within the normal or shorter than the normal reference 
range in 21 patients (78%) in the case group and in 26 (96%) in the control group (P = 
0.105). In the case group, 10 (37%) patients vs 14 (52%) patients in the control group 
had a normal or increased basal MA showing a normal or increased clot strength (P = 
0.411). The MA value measured at 120’ postreperfusion was within the normal 
reference range or larger than the normal reference range in 8 patients (30%) in the 
case group and in 7 (26%) in the control group (P > 0.999) (Table 5).

DISCUSSION
In our patient population, the incidence of HAT was 3%. Although its etiology is 
known to have several causes and to be significantly associated with patient and 
surgical-related factors (difficulties associated with the arterial reconstruction), it is 
notable that in this study, 15 (94%) of 16 patients who developed early HAT had TEG 
evidence of FS on the 120’ postreperfusion TEG trace, a higher G value at basal and 
120’ postreperfusion time, and a longer duration of surgery. Similarly, the incidence of 
PVT was 2%, and 8 (72%) of 11 patients who developed this complication had TEG 
evidence of FS at 120‘ postreperfusion.

Different to Krzanicki et al[14] and Lerner et al[15], who reported during LT that some 
TEG signs of hypercoagulability appeared in the patients who developed early HAT, 
in our series, except for a few patients, in general, the patients showed no signs of 
enhanced clot formation or clot strength. In particular, the MA value at 120’ 
postreperfusion TEG was larger than the normal reference range in only 4% of patients 
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Table 1 Preoperative recipient characteristics, n (%)

Recipients characteristics Case group (27 pts) Control group (27 pts) P value

Gender Male 18 (67) 21 (77.7) 0.543

Age yr 54 (44-62) 56 (49.7-62) 0.465

Viral cirrhosis 7 (25.9) 5 (18.5)

Alcoholic 5 (18.5) 5 (18.5)

Cancer 12 (44.4) 14 (51.8)

Cause of liver disease

Cholestatic 3 (11.1) 3 (11.1)

> 0.999

First transplant 1 27 (100) 27 (100)

1 2 (7.4) 2 (7.4)

2A 5 (18.5) 4 (14.8)

2B 10 (37) 12 (44)

UNOS status

3 10 (37) 9 (33)

> 0.999

Preoperative PVT 0 0 NA

INR 1.37 (1.27-2.34) 1.49 (1.10-1.85) 0.283

PLT 103/µL 81.5 (43.7-113.7) 88 (64.5-106.5) 0.488

Hb mg/dL 11.4 ± 2.4 11.6 ± 2.1 0.746

Fibrinogen mg/dL 237 ± 117 207 ± 99 0.314

All parameters were matched 1:1 when possible. UNOS: United Network for Organ Sharing; PVT: Preoperative portal vein thrombosis; INR: International 
normalized ratio; PLT: Platelet; Hb: Hemoglobin.

Table 2 Donor characteristics in the thrombosis group and control group

Donor and surgical-related characteristics Case group (27 pts) Control group (27 pts) P value

Donor age yr 54 (44-62) 56 (49-63) 0.465

Donor sex Male 16 15 > 0.999

Donor BMI 24.9 ± 2.4 24.5 ± 3.1 0.598

CIT min 410 ± 118 411 ± 123 0.976

WIT min 38.4 ± 14 37.7 ± 16 0.865

Duration of surgery h 390 ± 123 324 ± 95 0.032

Multiple arterial anastomoses or placement of an arterial interposition graft n (%) 6 (18.5) 4 (14.8) 0.726

BMI: Body mass index; CIT: Cold ischemic time; WIT: Warm ischemic time.

in both groups. Only 18% and 14% of patients, respectively, in the case and control 
groups showed shorter than normal R time values at the same TEG time.

In liver recipients, Lerner et al[15] demonstrated a TEG hypercoagulablility in more 
than 70% of cases, and Zahr et al[16] inferred that preoperative TEG might reliably 
detect groups of recipients with an increased risk of displaying early HAT in the 
preoperative period. Some enhanced coagulability at some point before or at the end 
of the LT procedure did not seem to be statistically significantly related to thrombotic 
events in our series. A total of 16 (60%) patients who developed a thrombotic 
complication in our study had a normal R time value at 120’ postreperfusion. These 
findings are in agreement with the more diffuse knowledge of the new hemostatic 
competence of cirrhotic patients, which has reduced the widespread fear of bleeding 
during LT in favor of a greater awareness of the thrombotic risk to which the patient is 
exposed[17-19].

In the postoperative period after LT, almost all of the procoagulant proteins need 
two to three days to reach normal activity, and the anticoagulant factors have a 
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Table 3 Intraoperative transfusion and number of patients transfused in the case group and control group

Intraoperative transfusion Case group (27 pts) Control group (27 pts) P value

Patients transfused with RBC n (%) 18 (66.3) 19 (70.3) > 0.999

Homologous blood transfused mL 990 (0-2239) 1320 (0-2350) 0.875

Autologous blood transfused mL 742 (0-2041) 485 (0-1325) 0.566

PLT transfused mL 0 (0-250) 0 (0-0) 0.152

Patients transfused with PLT n (%) 9 (33.3) 7 (25.9) 0.766

FFP transfused gr 400 (0-1000) 0 (0-1300) 0.965

Patients transfused with FFP n (%) 12 (44.4) 12 (44.4) 0.784

RBC: Red blood cell; PLT: Platelets; FFP: Fresh frozen plasma.

Table 4 Thromboelastographic variables were statistically different during liver transplantation and between the two study groups

Thromboelastographic parameters Case group (27 pts) Control group (27 pts) P value

R basal min 26.8 ± 12.5 23.5 ± 12 0.327

K basal min 13.2 (8.8-20.3) 10 (6.7-17.5) 0.200

α basal degrees 17.3 ± 9.1 22 ± 11 0.093

MA basal mm 39.5 ± 12.4 43.2 ± 12.7 0.284

Lysis 30’ basal % 0 (0-0.1) 0 (0-0.1) 0.726

Lysis 60’ basal % 1 (0-2.5) 0.7 (0-4) 0.881

G parameter basal dyne/cm2 3661 (2342-4228) 2061 (1787-3122) 0.001

R 120’postrep min 18.4 ± 8 16.8 ± 5.9 0.407

K 120’ postrep min 7.9 (5.05-9.05) 7.9 (6.5-11.1) 0.638

α 120’ postrep degrees 27.5 ± 10.8 27 ± 11.7 0.871

MA 120’ postrep mm 36. 8 ± 12.6 37.6 ± 11.7 0.810

Lysis 30’ 120 postrep % 0 (0.0-0.0) 0 (0.0-0.0) 0.107

Lysis 60’ 120 postrep % 0.0 (0.0-1.9) 0.5 (0.3-5.5) 0.035

G parameter postrep dyne/cm2 4502 ± 2914 2078 ± 1528 < 0.001

delayed recovery which is responsible for an imbalance of coagulation towards 
hypercoagulability lasting a variable period of time after LT. The old concept of the 
cirrhotic patient as an anticoagulated patient has been replaced[20,21]. Thrombo-
cytopenia, typical of end-stage liver disease, is somehow compensated by a preserved 
platelet adhesion. Awareness of all these changes is responsible for shifting the focus 
on the possible thromboembolic complications of LT, justifying the need for more 
reliable tests capable of identifying patients at greater thrombotic risk[22].

Novel studies have begun to stress that a condition of perioperative hyper-
coagulability may be responsible for complications such as HAT, PVT and other 
systemic thrombotic events. MA is an expression of clot strength, reflecting platelet 
count and function, fibrinogen levels, and the interaction between platelets and 
fibrinogen. Specifically, in LT surgery, the MA value at preoperative TEG is an 
independent factor correlated with an increased incidence of early HAT[16]. A cut-off 
value of 65 mm was found by Area Under the Curve analysis, with a decent sensitivity 
of 70%: Above that value, the hazard ratio for early HAT was 5.28, suggesting it is a 
powerful screening tool that could be used to identify patients at risk of experiencing 
early HAT. Similarly, a greater than normal postoperative MA value, in a large series 
of patients undergoing various types of surgical procedures, has been shown to be a 
risk factor for postoperative thrombosis[23]. Maximum Clot Firmness, which is the 
equivalent of MA in ROTEM®, is abnormally increased and is correlated with a higher 
PVT risk in noncirrhotic patients and hepatocellular carcinoma and cholangio-
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Table 5 Distributions of normal and abnormal thromboelastography parameters at different times during the observation period, n (%)

Thromboelastographicparameterss Basal control Basal cases P value 120 Post-rip control 120 Post-rip cases P value

Minor 4 (14) 1 (4) 4 (14) 5 (18)

Major 7 (26) 8 (30) 1 (4) 6 (22)

R basal

Normal 16 (60) 18 (66)

0.371

22 (82) 16 (60)

0.099

Minor 13 (48) 17 (63) 20 (74) 19 (70)

Major 3 (11) 1 (4) 1 (4) 1 (4)

MA basal

Normal 11 (41) 9 (33)

0.420

6 (22) 7 (26)

0.950

FS 13 (48) 15 (56) 15 (55) 23 (85)

Hyper 5 (19) 7 (26) 7 (26) 1 (4)

Lysis 60’ basal

Physiol 9 (33) 5 (18)

0.445

5 (19) 3 (11)

0.043

FS: Fibrinolysis shutdown.

carcinoma patients[24-26].
Different to these authors, in our case group, both basal MA and 120’ 

postreperfusion MA did not show any statistical correlation with thrombosis and was 
larger than normal in only 4% of patients. The majority of patients who had 
thrombotic complications in our series showed reduced cloth strength at the chosen 
time of observation, rejecting the role of increased clot strength as a risk factor for HAT 
or PVT. The absence of hypercoagulability findings among our patients was also 
confirmed by the G value, which similar to Krzanicki et al[14], was significantly related 
to HAT and PVT, but at no time during observation pointed to hypercoagulability. In 
particular, in the case group, the G value measured at basal and postreperfusion time 
was within the normal reference range compared to the control group where the G 
value pointed to mild hypocoagulability.

Different to other studies, we hypothesized that TEG performed 120’ 
postreperfusion is more comprehensive and clinically reliable than at basal for 
evaluating the coagulative status of the patients. It is extremely unlikely that the TEG 
performed at the beginning of the intervention is representative of the coagulation 
balance at the end of surgery. The surgical procedure itself, transfusions, volume 
shifts, the hemodynamic instability, and above all, the new graft, will not fail to 
influence the coagulation balance reached at the end of the intervention. It is 
reasonable that TEG at 120’ postreperfusion, more so than the basal value, is 
representative of the coagulation conditions responsible for an increased thrombotic 
risk. Similar to Nicolau-Raducu et al[13], in our study, FS was the dominant fibrinolysis 
phenotype in LT recipients at the basal time (48% in the control group vs 56% in the 
case group) and at 120’ postreperfusion (67% in the control group vs 85% in the case 
group).

Different to Nicolau-Raducu et al[13], in our study, the FS phenotype was 
significantly associated with thrombotic complications only for the 120’ 
postreperfusion TEG and not at the basal time. As explained, it is more probable that a 
thromboelastographic trace evaluated at the end of surgery is more representative of 
the risk of a thrombotic complication than a TEG performed at the beginning of the 
operation.

In LT, as in other settings the prothrombotic predisposition of an FS phenotype has 
been recognized to be associated with thrombotic complications as we have 
underlined in this study for early HAT and PVT[27,28]. Fibrinolysis represents a 
physiologic mechanism capable of maintaining microvascular patency by lysing 
excessive fibrin clots. It is conceivable that an FS phenotype found at the end of LT is 
responsible for the failure of this mechanism, causing HAT and PVT complications. 
The coagulation balance in the cirrhotic patient is extremely unstable and often 
unpredictable, and it is possible that the FS condition is an expression of an unstable 
coagulation status which can rapidly tend toward thrombosis. The use of viscoelastic 
tests in detecting a reduction of physiologic fibrinolysis during LT seems helpful in 
better hypothetically managing antifibrinolytic therapy or thromboprophylaxis. It 
remains unclear whether these tests during surgery could offer additional benefits, 
and considerable uncertainties persist regarding the accuracy of their measures[29]. 
However, our findings suggest that a reduction in fibrinolytic activity detected by 
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viscoelastic testing identifies certain patients at risk for both PVT and HAT such that a 
causal relationship needs further research to demonstrate a conclusive link.

This study’s limitations are its retrospective nature, the limited sample size and the 
fact that the study did not prolong TEG evaluation into the postoperative period, 
making it difficult to draw conclusions on the persistence of the FS phenotype.

CONCLUSION
To our knowledge, this study is the first to analyze the possible correlation between 
TEG parameters measured at the end of surgery and thrombotic complications, and to 
associate fibrinolysis reduction (FS phenotypes) and a normal clot strength (G value) 
with vascular thrombotic complications. Despite no signs of hypercoagulability 
detected by viscoelastic testing, an FS phenotype with a normal clot strength seems to 
put certain patients in an at-risk group for thrombotic events.

ARTICLE HIGHLIGHTS
Research background
End-stage liver disease has been generally perceived as a hypocoagulable condition, 
related to an increase in bleeding risk in the case of invasive procedures. In cirrhotic 
patients, coagulopathy is a composite condition in which rebalanced hemostasis is 
realized by the simultaneous reduction in pro- and antihemostatic factors, responsible 
for a new hemostatic balance which can tip toward thrombosis or bleeding. In cirrhotic 
patients, the rebalanced coagulation, together with the reduction in hemorrhagic 
complications during liver transplantation have made surgeons and anesthetists more 
conscious and frightened of possible venous or arterial thrombotic events.

Research motivation
Thrombotic events associated with liver transplantation (LT) may be more frequent 
than believed in the past, sometimes representing a potential risk to patients' lives and 
organ survival. Changes in the hemostatic system, intra- and postoperative blood 
products transfusion and surgical causes may contribute to the development of vessel 
thrombosis. Independent of the real cause of the prothrombotic status, more efforts on 
the rapid detection and prevention of such complications are necessary.

Due to the limits of conventional coagulation tests in recognizing alterations in the 
hemostatic balance, in recent years viscoelastic tests, such as thromboelastography 
(TEG), have gained increasing importance. The use of TEG in identifying 
hypercoagulation status during LT has been shown to be useful in better guiding 
blood product transfusion or, theoretically, prophylactic therapy. If its usefulness in 
identifying coagulopathy has already been shown in LT, its ability to recognize 
hypercoagulation has yet to be demonstrated.

Research objectives
Encouraging results suggest that hypercoagulability detected by TEG can increase the 
probability of venous or arterial thrombotic complications in certain patients. The 
presence of hypercoagulability, represented by TEG variables, can be predictive of 
thromboembolic complications in patients following surgery. In the present study, we 
aimed to verify if patients who developed hepatic artery or portal vein thrombotic 
complications showed predictive thromboelastographic indices which can be used for 
early detection of these complications in patients at greater risk.

Research methods
To achieve our objective, we adopted a retrospective case-control study. The goal was 
to determine if there was an association between the risk factor (specific TEG 
variables) and the outcome of interest [hepatic artery thrombosis (HAT) and portal 
vein thrombosis (PVT)]. We hypothesized that TEG performed 120’ postreperfusion is 
more comprehensive and clinically reliable than at basal for evaluating the coagulative 
status of the patients.

Research results
A comparison between the case and control groups showed some statistically 
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significant differences in the duration of surgery (longer in the case group; P = 0.032) 
and in two thromboelastographic parameters (G value measured at basal and 120’ 
postreperfusion time and LY60 measured at 120’ postreperfusion time). G value, a 
mathematical conversion of the MA value, was higher, although within the reference 
range, in the case group than in the control group (P = 0.001 and P < 0.001, 
respectively). In addition, LY60 measured at 120’ postreperfusion time was lower in 
the case group than in the control group (P = 0.035). This parameter is representative 
of a fibrinolysis shutdown in 85% of patients who experienced a thrombotic 
complication, resulting in a statistical correlation with HAT and PVT. Given the 
retrospective nature of our study, further research is needed in this area, but 
postoperative TEG seems to be a more accurate surrogate marker for the "real" 
hemostatic balance in recipients, possibly identifying those patients with a 
postoperative condition that increases the risk of HAT or PVT.

Research conclusions
Our study suggests that TEG can be used to identify patients at an increased risk of 
thromboembolic events due to postoperative normal clot strength or fibrinolysis 
reduction, directing appropriate and more intense investigations to detect early HAT 
and PVT. Thromboelastography identification of an increased thrombotic risk, may 
also suggest the more frequent use of thromboprophylaxis.

Research perspectives
Our findings suggest that a reduction in fibrinolytic activity and a normal clot strength 
(G value) detected by viscoelastic tests, identify some patients at risk of both PVT and 
HAT. This causal relationship requires further research to prove a conclusive link. 
Large randomized controlled trials could help in the stratification of patients with a 
higher postoperative thrombotic tendency eventually directing postoperative 
thromboprophylaxis and more intense surveillance to maximize the likelihood of early 
diagnosis.
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Abstract
BACKGROUND 
Guatemala is a developing country in Central America with limited health 
resources. In order to expand successful renal transplant care to children and 
adolescents at the lowest possible cost, our pediatric renal transplant clinic uses a 
post-transplant tacrolimus-sparing strategy via inhibition of CYP3A4.

AIM 
To study the safety, efficacy and the associated cost reduction of ketoconazole in 
combination with tacrolimus in this pediatric population.

METHODS 
A retrospective chart review was carried out among the cohort of pediatric renal 
transplant recipients treated at the Foundation for pediatric renal patients 
(Fundación para el Niño Enfermo Renal - FUNDANIER), a pediatric tertiary care 
renal transplant center in Guatemala City, Guatemala. Patient charts were 
reviewed to ascertain the number of transplant recipients who were transitioned 
from tacrolimus based immunosuppression to combination therapy with 
ketoconazole and tacrolimus. Twenty-five post-transplant patients that used 
ketoconazole combined with tacrolimus were identified. Anthropometric, clinical 
and laboratory data was collected from patient charts before and after the 
transition.

RESULTS 
Of the 25 patient charts reviewed 12 (48%) patients were male and the average 
patient age was 13 years. Twenty-four (96%) transplants were from living donors. 
There was a non-significant difference between the mean tacrolimus doses six 
months and two months prior to ketoconazole: -0.10 ± 0.04 (95%CI: 0.007, -0.029), 
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P = 0.23. However, the difference between the mean tacrolimus doses six months 
prior to ketoconazole initiation and six months after ketoconazole addition was 
significant: 0.06 ± 0.05 (95%CI: -0.034, -0.086) P < 0.001. All tacrolimus doses were 
reduced by 45% after the addition of ketoconazole. Therapeutic levels of 
tacrolimus ranged between 6.8-8.8 ng/mL during the study period and patients 
demonstrated an increase in estimated glomerular filtration rate. The combination 
of tacrolimus and ketoconazole resulted in a 21% reduction in cost.

CONCLUSION 
Patients experienced an effective dose-reduction of tacrolimus with the 
administration of ketoconazole. There was no relevant variations in tacrolimus 
serum levels, number of rejections, or significant liver toxicity. The strategy 
allowed a cost reduction in pediatric immunosuppressive therapy.

Key Words: Transplant; Immunosuppression; Tacrolimus; Ketoconazole; Pediatric; Chart 
review
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Core Tip: In the most advanced stages of chronic kidney disease, transplantation 
improves patient survival. However, in low to middle income countries, transplantation 
is not feasible due to the high cost associated with transplant maintenance. 
Expenditures may be mitigated by pharmacokinetically boosting transplant 
medications. We present the addition of ketoconazole to post transplant regimens to 
boost therapeutic levels of tacrolimus, thus maintaining efficacy while reducing total 
daily doses. We found that therapeutic levels of tacrolimus were preserved during the 
study period, patients demonstrated an improvement in estimated glomerular filtration 
rate and a 21% reduction in medication cost.

Citation: Méndez S, Ramay BM, Aguilar-González A, Lou-Meda R. Exploring the safety and 
efficacy of adding ketoconazole to tacrolimus in pediatric renal transplant immunosuppression. 
World J Transplant 2020; 10(11): 356-364
URL: https://www.wjgnet.com/2220-3230/full/v10/i11/356.htm
DOI: https://dx.doi.org/10.5500/wjt.v10.i11.356

INTRODUCTION
Treating pediatric patients with End-Stage Renal Disease (ESRD) in low to middle 
income countries is challenging[1-3]. Unfavorable socioeconomic conditions, insufficient 
numbers of pediatric clinics treating ESRD, limited access to medication, and clinics 
working with limited resources to treat patients with renal replacement therapy (RRT), 
all pose serious challenges for clinicians and patients with ESRD[1,4,5]. In addition to 
clinical challenges, government expenditures on health in Low to Middle Income 
Countries (LMIC) have been shown to range from 2.6% to 9% of the national Gross 
Domestic Product (GDP), a small fraction of each nation's income[1]. These clinical 
barriers to care, combined with paucity in national investment in RRT, result in a 
significant number of patients left without healthcare services treating RRT. 
Worldwide data show that over 2 million people are kept alive by RRT, the majority of 
whom are treated in only five countries (United States, Japan, Germany, Brazil, and 
Italy) constituting only 12% of the world´s population[6]. In contrast, only 20% are 
treated in about 100 LMIC that make up over 50% of the world's population[6]. For 
every 1 million population with ESRD, less than 100 are treated in LMIC countries. In 
contrast, more than 1000 per million population are treated in high income countries; 
the prevalence of RRT is higher in countries with higher incomes[7]. This depicts a clear 
and direct association between GDP and availability of RRT.

The population of Guatemala exceeds 16 million inhabitants, 61% of which are 
under the age of twenty one[8]. ESRD incidence in children in Guatemala is 4.6 per 
million age-related population (pmarp)[9,10]. As in other LMIC, clinics struggle to obtain 
the necessary resources to provide RRT for pediatric patients. The Foundation for 
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Children with Kidney Diseases (FUNDANIER) was founded in 2007 in agreement 
with the Ministry of Health through Roosevelt Hospital, and created the first program 
providing free access to comprehensive RRT including transplantation, and 
immunosuppressive treatment, to Guatemalan children[9,10]. In our program we 
previously reported a patient population of 432 patients with chronic kidney disease 
(CKD) stage 2 or more. Of these, 193 were stage 5 CKD of whom 40% received 
peritoneal dialysis, 26.4% received hemodialysis, 12.4% received a transplant, and 17.6 
% were managed without RRT[9].

Transplant clinics in developing countries other than Guatemala have similar goals 
and objectives in expanding successful renal transplant care at the lowest possible cost, 
and have reported the combined use of ketoconazole with low-dose tacrolimus to 
increase tacrolimus bioavailability through metabolic inhibition via P450 3A4[11-17]. 
Small short-term studies had previously supported such practice in Egypt, México, 
United States and India resulting in an annual cost savings of up to 60% in the 
immunosuppressive protocol while maintaining safety and efficacy of therapy in 
adults[11-14]. This combination has yet to be used in Central America where outcomes 
using the combination, especially in children, are still unknown[11,12].

The objective of this study was to identify the changes in tacrolimus dose and 
plasma concentration associated with the use of ketoconazole as a pharmacokinetic 
booster. We explore the safety, efficacy and the associated cost reduction of this 
combination in a retrospective cohort of children with kidney transplant in the 
FUNDANIER.

MATERIALS AND METHODS
After approval by the Research Ethics Committee at the Universidad del Valle de 
Guatemala (QF-010-febrero2015), we performed a retrospective evaluation of all 
pediatric renal recipients who received concomitant ketoconazole in tacrolimus-based 
immunosuppression in the FUNDANIER, a tertiary care renal transplant center in 
Guatemala. FUNDANIER carries out approximately 8-10 pediatric renal transplants 
per year in a population where patients are at, or below the national poverty line. 
Maintenance immunosuppressive treatment costs USD 725 per month for an average 
patient weighing 20 kg (this cost represents the average of protocol A and protocol B 
for a 20 kg-patient)[18-21].

At FUNDANIER, patients do not have to pay for transplant services and 
medications, as they are provided by the clinic. In order to achieve optimal cost benefit 
outcomes while maximizing patient coverage, immunosuppressive protocols are 
designed to treat patients at the lowest possible price[22-27].  For example, initial post-
transplant protocol calls for use of tacrolimus, mycophenolate and prednisone 
(protocol A) after completing one year on maintenance therapy at FUNDANIER, 
mycophenolate is replaced by azathioprine, a more affordable immunosuppressive 
medication (protocol B).  With this intervention, FUNDANIER has improved the 
access to maintenance immunosuppressive therapy, reducing the cost by 40%. For 
example, replacing protocol A with protocol B in a patient who weighs 20 kg results in 
a cost reduction from USD 904 per month to USD 544 per month[18-21]. These types of 
changes to immunosuppressive regimens have been used at FUNDANIER to 
successfully overcome budget constraints and more effectively provide medication to 
patients.

We carried out a retrospective observational study, with a pre-post single arm 
design[22] collecting information from 2011 to 2015 from a cohort of patient records 
stored in the FUNDANIER database before and after the addition of ketoconazole to 
the usual immunosuppressive protocol. Inclusion criteria for chart review were: Age 
younger than 18 years old, at least 3 mo in the program post-transplantation currently 
on the tacrolimus protocol, and switched to ketoconazole/tacrolimus combination 
during their outpatient transplant clinic attendance. Charts were reviewed to identify 
the point at which ketoconazole was added to the post-transplant treatment. A total of 
six documented visits were reviewed for each patient chart during the study: 3 visits 
prior to ketoconazole initiation and 3 visits after the combination was initiated. An 
average of 2 mo between each visit was documented.

Based on the pediatric nephrology service protocol, all patients in the chart review 
initially received the following maintenance immunosuppressive treatment (“protocol 
A”): Tacrolimus (0.1-0.3 mg/kg/d), mycophenolate (1200 mg/m2/d) and prednisone 
(5 mg/d). Ketoconazole suspension (100 mg/5 mL) at a dose of 1.5 mg/kg/d in one 
dose per 24 h was added to the immunosuppressive treatment (Ketospor 
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Qualipharm®) during the period of 2011-2015. Patients were instructed not to take 
macrolides or grapefruit at the time of the study.

Outcome measures obtained from patient charts were: (1) Tacrolimus dose/kg; (2) 
Serum tacrolimus levels (taken at hospital laboratory by the electrochemiluminescence 
(ECL) method and documented in charts); (3) Estimated glomerular filtration rate 
(eGFR) was estimated by the Schwartz formula[22] through creatinine measured by the 
Jaffe method; (4) Graft rejection, defined by the transplant team at the hospital as 
biopsy findings or a 50% elevation in serum creatinine without apparent cause, and 
with a favorable response to treatment with steroids; (5) Ketoconazole hepatotoxicity 
was defined as an increase in liver enzymes greater than twice the normal value 
compared to the reference laboratory (transaminases); and (6) Cost difference of 
immunosuppressive treatment.

Data analysis
Descriptive statistics were used to define the tacrolimus dose and serum concentration 
for each patient and for the entire population before, and after initiating therapy with 
ketoconazole. eGFR values were calculated during follow-up for graft stability and 
function. The number of graft rejection episodes before and after ketoconazole were 
reported, additionally, the number of cases where transaminases were two times the 
normal limit compared to laboratory reference values during ketoconazole 
combination were monitored and used as an indication of toxicity. The cost of 
immunosuppressive treatment is reported prior to and after ketoconazole use.

Mean differences in the dose of tacrolimus and eGFR before and after addition of 
ketoconazole were compared using the paired student’s t-test. Statistical significance 
was defined using a 95% confidence interval and P values less than 0.05.

RESULTS
According to the FUNDANIER database in 2015, twenty-five post-transplant patients 
used ketoconazole combined with tacrolimus. Twelve (48%) patients were male and 
the average age of the patients was 13 years. Ninety six percent of transplants were 
from living donors with a mean follow-up of 18.5 mo (± 20).

Tacrolimus dose and serum concentrations
The average recorded tacrolimus weight-based doses at six, four and two months prior 
to ketoconazole initiation were 0.13 mg/kg/d; 0.12 mg/kg/d; and 0.11 mg/kg/d, 
respectively. The average recorded tacrolimus weight-based doses at two, four and six 
months post-ketoconazole initiation were 0.09 mg/kg/d; 0.07 mg/kg/d; and 0.06 
mg/kg/d, respectively.

The mean tacrolimus blood levels at six, four and two months prior to ketoconazole 
initiation were: 7.4 ± 2.6 ng/dL; 7.4 ± 2.5 ng/dL; and 7.4 ± 2.6 ng/dL, respectively. The 
mean tacrolimus blood levels recorded at two, four and six month visits post-
ketoconazole initiation were:  8.8 ± 4.9 ng/dL; 6.9 ± 3.6 ng/dL; and 6.8 ± 3.2 ng/dL, 
respectively (Table 1).

There was a non-significant difference between the mean tacrolimus doses at six 
months and two months prior to ketoconazole:  -0.10 ± 0.04 (95%CI: 0.007, -0.029), P = 
0.23. However, the difference between the mean tacrolimus doses six months prior to 
ketoconazole initiation and six months after ketoconazole addition was significant: 
0.06 ± 0.05 (95%CI: -0.034, -0.086) P < 0.001.

There were no observed fluctuations in the blood levels of tacrolimus among 
patients during the visits before the combination, as compared to after the combination 
with ketoconazole (Table 1). None of the patient charts documented a variation in 
serum transaminase levels during the visits pertaining to use of the ketoconazole-
tacrolimus combination. Overall, a reduction in tacrolimus dose was observed.  The 
mean tacrolimus dose reduction was 45% (± 25%) after the addition of ketoconazole.

Renal function
The mean eGFR before the addition of ketoconazole was 69.2 (± 29.7) mL/min/1.73 m2 
and after the initiation of ketoconazole was 66.4 (± 23) mL/min/1.73 m2. Changes in 
eGFR were not significant (P = 0.062) (Table 1). However, patients demonstrated an 
increased eGFR level from 2 mo prior to the combination and 6 mo post-combination 
during the study period (P < 0.050).
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Table 1 Outcome measures

Documented visits reviewed:  
Tacrolimus alone 

Documented visits reviewed:  
Tacrolimus + ketoconazole combination

Outcome measures 
6 mo, mean 
(SD)

4 mo, mean 
(SD)

2 mo, mean 
(SD)

2 mo, mean 
(SD)

4 mo, mean 
(SD)

6 mo, mean 
(SD)

Tacrolimus dose (mg/kg/d) 0.13 (0.04) 0.12 (0.05) 0.11 (0.05) 0.09 (0.05)1 0.07 (0.03)1 0.06 (0.03)1

Tacrolimus blood levels 
(ng/mL)

7.4 (2.6) 7.4 (2.5) 7.4 (2.6) 8.8 (4.9) 6.9 (3.6) 6.8 (3.2)

eGFR (1.73 mL/min/1.73 m2) ---- ---- 69.2 (29.7)1 63.6 (21.4) 64.2 (2.10) 71.2 (27.6)1

1t-test, statistically significant when P < 0.05. SD: Standard deviation; eGFR: Estimated glomerular filtration rate.

Graft rejections
10 rejection episodes were reported during the study, the majority of which were 
reported before initiation of ketoconazole. Eight of ten cases (80%) were reported 
before the combination of ketoconazole and 2 of 10 (20%) episodes after the addition of 
ketoconazole to tacrolimus (Table 1).

Cost savings
The combination of tacrolimus and ketoconazole resulted in a substantial cost saving. 
The immunosuppressive therapy cost dropped from USD 872 (SD, 168) per patient to 
USD 691 (SD, 128) per patient. Given the variation in patient weight and the resulting 
associated cost of treatment, the mean cost reduction for the sample was 21% (SD, 17).  
This includes 18 patients with a reduction in cost ranging from (21%-42%), 6 patients 
with no change in cost (0%) and 1 patient with an increase in cost (+27%).

DISCUSSION
The combination of tacrolimus and ketoconazole resulted in a substantial tacrolimus 
dose reduction (45% reduction) while maintaining therapeutic levels (5-7 ng/mL) in 
pediatric transplant patients at FUNDANIER. Findings from this chart review are 
similar to other reports where the combination has been used in adults[15-18,20,23-26]. In one 
study from Mexico, eleven patients using the ketoconazole-tacrolimus combination 
post-transplant were followed for 15 mo (± 10 mo), and demonstrated a 78% dose 
reduction in tacrolimus while maintaining therapeutic immunosuppressive levels[25]. 
el-Dahshan et al[15], described a 59% reduction in the tacrolimus dose after six months 
of therapy in 70 Egyptian post-transplant patients. These patients ranged in age from 
16 to 45 years and demonstrated therapeutic tacrolimus levels upon using the 
ketoconazole combination[20]. After two years of therapy, the same Egyptian cohort 
successfully maintained immunosuppressive therapy using a reduced dose at 53.8% of 
the normal tacrolimus dose compared to the control group[27]. Elamin et al[13] also 
reported a 63% median tacrolimus dose reduction, ranging from 50% to 83% in 30 
Sudan patients. The mean age of these patients was 36 ± 12 years. During the one-year 
follow-up, tacrolimus remained in the therapeutic range, between 5-7 ng/mL. The 
differences in mean tacrolimus dose showed no significant variation upon 
ketoconazole initiation, nevertheless, 6 mo after initiation of the combination, there 
was a significant decrease in the tacrolimus dose. Here we describe the successful use 
of tacrolimus combined with ketoconazole in a population of pediatric transplant 
patients.

In our study, none of the patients in the ketoconazole group experienced a decrease 
in eGFR. We observed an improvement in eGFR when we compared the last visit of 
patients on the ketoconazole combination and the visit before the combination (P < 
0.001). Improvements in graft function with the addition of ketoconazole have been 
reported in previous studies[18,26] suggesting that a reduction in tacrolimus dose 
decreases the risk and prevalence of tacrolimus nephrotoxicity. Studies have 
demonstrated that improvement in eGFR leads to an increase in patient graft survival, 
and a reduction in graft loss[28,29], we therefore expect that patients using the 
ketoconazole-tacrolimus combination have an equally high chance of graft survival 
compared to patients on usual doses of tacrolimus.
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In our study, the rejection rate remained unchanged during treatment with the 
combination of ketoconazole and tacrolimus. However, other similar studies have 
demonstrated an increase in rejection rates in patients exposed to the combination of 
ketoconazole and tacrolimus when these patients have a high immunological risk, for 
example, those with African ethnicity, transplant recipients from cadaveric donors, 
and previously sensitized patients[16]. We found that the number of rejections did not 
differ before and after drug combination, most likely because the patient population at 
FUNDANIER fits into a low immunological risk group characterized as transplant 
recipients from living donors, HLA compatible and non-sensitized patients. Most 
importantly, stability in graft function did not fluctuate with the use of combination 
therapy.

In 2013, the United States Food and Drug Administration and the “Agencia 
Española de Medicamentos y Productos Sanitarios (AEMPS)” issued a restriction on 
ketoconazole use due to side effects, primarily hepatotoxicity and adrenal gland 
insufficiency[21]. Restrictions on ketoconazole were initiated in Guatemala several years 
later (after this study, 2016), but no policy changes in Guatemala regarding 
ketoconazole use in adults or children have been made. Despite these warnings and 
restrictions, we found no hepatotoxicity in our study and this is likely attributed to the 
small doses used in our pediatric population (1.3 mg/kg/d)[30,31]. Of note, tacrolimus 
itself is known to cause an increase in transaminases[32], therefore our patients may 
have been protected by the dose reduction of tacrolimus with the combination of 
ketoconazole. Findings from our observational study may be supported by larger 
experimental studies in order to draw conclusions regarding the safety of 
ketoconazole.

The combination of tacrolimus and ketoconazole resulted in substantial cost savings 
while preserving the safety profile for our post-transplant patients[16,24,26]. Other similar 
studies, from Sudan, United Kingdom and Egypt have shown substantial cost 
reductions, ranging from 52% to 60% when using the combination[15,18,20]. As in many 
other LMIC, the small percent of GDP dedicated to health care in Guatemala 
compromises the local government’s ability to provide transplant medication to the 
population. Cost reduction in transplant medications helps to mitigate barriers in 
treatment access[33]. Within the socioeconomic setting of FUNDANIER, 18 of 25 
patients experienced a cost reduction allowing the clinic to treat a greater number of 
transplant patients.

We recognize the limitations of this study which are typical of retrospective chart 
reviews carried out with few patients during short periods of time. For example, liver 
function tests were the only values recorded from patient charts to document the side 
effects of ketoconazole use.  Metabolic and adrenal side effects, that may be the result 
of ketoconazole use, were not documented in this study. Nevertheless, if serious 
adverse events due to ketoconazole use had occurred (i.e., metabolic adverse events, 
abnormalities in EKG), they would have been reported to the equivalent of the 
regulatory department in Guatemala and documented within this study. Also, our 
study represents a small proportion of patients who receive renal transplants in the 
LMIC setting and may not be representative of all patients in other countries. In the 
FUNDANIER clinic population, the safety and efficacy of tacrolimus and ketoconazole 
have been successfully observed in pediatric post-renal transplant patients 
demonstrating a significant cost reduction.  However, larger studies need to be carried 
out to capture broad safety and efficacy profiles in this patient population. These types 
of interventions are of added benefit in the LMIC setting where access to medications 
post-transplant is problematic.

CONCLUSION
Patients experienced an effective dose-reduction of tacrolimus with the administration 
of ketoconazole. No relevant variations in tacrolimus serum levels, number of 
rejections, or significant liver toxicity were observed. This allowed a significant cost 
reduction in the use of pediatric immunosuppressive therapy.

ARTICLE HIGHLIGHTS
Research background
Transplant clinics in developing countries continually aim to provide successful renal 
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transplant care at the lowest possible cost, and have reported that the combined use of 
ketoconazole with low-dose tacrolimus increases tacrolimus bioavailability through 
metabolic inhibition via P450 3A4.

Research motivation
This combination has been used successfully in adult transplant patients, but has not 
been demonstrated in pediatric patients. In order to expand successful renal transplant 
care to children and adolescents at the lowest possible cost, our pediatric renal 
transplant clinic uses a post-transplant tacrolimus-sparing strategy via inhibition of 
CYP3A4.

Research objectives
The objective of this study was to identify the changes in tacrolimus dose and plasma 
concentration associated with the use of ketoconazole as a pharmacokinetic booster. 
We describe the safety, efficacy and the associated cost reduction of this combination 
from a retrospective cohort of children with a kidney transplant in the FUNDANIER.

Research methods
We carried out a retrospective observational study, with a pre-post single arm design 
collecting information from 2011 to 2015 from a cohort of patient records stored in 
FUNDANIER database before and after the addition of ketoconazole to the usual 
immunosuppressive protocol. Inclusion criteria for chart review were: Age younger 
than 18 years, at least 3 mo post-transplantation, currently on the tacrolimus protocol, 
and switched to ketoconazole/tacrolimus combination during their outpatient 
transplant clinic attendance. Charts were reviewed to identify the point at which 
ketoconazole was added to the post-transplant treatment. A total of six documented 
visits were reviewed for each patient chart during the study: 3 visits prior to 
ketoconazole initiation and 3 visits after the combination was initiated. An average of 2 
mo between each visit was documented.

Research results
Of the 25 patient charts reviewed, 12 (48%) patients were male and the average age of 
the patients was 13 years. Twenty-four (96%) transplants were from living donors. 
There was a non-significant difference between the mean tacrolimus doses six months 
and two months prior to ketoconazole:  -0.10 ± 0.04 (95%CI: 0.007, -0.029), P = 0.23. 
However, the difference between the mean tacrolimus doses six months prior to 
ketoconazole initiation and six months after ketoconazole addition was significant: 
0.06 ± 0.05 (95%CI: -0.034, -0.086) P < 0.001. All tacrolimus doses were reduced by 45% 
after the addition of ketoconazole. Therapeutic levels of tacrolimus were preserved 
during the study period and patients demonstrated an improvement in eGFR. The 
combination of tacrolimus and ketoconazole resulted in a 21% reduction in cost.

Research conclusions
Patients experienced an effective dose-reduction of tacrolimus with the administration 
of ketoconazole. No relevant variations in tacrolimus serum levels, number of 
rejections, or significant liver toxicity were observed. This allowed for a safe, 
efficacious, and significant cost reduction in pediatric immunosuppressive therapy.

Research perspectives
In the FUNDANIER clinic population, the safety and efficacy of tacrolimus and 
ketoconazole were successfully observed in pediatric post-renal transplant patients 
demonstrating a significant cost reduction.  However, larger studies need to be carried 
out to capture broad safety and efficacy profiles in this patient population. These types 
of interventions are of added benefit in the low to middle income countries setting 
where access to medications post-transplant is problematic.
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Abstract
BACKGROUND 
Solid organ transplant recipients are considered to be at high-risk of developing 
coronavirus disease 2019 (COVID-19)-related complications. The optimal 
treatment for this patient group is unknown. Consequently, the treatment of 
COVID-19 in kidney transplant recipients should be determined individually, 
considering patient age and comorbidities, as well as graft function, time of 
transplant, and immunosuppressive treatment. Immunosuppressive treatments 
may give rise to severe COVID-19. On the contrary, they may also lead to a milder 
and atypical presentation by diminishing the immune system overdrive.

CASE SUMMARY 
A 50-year old female kidney transplant recipient presented to the transplant clinic 
with a progressive dry cough and fever that started three days ago. Although the 
COVID-19 test was found to be negative, chest computed tomography images 
showed consolidation typical of the disease; thus, following hospital admission, 
anti-bacterial and COVID-19 treatments were initiated. However, despite clinical 
improvement of the lung consolidation, her creatinine levels continued to 
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increase. Ultrasound of the graft showed no pathology. The tacrolimus blood level 
was determined and the elevation in creatinine was found to be related to an 
interaction between tacrolimus and azithromycin.

CONCLUSION 
During the COVID-19 pandemic, various single or combination drugs have been 
utilized to find an effective treatment regimen. This has increased the possibility 
of drug interactions. A limited number of studies published in the literature have 
highlighted some of these pharmacokinetic interactions. Treatments used for 
COVID-19 therapy; azithromycin, atazanavir, lopinavir/ritonavir, remdesivir, 
favipiravir, chloroquine, hydroxychloroquine, nitazoxanide, ribavirin, and 
tocilizumab, interact with immunosuppressive treatments, most importantly with 
calcineurin inhibitors. Thus, their levels should be frequently monitored to 
prevent toxicity.

Key Words: COVID-19; Kidney transplantation; Drug interaction; Pharmacokinetics; 
Azithromycin; Case report; Calcineurin inhibitor

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This case report is illustrative for dilemmas experienced by transplant 
professionals while managing kidney transplant recipients with coronavirus disease 
2019 (COVID-19). By reporting this case, we intend to create awareness of drug 
interactions observed in renal transplant recipients with COVID-19.
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INTRODUCTION
Kidney transplant recipients are considered a high-risk group for coronavirus disease 
2019 (COVID-19)-related complications due to the vulnerability constituted by 
immunosuppressive treatments. The duration after transplant and graft function are 
the most crucial factors for the management of kidney transplant recipients with 
COVID-19[1]. A kidney transplant recipient`s risk of developing COVID-related 
complications should be evaluated individually considering immunosuppressive 
treatment and comorbidities (diabetes, hypertension, chronic kidney disease, and 
atherosclerotic disease)[2].

On the other hand, immunosuppressive therapy may have positive effects on the 
disease course in kidney transplant recipients with COVID-19 by decreasing the viral 
load. Several studies have demonstrated that COVID-19 viral replication depended on 
active immunophilin pathways. The immunosuppressive drugs tacrolimus and 
cyclosporine arrested coronavirus proliferation in human cells and inhibited their 
replication through these pathways[3,4].

In addition to classic clinical symptoms of COVID-19, renal transplant recipients 
may present with atypical symptoms, such as diarrhea and vomiting. This atypical 
presentation with a negative COVID-19 test may lower the suspicion of infection in an 
otherwise infected individual. Therefore, in the case of controversy, unenhanced chest 
scans with a low dose of IV contrast should be obtained to ensure patient safety and 
reduce complications.

This study demonstrates the lessons learned while managing a kidney transplant 
recipient infected with COVID-19 and the pharmacokinetic interactions encountered 
related to its treatment.
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CASE PRESENTATION
Chief complaints
A 50-year old female kidney transplant recipient presented to the transplant clinic 
with a progressive dry cough and fever that started three days ago.

History of present illness
She described accidentally being in contact with a symptomatic COVID-19 positive 
individual 7 d prior to her cough and fever.

History of past illness
She had received a standard criteria deceased donor kidney seven years ago with anti-
thymocyte globulin induction. Since then her kidney function was stable with 
maintenance immunosuppressants consisting of tacrolimus (1.5 mg/d), 
mycophenolate mofetil (720 mg/d), and prednisone (5 mg/d).

Personal and family history
She did not smoke, consume alcohol, or have coronary artery disease. Her only 
comorbidity was mild hypertension treated with amlodipine (10 mg/d). Her family 
history was unremarkable.

Physical examination
On examination, her temperature was 38 °C, heart rate 100 bpm, respiratory rate 14 
breaths/min, blood pressure 120/60 mmHg, and oxygen saturation 96%. Auscultation 
of the chest revealed bilateral fine crackles at the base of the lungs.

Laboratory examinations
Her graft function was stable with a minimum elevation from her baseline creatinine 
of 0.9 to 1.1 mg/dL. The glomerular filtration rate was 58.5 mL/min. Complete blood 
count showed increased white blood cells (20800/μL) with a total lymphocyte count of 
1210/μL. The hemoglobin and platelet counts were 10.6 g/dL and 177.000/μL, 
respectively. The remaining biochemical parameters were within normal ranges. A 
high level of C-reactive protein (CRP) was noted (276 mg/L). Complete urine analysis 
was unremarkable. Lastly, her trough tacrolimus level was 5.5 ng/mL.

Imaging examinations
Chest X-ray was normal. Although the patient did not give a history of traveling 
abroad or contacting COVID-19 positive individuals, a chest computed tomography 
(CT) scan was obtained. The scan revealed consolidation areas with air bronchograms 
in the left lower lobe with pneumonic infiltrations (Figure 1). A nasopharyngeal swab 
to test for COVID-19, influenza A/B was obtained. Additionally, blood samples for 
cytomegalovirus (CMV) and BK virus serology were sent to the microbiology 
department to diagnose opportunistic viral infections.

FINAL DIAGNOSIS
With an infectious disease specialist`s recommendations and considering the chest CT 
images showing consolidation typical of the disease, anti-bacterial and COVID-19 
treatments were initiated. This empirical treatment consisted of piperacillin-
tazobactam (4.5 g three times a day), azithromycin (500 mg load, then 250 mg/d), 
chloroquine (800 mg/d load, then 400 mg/d), and oseltamivir (75 mg/d). No 
modification of the existing maintenance immunosuppressive treatment was 
considered at this time (antiproliferative, calcineurin inhibitor, steroid).

TREATMENT
Upon admission to hospital, intravenous hydration was initiated to support oral 
hydration and maintain daily urinary output.  On the second day of admission 
creatinine continued to rise to 1.2 mg/dL. Ultrasound of the abdomen and transplant 
revealed no pathology. The COVID-19, influenza, CMV, and BK virus results were 
negative. Oseltamivir treatment was ceased and although the COVID-19 polymerase 
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Figure 1  Computed tomography scan of the chest, which showed consolidation areas with air bronchogram in the left lung lower lobe, 
and pneumonic infiltration. Coronavirus disease 2019 was not eliminated.

chain reaction (PCR) test was negative, chloroquine 400 mg/d and azithromycin 250 
mg/d were continued due to the suspicious findings on chest CT and the patient’s risk 
group. To treat possible bacterial pneumonia, piperacillin-tazobactam (4.5 g three 
times a day) administration was continued for a further ten days.

OUTCOME AND FOLLOW-UP
The creatinine level continued to increase on the 6th post-admission day up to 1.4 
mg/dL. One the same day tacrolimus trough level was found to be 23.58 ng/mL 
(Table 1). The elevation in creatinine was considered to be due to high tacrolimus 
blood levels. The medication list was reviewed by the transplant nephrology team for 
possible drug interactions. Macrolide antibiotics were thought to be the cause of this 
elevation. As the patient had no fever since admission and both blood cell count and 
CRP levels had returned to normal ranges, the macrolide antibiotic azithromycin was 
stopped. Subsequently, the serum tacrolimus level decreased to within the therapeutıc 
range (5.9 ng/mL), and creatinine levels returned to baseline. The patient was 
discharged on the 7th postadmission day, a follow-up appointment at the outpatient 
clinic one week later showed excellent graft function.

DISCUSSION
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing COVID-19, 
which was first identified in Wuhan, China at the end of 2019, has become a 
worldwide pandemic. Contact history, clinical, laboratory, and imaging findings 
should be combined for an accurate diagnosis. Most patients with COVID-19 do not 
have severe respiratory problems and present with mild, flu-like symptoms. The most 
common symptoms recorded included fever, dry cough, myalgia, and tiredness. 
Among the diagnostic tests PCR, as well as, lymphopenia and bilateral ground-glass 
opacification on CT scan were found to be highly beneficial in the diagnosis of 
COVID-19[6,7].

On the other hand, COVID-19 may have a variety of presentations in renal 
transplant recipients. The few cases reported in the literature provide low-quality 
scientific evidence[1,2,8-10]. There is a lack of evidence-based effective antiviral treatment 
for COVID-19. While experimental pharmacological therapy with limited scientific 
evidence can be wise in addition to a risk-benefit calculation, pharmaceutical 
interactions should always be kept in mind.

Patients of any age with a medical diagnosis of cancer, chronic kidney disease, 
chronic obstructive pulmonary disease, obesity, heart failure, and type 2 diabetes fall 
into the risk group for COVID-related complications. Additionally, elderly patients 
over 65 years of age are associated with higher intensive care unit (ICU) admission 
rates when infected with COVID-19. The 50-year-old patient described in this report 
only had the risk factor of receiving immunosuppressive treatment.
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Table 1 Laboratory findings on admission and follow-up of the patient

Admission PA-day 2 PA-day 4 PA-day 6 PA-day 8 PA-day 10 Clinic

Urea (mg/dL) 45 49 53 59 50 42 40

Creatinine (mg/dL) 1.1 1.2 1.3 1.4 1.2 1.1 0.9

eGFR (CKD-EPI) (mL/min/1.73 m²) 58.5 52.7 47.8 43.7 52.7 58.5 76.4

Tacrolimus level (ng/mL) 5.5 7 - 23.58 12 6.3 5.9

eGFR: Estimated glomerular filtration rate; PA: Post admission.

Patients with clinical suspicion and positive thoracic CT findings or PCR test results 
considered to have COVID are treated as per the recommendations of the Turkish 
Ministry of Health COVID treatment guidelines.  The patient described in this report 
had unilateral pneumonic infiltration without ground glass opacification on the CT 
scan. Although the PCR test result was negative, COVID-19 treatment was initiated 
due to the CT findings and the patient's status. As our patient was not critically ill, no 
modification of the immunosuppressive regimen was required.

Literature reports show the impact of uncontrolled inflammation and cytokine 
storm syndrome on COVID-19 related mortality[11]. As a result, new treatment methods 
are focused on diminishing uncontrolled inflammation and preventing excessive 
cytokine release such as interleukin (IL)-6, IL-1, and tumor necrosis factor (TNF) alpha. 
Maintenance immunosuppressive treatments may have a positive impact on disease 
progression by reducing viral replication, suppressing the cytokine storm, and 
preventing immune activation[12].  On the other hand, patients with COVID-19 
presenting with critical illness constitute a different dilemma. As critical illness due to 
COVID-19 is a life-threatening multisystem condition that can lead to significant 
morbidity and mortality in renal transplant recipients, immunosuppressive therapies 
should be modified to avoid serious complications. These modifications should be 
evaluated individually as one case is not the same as another. Briefly, a targeted 
immunosuppression regimen should be preferred.

The targeted immunosuppression regimen should include a low-dose corticosteroid 
(CS) due to its anti-inflammatory effects and immunomodulatory characteristics. 
Additionally, inhibition of proinflammatory cytokines by steroids maintains the 
integrity of vascular endothelium and regulates endothelial permeability. Thus, it is 
common to increase the CS dose while decreasing or stopping the other immuno-
suppressive treatments. Antiproliferative immunosuppressant agents should be 
ceased during COVID-19 therapy. It is not clear whether calcineurin inhibitor (CNI) 
doses should be reduced or not. CNI withdrawal is recommended for patients with 
severe pneumonia that may need intubation[8].

During the COVID-19 pandemic, various single or combination drugs have been 
used in the search for an effective treatment.  The search underscores the significance 
of drug interactions. QT monitoring is mandatory when hydroxychloroquine and 
azithromycin are combined[13]. QT prolongation, mostly seen in pharmaceutical 
interactions, was not detected in our patient. A limited number of studies have 
emphasized the significance of pharmaceutical interactions between immuno-
suppressive treatments and COVID-19 therapy[14]. Medications used for COVID-19 
therapy, including, azithromycin, atazanavir, lopinavir/ritonavir, remdesivir, 
favipiravir, chloroquine, hydroxychloroquine, nitazoxanide, ribavirin, and tocilizumab 
may interact with immunosuppressive treatments through different pathways. 
Mycophenolate potentially interacts with lopinavir/ritonavir.  A dose reduction and 
close laboratory monitoring are required when both drugs are used in combination. 
Sirolimus is known to increase the level of atazanavir and lopinavir/ritonavir; 
therefore, their combination is contradictory. Calcineurin inhibitors increase the serum 
levels of atazanavir, lopinavir/ritonavir, chloroquine, and hydroxychloroquine. Dose 
adaptation and close monitoring are recommended. Finally, CNI may slightly decrease 
tocilizumab levels[15]. Macrolides increase CNI levels through their interaction with the 
p450 enzyme. The macrolide azithromycin is well known for its minimal effect on the 
p450 enzyme system[16].

Our patient demonstrated elevated tacrolimus drug levels and a subsequent 
increase in serum creatinine, as a result of the addition of azithromycin to treat 
COVID-19. After the withdrawal of azithromycin, tacrolimus levels rapidly returned 
to target values. Target CNI values for renal transplant patients with COVID-19 
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should be between 4 and 6 ng/mL. As azithromycin may interact with CNI, CNI blood 
levels should be checked frequently when both are combined.

CONCLUSION
Kidney transplant patients are at risk of COVID-19 depending on the time of 
transplant, graft function, age, and comorbidities. Immunosuppression may lead to 
severe COVID-19 with complications. However, a decrease in viral load due to 
immunosuppressive treatment may lead to a milder and atypical presentation.

A reduction in immunosuppressive treatment should be considered in critically ill 
patients. In addition, special attention should be paid to the pharmaceutical 
interactions between antibiotics, antivirals, and immunosuppressants. Modification of 
immunosuppressive therapy in COVID-19 patients entails cessation of 
antiproliferative therapy. In addition to this, an increase rather than a reduction in 
steroid dose is necessary. Calcineurin inhibitor withdrawal may be required 
depending on the presentation and progression of COVID-19. If there is no need to 
withdraw CNI treatment, then, serum trough levels should be frequently monitored to 
prevent graft toxicity.
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