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Abstract

Eradication of human immunodeficiency virus (HIV) in
infected individuals is currently not possible because
of the presence of the persistent cellular reservoir of
latent infection. The identification of HIV latency bio-
markers and a better understanding of the molecular
mechanisms contributing to regulation of HIV expression
might provide essential tools to eliminate these latently
infected cells. This review aims at summarizing gene
expression profiling and systems biology applications
to studies of HIV latency and eradication. Studies
comparing gene expression in latently infected and
uninfected cells identify candidate latency biomarkers
and novel mechanisms of latency control. Studies that
profiled gene expression changes induced by existing
latency reversing agents (LRAs) highlight uniting themes
driving HIV reactivation and novel mechanisms that
contribute to regulation of HIV expression by different
LRAs. Among the reviewed gene expression studies,
the common approaches included identification of diffe-
rentially expressed genes and gene functional category
assessment. Integration of transcriptomic data with
other biological data types is presently scarce, and the
field would benefit from increased adoption of these met-
hods in future studies. In addition, designing prospective
studies that use the same methods of data acquisition
and statistical analyses will facilitate a more reliable
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identification of latency biomarkers using different model
systems and the comparison of the effects of different
LRAs on host factors with a role in HIV reactivation.
The results from such studies would have the potential
to significantly impact the process by which candidate
drugs are selected and combined for future evaluations
and advancement to clinical trials.

Key words: Gene expression; Microarrays; RNA-Seq;
Systems biology; Human immunodeficiency virus; Viral
latency; Disease eradication; Biomarkers; Molecular
mechanisms; Latency reversing agents

© The Author(s) 2016. Published by Baishideng Publishing
Group Inc. All rights reserved.

Core tip: Gene expression profiling and systems biology
methods are reviewed with respect to their possible
application in the field of human immunodeficiency virus
(HIV) research. Studies profiling gene expression in
latently infected and uninfected cells are summarized to
illustrate application of these methods to identification
of latency biomarkers and the molecular mechanisms
contributing to regulation of HIV expression. Studies
that measure changes in host and HIV gene expression
upon treatment with latency reversing agents (LRASs)
highlight uniting themes driving HIV reactivation and
identify novel mechanisms of action of LRAs. The field
will further benefit from increased adoption of systems
biology methods in future studies.

White CH, Moesker B, Ciuffi A, Beliakova-Bethell N. Systems
biology applications to study mechanisms of human immunode-
ficiency virus latency and reactivation. World J Clin Infect Dis
2016; 6(2): 6-21 Available from: URL: http://www.wjgnet.
com/2220-3176/full/v6/i2/6.htm DOI: http://dx.doi.org/10.5495/
wjcid.v6.i2.6

INTRODUCTION

In the present era of combination anti-retroviral therapy
(cART), the persistence of cellular human immunode-
ficiency virus (HIV) reservoir is considered to be the
maijor barrier to a cure!'). This cellular reservoir mainly
consists of latently infected resting CD4+ T cells bea-
ring HIV integrated provirus. It is highly stable®®® and
inducible, necessitating life-long adherence to cART to
prevent rebound of viremia. In a search for therapeutic
strategies to eradicate this latent reservoir, mechanisms
leading to latency have been extensively studied
and include transcriptional and post-transcriptional
blocks!**4,

The main strategies directed toward a cure are
reviewed elsewhere'®”*'**>*”) and include the inactiv-
ation of replication-competent virus and the elimination
of latently infected cells. An essential milestone to HIV
reservoir eradication is the identification of biomarkers
of latently infected cells™®*®, so that these cells can be
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specifically targeted by immunotoxins®”. Currently, the
foremost strategy for elimination of latently infected
cells is controlled virus reactivation in the presence of
continuing cART (“shock and kill")**, For this purpose,
small molecule compound latency reversing agents
(LRAs) are currently tested. The first LRAs used were
histone deacetylase (HDAC) inhibitors (HDACi), which
progressed to clinical trials®*”" and demonstrated the
ability to induce expression of HIV RNA. Unfortunately,
none of the studies that followed the reservoir size post-
treatment reported a significant reduction®**?”), The
multiplicity of molecular mechanisms involved in lat-
ency control suggests that a combination approach will
likely be required to achieve the degree of reactivation
necessary for the infected cell to be recognized by the
immune system®?°, Indeed, some of the tested LRA
combinations demonstrated synergy for HIV reactiv-
ation®'?%,

Gene expression profiling techniques and systems
biology applications may be extremely useful in the
identification of biomarkers of latency, further delinea-
ting mechanisms of regulation of HIV expression in
a search for novel strategies of latency reversal, and
for our understanding of the mechanisms of action of
existing LRAs. Methods of analysis of gene expression
data have been reviewed previously®***", including
application of bioinformatics methods to HIV integration
site analysis and the assessment of transcriptome and
proteome changes induced in cells infected with HIVI*!,
The present review provides a broader perspective on
the use of gene expression profiling and systems biology
applications in the field of HIV latency and eradication.
Specifically, the objectives of the present review are:
(1) to review the existing gene expression profiling
and systems biology methods and their potential in the
field of HIV research. We focus on the transcriptomic
methods, and progress from simple approaches of
differential gene expression to more complex types of
analyses that integrate transcriptomic data with other
biological data types, including proteomic analyses,
integration site distribution, epigenetic modifications and
transcription factor databases; and (2) to systematically
demonstrate how methods of gene expression profiling
and systems biology have been applied to answer
specific questions in the fields of HIV latency and eradi-
cation. In this section we summarize specific findings
that were obtained using gene expression profiling
and systems biology methods, as described in existing
literature.

GENE EXPRESSION PROFILING AND
SYSTEMS BIOLOGY APPROACHES
APPLIED IN THE FIELD OF HIV LATENCY
AND ERADICATION

In this section, we describe the major methods of gene
expression analysis and systems biology approaches
and outline specific questions that can be addressed in
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Table 1 Methods of gene expression profiling and systems biology and their applications in the field of human immunodeficiency

virus latency and eradication

Method

Applications to discovery of latency biomarkers and
mechanisms of regulation of HIV expression

Applications to studying the LRA mechanisms of action
and evaluating combination therapies

Differential gene expression
GO term/pathway enrichment

Network-based analysis

Consolidating gene expression
with other biological data
(proteome, integration sites,
chromatin features, etc.)

HIV expression and transcript

type

Identification of latency biomarkers

(1) Focusing study efforts upon gene groups of interest (e.g.,
membrane proteins as biomarkers)

(2) Identification of the mechanisms behind gene expression
alterations

(3) Delineating the molecular mechanisms contributing to
latency control

Identification of major regulators involved in HIV latency
control, which may be only slightly dysregulated but
significantly affect downstream molecules and pathways

(1) Identification of latency biomarkers with transient RNA,
but stable protein expression;

(2) Identification of mechanisms of latency control by
correlating chromatin features to gene expression

Potential biomarker of latency

Identification of genes responsive to LRA treatment
(1) Elucidation of mechanisms of action of LRAs

(2) Selection of gene targets for combination therapy
based on gene function in enriched pathway

(1) Elucidation of mechanisms of action of LRAs;

(2) Prioritization of targets for combination therapies
based upon type of connectivity (include if it regulates
HIV-related processes; exclude if it regulates general
intracellular processes)

(1) Identification of post-transcriptional mechanisms of
action of LRAs;

(2) Assessment of chromatin features of genes and HIV
integration sites responsive to LRA treatment
Assessment of the effectiveness of LRAs for HIV
reactivation

LRA: Latency reversing agent; GO: Gene ontology; HIV: Human immunodeficiency virus.

100

80

60

Percent of studies

40

20

0
Differential GO term/ Network- Data
gene pathway based consolidation
expression enrichment analysis

HIV and gene
expression

Figure 1 Summary of methods used across gene expression profiling studies in the field of human immunodeficiency virus latency and eradication.
Identification of DEGs and functional analysis of GO terms and pathways enriched for DEGs are the methods that are most commonly used across studies. Network-
based analyses are used in a subset of studies; while methods that consolidate host gene expression with other data types (e.g., proteomics or HIV expression data)

are scarce. DEGs: Differentially expressed genes; GO: Gene ontology; HIV: Human immunodeficiency virus.

the fields of HIV latency research and eradication using
LRAs by each major type of application (Table 1). Where
applicable, we highlight advantages and disadvantages
of using individual methods over other methods for HIV
latency related studies.

Differential gene expression

This basic analysis, common in all gene expression
studies (Figure 1), aims at identifying genes that are
expressed at different levels among the conditions

Baishidenge ~ WJCID | www.wjgnet.com

tested. Gene expression can be compared in latently
infected and uninfected cells to identify biomarkers
of latency, and between cells treated with LRAs and
untreated cells to identify genes that are responsive to
LRA treatment.

To obtain gene expression data, two primary te-
chnologies are available: Microarrays and RNA-Seq.
The majority of the published studies in the HIV latency
field utilized microarrays, which is a well-developed
technology with a fully established data analysis
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pipeline. However, because microarrays use specific
oligonucleotide probes, the detection is limited to only
known genes. In addition, most of the microarray
platforms are species-specific, which does not allow
for simultaneous detection of host and pathogenic
RNAs present in a sample. With advances in RNA-
Seq technology and per sample cost reduction, gene
expression profiling by RNA-Seq is more increasingly
used. RNA-Seq allows measuring viral and cellular
transcripts concomitantly in the same sample!?. Other
benefits of using RNA-Seq include increased sensi-
tivity towards rare transcripts (as may be the case
for HIV transcripts in latent state); detection of novel
splice variants; and the wide dynamic range (reviewed
in™). Numerous methods exist to analyze microarray
(reviewed in®**"**) and RNA-Seq datasets (reviewed
in®%*), including methods of data processing, normaliza-
tion and identification of differentially expressed genes
(DEGsS).

While methods of identification of DEGs are relatively
straightforward, their application to mechanistic studies
is limited. First, these methods usually generate far
more DEGs that can be meaningfully discussed due to
the lack of existing knowledge of their role in regulation
of HIV expression. The second major issue in such
studies is multiple comparisons. As more genes are
included in either microarrays or RNA-Seq studies, the
threshold for differential expression becomes much
harder to reach due to the increased chance of type
1 error. Finally, a third issue arises with regards to the
ranking of importance for genes which are differentially
expressed. These can be ranked based upon fold change
or a ranking system based upon prior knowledge of the
gene. However, a gene product which is an important
player of a pathway may not be well characterized,
nor be heavily dysregulated, but may still cause large
downstream changes.

Functional analyses to identify gene ontology terms and
pathways enriched for DEGs

These frequently used methods (Figure 1) are designed
to identify groups of genes sharing a common functional
category or purpose that is significantly altered by
gene dysregulation. Functional gene annotation may
be useful for biomarker discovery to identify genes that
encode membrane proteins. These proteins represent
more feasible targets for antibody-bound immunotoxins
as compared to intracellular proteins. Mainly, though,
gene ontology (GO) term and pathway enrichment
analysis is used to identify the mechanisms behind
gene expression alterations in latency and during LRA
treatment. Finally, specific pathways may be identified
for targeting in combinatorial reactivation strategies,
based on enrichment for DEGs.

There are numerous databases of annotated GO
terms and pathways, and methods to analyze these
functional categories, many of which are publicly av-
ailable tools (reviewed in*). Gene set enrichment
analysis (GSEA) approaches are the most commonly
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used method to identify GO terms and pathways that
are enriched for DEGs™*), Among these, ToppGene'”
has several advantages, including a user-friendly
interface, allowing multiple input codes for genes, and
performing both GO term and pathway enrichment
analyses. Many similar functions are available in the
DAVID Bioinformatics Resources tool*®, GoSeq tool
was developed specifically for RNA-Seq data and
quantifies gene length bias present in the data™®. In
cases when an intervention significantly alters the
expression of an extremely large number of genes,
as may be the case for some LRAs, GSEA approaches
may not work as most categories are enriched. An
alternative method, Functional Analysis of Individual
Microarray Expression!*! utilizes an exponentially
decreasing weighted expression to generate a score
for each GO category or pathway in both experimental
and control conditions. A t-test, or other statistical test
can be then performed to determine if the scores are
significantly different. One drawback of this method is
the importance placed upon highly expressed genes.
However, lowly expressed genes may play other roles
through post-translational modifications or hub roles
which are not detected by this method or differential
expression methods in general. To address these issues,
network analysis techniques are extremely useful.

Network-based gene expression analyses

These tools, used in about half of the studies in the
field of HIV latency (Figure 1), are designed to iden-
tify key functional regulators among DEGs, and to
evaluate gene network differences among experimental
conditions. In the network-based analyses, the function
of a single gene may be elucidated through a “guilt by
association” approach. High connectivity between a
known and unknown gene may shed light upon their
function. Additionally, a group of highly connected genes
may indicate that a biologically relevant pathway is at
work in the altered state. These pathways or networks
of genes can be tested for differential expression
without the high type 1 error rate, which is common
when testing many thousands of individual genes.
Heavily connected genes whose importance may have
been missed in a standard differential expression test
would show up in a network method as a hub (highly
connected) gene. In this way, additional genes with a
role in latency control or reactivation may be identified,
which would be missed in other types of analysis.
Finally, genes may be selected as therapeutic targets
based on the network analysis, if they are connected
to other factors with roles in HIV latency control. Con-
versely, if a gene is connected to genes that encode
proteins with broad cellular functions, it may be selected
against as side effects from a therapeutic intervention
would be expected.

One well-developed network analysis tool is Weig-
hted Gene Co-expression Network Analysis (WGCNA)"”,
In this method, the connectivity between genes is
determined by correlating the expression of these genes
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across samples, independent of known protein-protein
and protein-DNA interactions. First, an adjacency matrix
is constructed based on correlations between each
gene pair, followed by creating a topological overlay
map (TOM) that utilize information not only from the
direct interaction between two genes, but also their
neighboring nodes. Once this TOM is created, genes
may be subdivided into highly connected groups or
modules. The eigengene of this module represents the
mathematically optimal summary of the expression
profiles of all genes within the module as determined
by their expression variation across samples. This
eigengene may then be correlated to any trait of interest,
such as the expression of specific HIV transcripts, or
the degree of HIV reactivation upon treatment with
LRAs. Genes with unknown function may be explored
through both the behavior of the module as a whole and
within the module itself (peripheral gene or a primary
hub gene). Highly connected genes often represent key
players in pathways and shed light upon the mechanistic
differences between the two conditions being compared,
such as uninfected CD4+ T-cells vs HIV-infected CD4+
T cells. Another network-based method, the “Active
modules” algorithm™", utilizes a different approach to
network analysis by determining which portions of the
network contain an unexpectedly high occurrence of
genes with significant changes in expression. In contrast
with WGCNA, the “active modules” algorithm utilizes
protein interaction data from available databases, which
allows incorporating information about the host and HIV
interactions™". Available software packages for network
analysis usually use literature curated protein-protein
and protein-DNA interactions databases, but do not take
into account enrichment of specific clusters for DEGs
(e.g., Metacore, Ingenuity, iRefWeb). A major advantage
of utilizing known interactions is independence from
differential expression (i.e., all known protein-protein
and protein-DNA interactions will be displayed for each
DEG). A drawback of literature-based networks is the
dependency on the accuracy of annotated sources and
the robustness of the algorithms for network generation.

Integrating gene expression with other types of
biological data

Methods of transcriptomics are well-developed and
capture the majority of annotated genes. However,
previous studies have shown that the transcriptome only
partially correlates with the proteome!®***; therefore,
assessment of gene expression at the functional (pro-
tein) level may be necessary to validate the role of
specific genes in HIV latency control and reactivation.
In addition, proteomics methods identify the effects
that are not reflected or captured at the RNA level;
for example, due to an increase of translation from
existing messenger RNA®®, or because of the transient
RNA expression. Thus, proteome profiling may be
used to identify latency biomarkers that are stably
expressed at the protein level. In addition, profiling
of post-transcriptional effects of LRAs is beneficial to
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capture those effects that would be missed if only the
transcriptome profiling were performed. Analysis of
the proteome may thus shed light on the mechanisms
by which LRAs regulate gene expression™, including,
possibly, transcriptional activation of HIV.

Other biological data types may be integrated with
gene expression profiling data to further understand the
mechanisms of HIV latency and reactivation. The activity
of the HIV promoter may depend on the characteristics
of the site of proviral integration®™”. Chromatin features
surrounding an integration site may contribute to the
levels of HIV transcription, including histone acetylation
and methylation, and DNA methylation. For example,
latent inducible proviruses have a tendency to be inte-
grated into highly expressed genes, gene deserts, or
alphoid repeats™. The transcription level of nearby
genes as well as viral genome orientation may influence
transcription of viral genes by RNA interference mec-
hanisms™®, However, to date, no clear feature of
integration sites could be identified when comparing 5
different models of HIV latency™?. Integration of HIV
into specific genes, such as genes associated with cell
cycle, may provide advantage to the maintenance of
the latent reservoir through clonal expansion™?.

Depending on the type of data, different modeling
methods may be used. The study described below was
done with cancer cell lines; however, their method of
integrating datasets would be applicable for many types
of HIV latency related data. The aims of the study were
to determine how DNA methylation in different genomic
regions contribute to gene expression in cancer cell
lines, and whether methylation of transcription factor
binding sites impact transcription factor recruitment
and therefore gene expression®”. Gene expression
was measured by Affymetrix microarrays, and DNA
methylation by methyl-CpG binding domain-based
capture (MbDCap)-Seq™®. Pearson correlation analysis
and decision tree learning were used to determine the
effect of methylation in various genomic regions (promo-
ters, first and second exons, and first introns) on the
breast cancer subtype differential gene expression. To
determine the role of methylation in transcription factor
binding, cell line-specific consensus sequences were
generated by assembling reads that mapped to the
significantly hypermethylated regions and then matching
these sequences to candidate transcription factors using
the TRANSFAC package™. Similar approaches can be
used to determine the role of chromatin features such
as DNA methylation, as well as histone acetylation and
methylation, in regulation of the expression levels of
genes that control HIV latency, in the latent state and
during reactivation using LRAs.

Evaluating the levels of HIV RNA using RNA-Seq
datasets

HIV full length unspliced (US) genomic RNA can be
spliced into different mMRNA species, 47 identified in
an early study™®”, and 78 more recently™®®, The major
classes of transcripts constitute multiply spliced (MS)
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transcripts that encode regulatory and accessory
proteins Tat, Rev, and Nef; and singly spliced (SS)
transcripts that encode one-exon Tat, Vpr, Vif, Vpu,
and Env. The US transcripts encode Gag and Gag-
Pol polyproteins. In cell line models of latency (ACH-2
and U1l), MS and SS transcripts were detected at early
stages of replication cycle, when little or no genomic (US)
RNA was produced™’. Both MS and US transcripts were
detected at low levels in resting CD4+ T cells from the
HIV-infected individuals, while the majority of detected
transcripts represented abortive HIV transcripts lacking
polyA tail”, As was suggested previously”"!, HIV RNA
itself may represent a biomarker of latency. While
multiple assays have been developed to detect HIV RNA
using PCR-based methods>”?!, they require design of
specific primers to detect various forms of HIV RNA,
and may be plagued by inability to detect HIV RNA
in a subset of patients due to virus mutations. RNA-
Seq technology allows for concomitant detection and
quantification of various HIV RNA species from the
same samples as host transcripts, regardless of the viral
sequence. Total HIV transcripts, including the abortive
transcripts, can be measured by RNA-Seq using total
RNA (ribo-depleted) libraries that capture non-poly-
adenylated RNAs.

RNA-Seq can also be used to evaluate induction
of HIV expression using LRAs. In this case, libraries
enriched for polyA (polyadenylated) RNAs would be a
more appropriate choice, since induction of abortive
transcripts or read-through transcripts from the neig-
hboring genes is not relevant to the success of the
“shock and kill” strategy, as no viral proteins will be
produced. Specifically, induction of polyA US transcripts
would need to be monitored, as it is indicative of
productive infection (that will result in production of
virions). Unfortunately, none of the existing RNA-Seq
data analysis packages have reliable tools for precise
splice variant measurement from standard RNA-Seq
datasets (50-100 base pair reads), in particular, complex
overlapping sequences as in the case of HIV!®*"), Precise
measurement of splice variants require longer read
capacity (10 kb)"; otherwise, expression of the major
splice variants, MS and SS, and the US genomic RNA
can be only estimated. Mohammadi et af** developed a
method that allows the approximation of the proportions
of different HIV transcripts in the RNA-Seq data. The
method is based on determining the number of reads
that pass through the splice junctions D1 [directly after
the long terminal repeat (LTR) region] and D4 (splice
junction between Tat-Rev and Vpu) that define MS,
SS, and US transcripts. If a read passes through the
junction D1, then it belongs to the US transcript. Reads
which align to the left of the D1 junction but are broken
at D1 and align to another segment of the HIV genome
correspond to reads from either SS or MS transcripts (SS
+ MS). Reads overlapping the D4 junction correspond to
reads from either US transcripts or SS transcripts (US +
SS). Finally, reads which are broken at the D4 junction
correspond to reads from MS transcripts. The SS read
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percentage is then estimated by subtracting the US and
MS percentages from 100.

USING TRANSCRIPTOME PROFILING
TO IDENTIFY BIOMARKERS OF HIV
LATENCY

A recent study'- provided a proof of principle that
immunotoxins can be used to target cells expressing a
specific surface molecule; however, the choice of CCR5
co-receptor resulted in killing of both HIV-infected and
uninfected CCR5-expressing cells. This choice of tar-
get would not be optimal for therapeutic applications,
since CD4+ T cells are usually already compromised
in HIV-infected individuals. Therefore, identification of
a unique biomarker signature of latently infected cells
is warranted to target these cells for eradication with
high specificity. These biomarkers may have additional
applications; for example, reliable quantification of
latently infected cells in vivo to follow the size of the
latent reservoir in patients post-treatment, and enrich-
ment for latently infected cells for further studies.

The proof of principle that latently infected cells
may have a distinct gene expression signature was
provided in an early study comparing gene expression
in resting CD4+ T cells from aviremic HIV-infected
individuals and HIV seronegative donors as controls
using microarrays'””\. Whilst less than 0.1% of cells
from aviremic patients were latently HIV-infected (as
determined by presence of HIV-1 proviral DNA), 165
genes showed differential expression between CD4+
T cells from aviremic patients as compared to HIV-
seronegative donors. The limitations of this study were
the low prevalence of latently infected cells and the
confounding effect of antiretroviral therapy on gene
expression. Later studies aimed at characterizing the
gene expression profile of latently HIV-infected cells
using chronically HIV-infected cell lines or in vitro infe-
cted primary resting CD4+ T cells and reporter viruses,
allowing for strategies to enrich or select for latently
HIV-infected cells.

Table 2 summarizes the four studies comparing gene
expression in latently infected cells vs their uninfected
counterparts. To estimate the proportions of latently
infected cells present in each model, provirus expression
is reactivated following establishment of latency, using
strong agents that induce T cell activation, such as
phorbol myristate acetate!'®, anti-CD3/anti-CD28 +
IL-2"%, or phytohemagglutinin and feeder peripheral
blood mononucdlear cells”®. The percentage of uninfected
cells may be estimated by subtracting the percentage of
latently infected cells from the total (100%), assuming
that all latent proviruses were induced. The percentage
of cells expressing HIV Gag protein (p24+) or GFP
reporter is also measured before the stimulation, to
determine whether there is background expression of
HIV in each latency model. These p24+ or GFP+ cells
may represent productively infected cells present due

[20]
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Table 2 Features of gene expression studies comparing latently infected vs uninfected cells

[18]

Study characteristics Krishnan and Zeichner

Iglesias-Ussel ez aft

191 42] 76]

Mohammadi et a/* Evans ez al*

Cells used Cell lines ACH-2, A3.01, Primary CD4+ T cells Primary CD4+ T cells co-cultured ~ Primary resting CD4+ T cells
J1.1 with feeder H80 human brain tumor  co-cultured with dendritic
cell line cells
Virus used CXCR4 tropic HIV-1 LAV CXCR4 tropic GFP reporter =~ CXCR4 tropic GFP reporter virus CCRS5 tropic GFP reporter
strain virus (GFP inserted in place ~ with mutations in Gag, Vif, Vpr,  virus (GFP inserted into the
of Nef) Vpu, Env and Nef Nef open reading frame)
Proportion of uninfected <11% 0% 8%-18% 99.7%
cells
Proportion of GFP+ or 8.20% 8.15% Approximately 16% 0% (removed by sorting)
P24+ cells
Proportion of latently 98.9% 100% Approximately 82%-92% Approximately 0.3%
infected cells
Time of culture N/ A (chronically 20-22d 13 wk 5d
infected)
Experiment replicates 8 4 Not reported 4
Gene expression profiling Microarrays (Hs. Microarrays (Agilent-012391 RNA-Seq (polyA RNA library; Microarrays (Illumina
platform UniGem?2) Whole Human Genome Illumina HiSeq2000) Human-Ref8)
Oligo Microarray G4112A)
Method to identify DEGs ~ Parametric one-sample  Linear modeling and using Generalized linear modeling (DESeq, Linear modeling and using

random variance t-test
(BRB-Array Tools, P <

an empirical Bayes method
with FDR correction (limma)

FDR < 0.05) an empirical Bayes method

(limma, FDR < 0.05)

0.001)
Databases used for NIH mAdb GO consortium; Reactome pathways Ver.40; IPA
functional analyses MsigDb; MsigDb
KEGG pathways
Total number of DEGs 32 875 227 Not reported

CXCR4: Chemokine (C-X-C motif) receptor 4; LAV: Lymphadenopathy-associated virus; CCR5: Chemokine (C-C motif) receptor 5 (gene/pseudogene);
GFP: Green fluorescent protein; polyA: Polyadenylated; DEGs: Differentially expressed genes; BRB: Biometric Research Branch; FDR: False discovery rate;
NIH: National Institutes of Health; mAdb: Mad Bee; GO: Gene ontology; MsigDb: Molecular Signature database; KEGG: Kyoto Encyclopedia of Genes and

Genomes; IPA: Ingenuity Pathway Analysis; N/A: Not applicable.

CDC42
BNIP31

Krishnan and Zeichner Lglesias-Ussel et a/

836
(76.4%)

LYN
GNLY

ZNF683
CCL5
IKZF2
etc.

192
(17.6%)

Mohammadi et a/

Figure 2 Venn diagram depicting differentially expressed genes across
three latency models. The overlapping genes were identified using the online
tool Venny (http://bioinfogp.cnb.csic.es/tools/venny/index.html). Shown are the
total number of differentially expressed genes and percent of total identified
across all models"™®"*“?, For each overlap, gene symbols are listed. For the
overlap between Iglesias-Ussel et af" and Mohammadi et a*” studies, the four
genes with the highest average absolute fold change are listed.

the leakiness of a model, or be reflective of the viral
entry in the absence of de novo viral production. Of note,
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Krishnan and Zeichner™™® provided these estimates only
for one of the cell lines studied, ACH-2. The proportions
of each cell type need to be taken into account when
evaluating the results from differential expression
analysis.

Table 2 presents additional characteristics that
differed among the studies, including cells that were
used (proliferating cell lines, resting CD4+ T cells or
total CD4+ T cells), the duration of time in culture and
viruses used to infect the cells. Finally, gene expression
profiling platforms and statistical approaches to analyze
the data were also different.

In order to assess whether biomarkers of latency can
be reliably identified using gene expression profiling,
we compared the DEG lists, where available (all studies
except for Evans et al’®). Krishnan and Zeichner!®
reported 32 genes that were consistently changed in
latency in all three cell lines that were tested, and this
list of DEGs was used. The number of DEGs from each
study that participated in this analysis is indicated in
Table 2 (bottom row). If consistent changes across
model systems could be detected, these genes would
represent strong latency biomarker candidates.

Figure 2 depicts the result of comparison of DEGs
between latently infected and uninfected cells available
from three published studies!*®***?, A total of 1094 DEGs
were identified. Only one gene, LYN proto-oncogene,
Src family tyrosine kinase (LYN), was dysregulated in
latency in all three models. Not surprisingly, there were
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Table 3 Limitations of the present studies that identify differentially expressed genes between latently infected and uninfected cells

and possible solutions that may enable identification of solid candidate biomarkers of latency

Limitations Solutions

Small percentage of latently infected cells
single-cell level

Effect from the exposure to the virus without infection
cell model

Identified differentially expressed genes are

ubiquitously expressed on all CD4+ T cells

Different models represent different aspects of latency

establishment

Gene expression profiling can only identify candidate

cells

biomarkers biomarkers

Use aldrithiol-2 inactivated virus'

Isolate latently infected cells using reporter system OR perform gene expression profiling on a

">l instead of mock-infection to compare to latently infected

Identify a panel of biomarkers that best differentiates between latently infected and uninfected

Include additional models into analysis; use same statistical approaches to ensure differences
in biomarkers are biological, not technical differences
Perform experimental validation that latently infected cells can be detected using these

fewer similarities between the cell lines and each of the
primary cell models. In addition to LYN, only four genes
were in common between Krishnan and Zeichner™® and
Iglesias-Ussel et al'*®! studies. More similarities were
found when comparing the two studies that performed
gene expression profiling using primary CD4+ T cells
(Iglesias-Ussel et al™®! and Mohammadi et a/i*?): 34
genes were found in common, with the majority (29
of 34) consistently up- or down- regulated in latency
in both models. The remaining genes were unique for
any given study (27 of 32, or 84% for Krishnan and
Zeichner'*®, 836 of 875, or 96% for Iglesias-Ussel et
al*®, and 192 of 227, or 85% for Mohammadi et al*?).

This comparison indicated that despite the small
proportion of overlapping genes between models, genes
whose products may be able to differentiate between
latently infected and uninfected cells can be identified
using gene expression profiling, especially when com-
paring models established in primary cells. However,
these studies have several limitations that presently
preclude from achieving a consensus on what genes
may represent suitable biomarkers of latency. These
limitations and potential solutions that may advance this
field are summarized in Table 3.

TRANSCRIPTOME PROFILING AND

SYSTEMS BIOLOGY APPROACHES TO
IDENTIFY MOLECULAR MECHANISMS
OF REGULATION OF HIV EXPRESSION

Understanding the mechanisms of establishment and
maintenance of HIV latency has greatly contributed
to the development of strategies for eradication. It
has become apparent that multiple cellular processes
and pathways contribute to the control of HIV latency
at both the transcriptional and post-transcriptional
levels®, suggesting that combination strategies will
likely be needed to achieve eradication of the latent
reservoir®®, Block of viral transcription from the LTR
is the most studied mechanism, which occurs through
several proposed routes: Inhibition of transcription
though histone and DNA modifications”””®!; absence
of necessary transcriptional activators and presence of
transcriptional repressors in resting CD4+ T cells®®54;
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integration into inactive transcription sites®”’; or pre-

mature termination of viral transcripts in the absence
of Tat and Tat-associated host factors®®. Another mech-
anism suggests that latency may be maintained due to
post-transcriptional blocks. HIV could be transcribed,
but could fail to export MS HIV transcripts, contributing
to non-productive infection in resting CD4+ T cells®®.
Finally, discoveries in the field of inhibitory micro
RNAs (miRNAs) suggest a possibility of transcriptional
inhibition of HIV by miRNAs encoded in HIV genome™*
and translational inhibition by host miRNAs™®,

Gene expression profiling data can be used to
identify gene categories that describe cellular processes
and pathways, as well as key regulatory factors with
a role in HIV latency control, thus contributing to our
understanding of the mechanisms that regulate HIV
expression. The same studies described in Table 2
performed functional category analysis by identifying
pathways and GO terms enriched for DEGs. Though
these four studies utilized different cell types and
viruses (Table 2), some uniting themes were observed
in the mechanisms contributing to HIV latency control.
We utilized the lists of GO terms and pathways that
were reported in each of the four studies, to compare
the gene categories dysregulated in different latency
models. The reported terms were assigned to two
major categories: Transcriptional regulation, including
signaling pathways that regulate activity and localization
of transcription factors, and functional categories related
to RNA synthesis; and post-transcriptional regulation,
both at the RNA and protein levels (Figure 3); terms
that could not be assigned to these categories are not
shown. Not surprisingly, the specific GO terms and
pathways in each category were different between the
studies, which was at least in part attributable to the
usage of different annotated databases to obtain these
terms (Table 2). However, terms associated with both
transcriptional and post-transcriptional control of HIV
latency were reported in more than one study. These
GO terms and pathways comprise both well-established
(e.g., NFkB signaling and transcriptional regulation®®*”)
and novel mechanisms of regulation of HIV expression
(e.g., proteasome!'®),

Network-based approaches can also be utilized to
identify genes that may have a role in regulation of HIV
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Transcriptional Post-transcriptional
regulation regulation
Cytoplasm
Translation and metabolism
Signaling pathways Transiation
B 2 ) A Post-translational protein modification
I-kappaB kinase, NF-kappaB cascade §
L tRNA metabolic process
MAPK signaling pathway . R .
P Ribosome biogenesis

Cytokine signaling in immune system

Sigaling by interleukins

mTOR signaling

Interferon signaling

Nucleus
RNA processing

Spliceosomal assembly

Figure 3 Transcriptional and post-transcriptional mechanisms of regulation of human immunodeficiency virus expression. Pathway and GO term categories
related to transcriptional and post-transcriptional regulation of HIV expression, identified in gene expression studies that compared latently infected and uninfected
cells, are shown. Dark blue, Iglesias-Ussel et af"”; Red, Mohammadi et af*”; Brown, Evans et al™®; Yellow, Krishnan and Zeichner™. GO: Gene ontology; HIV: Human

immunodeficiency virus; mTOR: Mammalian target of rapamycin.

expression, despite not being detected as differentially
expressed in latency. For example, tubulin alpha 3
(TUBA3) was a well-connected gene in a network
constructed by Bandyopadhyay et ai™" who utilized the
Krishnan and Zeichner dataset!'®. TUBA3 was connected
to both Tat and Rev in the network, suggesting a possi-
ble yet unknown post-transcriptional role for this gene in
regulation of HIV expression, one which would not have
been detected in non-network-based approaches.

Taken together, functional studies using systems
biology approaches to analyze host gene expression in
the in vitro models of HIV latency suggest that mainten-
ance of HIV quiescence in T cells involves basic cellular
mechanisms beyond those traditionally implicated in
transcriptional repression of the HIV-1 provirus.

TRANSCRIPTOME PROFILING AND
SYSTEMS BIOLOGY APPROACHES TO
IDENTIFY MOLECULAR MECHANISMS

OF HIV REACTIVATION USING LRAS

HDACIis have been the most studied LRAs, with a
number of these compounds progressing to clinical
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trials™?”), The primary mechanism of action proposed
for HIV reactivation using HDACis was histone acety-
lation and chromatin decondensation, which provide
a transcriptionally favorable environment®. However,
the results from gene expression profiling studies
following the discovery of anti-cancer properties of
HDACis (reviewed in®¥) strongly suggest the existence
of secondary mechanisms of action of HDACis beyond
chromatin remodeling. In particular, despite chromatin
decondensation, as many genes were downregulated
by HDACis as were upregulated. Over the years, studies
using HDACis demonstrated that transformed cells
responded to treatment differently as compared to
primary cells®*?, Therefore, gene expression profiling
of HDACis using primary CD4+ T cells is more relevant
for delineating the mechanisms driving HIV reactivation.
Most of the gene expression studies using HDACis
in primary cells up-to-date have utilized the HDACi
vorinostat/suberoylanilide hydroxamic acid (SAHA),
which was the first of the FDA-approved HDACIs for
treatment of cutaneous T cell lymphoma'®", These
studies are summarized in Table 4. In addition to SAHA,
the effects on gene expression were profiled for another
HDACI, valproic acid (VPA) in primary CD4+ T cells

May 25,2016 | Volume 6 | Issue2 |



White CH et a/. Systems biology and HIV latency

Table 4 Features of gene expression studies comparing suberoylanilide hydroxamic acid -treated and untreated primary cells

Study characteristics  Beliakova-Bethell ez a/°*!  Reardon er a/*'°” White er a/*” Mohammadi er a/*** Elliott er a/**!
Cells used Primary CD4+ Tcells ~ Primary CD4+ T cells Primary CD4+ T  In vitro primary CD4+ T Total blood from HIV-
cells cell latency model infected individuals on cART
Concentration or dose 0.34 pmol/L 0.34,1, 3,10 pmol/L 1 pmol/L 0.5 umol/L 400 mg orally once daily
of SAHA
Time of treatment 24h 24h 24h 8hand24h 14 d (samples analyzed at 2,
8h; 1,14 and 84 d)
Experiment replicates 9 6 6 Not reported 9
Gene expression Microarrays (Illumina HT12 Microarrays Microarrays RNA-Seq (polyA Microarrays (Illumina
profiling platform Beadchips version 3) (Mumina HT12 (Mumina HT12 RNA library; Illumina Human HT12 version 4)
Beadchips version 3) Beadchips version 3) HiSeq2000)
Methods to identify Multivariate permutation Dose-response Linear modeling Generalized linear ~ Linear modeling (limma, P <
DEGs test (BRB-Array tools) analysis using (limma, FDR P < modeling (DESeq, FDR < 0.05)
likelihood ratio 0.05) 0.05)
test (Isogene) with
Bonferroni correction
(P <0.05)
Databases used for GO consortium, KEGG and GO consortium, GO consortium, Reactome pathways IPA, MsigDb
functional analyses Biocarta pathways (BRB- ~ KEGG and Biocarta ~ KEGG pathways Ver.40; MsigDb
Array Tools), MetaCore pathways (BRB-  (FAIME), MetaCore
networks Array Tools), networks
MetaCore networks
Total number of DEGs 1847 3477 2982 1289 Not reported

cART: Combination antiretroviral therapy; polyA: Polyadenylated; DEGs: Differentially expressed genes; BRB: Biometric Research Branch; FDR: False
discovery rate; GO: Gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; MsigDb: Molecular Signature database; FAIME: Functional
Analysis of Individual Microarray Expression; IPA: Ingenuity Pathway Analysis; HIV: Human immunodeficiency virus.

Table 5 Features of gene expression studies comparing cells treated with latency reversing agents of different functional classes and

untreated cells

Study characteristics Jiang et al”’®! Mohammadi er ai*** Sung and Rice™” Banerjee er al*®

Cells used Primary cells from HIV-infected In vitro primary CD4+ T cell Primary resting CD4+ T cells J-Lat 10.6 T cell line
individuals on cART latency model
LRA (functional class) Valproic acid (HDAC;H) Disulfiram (alcohol Prostratin (PKC agonist)  JQ1 (bromodomain inhibitor)
dehydrogenase inhibitor)
Concentration 1 mmol/L (+20 U/mL IL-2) 0.5 umol/L 250 ng/mL 0.1 pmol/L, 1 umol/L
Time of treatment 6h 8 and 24 h 48h 24h
Experiment replicates 4 Not reported 3 Not reported
Gene expression profiling Microarrays (Agilent) RNA-Seq (polyA RNA Microarrays (Affymetrix ~ Microarrays (Affymetrix ST
platform library; Illumina HiSeq2000) Human Genome U133 Plus 1.0)
2.0)
Methods to identify DEGs Rosetta Resolver system (P < Generalized linear modeling  t-test with FDR correction ANOVA (P < 1E-5)
0.01) (DESeq, FDR < 0.05)
Databases used for Not used Reactome pathways Ver.40; GO consortium, KEGG GO consortium
functional analyses MsigDb pathways
Total number of DEGs 199 (fold change > 3) 189 2514 (fold change > 1.5) Not reported

cART: Combination antiretroviral therapy; LRA: Latency reversing agent; HDACi: Histone deacetylase inhibitor; PCK: Protein kinase C; polyA: Polya-
denylated; DEGs: Differentially expressed genes; FDR: False discovery rate; ANOVA: Analysis of variance; MsigDb: Molecular Signature database; GO:
Gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; LRAs: Latency reversing agents.

from HIV-infected individuals. Treatment with either
SAHA or VPA resulted in downregulation of V-Myc avian
myelocytomatosis viral oncogene homolog (MYC)¥*%®,
Among other LRA classes, the effects of alcohol de-
hydrogenase inhibitor Disulfiram and protein kinase
C (PKC) agonist Prostratin on host gene expression
were assessed using primary CD4+ T cells**”}, while
the effects of a bromodomain inhibitor; JQ1, on gene
expression were assessed in a cell line model of HIV
latency (J-Lat 10.6 T cell line)® (see Table 5 for the
summary of the studies).
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For all classes of compounds tested, Disulfiram
appeared to induce minimal changes to host gene
expression?, while SAHA and Prostratin modulated
thousands of genes!**?*"#1%1 Gene expression studies
were able to identify novel mechanisms contributing to
HIV reactivation out of latency by LRAs, besides their
primary mechanisms of action. For example, in addition
to chromatin decondensation, SAHA upregulated specific
HIV transcriptional activators [e.g., immunity-related
GTPase family, M (IRGM)!*°" heat shock protein 70
(HSP70, gene symbol HSPA2)!%**%! and lysine (K)-
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Figure 4 Main findings from gene expression studies using Latency
reversing agents. A: Novel mechanisms of HIV reactivation besides primary
mechanisms of action of LRAs. These include upregulation (red arrow) of HIV
activators (red oval) and downregulation (blue arrow) of repressors (blue oval).
Examples for LRAs from 3 functional classes (HDACi, SAHA; PKC agonist,
Prostratin; and bromodomain inhibitor, JQ1) are listed; B: Effects of LRAs on
host genes that are inhibitory for HIV reactivation. These include upregulation
(red arrow) of HIV repressors (blue oval) and downregulation (blue arrow) of
activators (red oval). Examples for LRAs from 2 functional classes (HDACI,
SAHA; and PKC agonist, Prostratin) are shown; C: LRAs of different classes
act on components of p-TEFb complex via different mechanisms, contributing
to HIV reactivation. SAHA induced dissociation of p-TEFb from the inactive
7SK RNA complex and facilitated its recruitment to the HIV LTR. Prostrain
and JQ1 upregulated components of p-TEFb complex at the protein and RNA
level, respectively (red arrows indicate upregulation). LRA: Latency reversing
agent; HDACI: Histone deacetylase inhibitor; PKC: Protein kinase C; SAHA:
Suberoylanilide hydroxamic acid; IGRM: Immunity-related GTPase family, M;
HSPA2: Heat shock 70 kDA protein 2; KDM1A: Lysine (K)-specific demethylase;
TNFSF4: Tumor necrosis factor (ligand) superfamily, member 4; RCOR1: REST
coreceptor 1; SIRT1: Sirtuin 1; AES: Amino-terminal enhancer of split; ARID1B:
AT rich interactive domain 1B, SWI1-like; DEFA1: Defensin alpha 1; PRMT6:
Protein arginine methyltransferase 6; SETDB1: SET domain, bifurcated 1;
ETS1: V-Ets avian erythroblastosis virus E26 oncogene homolog 1; LEF1:
Lymphoid enhancer-binding factor 1; HMGA1: High mobility group AT-hook 1;
HIVEP3: HIV type | enhancer binding protein 3; EZH2: Enhancer of zeste 2
polycomb repressive complex 2 subunit; YY1: YY1 transcription factor; BRD2:
Bromodomain protein containing 2; S100A8: S100 Calcium Binding Protein A8;
S100A9: S100 Calcium Binding Protein A9; S100A12: S100 Calcium Binding
Protein A12; CDK9: Cyclin-dependent kinase 9; P-TEFb: Positive transcription
elongation factor; CycT1: Cyclin T1; Hexim-1: Hexamethylene Bis-Acetamide
Inducible 1; LTR: Long terminal repeat; Tat: Transactivator of transcription.

specific demethylase (KDM1A)™*], and downregulated
repressors [amino-terminal enhancer of split™"® and
AT rich interactive domain 1B, SWI1-like (ARID1B, or
BAF250)%1]2>991% (Figyre 4A). Sung and Rice™” found
that Prostratin upregulated HIV activator, tumor necrosis
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factor (ligand) superfamily, member 4 (TNFSF4)™**”, and
downregulated defensin alpha 1, which interferes with
PKC signaling™®®, Among genes with a role in regulation
of HIV expression that were modulated by JQ1,
Banerjee et al®® noted upregulation of activators REST
coreceptor 1 (RCOR1)"® and the class Il deacetylase
sirtuin 1 (SIRT1)™, and downregulation of repressor
methyltransferases, protein arginine methyltransferase 6
(PRMT6) and SET domain, bifurcated 1 (SETDB1)0,

In addition to the effects of LRAs on gene expression
that may promote HIV reactivation, possible inhibitory
effects were also observed in gene expression studies
that used SAHA and Prostratin-treated primary cells
(Figure 4B). Genes encoding factors that activate HIV
transcription, V-Ets avian erythroblastosis virus E26
oncogene homolog 1(ETS1), CCAAT/enhancer bin-
ding protein, Beta (CEBPB), and lymphoid enhancer-
binding factor 1 (LEF1)™*™*¥, were downregulated by
SAHA in primary CD4+ T cells''®, Enhancer of zeste
2 polycomb repressive complex 2 subunit (EZH2), a
methyltransferase implicated in HIV LTR silencing™",
was upregulated®. Genes encoding HIV transcrip-
tional repressors YY1*'**! and bromodomain protein
containing 2 (BRD2)™7” were upregulated by SAHA in
blood cells from HIV-infected individuals on cART™,
Downregulation of ETS1 and LEF1 and upregulation of
BRD2 were confirmed at the protein level in primary
CD4+ T cells®™. In addition, a network-based approach
integrating transcriptomics and proteomics datasets
highlighted upregulation of high mobility group AT-hook
19 which represses HIV transcription by competing
with Tat for TAR binding!*®! and by recruiting inactive
positive transcription elongation factor (p-TEFb) to the
HIV LTR™M®, Possible inhibitory effects of Prostratin with
respect to HIV reactivation identified by Sung and Rice®”
were upregulation of a repressor, HIV type I enhancer
binding protein 3*?%, and downregulation of the three
genes encoding S100 calcium-binding proteins (S100A8,
S100A9, and S100A12), shown to enhance HIV-1
transcription in a NFkB-dependent manner*?,

Finally, gene expression profiling studies using
LRAs of different functional classes highlighted uniting
themes driving HIV reactivation, such as importance
of the components of p-TEFb complex (Figure 4C).
Cyclin T1 (CycT1) was upregulated at the RNA level by
JQ1%¥; both CycT1 and cyclin-dependent kinase 9 were
upregulated at the protein level by Prostratin®®”, while
SAHA induced dissociation of p-TEFb from the inactive
7SK RNA complex and facilitated its recruitment to the
HIV LTR™*, Though through different mechanisms,
p-TEFb function appears to be enhanced via action of
several classes of LRAs.

CONCLUSION AND PERSPECTIVES

This review discusses how methods of gene expression
profiling and systems biology can be applied to add-
ress specific questions in the field of HIV latency and
eradication. It presents a systematic analysis of the
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application of these methods to discover biomarkers
of latency, identify molecular mechanisms of latency
control and reactivation using LRAs. Identification of
DEGs and functional category assessment are the most
common methods currently used in the field (Figure 1).
Network-based approaches are utilized in a subset of
more recent studies. Advances in RNA-Seq technologies
allow for integration of HIV expression analysis with
the changes in expression of host genes in a single
experiment. Integration of transcriptomic data with
other biological data types in the field of HIV latency
is presently scarce; and the field would benefit from
increased adoption of these methods in future studies.

Gene expression analysis of latently infected and
uninfected cells has been used to identify candidate
biomarkers of latency and to delineate the molecular
mechanisms that contribute to regulation of HIV expre-
ssion. Studies comparing gene expression in HIV latency
models to uninfected cells have several limitations that
presently preclude from achieving a consensus on
what genes may represent suitable biomarkers (Table
3). Improved bioinformatics approaches (e.g., using
the same methods of data acquisition and statistical
analyses across models) and experimental validation
of candidate biomarkers would be extremely useful
in future studies to more reliably identify biomarkers
of latency. Studies profiling gene expression changes
induced by LRAs identified novel mechanisms of action
of the LRAs and their inhibitory effects with respect to
HIV reactivation out of latency, as well as highlighted
uniting themes driving HIV reactivation. Using similar
statistical approaches in prospective studies using LRAs
would facilitate prediction of whether the inhibitory
effects of different LRAs on HIV reactivation could be
cancelled out in a combination strategy. The results from
such studies would have the potential to significantly im-
pact the process by which candidate drugs are selected
and combined for future evaluations and advancement
to clinical trials.
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Abstract

Osmolyte transport is a pivotal part of bacterial life,
particularly in high salt environments. Several low and
high affinity osmolyte transport systems have been
identified in various bacterial species. A lot of research
has centered on characterizing the osmolyte transport
systems of Gram-negative bacteria, but less has been
done to characterize the same transport systems in
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Gram-positive bacteria. This review will focus on the
previous work that has been done to understand the
osmolyte transport systems in the species Staphy-
lococcus aureus and how these transporters may serve
dual functions in allowing the bacteria to survive and
grow in a variety of environments, including on the
surface or within humans or other animals.

Key words: PutP; OpuD; Staphylococcus aureus; Proline
transport; Osmolyte

© The Author(s) 2016. Published by Baishideng Publishing
Group Inc. All rights reserved.

Core tip: Staphylococcus aureus (S. aureus) is the
number one cause of skin and soft tissue infections. In
the United States, S. aureus is usually the humber one
hospital-acquired pathogen. The skin and urinary tract
organs are high osmotic stress environments. Osmolyte
transport is essential for S. gureus survival in different
environmental niches, such as within human skin absce-
sses or the human urinary tract.

Schwan WR, Wetzel KJ. Osmolyte transport in Staphylococcus
aureus and the role in pathogenesis. World J Clin Infect Dis
2016; 6(2): 22-27 Available from: URL: http://www.wjgnet.
com/2220-3176/full/v6/i2/22.htm DOI: http://dx.doi.org/10.5495/
wijcid.v6.i2.22

INTRODUCTION

A well conserved, evolutionary strategy used by many
organisms to adapt to high osmotic conditions is the
transport of organic compounds, called compatible
solutes™. These compatible solutes serve as cytoplasmic
solutes that balance water relations, without interfering
with normal cytoplasmic activities, within cells grown in
high salt environments. Examination of the transport
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systems in Staphylococcus aureus (S. aureus) may
provide insight into how proline and glycine betaine
may be transported into Gram-positive bacteria.

GENERAL OSMOLYTE TRANSPORT
FEATURES IN S. AUREUS

Although osmolyte transport is best described in E.
colit*?!, there are also compatible solute transport
systems in S. aureus to adapt to high salt environ-
ments'*. Studies have shown that S. aureus cells grown
in very high salt environments had increased intracel-
lular levels of proline and glycine betaine®®*!, Other
intracellular molecules that also increased in high NaCl
environments were choline, proline betaine, taurine,
and glutamic acid®®”*?. Of these accumulated solutes,
proline and glycine betaine were the most effective
osmoprotectants of S. aureus, since S. aureus growth
was observed when these solutes were excluded from
defined high osmotic media®®?,

Identification of genes that encode transport pro-
teins and their importance for the survival of S. aureus
coincides with previous observations that S. aureus
requires several amino acids as a source of carbon
and nitrogen'. Of these essential amino acids, proline
and other amino acids are not synthesized by S.
aureus™*', The accumulation of most of the proline in
S. aureus occurs because of proline transport proteins.

Although prior research performed using other Gram-
positive bacteria may not have specifically addressed
proline transport, it does help in uncovering commonly
conserved mechanisms of compatible solute transport
in S. aureus. Several studies that have examined com-
patible solutes accumulation in S. aureus grown at high
osmotic environments showed increased intracellular
levels of proline, aminobutyric acid, glutamic acid, ch-
oline, taurine, and glycine betaine® >, Of these
compatible solutes, only glutamic acid is synthesized by
S. aureus, whereas the other compatible solutes have
to be imported from the external environment™7”#79),
To substantiate the osmoprotective importance of these
transported compatible solutes, the growth rates of
S. aureus grown in defined high osmotic media was
observed to increase when supplemented with either
proline or glycine betaine™. Although S. aureus normally
possess relatively large concentrations of glycine betaine
and potassium ions, compatible solute transport is
believed to aid in creating high intracellular pressure that
enables S. aureus to survive in high osmotic environ-
ments™,

SPECIFIC PROLINE TRANSPORT
SYSTEMS IN S. AUREUS

Initial proline uptake research using whole cell assays on
S. aureus has shown the presence of at least two proline
transport systems'**?%: Both a low- and high-affinity
system. These systems may be similar to the OpuE
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and OpuD transport systems found in B. subtilis****

and they share properties with the PutP and ProP
systems of E. colf'l. They are both sodium-dependent
transporters, since gramicidin D and monensin, which
collapse Na* gradients, inhibit proline transport in both
systems!'®’. Proline transport in either system showed
low susceptibility to inhibition by glycolysis and ATP form-
ation by a combination of NaF and sodium iodoacetate
or sodium arsenate, respectively. Lastly, alterations of
pH from 5.5 to 8.5 had little effect on the transport rates
of proline™.

In S. aureus, proline transport kinetics is hard
to interpret because of strain differences and the
calculation setups used to determine the Km and Vmax
values reported, one based on per mg protein and the
other per mg dry weight. Reports have shown that the
high-affinity proline transport system in S. aureus had
a Km ranging from 1.7 to 7.0 mol/L, with a Vmax ranging
from 1.1 nmol/min per milligram dry weight to 10 nmol/
min per milligram protein™®'”. Though these numbers
are not directly comparative, they do give us a relative
range of activity for this system, which correlates to a
previously observed Km value of 3.5 mol/L for proline
uptake with vesicles prepared from S. aureus grown in
a low-osmolarity medium™ and Km values of the PutP
system in E. colt™'"***®), Moreover, like the PutP system
of E. coli™, the high-affinity proline transport system
in S. aureus is specific for the transport of proline
and it's activity increases when proline deprivation is
encountered, suggesting that this system may also be
involved in scavenging low concentrations of proline from
the environment™, Further proof of the relatedness of
these systems can be seen from the complementation
of a genetic defect in proline transport within E. coli by
the high-affinity proline transport system of S. aureus'”.
At the structural level, the PutP homolog of S. aureus
shows a sodium-binding motif, the same ten conserved
amino acids found in all other members of the sodium/
solute symporters®®®, and the predicted PutP protein
of S. aureus™ shares considerable similarity with the
PutP protein of E. coli’. Although many similarities exist
between the high-affinity proline transport systems in
S. aureus and E. coli, major differences between these
systems include: The concentration of NaCl appears to
have no effect on proline transport in S. aureus™'”; the
S. aureus putP gene is activated by high concentrations
of osmolytes in the environment™, whereas the E. coli
putP gene is not™*>*: and the S. aureus putP gene is
regulated by SigB™”, which is similar to the regulation
shown for opuE in B. subtilis™. Although PutP has a
sodium binding motif and has homology with sodium/
solute symporters, the concentration of NaCl does not
affect proline transport”*”, It is possible that when S.
aureus is grown in an environment with a low sodium
concentration that PutP behaves like other bacterial high
affinity proline transporters that are driven by a sodium
motive force. On the other hand, S. aureus grown in a
high sodium environment may cause the PutP protein
to use a proton motive force instead of a sodium motive
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Table 1 Distribution of proline and glycine betaine transport

genes in some sequenced

S. aureus strains

Gene N315 MW2 COL Mu50
putP SA1718 MW1843 SACOL1963 SAV1902
putP SA0531 MWO0528 SACOL0620 SAV0573
opuD SA1183 MW1236 Yes (2)° SAV1349*
opuD1 = = SACOL1384 ND’

opuD2 = = SACOL2176 ND’

opuCA SA2237 MW2372 ND’ SAV2448
opuCB SA2236 MW2371 ND’ SAV2447
opuCC SA2235 MW2370 ND’ SAV2446
opuCD SA2234 MW2369 ND’ SAV2445

"Does not possess; *Multiple opuD genes in this species; *Not determined;
4 . .
The gene appears to be fragmented into two pieces.

force to bring proline into the cell.

The low-affinity proline transport system of S.
aureus also has similarities to the low-affinity proline
transport system (ProP) of E. coli. For proline transport,
the Km value of S. aureus ATCC 12600 (Km of 420 mol/L
and Vmax of 110 nmol/min per milligram protein) is
similar to the Km value of ProP in E. coli (approximately
300 mol/L)*". For S. aureus (Kmof 132 mol/L and Vmax
of 22 nmol/min per milligram dry weight), a greater
difference in the Km values for the low-affinity proline
transport system can be seen between strains as
compared to the difference in Km values for the high-
affinity system. Again, the Km and Vmax values from
the ProP system of E. coli fit within the overall range
found for S. aureust>'*3, but strain variation along with
calculation setup differences may again be the cause
of these divergent numbers. Excluding the differences
of the Km and Vmax values between strains, the low-
affinity proline transport systems of different S. aureus
strains possess identical characteristics!*>'”). Many of
these characteristics are similar to the regulatory and
functional properties of the ProP system of E. coli*"
(i.e., both of these systems transport proline and are
stimulated by increasing osmolarity produced by either
jonic or nonionic solutes)™”,

DIFFERENCES IN THE S. AUREUS
OSMOLYTE TRANSPORT SYSTEMS
COMPARED TO OTHER BACTERIA

Though these systems are similar, there are some major
differences between the Gram-negative and Gram-
positive low-affinity proline transport systems. One
major difference is that the low-affinity proline transport
systems in S. aureus are optimally activated at NaCl
concentrations ranging from 0.75 to 1.0 mol/L"7?>%,
whereas the low-affinity proline transport systems in E.
coli are inhibited by NaCl concentrations greater than 0.2
to 0.3 mol/L***. Other major differences include glycine
betaine transport activity by the low-affinity proline
transport system has not been conclusively established
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and there conflicting opinions and data presented for
the glycine betaine transport activity for the low-affinity
system!®”*#2%¥ 1n part, the previous lack of any low-
affinity system mutants in those studies complicated
the examination of glycine betaine transport activities.
Since glycine betaine accumulation has been linked to
proline transporters in Gram-negative bacteria!! and
S. aureus has been shown to transport glycine betaine
from the external environment™®, this suggests that an
additional glycine betaine transporter that is osmotically
stimulated may be present in S. aureus. Moreover, S.
aureus cells shocked with 0.5 mol/L NaCl in the presence
and absence of chloramphenicol (100 g/mL) showed
identical levels of transported proline, suggesting that
new protein synthesis is not necessary for rapid proline
uptake and that osmotic shock activates a pre-existing
proline transport system!'?.,

BIOINFORMATIC TOOLS TO IDENTIFY
OSMOLYTE TRANSPORT SYSTEMS IN S.
AUREUS

Sequencing of several S. aureus genomes has provided
a wealth of information on the existence of several
putative osmolyte transport systems in S. aureus™***,
All of the strains appear to have a conserved putP gene
for high affinity transport of proline, although there
appears to be homologs for both a proP gene! and
opuD gene'®*! (Table 1). Additional analyses have
shown that the opuD gene (encoding a low affinity
proline transporter) is activated under osmotic stress
conditions and OpuD transports proline under low
affinity growth conditions™. Furthermore, a mutation
in the S. aureus proP gene also causes lower proline
transport in media with high concentrations of proline
(Schwan WR unpublished data).

This is the first instance of both the ProP and
OpuD low affinity proline/glycine betaine transport
homologs being identified in one species and suggests
the importance that proline transport must have in the
survival of S. aureus cells in a variety of environments.
Furthermore, the opuC system, which putatively tran-
sports glycine betaine/carnitine/choline, has also been
observed. Together, the bioinformatic comparisons have
uncovered some very interesting genomic features in S.
aureus centered on osmolyte transport. A summary of
the four osmolyte transport systems in S. aureus tied
to proline transport and other known solutes is noted in
Figure 1.

OSMOLYTE TRANSPORT TIED TO S.
AUREUS SURVIVAL IN HUMANS AND
MICE

The rationale of investigating proline and glycine be-
taine transport in S. aureus is not purely academic. In
planktonic S. aureus, the glycine betaine level is high,

May 25,2016 | Volume 6 | Issue?2 |



Schwan WR et al. Staphylococcus aureus osmolyte transport and pathogenesis

Osmolyte transport in S. aureus cell

PutP — OpuC

Proline Proline
\//\ Glycine betaine
Carnitine
[ | Choline
\ A

PutP - OpuD

Proline Proline

Glycine betaine
Proline betaine
Choline
Carnitine
Ectonie

Glycine Betaine

Figure 1 The four prominent osmolyte transport systems in Staphylococcus
aureus tied to proline transport as well as other solutes.

but lower in S. aureus found in biofilms™*. Glycine
betaine is the most effective osmoprotectant. To
achieve the high glycine betaine level, an active glycine
betaine transporter would need to be functioning in
the planktonic S. aureus cells that are immersed in an
environment of high osmotic stress, like the human skin.
Indirect effects on S. aureus survival have been tied
to osmolyte transport systems. Defects in the cell wall
caused by a femAB mutation caused an upregulation of
opuC (glycine betaine/carnitine/choline transporter) and
downregulation of opuD to compensate for the defect™?.
YhcSR encodes a two-component signal transduction
system that is required for S. aureus survival. This two-
component regulatory system regulates transcription
of the opuCABCD operons affecting proline and glycine
betaine levels in S. aureus™. One study examining
daptomycin resistance revealed an accumulation of
glycine betaine within S. aureus cells that was coupled
with upregulation of the cudT (choline transporter) gene,
a beta choline dehydrogenase gene, a gbsA gene (glycine
betaine aldehyde dehydrogenase), an opuD2 gene, and
the proP gene™. Uptake of choline is needed to produce
glycine betaine internally, the best osmoprotectant!®’,
More directly, a transposon mutation in the gene
for the high affinity (PutP) proline transport system of
S. aureus rendered the bacteria less able to survive
in several animal infection models***”. Within cardiac
vegetations, the viable S. aureus count was 1-3 logs
lower than the wild-type parent strain™*, Transcription
of putP was shown to increase 105-fold shortly after
S. aureus infection of murine kidneys®™. In S. aureus
infected murine bladders, spleen and livers, putP
transcription was also elevated very quickly and then
dropped markedly as the infection progressed. Proline
levels in livers and spleens are very low™”! and the levels
are likely low in the other organs (e.g., bladder and
kidney), but through tissue damage by staphylococcal
toxins, the concentration of proline may increase sub-
stantially and in turn shut off transcription of the high
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No tissue damage
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Moderate proline level
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OpuD 1
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Figure 2 Model for the roles of proline transporters in Staphylococcus
aureus pathogenesis within a murine abscess.

affinity proline transport gene.

Conversely, transcription of the low affinity proline
transport gene opuD was shown to be the highest after
4 h post-infection in murine bladders and 18 h post-
infection in murine thigh abscesses™. Within murine
bladders and kidneys, high osmotic conditions prevail.
Initial observations demonstrated that at least one of the
low-affinity proline transport systems of S. aureus was
activated under moderate to high osmotic conditions™”,
which has been subsequently confirmed™.

Our model is that PutP is important in the early
stages of an infection when proline concentrations are
low, but OpuD expression is not as important (Figure 2).
As the infection proceeds, tissue damage occurs, which
releases free proline. By 18 h post-infection, the level of
free proline is higher and OpuD becomes important at
this stage of the infection.

These studies suggest that osmolyte transport
systems may play essential roles in survival of S. aureus
within humans or mice. Characterization of the proline
and glycine betaine transport systems will provide us
with experimental proof of the importance of these
systems during growth in high osmotic conditions, how
these systems are regulated, and will further our under-
standing of the significance of the proline/glycine betaine
transport to the survival of S. aureus in vivo.
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