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Abstract
Negative-sense RNA viruses comprise several zoonotic 
pathogens that mutate rapidly and frequently emerge in 
people including Influenza, Ebola, Rabies, Hendra and 
Nipah viruses. Acute respiratory distress syndrome, en-
cephalitis and vasculitis are common disease outcomes 
in people as a result of pathogenic viral infection, and 
are also associated with high case fatality rates. Viral 
spread from exposure sites to systemic tissues and 
organs is mediated by virulence factors, including viral 
attachment glycoproteins and accessory proteins, and 
their contribution to infection and disease have been 
delineated by reverse genetics; a molecular approach 
that enables researchers to experimentally produce re-
combinant and reassortant viruses from cloned cDNA. 
Through reverse genetics we have developed a deeper 
understanding of virulence factors key to disease cau-
sation thereby enabling development of targeted antivi-
ral therapies and well-defined live attenuated vaccines. 
Despite the value of reverse genetics for virulence fac-
tor discovery, classical reverse genetic approaches may 
not provide sufficient resolution for characterization of 
heterogeneous viral populations, because current tech-
niques recover clonal virus, representing a consensus 
sequence. In this review the contribution of reverse 
genetics to virulence factor characterization is outlined, 
while the limitation of the technique is discussed with 

reference to new technologies that may be utilized to 
improve reverse genetic approaches.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Reverse genetics; Viral pathogen; Negative 
sense RNA viruses; Influenza A virus; Ebola virus; Ra-
bies virus; Hendra virus; Nipah virus

Core tip: Several negative sense RNA viruses are capri-
cious, pandemic threats and give no quarter to their 
human hosts. Reverse genetic approaches have been 
valuable for discovery of key virulence factors medi-
ating disease with the aim of treatment and vaccine 
development, and knowledge acquisition to genetically 
map pathogenic potential. Despite the value of the re-
verse genetics approach current systems are limited by 
molecular cloning procedures that do not enable repro-
duction of genetically heterogeneous virus populations 
that circulate in nature. Advances in molecular biology 
may facilitate production of genetically diverse viral 
populations that better represent natural isolates.

Edenborough K, Marsh GA. Reverse genetics: Unlocking the 
secrets of negative sense RNA viral pathogens. World J Clin 
Infect Dis 2014; 4(4): 16-26  Available from: URL: http://www.
wjgnet.com/2220-3176/full/v4/i4/16.htm  DOI: http://dx.doi.
org/10.5495/wjcid.v4.i4.16

INTRODUCTION
Rational design of  vaccines and antiviral therapies is fa-
cilitated by discovery of  viral pathogenicity factors, the 
viral genes and proteins producing disease. Negative-
sense RNA viruses are comprised of  formidable human 
and zoonotic pathogens consisting of  seven viral fami-
lies; four are characterized by non-segmented genomes 
(Filoviridae, Rhabdoviridae, Paramyxoviridae and Borna-
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viridae), while the remaining three are distinguished by 
segmented genomes (Orthomyxoviridae, Bunyaviridae 
and Arenaviridae)[1]. Before 1994, when pioneering exper-
iments enabled recovery of  the first negative-sense RNA 
virus from cloned cDNA[2], in vivo serial virus passage, 
often at suboptimal temperatures, was the main method 
utilized to generate pathogenic variants[3] and retrospec-
tive sequence analysis of  viral genes enabled associations 
between genes and pathogenesis[4]. Today reverse genet-
ics is routinely employed to manipulate viral genomes 
for the purpose of  viral pathogenesis research. Briefly 
cDNAs, representing the full-length RNA genome/ge-
nome segments, are cloned into vectors containing T7 
RNA polymerase (T7) or RNA polymerase Ⅰ (polⅠ) 
transcriptional units. Transfection of  these plasmids, in 
concert with viral polymerase complex expression, into 
permissive cells facilitates transcription of  viral mRNAs, 
full length vRNA and recovery of  infectious virus[5].

OPTIMIZING CONDITIONS FOR REVERSE 
GENETICS
Minigenome assays
Reverse genetic systems have been optimized for indi-
vidual viruses by use of  minigenomes[6]; open reading 
frames (ORFs) of  reporter constructs encoding biolu-
minescent enzymes or fluorescent proteins are inserted 
in between viral noncoding sequences that are sufficient 
for the transcription and replication activity of  the viral 
polymerase[7] (Figure 1A). Leader and trailer sequences 
at the respective 3’ and 5’ ends of  the vRNA are critical 
for viral polymerase activity, and hence reporter expres-
sion, as demonstrated in the case of  Marburg virus[8] and 
Ebola virus[9,10]. Likewise minigenome constructs for 
Influenza virus, Orthomyxoviridae, include the 5’ and 3’ 
noncoding regions of  one of  the eight vRNAs such as 
nucleoprotein (NP)[11] or non-structural[12] segments. In 
the case of  Paramyxoviruses, however, the addition of  
gene start and gene end sequences in combination with 
leader and trailer sequences have been shown to enhance 
mRNA production[13], while it may also be important for 
the number of  nucleotides of  the minigenome to be per-
fectly divisible by six as each nucleocapsid (N) protein is 
thought to interact with six nucleotides[14].

For expression of  reporter genes from RNA tran-
scripts, produced from minigenome constructs, viral 
polymerase complexes are supplied in trans. Eukaryotic 
expression vectors such as pCAGGS contain strong 
promoters such as CAG, chicken β actin fused to a cyto-
megalovirus enhancer, and transient transfection of  poly-
merase constructs promote sufficient viral protein expres-
sion to elucidate the minimum number of  viral proteins 
required for reporter expression. For Influenza virus 
minigenome activity proteins, which form ribonucleo-
protein complexes (RNPs), are required including poly-
merase basic 2 (PB2), PB1, acidic polymerase (PA) and 
NP proteins[15]. Likewise for Rhabdoviridae[16] and Para-
myxoviridae[14] members plasmids encoding N, phospho-

protein (P) and large polymerase (L) are co-transfected 
with the minigenome to enable reporter expression. The 
minimal number of  proteins required for minigenome 
activity may vary considerably even within one virus fam-
ily, e.g., RNA transcription of  Respiratory syncytial virus, 
Paramyxoviridae, was augmented with the inclusion of  
matrix (M) 2 protein[17], while addition of  M protein to 
Measles virus (MV) minigenome assays reduced reporter 
expression by reducing vRNA synthesis[18]. Similarly, the 
expression of  accessory proteins may inhibit minigenome 
activity and repression of  some of  these proteins may be 
required for measurement of  any polymerase activity[19]. 
The need for different protein combinations for reporter 
activity underscores the importance of  minigenome as-
says in determining functional associations between viral 
proteins for viral mRNA transcription.

PolI and II systems: Transcription in the nucleus
Selection of  promoters that drive RNA transcription 
from minigenome constructs is dependent upon whether 
viral transcription occurs in the nucleus or the cytoplasm 
during natural replication of  the virus. T7-dependent 
systems may be more suitable for viruses that replicate 
RNA within the cytoplasm, while polI systems may bet-
ter mimic viral replication cycles that involve transcrip-
tion in the nucleus, however recent studies have indicated 
some exceptions to this view. Infectious Uukuniemi[20], 
Influenza[21], Thogoto[22], Borna disease virus, MV[23] and 
Ebola virus[10] have all been successfully recovered from 
cloned cDNAs by the use of  cellular RNA polymerases 
such as polⅠ (Figure 1B). The conventional role of  pol
Ⅰ is to transcribe ribosomal RNAs without addition 
of  5’caps and 3’ poly-A tails[24], therefore it is a suitable 
host enzyme for the processing of  viral RNA molecules 
generating well defined vRNA 3’ and 5’ termini[25]. To 
employ RNA polⅠ a cDNA copy corresponding to each 
viral segment, or a full length cDNA molecule, is placed 
between a polⅠ truncated promoter and a polⅠ termi-
nator enabling synthesis of  vRNA[26]. Interaction between 
RNA polⅠ and its promoter is species-specific, therefore 
promoter sequence is carefully selected to suit the cell 
line destined for virus rescue[27,28]. 

RNA polⅡ cytomegalovirus promoters have also 
been utilized to initiate transcription of  viral messen-
ger RNA for Influenza virus rescue systems[26] and also 
has been shown to enhance cRNA expression for MV 
recovery in relation to other reverse genetic systems, de-
pendent upon T7, however as polⅡ transcripts may be 
spliced and polyadenylated the utility of  polⅡ for virus 
rescue of  other negative-sense RNA viruses is still to be 
determined[23]. 

T7 systems: Transcription in the cytoplasm
T7 polymerase has been particularly useful for recovery 
of  negative-sense RNA viruses, which mostly undergo 
transcription in the cytoplasm, including Hendra[29], 
Nipah[30], MV[31], Sendai[32], Rabies[2], Ebola[33], Marburg[34], 
Newcastle disease virus[35], RSV[17], Vesicular stomatitis vi-

Edenborough K et al . Reverse genetics and viral pathogenesis
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rus[36] and Lymphocytic choriomeningitis virus[37]. Investi-
gators have had more success in virus recovery by inser-
tion of  full-length antigenome, rather than genome sense, 
between T7 promoter and terminator sequences[2]. The 
T7 promoter can be modified to enhance transcription 
initiation and reporter expression in minigenome assays 
by the addition of  more than two G nucleotides[38], while 
if  added in combination with a nuclear localization signal 
the T7 system has enabled recovery of  Influenza virus[39]. 
The disadvantage of  T7 systems, in contrast to polI, 
includes necessary sequences bordering the 5’ and 3’ anti-
genome ends to form autocatalytic ribozymes that cleave 
nonviral terminal nucleotides added during transcription. 
Early rescue systems focussed on correct processing of  
the RNA 5’ ends, or trailer sequence[38,40], by insertion of  
an adjacent Hepatitis delta virus (HDV) sequence before 
the T7 terminator sequence, and the HDV ribozyme 
sequence has recently been optimized for more efficient 
vRNA cleavage[41]. Enhanced recovery of  infectious virus 
has also been documented by addition of  a hammerhead 
ribozyme sequence prior to the 3’ leader[41].

An advantage of  T7 dependent systems includes 
transfectable cell lines of  several species can be employed 
for the purpose of  virus recovery, providing supplemen-
tation with an exogenous source of  T7[39]. Choice of  cell 
may be of  value when vaccine approved cell lines must 
be used, or in the case of  zoonotic viruses that have 
limited cell tropism. In early reverse genetics systems 
cytoplasmic T7 was supplied by addition of  recombinant 

vaccinia virus[42], however its cytopathic effects have been 
found to impede virus recovery and necessitates plaque 
purification for removal of  vaccinia from the virus 
culture[43]. These issues have been overcome by use of  
modified vaccinia Ankara strains[44], however more prac-
tical systems are now accessible such as T7 expression 
plasmids that can be transiently transfected[45] or stably 
transfected[46,47] into permissive cell lines.

REVERSE GENETICS AND 
PATHOGENICITY FACTOR DISCOVERY
Influenza A virus
Influenza A virus, a member of  Orthomyxoviridae family, 
contains eight negative-sense RNA segments each 
corresponding to one of  eight viral genes; two of  these, 
the hemagglutinin (HA) and neuraminidase (NA) encode 
the surface glycoproteins that protrude from the viral 
envelope. Currently 17 HA and 10 NA types have been 
identified and all but the most recently described subtype 
(H17N10 from bats) have been isolated from aquatic 
birds such as waterfowl and shorebirds, which act as a 
natural reservoir for the virus[48,49]. The only subtypes 
circulating in humans, H3N2 and H1N1, cause mild dis-
ease associated with viral replication in the upper respira-
tory tract and large airways[50,51], while replication in the 
lower respiratory tract[52] or sites outside the respiratory 
tract results from infection with virulent isolates, such as 
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mutant viruses containing variable sequence lengths and 
combinations of  basic amino acid residues in the HA via 
reverse genetics[66]. In this study they found association 
between presence of  a > 4 basic amino acid residues in 
the cleavage site, efficient HA cleavage in chicken em-
bryonic fibroblasts and lethality to chickens, which was 
caused by spread of  virus to brain via neurons and sys-
temic organs via the blood stream. More recent plasmid 
based reverse genetic studies have demonstrated a similar 
role for the MBCS in viral pathogenesis for mammals, 
such as mice[67] and ferrets[68,69], which corresponds to the 
pathological and clinical observations of  humans infected 
with highly pathogenic influenza such as detection of  vi-
rus in systemic organs of  fatal H5N1 cases[70] and detec-
tion of  vRNA in the blood stream of  infected patients[71]. 
Since the importance of  the MBCS for influenza patho-
genesis has been established recent research has focused 
on reducing replication of  Influenza virus with substrate-
analogue peptide mimetic inhibitors that target host cell 
proteases, specifically those carrying out HA0 cleavage[72]. 
This is a successful example of  the use of  reverse genet-
ics for identification of  a virulence factor, the MBCS, and 
production of  an inhibitor based on the understanding 
of  virulence mechanisms. 

Ebola virus
In 1976 Ebola virus, a single-stranded negative-sense 
RNA virus of  18.9kb within the Filoviridae, first emerged 
in humans and thereafter several outbreaks in Sudan, 
western and central Africa have been documented[73]. In-
dex cases are often associated with butchering, handling 
or consuming bush meat such as fruit bats[74], the poten-
tial natural reservoir of  the virus[75], and also close contact 
with non-human primates[76]. Human-to-human transmis-
sion occurs via close contact[77] and long incubation peri-
ods, prior to symptom development, facilitate viral spread 
in the community causing stigmatization of  health care 
workers and relatives of  the sick[78]. Ebola viruses iso-
lated from different geographical locations in Africa have 
caused similar disease symptoms and signs such as head-
ache, myalgia, muscle spasms, fever, malaise, abdominal 
pain, haemorrhage and maculopapular rash[79], although 
the latter was more commonly noted in infected patients 

highly pathogenic avian isolates that infect humans via 
inter-species transmission events[53]. 

The virulence factors enabling viral spread beyond 
the respiratory tract have been characterized in re-
verse genetic studies. Influenza virus reverse genetic 
systems have been thoroughly optimized since their 
initial iterations when purified RNP and RNA were 
transfected in vitro and recovered with the addition of  
helper viruses[54]. In early plasmid-based reverse genetic 
systems influenza viral RNA synthesis was dependent 
upon supplementation of  additional expression plasmids 
for NP and the polymerase complex, PB1, PB2 and PA, 
in trans[21,55], however shrewd optimization by inclusion 
of  an RNA polⅡ transcriptional unit on the same 
plasmid as the RNA polⅠ promoter, in an ambisense 
direction, generated viral mRNA molecules in cis 
enabling production of  viral protein and vRNA from 
a single plasmid[56]. More recently gene segments were 
concatenated onto a single cassette that encoded multiple 
segments each separated by a transcriptional unit with 
the aim to hasten the recovery of  vaccine seed viruses[57], 
which is essential for production of  pandemic vaccines. 

One particular virulence factor that has been well 
characterized in reverse genetic studies includes the HA 
glycoprotein, which interacts with terminal sialic acids for 
host cell attachment[58] and orchestrates fusion of  the vi-
ral envelope and endosomal membrane of  the cell for re-
lease of  RNPs into the cytoplasm[59]. For efficient fusion 
the HA precursor must be cleaved at a prominent loop to 
form two subunits, HA1 and HA2, cleavage of  the HA 
glycoprotein is a process essential for multiple rounds 
of  viral replication and is carried out by enzymes that 
are produced by the host[60,61]. For most human seasonal 
influenza and Low Pathogenicity Avian Influenza viruses 
the cleavage occurs at the site of  a single arginine (R) 
residue[60,62]. For this reason, these viruses are limited to 
tissues that contain host enzymes with the corresponding 
recognition preference for single basic amino acids[60,63].

In the HA of  highly virulent subtypes insertions of  
multiple basic amino acid residues have been found and 
this region has been coined the multi-basic cleavage site 
(MBCS, Table 1)[64,65]. The role of  the MBCS in patho-
genesis for chickens was assessed by generating H5N2 
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Table 1  Outline of viral proteins that contribute to virulence as determined by reverse genetics

Virus Virulence factors Role in pathogenesis

Influenza A Multibasic cleavage site Facilitates viral spread to cells outside the respiratory tract
Ebola Glycoprotein

Viral protein 24 and nucleoprotein 

Transmembrane form mediates host cell attachment and its soluble forms activate 
mononuclear phagocytes and endothelial cells
Antagonists of IFN responses

Viral protein 35 Viral polymerase cofactor that suppresses RIG-I like receptor signalling 
Rabies Glycoprotein Neurotropic surface glycoprotein that facilitates spread to the brain

Phosphoprotein Viral polymerase cofactor and antagonist of IFN responses
Hendra and Nipah Phosphoprotein Viral polymerase cofactor and antagonist of IFN responses

V and W proteins Antagonists of IFN responses
C protein Regulates viral transcription and affects activation of innate immune cells

IFN: Interferon.



of  the Zaire outbreak, which of  all the outbreaks, has the 
highest documented case fatality rate[80,81]. In contrast hu-
mans infected with the Reston Ebola virus isolate, which 
emerged via importation of  infected monkeys from the 
Philippines into Reston, Virginia, United States, devel-
oped antibodies to the virus in the absence of  clinical 
disease[82] indicating this virus isolate was not pathogenic, 
although only a small number of  humans were exposed. 
Reston Ebola virus has since been detected in piggeries 
in the Philippines while serological studies suggest a small 
number of  pig farm workers have been infected with the 
virus[83].

Both T7 and polⅠ dependent systems have been 
utilized for minigenome assays to characterize the viral 
proteins mediating transcription for Zaire and Reston 
Ebola viruses, and to recover infectious viruses for sev-
eral Ebola virus isolates[84]. Reverse engineered viruses 
have been used to assess the role of  the Ebola virus gly-
coprotein (GP, Table 1), which forms trimeric spikes on 
the viral envelope and mediates host cell attachment and 
entry[85]. Produced through a process of  transcriptional 
RNA editing[86], GP protein expression is regulated in 
infected cells[87]; secretory GP is produced from unedited 
transcripts, while transmembrane GP is produced from 
edited transcripts that preside at lower frequency[88]. GP 
expression is cytotoxic acting to increase the permeabil-
ity of  venous and arterial blood vessels, compromising 
vascular function[89]. Recently chimeric Ebola viruses, in 
which the GP of  Zaire and Reston virus isolates were 
exchanged, have been utilized to clarify isolate-specific 
differences in virulence[90]. Interferon-α/β receptor 
knock-out (IFNAR-/-) transgenic mice were selected to 
characterize in vivo pathogenicity of  the chimeric viruses, 
as the need for virus adaptation via serial passage is un-
necessary, unlike immune competent mice. Reverse en-
gineered Reston virus was not pathogenic to IFNAR-/- 
mice and only replicated to low levels in liver and spleen, 
which mirrors the absence of  human disease[90]. In con-
trast, Zaire virus caused rapid weight loss and replicated 
to high titres in spleen and liver, which indicated that 
the IFNAR-/- mouse model recapitulated human disease 
observations in relation to both virus isolates[90]. Interest-
ingly, introduction of  the Reston GP into the Zaire virus 
did not attenuate virulence in IFNAR-/- mice, suggesting 
that Zaire GP is not the only determinant of  virulence, 
and instead the robust replicative capacity of  Zaire virus 
in vitro and in vivo was consisted with its virulence for IF-
NAR-/- mice[90].

Other factors for Zaire Ebola virus virulence have 
been identified via serial passage of  reverse engineered vi-
ruses in mice and include viral protein 24 and nucleopro-
tein (Table 1), factors that are involved in evasion of  host 
type 1 interferon responses[91]. Other components of  the 
innate immune response, particularly transcription factors 
such as interferon regulatory factor 3, may be suppressed 
by viral protein 35 (VP35, Table 1), a cofactor of  Ebola 
viral polymerase[92] and production of  reverse genetic 
viruses containing mutations in VP35 have been used in 

transcriptome studies[93], which may provide key insights 
into virus host interactions. 

Rabies virus
Rabies virus, a member of  the Rhabdoviridae, was the 
first single-stranded negative-sense virus recovered by 
reverse genetics[2]. Wildlife host reservoirs of  rabies vi-
rus include bats[94], racoons and foxes[95] although cross-
species transmission to non-human primates and do-
mestic animals such as dogs and cats perpetuate human 
disease[96-98]. Risks for human infection include direct 
exposure to saliva shed from rabid animals occurring via 
animal bite or contamination of  broken skin[99]. Human 
disease results from fatal encephalitis that progresses as 
virus spreads to the central nervous system via retrograde 
transport along axons of  peripheral nerves, which is me-
diated by rabies glycoprotein (G, Table 1)[100]. The 12kb 
long genome encodes five proteins; nucleoprotein (N), 
phosphoprotein (P, Table 1), matrix protein (M), G and 
the RNA-dependent RNA polymerase (L). Viruses pro-
duced by reverse genetics have elucidated that G, M and 
P proteins play important roles in the severity of  rabies 
disease by either facilitating cell to cell spread[101] or an-
tagonizing host innate immune responses[102]. 

Currently rabies virus vaccines delivered to humans 
are beta-Propiolactone inactivated and administered 
intramuscularly in three doses to generate neutralizing 
G-specific antibody titres, which wane overtime, as such 
additional booster shots may be needed[103]. Due to the 
requirement for multiple doses and the high cost of  vac-
cination and post-exposure prophylaxis (PEP) therapies 
more than 55000[104] rabies-related deaths are still re-
ported annually predominantly in developing countries. 
Replication deficient rabies viruses (RDRV) produced 
via reverse genetics may be a low cost alternative to cur-
rent vaccines and PEP. RDRV have been produced by 
T7 driven reverse genetic systems such that the viruses 
contained neither coding capacity for M nor P, instead 
the latter encoded two copies of  G for protein over-
expression and induction of  greater G specific immune 
responses[105]. RDRV vectors have also been shown to be 
immunogenic demonstrated by the induction of  neutral-
izing G-specific antibodies in non-human primates fol-
lowing a prime boost immunization strategy[106]. Safety is 
a main concern for the use of  live attenuated viral vac-
cines, but because RDRV vectors replicate in cell culture 
only in the presence of  P or M protein supplementa-
tion and are innocuous to immune deficient transgenic 
mice[106] the risk of  reversion may not be as great as 
other live attenuated vaccine viruses that are attenuated 
through single amino acid changes. Rabies virus has also 
been shown to be a safe and excellent vaccine vector with 
the ability to generate antibody responses targeting hu-
man immunodeficiency virus envelope proteins, severe 
acute respiratory syndrome coronavirus and hepatitis C 
virus proteins[107]. Collectively, these RDRV studies have 
highlighted the diverse utility of  reverse genetics, not 
only enabling discovery of  virulence determinants, but 
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also applying our understanding of  virulence to rationally 
engineer attenuated viruses for the purposes of  vaccina-
tion. 

Hendra and Nipah viruses
Hendra virus (HeV) and Nipah virus (NiV), classified 
within the Henipavirus genus of  the Paramyxoviridae, 
which are harboured asymptomatically by Pteropid fruit 
bats[108], were identified as aetiological agents of  severe 
human infections that occurred in the 1990’s. Inter-spe-
cies transmission occurs via intermediate hosts; infected 
horses were associated with HeV human cases in Austra-
lia[109] and infected pigs were associated with NiV cases 
in Malaysia[110]. Additional risk factors for contraction 
of  Nipah virus in Bangladesh have included consump-
tion of  raw date palm sap, a delicacy in Bangali culture, 
contaminated by bat urine or saliva[111], while limited 
human-to-human transmission has been documented 
in cases of  very intimate contact such as preparing an 
infected corpse for burial[112]. In humans HeV and NiV 
infections are associated with high case fatality rates and 
severe disease. NiV infected humans develop respiratory 
and neurological signs such as dyspnoea, disorientation, 
confusion and muscle spasms that are associated with 
the expansive tissue tropism of  the virus, which includes 
infection of  neurones of  the central nervous system, en-
dothelium, lymphoid and respiratory tissues[113]. In 10% 
of  infected people NiV has been shown to reside in a 
quiescent form for months or years until the virus reac-
tivates causing fatal neurological disease[114]. HeV disease 
in humans has not been thoroughly characterized as few 
human infections have occurred, however from limited 
reports of  post-mortems and disease signs it appears the 
respiratory and neurological disease caused by HeV is 
akin to that caused by NiV infection[115,116]. 

NiV and HeV have non-segmented genomes of  
-18kb in length that encodes for more than six proteins 
and NiV and HeV are closely related to each other with 
amino acid sequence similarities of  > 80% for many of  
the viral proteins[117]. Nucleocapsid protein (N), phos-
phoprotein (P), matrix protein (M), fusion protein (F), 
glycoprotein (G) and large polymerase (L) are encoded 
on discrete transcriptional units[118], while three accessory 
viral proteins are produced from the P gene (Table 1) in-
cluding the C protein that is transcribed from an alternate 
open reading frame (ORF), and also V and W proteins 
that are produced by the addition of  G nucleotides into 
transcribed mRNAs via RNA editing[119]. P, V, W and C 
proteins play important roles in infection by impeding 
activation of  host antiviral responses. A conserved fea-
ture of  the paramyxovirus V protein is its ability to bind 
melanoma differentiation-association gene 5 (MDA5), a 
pattern recognition receptor, impeding the recognition of  
dsRNA resulting in inhibition of  IFN-β induction[120,121]. 
Furthermore, V and W proteins can prevent activation 
of  the type Ⅰ IFN signalling pathway by sequestration of  
signal transducer and activator of  transcription (STAT) in 
the cytoplasm or nucleus, reducing STAT mediated induc-
tion of  interferon stimulating genes key to innate antiviral 

responses[122]. Inhibition of  various components of  the 
antiviral response by several NiV and HeV proteins un-
derscores the role of  P, V, W and C for viral pathogenesis.

HeV and NiV reverse genetics systems have been 
successful in virus recovery with use of  T7[29,30] depen-
dent systems and co-transfection of  the protein expres-
sion plasmids N, P and L, which encapsidate the RNA 
forming the RNP complex, as these proteins are essential 
for minigenome function[14]. The transfection ratios of  
N:P:L require optimization for efficient virus recovery 
as poor reporter expression in minigenome assays have 
been noted in the context of  high concentrations of  P 
protein[45], which likely results from the C protein inhibit-
ing minigenome expression[19]. To further examine im-
portance of  C, V and W proteins for NiV pathogenesis 
several recombinant viruses were produced; Stop codons 
were introduced downstream of  the C ORF site or the 
RNA editing site to prevent expression of  C or V and W 
respectively. Despite these changes all viruses expressed 
functional forms of  the P protein[123]. Following confir-
mation of  P but not V, W or C expression in infected 
cells, it was determined that the recombinant viruses rep-
licated efficiently in vitro, which indicated these proteins 
were not essential for viral replication. Virus pathogenic-
ity was assessed by use of  a hamster infection model, 
wherein it was demonstrated that suppression of  C and V, 
but not W protein, completely attenuated NiV as weight 
loss, disease signs and high levels of  viral replication in 
systemic organs were not observed[123]. Another study by 
a different group compared host responses in human en-
dothelial cell lines infected with wildtype NiV verses one 
of  the attenuated viruses, NiV lacking C protein expres-
sion (NiVΔC). With microarray analysis they established 
that compared to wildtype NiV, NiVΔC induced higher 
levels of  cytokines and chemokines such as interleu-
kin 1 beta (IL-1β), IL-8, CXCL2, CXCL3, CXCL6 and 
CCL20[124]. These findings indicated that NiV C plays a 
role in inhibiting induction of  proinflammatory cyto-
kines and recruitment of  leucocytes and lymphocytes 
into sites of  infection such as the lung. This study also 
examined the pathogenesis of  NiVΔC in hamsters and 
the researchers were only able to partially replicate the at-
tenuated phenotype of  NiVΔC, as 30%-90% of  animals 
required euthanasia following infection. The reason for 
the variation in results between the two studies is yet to 
be ascertained, however it highlights the limitations as-
sociated with insertion of  silent restriction sites for the 
purposes of  engineering mutations into plasmids, as 
laboratories will insert a different variety of  silent muta-
tions that may have unknown effects on the virulence of  
the virus.

REVERSE GENETICS TECHNOLOGIES 
HAVE LIMITED UTILITY FOR THE STUDY 
OF DIVERSE RNA VIRUS POPULATIONS
RNA viruses, HIV and Influenza virus in particular, 
spread between and within hosts as genetically hetero-
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geneous virus populations, or quasispecies, clustering 
around a dominant virus sequence[125]. Quasispecies 
are perpetuated by spontaneous mutations afforded by 
low fidelity viral RNA polymerases, and although exact 
mutation rates may differ for each virus[126], they are in 
the range of  10-4 mutations per nucleotide copied[127], 
therefore 1.3 mutations would be expected to occur with 
every replication of  the influenza genome of  -13kb. Qua-
sispecies are thought to act cooperatively with the aim of  
facilitating viral persistence within hosts[125,128]. Genetic 
heterogeneity has been found important for poliovirus 
pathogenesis as demonstrated by the ability of  a geneti-
cally diverse, but not a homogenous, virus population for 
invasion into the CNS[129]. HIV genetic diversity may also 
influence viral tropism and larger sequence diversity has 
been associated with faster disease progression[128]. With 
this in mind we are faced with a technological drawback; 
the requirement of  producing infectious clones for the 
purpose of  virus rescue also removes population hetero-
geneity that may play pivotal roles in pathogenesis. Over-
all, care should be taken in the selection of  a consensus 
sequence to produce infectious clones representative of  
dominant and also subdominant variants. 

CONCLUSION
Reverse genetic technologies have proven critical to study 
the contribution of  viral genetic factors to disease sever-
ity by enabling production of  well-defined, recombinant 
negative-sense RNA viruses, such as a mutant and wild-
type viruses, which can be compared for the purpose of  
identifying chief  virulence determinants in the context 
of  host-pathogen systems. For several negative-sense 
RNA viruses effective rescue methods have been devel-
oped, which may be dependent upon either T7 or pol
Ⅰ and Ⅱ transcriptional units. Furthermore, inclusion 
of  polymerase proteins or 5’ and 3’ cleavage sequences 
for correct vRNA processing may also be necessary for 
rescue, although these conditions are optimized for each 
virus and minigenome assays have proved useful for this 
purpose. 

Recombinant viruses, however, are produced by se-
lection of  a consensus sequence that forms the basis of  
the infectious clone and therefore recombinant viruses 
are likely to constitute only the dominant viral species of  
a potentially diverse natural virus population. Reduction 
and alteration in viral heterogeneity, as a consequence of  
reverse genetics, is a limitation not often taken into ac-
count in the context of  pathogenesis studies. However, 
with the advent of  next generation sequence technolo-
gies for thorough characterization of  virus populations 
we stand in good stead to gather a better grasp of  viral 
heterogeneity in a field isolate and molecular biologists 
may be capable of  recapitulating diverse viral populations 
via reverse genetics. Recent technologies such as Gibson 
cloning[130] and barcoding virus populations[131] are likely 
to enable researchers to produce heterogeneous virus 
populations that can be studied for characterization of  

the pathogenic potential of  diverse viral populations, 
with a particular focus on the importance of  subdomi-
nant viruses for severe disease outcomes. Despite this 
limitation, reverse genetics enables production of  viruses 
that may be utilized for various future applications such 
as live-attenuated vaccines, mapping neural pathways in 
the brain, oncolytic virus production and delivery of  mi-
croRNAs as a therapy for viral infections.
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Abstract 
Cellular stress responses are powerful mechanisms that 
prevent and cope with the accumulation of macromo-
lecular damage in the cells and also boost host defenses 
against pathogens. Cells can initiate either protective 
or destructive stress responses depending, to a large 
extent, on the nature and duration of the stressing 
stimulus as well as the cell type. The productive replica-
tion of a virus within a given cell places inordinate stress 
on the metabolism machinery of the host and, to as-
sure the continuity of its replication, many viruses have 
developed ways to modulate the cell stress responses. 
Poxviruses are among the viruses that have evolved a 
large number of strategies to manipulate host stress 
responses in order to control cell fate and enhance their 
replicative success. Remarkably, nearly every step of the 
stress responses that is mounted during infection can 
be targeted by virally encoded functions. The fine-tuned 
interactions between poxviruses and the host stress 
responses has aided virologists to understand specific 
aspects of viral replication; has helped cell biologists to 
evaluate the role of stress signaling in the uninfected 
cell; and has tipped immunologists on how these signals 
contribute to alert the cells against pathogen invasion 

and boost subsequent immune responses. This review 
discusses the diverse strategies that poxviruses use to 
subvert host cell stress responses. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Poxvirus; Cell stress response; Heat shock 
response; Chaperones; Unfolded protein response; 
Host translational control; Hypoxia; Oxidative stress; 
DNA damage

Core tip: Poxviruses are known to encode a plethora of 
proteins that interact with cell biology processes in order 
to achieve replicative success. In this article, we review 
how poxviruses cope with cellular stress signals that 
are usually triggered upon infection to tentatively block 
virus replication. The understanding of mechanisms by 
which poxviruses and other complex viruses interfere 
with stress responses can further illuminate the web of 
pathways regulating cell homeostasis, as well as how 
viruses intertwine their own biochemical needs into this 
intricate scenario.

Leão TL, da Fonseca FG. Subversion of cellular stress responses 
by poxviruses. World J Clin Infect Dis 2014; 4(4): 27-40  Avail-
able from: URL: http://www.wjgnet.com/2220-3176/full/v4/
i4/27.htm  DOI: http://dx.doi.org/10.5495/wjcid.v4.i4.27

INTRODUCTION
The Poxviridae family is taxonomically divided into two 
subfamilies of  double-stranded DNA (dsDNA) viruses 
that are able to infect insects (Entomopoxvirinae) and a 
wide spectrum of  vertebrate hosts (Chordopoxvirinae). 
The Chordopoxvirinae subfamily currently contains ten 
genera (Avipoxvirus, Capripoxvirus, Cervidpoxvirus, Cro-
codylidpoxvirus, Leporipoxvirus, Molluscipoxvirus, Or-
thopoxvirus, Parapoxvirus, Suinopoxvirus, Yatapoxvirus) 
and one unassigned species (Squirrelpox virus), whereas 
the Entomopoxvirinae subfamily comprises three genera 
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(Alphaentomopoxvirus, Betaentomopoxvirus, Gam-
maentomopoxvirus) and two unclassified species (Diachas-
mimorpha entomopoxvirus and Melanoplus sanguinipes 
entomopoxvirus “O”)[1]. Members of  the Poxviridae family 
are large viruses (approximately 350 nm × 250 nm × 200 
nm) with a linear genome ranging from 130 to 300 kb, each 
often encoding approximately 200 proteins. Virions are 
brick-shaped, multi-enveloped particles and, unlike other 
DNA viruses, replicate exclusively in the cytoplasm of  the 
infected host cell. Most poxviral biosynthetic pathways oc-
cur in distinct sites of  the cytoplasm called viral factories: 
large masses of  electron dense material, the viroplasm, that 
are frequently surrounded by membranes from the endo-
plasmic reticulum (ER) and/or membranes from the ER-
Golgi intermediate compartments[2-6]. 

Different viruses have evolved two very distinct gen-
eral strategies to compete with the host cell for biochemi-
cal resources and successfully replicate within them. 
One such strategy is a “hit and run” type of  approach, 
in which viruses rapidly replicate and generate a progeny 
that spreads quickly to other cells. In order to be effective, 
these viruses have invested in replication speed by keep-
ing small genomes which code for few essential proteins 
- the faster they replicate, the more efficiently they can 
escape antiviral responses by the host. A second strategy, 
however, is based on a “stay and fight” approach. Viruses 
that adopted this strategy tend to endure within the host 
cell and, therefore, may be susceptible to antiviral re-
sponses that are gradually elicited against them. Thus, in 
order to achieve replicative success, these viruses have to 
cope with the host attempts to get rid of  them and, as a 
way to counteract antiviral responses, many evolved pro-
cesses to either block or delay such responses. Because 
most viral strategies to evade host responses are based in 
virus-coded proteins, this led inevitably to an increase in 
genome sizes. There are obvious exceptions to this rather 
simplistic classification of  virus replication strategies, as 
in the case of  hepadnaviruses (like hepatitis B virus) for 
instance. Nonetheless, most viruses can still fit one of  the 
two aforementioned models. Poxviruses are one of  the 
best examples of  viruses that have developed ways to ei-
ther counteract host strategies to hamper viral replication 
or boost their biosynthetic pathways to the detriment of  
the host’s. Indeed, most poxviruses (especially chordo-
poxviruses) spare up to 50% of  their genomes to code 
for immune evasion-related and host-interaction genes[7]. 

As soon as these viruses enter the host cell, they set 
in motion a number of  biochemical strategies to usurp 
cellular resources. One such strategy is to hijack the host 
translation apparatus to selectively produce large quanti-
ties of  viral proteins. To this end, poxviruses produce 
proteins that are able to cleave host messenger RNAs 
(mRNAs)[4,8-10] early in infection, shutting down the host 
protein synthesis almost completely during the first hours 
of  the viral cycle[11]. Furthermore, viruses are devoid of  
molecular chaperones, such as heat shock proteins (HSPs) 
with few exceptions and rely almost completely on chap-
erones of  the host to adequately process viral proteins, 

avoiding misfolding or aggregation[12-14]. In parallel, viral 
double-stranded RNA intermediates, DNA and proteins 
are sensed by pattern recognition receptors in the cell, 
leading to the generation of  innate immune responses 
potentially able to control the viral infection[15,16]. 

All the above mentioned virus-driven interferences 
within the cell may lead to the transduction of  cell stress 
signals and consequent cell stress responses. The cell 
may respond to stress in a variety of  ways, including 
the activation of  pathways that promote survival or the 
elimination of  damaged cells through programmed cell 
death (apoptosis, necrosis and/or autophagy). There is a 
multitude of  pathways that may be elicited upon differ-
ent types of  stress and the resulting signal transduction 
cascades are often shared by other cell processes, such 
as the activation of  innate immunity, cell cycling and so 
on. Nevertheless, the most common stress responses 
include those elicited against heat shock, ER stress (the 
unfolded protein response, UPR), DNA damage, hypoxia 
and oxidative stress. Some of  these responses may limit 
or inhibit viral replication and/or induce cell death and 
others can promote cell survival and restore homeostasis. 
To cope with stress responses, poxviruses have evolved 
complex molecular strategies to counteract innate host 
cell defense signaling pathways while facilitating biologi-
cal events that promote adaptation and survival of  the 
host cell, all essential to a productive infection. This re-
view summarizes the main cellular stress responses used 
or subverted by poxviruses to ensure completion of  viral 
life cycle.

HEAT SHOCK RESPONSE
In the early 1960s, the discovery of  the heat shock re-
sponse (HSR) led to the elucidation of  some aspects 
of  the cell stress responses and the discovery of  heat 
shock genes[17] and proteins (HSPs)[18,19]. Many HSPs are 
constitutively present in cells while some are expressed 
only after stress. HSPs and other molecular chaperones 
(e.g., co-chaperones and folding enzymes) are active in 
a myriad of  biological essential processes that include: 
(1) the normal folding of  polypeptides; (2) assisting 
misfolded proteins to attain or regain their native 
states; (3) regulation of  protein degradation; and (4) 
translocation of  proteins across membranes to different 
cellular compartments[20,21]. Some of  these proteins are 
conserved in all three superkingdoms and are encoded 
by genes that contain cis-acting regulatory sequences, 
termed heat shock elements (HSE), which are regulated 
by heat shock transcription factors (HSFs)[22,23]. Upon 
stress, one of  the main regulators of  the HSR, the HSF1, 
undergoes trimerization and subsequent translocation 
into the nucleus where these complexes bind to the 
HSE[23] (Figure 1). HSF1 is regulated by post-translational 
modifications such as phosphorylation, acetylation[24], 
sumoylation[25,26] and interactions with other proteins. 
HSF1 is constitutively expressed and is neither a stress-
inducible protein nor is its expression correlated with the 
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expression of  heat shock genes[27] (Figure 1). 
Recent studies, using different genome-scale ap-

proaches to identify host proteins used by poxviruses 
during infection, revealed that HSF1 is a crucial tran-
scription factor for virus replication and some targets of  
HSF1 are induced upon infection[28]. At the early stages 
of  poxvirus infections, a decrease in HSF1 mRNA syn-
thesis is observed; however, this does not seem to af-
fect the protein levels as its half-life is quite long. As the 
viral lifecycle progresses, an increase in HSF1 mRNA 
levels can be detected, although this is not followed 
by augmentation in this protein contents within the 
cell[29]. Infections by some poxviruses result in the phos-
phorylation of  HSF1 and its translocations to nucleus, 
where they bind to HSE[28,29]. Several HSF1-regulated 
genes are upregulated during infection, including genes 
coding for the molecular chaperones BAG3, STIP1, 
all classes of  HSPs (HSP10, HSP20, HSP40, HSP60, 
HSP70, HSP90 and HSP105/110) and other important 
proteins like IL6R, which has a role in cell growth and 
differentiation[8,28,30] (Figure 1).

The first observation of  the interaction between pox-
virus and HSPs was made by Jindal et al[10] (1992) who 
also showed that the infection led to a small increase in 
HSP90 and HSP60 mRNA contents and to a substantial 
increase in the HSP70 mRNA levels, suggesting that 
these proteins may play some role in viral protein folding. 
Opposed to this view, subsequent studies revealed that 
the overexpression of  the 72 kDa HSP, the major induc-
ible cytoplasmic HSP, did not affect virus replication[31,32]. 
Furthermore, during poxvirus infections, HSP70 ac-
cumulates predominantly in the nucleus where these 
proteins interact with poly (ADP-ribose) polymerase 1, 
PARP1 and XRCC1 and prevent single-stranded DNA 

break (SSB)[29,33]. Globally, these observations suggest that 
HSP70s are important for cell survival and death preven-
tion but may have a lesser impact in the proper folding 
of  poxviral proteins.

So far, the most likely HSP to have a role in the pox-
virus life cycle is HSP90. This chaperone is the most 
abundant HSP in unstressed cells and many of  its targets 
are either kinases or transcription factors such as Akt and 
HSF1, respectively[34,35]. The inhibition of  HSP90 func-
tion during infection by the use of  geldanamycin, a drug 
that blocks the ATPase activity of  that chaperone, im-
pairs viral multiplication by delaying viral DNA replica-
tion and intermediate transcription, and also by reducing 
expression of  late genes[36]. 

It has been shown that HSP90 interacts directly with 
the 4a core protein (encoded by A10L orthologous 
genes), implicating this chaperone in conformational 
maturation of  the poxvirus capsid. Nonetheless, HSP90 
does not colocalize with capsid proteins at later stages 
of  infection, suggesting a transient role for HSP90 in 
virion morphogenesis[36]. Other host chaperones (e.g., 
cyclophilin A and Hsc71) are found to be associated with 
intracellular mature virions (IMV) but the importance of  
these proteins in such a context needs be further investi-
gated[37,38].

UNFOLDED PROTEIN RESPONSE 
The endoplasmic reticulum (ER) is a multifunctional 
organelle that controls several critical aspects of  cellular 
processes: it ensures the correct structure of  most pro-
teins; plays a key role in the synthesis of  lipids and ste-
rols; and helps in the maintenance of  intracellular calcium 
levels and many other functions[39]. The protein homeo-
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Figure 1  Heat shock responses induced by poxviruses. Under normal conditions, HSFs interact with HSPs or exist as a monomer in the cytosol.  Upon exposure 
to stress conditions such as heat shock, oxidative stress or poxvirus infection, HSF1 undergoes post-translational modifications, such as phosphorylation, trimerizes 
and migrates to the nucleus.  In the nucleus, HSF1 trimer binds to the HSE, leading to induction of all classes of HSPs and other chaperones. HSE: Heat shock ele-
ments; HSFs: Heat shock transcription factors; HSPs: Heat shock proteins.



its dimerization and the activation of  its endonuclease 
activity[53-55]. The IRE1 nuclease domain has homology to 
RNase L and its activation causes splicing of  a residual 
intron (26nt) in the XBP1 mRNA, resulting in a more 
stable and active form of  the XBP1 protein (HAC1 in 
yeast)[56] (Figure 2). In some circumstances, activation of  
the IRE1 endonuclease domain mediates the cleavage 
and degradation of  other cell mRNAs[57] and this feature 
complements other cellular mechanisms to control global 
protein translation[58]. 

Upon activation, the ATF6 transcription factor re-
locates to the Golgi where it is cleaved by S1P and S2P 
proteases[59], resulting in the release of  an amino-terminal 
fragment that translocates to the nucleus where it pro-
motes expression of  chaperones, modifying enzymes 
and genes that code for transcription factors such as 
DNA damage-inducible transcript 3 [(DDIT3), also known as 
CCAAT/enhancer binding protein homologous protein 
(CHOP)] and X-box binding protein 1 (XBP1), which 
play an important role in ER stress induced apoptosis 
and proteostasis, respectively[60-62]. Although this was 
never fully investigated, it is tempting to speculate that 
poxviruses may somehow interact with IRE1/ATF6-
dependent stress pathways as these are such central com-
ponents during the unfolded protein response.  

It is known that XBP1 can be activated by TLR-2 
and TL4-4 stimulation in an IRE1 dependent manner; 
also known is the fact that Vaccinia virus and other chor-

stasis (proteostasis) surveillance in the ER is mediated by 
specific pathways generally called unfolded protein re-
sponse (UPR), which is activated when the intrinsic pro-
tein folding capacity of  the organelle is overwhelmed by 
a large input of  unfolded proteins into the ER[40,41]. Such 
imbalance activates three signaling pathways through 
ER-resident transmembrane proteins [inositol-requiring 
protein 1 (IRE1), activating transcription factor 6 (ATF6) 
and protein kinase RNA-like ER kinase (PERK)], result-
ing either in recovery of  proteostasis or in cell death[42,43] 
(Figure 2). In resting cells, these molecular sensors are 
maintained in inactive states through interactions with 
the major and most abundant ER-resident chaperone, the 
binding immunoglobulin protein (BiP) (Figure 2), also 
known as glucose regulated protein of  78 kDa (GRP78), 
encoded by the HSPA5 gene[44,45].

Because poxviruses replicate in close association with 
the ER, using components of  this organelle to its own 
benefit, it was suggested that they might trigger ER stress 
and activate UPR signaling[46]. Indeed, many structural 
Vaccinia virus (the prototypic member of  the family) 
proteins are known to closely interact with membranes 
of  the ER during the formation of  crescent membranes 
and immature virions[47-49]. Yet, no activation of  IRE1-
dependent stress pathways is usually detected[50] and how 
poxviruses evade and/or subvert this UPR signaling is 
still not known. During ER stress, IRE1 undergoes dis-
sociation from BiP and BAX inhibitor 1[51,52], triggering 
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Figure 2  Modulation of mammalian unfolded protein response pathways by poxviruses. ER stress is sensed by three ER-membrane bound sensors [PERK, 
ATF6 and Inositol-requiring protein 1 (IRE1)]. Under conditions of ER stress, unfolded proteins accumulate in the ER lumen causing the initiation of a coordinated 
signaling pathway, the unfolded protein response (UPR), to restore ER homeostasis. ATF6 traffics to the Golgi, where site-specific proteases (S1, S2) cleave it into an 
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26bp from the X-box binding protein 1 (XBP1) mRNA. XBP1 is a transcription factor that regulates positively the expression of many essential UPR genes involved in 
folding and quality control of proteins. Poxviruses evade XBP1 splicing by an unknown mechanism. Activated PERK phosphorylates eIF2a, resulting in global transla-
tional attenuation. However, some mRNA such as ATF4 gains a selective advantage for translation via phosphorylated eIF2. ATF4 in turn contributes to cytoprotection. 
Expression of other UPR gene targets (e.g., CHOP) may result in cell death. Poxviruses K3L orthologous genes code for proteins that bind to PERK as a pseudo-
substrate and thus inhibit eIF2a phosphorylation. ER: Endoplasmic reticulum; PERK: Protein kinase RNA-like ER kinase; eIF2a: Elongation initiation factor 2a; ATF: 
Activating transcription factor.
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dopoxviruses are able to interfere with TLR signaling. 
Therefore, this seems to be a virus-driven indirect strat-
egy to down-modulate XBP1 activation. Because XBP1 
has been shown to be important for sustained production 
of  cytokines by macrophages, it seems logical that poxvi-
rus may interfere with XBP1 activation as a way to cope 
both with the host innate responses as well as with the 
ER stress. 

Another component of  the UPR, PERK (also known 
as eIF2αK3) shares homology to the IRE1 structure 
and activation pathways but lacks the RNase domain 
of  IRE1[63]. Like the IRE1 activation, the release of  BiP 
from PERK triggers dimerization of  the later and its 
transphosphorylation (Figure 2). The activated PERK 
dimer is capable of  recognizing and phosphorylating the 
alpha subunit of  the translation initiation factor eIF2α  
at serine 51, reducing the translation of  virus and cell 
mRNAs[64] (Figure 2). On the other hand, eIF2α phos-
phorylation upregulates the translation of  ATF4, which 
induces expression of  CHOP, GADD34, ATF3[65-67] and 
other genes involved in processes that are usurped and 
modulated during poxvirus replication, including amino 
acids transport[11], glutathione metabolism[68] and control 
of  oxidative stress[69]. Not surprisingly, poxviruses encode 
proteins that mimic eIF2α and act as a pseudosubstrate 
for PERK, consequently suppressing phosphorylation of  
eIF2α and the shutoff  of  viral protein synthesis[70,71] (Fig-
ure 2). 

HOST TRANSLATIONAL SHUTOFF
Most viruses, as obligate intracellular parasites, lack most 
genes related to the transcriptional and translational ma-
chinery, including those coding for enzymes, transcrip-
tional factors, ribosomal subunits, translation factors and 
transfer RNAs (tRNA). Poxviruses encode their own 
transcriptional machinery but, to ensure viral mRNA 
translation during productive infections, they must ef-
fectively govern the host translation apparatus while 
avoiding stress responses like the eIF2α phosphorylation 
mediated translation shutoff. 

In addition to PERK, which is involved in responses 
to the proteostasis imbalance in the ER, three other 
stress-activated eIF2α kinases are capable of  inducing 
a broad range of  responses designed to protect the cell. 
Protein kinase R (PKR), heme-regulated inhibitor (HRI) 
and general control nonderepressible 2 (GCN2) respond 
to dsRNA, oxidative stress and nutrient deprivation, re-
spectively[72-74]. PKR (also known as eIF2αK2) is activated 
in response to stress signals usually resulting from viral 
infections and, together with other sensing and respond-
ing pathways that lead to eIF2α inactivation, is part of  
the so called integrated stress response (ISR). Poxviruses 
evolved non-redundant strategies to suppress activation 
of  ISR and collectively inhibit the host translational shut-
off  response. The best characterized poxvirus’ strategy 
to evade ISR is the expression of  a pleiotropic viral pro-
tein, encoded by E3L orthologous genes, which is able 

to bind dsRNA and inhibit PKR activation. Nonetheless, 
other viral proteins also play critical roles in this process, 
including those encoded by K1L, C7L and CP77L ortho-
logues[75-77]. Poxviruses lacking E3L orthologous genes 
induce the formation of  host-protein dense antiviral 
granules (AVGs) that suppress translation of  viral but not 
stress-induced host mRNAs and thus inhibit poxvirus 
replication[78].

ISR activation often promotes the formation of  ribo-
nucleoprotein aggregates called stress granules (SGs) at 
random sites throughout the cytoplasm. These SGs func-
tion as a protection zone for host RNAs where they can 
be stored when intracellular conditions are harmful[79]. 
SGs are distinct from AVGs in function and composition 
but share some components, like mRNA and RNA bind-
ing proteins [including Ras GTPase-activating protein-
binding protein 1, Caprin-1, TIA1 and mRNA poly(A) 
binding protein, PABP] and other translation initiation 
components [including eIF3H and eIF4A/E/G (eIF4F 
complex) with the exception of  40S ribosomal subunits 
and eIF3B which only localize to SGs][80,81]; both gran-
ules, nevertheless, are dependent on translation repres-
sion. In productive poxviral infections, some of  these 
granule components (as well as eIF4E and eIF4G) are 
sequestered to viral factories where they assemble and 
form eIF4F complexes that act together with PABP to 
promote activation of  mRNAs harboring 7-methyl GTP 
caps and poly(A) tails[82]. Poxvirus mRNAs are capped on 
their 5’ ends by the action of  a viral methyl transferase 
enzyme complex[83-85] and are also polyadenylated by a 
complex mechanism involving repetitive transcription of  
thymidylates in the sequence 3’-ATTTA-5’ often present 
at the sites of  transcriptional initiation[86,87]. By sequester-
ing molecules that activate capped and polyadenylated 
mRNAs to the viral factories, poxviruses are able to vig-
orously boost the translation of  their own mRNAs.

HYPOXIC RESPONSE
Molecular oxygen (O2) is an essential element to aero-
bic organisms that serves as a key substrate in cellular 
metabolism and bioenergetics. Hypoxic stress response 
is the process by which cells react and adapt to an insuf-
ficient O2 availability (or hypoxia)[88]. During hypoxic 
conditions, cells activate a number of  adaptive responses 
to match O2 supply with metabolic, bioenergetic and re-
dox demands. The hypoxia-inducible factor-1 (HIF-1) is 
the key regulator of  the cell resilience in response to O2 
deprivation and it is regulated by prolyl hydroxylase do-
main-containing enzymes (PHDs)[89,90]. HIFs are obligate 
heterodimers, consisting of  an O2-destructible α-subunit 
and O2-indestructible b subunit, and under physiologi-
cally normal O2 levels (normoxia), PHDs mediate hy-
droxylation of  proline residues in the HIFα subunit, 
triggering their recognition and labeling by E3 ubiquitin 
ligases, which leads in turn to their proteasomal degrada-
tion[91,92]. PHD activities are regulated by O2 availability 
and by cellular metabolites such as tricarboxylic acid cycle 
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(TCA) intermediates[93]. Due to the lack of  sufficient O2 
upon hypoxia, PHDs become inactive and HIFα is con-
sequently stabilized, causing the HIFs translocation to the 
nucleus where they bind to hypoxic responsive elements 
present in genes, such as HSPA5, Fos, CXCR, among 
other genes related to signal transduction, cell metabo-
lism, apoptosis, etc[94-96] (Figure 3).

There are three PHD isoforms but PHD2 is believed 
to be the primary regulator of  the HIF transcription fac-
tors[88]. The Vaccinia virus C16 protein is non-essential 
for virus replication but seems to play an important role 
in the down-modulation of  the host immune respons-
es[97]. Further studies showed that this protein can inhibit 
HIF1α hydroxylation through direct interaction with 
the PHD2 enzyme even when ectopically expressed[98]. 
Consequently, HIF1α is not ubiquitinated and degraded 
by proteasome, leading to the stabilization of  this factor 
and up-regulation of  HIF-responsive genes [endothelial 
growth factor (VEGF), glucose transporter-1 (GLUT1) 
and pyruvate dehydrogenase kinase-1 (PDK1)], improving 
cell metabolism and creating conditions that favor virus 
replication (Figure 3). 

OXIDATIVE STRESS RESPONSE
Poxviruses exploit the de novo fatty acid biosynthesis 
in the cell and especially the production of  palmitates. 
These molecules undergo b-oxidation in mitochondria 
and, together with the glutamine catabolism, generate 
acetyl-CoA and α-ketoglutarate, respectively. Both mol-
ecules enter in the TCA cycle and are used as major en-
ergy sources instead of  glucose in infected cells[68,99,100]. In 
this metabolic pathway, O2 plays a pivotal role as the final 
electron acceptor of  oxidative phosphorylation coupled 
to the electron transfer chain, resulting in the produc-
tion of  water (H2O), but also superoxide anion (O2

•-) 
and hydrogen peroxide (H2O2), as well as other reactive 
oxygen species (ROS)[101,102] (Figure 4). ROS can signifi-
cantly damage cell structures, causing lipoperoxidation, 

protein denaturation and DNA degradation; but on the 
other hand, ROS acts as a second messenger in mediating 
inflammation, stimulating cell proliferation and regulating 
apoptosis to maintain cell homeostasis[103]. Due to their 
cytotoxicity activity, cellular ROS levels are tightly limited 
by multiple detoxification processes such as antioxidant 
enzymes and vitamins whose functions are collectively 
appointed as an oxidative stress response[102]. 

ROS are usually controlled by antioxidant enzymes 
such as cooper/zinc-dependent superoxide dismutase 
(SOD) (cytoplasm), manganese-dependent SOD (mi-
tochondria) and extracellular-SOD (also utilizes Cu/Zn 
as cofactor), which dismutate O2

•- into H2O2. Hydrogen 
peroxides are in turn decomposed by catalase (CAT) and 
peroxidases such as glutathione peroxidase (GPx)[104] (Fig-
ure 4). 

It has been shown that Myxoma virus and Shope fi-
broma virus increase intracellular ROS accumulation to 
promote growth of  infected cells and immune evasion. 
This is achieved via inhibition of  Cu/Zn-SOD1 activity 
through the expression of  catalytically inactive homologs 
of  cellular SOD1 that cannot bind Cu, which is essential 
for dismutase activity but retains the Zn-binding proper-
ties and, similarly to their cellular homologs, forms stable 
heterodimeric complexes with cellular Cu-dependent 
chaperones that are essential for SOD1 function[69,105] 

(Figure 4). It is likely that other poxviruses cause a similar 
effect during their multiplication cycle as some encode 
SOD-1 like genes; one such example is the A45R SOD-
1-like gene from Vaccinia virus. Besides the SOD1 
homologues, another known poxvirus gene product 
that can alter the redox state in infected cells is the Mol-
luscum contagiosum virus MC066L gene product, which 
is homologous to the human GPx[12], an enzyme able to 
protect cells from the proapoptotic peroxides generated 
by ultraviolet (UV) light[106] (Figure 4). 

Cellular peroxiredoxins and thioredoxins, among 
other host proteins that are not essential to the cellular 
redox state (e.g., 60S ribosomal proteins, HGM1 and 
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Figure 3  Hypoxic responses in poxviruses infected cells. 
Under normal O2 disponibility (normoxia), HIF1α is hydroxylated 
on proline residues by PHDs. After that, HIF1α is recognized 
and ubiquitinated by E3 ubiquitin ligase and undergoes protea-
somal degradation. Upon an insufficient O2 availability (hypoxia), 
PHD become inactive and HIF1α forms heterodimers with 
HIF1b and triggers expression of regulators of TCA, cell prolif-
eration and glucose metabolism. Poxviruses C16L orthologous 
genes code for proteins that inhibit PHD activities and result in 
expression of hypoxia target genes under normoxia conditions. 
HIF1: Hypoxia-inducible factor-1; PHD: Prolyl-hydroxylase do-
main-containing enzyme; TCA: Tricarboxylic acid cycle; VEGF: 
Endothelial growth factor; GLUT1: Glucose transporter-1; 
PDK1: Pyruvate dehydrogenase kinase-1.
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Rab10), can be detected in IMV particles. It has been 
speculated that those redox regulation proteins may play 
some role in virion maturation[38]. Indeed, redox condi-
tions seem to be so important for poxviruses that many 
of  them encode their own redox machinery in order to 
mediate disulfide bond formation in newly made viral 
proteins[107-109].

DNA DAMAGE RESPONSE
Several reports correlate stressful conditions with DNA 
damage responses (DDR). Hypoxia, ROS accumulation, 
ER stress, heat shock and mainly UV light exposure are 
conditions that either result or are resultant from DNA 
damage and whose sensing by the cell might contribute 
to the global stress adaptation response fostering cell 
resilience[96,110-114]. DDR events operate in diverse biologi-
cal settings such as telomere homeostasis and generation 
of  immune-receptor diversity[115] and include cell cycle 
checkpoint control, transcription, activation of  DNA 
repair pathways, senescence and/or apoptosis. DNA 
damage can be subdivided into a few major types, includ-
ing DNA double-strand breaks (DSB), DNA nucleotide 
adduct formation and base modification, DNA base pair-
ing mismatches and single-strand breaks (SSB) which are 
caused by exposure to chemotherapeutic agents or envi-
ronmental genotoxic agents such as polycyclic hydrocar-
bons and UV radiation. Accordingly, the major classes of  
DNA repair are DNA dsb repair by homologous recom-
bination (HR) or nonhomologous end-joining (NHEJ), 
nucleotide excision repair, base-excision repair (BER), 
the Fanconi anemia/BRCA pathway and nucleotide mis-
match repair[116]. The central sensor proteins in the DDR 
signal transduction cascade (ataxia telangiectasia mutated-
ATM, ataxia telangiectasia and Rad3 related-ATR, DNA-
dependent protein kinase-DNA-PKcs) belong to the 
phosphoinositide-3-kinase-related kinase (PIKK) family, 

with the exception of  proteins from the PARP family 
which also respond to DNA lesions[117] (Figure 5).

ATM is recruited by the MRE-11-Rad50-NBS1 (MRN) 
complex to sites of  DSBs and phosphorylates down-
stream substrates such as checkpoint kinase 2 (Chk2) 
which, subsequently phosphorylates p53 that in turn sig-
nals through p21 to slow the cycling of  cells in order to 
facilitate DNA repair[118] (Figure 5). If  the damage is too 
severe to be repaired, the cascade leads to death signaliza-
tion through pro-apoptotic proteins. In the case of  SSBs, 
ATR is recruited to damage sites in association with ATR-
interacting protein by replication protein A (RPA). Once 
activated, these complexes phosphorylate Chk1 which, 
in turn, phosphorylates and inhibits cdc25c to mediate 
G2/M arrest (or, alternatively, phosphorylates cdc25a to 
promote S-phase arrest). Most ATR substrates can also be 
phosphorylated by ATM and the major functions of  ATR 
and ATM in cell cycle control are overlapping but non-
redundant[119,120]. These signaling cascades appear to be the 
major repair pathways influenced by poxvirus infections 
(Figure 5) as they favor cell cycle progression to G1, S and 
G2 phases but arrest cells in the G2 phase. Indeed, there is 
a preferential accumulation of  poxvirus infected cells in 
G2/M phases concurrent with a decrease in the number 
of  cells in the G0/G1 ones[121,122].

The NHEJ repair pathway is initiated by association 
of  Ku70/80 proteins to the DNA ends and the subse-
quent recruitment of  the DNA-dependent protein kinase 
catalytic subunit (DNA-PKcs)[123,124]. These proteins lo-
calize both in the nucleus and the cytoplasm and are key 
factors in the immune response signaling, acting as viral 
dsDNA sensors leading to the induction of  interferon 
regulatory factor 3 (IRF3) in a TANK-binding kinase 
1-dependent manner[125]. Counteracting this immune sig-
naling, the Vaccinia virus produces the C16 protein early 
in infection, which can bind to Ku70 blocking DNA-PK 
recruitment to DNA and the N2 protein, a virulence fac-
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Figure 4  Role of poxvirus proteins in cell redox homeostasis. 
ROS are produced during physiological and stress conditions, for 
instance, during energetic metabolism in the mitochondria, and are 
detoxified by cellular enzymes (SOD, CAT, Prx, GPx) into water and 
oxygen. Poxviruses code proteins with homology to SOD, inhibiting 
the conversion of superoxide into hydrogen peroxide. Furthermore, 
MC066L gene product is homologous to the human GPx and can 
protect host cells of peroxide accumulation. ROS: Reactive oxygen 
species; SOD: Superoxide dismutase; CAT: Catalase; Prx: Peroxire-
doxin; GPx: Glutathione peroxidase.



tor that presents with the ability to inhibit IRF3-depen-
dent innate immune responses[126,127] (Figure 5). 

Poxviruses exploit their own replication machinery 
in order to repair eventual lesions at the viral DNA[3], 
mainly through the action of  virally encoded uracil DNA 
glycosylases (coded by D4R orthologous genes), which 
initiate BER by hydrolyzing the glycosylic bond linking 
uracil to a deoxyribose sugar, and also through the repair 
of  nicked duplex DNA substrate by a viral DNA ligase, a 
product of  the A50R ORF present in some chordopox-
viruses[128-131]. Furthermore, the viral DNA polymerase 
(coded by E9L gene orthologues) which possess 3’ - 
5’ proofreading exonuclease activity and the G5R gene 
product which belongs to FEN1-like nucleases appear to 
conjunctly play important roles in viral DNA recombina-
tion through HR[132-136]. The cellular DNA ligase I can 
compensate an eventual absence of  the viral DNA ligase 
and is recruited from the nucleus to the cytoplasmic viral 
factories. However, in the absence of  a G5 protein, the 
viral DNA is fragmented and cannot be packaged[136,137].

MISCELLANEOUS CELL SIGNALING
PI3K/Akt signaling pathway
The phosphoinositide-3-kinase (PI3K) family of  enzymes 
is grouped into three classes of  proteins. PI3K is activat-
ed by G protein-coupled receptors and tyrosine kinase re-
ceptors to drive phosphorylation of  inositol lipids at the 
3’ position of  the inositol ring, generating lipid second 
messengers [3-phosphoinositides PI(3)P, PI(3,4)P2 and 

PI(3,4,5)P3][138,139]. Class IA PI3K proteins were shown to 
play an important role in poxvirus infections, promoting 
Akt phosphorylation and downstream events leading to 
the suppression of  apoptosis, cell growth, survival and 
proliferation[140,141]. The PI3K/Akt pathway seems to be a 
determinant for the replicative success of  Vaccinia virus 
and Cowpox virus, as well as for the host cell survival 
during infection, as the pharmacological impairment of  
the pathway components leads to diminished virus multi-
plication and apoptosis[141]. 

MAPK signaling pathway
Stress conditions (osmotic stress, ER stress, among oth-
ers), growth factors and/or cytokines stimulate the activa-
tion of  mitogen-activated protein kinases (MAPK)[142,143]. 
The MAPK family consists of  a series of  at least three 
main kinases active through distinct pathways: the ex-
tracellular signal-regulated protein kinases (ERKs), the 
c-Jun N-terminal kinases (JNKs) and the p38 family of  
kinases. These MAPK enzymes are activated by post-
translational modifications induced by specific kinases, 
named MAPK kinases (MAP2K), which are activated by 
upstream MAPKK kinase (MAP3K) [Raf, MAPK/ERK 
kinase (MEKKs) and apoptosis signal-regulating kinase 
(ASK)][144] and which in turn respond either to external 
stimuli sensed by receptors on the cell surface or through 
interactions with GTP-binding proteins, among other 
kinases. Poxviruses have been shown to trigger mito-
genic signals at early stages of  infection, resulting in the 
expression of  egr-1 and other genes, such as the proto-
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progression arresting cells in G2 phase. They also encode C16 orthologues that bind to Ku70, blocking DNA-PK recruitment to broken DNA sites, and N2 orthologues, 
that inhibit IRF3-dependent innate immune responses. DNA-PK: DNA-dependent protein kinase; DNA-PKcs: DNA-dependent protein kinase catalytic subunit; RPA: 
Replication protein A. 



oncogene c-fos, through the activation of  ERK1/2. This 
process is essential for multiplication of  some members 
of  this viral family as blocking of  those kinases hampers 
normal virus multiplication[145-147]. Additionally, the JNK 
pathway is also important for normal virus morphogen-
esis and accumulation of  enveloped infectious forms[148] 
as blocking of  the pathway influences cell-to-cell virus 
spread. 

CONCLUSION
The activation of  cellular stress responses in infected cells is 
a complex process that promotes simultaneously both cell 
resilience and death mechanisms upon a viral infection. In 
order to achieve replicative success in such conditions, pox-
viruses must subvert these cell responses to their own ben-
efit. Members of  the Poxviridae family are fully geared up 
to interfere with and manipulate cell fate in a way that very 
few other animal viruses do. They have unique abilities to 
turn off  and/or combat negative effects of  stress responses 
while still fomenting mechanisms to support the comple-
tion of  its life cycle. Overall, poxviruses modulate the 
activation of  a network of  protein kinases (PI3K, PIKKs, 
MAPKs) and other enzymatic post-translational modifiers, 
such as the ubiquitin ligases and proteins involved in cell re-
programming (including ATFs, HSFs, XBP1, HIFs), while 
selectively inhibiting the activation or expression of  host 
proteins (DNA-PK, IRF3, PHDs, PKR, PERK among 
others). In parallel, they are able affect the cell metabolism 
and redox state, maintaining proteostasis (through HSPs 
and other hosts and viral chaperones) and controlling cell 
cycle and proliferation in order to establish a proper cell en-
vironment for virus replication. Many of  these strategies are 
highly conserved among different poxviruses, while a few 
others are species-specific[149]. The evidence of  horizontal 
gene transfer from host to virus, coupled with the proposed 
model of  poxvirus genome evolution based on a simple 
mechanism of  recombination-driven genomic expansions 
and contractions (which facilitates the rapid evolution of  
virus populations with otherwise low mutation rates), sheds 
light on how these viruses acquired this impressive number 
of  strategies to wisely control their replication niche[150-152]. 

Over 50 years after the discovery of  HSR by Ferruc-
cio Ritossa[153], the cellular stress response knowledge 
is still growing (including specific organelle stress such 
as mitochondrial or peroxisomal UPR, Golgi stress re-
sponse and so on) and the understanding of  mechanisms 
by which poxviruses and other complex viruses interfere 
with stress responses can further illuminate the web of  
pathways regulating cell homeostasis, as well as how vi-
ruses intertwine their own biochemical needs into this 
intricate scenario. 
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Abstract
Recently, growing evidences show that the combina-
tion of epigenetic and genetic abnormalities contribute 
together to the development of liver diseases. DNA 
methylation is a very important epigenetic mechanism 
in human beings. It refers to addition of the methyl 
groups to DNA and mainly occurs at cytosine adjacent 
to guanine. DNA methylation is prevalent across human 
genome and is essential for the normal human devel-
opment, while its dysfunction is associated with many 
human diseases. A deep understanding of DNA meth-
ylation may provide us deep insight into the origination 
of liver diseases. Also, it may provide us new tools for 
diseases diagnosis and prognosis prediction. This re-
view summarized recent progress of DNA methylation 
study and provided an overview of DNA methylation 
and liver diseases. Meanwhile, the association between 
DNA methylation and liver diseases including hepato-
cellular carcinoma, liver fibrosis, nonalcoholic steato-
hepatitis and liver failure were extensively discussed. 
Finally, we discussed the potential of DNA methylation 

therapeutics for liver diseases and the value of DNA 
methylation as biomarkers for liver diseases diagnosis 
and prognosis prediction. This review aimed to provide 
the emerging DNA methylation information about liver 
diseases. It might provide essential information for 
managing and care of these patients.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: DNA methylation; Liver diseases; Hepato-
cellular carcinoma; Liver fibrosis; Nonalcoholic steato-
hepatitis; Liver failure

Core tip: This review summarized recent progress of 
DNA methylation study and provided an overview of 
DNA methylation and liver diseases. The association 
between DNA methylation and liver diseases including 
hepatocellular carcinoma, liver fibrosis, nonalcoholic 
steatohepatitis or liver failure were extensively dis-
cussed. We also discussed the potential of DNA meth-
ylation as biomarkers and therapeutic targets for liver 
diseases. This review aimed to provide the emerging 
DNA methylation information about liver diseases. It 
might provide essential information for managing and 
care of these patients.

Gao S, Wang K. DNA methylation in liver diseases. World J Clin 
Infect Dis 2014; 4(4): 41-49  Available from: URL: http://www.
wjgnet.com/2220-3176/full/v4/i4/41.htm  DOI: http://dx.doi.
org/10.5495/wjcid.v4.i4.41

INTRODUCTION
Because of  the high prevalence, liver diseases have been 
studied systematically during the past few decades. Many 
studies focus on genetic defects[1] and genome-wide as-
sociation studies do provide us great information about 
the pathogenesis of  liver diseases[2]. However, many 
questions which cannot be totally illustrated by genetic 
mechanism still exist, which lead researchers to initiate 
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the study of  epigenetic variation. Recent studies showed 
that the combination of  genetic and epigenetic variants 
contributed together to the susceptibility and progression 
of  liver diseases[3-5]. Epigenetics refers to the heritable 
changes of  gene expression without changes in gene 
sequence[6]. DNA methylation is a very important epi-
genetic mechanism in human and distribute widely across 
human genome. It is of  crucial important for normal de-
velopment, genomic imprinting as well as inactivation of  
X-chromosome[7-9]. Meanwhile, aberrant DNA methyla-
tion usually associates with many human diseases[10]. The 
goal of  this article is to review the studies associated with 
DNA methylation and liver diseases. Finally, we look into 
the future prospect that DNA methylation may bring to 
the detection and treatment of  liver diseases.

DNA METHYLATION AND ITS 
MECHANISM
DNA methylation which refers to addition of  the methyl 
groups to DNA is firstly introduced in 1970s[11,12]. In in-
vertebrates and fungi, DNA methylation only presents in 
small proportion of  genome and varies among different 
clades[13,14]. In vertebrate genome, it presents in almost ev-
erywhere across the genome. Mainly, DNA methylation 
occurs at cytosine adjacent to guanine (CpG dinucleo-
tides)[15]. In human genome, The CpG dinucleotides are 
very rare (approximately 1%). They are nonuniformly dis-
tributed and tend to cluster together to form CpG island 

(CGI). CGI refers to a 200-bp region in DNA which is 
characterized by high G+C content (more than 50%) and 
high observed CpG/expected CpG ratio (at least 0.6)[16]. 
Previous studies showed that CGIs existed in more than 
half  of  the genes in vertebrate genomes. Until now, the 
exact role of  gene methylation in gene regulation remains 
largely unclear[17]. 

DNA methylation in transcriptional start sites
Until now, most of  the studies on DNA methylation 
focus on CGIs in the transcriptional start sites (TSSs) 
of  genes. In human genome, about 60% of  gene TSSs 
contain CGIs and usually remain unmethylated in normal 
cells. Methylation of  these CGIs often result in long-term 
stabilization of  transcriptional silencing and loss of  gene 
function both physically and pathologically[18] (Figure 1A). 
CpG island shore is defined as lower CpG density region 
which is close (approximately 2 kb) to the CGI. Recent 
studies show that most tissue specific methylation occurs 
at CpG island shores[19,20]. Aberrant DNA methylation 
at CpG island shores correlate even more strongly with 
gene expression than CGI[21].

There are about 40% of  human genes which do not 
contain bona fide CGI at their TSSs[16]. Compared with 
genes that contained CGIs, the role of  methylation in 
genes without CGIs at the TSSs has not been well dem-
onstrated. More studies still need to be performed on 
genes without CGIs. Studies revealed that maspin gene 
had a promoter that did not reach the criteria for CGI 
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Figure 1  DNA methylation pattern in different parts of the genomes. The normal conditions are presented in the left column and aberrant conditions are shown 
on the right. The black dots represent methylated CpG sites and the white circles represent unmethylated CpG sites. A: In normal cells, CpG islands (CGI) in tran-
scriptional start site (TSS) usually remain unmethylated, allowing transcription. Aberrant methylation often links to long-term stabilization of transcriptional silencing 
and loss of gene function both physically and pathologically; B: In normal cells, gene bodies are CpG-poor and extensively methylated, increasing elongation efficacy. 
Aberrant demethylation of gene bodies may facilitates spurious initiations of transcription; C: In normal cells, repetitive sequences of genome are highly methylated, 
preventing chromosomal instability or gene disruption. Aberrant demethylation of repetitive sequences may reactivate endoparasitic sequences.
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and hypermethylation of  this promoter was strongly cor-
related with its tissue specific expression[22]. However, 
MAGE gene was found to be unregulated by methylation 
in the promoters which do not satisfy CGIs.

There are two primary means by which DNA meth-
ylation in TSSs repress transcription. The transcription 
factors[23] control gene expression level. DNA methyla-
tion can directly preclude the transcription factors bind-
ing to its normal sites[24,25] (Figure 2A). For example, tran-
scription factor YY1 which is essential for the imprinting 
of  Peg3 gene can bind to PEG3-DMR sequence in the 
first intron[24]. In vivo, the methylation of  PEG3-DMR 
sequence precludes the binding of  YY1, which result in 
the repression of  maternal allele. In paternal allele, YY1 
can effectively bind to the unmethylated PEG3-DMR 
sequence. Alternatively, DNA methylation can recruit 
specific proteins and induce a repressive chromatin struc-
ture[9] (Figure 2B). In normal condition, unmethylated 
CGIs can recruit CpG binding proteins, which form a 
structure suitable for transcription[26]. When CGIs are 
methylated, they can recruit methyl-CpG-binding domain 

(MBD) proteins[14,27]. Then, MBD proteins could recruit 
the histone modifying as well as chromatin remodeling 
complex to the methylated positions, which result in 
transcriptional silencing by repressing the transcriptional 
permissiveness of  chromatins.

DNA methylation in gene bodies
Although CGIs also exist within gene bodies[28], most 
gene bodies are CpG-poor and extensively methylated. 
Studies showed that high level of  gene body methyla-
tion was positively correlated with transcription, which 
meant it might associate with gene activation[29,30]. Zil-
berman et al[31] found that the methylation of  gene body 
could increase elongation efficiency and prevent spurious 
initiations of  transcription (Figure 1B). Shukla et al[32] il-
lustrated that methylation between exons and introns was 
involved in regulating splicing[33]. Other studies reported 
that the methylation in gene body could be an important 
mechanism for managing promoter usage[34]. The high 
methylation level in gene body was essential for the elon-
gation of  a transcript.

DNA methylation in repetitive sequence
Repetitive elements comprise up to 45% of  human ge-
nome[35], which mainly consist of  interspersed repeats 
and tandem repeats. In normal somatic cells, repetitive 
sequences of  genome are highly methylated. The deeply 
methylated condition is essential for the stability of  chro-
mosome and normal gene expression[36] (Figure 1C). De-
methylation of  repetitive sequences in genome may result 
in different kinds of  diseases[37,38].

The inheritance of DNA methylation
DNA methylation is an important way to store hereditary 
information. Although it does not change gene sequence, 
it can propagate the methylation mark during cell divi-
sions[39]. The DNA methylation inheritance process is 
catalyzed by DNA methyltransferase (DNMT) enzyme 
family. Manly, there are five members in DNMT enzyme 
family, DNMT1, DNMT2, DNMT3a, DNMT3b and 
DNMT3L. DNMT1, DNMT3a, DNMT3b serve as 
methyltransferase. Each of  the three DNMTs is essential 
for normal human development[7,40]. Studies revealed that 
loss of  methylation resulted from the inactivation of  
DNMTs could result in apoptosis of  somatic cell[41] and 
cancer cells[42]. However, it showed that DNMTs were 
not essential for the survival of  embryonic stem cells[43].

Bestor et al[44] firstly cloned DNMT1 in 1988 from 
mouse cells. Later studies revealed that DNMT1 ex-
pressed mostly at S phase of  cell cycle[45] and mainly 
acted as maintenance DNMT. Interacting with the DNA 
polymerase processing factor proliferating cell nuclear 
antigen and ubiquitin-like plant homeodomain and RiNG 
finger domain containing protein 1 (UHRF1), DNMT1 
methylated the hemimethylated sites during DNA semi-
reserved replication[46,47]. Soon after replication, DNMT3a 
and DNMT3b bound to methylated DNA and corrected 
methylation sites missed by DNMT1 and completed the 
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ditions are shown on the right. The black dots represent methylated CpG sites 
and the white circles represent unmethylated CpG sites. A: In normal cells, tran-
scription factors (TF) bind to unmethylated binding site, allowing transcription. 
Aberrant methylated binding site prevent TF binding to its normal sites; B: In 
normal cells, unmethylated CpG island can recruit CpG binding proteins (Cfp1) 
and trigger histone modifications characterized by high levels of acetylation and 
trimethylated H3K4, H3K36 and H3K79. Finally, it forms a structure suitable for 
transcription. Aberrant methylated recruit methyl-CpG-binding domain (MBD) 
proteins and trigger histone modifications characterized by high levels of H3K9, 
H3K27 and H4K20 methylation and low levels of acetylation. It represses the 
transcriptional permissiveness of chromatins and results in gene silencing.
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of  hypomethylated tumor-promoting genes, including 
HPA[60], MAT2A[61], VIM[62] and SNCG[63] have been 
identified in primary human HCC.

Hypermethylation
In tumor suppressor gene, the hypermethylation of  CGIs 
in TSSs result in the loss of  gene function, which is cru-
cial for the origin of  cancer[64]. The inactivation of  tumor 
suppressor genes caused by hypermethylation of  CGI 
in TSS exist in almost every type of  human cancers[65]. 
Hypermethylation may affect the process of  cell cycle 
regulation, DNA repair, angiogenesis, programmed cell 
death and tumor cell invasion. The genes silenced by hy-
permethylation in human cancers are often those who are 
essential for the maintenance of  stem cell characteristics 
and/or the maturation of  adult cells during cell renew-
al[65,66]. Silencing of  these genes may result in the initiation 
of  tumors through distribution of  abnormal stem cells 
and/or abnormal of  normal cell differentiation.

Until now, many tumor suppressor genes have been 
identified to be hypermethylated in HCC. Table 1 pres-
ents a group of  frequently methylated genes in HCC.

DNA METHYLATION AND LIVER 
FIBROSIS
In liver fibrosis, aberrant DNA methylation has been 
studied for a few years. Until now, a number of  aber-
rantly methylated genes have already been recognized. 
Through direct or indirect examination methods (treated 
with demethylating agents such as 5-aza-2’-deoxycytidine), 
these genes were identified to be aberrantly methylated. 
In activated hepatic stellate cell (HSC), transcriptional 
repression of  some genes was indentified to be due to 
promoter hypermethylation of  them.

Until now, genome-wide studies of  DNA methylation 
associated with HSC activation were limited. Aberrant 

process[48,49] (Figure 3). DNMT1 was essential for both 
normal somatic cells and cancer cells and a knockout of  
DNMT1 could cause their death[41,42].

After the cloning of  DNMT1, studies found that em-
bryonic stem cells could still methylate retroviral DNA de 
novo even without DNMT1[50]. DNMT3a and DNMT3b 
were found in later studies[40]. They were regarded as de 
novo DNMT and functioned to set up normal methyla-
tion pattern during embryonic development. They were 
abundant in embryonic stem cell and less expressed in 
differentiated cells[51]. Other DNMTs like DNMT3L pos-
sessed no methylation catalytical activities. But Bourc’his 
et al[52] found that DNMT3L was crucial for establishment 
of  maternal genomic imprinting. 

DNA METHYLATION AND 
HEPATOCELLULAR CARCINOMA
In hepatocellular carcinoma (HCC), DNA methylation is 
characterized by a genome wide hypomethylation and a 
site specific hypermethylation[53]. Until now, many studies 
for presenting the DNA methylation patterns in HCC 
have been published. 

Hypomethylation
Compared with normal liver tissue, DNA methylation 
in HCC is characterized by global hypomethylation. The 
hypomethylation of  intergenic areas, repetitive DNA se-
quences[54], introns[55] and promoter CGI of  specific on-
cogene[56] are responsible for the global hypomethylation. 
Global hypomethylation mainly result in chromosomal 
instability, loss of  genomic imprinting[57,58] and reactiva-
tion of  transposable elements, which may contribute to 
the development of  cancer. 

Previous studies revealed that the demethylation of  
chromosome 1 heterochromatin DNA was associated 
with the q-arm copy gain[59] in HCC. Also, a number 
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Figure 3  The maintenance of DNA methylation 
pattern. A: In somatic cells, DNA methyltransferase 
(DNMT) 3 (DNMT 3a and DNMT 3b) are bound to 
nucleosomes containing methylated DNA; B: During 
DNA semi-reserved replication, DNMT1 interact with 
the DNA polymerase processing factor proliferating 
cell nuclear antigen (PCNA) and ubiquitin-like plant 
homeodomain and RiNG finger domain containing 
protein 1 (UHRF1) and methylate the hemimethylated 
sites; C: Soon after DNA semi-reserved replication, 
DNMT3 correct methylation sites missed by DNMT1 
and complete the process.



methylation associated with HSC activation had been re-
ported at specific loci such as the phosphatase and tensin 
homologue (PTEN) and patched1 (PTCH1) genes. These 
genes were aberrantly methylated in the myofibroblast 
and associated with the decreased of  gene expression[67,68]. 
Our previous study revealed that aberrant promoter 
methylation of  PPAR gamma gene was significantly asso-
ciated with liver fibrosis in patients with chronic hepatitis 
B[69]. Other genes like Ras GTPase activating-like protein 
1 (RASAL1) gene were also found to be aberrantly hy-
permethylated in liver fibrosis[70].

DNA METHYLATION AND 
NONALCOHOLIC STEATOHEPATITIS 
So far, the relationship between DNA methylation and 
metabolic diseases was firmly established. Ahrens et al[71] 
used array-based DNA methylation and mRNA expres-
sion profiling to analyze the liver tissues from patients 
with non-alcoholic fatty liver disease (NAFLD) (n = 45) 
and health controls (n = 18). Aberrant methylation and 
decreased mRNA expression were seen for nine genes, 
which included genes for key enzymes in intermedi-
ate metabolism (ACLY, PC and PLCG1) and insulin or 
insulin-like signaling (IGFBP2, IGF1 and PRKCE)[71]. 
Studies showed that supplementation of  diets lack of  
methyl donors could induce DNA hypomethylation and 
the development of  steatosis in mice. However, supple-
mentation of  diets with methyl donors could prevent the 
development of  NAFLD, suggesting that differences in 
the DNA methylation status might be a potential factor 
for individual susceptibilities to hepatic steatosis[72,73]. The 
supplementation of  the maternal diet with methyl donors 
could induce aberrant methylation in adulthood and pro-
tect offspring from suffering obesity[74].
 
DNA METHYLATION AND LIVER FAILURE
Recent studies found that the aberrant methylation of  
several genes might participate in the development of  
liver failure. The aberrant promoter methylation of  
some anti-inflammatory genes might result in the down-
regulate gene expression and inhibit their protective role 
in liver injury. Our previous study found that glutathione-

S-transferase P1 (GSTP1) promoter hypermethylation 
occurred in patients with acute on chronic hepatitis B 
liver failure (ACHBLF) which might facilitate oxidative 
stress associated liver damage[75]. A study performed by 
Fan et al[76] showed that hypomethylation of  IFN-γ gene 
promoter in peripheral blood mononuclear cells might 
be associated with the onset of  ACHBLF. Qi et al[77] 
found that the aberrant hypermethylation of  glutathione-
S-transferase P1 (GSTM3) gene occurred in ACHBLF, 
which was correlated with their disease severity.

FURTHER PROSPECTS AND SUMMARY
The development of  liver diseases is a multifactorial pro-
cess characterized by the combination and integration of  
a multitude of  alterations including genetic and epigen-
etic changes. In the past decades, there were exponential 
increases in the interest and progress of  DNA methyla-
tion. Studies already revealed the potential role that DNA 
methylation played in the normal human development 
and initiation of  diseases. DNA methylation-based bio-
markers were proposed for disease risk assessment[78], 
early detection[79,80], prognostic prediction[81] and treat-
ment outcome prediction of  liver diseases[82]. Meanwhile, 
there was hope for developing therapeutic agents to ma-
nipulate aberrant DNA methylation patterns and to treat 
malignancies[6]. In 1970s, Constantinides et al[83] reported 
5-azacytidine had remarkable effects on differentiated 
states of  cells. In 2005, Brueckner et al[84] reported the 
drug RG101 could also reactivate tumor suppressor gene 
by inhibiting human DNA methyltransferase. Therefore, 
combined genetic and epigenetic information may help 
clinicians to prevent liver diseases developing in at-risk 
individuals and from passing on unhealthy DNA meth-
ylation characteristics to offsprings.
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