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Abstract
Asymptomatic organ damage due to progressive 
kidney damage, cardiac hypertrophy and remodeling 
put hypertensive patients at high risk for developing 
heart and renal failure, myocardial infarction and 
stroke. Current antihypertensive treatment normalizes 
high blood pressure, partially reverses organ damage, 
and reduces the incidence of heart and renal failure. 
Activation of the renin-angiotensin system (RAS) is 
a primary mechanism of progressive organ damage 
and, specifically, a major cause of both renal and 
cardiovascular fibrosis. Currently, inhibition of the RAS 
system [mainly with angiotensin I converting enzyme  
inhibitors or angiotensin II (Ang II) receptor antagonists] 
is the most effective antihypertensive strategy for 
normalizing blood pressure and preventing target organ 
damage. However, residual organ damage and conse
quently high risk for cardiovascular events and renal 
failure still persist. Accordingly, in hypertension, it is 
relevant to develop new therapeutic perspectives, beyond 
reducing blood pressure to further prevent/reduce target 
organ damage by acting on pathways that trigger and 
maintain cardiovascular and renal remodeling. We review 
here relevant novel mechanisms of target organ damage 
in hypertension, their role and evidence in prevention/
regression of cardiovascular remodeling and their 
possible clinical impact as well. Specifically, we focus on 
the signaling pathway RhoA/Rho kinase, on the impact 
of the vasodilatory peptides from the RAS and some 
insights on the role of estrogens and myocardial chymase 
in cardiovascular hypertensive remodeling.

Key words: Remodeling; Hypertrophy; Rho kinase; 
Myosin phosphatase target subunit 1; Angiotensin; 
Angiotensin1-9; Chymase; Angiotensin1-7 
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blood pressure, partially reverses organ damage, and 
reduces the incidence of heart and renal failure. However, 
residual organ damage and high risk for cardiovascular 
events still persist. We review here novel relevant 
mechanisms of cardiovascular damage in hypertension, 
their role and evidence in prevention/regression of 
cardiovascular remodeling and their possible clinical 
impact. We focus on the signaling pathway RhoA/Rho 
kinase, on the impact of the vasodilatory peptides 
from the renin angiotensin system and some insights 
on the role of estrogens and myocardial chymase in 
cardiovascular remodeling due to hypertension.

Jalil JE, Ocaranza MP. Regression of cardiovascular remodeling 
in hypertension: Novel relevant mechanisms. World J Hypertens 
2016; 6(1): 1-17  Available from: URL: http://www.wjgnet.
com/2220-3168/full/v6/i1/1.htm  DOI: http://dx.doi.org/10.5494/
wjh.v6.i1.1

INTRODUCTION
Target organ damage in hypertension causing asym­
ptomatic renal dysfunction, atrial size enlargement 
along with cardiac hypertrophy and remodeling place 
hypertensive subjects at a very high risk condition to 
develop cardiac failure, progressive kidney disease, 
myocardial infarction and stroke as well. Up-to-date 
antihypertensive drug therapy reduces to normality 
elevated arterial blood pressure, doe revert organ 
damage to some extent, and diminishes the occurrence 
of cardiac and renal disease. However, the clinical 
impact of all antihypertensive drug classes is not 
substantially different among most clinical outcomes 
when the blood pressure effect is equivalent[1]. Besides, 
permanent stimulation of the renin-angiotensin axis is a 
fundamental process of continuing damage to the target 
organs and a main cause of fibrosis both in the kidney 
an also in the myocardium. Current pharmacological 
blockade of the renin–angiotensin axis (primarily with 
inhibitors of angiotensin I converting enzyme (ACE) 
or by blocking the angiotensin II receptor) is a most 
effective antihypertensive strategy for normalizing high 
blood pressure and for preventing continuing end organ 
damage[2]. However, both residual damage in the target 
organs and consequently, a condition of high hazard for 
experiencing major clinical events still persist. 

Thus, in hypertension, it is most crucial the develop­
ment of new therapeutic viewpoints, further than only 
reducing blood pressure to better prevent/decrease 
target organ damage by aiming to paths triggering 
and maintaining cardiovascular remodeling and also 
in the kidney[2]. Our purpose is to review here three 
novel mechanisms of target organ damage in hyper­
tension, their role and evidence on regression of 
cardiovascular remodeling and their possible clinical 
impact as well. Specifically, we will concentrate on the 
signaling pathway RhoA/Rho kinase, on the impact of 

the vasodilatory peptides from the renin angiotensin 
system and on the role of estrogens and the myocardial 
chymase-angiotensin II pathway in cardiovascular 
hypertensive remodeling. Interestingly, the 3 afore­
mentioned mechanisms interact strongly with the renin 
angiotensin system at the cardiovascular level.

RHO KINASE, HYPERTENSION AND 
CARDIOVASCULAR REMODELING
The small protein Rho (a guanosine triphosphatase) and 
its target Rho kinase (ROCK), have important functions 
in blood pressure modulation, by regulating smooth 
muscle contraction and additionally in cardiovascular 
remodeling. Agonists of receptors coupled to the G 
protein in the cell membrane (such as endothelin, 
angiotensin II, or noradrenalin), growth factors and 
cytokines activate Rho[3-6] (Figure 1). Some actomyosin-
associated proteins, such as myosin light chain (MLC) 
phosphatase, myosin light chain 2, LIM-kinase, ezrin 
radixin-moesin and adducin are considered physiological 
ROCK substrates[7-9] (Table 1 and Figure 1). In non-
hypertensive people, activation of the classical renin 
angiotensin system induced by low-salt diet does 
increase RhoA-ROCK signaling and does stimulate 
activation of the RhoA guanine exchange factor Arhgef1, 
which is implicated in vascular tone regulation and in 
hypertension induced by angiotensin II) in circulating 
mononuclear cells[10]. Immediately after Rho activation, 
this small protein is translocated to the cell membrane 
where it phosphorylates and activates ROCK (Figure 1), 
controlling in this way several cellular functions (Table 2), 
the majority of them related to remodeling. Activated 
ROCK does phosphorylate MLC phosphatase, which 
becomes inhibited. This cascade does stimulate tonic 
contraction of the smooth muscle within the vessels, 
development of stress fibers, and also cell migration. 
Thus, activation of both Rho and ROCK has significant 
effects on numerous cardiovascular diseases[4-6,11,12], 
especially in hypertension[13].

Administration of ROCK inhibitors reduces blood 
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  ROCK downstream 
  target protein

Signaling pathway Function

  Myosin binding 
 subunit of MLC/MYPT1

MYPT1/MLC Stress fiber formation

  MLC2 MYPT1/MLC2 Mediates calcium sensitization 
and thereby enhances and 
sustains contraction in the 

vascular bed 
  LIM kinase/cofilin LIM kinase/cofilin Stress fiber formation
  Ezrin/radixin/moesin
  Adducin

Table 1  Rho kinase downstream target proteins, some 
signaling pathways and cellular functions[8]

ROCK: Rho kinase; MLC: Myosin light chain; MYPT1: Myosin phosphatase 
target subunit 1.



pressure effectively in the rat with spontaneous 
hypertension (SHR)[14-17], in the deoxycorticosterone 
acetate (DOCA) salt hypertensive model in rats[14,15,18], 
renal hypertensive rodent[14], L-NAME hypertensive 
rats[19,20] and in also in normotensive rats[14,15,17,20] 
which indicates that blood pressure fall by inhibitors 
of Rho kinase does not depend on the mechanism 
of hypertension[21]. Furthermore, the ROCK intrace­
llular signaling cascade is activated in human hyper­
tension[22,23] where elevated ROCK activity appears to 
be a consequence derived from up-regulation of the 
renin angiotensin system and also from higher levels 
of reactive oxygen species (ROS)[8,9]. ROCK inhibition 
decreases smooth muscle contractility by reducing 
MLC phosphorylation in the smooth muscle cell and by 

enhancing endothelial function through reestablishing 
eNOS activity and NO production[8,14,18,24-28]. 

Cardiovascular inflammation and remodeling 
are also reduced by ROCK inhibition[8] through: (1) 
suppressing the levels of cytokines and adhesion 
molecules such as plasminogen activator inhibitor-1 
(PAI-1), monocyte chemoattractant protein 1 (MCP-1) 
and the transforming growth factor 1 in endothelial 
and in smooth muscle cells[18,24,29,30]; (2) by inhibiting 
in endothelial cells ROS production through down-
regulation of NADPH oxidase[24,31,32]; (3) by reducing in 
smooth muscle cells secretion of cyclophilin A[33]; and 
also (4) by augmenting the levels of angiotensin 1-9[18]. 
Moreover, ROCK inhibitors delivered in the brainstem 
reduce blood pressure and sympathetic nerve in 
hypertensive rodents[34,35].

In hypertension, there are experimental data avai­
lable on the significant role of ROCK activation on 
developing myocardiac hypertrophy, remodeling and 
ventricular dysfunction. In the rodent with salt-sensitive 
hypertension, cardiac hypertrophy was importantly 
reduced by using Y-27632, a specific ROCK inhibitor[36]. 
In this experimental model, upregulated RhoA, ROCK 
gene expression and phosphorylated MLC in the 
stage with hypertrophy were also inhibited by ROCK 
inhibition[36]. Besides, fasudil attenuated cardiac 
fibrosis possibly throughout inhibition of inflammatory 
cells myocardial infiltration in hypertensive rats[37]. 
Additionally, activated ROCK in the aorta observed 
in rats with genetically determined elevated levels of 
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  Cytoskeletal dynamics  and actin organization (formation of stress fibers   
  and focal adhesion complexes)
  Cell contraction 
  Adhesion 
  Morphology 
  Motility
  Transcriptional regulation (pro remodeling genes)
  Cell proliferation and cytokinesis
  Differentiation
  Apoptosis
  Insulin-stimulated insulin receptor substrate-1 phosphorylation
  Development

Table 2  Cellular functions controlled by the RhoA/Rho 
kinase pathway[7-9] 

Cell membrane

Angiotensin II, endothelin, 
noradrenaline, growth factors,
cytokines

Myocardium

Hypertrophy
Apoptosis
Fibrosis
Myocardial dysfunction
Gene expression

Vascular wall

SMC hypercontraction
SMC proliferation
Endothelial dysfunction
Inflammation
Gene expression

MYPT1
MCL2
ERM
LIM kinase/cofilin
Adducin

ROCK target
proteins

GEFs

GAPs
ROCKROCK

inhibitors

Rho GTP Rho GDP

Figure 1  Rho kinase activation and downstream effects on cardiovascular remodeling in hypertension (as well as in cardiovascular disease). GEFs: 
Guanine nucleotide exchange factors; GAPs: GTPase activating proteins; GTP: Guanosine-triphosphate; GDP: Guanosine-diphosphate; MYPT1: Myosin binding 
subunit of myosin light chain phosphatase 1; MLC2: Myosin light chain 2; ERM: Ezrin/radixin/moesin; SMC: Smooth muscle cell. Adapted from references[2,47,144,145].
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measurement of ROCK phosphorylation in circulating 
leukocytes using the approach of determining myosin 
binding subunit phosphorylation (MBS). At the same 
time they observed that plasma concentrations of 
high-sensitivity C-reactive protein were substantially 
higher and that circulating levels of adiponectin were 
significantly lower in MetS subjects as compared with 
control subjects. Additionally, in this population they 
found that increased ROCK activation was significantly 
related with body mass, waist circumference, fasting 
glucose, high-sensitivity C reactive protein, and 
additionally with triglyceride levels[43]. In this clinical 
study the probability of increased ROCK activity was 
considerably increased with the amount of MetS com­
ponents. Experimental findings indicate that insulin 
resistance promoted by ROCK is implicated in myocar­
dial damage in rats with MetS and that this action of 
Rho kinase is probably through the IRS-1-PI3-kinase-
protein kinase B (Akt) signaling cascade[44]. In humans, 
ROCK activation in leukocytes is also enhanced by 
smoking and does predict endothelial dysfunction[45]. 

In circulating leukocytes, Hata et al[46] measured the 
activity of Rho kinase by assessing the relation amid 
phosphorylated myosin-binding subunit (p-MBS) on 
myosin light chain phosphatase to the total MBS and 
also the change on the blood flow in the forearm (FBF) 
as a pharmacological action of the distinctive Rho kinase 
inhibitor fasudil using strain-gauge plethysmography in 
control subjects and also in subjects diagnosed with a 
cardiovascular illness. Compared to healthy subjects, 
they found that leukocyte p-MBS/total-MBS ratio 
was substantially higher (by 90%) in the diagnosed 
patients[46]. Besides, they found that the characteristic 
inhibitor of ROCK fasudil increased FBF by 300% only 
in their patients with cardiovascular disease, but this 
was not the case not in the healthy control group[46]. 
Moreover, they found an important relationship between 
leukocyte p-MBS/total-MBS and maximal FBF induced 
by fasudil in the group with cardiovascular disease (r = 
0.59), not in the healthy subjects. 

Lately, we have evaluated the level of ROCK acti­
vation in leukocytes obtained from venous blood, by 
quantifying the relationship of phospho to total MLC 
phosphatase 1 (known as MYPT1-P/T) as a potential 
remodeling marker in untreated hypertensive patients 
(HT), in HT patients with LVH or with type II diabetes 
mellitus receiving specific treatment and also in patients 
with congestive cardiac failure and LV systolic reduced 
function[47-49]. 

In a recent clinical follow up trial with the aim to 
determine the correlation amid the observed activity 
of ROCK and a first main cardiovascular event along 
with hospitalization rates for congestive cardiac 
failure, the levels of ROCK activity were determined in 
leukocytes by the technique of Western blot in more 
than 600 subjects who undertook a health-screening 
examination[50]. After a median period of 42 mo of 
follow-up, 29 deaths were registered (10 of them 
because of cardiovascular causes), 2 of them were 

angiotensin converting enzyme and the peptide angio­
tensin II, is reduced by Fasudil administration causing 
reduced gene expression that stimulate vascular 
remodeling (like transforming growth factor 1, PAI-1  
and MCP-1) and also enhances oxidative species in the 
vasculature[24].

Long-term inhibition of ROCK using fasudil amelio­
rated diastolic cardiac failure in the Dahl hypertensive 
rat[38]. Besides, in rats with left ventricular hypertro­
phy (LVH) due to pressure overload, inhibition of ROCK 
with GSK-576371 recovered LV chamber geometry, 
improved diastolic function and reduced myocardial 
fibrosis[39] and recently, long term treatment of DOCA-
salt and Nω-nitro-L-arginine methyl ester (LNAME) 
hypertensive rats with the more potent ROCK inhibitor 
SAR407899 reduced hypertension and cardiac and 
renal remodeling in a dose-dependent way in both 
models[19]. Interestingly, in DOCA hypertensive rats, 
blood pressure reduction and protective effects on 
hypertensive organ damage of SAR407899 were 
superior compared to amlodipine and also to ramipril[19] 
and hearts of hypertensive DOCA or LNAME animals 
treated with SAR407899 had significantly better systolic 
left ventricular (LV) function (measured as heart power 
in vitro). Additionally, endothelial-dependent relaxation 
was significantly and dose-dependently improved after 
long-term treatment with SAR407899[19]. An important 
amelioration of myocardial interstitial fibrosis and 
expression of collagen genes and of CD3 and CD68 
(markers of infiltrating macrophages and leukocytes) in 
both models was observed, possibly explained by the 
relevant Rho kinase function in cellular migration and 
cytokinesis through cytoskeleton modulation[19]. 

In more advanced heart disease secondary to 
hypertension, and evident impairment in cardiac 
function (both diastolic and systolic), it is very likely 
that ROCK activity levels be rather similar to Rho 
kinase activation levels observed in cardiac failure 
secondary to different mechanisms and its inhibition 
could produce in this situation similar benefits. In 
the mouse overexpressing Gαq, deletion of ROCK1 
gene did prevent LV chamber dilatation and improved 
cardiac contractility[40]. Furthermore, in cardiomyocytes 
in culture, ROCK activation up-regulates Bax via 
p53 to induce apoptosis[41]. In the transgenic mouse 
that overexpress the isoform MYPT2, activation of 
myosin phosphatase induced LV function decline and 
remodeling, probably by reducing calcium sensitivity, 
along with impairing the myofibrillar organization, which 
is the original report about the functions of both MYPT2 
and myosin phosphatase, and the consequences of in-
vivo cardiac MLC phosphorylation[42].

Assessing Rho kinase activation in human circu­
lating leukocytes, a possible marker of cardiovascular 
remodeling and risk
In people diagnosed with metabolic syndrome (MetS), 
Liu et al[43] reported for the first time significantly 
increased ROCK activity by 31% through the 
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hypertension along with echocardiographic confirmed 
LVH[47]. Additionally, in the hypertensive subjects 
with evidence of eccentric LVH had an MYPT1-p/t 
relationship remarkably higher (by 400%) compared 
to hypertensive subjects and no eccentric LVH. Patients 
having an E/e´ ratio measured in the transmitral 
diastolic flow ≥ 15 showed a substantially higher 
MYPT1-p/t relationship (26%) as related to the levels 
in those subjects with a smaller E/e´ ratio. This study 
concluded that ROCK activation levels determined in 
leukocytes from venous blood are significantly raised 
up in hypertensive subjects with definite cardiac 
hypertrophy compared with HT patients without 
LVH. ROCK activation is additionally increased when 
eccentric hypertrophy is present. Therefore, in subjects 
with essential hypertension, ROCK phosphorylation/
activation determined in leukocytes from venous blood 
is correlated to pathological myocardial remodeling and 
could contribute as one indicator of LVH[47].

Similarly, Hata et al[51] recently observed significantly 
higher Rho kinase activation levels in circulating 
leukocytes in subjects with essential hypertension when 
contrasted to healthy individuals by 37%. Besides, in 
these hypertensive patients under antihypertensive 
treatment, ROCK activity levels were substantially 
lowered in patients using calcium channel antagonists 
compared to patients receiving as antihypertensive 
treatment inhibitors of the renin-angiotensin-aldo­
sterone axis, thiazides, or β-blockers[51]. These obser­
vations suggest that increased Rho kinase activity 
associated to hypertension may cause activation of 
leukocytes along with leukocyte infiltration into the 
vessel wall, which favors atherosclerosis progression[51] 
(as well as remodeling) and suggest the possible 
clinical relevance of determining in this context the 
degrees of Rho kinase activation. In a randomized 
clinical study with the aim of assessing the impact of 
the specific aldosterone receptor blocker eplerenone, on 
the endothelial function determined by flow mediated 
dilatation (FMD) and on Rho kinase activation as well, 
determined in leukocytes obtained from venous blood 
in subjects with essential hypertesion, 60 patients were 
received eplerenone, the antagonist of calcium channels 
nifedipine, or losartan for 48 wk[52]. They observed 
that FMD was increased and leukocyte Rho kinase 
activity was reduced with eplerenone, wheras nifedipine 
reduced Rho kinase activity but did not modify FMD[52]. 
In the aforementioned clinical trial losartan augmented 
FMD but did not modify Rho kinase activity. In this 
clinical study, both the blood pressure reducing effect 
and also the vasodilation levels induced by nitroglycerin 
were similar with the different three antihypertensive 
drugs throughout the follow-up[52]. 

Rho kinase activity is importantly increased in 
subjects with very high cardiovascular risk and remode­
ling hazard, as is frequently observed in subjects with 
the combined diagnosis of both type 2 diabetes mellitus 
along with essential hypertension. In a cross sectional 
clinical study carried through comparing three groups 

diagnosed with a myocardial infarction, in 20 of them at 
least one revascularization procedure was performed, 
15 developed a stroke, and 17 required hospitalization 
for congestive cardiac failure[50]. In the above-mentioned 
study, once the adjustment for several confounding 
variables (such as age, gender, known risk factors 
and other relevant predictors of cardiovascular illness) 
was performed, ROCK activity remained as a robust 
independent indicator of a first main cardiovascular 
event (the hazard ratio was 2.19), of death as a 
consequence of cardiovascular disease (hazard ratio, 
2.57), cerebrovascular accident (hazard ratio, 2.14), 
and the clinical necessity for revascularization (reported 
hazard ratio was 2.68)[50]. The authors concluded 
that ROCK activity levels determined in circulating 
leukocytes may be a new marker of cardiovascular 
events and propose that its inhibition may be a novel 
therapeutical approach to achieve effective prevention 
of cardiovascular disease[50]. 

Rho kinase activation in subjects with essential 
hypertension: In a case-control study with the goal of 
comparing ROCK activation levels in subjects diagnosed 
with hypertension against a healthy normotensive 
control group in regard to the existence of LVH asse­
ssed by 2D-echocardiography we measured LV mass 
and dimensions in addition to LV performance and 
ROCK activation levels in leukocytes from venous 
blood (by MYPT1-p/t levels through Western blot)[47]. 
Compared to non-hypertensive controls, MYPT1-p/t 
was considerably higher by 450% in the group lacking 
LVH and by 900% in the group with confirmed LVH by 
2D-echocardiography (Figure 2). In contrast with the 
hypertensive subjects without LVH, MYPT1-p/t was 
considerable higher (by 200%) in the subjects with 
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Figure 2  Comparative levels of Rho kinase activity in circulating 
leukocytes (determined as phosphorylated/total MYPT-1 ratio) in healthy 
normotensive controls, in untreated hypertensive patients without LVH 
and in untreated hypertensive patients with left ventricular hypertrophy 
(Data shown as mean ± SEM). aP < 0.01 vs Controls; bP < 0.01 vs untreated 
hypertensive patients without left ventricular hypertrophy (after significant 
ANOVA, respectively). Adapted, with permission from reference[47]. LVH: Left 
ventricular hypertrophy.
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recovery by fasudil administration for one month[53]. 
Moreover, the Em to Am ratio, both the relaxation 
(isovolumic) and deceleration times, along with E to 
e’ ratio values observed after receiving treatment with 
fasudil in the subjects with baseline diminished left 
ventricular chamber relaxation diverged significantly 
from what was noticed in the patients presenting with 
normal left ventricular chamber relaxation. Accordingly, 
clinical ROCK inhibition by using fasudil improved for 
the first time left ventricular chamber diastolic function 
parameters in diabetic patients (the majority of them 
hypertensives) and normal systolic performance[53].

Rho kinase increased signaling in subjects with 
progressive cardiac remodeling: the case of 
congestive cardiac failure with systolic function 
decline: Rho kinase activity is markedly augmented 
in those subjects with established cardiac failure (CF) 
due to systolic dysfunction. In a cross sectional study 
comparing control healthy subjects with patients 
with chronic and clinically stable CF due to systolic 
dysfunction under optimal medical treatment, we 
observed that Rho kinase activation (determined in 
circulating leukocytes as the MYPT1-P/T ratio) was 
increased by 100-fold and that it was inversely related 
with ejection fraction[49]. Interestingly, in those patients 
with CF with LV diameter ≥ 60 mm MYPT1-P/T was 
significantly more elevated than in the CF subjects 
with LV diameter < 60 mm. Thus, ROCK activity is 
markedly augmented in patients with stable chronic 
CF receiving optimal medical treatment, and Rho 
kinase signaling is robustly related to pathologic LV 
chamber remodeling and to systolic function decline as 
well[49]. Another clinical study examined whether ROCK 
activation (determined in venous blood leucocytes) is 
increased in congestive CF and how it is related with 
the clinical prognosis in 170 patients admitted with this 
clinical condition[54]. Patients were prospectively followed 
up for 14.4 ± 7.2 mo or up to the event of cardiac 
death. Observed Rho kinase signaling in the patients 
with congestive CF was significantly higher than that 
of two control groups. The protein concentrations of 
both Rho kinase isoforms (ROCK1 and ROCK2) as well 
as the measured activation of the up-river Rho kinase 
cascade GTPase RhoA in the congestive CF patients 
were significantly higher than what was observed 
in both control groups[54]. Dyspnea at rest, reduced 
left ventricular systolic function and impaired renal 
function were all independent factors predicting Rho 
kinase activity levels at baseline in the subjects with 
congestive CF[54]. By combining Rho kinase activity 
with N terminal pro brain natriuretic peptide (NT-
proBNP) an incremental value in the estimate of long-
term mortality (when compared with only the NT-
proBNP measurement) was observed. Thus, Rho kinase 
activity is elevated in these patients with extreme 
myocardial remodeling, it is also associated with higher 
mortality and it might be an additional biomarker to 
congestive CF risk assessment[54]. In a clinical study to 

of subjects[48]: Essential hypertensive patients under no 
medical treatment, patients with both hypertension and 
type II diabetes under treatment (with similar degrees 
of left cardiac mass) and normotensive control subjects, 
in the patients having the two aforementioned medical 
conditions, increased ROCK activation (determined 
in venous blood leukocytes) was found as compared 
to hypertensive subjects not getting pharmacological 
antihypertensive treatment[48] (Figure 3). In this clinical 
study, in the diabetic hypertensive patients compared 
to both non-diabetic hypertensives and to normotensive 
controls, increased levels of oxidative stress were 
found[48]. These findings were correlated with reduced 
arterial compliance and could help to explain the 
unfavorable vascular remodeling that is commonly 
detected in hypertensive plus diabetic patients receiving 
treatment[48].

In a very recent prospective clinical trial aimed 
to evaluate the effect of the specific ROCK inhibitor 
fasudil on diastolic LV function parameters observed in 
a group of individuals diagnosed with type 2 diabetes 
presenting with preserved systolic performance, 250 
patients with the established clinical diagnosis (62% 
of them hypertensives), were allocated to receive the 
ROCK inhibitor (14 d, 30 mg iv twice per day) or to 
placebo[53]. As planned, echocardiographic parameters 
were determined before and after 1 mo receiving 
this treatment. In relationship with the group that 
was randomized to placebo, in the subjects that were 
randomized to fasudil, an important reduction in both 
blood pressure (diastolic) and in echocardiographic 
late diastolic transmitral flow was observed[53]. In 
the aforementioned clinical study, deceleration time, 
relaxation time (isovolumic), peak early annular diastolic 
velocity (e’), peak of late diastolic annular velocity, 
as well as the E to e’ ratio also showed an important 
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Figure 3  Rho kinase activity in circulating leukocytes (determined as 
phosphorylated/total MYPT-1 ratio) in untreated hypertensive patients 
(white bar, mean age 48 years, mean BP 121 mmHg) and in hypertensive 
diabetic patients under antihypertensive and anti-diabetic pharma
cological treatment (black bar, mean age 51, mean BP 111 mmHg). Data 
shown as mean ± SEM, adapted with permission from reference[48].
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production. With the precise description of both main 
angiotensin II receptors 1 (AT1R ) and 2 (AT2R), most 
of the issues related to the biochemistry, pharmacology, 
and physiology of the renin-angiotensin-aldosterone 
system seemed to be resolved[57,59]. Extensive studies 
of the RAAS for a long time, were mainly focused on 
four classes of drugs targeting the renin-angiotensin-
aldosterone system at different levels: Angiotensin-
converting enzyme inhibitors (known as -prils), Angs 
receptor blockers (-sartans), renin inhibitors (-kirens) 
and mineralocorticoid receptor antagonists (Figure 4). 
All of them are cornerstones in the treatment of HT. 
However, there are more recent discoveries extending 
our understanding of important properties of the renin-
angiotensin-aldosterone system. In the most recent 
decades, increasing evidence has been accumulated 
indicating an exceeding complexity of the RAAS. Among 
some novel discoveries is the finding and location of 
the physiologically important aions of Ang-(1-7)[60], 
Ang-(1-9)[61] and alamandine[62] acting through 
identifiable tissue receptors[60,62,63] (Figure 4). 

New vasodilatory peptides in the RAAS and hypertensive 
remodeling
The therapeutic effectiveness of “classic” blocking the 
RAAS for treating HT and also related cardiovascular 
illness has been extensively well established. However, 
in the most recent decades growing facts and data 
indicate that the roles and biological functions of 
the RAAS go beyond the effects initially described. 
Currently, the amount of biologically relevant end-
products of the RAAS is even now increasing, which 
raises new possibilities to attack through this axis 
cardiovascular disease, and specifically hypertensive 
CV remodeling. These facts are particularly accurate for 
the peptides Ang (1-7) along with Ang (1-9) and lately, 
for alamandine (Figure 4), and in most of the situations 
these peptides display biological effects opposing to 
Angiotensin II.

Ang-(1-7): Production of the active molecule Ang-(1-7) 
mostly depends on the cleavage of the octapeptide Ang 
II which is performed by ACE2 (Figure 4). Moreover, 
Ang-(1-7) can be also formed through hydrolysis of 
the decapeptide Ang I performed by other peptidases 
such as prolyl-endopeptidase, neutral-endo-peptidase 
(NEP), and timeth-oligopeptidase which cleave the 
Pro7-Phe8 bond to remove the final three amino acids. 
The function of the prolyl endopeptidase (PEP)[64], 

oligopeptidase (TOP) and of NEP[65] in the enzymatic 
hydrolysis from Ang I onto Ang-(1-7) depends on tissue 
distribution and substrate availability of the enzymes. 
Neprilysin behaves as an especially active enzyme which 
has been primarily located in the vessel endothelial 
cells while the thimet oligopeptidase enzymatic activity 
is relevant in the cleavage toward Ang-(1-7) occurring 
within the smooth muscle vascular cells[66,67]. Ang-(1-7) 
is also formed from Ang II by ACE2[68]. The level of 
Ang‑(1-7) is regulated by the action of ACE which 

evaluate whether Rho kinase activity in venous blood 
leukocytes is elevated in subjects presenting with an 
established acute coronary syndrome and if Rho kinase 
activation does predict long-term cardiovascular events, 
188 patients with ACS and 61 control subjects were 
evaluated[55]. The authors found significantly increased 
ROCK activity in the two clinical groups (myocardial 
infarction and unstable angina) when it was compared 
to control subjects. Besides, patients with both elevated 
NT-proBNP and Rho kinase activity on admission had a 
five-fold hazard of a major cardiovascular outcome in 
relation to the observed hazard in those subjects with 
low NT-proBNP and low ROCK activity[55]. Their main 
conclusion was that by combining Rho kinase activity 
and NT-proBNP levels a subset of acute coronary 
syndrome patients at particularly high risk might be 
identified[55].

Altogether, these findings strongly suggest that ROCK 
activation in circulating human leukocytes is directly 
related to pathological cardiovascular remodeling, from 
early target organ damage in hypertension to extreme 
cardiovascular disease. Besides, as this measurement 
possibly mirrors remodeling it has prognosis value for 
disease progression, clinical events and conceivably 
for target organ damage/disease prevention and 
regression. 

IMPACT OF THE VASODILATORY 
PEPTIDES FROM THE RENIN 
ANGIOTENSIN SYSTEM ON 
MECHANISMS IN HYPERTENSION AND 
CARDIOVASCULAR REMODELING
Remodeling of the cardiovascular structures does 
occur as a response, not only to modifications in 
blood arterial pressure or flow but also to variations 
in the neural and hormonal milieus, where the renin-
angiotensin-aldosterone axis exerts a major influ
ence[56]. The aforementioned neurohormonal system, 
one of the oldest phylogenetically hormonal systems, 
is most recognized because of its fundamental 
role in regulating hydromineral and cardiovascular 
homeostasis[56,57]. The renin-angiotensin-aldosterone 
axis is a fundamental element of CV physiology having a 
main pathophysiological role by regulating vascular tone, 
blood pressure, sodium and potassium balance and 
vascular responses to both injury and inflammation[58]. 
Long lasting activation of the renin angiotensin system, 
throughout both the octapeptide angiotensin II and 
the mineralocorticoid hormone aldosterone, causes 
hypertension and at the same time does stimulate 
prohypertrophy, proinflammation, prothrombosis, 
and atherogenesis pathways strongly linked with 
hypertensive organ damage. 

During a long period, a main research focus 
has been production and signaling of Angiotensin 
II, highlighting both the ACE and renin regarding its 
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endopeptidase, NEP and thimetoligopeptidase 1 
(TOD)[79,80]. Recently, it was found that Ang-(1-9) has the 
capability to be hydrolyzed into the peptide Ang-(2-9) by 
aminopeptidase A[81] (Figure 4).

Initially Ang-(1-9) was considered as a biologically 
non active peptide, operating indirectly by competing 
with Ang I for the ACE active site, and therefore reducing 
Ang II levels while increasing Ang-(1-7)’s[76,77,82]. However, 
increasing evidence has confirmed that Ang-(1-9) 
does work as a molecule with relevant cardiovascular 
effects both in vitro in addition to in vivo, through the 
AT2R[61,63,83,84].

Alamandine: Recently a new member of RAAS has 
been discovered, the heptapeptide Ala-Arg-Val-Tyr-Ile-
His-Pro, known as alamandine[62] (Figure 4). By using 
mass spectrometry, alamandine was identified as a 
chemical product of a catalytic hydrolysis of Ang A, an 
octapeptide, by ACE2[62]. Alamandine is composed by 
a sequence of amino acids which is extremely similar 
to Ang-(1-7). Both peptides diverge only in one amino 
acid residue (alanine in place of an aspartate residue) 
located at the amine-terminus. Alamandine may be 
also synthesized by decarboxylation of the N-terminal 
aspartate amino acid residue from Ang-(1-7). The 
enzyme which is in charge of the ultimate reaction 
remains unknown[62]. However, Alamandine degradation 
is not yet completely understood. Nevertheless, it is 
possible that aminopeptidases have a most relevant 

hydrolyzes Ang-(1-7) to Ang-(1-5)[65] (Figure 4).
Ang-(1-7) produces its biological effects and acts 

throughout its own receptor, the Mas receptor (MasR), 
one of the membrane receptors coupled to G protein[8]. 
This receptor mediates the current known actions of 
this heptapeptide, as most of them can be prevented 
by the specific blocker, D-Ala7-Ang-(1-7) (A779)[8]. The 
Ang-(1-7) observed effects acting throughout the MasR 
in the CV system consistently include vasodilation, 
antihypertrophy, antiarrhythmogenesis, antifibrogenesis 
and antithrombogenesis[69-71].

Angiotensin (1-9): The first observations about 
Ang-(1-9) (Figure 4) showed a rapid appearance of 
leucine after the injection of radiolabeled Ang I into dog 
renal and pulmonary arteries[72,73], by the enzymatic 
action of a carbopeptidase that was breaking down 
Ang I forming des-Leu10 Ang I. It is possible to generate 
Ang-(1-9) from Ang I through the effect produced by 
several enzymes (carboxypeptidase-type), including 
cathepsin A and ACE2[74-76], although at a relatively slow 
rate compared to the making of Ang-(1-7) starting from 
Ang II[77]. Moreover, it was observed that an inhibitor of 
ACE2 doesn’t have an effect on Ang-(1-9) formation, 
but benzylsuccinate, a CxA inhibitor, does stop the 
formation of Ang-(1-9) and rises the levels of Ang I in 
heart membranes[78]. Alternatively, it is possible to cleave 
Ang-(1-9) to Ang-(1-7) by the ACE carboxypeptidase 
or by the effects of other enzymes including prolyl 
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nels, and in this way also increased neuron excitability 
by means of the Gq and phospholipase C (PLC) 
pathways[100]. In addition, the incubation of alamandine 
with CHO cells that are transfected with MrgD induces 
significant NO release[62]. 

It has been proposed that this MrgD receptor is 
related to pain sensation[101], sensitiveness to thermic 
and mechanical stimulation[102], and tumorigenic 
activity[103]. It was also observed that MRGD is able to 
transduce intracellular signaling of Ang-(1-7)[104].

Clinical approach to the Ang-(1-7)-MasR, Ang-(1-9)-
AT2R and Alamandine-MrgD axis in hypertension and 
cardiovascular remodeling 
Ang-(1-7)-MasR Axis: ACE inhibitors (ACEI) and Ang 
II receptor blockers (ARB) can affect in part the ACE2-
Ang-(1-7) system. Experimental studies in myocardial 
infarcted rats showed that chronic administration 
of enalapril prevented myocardial hypertrophy and 
contractile dysfunction in addition to increased ACE2 
activity in plasma and in the ventricular wall[105].

ACEI increase the Ang I levels, which are hydrolyzed 
to produce Ang-(1-7), through the actions of both ACE2 
and NEP. The arterial pressure reduction effects due 
to ACEI are also associated to increased excretion of 
Ang-(1-7), an observation reported in urine collected 
from subjects with essential hypertension receiving the 
ACEI captopril during 6 mo[106]. It´s well recognized that 
ACEI are able to diminish excretion of urinary protein in 
subjects with established type 2 diabetes mellitus[107], 
and interestingly, in the ACE2 knock-out mice the 
proteinuric blocking effect of ACEI disappears[108]. At this 
respect, ARBs may be here markedly effective because 
elevated Ang II levels as a consequence of them will 
promote Ang-(1-7) production[109]. Additionally, the 
low affinity binding of Ang-(1-7) to the AT1 receptor 
may allow this peptide to work as an antagonist in the 
presence of Ang II[110]. In this regard, normotensive 
rodents with high ACE and Ang II along with low NEP 
activity[111] and Ang-(1-7) concentration[112] (genetically 
determined) showed a higher hypertensive response 
(chronic) after renovascular hypertension induction[113]. 
Besides, the inverse correlation observed among the 
amounts of both Ang II in addition to Ang-(1-7) in 
the aforementioned rodents, determined increased 
cardiac fibrous tissue deposition after isoproterenol 
administration[114] and also ROCK activation in the aortic 
wall as well as stimulation of genes that promote vascular 
remodeling (such as the monocyte chemoattractant 
protein 1 gene, the transforming growth factor 1 gene, 
and PAI gene)[24] and also higher oxidative stress levels 
in the vessels wall in normotensive rodents[115]. 

In humans, similar relationships have been obser­
ved[116,117]. Particularly, in hypertensive patients having 
the DD-ACE genotype (with increased ACE levels), 
the Ang-(1-7) blood levels were reduced by 4 fold as 
compared to those observed in patients having the II-
ACE genotype (and consequently lower ACE levels)[116]. 
In these subjects we reported an important effect of the 

role, since the subtraction of Ala1 could conduct to form 
Ang-(2-7), deemed as a non-active molecule, although 
it shows inhibitory activity of ACE[85]. Other Ang-(1-7)-
degrading enzymes, such as NEP or neprilysin, may also 
participate, given alamandine’s similarity to Ang-(1-7)[86] 
(Figure 4).

Although Alamandine is rather similar to the peptide 
Ang-(1-7) and the biochemical effects of both molecules 
look to be close, alamandine acts through a different 
receptor, the mas-related G-protein coupled receptor D 
(MrgD)[62]. Alamandine produces endothelial-dependent 
vasodilation in rat and mice aortic rings[62]. It has 
recently been observed that oral delivery of alamandine 
(by including it within HP-β cyclodextrin), produced 
similar effects to those already observed for Ang-(1-7) 
such as a long-term antihypertensive effect in SHR 
and a main reduction of cardiac deposition levels of 
collagens I and III as well as fibronectin in isoproterenol-
treated rats[62]. 

Target receptors for the second RAAS arm
Mas receptor and AT2R: the two receptors, the 
AT2R and the Mas receptor, are G protein coupled 
receptors (GPCRs) (Figure 4) with their conventional 
seven transmembrane domains[60,68]. Interestingly, even 
though their signaling mechanisms are quite unusual 
for GPCRs and not completely understood, again, major 
resemblances have been observed. For both receptors, 
signaling by activating phosphatases, particularly the 
Src homology 2 domain-containing protein tyrosine 
phosphatase (SHP)-1 and SHP-2, seems to be cru­
cial[87-90]. In both situations, it has been found that 
phosphatase activation does interfere, in an inhibitory 
way, with kinase driven signaling cascades, producing 
inflammation or hypertrophy involving molecules like 
the mitogen-activated protein kinases or the nuclear 
factor κB (NF-kB)[91,92]. Another shared signaling 
mechanism of importance is the augmented NO syn­
thesis and consequent increase of cyclic guanosine 
monophosphate (cGMP) levels, which does mediate the 
vasodilation effects of both receptors[93-95]. Furthermore, 
these two receptors are able to develop dimers with the 
AT1R which results in a functional inhibition of this latter 
one[96,97].

The MrgD: MrgD belongs to the GPCRs family and 
it is associated to the MasR[98]. The MrgD is located 
in the myocardium in addition to the vessels wall[62]. 
Shinohara et al[99] found that a small amino acid, 
β-alanine could internalize the MrgD, and thus be able 
to induce intracellular influx of calcium and to inhibit 
production of cAMP in Chinese hamster ovary cultured 
cells (CHO) that expressed rat, mouse, or human 
MrgD[99]. The effect in calcium influx can be understood 
by the connection of the MrgD with the G-protein α 
subunit (Gq), and the cAMP suppression does suggest 
an interaction concerning the MrgD with the inhibitory 
G protein (Gi)[99]. Furthermore, MrgD activation through 
β-alanine also suppressed KCNQ/M-type potassium chan­
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specific, since no correlation was found between cardiac 
hypertrophy with Ang-(1-7), nor with Ang II neither with 
the bradykinin levels. In other experiments, chronic 
treatment with Ang-(1-9) to rats with MI by using 
osmotic pumps diminished circulating levels of Ang II 
and enzymatic activity of the ACE and also to prevented 
myocardial hypertrophy[61]. Since there are available in 
vitro data showing that Ang-(1-9) incubation with ACE 
does generate Ang-(1-7)[76], and this peptide negatively 
regulates hypertrophy[127,128], the blocker of the Mas 
receptor A779 was utilized in order to assess whether 
Ang-(1-7) could intervene in the actions of Ang-(1-9). 
Even though A779 did augment blood levels of 
Ang-(1-7) by almost 3 fold, this specific blocker did not 
alter the Ang-(1-9) suppression effect on cardiomyocyte 
(CM) hypertrophy secondary to MI[61]. In experiments 
using cultured CM incubated with noradrenaline, 
IGF-1[61] or Ang II[63], Ang-(1-9) prevented hypertrophy 
of cardiac cells and this action was mediated through 
the AT2R[63]. In addition, by the same AT2R mediated 
mechanism, Ang-(1-9) treatment did alleviate stre­
ptozotocin (STZ) induced cardiomyopathy dose 
dependently and did attenuate cardiac dysfunction in 
rats with diabetes induced by STZ[129]. 

Recently, it has been described that long term 
treatment with Ang-(1-9) significantly reduced HT 
and hypertensive cardiovascular damage in two 
experimental models: the Ang II infusion model and 
the Goldblatt model (2K-1C) as well[84]. In these 
experiments, Ang-(1-9) also blunted the modifications 
in LV systolic function (ejection fraction) in both hyper­
tensive models, without having an effect in the control 
rats[84]. Co-administration of Ang-(1-9) together with 
A779 did not modify the antihypertensive capability of 
Ang-(1-9) but PD123319, a specific AT2R antagonist, 
did entirely abolish the favorable effect of Ang-(1-9) 
on hypertension and on cardiovascular remodeling[84]. 
In cultured cardiac rat fibroblasts, we hace recently 
observed that Ang-(1-9) was able to reduce fibroblast 
proliferation promoted throughout Ang II and also 
collagen content with no effects on differentiation of 
fibroblasts onto myofibroblasts[84]. The biological effects 
of Ang-(1-9) on hypertensive CV remodeling were 
corroborated in the rat with spontaneous hyperten­
sion which is stroke-prone (SHRSP)[130]. Those facts 
demonstrate that activation of the AT2R produced by 
Ang-(1-9) has a significant myocardial antifibrotic effect 
that may be associated to a direct effect on cardiac 
fibroblasts. This preclinical findings suggest a possible 
clinical approach for cardiovascular complications from 
hypertension, by stimulating the AT2R using Ang-(1-9) 
and obtaining in this way antihypertrophic and antifi­
brotic protective effects.

The AT2R stimulation activates among other me­
chanisms the NO-cGMP dependent pathway[131]. 
This happens through direct or indirect effects via 
bradykinins or by augmented activity or expression of 
endothelial NOS[131]. Additionally, AT2R activation might 
be able to induce relaxation by inverse regulation of the 

I/D ACE genotype on circulating NEP enzymatic activity 
in addition to an interactive effect amid the I/D ACE 
genotype status and the hypertensive condition[117].

By blocking the classic ACE-Ang II-AT1R axis a 
well-recognized and effective anti-hypertensive and 
antiproteinuric treatment is obtained. More recently, a 
few patients have received activators of the ACE2-Ang-
(1-7)-Mas receptor pathway, which can be separated 
in two main types: (1) those compounds that augment 
the enzymatic activity of ACE2 and will impact the 
system by increasing Ang II inactivation of[118] and (2) 
those molecules that increase Ang-(1-7) production and 
and are particularly oriented to stimulate the MasR[119]. 
At this time, in the case of ACE2, little molecules 
have been developed which activate ACE2[120]. In rats 
with SHR, a leading ACE2 activator compound (XNT) 
diminishes BP and does recover ventricular function[121]. 
The recombinant human ACE2 has been also developed 
as a different attempt to use the possible therapeutic 
capabilities of ACE2. At this respect, it has recently 
been observed that rhACE2 administration attenuates 
diabetic kidney damage through a mechanism involving 
both Ang II reduction and Ang-(1-7) increasing 
signaling[122]. AVE 0991 is the first synthetic compound 
(non-peptide) developed in order to stimulate the 
MasR[123]. This molecule is an orally active MasR agonist 
that imitates the consequences of administering 
Ang-(1-7) on the kidney, the vessels, and on the heart 
as well[124,125]. AVE0991 does considerably prevent organ 
damage in SHR and also in rats with hypertension 
induced by L-NAME by preserving cardiac contractility, 
avoiding hypertension, and by reducing urinary protein 
excretion[123]. Two new designed peptides, CGEN-856 as 
well as CGEN-857, target the other activator of GPCR, 
and also show high specificity for the Mas receptor[126].

The Ang-(1-9)-AT2R axis: The first observations 
regarding the biological actions of ACE2 and Ang-(1-9) 
counter-regulating the ACE/Ang II axis were made by 
Ocaranza et al[105] (Figure 4). In myocardial infarction 
(MI) rats, down regulation of circulating and cardiac 
ACE2 enzymatic activity is observed in the chronic 
phase of LV dysfunction and this effect is precluded 
by enalapril[105]. When rats with MI or with the sham 
procedure received the ACEI enalapril for 2 mo, 
Ang-(1-9) levels in plasma were increased significantly 
but Ang-(1-7) levels were not modified[105]. Thus, by 
taking into account these observations, it was proposed 
that Ang-(1-9) rather than Ang-(1-7) acts as a counter-
regulator of Ang II in this model of heart failure[105].

Ang (1-9) does regulate cardiac hypertrophy both 
in vivo in addition to in vitro[61,63]. In rats with MI that 
received vehicle, enalapril, or candesartan during 8 
wk, Ang (1-9) did prevent myocardial hypertrophy and 
increased plasma Ang‑(1‑9) circulating levels by several 
fold[61]. Besides, in those experiments, Ang-(1-9) 
plasma levels correlated inversely with several markers 
of cardiac hypertrophy, even by adjusting for reduction 
of blood pressure[61]. This observed action was very 
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24 h after MI and it was administered during 7 d. The 
aforementioned treatment with C21 diminished the scar 
size and this reduction was due to a favorable effect 
of C21 on myocardial remodeling port MI that also 
did improve systolic and diastolic cardiac dysfunction. 
Besides, C21 treatment diminished the content of 
inflammatory cytokines (IL-1b, IL-2, IL-6) and pro-
apoptotic markers (caspase-3, Fas-ligand). Moreover, 
both the monocyte chemoattractant-protein 1 and levels 
of myeloperoxidase, a biomarker of oxidative stress, 
were significantly decreased by C21[137]. Therefore, 
AT2R stimulation (direct) did improve cardiac function 
following an experimental MI throughout both anti-
inflammatory and anti-oxidant mechanisms and by a 
more favorable scar remodeling.

Amelioration of inflammation seems to be a funda
mental mechanism of action of AT2R-agonism[138]. It 
has been recently observed that AT2R-stimulation with 
C21 inhibits NF-kB activity and subsequent synthesis 
of interleukin 6 and other cytokines that promote 
inflammation by activating tyrosine-phosphatases, 
serine/threonine-phosphatases and also CYP2C/2J 
enzymes leading in this way to increased 11, 12-EET 
synthesis[91]. 11,12-EET has been shown by Node et 
al[139] in 1999 to have anti-inflammatory characteristics 
by inhibiting NF-kB. The fact that the described 
action of C21 on IL-6 promoter activity was similar in 
strength to the effect of hydrocortisone administered 
at an equivalent dose indicates that the AT2R could be 
clinically useful as a beneficial target in cardiovascular 
disease, and also in inflammatory clinical conditions[140]; 
an hypothesis which needs to be tested in future 
experiments.

Alamandine-MrgD axis: Alamandine produces 
vasorelaxation in phenylephrine-contracted aortic rings 
and when microinjected into central areas critically 
involved in BP control, such as caudal ventrolateral and 
rostral ventrolateral medulla. Alamandine produces 
a decrease vs increase in BP in the former vs latter, 
respectively, revealing that it acts locally and centrally 
in a rather similar manner with respect to Ang-(1-7) 
(Figure 4). Additionally, oral alamandine administration 
produces a longstanding antihypertensive effect in 
SHR rats[62], suggesting a therapeutic potential for the 
conditions with underlying cardiovascular remodeling. 
Furthermore, alamandine has direct effects on 
remodeling by diminishing cardiac deposition of collagen 
as well as fibronectin in the rat model of myocardial 
fibrosis induced by isoproterenol[62]. Since alamandine is 
a very new molecule within the RAS, currently there are 
scant data about its participation in disease, although 
it has been observed elevated plasma alamandine 
concentrations is in subjects with nephropathy, sug­
gesting that alamandine may be involved in some 
pathophysiological conditions[62]. 

The identification of alamandine and its MrgDR 
contributes to provide novel insights to the knowledge­
ment of the RAS pathophysiology and also opens new 

Rho kinase pathway in the vascular wall[132].
The release of endothelial vasodilators in response 

to Ang-(1-9) may be a mechanism involved in the 
beneficial consequences of Ang-(1-9) observed in 
hypertensive rodents. In ex vivo resistance arteries 
from Ang II treated rats, it has been observed that 
Ang-(1-9) does preserve relaxation induced by Ach 
(which is dependent from endothelium)[84]. Ang-(1-9) 
did also augment the concentration of eNOS mRNA in 
the aortic wall, which is associated to higher plasma 
concentrations of nitrate. These observed effects 
of Ang-(1-9) were completely inhibited by using 
PD123319, which is coherent with the concept that 
Ang-(1-9) does increase bioavailability of NO through 
a mechanism mediated by the AT2R[84]. In keeping 
with these results by blocking Enos a significantly 
increased contractile response to Phe in aortic rings 
of SHRSP chronically treated with Ang-(1-9) infusion 
has been found[130]. Furthermore, Ang-(1-9) does 
stimulate secretion of ANP without modifying the atrial 
contractility[83] and this observed effect of Ang-(1-9) is 
attenuated by using an AT2R antagonist but not when 
using AT1R nor MasR pharmacologic antagonism. 
Furthermore, by using inhibitors of phosphatidylinositol 
3-kinase (PI3K), nitric oxide synthase (NOS), Akt, 
or soluble guanylyl cyclase, Ang-(1-9)-induced ANP 
secretion is blocked. The above-mentioned observations 
consistently suggest that the Ang-(1-9) peptide does 
stimulate secretion of ANP throughout the AT2R-PI3K-
Akt-NO-cGMP cascade[83]. The release of arachidonic 
acid - another potent vasodilator - may be also actively 
implicated here, in addition to the NO[133].

Regulation of Ang-(1-9) by Rho kinase was assessed 
by Ocaranza and coworkers for first time in hypertensive 
DOCA-salt rats, by inhibiting Rho-kinase with fasudil[18]. 
In the above mentioned experimental model, it was 
noticed that over expression of genes promoting car­
diovascular remodeling such as transforming growth 
factor 1, PAI-1 and the MCP-1 molecule were lower by 
using the specific Rho kinase inhibitor, whereas both 
ACE2 enzymatic activity and blood levels of Ang-(1-9) 
were substantially increased. Remarkably, the changes 
observed in ACE, ACE2 and in the levels of Ang-(1–
9) were clearly observed in both experimental groups 
receiving fasudil (the sham group and the DOCA group 
with hypertension)[18]. Thus, this new action of Rho 
kinase inhibition on ACE2 (gene expression/enzymatic 
activity) in addition to lowering Ang-(1-9) levels might 
also conduce to its salutary effects in HT, atherosclerosis 
disease, and CV remodeling. 

AT2R agonists could represent a new class of 
drugs aimed to preclude and reverse hypertensive CV 
remodeling. In isolated conductance and resistance 
vessels, several investigators have shown that 
CGP42112A (a peptide agonist)[134,135] and more recently 
the agonist C21[136] induce vasorelaxation, consistent 
with the concept of AT2R opposing to the AT1R. A recent 
study assessed AT2R-stimulation with C21 on post-
MI cardiac function[137]. Treatment using C21 began 
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Current limitations and challenges: More potent 
ROCK inhibition is a main challenge at this time even 
though recent preclinical evidence of newer inhibitors 
in this regard is available[15,19]. As a consequence, 
clinical studies with ROCK inhibitors in hypertension will 
follow. In the field of the vasodilatory peptides from 
the RAS, Ang 1-9 is effective as antihypertensive and 
anti-remodeling. However, human data are necessary 
as well as pharmacodynamic information and means 
for appropriate delivery. With relationship to the 
implications of the estrogens-myocardial chymase 
interaction, from our point of view, more preclinical data 
are required since the number of studies is small.

CONCLUSION
The discussed evidences in this review about the three 
aforementioned novel mechanisms of hypertensive 
myocardial remodeling: the Rho kinase intracellular 
signaling pathway, the vasodilatory peptides from the 
RAS and the estrogens-myocardial chymase interaction, 
open new therapeutic opportunities to effectively 
get better quality of life, reduce/avoid hypertensive 
cardiovascular remodeling and residual hypertensive risk.
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Abstract
Uncontrolled high blood pressure is a major risk factor 

for heart attack, stroke, and kidney failure and contri
butes to an estimated 25% of deaths worldwide. 
Despite numerous treatment options, estimates pro
ject that reasonable blood pressure (BP) control is 
achieved in only about half of hypertensive patients. 
Improvements in the detection and management of 
hypertension will undoubtedly be accomplished through 
a better understanding of the complex etiology of this 
disease and a more comprehensive inventory of the 
genes and genetic variants that influence BP regulation. 
Recent studies (primarily in pre-clinical models) indicate 
that the small GTPase RhoA and its downstream target, 
Rho kinase, play an important role in regulating BP 
homeostasis. Herein, we summarize the underlying 
mechanisms and highlight signaling pathways and 
regulators that impart tight spatial-temporal control 
of RhoA activity. We also discuss known allelic 
variations in the RhoA pathway and consider how these 
polymorphisms may affect genetic risk for hypertension 
and its clinical manifestations. Finally, we summarize the 
current (albeit limited) clinical data on the efficacy of 
targeting the RhoA pathway in hypertensive patients. 

Key words: Hypertension; Blood pressure; RhoA; 
Smooth muscle contraction; Guanine nucleotide ex
change factor; GTPase activating protein; Polymor
phisms
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Core tip: Studies (primarily in pre-clinical models) 
indicate that the small GTPase RhoA and its downstream 
target, Rho kinase, play an important role in regulating 
blood pressure homeostasis. Herein, we summarize the 
underlying mechanisms and highlight signaling pathways 
and regulators that impart tight spatial-temporal control 
of RhoA activity. We also discuss known allelic varia
tions in the RhoA pathway and consider how these 
polymorphisms may affect genetic risk for hypertension 
and its clinical manifestations. Finally, we summarize the 
current (albeit limited) clinical data on the efficacy of 

REVIEW

18 February 23, 2016|Volume 6|Issue 1|WJH|www.wjgnet.com

RhoA signaling and blood pressure: The consequence of 
failing to “Tone it Down”

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5494/wjh.v6.i1.18

World J Hypertens  2016 February 23; 6(1): 18-35
ISSN 2220-3168 (online)

© 2016 Baishideng Publishing Group Inc. All rights reserved.

World Journal of 
HypertensionW J H



targeting the RhoA pathway in hypertensive patients.

Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA 
signaling and blood pressure: The consequence of failing to “Tone 
it Down”. World J Hypertens 2016; 6(1): 18-35  Available from: 
URL: http://www.wjgnet.com/2220-3168/full/v6/i1/18.htm  DOI: 
http://dx.doi.org/10.5494/wjh.v6.i1.18

INTRODUCTION
Although hypertension is a major risk factor for 
stroke, myocardial infarction, and kidney failure and 
contributes to over 350000 deaths annually in the 
United States[1], we know surprisingly little about its 
development or the mechanisms by which it promotes 
cardiovascular disease. A number of antihypertensive 
drugs are available, but regimens are usually chosen 
empirically and multiple drugs that target different 
organ systems are frequently required for effective 
treatment. One reason for these difficulties is that blood 
pressure (BP) is a complex trait that is regulated by 
many organ systems and a large number of humoral 
factors. Thus, a better understanding of the molecular 
and genetic mechanisms that control BP under normal 
and pathologic conditions should lead to novel drug 
targets and/or to personalized therapies that are more 
effective and less toxic. Recent advances suggest that 
RhoA signaling plays a role in the development human 
hypertension. The focus of this review will be: (1) to 
highlight the mechanisms underlying RhoA-dependent 
regulation of BP; (2) to discuss how allelic variations 
in the RhoA signaling pathway affect genetic risk for 
hypertension and its clinical manifestations; and (3) to 
summarize the current (albeit limited) clinical data on 
the efficacy of targeting this pathway in hypertensive 
patients. 

As a critical regulator of the actin cytoskeleton and 
acto-myosin contractility, the small GTPase, RhoA, 
regulates a variety of cellular processes including force 
development, endocytosis, exocytosis, adhesion, 
migration, proliferation, and differentiation[2]. Like all 
GTPases, RhoA is regulated by guanosine triphosphate 
(GTP) binding and cycles between the active GTP-
bound form and the inactive GDP-bound form. 
When GTP-bound, RhoA interacts with a variety of 
effector molecules that mediate its effects on the actin 
cytoskeleton including the Rho-associated coiled-coil 
domain containing protein kinases (ROCK I and II), the 
diaphanous-related formins (mDia1 and mDia2), protein 
kinase N, citron kinase, rhophilin, and rhotekin. With 
respect to regulation of BP, Rho kinases are arguably the 
most important effectors as evidenced by the findings 
that increased ROCK activity has been observed in 
spontaneously hypertensive rats and some hypertensive 
patient populations[3,4] and ROCK inhibitors like Y-27632, 
Fasudil, and SAR407899 have been shown to reduce BP 

in hypertensive animal models and patients[5]. 

RHOA SIGNALING AND BP REGULATION
BP homeostasis is tightly controlled by many organ 
systems and humoral factors that regulate peripheral 
vascular resistance, sodium and water balance, and 
cardiac output. Below we summarize the role RhoA 
signaling in the regulation of BP highlighting recent 
findings that implicate this pathway in the development 
of hypertension. 

RhoA and arteriole tone
Vascular resistance is a major determinant of BP and 
is controlled, in large part, by smooth muscle cell 
(SMC) contraction within small peripheral arterioles[6-10]. 
Excitation-contraction coupling in SMC is mediated by 
the Ca2+-dependent activation of myosin light chain 
kinase (MLCK), and SMC tension is directly proportional 
to myosin light chain (MLC) phosphorylation as this 
enables myosins molecular interaction with actin[11,12]. 
Interestingly, besides promoting an increase in intrace
llular Ca2+, many G protein-coupled receptor (GPCR)-
coupled contractile agonists including angiotensin II (AII), 
norepinephrine, and endothelin-1 (ET1) also stimulate 
RhoA activity in SMC and in intact arteries[3,4,13]. Active 
RhoA leads to Rho-kinase (ROCK)-dependent inhibition 
of myosin phosphatase and results in elevated MLCK 
activity and enhanced sensitization to Ca2+[3,14-16]. Impor
tantly, several studies in animal models and patients 
(described in further detail below) indicate that RhoA-
dependent pathways are involved in the increased 
vascular resistance associated with hypertension[3-5,13,17].

Active RhoA also induces de novo formation of actin 
filaments that are necessary for force development 
and SMC contraction. Rho-dependent actin remodeling 
occurs by both ROCK-dependent and independent 
processes. The Rho effectors mDia 1 and 2 directly 
catalyze actin polymerization in cooperation with the 
actin binding protein, profilin, whereas ROCK stimulates 
actin polymerization by inhibiting the disassembly 
of actin polymers through LIM-kinase-dependent 
inhibition of cofilin (ROCK activates LIM-kinase 1 and 
LIM-kinase 2 by phosphorylation at threonine 508 or 
505 respectively within the activation loop[18-22]). ROCK 
also phosphorylates ERM proteins which enhances their 
tethering to integral plasma membrane proteins and 
promotes actin filament stabilization[23].

Recent studies indicate that RhoA signaling also 
controls SMC contractile gene expression by regu
lating the nuclear translocation of the Myocardin-
related transcription factors (MRTF-A and MRTF-B). 
Under conditions of low RhoA activity, monomeric 
(G)-actin binding to the MRTF N-terminus masks a 
nuclear localization sequence resulting in cytoplasmic 
sequestration of these serum response factor co-factors. 
The fall in cytoplasmic G-actin levels that occurs upon 
RhoA-mediated actin polymerization promotes MRTF 
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nuclear accumulation and promotes the expression 
of SM α-actin, SM γ-actin, SM myosin heavy chain, 
calponin, and SM22[24,25]. Thus, not only does RhoA 
control SMC contractility, but it also regulates the levels 
of the SMC-specific contractile proteins that support 
this function. Moreover, elevated RhoA in endothelial 
cells impairs endothelial cell-mediated vasorelaxation 
as it decreases availability of the potent vasodilator, 
nitric oxide by reducing both eNOS expression and 
activity[26-30]. In sum, signaling through RhoA enhances 
Ca2+ sensitivity, promotes actin remodeling and 
induces expression of contractile proteins and these 
responses are necessary for maintaining sustained SMC 
contractility and elevated vessel tone (Figure 1). 

RhoA and kidney function
The kidneys play a major role in regulating BP by con
troling sodium excretion and blood volume. In addition, 
since the kidneys are highly perfused organs receiving up 
to 25% of total cardiac output, increased contracility of 
renal arterioles can significantly increase total peripheral 
vascular resistance. In most vascular beds, arteriolar 
tone is controlled by automic innervation and circula
ting hormones. However, in pre-glomerular afferent 
arterioles, increased kidney perfusion (manifesting as 
increased renal BP) stimulates SMC contraction through 
the tubuloglomerular feedback and myogenic responses 
(see[31] for review). The former mechanism is mediated 
by increased glomerular filtration and NaCl delivery from 
the loop of Henle to the macula densa (MD), a cluster of 
epithelial cells located at the junction between the distal 
convoluted tubule and the end of the thick ascending 
limb and adjacent to the abluminal SMCs of the afferent 
arterioles. Increased NaCl uptake by MD cells results in 
secretion of ATP and adenosine which stimulate afferent 
arteriole SMC contraction via P2Y4/P2Y6 and A2 GPCRs, 
respectively. The myogenic response is mediated by 
the activation of stretch-sensitive cation channels. 
Together these mechanisms stabilize renal blood flow 
to protect the sensitive glomerular capillaries from flow-
induced trauma. Importantly, afferent arterioles express 
RhoA, ROCK I and II[32], and several studies have 
convincingly demonstrated that the Rho/Rho kinase 
pathway influences both of these feedback mechanisms 
in response to increased kidney perfusion[33-37]. The 
requirement of RhoA is likely due, at least in part, to its 
necessity for P2Y4/P2Y6 and A2 receptor-dependent 
contractility. Indeed, ATP (via P2Y4/Y6) and adenosine 
(via A2) stimulate RhoA activity in SMC and their 
pressor responses were prevented by pretreatment with 
the Rho-kinase inhibitor, Y-27632[32].

Interestingly, recent evidence indicates that RhoA 
may play an additional role in other cell types within 
the kidney to impact volume homeostasis. In parti
cular, RhoA activity in tubular epithelial cells can regu
late sodium reabsorption and excretion primarily by 
altering the density and location of epithelial sodium 
channels (ENaCs) and the sodium-hydrogen exchanger 

(NHE3)[38]. In vitro studies in cultured epithelial cells 
indicated that the Na+ current through ENaCs was 
significantly increased by expression of wildtype or 
constitutively active RhoA (G14V) and supressed by 
expression of dominant negative RhoA (T19N). The 
changes in current correlated with alterations in the 
density of ENaCs at the PM[39] and mechanistic studies 
determined that RhoA signaling was essential for 
intracellular vesicle mediated transport of ENaCs to the 
apical cell surface[40,41]. RhoA signaling also regulates 
the activity and subcellular localization of NHE3, a 
key regulator of sodium absorption in the proximal 
convoluted tubule. NHE3 associates with ezrin and 
cortical actin filaments at the plasma membrane and 
treatment with either the RhoA inhibitor, diphtheria 
toxin toxin B, or Y-27632 disrupted these interactions 
and promoted the internalization of NHE3 to sub-
membrane compartments[42,43]. Moreover, Nishiki et al[44] 
showed that spontaneously hypertensive rats exhibited 
elevated NHE3 activity and a exagerated level of Na+ 
reabsorption when compared to normotensive controls 
and that Na+ reabsorption was normalized by treatment 
of the hypertensive animals with Y27632.

RhoA in the central and peripheral nervous system
The central nervous system (CNS) constantly assesses 
pressure levels in the vasculature and makes necessary 
signaling adjustments to prevent BP variability. The 
main mechanism by which the CNS monitors BP 
is through a rapid negative feedback loop termed 
the baroreceptor reflex. Baroreceptors are sensory 
neurons located primarily in the aortic arch and carotid 
sinuses that continuously respond to pressure-induced 
streching of the vessels in which they reside. Impulses 
from baroreceptors are relayed via glossopharyngeal 
and vagus nerves to the nucleus tractus solitarii (NTS) 
in the brainstem[45], which in turn relays the signal to 
the rostral ventrolateral medulla[46] and increases or 
decreases parasympathetic and sympathetic stimulation 
to the heart and vessels accordingly. Interestingly, 
the CNS component of this feedback loop has been 
shown to be dependent on RhoA/Rho-kinase signaling. 
Rho-kinase inhibitors microinjected directly into the 
NTS or infection of this structure with an adenovirus 
expressing a dominant-inhibitory form of Rho-kinase 
reduces sympathetic nerve activity, heart rate, and BP 
in normotensive rats and these effects are even more 
pronounced in spontaneously hypertensive rats[47,48]. 
Moreover, infusing the ROCK inhibitor, Y27632, into the 
neural cistern attenuated the BP increase that resulted 
from AII infusion into the same area of the brainstem[49]. 

While RhoA’s effects on the CNS are clear, a hereto
fore understudied area in this field is the extent to 
which RhoA regulates neurotransmitter release from 
the perivascular nerves which are known to play a 
major role in the control of resistance arteriole tone. 
While it has long been known that RhoGTPases have an 
important and conserved function in mediating neuronal 
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further exploration if RhoA/ROCK inhibitors are to be 
considered as future anti-hypertensive therapies.

RhoA in the myocardium
Several studies have shown that RhoA signaling has 
direct effects on cardiac function that increase cardiac 
output and BP. Transgenic mice that overexpressed 
either GDIα or dominant negative RhoA exhibited 
conduction defects and cardiomyocytes isolated from 
these mice exhibited decreased L-type Ca2+ channel 
currents that likely contributed to the decreased 
contractility observed in vivo[54,55]. Vlasblom et al[56] 
showed that treatment of neonatal ventricular cardio
myocytes with Y27632 reduced the expression and 
activity of the sarcoplasmic reticulum Ca2+ Atpase, 
SERCA2a, thereby limiting the amount available for 
Ca2+-induced Ca2+ release in the next cardiac cycle. In 
addition, RhoA-dependent pathways have been shown 
to be critical for phosphorylation and sensitization 
of cardiac troponin T complex to intracellular Ca2+ 
levels[57]. Moreover, while not initially thought to be a 
major mechanism for modulating cardiac contractility, 
it is becoming clear that cardiac MLC phosphorylation 
can enhance muscle contractility by increasing Ca2+ 
sensitivity[58] and that MLC phosphatase is a target for 
Rho kinase-dependent inhibition in the myocardium (like 

survival and death and that tight spatiotemporal 
control of RhoA is necessary for appropriate neuronal 
development (neurite outgrowth, growth cone dyna
mics) and regeneration, to our knowledge no studies 
have explored the consequence of Rho-kinase inhibition 
on peripheral nerve structure or function. Future studies 
to this end are warranted, because some studies in 
cells and invertebrate model systems indicate that 
Rho/Rho kinase signaling may limit the release of 
sympathetic (contractile) agents and promote the 
release of parasympathetic relaxation factors from 
motor neurons. For example, Yamaguchi et al[50] 
found that Ga12/13-mediated activation of RhoA/ROCK 
inhibited Ca2+ dependent exocytosis of the contractile 
neurotransmitter dopamine in PC12 cells. In support 
of these studies, an activating mutation in ArhGEF10, 
a RhoGEF highly expressed in the peripheral nervous 
system, was identified in pateints who exhibited slowed 
nerve conduction velocities[51,52]. On the other hand, 
Hiley et al[53] reported that release of the relaxation 
neurotransmitter, acetylcholine from cholinergic motor 
neurons in C. elegans, required the regulators of G 
protein signaling (RGS)-RhoGEF dependent activation 
of Rho A. Thus, it is formally possible that inhibition 
of RhoA in perpheral nerves could lead to an increase 
total peripheral resistance and BP. This concept requires 

Figure 1  Schematic summarizing RhoA-dependent regulation of vascular smooth muscle contraction and blood pressure homeostasis. Excitation-
contraction coupling in smooth muscle cell (SMC) is mediated by the Ca2+-dependent activation of myosin light chain kinase (MLCK), and SMC tension is directly 
proportional to myosin light chain (MLC) phosphorylation (p) as this enables myosin’s molecular interaction with actin. SMC contractility is also regulated by GPCR-
coupled contractile agonist-mediated activation of the small GTPase RhoA. Downstream activation of Rho kinase (ROCK) inhibits myosin phosphatase target subunit 
1 (MYPT-1), and results in increased levels of pMLC to promote smooth muscle contraction. RhoA also stimulates G-actin polymerization to filamentous actin (F-actin). 
Actin polymerization increases SMC tension and stimulates myocardin-related transcription factor (MRTFs) nuclear translocation which promotes SRF-dependent 
transcription of contractile genes. RhoGAPs (such as GRAF3) and RhoGEFs dynamically regulate RhoA activity to achieve blood pressure balance.
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directly or indirectly activate a range of RhoGEFS. 
Therefore, it is likely that each agonist could stimulate 
somewhat overlapping but distinct set of RhoGEFS to 
enable fine tuning of the extent and duriation of Ca2+ 
sensitization and thus engender precise spatial and 
temporal control of vessel tone. 

RGS family of RhoGEFs (LARG, p115RhoGEF, and 
PDZRhoGEF)[64] has received a lot of attention in the 
BP field because these proteins can interact with (and 
be directly activated by) Gα12 and Gα13

[65]. Indeed, 
activaiton of RhoA by many of the aforementioned 
contractile agonists is mediated, at least in part, 
by these RhoGEFs. However, studies performed in 
mice lacking the a subunits of Gαq/11 or Gα12/13 in 
smooth muscle convincingly showed that activation 
of these RhoGEFs are not simply due to direct binding 
to Gα12/13

[13]. In fact Gα12/13 depletion did not affect 
the pressor effects of AII, or PE, and only modestly 
reduced the pressor effects of ET1. Instead, depletion 
of Gαq/11 completed abrogated PE-induced pressor 
responses and dramatically attenuated responses to 
AII. Subsequent studies from Guilluy et al[13] identified 
p115RhoGEF (p115) as the critical GEF that mediates 
AII-dependent RhoA activity in SMC and small arterioles 
and showed that smooth muscle specific deletion 
of p115 rendered mice resistant to AII-dependent 
hypertension. Interestingly, their mechanistic studies 
confirmed that p115 activation did not require Gα12/
Gα13, but instead, was governed by Gαq -mediated, 
Janus tyrosine kinase-dependent phosphorylation of 
Tyr738 in the PH domain. Importantly, phosphorylation 
mimetic and deficient variants at Tyr738 elevated 
and reduced p115’s GEF activity, respectively[13]. As 
discussed in further detail below, phosphorylation-
dependent activation of RhoGEFs has since emerged 
as a critical regulatory pathway. However, it should also 
be noted that AII–dependent activation of RhoA in SMC 
likely involves additional pathways as AII signaling in 
SMC has been linked to inhibition of p190Rho GTPase 
activating protein (see below[66]; upregulation of 
LARG[67], upregulation of PDZ-RhoGEF[68], and Gαq/Ca2+/ 
proline-rich tyrosine kinase 2 (PYK2) tyrosine kinase 
mediated phosphorylation/activation of PDZ-RhoGEF[69]. 
Indeed, Ying et al[69] showed that Ca2+/PYK2-dependent 
activation of PDZ-RhoGEF was necessary for maximal 
AII induced RhoA activation. 

Interestingly, p115 mutant mice also exhibited a 
partial reduction in DOCA/salt-induced hypertention 
but had normal basal BP and normal pressor responses 
to ET1 and PE; agents that also act through Gαq-
dependent signaling pathways. Future studies are 
necessary to determine how PE and ET1/Gαq signals 
differ from those induced by AII. However, recent 
studies by the Somlyo laboratory shed some light on 
this phenomena as they found that there is functional 
overlap between p115 and LARG. Indeed using genetic 
mouse models, they found that while the time it took 
to reach maximal contraction was increased in SMC-

in SMC). Indeed, Lauriol et al[59] showed that cardiac-
restricted deletion of RhoA led to decreased contractility 
and this effect was correlated with decreased MLC 
activity. Other similarities between RhoA signaling in 
cardiomyocytes and SMC include the ability of RhoA-
mediated signals to promote differentiation/maturation 
by promoting the expression of contractile genes[60].

CONTROL OF RHOA GTPASE ACTIVITY 
Rho proteins act as molecular switches that cycle 
between an inactive GDP-bound form and an active 
GTP-bound form and this cycle is under the direct 
control of three groups of regulatory proteins. Guanine 
dissociation inhibitors (GDIs) sequester RhoA into 
an inactive cytoplasmic fraction, guanine nucleotide 
exchange factors (GEFs) activate RhoA by facilitating 
exchange of GDP for GTP, and GTPase activating 
proteins (GAPs) promote RhoA’s intrinsic GTPase activity 
to hydrolyze GTP to GDP and efficiently turn off (or tone 
down) RhoA-dependent signaling. The GEF and GAP 
protein families are quite large and structurally diverse 
and it is likely that additional differences in expression 
patterns and post translational modification allow for 
tissue-specific and tight spatio-temporal control of RhoA 
activity. The following section summarizes the known 
mechanisms for controlling RhoA activity in SMC.

RhoGEFs and BP control
GEFs activate small GTPases by increasing the GDP 
dissociation rate by several orders of magnitude 
which in turn promotes GTP-binding since GTP is in an 
approximately 10:1 molar excess to GDP in mammalian 
cells[61]. To date, over 24 different Rho-selective GEFs 
have been identified. The common functional domain of 
RhoGEFs is the Dbl homology (DH) domain (also refered 
to as the RhoGEF domain), which typically serves as 
both the catalytic site and the major binding interface 
for RhoA (Figure 2). A pleckstrin homology (PH) domain 
is almost always found downstream of the DH domain 
and this unit serves to facilitate membrane binding and 
cooperates with DH domains to fully activate RhoA[62]. 
Other common functional domains include the RGS 
domain that binds large G-proteins to couple the GPCR 
and Rho signaling pathways and the Postsynaptic 
Density 95, disk large, Zona occludens-1 (PDZ) domain 
that binds to Plexin-B1 and Lysophosphatidic acid (LPA) 
receptor to transmit Semaphorin 4D (57) and LPA 
signals[63], respectively.

The major contractile agonists that stimulate RhoA 
activity in SMC include AII, phenylephrine (PE), ET1, and 
thromboxane A2. The GPCRs for these ligands couple 
to various Gα subunits, including Gα12/13 and Gαq/11, 
but each has distinct Gprotein coupling properties. For 
example, PE signals almost exclusively through Gαq 
and thromboxane through Gα12/13 while other agonist-
receptor interactions lead to more promiscous G protein 
activation. These heterotrimeric GTPases in turn either 
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but overlapping sets of RhoGEFs (each with different 
activation kinetics, catalytic activities, and subcellular 
locales). A question that warrants further studies is to 
what extent GEFs might also govern control over the 
activation of specific RhoA effector subsets by various 
agonists. 

Like p115, PDZRhoGEF and LARG are also activated 
by tyrosine phosphorylation. Focal adhesion kinase 
(FAK) as well as its related family member, PYK2 pho
sphorylate PDZRhoGEF[69,78], while LARG was shown to 
be activated by FAK[78] and Tec[64,69]. Future identification 
of the specific sites of phosphorylation will aid in 
determining if there is a conserved mechanism by which 
these modifications promote GEF activity. 

Control of RhoGEF expression is another important 
means of regulating RhoA activity in the vasculature. 
Because p115-RhoGEF, PDZ-RhoGEF, and LARG each 
play a role in BP regulation in rodents, it is no surprise 
that these GEFs are expressed in both conductance and 
resistance arteries of rats and mice[4,68,69,79]. P63RhoGEF 
is also abundant in the peripheral vasculature[80]. Inter
estingly, the expression of many of these RhoGEFs 
fluctuates as BP changes, suggesting that dynamic 
regulation of their expression is important for BP 
control. The most comprehensive study performed 
to date revealed that expression of each of the five 
RhoGEFs linked to Rho-A dependent vasoconstriction 
(p115, LARG, PDZ-RHOGEF, p63 RhoGEF, and Lbc) 

specific double knockouts, maximal contraction of 
smooth muscle from PDZ-RhoGEF and LARG double 
knockdown tissues was similar to that of the single 
mutants[70]. Thus it is formally possible that AII (but not 
ET1 and PE) induced hypertension is blocked by p115 
knockout because AII has a relatively reduced capacity 
to activate LARG. Interestingly, Medlin et al[71] identified 
the vasoconstrictor agonist sphingosine-1-phosphate 
(S1P) as a potent activator of LARG in cultured vascular 
SMC. While this pathway has not yet been confirmed in 
vivo the finding that LARG knockout mice are resistant 
to salt-induced hypertension[4] which leads to volume 
overload-induced stretching of vessels is consistent with 
the thesis that LARG may regulate RhoA activity and 
SMC contractility in response to mechanical forces[72]. 

Besides activation of the RGS GEFs, several stu
dies have linked Gαq/11-dependent activation of RhoA 
to the Trio family of RhoGEFs (Trio, Duet, and p63
RhoGEF)[73,74]. P63-RhoGEF is highly expressed in 
arterial smooth muscle and it has recently been shown 
to be important for the early phase of AII-dependent 
vessel contractilily[75] and for maximal pressor response 
to other vasoconstrictors such as PE and ET1 that act 
through Gαq/11

[76]. Moreover, another non-RGS RhoGEF 
termed lymphoid blast crisis (Lbc) has been shown to 
be critical for serotonin-dependent activation of RhoA 
and contractility in vascular SMC[77]. In summary, spe
cific vasoconstrictors can lead to activation of distinct 

Figure 2  Multi-domain architecture of RhoGEF and RhoGAP proteins known to regulate smooth muscle cell phenotype. The catalytic domain of RhoGEFs 
is termed a Dbl homology (DH) domain, which serves as the major binding interface with Rho GTPases and catalyzes the dissociation of GDP from the GTPase. 
Pleckstrin homology (PH) domains are almost always downstream of the DH domain and these units cooperate to fully activate the GTPase. Other functional domains 
contained in specific RhoGEFs include the RH (Regulators of G protein Signaling Homology) domain and PDZ (Postsynaptic density 95, disk large, zona occludens-1) 
domain. RhoGAPs are also multi-domain containing proteins. The RhoGAP domain facilitates GTP hydrolysis and inhibits RhoA activity while other domains 
can regulate RhoGAP targeting and function. For example, BAR (Bin/amphiphysin/Rvs), PH, or polybasic region (PBR) domains direct lipid binding and promote 
membrane localization. Other domains are involved in protein-protein interactions such as GTP-binding domain (GBD), diphenylalanine motifs (FF) and the SH3 (SRC 
Homology 3) domains. The amino acid numbers are shown above each protein are based on the human orthologs (http://www.ncbi.nlm.nih.gov/).
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by facilitating myoblast fusion and injury repair[90-93]. 
GRAF2 is more ubiquitously expressed[94] and could 
partially compensate for the loss of GRAF1 during 
myotube formation supporting at least some functional 
redundancy within this family[92]. Evolutionarily, GRAF3 
is the youngest family member and is the most recently 
annotated. Interestingly, our genome wide analyses of 
chromatin structure in primary human SMC suggested 
that this gene was regulated in a smooth muscle-
specific fashion. Indeed, we found that GRAF3 was 
highly and selectively expressed in SMC with particularly 
high expression in resistance vessels[87]. After valida
ting that GRAF3 functioned as a RhoA-specific GAP in 
these cells, we considered the possibility that GRAF3 
might control BP homoeostasis. Importantly, we found 
that homozygous GRAF3 knockdown mice showed a 
consistent and significant elevation in systolic, diastolic, 
and mean arterial BP (+ 20-30 mmHg). The observation 
that heterozygous GRAF3 knockdown mice exhibited 
a 15 mmHg increase in BP strongly supports a dose-
dependent relationship between GRAF3 expression and 
BP. GRAF3-deficient mice exhibited significantly elevated 
pressor responses following treatment with AII, ET1, 
or PE and these effects were inhibited by treatment of 
GRAF3 deficient mice with Y-27632. Accordingly, RhoA 
activity and myosin light chain phosphorylation were 
elevated in GRAF3-depleted SMC in vitro and in vivo[87].

The remarkable SMC-selective expression pattern 
of this Rho-selective GAP when coupled with the ability 
of ROCK inhibition to normalize the hypertensive 
phenotype of GRAF3-deficient animals strongly supports 
a model in which GRAF3 plays a major role in regulating 
BP homeostasis by limiting RhoA-mediated SMC con
tractility in resistance vessels[87]. Interestingly, as 
discussed in further detail below, a large GWAS revealed 
that polymorphisms in the GRAF3 gene contribute to BP 
variation in humans[95,96]. Thus future studies that strive 
to determine the mechanisms that control variations 
in GRAF3 expression and/or activity will likely lead to 
important insights into how to better control BP in the 
general population.

P190RhoGAP may also play a role in limiting RhoA-
dependent arterial tone. p190RhoGAP contains an 
amino-terminal GTP-binding domain, a large middle 
domain with multiple protein-protein interaction motifs 
(diphenylalanine, FF motifs) a polybasic region, and 
a carboxy-terminal GAP domain[97]. Knockdown of 
p190RhoGAP in SMC by siRNA increased RhoA/Rock 
activity[98], and several studies have shown that 
p190RhoGAP is activated by phosphorylation of Y1105 
by cAbl and Src tyrosine kinases[66,99]. p190RhoGAP is 
a substrate for the tyrosine phosphatase, SHP-2, and 
SHP-2-dependent dephosphorylation of p190RhoGAP 
was shown to be important for the initial burst in 
RhoA activity in SMCs treated AII and ET1[98]. Interes
tingly, ROCK-dependent phosphorylation at Ser1150 
attenuated p190RhoGAP activity creating a positive 
feedback loop for further RhoA activation[86]. Pho

are all down-regulated in cultured mesenteric artery 
SMC following treatment with AII for 48 h. Moreover, 
treatment with the Rho Kinase inhibitor fasudil prevented 
the AII-mediated suppression of p115, LARG and 
PDZ-RhoGEF indicating that RGSRhoGEF expression 
is governed, at least in part, by negative-feedback 
signaling through the Rho/Rho kinase cascade. A similar 
decrease in RGSRhoGEF expression was observed 
in mesenteric arteries from rats treated with AII for 
14 d[80]. Whether RhoGEF expression is altered in or 
contributes to hypertension in animal models is less 
clear. Ying et al[81] reported that aortic expression 
of all 3 RGSRhoGEFs was higher in aortas from 12 
wk old SHR than in normotensive rats. Similarly, a 
comprehensive microarray analysis revealed that 
LARG expression was upregulated in DOCA-salt 
hypertensive mice[82]. In contrast, Hilgers et al[68] 
reported that mesenteric arteries from 14 d AII-treated 
rats exhibited decreased mRNA levels, but increased 
protein levels of PDZ RhoGEF. Thus, while it is clear 
that GEF expression is dynamic, the extent to which 
elevated expression of these factors contributes to the 
induction of hypertension and reduced expression to 
BP normalization is currently unresolved and requires 
further study. 

RhoGAPs and BP control
GAPs inhibit Rho signaling by enhancing the intrinsic 
ability of Rho to hydrolyze GTP[83,84]. More than 70 
RhoGAPs have been identified in eukaryotes that can 
be divided into 23 subfamilies[85]. Like the RhoGEFs, 
RhoGAPs are typically large multi-domain containing 
proteins and their diverse structures allow for dynamic 
and selective inhibition of small GTPase signaling 
(see Figure 2). Several Rho-selective GAPs including 
p190ARhoGAP, ArhGAP1, Myr5, GRAF1, and GRAF3 
have been shown to regulate RhoA in cultured vascular 
SMC[86,87].

To our knowledge, GRAF3 is the only RhoGAP that 
has been implicated in the regulation blood pressure. 
The founding member of the GRAF (GTPase regulator 
associated with FAK-1) family, was originally identified 
by our group[88-90] by screening an embryonic λgt11 
expression library for proteins that interacted with 
the carboxyl-terminal domain of FAK[88]. The GRAF fa
mily’s three members are defined by an N-terminal BAR 
(Bin/amphiphysin/Rvs) domain, a phosphatidylserine 
(PS)-binding PH domain, a central Rho-GAP domain, 
a serine/proline rich domain, and a C-terminal SH3 
domain (Figure 1A). The GRAF1 SH3 domain was 
shown to specifically bind to a proline-rich region in 
the carboxy terminus of FAK and this protein-protein 
interaction was important for directing GRAF1 to the 
actin cytoskeleton[88]. GRAF1 is expressed predominantly 
in the brain and striated muscle (cardiac and skeletal), 
and our studies in GRAF1-depleted Xenopus and 
mice revealed that GRAF1-dependent inhibition of 
RhoA activity promoted mammalian muscle growth 
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regulated RhoA degradation, likely explaining the 
common biochemical defect of elevated RhoA/ROCK 
signaling and increased permeability observed in ccm 
mutant endothelial cells[109,110]. Whether this class of 
E3 ligases regulates RhoA in levels in SMC is currently 
unknown.

Signaling via nitric oxide and reactive oxygen 
species may add another level of spatial/temporal 
control of RhoA signaling in the vasculature. Levels of 
ROS increase in the vasculature under a number of 
pathological conditions including hypertension, and 
ROS-mediated activation of RhoA has been demon
strated in vascular smooth muscle[81]. Interestingly, 
Aghajanian et al[111] have demonstrated that ROS 
can mediate direct activation of RhoA by reversible 
oxidation of reactive cysteines C16/C19 and that this 
acts in a similar fashion to GEFs in that it leads to 
nucleotide displacement and increased GTP binding. 
Because oxidation of RhoA does not impair RhoGEF 
binding it is possible that ROS-dependent oxidation 
might prime RhoA for vasoconstrictor-dependent 
activation. In contrast, the reactive vasodilator, NO 
has been shown to inhibit RhoA activation via post-
translational modification. For example, treatment 
of SMC with the pharmacological NO donor, PAPA-
NONOate promoted RhoA S-nitrosylation that reduced 
GTP binding and therefore inactivated RhoA[112]. NO 
signaling may also limit RhoA activity in SMC by 
promoting cGMP-dependent phosphorylation of RhoA 
on sites that attenuate membrane targeting (and 
activation) of RhoA[113,114]. However, the role that such 
post-translational modifications play in vivo has yet to 
be explored.

In summary, RhoA activity in SMC can be dyna
mically regulated by transcriptional and post-tran
slational mechanisms that alter RhoA protein, its 
activators, and its inhibitors. Collectively these mech
anisms play an important role in precise spatial-
temporal control of vessel tone and BP homeostasis. 
Importantly, while several RhoAGEFs have been shown 
to be necessary for development of vasoconstrictor-
induced hypertension, our recent results in GRAF3-
depleted mice demonstrated for the first time that GAP-
dependent control of RhoA activity in SMC contributes 
to the maintenance of basal BP[87].

GENETIC REGULATION OF THE RHOA 
PATHWAY IN HUMAN HYPERTENSION 
Hypertension is a devastating disease associated with 
significant morbidity and mortality due to detrimental 
pressure-related effects on the kidneys, heart, lungs, 
brain, and peripheral vasculature. Hypertension affects 
roughly 80 million people (approximately 32.6% of 
adults) in the United States alone and was predicted to 
be primarily responsible for 25% of deaths worldwide 
in 2010[115]. Despite the fact that nearly 70 drugs 
(from 15 distinct classes of compounds) are approved 

sphorylation of several C-terminal residues by ERK also 
suppresses p190RhoGAP activity during focal adhesion 
formation[100]. Finally, although not yet shown in SMC, 
p190RhoGAP has also been shown to be regulated 
by phospholipid binding[101]. Additional studies will be 
necessary to determine if p190RhoGAP plays an impor
tant role in BP regulation in vivo.

Regulation of GDIs
GDIs bind to GDP-bound GTPases and inhibit GDP 
dissociation. GDI binding also limits translocation of 
GTPases to the membrane effectively “locking“ them 
in the inactive state. Indeed, studies have shown that 
GDIs can inhibit RhoA dependent Ca2+ sensitization 
in SMCs treated with α-adrenergic and muscarinic 
agonists[102]. However, the extent to which RhoGDIs 
regulate BP or RhoA activity in vivo is unclear. One 
study showed that RhoGDIα knock out mice displayed 
a salt-dependent increase in BP, but this effect was attri
buted to an increase in Rac1 activity in the kidney[103]. 
However, since SMC-specific Rac1 knockout mice were 
hypertensive and exhibited increased RhoA activity, it 
will be important to measure RhoA and Rac1 activity 
in SMC in RhoGDIα knock out mice[104]. RhoGDIs have 
been shown to bind to and regulate RhoGEFs and 
RhoGAPs[105], an effect that could indirectly influence 
RhoA activity and vessel tone. Thus, additional studies 
will be needed to assess RhoGDIs’ role in RhoA 
dependent blood pressure regulation. 

Direct regulation of RhoA 
Additional control of RhoA signaling may be imparted 
by mechanisms that alter RhoA protein levels and/
or alter functional post-translational modifications. 
Notably, protein ubiquitination followed by proteasome-
dependent degradation is a major means of fine-
tuning protein levels and Chen et al[106] reported that 
RhoA is a direct target of the Rho-BTB/Cullin-3 E3 
ubiquitin ligase degradation pathway. Interestingly, 
the Sigmund laboratory found that Cullin-3 regulated 
vascular smooth muscle function and arterial BP 
through a RhoA/Rho-kinase pathway. Moreover, they 
found that a human hypertension-associated mutation 
in Cullin-3 in which exon 9 is deleted led to decreased 
Cullin-3 activity and reduced ubiquitin-mediated Rho A 
degradation[107,108] (see below for further discussion of 
these and other genetic variants that influence RhoA 
signaling and human hypertension). Ubiquitination-
dependent regulation of RhoA is also catalyzed by a 
distinct E3 ubiquitin ligase termed SMAD ubiquitin 
regulatory factor (Smurf1)[109,110]. Interestingly, Smurf1-
dependent degradation of RhoA in endothelial cells has 
been linked to the development of cerebral cavernous 
malformation (CCM) a disease that is accompanied by 
hyperpermeable blood vessels in the brain. CCM results 
from the homozygous inactivating mutations in one 
of three ccm genes. Crose et al[109] demonstrated that 
ccm2 bound directly to Smurf1 and that this interaction 
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in a substitution of Thr with Asn at amino acid 431. 
Importantly, the Asn substitution was associated with 
increased systemic vascular resistance and BP and was 
predicted to account for 3%-5% of the BP variance 
between these patients[119]. Another study in which 18 
tag SNPs within the ROCK2 locus were genotyped in 586 
normotensive controls and 607 hypertensive Caucasian 
patients identified a haplotype defined by four SNPs 
(rs965665, rs10178332, rs6755196, rs10929732) 
that was recessively associated with a lower risk of 
hypertension (P = 0.003). However, a subsequent study 
in a separate population of 1344 Chinese patients with 
coronary artery disease and hypertension and 1267 
ethnically and geographically matched controls did not 
find an association between this haplotype and either 
BP or cardiovascular disease[120,121]. Thus, future studies 
are necessary to determine the relevance of these SNPs 
with respect to BP control in the general population. 

Recent studies have implicated artery stiffness in the 
pathology of HTN and this parameter has been shown 
to be a valuable predictor of end organ failure[122-126]. 
Decreased vessel compliance elevates the mechanical 
load on the myocardium but also increases peripheral 
pulse-pressure in the microvasculature resulting in 
tissue damage in high flow organs such as the brain 
and kidneys. Until very recently, increased vascular 
stiffness during aging or the development of HTN was 
thought to result from changes in extracellular matrix 
content and composition (i.e., elastin degradation, 
collagen deposition, etc.). However, new studies 
suggest that the intrinsic mechanical properties of 
VSMC (including RhoA-dependent formation of force-
generating actin filaments, and increased cell adhesion 
to the extracellular matrix) may also play a role[127,128]. 
Notably, Liao et al[129] identified two SNPs in ROCK2 that 
were in complete linkage disequilibrium and associated 
with arterial stiffness in 1483 un-selected patients 
from a Chinese population in Taiwan. Subsequent, in 
vitro studies revealed that both SNPs were functional. 
One SNP, rs978906, affected ROCK2 expression by 
interfering with microRNA(miR)-1183 binding to its 3’
UTR, while the other, rs9808232, which was located in a 
protein-coding region, increased ROCK2 activity[129].

As noted above, S1P is a major upstream activator 
of RhoA in SMC and has vasoconstrictive effects in 
vivo[71,130]. Interestingly, Fenger et al[131,132] assessed 
the significance of 353 genetic variants contained 
within exons of genes in the metabolic sphingolipid 
network. Of these SNPs, 34 and 40 haplotypes were 
associated with changes in diastolic or systolic pressures 
respectively in their 2556 subjects. They found that 
while the BP effects could not be explained by any 
single gene, several 2-gene interaction pairs were highly 
correlated with BP variations. S1P is generated from 
ceramide in a process that involves two critical enzymes 
ceramidase (ASAH1) and sphingosine 1- kinase (SPHK1) 
and the most significant of the 2-gene interactions 
identified were contained in these genes[131,132], further 

for treatment of hypertension in the United States, 
estimates project that reasonable BP control is achieved 
in only about half of hypertensive patients. This reality 
coupled with recent projections that the incidence of 
hypertension will increase to about 41% in the United 
States by 2030, indicate the urgent need for better 
screening and treatment modalities[116]. Improvements 
in the detection and management of hypertension 
will undoubtedly be accomplished through a better 
understanding of the complex etiology of this disease. 

One way to better predict patient response to 
therapy is to gain a more comprehensive understanding 
of the genes and genetic variants that influence BP 
regulation. Recent projections indicate that up to 60% 
of BP variation can be explained by genetic factors, but 
that no single gene exerts a principal effect. Thus, BP is 
considered to have a complex non-Mendelian mode of 
inheritance. Indeed a combination of classic positional 
cloning strategies in families with numerous affected 
members combined with more recent population-based 
GWAS studies have led to the identification of 25 rare 
mutations and 53 SNPs that are predicted to contribute 
to BP control[117]. The aim of this section of is to highlight 
variants that impinge on the expression or activity of 
members of the RhoA signaling axis. 

RhoA-related forms of monogenic hypertension 
Virtually all known cases of monogenic hypertension 
are associated with volume expansion resulting from 
mutations in genes involved in renal salt handling 
or hormones that affect mineralocorticoid activity. 
However, although hypertensive patients with Gordon’s 
Syndrome (pseudohypoaldosteronism type IIE) present 
with salt handling abnormalities, the high BP in these 
patients is caused by an autosomal dominant mutation 
in the Cullin-3 gene (see above). Interestingly, this E3 
ligase helps target RhoA for proteosomal degradation 
and in vitro studies indicate that increased RhoA/ROCK 
signaling in vascular SMC may also play a role in 
Gordon’s Syndrome patients[118]. Exclusion of exon 9 
abrogates the Cullin-3 dependent interactions between 
RhoBTB and the E3 ligase and as RhoBTB serves as a 
chaperone to recruit RhoA to this degradation complex, 
expression of exon 9-deficient Cullin-3 leads to aberrant 
RhoA accumulation[107,108]. 

SNP/EQTLs in RhoA-signaling molecules
Because Rho kinases are major RhoA effector proteins 
and because both animal and human studies have 
shown that treatment with Rho-kinase inhibiting 
compounds lowers BP, a number of case-controlled 
studies were designed to determine if genetic variants 
in these genes might influence the development of 
human hypertension. One group examined the effect 
of ROCK2 genetic variations on BP in 168 pairs of 
mono- and dizygotic twins. In this study, four variants 
were identified in ROCK2, the most notable of which 
was a nonsynonymous SNP in exon 10 that resulted 
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communication) and we identified a novel cis element 
by which this allele upregulates GRAF3 transcription. To 
our knowledge, this is only the second functional SNP 
identified in a GWAS study that has been linked to a 
causal gene and pathway (the first being rs5068 located 
within NPPA/B[117]). 

Collectively, these studies will likely have important 
implications in the future diagnosis and treatment 
of hypertension. For example, patients predicted to 
exhibit aberrantly high levels of RhoA signaling may 
respond better to anti-hypertensive regimens directly 
targeting vessel tone, compared to those that target 
blood volume. Moreover, they reveal that the RhoA 
signaling axis may provide highly selective targets 
for the treatment of human hypertension and related 
cardiovascular sequela. 

PHARMACOLOGICAL REGULATION 
OF RHOA AND RHO-DEPENDENT 
PATHWAYS
Despite the importance of RhoA signaling in the develop
ment of hypertension, few treatments are currently 
available that target this signaling axis. However, some 
commonly used anti-hypertensives may interfere with 
RhoA signaling (Figure 3). For example, since RhoA-
dependent regulation of vascular tone is a major 
contributor to AII-mediated increases in BP[13,139], the 
highly utilized class of anti-hypertensives that target 
AII (i.e., ACE inhibitors and AII receptor blockers) may 
exert some of their BP lowering effects by reducing 
RhoA activation. Moreover, although used to treat high 
cholesterol, HMG-CoA reductase inhibitors such as 
simvastatin and atorvastatin also have anti-hypertensive 
properties[140] and their BP lowering effects have been 
attributed to their ability to block RhoA signaling. RhoA 
is known to be modified by covalent attachment of 
a geranylgeranyl isoprenyl to a C-terminal Cys, and 
this modification (which is blocked by simvastatin 
treatment) is required for membrane localization and 
activation of RhoA[141]. 

While not yet included in standard of care treatment 
for hypertension, several pharmacologic agents have 
been developed for inhibiting Rho kinases. In general, 
kinases make good drug targets due to the relative 
ease of targeting specific molecules to the ATP-binding 
pockets of these enzymes. To date, most of the Rho 
kinase inhibitors utilized in animal studies and clinical 
trials target the ATP-binding pockets of both ROCK 
isoforms[142-144]. Although not clinically used in the United 
States, studies abroad provide compelling evidence 
for the use of this therapeutic approach for BP control. 
One particularly effective ROCK inhibitor, fasudil, is 
currently used in Japan to treat cerebral vasospasm 
and clinical trials determined that fasudil was also 
effective in decreasing peripheral vascular resistance 
in hypertensive patients[5]. However, despite their 
wide use in cells and animal disease models, neither 

supporting a role for RhoA signaling in the development 
of hypertension. It is likely that future gene interaction 
studies such as these will provide a powerful approach 
to both predict hypertension risk and possibly inform 
treatment options.

In the past decade, many GWAS studies have 
identified common genetic variations in coding and non-
coding genomic regions that vary between individuals 
and are associated with changes in BP and several 
of these variants occur in genes linked to the Rho 
signaling cascade. Notably, one GWAS study that used 
hypertension as a dichotomous trait identified eight 
loci associated with BP, and two of these variants were 
located in RhoA-related genes. One of the target genes 
was the aforementioned RhoBTB1 which functions with 
the Cullin-3 complex to maintain low RhoA levels[107,118]. 
Another SNP was found at the rhotekin-2 (RHTKN) 
locus. Although rhotekin was one of the first identified 
RhoA effector molecules (it has high affinity to Rho-
GTP and is widely used in pull down assays for activated 
RhoA[133]), how Rhotekin functions at a cellular level is 
still unclear. Nonetheless this association is provocative 
and clearly indicates that future studies are warranted. 
Two separate GWAS for BP variation and hypertension 
have identified significant association signals in the 
RhoA-interacting protein, plekstrin homology domain 
containing family A member 7 (PLEKHA7)[134,135]. 
PLEKHA7 is highly expressed in the kidney and heart 
and localizes on the cytoplasmic surface of adherens 
junctions, where it interacts with junctional proteins 
cingulin and paracingulin to regulate the activity of 
Rho family GTPases, including RhoA[136]. While the 
functional SNP(s) have yet to be identified, the finding 
that PLEKHA7 is required for the development of salt-
induced hypertension in vivo, highlights the functional 
importance of this RhoA-interacting protein in BP 
regulation[137].

Finally, two separate GWAS for BP and cardio
vascular disease endpoints identified a novel BP 
associated locus containing two SNPs in perfect linkage 
disequilibrium (rs633185 and rs604723) within GRAF3 
gene (ArhGAP42). Both SNPs were associated with a 
significant reduction in BP with each copy of the minor 
allele[95,96]. Of extreme importance, as noted above, 
we reported that mice in which GRAF3 was depleted 
developed significant hypertension that was RhoA-
dependent[87]. Interestingly, the BP locus falls within the 
first intron of the GRAF3 gene, indicating that one or 
both SNPs may affect expression of this Rho-GAP and 
result in altered SMC contractility. Indeed, data within 
the Genotype-Tissue Expression database indicated 
that GRAF3 RNA levels in tibial artery samples were 
3-fold higher in patients homozygous for the minor T 
allele compared to patients homozygous for the major 
C allele (P < 1.5e-10;[138]). Moreover, using allele-specific 
quantitative RT PCR on RNA isolated from human aortic 
SMC heterozygous at rs604723, we found that the 
minor T allele was associated with a significant increase 
in mRNA expression (Mangum and Mack, personal 

Bai X et al . RhoA and blood pressure control



28 February 23, 2016|Volume 6|Issue 1|WJH|www.wjgnet.com

tensive agents are necessary. Moreover, based on the 
fact that BP is a highly variable trait among individuals, 
a better understanding of the genetic mechanisms 
regulating this disease is critical for a more personalized 
treatment plan for patients. Given the numerous 
regulatory and counter-regulatory mechanisms 
modulating the RhoA axis, this central axis provides an 
excellent opportunity for identifying genetic biomarkers 
that correlate with different levels of hypertensive 
risk and drug responses. Indeed, genetic variations in 
both upstream activators and downstream mediators 
of RhoA have been linked to BP regulation (Figure 3). 
Screening for such variants could potentially be used 
to tailor more effective individualized treatments. For 
example, one study showed that the BP lowering 
effects the ACE inhibitors or the angiotensin receptor 
blockers were more pronounced in patients carying a 
GG genotype at the -391 RGS2 (Regulators of G-protein 
signaling 2) locus when compared to responses in 
GC or CC genotype carriers- while no differences 
were observed in the responses to calcium channel 
antagonists[156]. Although RGS2 is known to couple 
to ATR1, the underlying mechanism by which these 
polymorphisms lead to altered sensitivity is currently 
unknown. Genetic differences in pharmacogenetics also 
play a role in response to anti-hypertensive agents, for 
example polymorphisms in the  gene were associated 
with reduced BP-lowering effects of the βAR-blocker 
atenolol[157]. Whether any of the aforementioned Rho-
signaling SNPs influence specific responses to or bio-
availability of anti-hypertensive treatments remains 

fasudil nor Y-27632 exhibit suitable specificity for a 
therapeutic as they can inhibit the activity of several 
other kinases including PKC, PKA, and MLCK, at higher 
concentrations[145,146]. These compounds also suffer from 
having short half-lives, which is a highly undesirable 
attribute of a drug designed to treat a longstanding 
disease[147]. Thus, there is great need for development 
of additional potent, yet specific, ROCK inhibitors that 
can be safely used in patients[148]. While a few such 
compounds have been developed recently with such 
attributes[149-153], whether any these compounds exhibit 
the necessary selectivity and pharmacogenetic profiles 
required for BP management in patients requires 
further study. Moving forward, given the importance of 
RhoGEFs and RhoGAPs in the control of SM contractility 
and BP, we believe that it will be possible to engineer 
clinically-relevant small molecule regulators of these 
enzymes that could be used to develop new and 
effective anti-hypertensive therapies. 

CONCLUSION: FUTURE POSSIBILITIES 
FOR PERSONALIZED TREATMENT OF 
HYPERTENSION 
Current anti-hypertensive therapy is often empirically 
based and involves multiple drug regimens[154,155]- 
an approach that is moderately effective at best as 
it frequently contributes to unwanted side effects 
and intolerance or non-adherence to medication. 
Accordingly, more effective and specific anti-hyper

Figure 3  Pharmacologic and genetic regulation of the RhoA signaling axis. Schematic indicating the sites of action of pharmacological inhibitors (bold) of RhoA 
signaling molecules. Polymorphisms (SNPs/eQTLs) that could influence RhoA signaling are also shown. AJ: Adherens junction; A2R: Angiotensin type II receptor; 
ARBs: Angiotensin receptor blockers; ACEIs: Angiotensin converting enzyme inhibitors; ASAH1: Acid ceramidase; SPHK1: Sphingosine kinase 1.
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Abstract
This mini review describes the development of the 
therapeutic concept of baroreceptor stimulation over the 

last fifty years alongside the more recent introduction of 
it for the treatment of drug - resistant hypertension. The 
pros and cons of this strategy of treatment over renal 
sympathetic denervation are also discussed in the light 
of the results of the studies done in the last decade.

Key words: Resistant hypertension; Treatment; Baro
receptor stimulation; Renal denervation

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: We herein describe the development of the 
therapeutic concept of baroreceptor stimulation for 
the treatment of drug-resistant hypertension. The ups 
and downs of this treatment strategy are discussed in 
the light of the results of the studies done in the last 
decade.

Rossi GP, Azzolini M. Place of baroreceptor activation 
therapy in the treatment of resistant hypertension. World J 
Hypertens 2016; 6(1): 36-40  Available from: URL: http://www.
wjgnet.com/2220-3168/full/v6/i1/36.htm  DOI: http://dx.doi.
org/10.5494/wjh.v6.i1.36

INTRODUCTION
Baroreceptor activation blunts sympathetic activity 
and enhances vagal tone, thus rebalancing the neural 
output to the heart, the vessels, and the kidney in 
favour of the latter. This treatment strategy, currently 
defined as baroreceptor activation therapy (BAT), was 
originally conceived 50 years ago with the ultimate 
aim of lowering blood pressure (BP): Proof-of-concept 
studies were first published by Bilgutay et al[1] and then 
by Torresani et al[2]. They could nicely document the 
achievement of a marked reduction in BP in patients 
who were resistant to the (few) drugs available at 
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that time. Unfortunately the delivering of this therapy 
involved an invasive process and, moreover, stimulation 
was achieved by means of an external device. Accor
dingly, it turned out to be unpractical out of the hospital. 
For these reasons, alongside the development of 
multiple effective BP-lowering medications, BAT was 
rapidly abandoned. 

It took more than forty years for this simple 
physiological principle to find again its way to clinical 
application, thanks to the development of implantable 
devices. The latter were shown to unequivocally lower 
BP in the DEBUT study[3]. Furthermore, in the Heart 
Rate Variability sub-study, they were also reported to 
improve the sympatho-vagal balance[3]. At that time it 
became readily evident that the BAT not only lowered 
BP and sympathetic nerve activity to the muscles[4], 
but was also effective in regressing left ventricular 
(LV) hypertrophy, in improving LV geometry, and in 
decreasing BP all around the clock[3]. 

In June 2010, when the first international meeting 
on Resistant Hypertension was held in Padua, Italy[5], it 
seemed, therefore, that BAT was emerging as the “front 
runner” in the therapeutic armamentarium for the then 
resurfacing problem of resistant hypertension. 

Strong competition in the therapeutic armamentarium
At about the same time the publication of the first 
study on renal denervation[6] and, immediately after, 
of the Simplicity HTN-1[7] introduced another strong 
competitor for BAT in the race for the best treatment 
of drug-resistant hypertension: Percutaneous renal 
denervation. This treatment modality, which is undou
btedly less invasive than BAT, was shown to be effective 
in decreasing BP in carefully selected cases. 

In June 2013, based on the evidence provided in the 
Simplicity HTN-2 trial that was published thereafter[8], 
the ESC/ESH Guidelines released statements concerning 

the use of BAT or renal denervation (Table 1)[9]. With 
a class IIb level of recommendation C these guidelines 
affirmed that invasive procedures, such as denervation 
and baroreceptor stimulation, “may be considered” in 
case of ineffectiveness of drug treatment[9]. In other 
words, it was explicitly acknowledged that the evidence 
supporting usefulness/efficacy of these therapies was 
not well established by evidence/opinion (Class IIb), 
and that the level of evidence depended on consensus 
of experts, and/or small studies, retrospective studies 
and/or registries (Level of evidence C). 

Of further importance, with a class I level C the ESC/
ESH guidelines recommended that “these procedures 
remain in the hands of experienced operators and 
diagnosis and follow-up restricted to hypertension 
centers”. It was further emphasized that these invasive 
approaches were to be “considered only for truly 
resistant hypertension”. 

In March 2014, the scenario changed again with the 
publication of the first randomized single-blinded, sham-
controlled study on renal denervation, the Simplicity 
HTN-3. While conclusively proving the safety of renal 
denervation in experienced hands, this study failed on 
one of its primary endpoints, e.g., the demonstration 
that renal denervation was more effective than a 
“sham” procedure in effectively lowering BP[10]. After the 
publication of this study, the results of a smaller multi-
center French study, the DENERHTN[11], added further 
fuel to the debate. According to this study, when given 
on top of a carefully planned stepped pharmacologic 
treatment, renal denervation provided almost identical 
BP values as placebo at 6 mo follow-up, although the 
fall of BP, both systolic and diastolic, was greater in the 
renal denervation arm. However, this was apparently 
only because the patients in this group had slightly 
higher baseline values, suggesting the possibility of 
a “regression toward the mean” effect[11], and raising 
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  Recommendations Class of recommendation1 Level of evidence2

  In resistant hypertensive patients it is recommended that physicians check whether the drugs included 
  in the existing multiple drug regimen have any BP lowering effect, and withdraw them if their effect 
  is absent or minimal

I C

  Mineralocorticoid receptor antagonists, amiloride, and the alpha-1-blocker doxazosin should be 
  considered, if no contraindications exist

IIa B

  In case of ineffectiveness of drug treatment invasive procedures such as renal denervation and 
  baroreceptor stimulation may be considered

IIb C

  Until more evidence is available on the long-term efficacy and safety of renal denervation and 
  baroreceptor stimulation, it is recommended that these procedures remain in the hands of experienced 
  operators and diagnosis and follow-up restricted to hypertension centers

I C

  It is recommended that the invasive approaches are
  considered only for truly resistant hypertensive patients, with clinic values ≥ 160 mmHg SBP or 
  ≥ 110 mmHg DBP and with BP elevation confirmed by ABPM

I C

Table 1  Therapeutic strategies in patients with resistant hypertension

Class of recommendation1: Class I: Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective; Class II: 
Conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of the given treatment or procedure; Class IIa: Weight of evidence/
opinion is in favor of usefulness/efficacy; Class IIb: Usefulness/efficacy is less well established by evidence/opinion. Level of evidence2: Level of evidence 
B: Data derived from a single randomized clinical trial or large non-randomized studies; Level of evidence C: Consensus of opinion of the experts and/or 
small studies, retrospective studies, registries. ABPM: Ambulatory blood pressure monitoring; BP: Blood pressure; DBP: Diastolic blood pressure; SBP: 
Systolic blood pressure.



questions about the effectiveness of renal denervation 
in lowering BP. According to the plot depicting the 
individual BP changes, some patients did show a 
marked BP reduction and others showed no BP fall 
whatsoever.

At about the same time, the Prague study[12] also 
found no evidence for superiority of renal denervation 
over medical therapy. In this study the patients were 
randomized to either a multidrug treatment comprising 
the mineralocorticoid antagonist spironolactone, or 
to renal denervation. The BP values at 6 mo follow-
up were similar in the renal denervation and medical 
treatment arm. While the long-term results of this study 
are still awaited, it seems fair to say that it remains to 
be conclusively proven that renal denervation entails an 
all-round treatment for all patients with truly resistant 
hypertension. A head-to-head comparison of BAT and 
renal denervation is shown in Table 2.

The challenges of proving effectiveness of treatments 
for resistant hypertension 
There is no question that the diagnosis of true drug-
resistant hypertension is a difficult one, particularly 
out of tertiary referral centers, e.g., centers where 
all diagnostic tools cannot be available[12]. Of note, in 
the patients initially selected at the French specialized 
centers that participated in the DENEHRT study, about 
50% were excluded because of secondary HT, a rate 
that is remarkably higher than commonly perceived. 
This observation suggests that out of the hypertension 
referral centers under detection of secondary forms of 
hypertension is a diffuse phenomenon, which recognizes 
several causes. Nevertheless, the high exclusion rate 
due to secondary hypertension in the French Study 
indicates that, in keeping with the guidelines, any 
invasive procedures for the treatment of HT should be 
restricted to the centers that are competent in reliably 
rule out secondary forms of HT. This is not an easy task 
in patients who are resistant to drug treatment for a 
very simple reason: these patients are, by definition, 
on multiple drugs; moreover, they can carry multiple 
conditions that affect renin-angiotensin-aldosterone 
system. Thereby, the measurements of renin and 
aldosterone, the two key biomarkers for the identi
fication of the most common forms of secondary HT, e.g., 
primary aldosteronism and renovascular hypertension, 
can be markedly biased. In most cases this problem 
can hamper the diagnosis.

The current place of BAT
Nowadays BAT devices allow switching on and off the 
implanted device; therefore, it provides the ideal within-
patient design for assessment of the effect on BP. By 
such strategy the BP-lowering efficacy of BAT has been 
proven beyond any doubts[13]. Moreover, these features 
also allowed the demonstration that the effects of BAT 
are reversible and reproducible over time. Of much 
importance for the patients with resistant hypertension, 
who had a BP that was not controlled after renal 

denervation[14], BAT was shown to work well, albeit only 
in small subsets of patients. 

Finally, BAT can be used in patients who have contra-
indications to renal denervation because of unsuitable 
renal anatomy, previous renal endovascular treatment 
and/or impaired glomerular filtration rate. These 
advantages have to be weighed against its invasiveness, 
which however, has been diminished by the develop
ment of the smaller 2nd generation devices, and, more 
importantly, by the demonstration that unilateral BAT is 
not inferior to bilateral BAT at least for lowering BP[13]. 
Decreased invasiveness of the implantation, alongside 
improved experience of the surgeon and the medical 
team, will likely result into fewer complications and 
shorter hospital stay, thus decreasing the costs and 
increasing the acceptance of the BAT.

Technical aspects: Implantation technique 
The system for delivering BAT consists of a carotid 
sinus lead and a pulse generator. Implantation of the 
pulse generator is generally performed by a vascular 
surgeon experienced in a subcutaneous infra-clavicular 
chest wall pocket, in the fashion of a pacemaker. 
Electrode implantation is also performed at the same 
time by a vascular surgeon experienced in carotid 
artery revascularization by surgical exposure of the 
carotid sinus through a transverse cervicotomy over the 
carotid bifurcation. The sinus region is then mapped by 
temporarily placing the electrode in various locations 
and applying electrical stimulation to determine the 
location with the greatest sensitivity to BAT. Sensitivity 
is measured by observing the hemodynamic changes, 
e.g., reduction of heart rate and/or BP, associated 
with increased parasympathetic and/or decreased 
sympathetic nerve traffic. The electrode is then affixed 
to the sinus, while the opposite end of the lead is 
brought to the pulse generator pocket by means of a 
subcutaneous tunnel[15].

BAT dose is up-titrated over a series of follow-up 
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  Features Renal denervation BAT

  SNS ↓ ↓
  Invasive Yes Yes
  Safe Yes1 Yes1

  BP short-term ↓ ↓
  BP long-term ? ?
  Side Bilateral Monolateral
  Evidence of success Delay Immediate
  Reversible No Yes
  Heart rate effect ↓ ↓↓
  Metabolic effect Yes ?
  Need for follow-up Yes Yes
  Logistics2 + +++
  Costs + +++

Table 2  Similarities and differences between renal denervation 
and baroreceptor activation therapy

SNS: Sympathetic nervous system; BP: Blood pressure; BAT: Baroreceptor 
activation therapy; 1Complications rate < 3%; 2Interventional Radiology vs 
Vascular surgery.
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visits, much like medications are up-titrated; therapy 
is initiated at a moderate level in the absence of side 
effects, then therapy levels are uptitrated as long as the 
patient can tolerate it, with the objective of achieving 
full BP lowering at around 3 mo. Because the electrode-
baroreceptor interface is unique to each patient, there is 
no standard dose of the therapy; the focus is therefore 
to tailor BAT to each individual patient to achieving a 
therapeutic dose in the absence of side effects[15].

Disadvantages and limitations of BAT
From what presented thus far, it might seem that 
BAT is the ideal treatment for all patients, but this is 
likely not the case, in that, as for all new techniques 
the initial studies aimed at proving the concept, 
should be followed by larger prospective multicentre 
studies in order to prove the effectiveness in the long-
term control of arterial hypertension and, moreover, 
in the prevention of cardiovascular events and the 
improvement of survival. Overall, the main limitations 
of BAT entails its logistics requirements: The invasive 
nature of the procedure, the need for a vascular surgery 
unit, for general anesthesia, and of an outpatient clinic 
for periodical follow-up visits in order to check and 
replace generator battery, and/or timely determine if 
a possible device failure occurred. Finally, the costs, 
definitely higher than those of renal denervation, render 
BAT a therapeutic option to be reserved only for few 
very well selected patients.

CONCLUSION
Available accumulating data indicate that BAT is 
effective and safe. However, patients are required to 
follow the precautions that are mandatory for all those 
with implantable devices, and to stay in contact with the 
hypertension center for regular check-up and monitoring 
of the battery status. While these disadvantages can 
be easily overcome with proper logistic arrangements, 
whether BAT can reduce CV events in the long run 
is the key question that could only be answered with 
a large international multicenter study. What control 
group would be suitable and ethically acceptable to this 
end is a critical issue that also needs to be addressed.
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Abstract
The objective of this review is to summarize current data 
obtained so far in catecholamine-essential hypertension 
(EH) relationships on a genetic basis. As the major 
elements driving the sympathetic system’s actions, 
catecholamines modulate a variety of physiological 
processes and mutations related to the system. This 
could generate serious disorders, such as severe 
mental illnesses, stress-induced disorders, or impaired 

control of blood pressure or motor pathways. EH is 
idiopathic, and the genetic basis of its causes and 
substantial interindividual discrepancies in response to 
different types of treatments are the focus of interest. 
Susceptibility to disease or efficacy of treatments 
are thought to reflect genomic variabilities among 
individuals. Therefore, outlining the available knowledge 
in functional genetic polymorphisms linked to EH will 
make the picture clearer and will help to establish future 
prospects in the field.

Key words: Single nucleotide polymorphism; Catechola
mine; Adrenergic receptor; Dopamine receptor; 
Hypertension; Epinephrine; Norepinephrine

© The Author(s) 2016. Published by Baishideng Publishing 
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Core tip: Catecholamines are the major elements of 
sympathetic system’s actions, therefore they also act as 
important regulators of blood pressure. Polymorphism 
studies require a tedious approach since there are 
inconsistencies among the studies due to different 
ethnical origins, subject size and self discrepancies 
among individuals. Nevertheless, there are many 
promising findings and still more fields to investigate. 
Especially role of genes involved in the biosynthesis and 
metabolism of catecholamines were relatively missing. 
This review summarizes the current knowledge about 
catecholamine-related polymorphisms on the basis of 
development, prognosis and drug response of essential 
hypertension and aims to improve better assessment of 
the disease.
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INTRODUCTION
Catecholamines are the class of molecules containing 
a catechol ring, which consists of a 2-hydroxyl-
attached benzene ring, together with an amine chain. 
Involving epinephrine (or adrenaline), norepinephrine 
(or noradrenaline), and dopamine, this class of 
molecules serves to regulate both metabolic and neural 
mechanisms in the body and act as important targets 
for a large group of pharmacological agents.

Adrenaline is a hormone synthesized and released 
by the adrenal medulla into the bloodstream. Its 
concentration in plasma can rapidly rise up several
fold under a physical or mental tension, and when a 
sufficiently high concentration is achieved, it can trigger 
noradrenaline release from adrenergic terminals, 
an action indirectly affecting neuronal transmission. 
Noradrenaline, on the other hand, acts as a neurotrans
mitter rather than a hormone, though it shares very 
similar chemical structure with adrenaline, except a 
methyl group. It is released by neurons in the brain 
and, similar to adrenaline, it acts through alpha or 
beta adrenergic receptors. Dopamine is the metabolic 
precursor of noradrenaline and adrenaline, and it also 
acts as a transmitter/neuromodulator in the central 
nervous system through dopaminergic receptors.

As a crucial element of drug actions, catecholamine 
polymorphisms became a focus of interest in various 
disorders. Hypertension, one of the most common 
disease worldwide especially among elderly people, is 
characterized by high blood pressure (BP) and heart rate, 
two parameters effectively connected to sympathetic 
denervation. It is a complex disorder with polygenic and 
environmental determinants. In the majority of cases, 
it is idiopathic and there is no clear indication of the 
source. Therefore, searches for hypertension-related 
genes, mutations, and polymorphisms will assist in the 
gene-therapeutic approaches and design of target-based 
therapies. There are more than 50 genes identified so 
far through association studies, with the reservation of 
publication bias from selectivity of positive results and 
limited genotype-phenotype relation analysis[1].

Since the sympathetic nervous system (SNS) is one 
of the major mechanisms in the rapid regulation and 
maintenance of BP, it has been hypothesized that the 
SNS could have a substantial role in the development 
of essential hypertension (EH). Catecholamines are 
the mediators of SNS response, and their release 
from chromaffin cells or ganglionic neuronal ends 
would affect myocardiocytes; vascular smooth muscle 
contraction; blood flow through renal, coronary, and 
cerebral systems; systolic and diastolic BP, etc.

This review will briefly discuss the contribution of 
genetic polymorphisms in EH by combining known cate
cholamine-related polymorphisms with the anticipated 
metabolic and neurologic targets in the regulation of 
hypertension and will try to accomplish its significance 
in applications using a combinatorial approach with 

the available clinical data on that issue. The elements 
of the SNS, parasympathetic nervous system, and 
other BP regulators directly or indirectly correlated with 
catecholamine action and hormonal regulation of BP and 
heart rate will be overviewed in this perspective based 
on the current knowledge of the polymorphisms of the 
relevant elements. It is believed that this compilation 
will help to integrate current accumulated knowledge 
on the field, provide a preliminary perspective for the 
design of future studies, and increase our understanding 
of the genetic basis of catecholaminergic system 
components in this one of the most prevalent and 
complexly structured disorder.

RECEPTOR POLYMORPHISMS
One study has indicated that the long arm of human 
chromosome 5 contains a cluster of genes presumably 
involved in BP regulation[2]. This region contains genes 
encoding the alpha1B (a1B) and beta2-adrenergic 
(b2) receptors and dopamine receptor type 1A (D1A). 
The study was conducted with young Caucasians, 
and showed that this genome region has a significant 
association with systolic BP. Further studies involved 
other receptor types as well, with a prominence in b2-
adrenoceptors, which will be discussed in detail later.

ALPHA-ADRENERGIC RECEPTORS
The a-adrenergic receptors (a-AR) are classified into 
two-subtypes: a1 and a2. They are G-protein-coupled 
receptors, and they activate second messenger systems 
through the activation of G-proteins (Gq or Gi/o). a1 
mediates vasoconstriction and plays an important role 
in the regulation of vascular tone, while a2 serves 
to regulate noradrenaline release from presynaptic 
terminals.

ADRA1
The human a1A-AR is the predominant a1-AR sub
type in vascular smooth muscle, the heart, and 
the liver. Considering its role in smooth muscle con
traction, an early study has investigated the role of 
a previously determined polymorphism in a1A-AR, 
Arg492Cys, in normotensive and hypertensive black 
and white American individuals and determined the 
allele frequency distribution. Arg492 was found to be 
significantly higher in African-Americans with respect 
to Caucasians, but the frequency of the variant 
Cys492 was similar in normotensive and hypertensive 
individuals[3].

Another a1A-AR polymorphism, Arg347Cys, was 
examined in a large sample of the Brazilian population 
(a total of 1568 individuals were involved in the 
study)[4]. In this study, the Cys/Cys genotype was 
found to be significantly associated with hypertension 
(P = 0.06). Moreover, the response to daily treatment 
with nifedipine, an anti-hypertensive agent, was found 
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to be related to the same polymorphism in a Chinese 
population[5]. The later study noted that patients 
carrying the Cys347 allele of the a1A-adrenoceptor 
gene (ADRA1A) had a greater systolic BP reduction 
than did those carrying two Arg347 alleles of the a1A-
adrenoceptor gene (32.5 ± 14.0 mmHg vs 27.3 ± 15.5 
mmHg, respectively, P = 0.006) after daily treatment 
with an oral dose of 30 mg nifedipine gastrointestinal 
therapeutic system for 16 d, however, diastolic BP 
reduction was not associated with the Arg347Cys 
polymorphism. In addition, no significant associations 
were observed between BP reduction and two other 
polymorphisms (Arg16Gly and Gln27Glu) of the beta2-
adrenoceptor (b2-AR) gene.

When the a1B-adrenoceptor gene (ADRA1B) was 
examined for possible polymorphisms, it was found 
that polymorphisms of this gene are much rare than 
expected considering its close location to the genes of 
b2-AR and dopamine receptors (DR)[2,6]. An amino acid 
addition at position 368 (368Arg) and a substitution 
(Arg371Gly) were investigated in a small population of 
24 male patients with uncomplicated EH (12 Caucasians, 
12 African-Americans) and 21 male normotensive (NT), 
first-degree relatives of the study group (12 Caucasians, 
9 African-Americans)[6]. The study was unable to detect 
a relationship between these polymorphisms and BP 
levels or response to phenylephrine, an alpha-agonist 
used as a decongestant.

The role of the a1D-AR subtype in hypertension 
development was investigated in mice through a salt-
induced hypertension model. The study suggested 
that a1D-AR plays an important role in developing a 
high BP in response to dietary salt-loading, and that 
agents having selective a1D-AR antagonism could have 
significant therapeutic potential in the treatment of 
hypertension[7]. To our knowledge, there are no studies 
reporting an association between ADRA1B or ADRA1D 
gene variants and hypertension.

A recent genome-wide study has strengthened the 
role of the adrenergic alpha1 receptor (ADRA1) pathway 
in hypertension and BP regulation. The ADRA1 pathway 
showed a strong association with diastolic BP (Ppath < 
0.0007) and hypertension (Ppath < 0.0009) than systolic 
BP (Ppath < 0.06). This pathway consisted of genes 
involved in adrenaline and noradrenaline synthesis, in 
vascular smooth muscle cell signal transduction leading 
to intracellular calcium release, and in major regulatory 
proteins. The study especially stratified the association 
of a1B-AR (ADRA1B) and the phenylethanolamine 
N-methyl transferase (PNMT) gene, the enzyme that 
catalyzes conversion of norepinephrine to epinephrine 
by the transfer of a methyl group[8]. The paper, how
ever, emphasized the fact that neither of the remaining 
pathways utilizing the PNMT reached pathway signi
ficance, nor did the removal of ADRA1 receptor 
genes affect observed ADRA1 pathway significance, 
suggesting that none of the elements could be self-
sufficient mediators for the observed associations.

ADRA2
The a2A-ARs are mainly involved in neurotransmitter 
release from sympathetic nerves. They are found on 
pre- and post-synaptic neurons of the central and 
peripheral nervous systems and blood vessels, and 
their involvement in BP regulation has been reported 
by various studies[9-11]. Yet, studies investigating the 
relationship between hypertensivity and different 
polymorphic sites mostly indicate a lack of association in 
various ethnic populations.

The a2A-ARs act through the Gi/Go family of 
G-proteins, and they help to regulate a wide range of 
physiologic functions, including vascular, cardiac, and 
metabolic systems, as well as the central and peripheral 
nervous systems. Agonist binding to receptors causes 
the receptor to couple with related G-proteins, which 
in turn initiates effector responses like the inhibition 
of adenylyl cyclase or the activation of phospholipase 
C. Pre-synaptic activation of α2-adrenoceptors in 
sympathetic nerve endings and noradrenergic neurons 
leads to inhibition of norepinephrine release. Central 
nervous system activation of post-synaptic α2-adreno
ceptors inhibits sympathetic activity, which results 
in hypotension and bradycardia, as well as sedation. 
Therefore, a2 agonists could be potent antihypertensive 
agents. Higher doses of a2-AR agonists, on the other 
hand, activate smooth muscle receptors in the arterial 
resistance vessels and could produce hypertension[12].

The BP and other responses to a2-AR agonists and 
antagonists can show high variability among individuals 
depending on the population pool. Like other signaling 
systems, variations can involve different elements 
through the signaling pathway, like G-proteins or effe
ctor enzymes, which will be discussed later. On the 
receptor side, a single nucleotide polymorphism (SNP) 
of a2-AR, which results in Asn-to-Lys substitution at 
amino acid 251 of the third intracellular loop (position 
753), was identified in a study conducted by Small et 
al[13]. Subsequently, a total of 376 individuals (125 + 99 
NT, 75 + 77 HT for Caucasians and African-Americans, 
respectively) were genotyped for this locus. The 
frequency of Lys-251 was 10-fold greater in African-
Americans than in Caucasians, but was not associated 
with EH. Since the third intracellular loop forms the 
main site of G-protein interaction, the functional role of 
this substitution was also examined in a cell expression 
system. There were no detectable changes in ligand 
binding and basal function, but [35S] GTPgammaS 
binding was 40% greater in Lys251 form. The findings 
implicated that this small replacement represented 
a gain of agonist-promoted function with enhanced 
inhibition of adenylyl cyclase, activation of MAP kinase 
signaling, or stimulation of phospholipase C/inositol 
phosphate pathways.

Based on these observations, it can be said that 
a1A-AR polymorphisms R347C and R492C significantly 
contributed to BP regulation. There is an ongoing 
research related to the other SNPs in a1A as well as 
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substitution at -20, and an A→G substitution at +46, 
resulting in Arg→Gly exchange of amino acid at 16 and 
a C→G substitution leading to Gln→Glu exchange at 
amino acid 27. All variants were found to be in linkage 
disequilibrium, but in particular the position -47 variant 
was significantly higher in frequency in the offspring 
of hypertensive parents, and Arg16Gly at +46 was 
significantly associated with parental hypertension and 
higher BP in this sample pool. Later studies further 
supported this relationship, mostly focused on the 
Arg16Gly and Gln27Glu substitutions, which introduce 
a change on the extracellular part of the receptor; 
however, as the data accumulated from then, so did 
contradictive findings. In order to compare study 
outcomes, a summary of cumulative data according to 
the ethnicity, study size, and allele distributions for b2-
AR is introduced in Table 1[18-30].

Studies were also conducted to determine if b2-
polymorphisms have an effect on response to antihy
pertensive reagents. Benazepril is an angiotensin-
converting enzyme (ACE) inhibitor used primarily in the 
treatment of hypertension, congestive heart failure, and 
heart attacks. A study investigated the role of Arg16Gly 
polymorphism on systolic and diastolic BP s (SBP and 
DBP) before and after a 15-d benazepril treatment in 
a Chinese population that consisted of a total of 931 
hypertensive subjects, and showed that ADRB2 R16G 
polymorphism may play an important role in DBP 
response to benazepril treatment[31].

ADRB3
The most widely studied b3-AR polymorphism is the 
missense mutation at position 64, which replaces 
tryptophane at this position with arginine. This 
polymorphism was found to be linked with high body 
mass index and obesity[32-34]. A white population 
(German) with type 2 diabetes carrying the Arg 
variant had higher BP and was more hypertensive, 
though they admitted to intense antihypertensive 
treatment[35]. Likewise, a similar study conducted in a 
large unselected Southern Italian population involving 
979 patients showed that carriers of the Trp64Arg 
genotype were more often in the upper one-third of 
abdominal adiposity and were more hypertensive than 
the Trp64Trp homozygotes[36].

Several polymorphisms previously reported as 
risk factors in elevated BP and hypertension-ADRA1B, 
ADRA2A, ADRB1, and ADRB2-were examined in relation 
to systolic and diastolic BP s and heart rate, both at 
rest and in response to stress, by McCaffery et al[37]. 
Subjects (350 normotensive individuals) of European-
American origin were analyzed for their BP s and 
adrenergic receptor variants at seven sites. At position 
1165 of the ADRB1 gene (Gly386Arg), G allele carriers 
showed higher systolic and diastolic BPs compared 
to homozygotes for the C allele. In addition, the AA 
genotype at position 145 of the gene (Ser49Gly) was 
found to be associated with SBP and DBP. At position 46 
of the ADRB2 gene (Arg16Gly), GG homozygotes had 

a1B and a1D subtypes and further investigations are 
needed to accurately assess their roles in hypertension.

b-ADRENERGIC RECEPTORS
The b-adrenergic receptors couple to either Gs or Gi 

(heterotrimeric stimulatory and inhibitory G-proteins) 
proteins. b1-ARs are the predominant type in the 
sympathetic control of heart rate and myocardial 
contraction. Protein kinase A, activated through the b1-
AR → Gs → adenylate cyclase (AC) → cyclic adenosine 
monophosphate (cAMP) pathway, phosphorylates a set 
of regulatory proteins in cardiac excitation-contraction 
coupling, such as L-type Ca2+ channels or SERCA 
proteins. b2-ARs cause smooth muscle relaxation and 
bronchodilation. Defective b2-mediated vasodilation 
could result in both increased arterial resistance and 
reduced venous compliance. b-ARs are effectively 
used as targets to exogenously administered inhibitory 
agents, known as b-blockers. The β3 receptor, a rela
tively novel subtype, is mostly found in brown adipose 
tissue and plays role in the enhancement of lipolysis in 
this tissue, and is also responsible for thermogenesis in 
skeletal muscles.

ADRB1
There are many SNPs identified in the gene of b-ARs 
corresponding to different parts in structure[14]. 
Functional SNPs related to BP regulation were Ser49Gly 
at the N-terminus and Arg389Gly at the C-terminus 
of b1-AR. Three genetic polymorphisms, one of which 
belongs to the b1-AR, were investigated in Japanese 
hypertensive subjects by Shioji et al[15]. The poly
morphisms alpha-adducin (ADD1/Gly460Trp), b1-
adrenoreceptor (ADRB1/Arg389Gly), and G-protein b3 
subunit (GNB3/C825T) were screened in 867 males and 
1013 females. The ADRB1/R389G polymorphism and 
hypertensive status in male subjects were close to the 
significance (P = 0.0702). ADD1/G460W polymorphism 
was associated with hypertension in female subjects, 
and the GNB3/C825T polymorphism was not associated 
with hypertensive status in either male or female 
subjects. None of the polymorphisms was significantly 
effective on the disease. The relationship between the 
two polymorphisms (Ser49Gly and Arg389Gly) and 
BP or heart rate was also tested in a small group of 
patients (101 subjects) with EH and left ventricular 
hypertrophy treated with b1-AR blocker atenolol for 12 
wk. Though reduction in heart rate was greater in Gly49 
patients compared to the Ser/Ser genotype, there was 
no significant effect detected on heart rate and BP[16].

ADRB2
At 1998, Timmermann et al[17] reported four intragenic 
variants at the promoter region and N-terminus of 
the b2-AR in a study involving the offspring of 23 
hypertensive and 22 normotensive European families. 
These mutations were a C→T substitution at -47 in 
the 5’ cistron causing Arg→Cys exchange, a T→C 
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such as left ventricular hypertrophy and arterial sti
ffness. In a group of 300 patients, pulse wave velo
city and hyperemia was found to be associated with 
Ser49Gly of b1-AR, while left ventricular hypertrophy 
was more related to Glu27Gln b2 polymorphism, sug
gesting that these two polymorphisms have an effect on 
the development of arterial stiffness and left ventricular 
hypertrophy in EH[40].

BP response to the b-blocker atenolol administered 
50 mg twice a day was examined in association with 
hypertension-related and closely linked SNPs of the b1-
adrenergic receptor (Ser49Gly and Arg389Gly) and 
the b2-adrenergic receptor (Cys19Arg, Gly16Arg and 
Gln27Glu), together with G-protein b3-subunit (A3882C, 
G5249A and C825T) in EH patients. None of the SNPs 
were found to be associated with EH, except GNB3 
SNPs and BP responses in females[41].

b-AR mutations are preeminent in BP regulation 
and EH compared to other adrenergic receptor 
subtypes. b-blockers are the well known medications in 
cardiovascular disorders. A large family of antagonists, 
such as oxprenolol or pindolol, are in current use to 

higher resting DBP and AG heterozygotes had lower 
SBP than other genotypes.

Considering the close relationship between obesity 
and high BP, polymorphisms of b2 and b3 were investi
gated in a group of Japanese subjects (1121 men), 
selected as overweight or obese but not having 
diabetes mellitus or hypertension. The findings of the 
study demonstrated that the Arg64 allele of b3 and 
the Gly16 allele of b2 could have an indicatory role 
to predict weight gain-induced BP elevation in obese 
subjects[38]. Similarly, a total of 437 Chinese subjects, 
including 149 obese hypertensive patients and 139 non-
obese essential hypertensive patients, were genotyped 
to investigate the association between Trp64Arg, 
Arg16Gly, and Gln27Glu polymorphisms and the sus
ceptibility to obesity and hypertension in a Chinese 
population. The data revealed that the frequencies of 
b3-AR 64Arg and b2-AR 27Glu were significantly higher 
in obese hypertensive patients than in the non-obese 
hypertensive population[39].

The distribution of b-receptor polymorphisms was 
also determined in hypertension-related complications, 

  SNP Ref. Ethnicity Sample size
(HT/NT)

Association/
significance

Parameter

  Arg16Gly Kotanko et al[18] 
1997

African Caribbeans 136/81 Yes Hypertension

  Arg16Gly Gratze et al[19]

1999
Austrian Caucasians 57 NT Yes Blood pressure regulation

  Gln27Glu
  Arg16Gly

Candy et al[20] 
2000

Black South African 192/123 No Hypertension,
blood pressure

Left ventricular mass
  Gln27Glu
  Arg16Gly

Bray et al[21]

2000
Non-hispanic whites 589 families 

(> 2000)
Yes Hypertension

systolic, 
diastolic and mean arterial 

pressure
  Gln27Glu
  Arg16Gly

Jia et al[22]

2000
Caucasians 298/298 No Hypertension

  Gln27Glu
  Arg16Gly

Xie et al[23]

2000
Black or white Americans 356/307 No Hypertension

  Arg16Gly Herrmann et al[24]

2000
Black or white Americans 243 No Hypertension

  T-47C
  Gln27Glu
  Arg16Gly

Kato et al[25]

2001
Japanese 842/633 No Hypertension

  T-47C
  Gln27Glu
  Arg16Gly

Ranade et al[26]

2001
Chinese > 800/> 800 Yes (only for 

Arg16Gly)
Hypertension

  Gln27Glu
  Arg16Gly
  Thr164Ile

Tomaszewski et al[27]

2002
European (Polish) 638 No Hypertension

  Gln27Glu
  Arg16Gly
  Thr164Ile

Pereira et al[28]

2003
Brasilian 1576 Yes Hypertension,

blood pressure

  Gln27Glu
  Arg16Gly

Galletti et al[29]

2004
Non-selected group- 

middle aged men
405 HT

563 
overweight

No Hypertension,
overweight

  T-47C
  Gln27Glu
  Arg16Gly

Ge et al[30]

2005
Han Chinese 503/504 Yes Hypertension

Table 1  List of recent studies on b2-adrenergic receptor polymorphisms, blood pressure and hypertension 

SNP: Single nucleotide polymorphism;  HT: Hypertensive ; NT: Normotensive.
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consideration, the DRD1 polymorphisms A-48G, G-94A, 
and C-800T were shown to have an effect in the 
reabsorption of sodium, especially from distal tubules. 
In a multivariate association analysis, it was shown 
that DRD1-94GG homozygotes had lower reabsorption 
rates. The transmission of the DRD1 AGC haplotype was 
found to be associated with lower systolic and diastolic 
BP in a family-based analysis[44]. In a small Turkish 
cohort involving 101 EH patients run by our group, 
we were not able to obtain such a correlation with the 
same SNPs (A-48G and G-94A), suggesting that further 
analysis is required to clear the picture[45]. 

Dopamine D2 receptors act through Gi proteins, and 
their inhibitory action on AC reduces the noradrenaline 
release from sympathetic nerve terminals. Rosmond et 
al[46] examined a common polymorphism in the coding 
region, an NcoI site in exon 6 (position 1128) in relation 
to BP and personality disorders. They found that NcoI 
site polymorphism of DRD2 is associated with BP, and 
that the TT genotype was significantly more frequent in 
hypertensive subjects (284 randomly selected 51-year-
old Swedish men) compared to controls.

Obviously, one big gap to be filled is the relation of 
dopaminergic system variants with hypertension. So 
far, just a few SNPs have been explored and shown 
to be  associated with EH. Effects are mostly through  
salt transport in the renal tubules and A-48G in DRD1, 
in particular, have confirmative data. There are not 
many available data concerning dopaminergic receptor 
subtype polymorphisms and in view of  its role in the 
SNS, this field should be considered more extensively in 
future studies. 

OTHER FACTORS
As mentioned previously, catecholamines are the 
major contributors of SNS actions and the cathecho
laminergic system is an essential component for the 
performance of SS activities. There are many enzymes 
involved in the biosynthesis of catecholamines, 
which occurs in the chromaffin cells of the adrenal 
medulla and post-ganglionic fibers of the SNS (Figure 
1). The removal of secreted molecules requires 
mainly actions of two enzymes, monoamine oxidase 
and catechol-O-methyltransferase (COMT), but 
also other downstream enzymes, like aldehyde 
dehydrogenase or aldehyde reductase (Figures 2 and 
3). Synthesized catecholamines are stored in vesicles, 
where stabilization of the vesicle core requires other 
supportive peptides, like chromaganine[47]. There are 
also presynaptic transporters that help to remove 
released molecules from the synaptic cleft back to the 
presynaptic terminal; these transporters are the targets 
for drugs of abuse[48]. To our knowledge, there is no 
report affirming the role of transporter polymorphisms 
in BP levels or hypertension development, except some 
preliminary studies suggesting a predisposition[49].

In action, catecholamines act through their receptors 
and start signal transduction. As mentioned above, 

block or suppress epinephrine or norepinephrine-
mediated actions of the sympathetic system. These 
lower the heart rate, the force of contraction and 
reduce the BP. Therefore, it is no surprise that primary 
antihypertensive effects of adrenergic receptors belong 
to the b-AR family. Arg16Gly and Gln27Glu are likely 
to be potential genetic factors to consider and worthy 
of attention. Positive associations were reported in 
large scale Chinese cohorts, but studies conducted in 
other populations are rather inconsistent and should be 
supported with further analyses. 

DOPAMINE RECEPTORS
Dopamine is a neurotransmitter with a variety of roles, 
majorly in the brain, but also throughout the body. 
In the brain, it mediates reward-motivated reactions, 
and helps to produce coordinated motor output, neuro
endocrine regulation, etc. Thus, several important 
diseases, like Parkinson’s or schizophrenia, are highly 
interfered with dopamine activity. Outside the brain, it 
acts as a vasodilator in blood vessels, and in kidneys it 
controls renal sodium excretion.

Dopamine receptors are classified into two families: 
D1-like (includes D1 and D5) and D2-like (includes D2, 
D3, and D4). Both D1- and D2-like receptors mainly 
exist in the central nervous system, as well as on the 
smooth muscle of renal arteries, the juxtaglomerular 
apparatus, and the tubules of the kidney and cardio
pulmonary system. Like adrenergic receptors, they are 
G-protein-coupled receptors with seven transmembrane 
domains. Both members of the D1-family, D1 and D5, 
could interact with stimulatory Gs, but coupling with 
other members of G-proteins can be different for each 
subtype. For example, D1 can also interact with Go, 
participating in the regulation of ion channels like Ca2+, 
K+, and Na+, while D5 can couple to Gz members.

The activation of AC through Gs will cause activation 
of protein kinase A, which in turn will phosphorylate 
target proteins. In kidney proximal tubules, phosphory
lation of two proteins by PKA, the Na+-H+ exchanger 
(NHE), and Na+-K+ ATPase (NKA) will inhibit their 
activation and affect sodium transport across tubules.

The relationship between salt intake and the 
development of hypertension, together with the 
renal functions of the dopaminergic system, brought 
dopaminergic receptor polymorphisms into attention in 
hypertension research. In 2000, Sato et al[42] screened 
131 Japanese EH subjects for the A-48G polymorphic 
site in the DRD1 gene and showed that EH patients 
carrying the G allele had a higher diastolic BP in general. 
Later, the allele frequencies of two SNPs, A-48G and 
G-94A, were determined in a larger cohort, consisting 
of 493 hypertensive Caucasian subjects. In contrast 
to the study involving Japanese patients, this study 
was unable to show any correlation with hypertension 
in this population, reflecting the role of ethnicity in 
polymorphism-related secondary effects[43].

When renal clearance of sodium was taken into 
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peptide located in storage vesicles, and early reports 
have displayed a strong association between 3’-UTR 
(C +87T) and EH[54,55]. CHGA polymorphism predicted 
the risk of developing hypertensive kidney disease in 
African-Americans. Homozygosity for the minor alleles 
at T-1014C, T-988G, and G-462A at the promoter 
region of CGHA exhibited lower stress-induced BP 
elevations[56].

Another SNP localized to the dopamine hydroxylase  
promoter, C-970T, was also found to be related with 
the risk of developing hypertension[57]. More recently, 
genetic variations of the PNMT gene in relation to 
hypertension were reported in several studies. The 
distribution of two SNPs, G-367A (rs3764351) and 
G-161A (rs876493), together with their haplotypes, 
was screened in 316 pairs of HT and NT patients. Two 
SNPs’ AA haplotypes were found to be less common in 
hypertensives and therefore suggested to be correlated 
with the decreased risk of EH in the Han Chinese 
population[58].

METABOLISM-RELATED FACTORS
The degradation of secreted catecholamines to prevent 
prolonged stimulation of SNS is very important for 
the modulation of physiological processes, involving 
BP and related cardiac functions. Renalase, a novel 
flavin adenine nucleotide-dependent amine oxidase, 
is secreted by the kidneys; it helps to reduce the 
circulating catecholamine concentration. Eight selected 
SNPs of the renalase gene were genotyped in 503 
cases, and three SNPs - rs2576178, rs2296545, and 
rs2114406 - showed significant associations with EH[59]. 
The frequency of allele A for rs2576178 in patients with 
hypertensive and concomitant coronary heart disease 
was markedly higher. Similarly, the frequency of the 
C allele of rs2296545 was higher in hypertensives, 
showing that both genotypes may be contributing to 
the development of hypertension and chronic heart 

catecholamine receptors belong to the GPCR family, 
and they couple with heterotrimeric G-proteins, finally 
ending with the activation of protein kinases. There are 
many proteins taking place on these signal transduction 
pathways, reflecting the complexity and limited power 
of association studies. In this large frame of action, the 
effects of polymorphisms related to the system are too 
rich to cover in full perspective. In the context of BP 
and hypertension, however, some important factors 
are presented by several groups as strong candidates 
worthy of mention, and will be summarized briefly in 
the rest of the manuscript.

BIOSYNTHESIS-RELATED FACTORS
The first step in the biosynthesis of dopamine is the 
formation of L-DOPA, a dopamine precursor, from the 
amino acid tyrosine by the enzyme tyrosine hydroxy
lase (TH). TH is the rate-limiting enzyme in catecho
lamine synthesis. Recent studies have indicated that 
several polymorphisms of the TH gene contribute to 
BP regulation. Two SNPs at the promoter region of the 
gene, C-824T and A-581G, were found to be strongly 
associated with higher BP under stress[50]. In 2010, 
it was shown that these replacements seriously alter 
TH promoter activity[51,52]. In accordance with this, 
Nielsen et al[53] reported that the -824T allele increased 
the relative risk of hypertension by 45%[47]. A study 
involving 1266 hypertensive subjects searched for the 
effect of C-824T of TH in hypertension, in addition to 
the two loci of chromogranin A (CHGA). CHGA is a 
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impairment of the intrarenal dopaminergic system, 
and one of the major players is the GRK4, a serine/
threonin G-protein receptor kinase, which initiates a 
desensitization process of the receptor and prevents 
constitutive activity. Functional polymorphisms of this 
protein could enhance GRK4 activity, which will reduce 
dopamine receptor transduction. Increased GRK4 
activity also increases angiotensin II AT1 receptor 
activity that is associated with EH[73].

In a small cohort involving 100 EH patients, three 
gene variants of GRK4 (R65L, A142V, and A486V) were 
found to be associated with antihypertensive treatment 
responses[74]. The responses of homozygous double 
variants of 65L and 142V in particular were much less 
than the other variants. In another study consisting of 
168 Caucasian EH patients, the V allele of the A486V 
variant was shown to be associated with hypertension 
and systolic BP[75]. A much larger cohort consisting 
of 934 whites and African-Americans (44.2%) was 
also investigated for three proteins of GRK4; it was 
determined that the 65L allele had a significant effect 
on systolic BP[76].

Overall, among the synthesis, degredation and 
signal transduction pathways, there are several 
replacements possibly involved in the development 
and progression of hypertension. The most established 
and well-characterized of these is the C825T mutation 
in the heterotrimeric G-protein b-subunit. Tyrosine 
hydroxylase, the primary enzyme for the synthesis of 
catecholamines, and GRK4, an ezyme with a vital role in 
salt-transport through regulation of dopamine receptor 
activity, are conspicuous factors in the assessment of 
the disease.

CONCLUSION
In the new guidelines released by the European 
Society of Hypertension (ESH) and the Eurpean Society 
of Cardiology (ESC), hypertension have been re-

disease[60].
There were inconsistent results with respect to the 

COMT gene variant Val158Met and hypertension. A 
study on a Japanese population, involving 735 men, 
showed that the Met allele is associated with higher 
BP and higher prevalence of hypertension in Japanese 
men[61]. Another study on a Chinese population, 
including 215 hypertensive patients, did not detect such 
a relationship[62]. In the 1995-1997 Word-Trøndelang 
Health Study (HUNT) group involving 2591 individuals, 
the Val/Val genotype was found to be more frequent 
among individuals with hypertension[63].

SIGNAL TRANSDUCTION
A single-base substitution of C825T in exon 10 of the 
gene encoding the G protein β3 subunit of heterotrimeric 
Gi proteins (GNB3) was found to be associated with 
hypertension[64]. This polymorphism leads to alternative 
splicing of exon 9 and has been associated with 
enhanced Gi signaling and ion transport[64,65].

Enhanced G-protein-mediated signaling resulting 
from the truncated C825T form of the G-protein 
β-subunit may cause high BP as a result of increased 
NHE activity in tubules, elevated calcium concentration 
in the cytoplasm, and increased contractility[66].

A large accumulation of studies is present in the 
literature, strongly supporting the role of C825T in 
hypertension[64,67-70]. Although the majority of studies 
has shown an association between the 825T allele and 
hypertension, there are some contradicting reports, 
especially in subjects of African and Asian origin, again 
emphasizing the importance of ethnic origin. Two 
studies performed by our group also showed that the 
frequency of the 825T-allele was higher in hypertensive 
subjects compared to that of controls, and that the 
difference was statistically significant[71,72].

Recent studies report that the effect of the dopa
minergic system in hypertension is mostly due to the 
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evaluated in the context of its role as a risk factor for 
cardiovascular diseases[77,78]. Among the previously 
defined or recently added parameters, individualized 
therapy approaches are a major concern to estimate 
overall risk for the patient for the determination and 
application of the most appropriate treatment and  
drug regimen[79]. In this perspective, genetic factors 
need to be well-characterized since they are important 
contributors of individualized risk assessments.

Regulation of BP coulpatient for the determination 
could be enhanced and related cardiovascular damage 
could be reduced if predictors are properly stratified. 

As stated above, this review has been restricted 
to the genetic polymorphisms determined in the 
catecholamine pathways in relation to BP regulation 
and hypertension. The selected works contained mostly 
either positive association studies, unique studies, or 
a few rare reports in the field of interest. Most of the 
works in the field are relatively novel, and there is a 
great number of vacancies to be filled out.

Polymorphism studies always have drawbacks 
causing them to have inconsistent results, such as 
ethnicity, sample power, sex, polygenetic factors or 
linkage effects, and, in the case of drug response 
studies, periods and consistencies of applied treatments, 
the reliability of control groups, etc. Nevertheless, as 
will be recognized from the aforementioned reports, the 
findings are quite remarkable, and a number of studies 
coincide closely in the outcomes; several variants are 
highly promising in their potential as predictive markers 
to estimate the susceptibility of patients to developing 
hypertension or negative responses to anti-hypertensive 
drug treatments. As genome-wide association studies  
are added up, more reliable predictions and their clinical 
relevance will be achievable, leading the way to more 
appropriate risk assessments.
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Abstract
Hypertension is a major modifiable cardiovascular risk 
factor. Hypertension is also recognized as the most 

important risk factor for global disease burden. It is well 
established that a sustained reduction in blood pressure 
by drugs reduces the incidence of cardiovascular 
morbidity and mortality. In recent years, studies and 
new guidelines published for the management of 
hypertension. Awareness, treatment and control of 
hypertension are very poor, despite the new guidelines. 
We highlighted the management of hypertension in the 
light of current literature.
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Core tip: Hypertension is a major modifiable cardiova
scular risk factor. It is well established that a sustained 
reduction in blood pressure by drugs reduces the 
incidence of cardiovascular morbidity and mortality. 
There are several types of drugs that can be used in the 
management of hypertension. But, the ideal treatment 
strategy remains uncertain for such a common and 
treatable disease. In recent years, studies and new 
guidelines were published addressing management 
of hypertension. Despite new guidelines, awareness, 
treatment and control of hypertension are very poor. We 
highlighted the management of hypertension in the light 
of current literature.
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INTRODUCTION
Hypertension, a major contributor to cardiovascular 
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complications and premature death, is a modifiable 
cardiovascular risk factor[1]. Several studies have demon­
strated that high blood pressure (BP) has a strong 
positive association with cardiovascular morbidity and 
mortality[2,3]. Hypertension is remarkably common 
across the world and its prevalence is strongly influ­
enced by age and lifestyle factors[4,5]. Management of 
hypertension is especially important as hypertension 
is well recognized as the most important risk factor for 
global disease burden.

It is well established that treatment of hypertension 
reduces the risk of cardiovascular morbidity and 
mortality[6,7]. In contrast, untreated or poorly controlled 
hypertension is associated with permanent morbidity 
and mortality. The ultimate goal of antihypertensive 
therapy is the reduction of cardiovascular morbidity 
and mortality. There are several types of drugs that 
can be used in the management of hypertension. Yet, 
the ideal treatment strategy remains uncertain for 
such a common and treatable condition. There are new 
evidences regarding the management of hypertension. 
More recently, the European Society of Hypertension 
(ESH) and the European Society of Cardiology (ESC) 
published joint hypertension guidelines in 2013[8]. The 
panel members who were appointed to the Eighth Joint 
National Committee (JNC) also published the 2014 JNC 
report[9]. While these were in agreement on many points 
with previous guidelines, there were some important 
differences. This review highlights the management of 
hypertension in the light of current literature.

NON-PHARMACOLOGICAL THERAPY
Lifestyle changes
All guidelines recommend that the management of 
hypertension should start with life style modification[8-10]. 
Several lifestyle interventions have been shown to 
reduce BP[11,12]. Beside reducing high BP, these strate­
gies are beneficial in managing most of the other 
cardiovascular risk factors[13]. Lifestyle changes recom­
mended by the current guidelines include several inter­
ventions and combination of all these interventions. 
This has not changed as compared to previous 
guidelines (Table 1). It is generally believed that BP 
lowering effect of lifestyle modification is equivalent to 
drug monotherapy and can also delay drug therapy in 
patients with stage 1 hypertension. 

Renal nerve denervation
The sympathetic nervous system seems to play an 
important role in resistant hypertension[14]. Two clinical 
trials (Symplicity HTN 1 and Symplicity HTN 2) have 
shown the efficacy of renal sympathetic denervation 
with a post-procedure decline of 27/17 mmHg at 12 mo 
and 32/12 mmHg at 6 mo, respectively, with few minor 
adverse events[15,16]. Most recently, results of Symplicity 
HTN-3 (Renal Denervation in Patients with Uncontrolled 
Hypertension) trial showed no further reduction in office 
or ambulatory BP after 1-year follow up[17]. It seems 

that renal denervation is safe but has no superior BP 
lowering effects compared with adjustment of drug 
treatment[18]. In contrast, another more recent study, 
The Renal Denervation for Hypertension trial, showed 
that renal denervation plus standardized stepped-
care antihypertensive therapy decreases BP more than 
the same standardized stepped-care antihypertensive 
therapy alone at 6 mo in patients with well-defined 
resistant hypertension[19]. So far, conflicting BP lowering 
effects of renal denervation have been reported. 
Thus, further studies are needed to reinforce renal 
denervation as a treatment modality for hypertension.

PHARMACOLOGICAL THERAPY
Despite the non-pharmacological intervention, if BP 
is still above target, drug therapy should be initiated. 
There are five major classes of antihypertensive drugs: 
angiotensin converting enzyme (ACE) inhibitors, angio­
tensin receptor blockers (ARBs), diuretics, calcium 
channel blockers and b-blockers. In general, these drugs 
rarely have serious side effects when appropriately 
initiated and adequately monitored. We will not focus 
on the safety profile of these drugs, as it is beyond the 
scope of this review. According to current ESH/ESC 
hypertension guideline, grade 1 hypertensive patients 
with low/moderate cardiovascular risk can initially be 
treated with monotherapy[8]. On the other hand, JNC-8 
panel based their recommendation based on the age of 
the patients. They recommended initiating therapy to 
lower BP at systolic BP ≥ 150 mmHg and diastolic BP ≥ 
90 mmHg for patients aged ≥ 60 years, and systolic BP 
≥ 140 mmHg and diastolic BP ≥ 90 mmHg for patients 
aged < 60 years[9].

MONOTHERAPY
After a long waiting time, recently JNC-8 report 
(recommendations from only randomized controlled 
trials) was published. In the same line with 2013 
ESH/ESC and National Institute for Health and Clinical 
Excellence (NICE) hypertension guideline, JNC-8 no 
longer recommends only thiazide-type diuretics as 
the initial therapy in most patients. As initial therapy, 
a thiazide-type diuretic, calcium channel blocker, ACE 
inhibitor and ARB can be started for uncomplicated 
hypertension[9]. The 2014 JNC report dismissed 
b-blockers as first-line therapy. Along the same line, 
the NICE clinical guideline did not recommend the first-
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  Weight loss (in obese or overweight patients)
  Salt reduction
  Regular exercise
  Moderation of alcohol consumption
  Smoking cessation
  Increased consumption of vegetables, fruits and low-fat diary products

Table 1  Recommended lifestyle modifications for the 
management of hypertension



line use of diuretics and b-blockers[20]. Nevertheless, 
the 2013 ESH/ESC hypertension guidelines kept all 5 
major classes of drugs in their recommendations as 
first-line regimens because of their opinions that the 
main benefits of antihypertensive therapy are due to 
lowering BP per se and largely independent of the drugs 
employed[8]. 

BP control seems to be more important than a 
specific agent used to achieve that control. In a recent 
metanalysis of 18 trials of 23215 Asian patients, a 
10 mmHg reduction in systolic BP was associated 
with a 39.5% reduction in composite cardiovascular 
endpoints, and a 30% reduction in stroke, regardless 
of drug class[21]. Similarly, in a more recent metanalysis 
of trials comparing the renin angiotensin aldosterone 
system (RAS) inhibitors vs other antihypertensive 
drugs as first-line therapy in patients with primary 
hypertension, all-cause mortality was similar between 
these drugs[22]. Still, the choice of drugs may be influ
enced by other factors as age, ethnicity/race, and 
other clinical characteristics. Trials in special patient 
groups (patients with diabetes, coronary artery disease, 
chronic kidney disease and proteinuria) have proposed 
that a specific drug group or combinations of certain 
drugs might be superior to others[8-10]. Thus, patients 
with special conditions should be considered to start 
with an appropriate drug based on their comorbidities 
(Table 2). We think that most hypertensive patients 
have comorbidities and initiating antihypertensive 
therapy generally requires compelling indications to 
select a specific drug group. Otherwise, in absence of 
comorbidity, it appears that the mere control of BP is 
more important than the class of antihypertensive drug 
being used.

RAS BLOCKERS
Based on a large body of evidence, RAS blockers 
have been used to decrease the incidence of end-
organ damage and cardiovascular mortality[23-25]. ACE 
inhibitors and ARBs can be considered first-line therapy 
in the management of hypertension, particularly in 
patients with diabetes mellitus. However, more recent 
studies showed that ACE inhibitors and ARBs do not 
have similar effects on cardiovascular outcomes and 
total mortality. 

A metanalysis of 20 clinical trials involving 158998 
patients examined the effect of ACE inhibitors and 
ARBs in patients with hypertension[26]. ACE inhibitors 
significantly reduced all-cause mortality (HR = 0.90; 
95%CI: 0.84-0.97; P = 0.04) whereas ARBs did not 
(HR = 0.99; 95%CI: 0.94-1.04; P = 0.683). In a 
metanalysis evaluating the effects of ACE inhibitors 
and ARBs on all-cause mortality, cardiovascular events 
and deaths in patients with diabetes mellitus, ACE 
inhibitors reduced all-cause mortality (RR = 0.87; 
95%CI: 0.78-0.98), cardiovascular mortality (RR = 
0.83; 95%CI: 0.70-0.99), and major cardiovascular 
events (RR = 0.86; 95%CI: 0.77-0.95), whereas ARBs 

had no benefits on these outcomes[27]. In another 
metanalysis that included nine randomized controlled 
trials, no difference was found in total mortality or 
cardiovascular outcomes for ARBs as compared with 
ACE inhibitors[28]. According to these evidences, we can 
conclude that while ACE inhibitors can be used as a 
first-line therapy, ARBs are preferred for patients who 
have adverse reactions to ACE inhibitors although there 
is no agreement among the guidelines.

DIURETICS
Thiazide and thiazide like diuretics (e.g., indapamide, 
chlorthalidone) remain essential in the management of 
hypertension. The JNC-7 recommended that thiazide 
diuretics should be the preferred drugs in most hyper­
tensive patients, either alone or combined with other 
classes of drugs[10]. Although it is well known that 
thiazide-type diuretics are effective in reducing BP 
and preventing cardiovascular disease in hypertensive 
subjects, it is not clear whether all drugs in this class 
are equally safe and effective. Recently, the choice of 
diuretics has emerged as a controversial issue with some 
evidence favoring the long-acting agent, chlorthalidone, 
in preference to hydrochlorothiazide. A recent retros­
pective observational cohort analysis from the Multiple 
Risk Factor Intervention Trial data set compared the 
effects of chlorthalidone vs hydrochlorothiazide on 
cardiovascular event rates[29]. Chlorthalidone treatment 
was associated with significantly fewer cardiovascular 
events; lower systolic BP, potassium, and total 
and low-density lipoprotein cholesterol levels; and 
significantly higher uric acid levels compared with 
hydrochlorothiazide. 

A large observational study with up to five years 
of follow up reported head-to-head comparative data 
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  Comorbidity First-line therapy

  Ischemic heart 
  disease

b-blocker (unless contraindicated)
Long-acting calcium channel blocker
ACE inhibitors (ARBs if ACE inhibitors not tolerated)

  Heart failure ACE inhibitors (ARBs if ACE inhibitors not tolerated)
b-blockers
Aldosterone antagonists

  Diabetes ACE inhibitors (ARBs if ACE inhibitors not tolerated)
b-blockers
Calcium channel blockers

  Chronic 
  kidney 
  disease

ACE inhibitors or ARBs
Loop diuretics rather than a thiazide diuretic (or 
combination)

  Stroke Diuretic + ACE inhibitors
  Asymptomatic organ damage
     Left 
     ventricular 
     hypertrophy

ACE inhibitors, ARBs, Calcium channel blockers

     Proteinuria ACE inhibitors, ARBs

Table 2  Drugs to be preferred in patients with special con
ditions 

ACE: Angiotensin converting enzyme; ARBs: Angiotensin II receptor 
blockers.

Turgut F et al . Current management of hypertension 



56 February 23, 2016|Volume 6|Issue 1|WJH|www.wjgnet.com

calcium channel blockers, ACE inhibitors or ARBs in 
terms of all-cause mortality, however, it provided 
evidence supporting the use of calcium channel 
blockers over b-blockers in terms of total cardiovascular 
events, stroke and cardiovascular mortality[39]. Calcium 
channel blockers are broadly classified into two groups 
as dihydropyridine and non-dihydropyridine groups. 
Non-dihydropyridine calcium channel blockers are 
more negatively chronotropic and inotropic than the 
dihydropyridine subclasses, and are generally not 
recommended to use as first-line therapy in the manage
ment of hypertension. The NICE guidelines recommend 
particularly calcium channel blockers as first-line therapy 
in hypertensive patients aged over 55 years[20]. We 
conclude that calcium channel blockers may be used 
as initial first-line therapy particularly in hypertensive 
patients without compelling co-morbidities or as a 
component of combination therapy. 

b-BLOCKERS
Whether b-blockers should be placed as first-line 
therapy in the management of hypertension is probably 
the most controversial issue among major guidelines. 
Some do not recommended b-blockers as first-line 
therapy for hypertension[9,20]. But, the 2013 ESH/ESC 
guidelines continued to recommend b-blockers as 
one of the first-line anti-hypertensive drugs[8]. On the 
other hand, the 2014 NICE hypertension guidelines put 
b-blockers as step 4 drugs. b-blockers can be used as 
additional therapy to further lower BP, but they may 
have a special benefit in preventing recurrent coronary 
artery disease[7]. 

The class of b-blockers is heterogeneous, and all the 
drugs in this class may not be the same[40]. Atenolol, 
metoprolol, carvedilol and nebivolol have different 
properties in terms of efficacy and side effects. But a 
recent metanalysis comparing atenolol and non-atenolol 
b-blockers found that b-blockers had similar effect on 
cardiovascular end points in hypertensive patients 
without compelling indications[41]. Only, in the elderly 
(> 60 years), atenolol was inferior to the other drugs 
in reducing stroke. We conclude that while b-blockers 
remain the standard of care for patients with coronary 
artery disease, particularly after acute myocardial 
infarction[42], their role in the management of hyper­
tension without coronary artery disease remains contro­
versial.

COMBINATION THERAPY
Combination therapy may have benefit patients 
through multiple and potentially complementary phar­
macologic mechanisms of action. Thus, combining 
drugs with different classes may be more effective than 
titrating dose of a single agent. Initiating treatment 
with a drug combination rather than a single agent is 
increasingly utilized as a therapeutic strategy. According 
to the current guidelines, a large majority of patients 

on the effects of newly prescribed chlorthalidone vs 
hydrochlorothiazide on cardiovascular and safety 
outcomes in elderly patients[30]. Chlorthalidone was not 
associated with fewer adverse cardiovascular events 
or deaths than hydrochlorothiazide in elderly patients; 
however, it was associated with a greater incidence of 
electrolyte abnormalities, particularly hypokalemia. 

In a recent metanalysis of 14 trials comparing 
head to head thiazide-like and thiazide-type diuretics, 
systolic BP reduction was greater with chlorthalidone 
and indapamide without more adverse effects[31]. These 
data suggest using chlorthalidone as preferred thiazide 
type diuretic for the management of hypertension. On 
the other hand, hydrochlorothiazide has a dose related 
BP-lowering effect and greater effect on systolic BP 
than diastolic BP, thus lowering pulse pressure more 
than other antihypertensive drugs[32]. We believe that it 
is too early to reach a final conclusion, as there are no 
randomized trials that directly compare cardiovascular 
outcomes in hypertensive patients treated with thiazide-
type diuretics vs thiazide-like diuretics.

Mineralocorticoid receptors have been shown to play 
important roles in the pathogenesis of hypertension 
and hypertension-related cardiovascular outcomes[33-35]. 
Recent studies have implicated that aldosterone excess 
as an important pathophysiologic factor in a large 
fraction of patients with resistant hypertension[36]. 
Spironolactone can be tried in patients with resistant 
hypertension requiring three or more drugs to achieve 
BP control unless contraindicated[20]. Eplerenone may 
be used as an alternative in patients who experience 
hormonally related side effects with spironolactone.

We conclude that diuretics remain as leading 
agents in the management of hypertension. Based 
on the available data, thiazide-like diuretics (such as 
chlorthalidone, 12.5 to 25 mg/d) may be preferred 
to thiazide type diuretics. Moreover, when BP cannot 
be controlled with other drugs, combining thiazide-
like diuretics with ACE inhibitors or ARBs are usually 
very effective. Combining diuretics with aldosterone 
antagonists may also be worthwhile in special patient 
population.

CALCIUM CHANNEL BLOCKERS
Calcium channel blockers have potent BP-lowering 
effects and have been the most widely used antihy­
pertensive drugs. Several studies have showed 
that calcium channel blockers had efficacy not only 
in lowering BP but also in reducing cardiovascular 
morbidity and mortality in patients with hypertension[37]. 
In a recent metanalysis of 31 randomized controlled 
trials, calcium channel blockers reduced stroke more 
than either placebo (OR = 0.68; 95%CI: 0.61-0.75) 
or b-blockers (OR = 0.79; 95%CI: 0.72-0.87), but 
was not different from ACE inhibitors and diuretics[38]. 
Another Cochrane metanalysis of randomized trials 
comparing first-line calcium channel blockers with other 
antihypertensive classes did not find difference among 
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of BP reduction rather than the choice of antihy­
pertensive drug are the major determinant of reduction 
in cardiovascular risk in patients with hypertension. 
But, some hypertensive patients may have compelling 
indication for a specific antihypertensive drug, which 
may offer particular benefit independent of BP control. 
Successful treatment requires identification and 
reversal of lifestyle factors contributing to treatment 
resistance; diagnosis and appropriate treatment of 
secondary causes of hypertension; and use of effective 
combination regimens. Combination therapy may be 
necessary in the majority of the patients with hyper­
tension, and current guidelines recommend routine 
initiation of a combination in patients with stage 2 
hypertension. ACE inhibitors, ARBs and diuretics 
including aldosterone antagonists can result in clinically 
significant alterations of serum electrolytes and kidney 
function. Thus, after the initiation of these agents, a 
chemistry profile should be obtained.
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Abstract
Renal venous hypertension usually seen in young, 
otherwise healthy individuals and can lead to significant 
overall morbidity. Aside from clinical findings and physical 

examination, diagnosis can be made with ultrasound, 
computed tomography, or magnetic resonance con
ventional venography. Symptoms and haemodynamic 
significance of the compression determine the ideal 
treatment method. This review of the literature discusses 
normal and pathological developmental aspects of 
renocaval venous segment and related circulatory 
disorders, summarizes congenital and acquired changes 
in left renal vein and their impact on development of 
renal venous hypertension. Also will be discussed surgical 
tactics of portosystemic shunting and their potential 
effects on renal hemodynamics.

Key words: Renal venous hypertension; Nutcracker 
syndrome; Kidney; Portal hypertension; Splenorenal 
shunts

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Renal venous hypertension characterized by 
the presence of left renal vein dilatation, varicocele and 
hematuria. Being a rare cause of hematuria its etiology 
is diverse but of precise characteristics. Diagnosis is 
not easy and treatment requires ruling out its precise 
etiology and considering the intensity of the compression 
phenomenon because of interventionist attitudes have 
important implications and are not risk free.

Аliev MM, Yuldashev RZ, Аdilova GS, Dekhqonboev AA. 
Renal venous hypertension. World J Hypertens 2016; 6(1): 60-65  
Available from: URL: http://www.wjgnet.com/2220-3168/full/
v6/i1/60.htm  DOI: http://dx.doi.org/10.5494/wjh.v6.i1.60

INTRODUCTION
Renal venous hypertension (RVH) - venous insufficiency 
caused by inadequate drainage of blood through 
the renal vein[1]. There are two main reasons in the 
development of the RVH: Structural abnormalities of 
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renocaval segment; acquired changes of the left renal 
vein.

Structural anomalies of renocaval segment and their 
clinical importance in the development of the RVH
Development of renocaval segment (inferior vena 
cava, renal, gonadal, adrenal and lumbar veins) - 
is a complex process in which there is consecutive 
regression and shifting of three venous structures, such 
as posterior cardinal, supracardinal and subcardinal 
veins[2-5]. Inferior vena cava (IVC) and its branches 
formed from different embryological structures; their 
segments formed from all three systems mentioned 
above. The formation of these veins can be impaired at 
any stage of development[2,3].

Among the developmental abnormalities of the IVC 
clinical significance in development of the RVH matters 
- left-sided IVC, with this type of abnormality abdominal 
aorta compresses IVC at the site of their contact, 
thus will cause congestion in left renal vein (LRV) and 
recurrent left sided hematuria[6,7].

Typical abnormality of the right renal vein is anomaly 
of their quantities, which is due to the fact, that the right 
renal vein embryogenesis does not undergo significant 
transformations. Essentially, the significance of these 
abnormalities in development of RVH negligible[2,3,8].

Clinically significant abnormalities often observed in 
the LRV, which related to its development. For example, 
retention of both limbs of the left portion of circumaortic 
venous ring leads to the formation of the circumaortic 
LRV, which occurs in 1%-17% of cases according to 
different authors[2,3,5,8-13]. In this type of anomaly there 
are pre-aortic and retroaortic limbs. In this situation, the 
pre-aortic limb usually receives the adrenal, gonadal, 
and phrenic veins; the retro-aortic limb receives the 
lumbar and the hemiazygous veins. The retroaortic 
limb passes obliquely and downward to reach the 
inferior vena cava at a lower level[8-13]. The clinical 
significance of this anomaly is that the impeded outflow 
from the retroaortic limb leads to congestive venous 
hypertension and increased blood flow in pre-aortic 
limb[8,9,11-13]. Knowledge of this anomaly is important 
for the angiographer performing renal and/or adrenal 
venography. In addition, it is of surgical importance 
when a left renal transplant and/or splenorenal shunt 
are considered. As for splenorenal shunt operations, 
opinions are contradictory. For example, some authors[14] 
recommend to perform splenorenal shunt, without the 
risk of RVH, while according to other researchers[15,16] 
the connection of splenic vein to retroaortic limb leads 
not only to inadequate drainage portal system with 
recurrent bleedings, but also the risk of development of 
RVH.

Another type of abnormality is retroaortic LRV 
(single or multiple). The retroaortic type of LRV occurs 
in approximately 2-6.6/cent[17-22]. When the ventral 
limb atrophies a retroaortic renal vein occurs. In this 
transformation, there are anatomical prerequisites for 
disorders of venous hemodynamics - the emergence of 

congestive venous hypertension, clinically manifested 
by proteinuria or hematuria and the development of the 
secondary varicocele[1,5,11,19,23]. Performing splenorenal 
shunt in this type of LRV is not advisable, since drainage 
of a large amount of blood from the portal system 
leads to RVH one hand and recurrent bleeding from 
gastroesophageal varices on the others[15].

Acquired changes of the LRV
Human body has anatomical preconditions, which 
may cause significant haemodynamic alterations that 
may lead to clinical symptoms and significant asso
ciated morbidity. The clinical manifestations of this 
predisposition is nutcracker syndrome[24]. In view of the 
insufficiency of symptoms during the first decade of 
life, specified condition practically have not described in 
pediatric patients, in most cases classified as associated 
finding. The nutcracker syndrome refers to compression 
of the LRV between the superior mesenteric artery and 
abdominal aorta. Obstruction of LRV occasionally causes 
clinically significant venous hypertension resulting in 
unexplained left flank, gross haematuria, with formation 
of periureteric and gonadal varices and varicocele in 
relatively young and previously healthy patients[25-29]. 
Other possible symptoms include pelvic congestion, 
chronic pediatric fatigue syndrome and orthostatic 
proteinuria[30-38].

Other rare acquired causes of RVH includes renal 
vein thrombosis, organic renal vein stenosis and 
arteriovenous fistula[39-41].

Well known that LRV mostly used in performing 
various types portosystemic shunts for portal hyper
tension. Issues related to presence of RVH in patients 
who underwent portosystemic shunting recent years 
draw increasing attention of researchers[15,16,42,43]. 
The data about the state of the left kidney after porto
systemic shunting operation are very controversial. 
For example, some authors argue that performing 
end-to-end splenorenal shunt provides the venous 
drainage from the portal system to IVC without renal 
dysfunction[44-48]. But according to other data[14-16,42,43], 
impeded outflow of the left renal vein leads to not 
only venous hypertensive nephropathy, but can be 
cause of insufficiency of created anastomosis and 
therefore unsatisfactory results of surgical treatment. 
Furthermore, impeded outflow of LRV results in venous 
hypertension with the formation of intra- and extrarenal 
collaterals and/or the development of gonadal vein 
reflux resulting retrograde flow and has been implicated 
in the development of varicocele or ovaricocele[49]. 
According to experimentally induced extrahepatic 
portal hypertension[50-54] shunting end renal vein to side 
splenic vein (renosplenic) after ligation of the LRV lateral 
to the adrenolumbar tributary, leads to haemorrhagic 
necrosis of the left kidney. Thus, the ureteric, lumbar 
and pericapsular collaterals cannot adequately drain the 
left kidney. Ligation of the LRV on the medial side of the 
adrenolumbar tributary maintained a patent left renal 
vein in all cases[50,52,53].
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Practical experience has shown that performing 
splenorenal anastomosis with ligation of the LRV 
proximal to the confluence of the adrenal vein - in 
one third of cases causes decreasing of renal function 
(according to the excretory urography), renal infarction, 
hematuria and proteinuria[52,53].

In addition, in the pathogenesis of the RVH renal 
arterial blood flow is essential[55]. High pressure in the 
renal artery in systemic arterial hypertension increases 
tone of sympathetic-adrenal system, which causes 
vasoconstriction in the cortex and increases medullary 
blood flow. Autoregulation mechanisms lead to increa
sing pressure in the renal venous system, which are the 
anatomical and functional characteristics of the vascular 
bed of the kidney. The diversity of intrarenal arterio
venous shunts, venous network ensures acceptance 
of a large amount of blood in the face of increasing its 
arterial delivery - this is the pathogenesis of RVH in 
systemic arterial hypertension[55]. On the other hand, 
congenital or acquired arteriovenous fistula leads to 
the restructuring of angioarchitectonics of kidneys and 
in this case pressure in renal veins increases due to 
shunting of blood through the abnormal arteriovenous 
communications. The blood from the arterial bed 
drains to venous rout bringing extraordinary pressure 
to the veins. Thus, developed the renal venous hyper
tension[55,56].

Diagnostics of RVH
In the evaluation of renal hemodynamics, intravascular 
pressure indicators are most important. Retrograde left 
renal venography and measurement of the pressure 
gradient between the left renal vein and the IVC are 
procedures of choice for diagnosing RVH. Normally, 
this gradient is determined in a horizontal position from 
a healthy child was equal to 0.13 ± 0.02 kPa, with 
individual variations 0.33 ± 0.05 kPa[57,58]. A number of 
studies indicated that the anomalies of the LRV (usually 
circumaortic and retroaortic LRV), the pressure gradient 
increases significantly (up to 0.86 kPa). However, 
these techniques are invasive and use of such invasive 
examinations is generally deemed imprudent in children, 
and non-invasive imaging studies are preferable. 
Recently progressive development of non-invasive 
imaging techniques led to that Doppler ultrasound (US) 
has become the method of choice in the diagnosis of 
RVH. During the last decade, increased the number of 
publications describing different ultrasound descriptions 
of renocaval segment anomalies[1,27-29,34-36,57-60]. 
Also in details described intrarenal arteriovenous 
shunts[61-63]. Recent publications dedicated in most 
cases for nutcracker syndrome[27-29,34-36,57-60]. Kim et al[58] 
suggested that a ratio of the AP diameter, and peak 
velocity (PV) between the hilar and aortomesenteric 
portions of the LRV of greater than 5.0 could be used 
as the cut-off level for the diagnosis of nutcracker 
syndrome with a sensitivity of 80% and a specificity of 
94%. However, it has not yet been confirmed whether 
these criteria can be applied to children with clinically 

suspected nutcracker syndrome. In addition, detection 
of collateral veins around the left renal vein at color 
Doppler US is a reliable criterion for the diagnosis of 
nutcracker phenomenon[27]. However, the LRV flow 
patterns and collateral vein formations associated with 
nutcracker phenomenon depend on the degree and 
stage of the phenomenon[58]. In patients with early 
nutcracker phenomenon, LRV distention and high 
pressure gradients exist before collateral veins develop. 
Moreover, in patients with collateral veins, the presence 
of a distended left renal vein and hypertension of the 
left renal vein indicate that the nutcracker phenomenon 
is noncompensatory[58].

Regardless of the incidence angle, the resistances 
in the renal artery can be evaluated by measuring 
the resistive index and pulsatility index if the vessel is 
identified by colour Doppler. Increasing these rates in 
some cases may be indirect evidence of the venous 
outflow disturbances from LRV[15,16].

Recently, non-invasive methods such as computed 
tomography (CT) and magnetic resonance imaging 
(MRI) have been used in the diagnosis of nutcracker 
syndrome[10,12,41,64-66]. Performing of the study for our 
opinion, more appropriate to carry out not only for 
diagnostic purposes of RVH but also to assess the 
topographic anatomy course of renocaval segment and 
their relative position to the vessels of the v. porta and 
abdominal aorta in the planning of vascular surgery in 
the retroperitoneal space.

The clinical manifestations of RVH
The clinical presentation of RVH include the development 
of collateral blood flow and symptoms of renal function 
disorders[1,5,28,29,67]. The increased venous pressure 
within the renal circulation promotes the development 
of collaterals of the renal pelvis, and this plexus of 
abnormal hypertensive veins causes microhematuria or 
gross hematuria, orthostatic proteinuria[6,19,30-38]. Other 
possible symptoms include left flank pain, left-sided 
varicocele, pelvic congestion, chronic pediatric fatigue 
syndrome, and gastrointestinal symptoms[1,43,67].

Performing various types of splenorenal shunts 
using abnormally developed LRV due to portal hyper
tension can become a reason of unsatisfactory results 
with recurrent bleeding from gastroesophageal 
varices[14-16,42,43,68]. In addition, shunting the large amo
unts of blood from portal vein and its tributaries to 
abnormally developed LRV manifests as clinical signs of 
renal venous hypertension[14,16,69]. 

Different therapeutic methodologies have been used 
in treatment of RVH. In general, moderate manifes
tations may be controlled with conservative methods[70]. 
Nearly all surgical approaches aim to relieve the LRV 
outflow obstruction[70-85]. Surgical modalities including 
autotransplantation of the left kidney, LRV bypass 
with graft interposition and reanastomosis to the 
IVC anteriorly has been performed with satisfying 
results[73-75]. Renal autotransplantation may offer 
maximal efficiency in terms of normalizing renal venous 
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circulation. In more severe cases with hematuria, 
significant stenosis of LRV, varicocele, left flank pain 
and pressure gradient more than 1.33 kPa preferable 
intervention on LRV. Lot of evidence of the efficacy 
of endovascular interventions - methods of stenting 
and balloon angioplasty[76-85]. Initially performed via 
a transperitoneal approach, an external stent can be 
wrapped around the renal vein to prevent its com
pression by the mesoaortic clamp. The procedure has 
now also been performed by laparoscopic surgery. 
External and internal stenting procedures by either 
minimally invasive or endovascular approaches are 
promising treatment options. However, the risk of 
erosion of adjacent structures and dislodgment of the 
stent has not been defined yet.

However, surgical treatment methods have certain 
disadvantages. Thus, venous vascular suture can be 
considered as a potential source of thrombosis[72,83]. 
Postoperative complications may even lead to nephrec
tomy[84]. Even traditionally performed safe operations 
intravascular stents placement - can have few com
plications[79-82].

CONCLUSION
There are reasonable basis for research on the status 
of renocaval segment for modern pediatric surgeons, 
urologists, specialists concerned in portal hypertension, 
liver kidney transplant surgeons. The presence of 
RVH should be considered on the basis of a thorough 
clinical examination in patients with hematuria, left 
flank pain, varicocele, and symptoms of pelvic venous 
congestion. Dilatation of LRV and its tributaries, 
anomalies, additional communications observed on 
ultrasonography, computed tomography CT, or MRI 
should alert the physician to consider the diagnosis. 
If the symptoms merit, in particular if cystoscopy 
demonstrates left ureteral hematuria, selective left renal 
venography with pullback determination of renocaval 
pressure gradient is the diagnostic test of choice and 
should be performed in all patients. At the same time, 
complexity of revealing the causes of RVH with above 
mentioned methods, it is feasible to study the role of 
arterial blood, not only because of their lack of data, 
but also well-known factors associated with abnormal 
blood supply, and it is widely performed operations 
of decompression of the portal system through the 
LRV. Despite numerous studies, reasonableness of 
performing various types of splenorenal shunts in 
portal hypertension with prerequisites for RVH remains 
debatable. Finally, it is not enough studied phenomenon 
of nutcracker syndrome after surgical and congenital 
splenorenal shunts.
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