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It has been proven valuable as a functional tool for 
qualitative and quantitative analysis of prostate cancer 
beyond anatomical MRI sequences such as T2-weighted 
imaging. This review discusses ongoing controversies 
in DW-MRI acquisition, including the optimal number of 
b-values to be used for prostate DWI, and summarizes 
the current literature on the use of advanced DW-
MRI techniques. These include intravoxel incoherent 
motion imaging, which better accounts for the non-
mono-exponential behavior of the apparent diffusion 
coefficient as a function of b-value and the influence of 
perfusion at low b-values. Another technique is diffusion 
kurtosis imaging (DKI). Metrics from DKI reflect excess 
kurtosis of tissues, representing its deviation from 
Gaussian diffusion behavior. Preliminary results suggest 
that DKI findings may have more value than findings 
from conventional DW-MRI for the assessment of 
prostate cancer.

Key words: Prostate cancer; Diffusion-weighted imaging; 
Diffusion kurtosis imaging; Magnetic resonance imaging; 
Include intravoxel incoherent motion

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Diffusion-weighted magnetic resonance 
imaging (DW-MRI) is considered part of the standard 
imaging protocol for the evaluation of patients with 
prostate cancer. In this review we discuss the ongoing 
controversies in DW-MRI acquisition, including the 
optimal number of b -values to be used for prostate 
DWI, and summarize the current literature on the use 
of advanced DW-MRI techniques such as intravoxel 
incoherent motion imaging and diffusion kurtosis 
imaging.
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Abstract
Diffusion-weighted magnetic resonance imaging (DW-
MRI) is considered part of the standard imaging protocol 
for the evaluation of patients with prostate cancer. 
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INTRODUCTION
Diffusion-weighted (DW) techniques have been applied 
extensively for the evaluation of patients with prostate 
cancer and are now part of most standard prostate 
magnetic resonance imaging (MRI) clinical protocols. 
Multiple studies have demonstrated that DW-MRI 
contributes incremental value to T2-weighted MRI in 
the detection and localization of prostate cancer[1]. 
Straightforward, quantitative metrics from DW-MRI – 
most commonly apparent diffusion coefficient (ADC) 
values – have been used to distinguish between benign 
and malignant prostate tissue and also to evaluate 
prostate cancer aggressiveness[2]. ADC values have 
been found to correlate inversely with prostate cancer 
Gleason score as well as tumor proliferation markers 
such as Ki-67[2-4]. Nevertheless, ADC values of prostate 
cancer overlap substantially with those of normal 
prostate and benign conditions, such as prostatitis and 
post-biopsy inflammation. Therefore, advanced methods 
for DW-MRI acquisition, processing and interpretation 
are now being investigated with the goal of further 
strengthening the value of DW-MRI for prostate cancer 
assessment.

SELECTION OF B-VALUES FOR 
PROSTATE DW-MRI
The b-value is one of the main factors reflecting the 
strength of the diffusion effects in DW-MRI, with higher 
b-values representing stronger diffusion effects. There 
is as yet no consensus regarding the optimal choice of 
b-values for acquiring prostate DW-MRI. Absolute ADC 
values are highly dependent on the b-values selected 
and must therefore be applied cautiously, especially 
when attempting to define “cut-offs” for distinguishing 
particular conditions or disease states[5]. Higher b-values 
offer greater tumor-to-normal-tissue contrast but 
also decrease the signal-to-noise ratio. Tamada et al[6] 
evaluated 50 patients with prostate cancer undergoing 
3T prostate DW-MRI acquired with b-values of 0, 1000 
and 2000 s/mm2; they found that lesion conspicuity 
and tumor-to-normal signal intensity ratio were higher 
when using b-values of 0 and 2000 s/mm2 compared 
to those using b-values of 0 and 1000 s/mm2[6]. There 
was a significant correlation between ADC values of 
tumor regions and Gleason scores at both b-values of 
0 and 1000 s/mm2 (rho = -0.602; P < 0.001) and 0 
and 2000 s/mm2 (rho = -0.645; P < 0.001)[6]. As an 
alternative to the acquisition of high-b-value images, 
some investigators have proposed “computing” them 
through voxelwise fitting from a set of images acquired 

at lower b-values. Using numerical simulations, Tamada 
et al[6] found that noise and the contrast-to-noise 
ratio were comparable between DW-MRI images that 
were “calculated” and those that were “acquired” at 
a b-value of 1400 s/mm2 (P = 0.395). In one study,  
diagnostic performance of DW-MRI in prostate tumor 
detection was compared for four different combinations 
of measured and acquired b-values[7]. The AUCs for 
protocol A (T2-weighted images alone), B (T2-weighted 
images in combination with measured DW images with 
b 1000), C (T2-weighted images in combination with 
measured DW images with b 2000) and D (T2-weighted 
images in combination with computed DW images with 
b 2000) were 0.67, 0.80, 0.86 and 0.84, respectively[7].  
Protocols C and D had significantly higher AUCs when 
compared to protocol B (P < 0.05)[7]. 

INTRAVOXEL INCOHERENT MOTION 
IMAGING
The optimal number of b-values for prostate DW-
MRI also continues to be debated. A minimum of two 
b-values is required for monoexponential calculation 
of ADC. However, to better account for the non-mono-
exponential behavior of the diffusion signal intensity at 
different b-values and the influence of perfusion at low 
b-values, intravoxel incoherent motion (IVIM), a model 
based on the use of three or more b-values, can be 
applied. The use of multiple b-values also reduces the 
influence of b-value selection on ADC measurements[8]. 
One study evaluated prostate DW-MRI acquired with 
four b-values (0, 50, 500, and 800 s/mm²) in 13 biopsy-
proven prostate cancer patients and found that ADC 
(μm2/ms), molecular diffusion coefficient (D, μm2/ms) 
and perfusion fraction (f, %) were significantly lower (P 
< 0.005) in cancer (1.01 ± 0.22, 0.84 ± 0.19 and 14.27 
± 7.10% for ADC, D and f) than in benign tissue (1.49 
± 0.17, 1.21 ± 0.22 and 21.25% ± 8.32%, for ADC, 
D and f)[9]. Another study applied monoexponential 
and biexponential fits to diffusion decay curves 
obtained from 26 patients with prostate cancer using 
10 b-values ranging from 10 to 1000 s/mm2)[10]. In 
81% of cases, biexponential functions were found to 
provide statistically better fits than monoexponential 
functions[10]. Biexponential IVIM was used to calculate 
the parameters D, f, and D*. Significantly lower values of 
ADC, D, and f were found in prostate cancer compared 
to the values in the normal prostatic peripheral zone (PZ), 
but similar values for f were reported in both benign 
hyperplastic changes and prostate cancer[10]. There were 
no significant differences between the D* values found 
in prostate cancer, benign hyperplasia, and PZ[10].

Some investigators have questioned whether IVIM 
truly contributes incremental value as compared 
to simple monoexponential ADC measurements in 
prostate cancer[11]. One study compared two different 
algorithms for generating IVIM metrics in 50 patients 
(27 known prostate cancer patients and 23 without 
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known cancer) who underwent prostate DWI acquired 
with 7 b-values (0, 50, 100, 150, 200, 250, and 800 
s/mm2)[11]. D was similar with the two algorithms (P 
= 0.22), but f was significantly different between the 
2 (higher with algorithm 1) (P < 0.05). The AUCs for 
differentiating tumor and normal tissues were ≥ 0.90 
for D (from the 2 algorithms) and ADC (but not f or 
D*). IVIM-derived parameters are also influenced by 
the range of b-values used. Pang et al[12] analyzed 
prostate DW-MRI acquired with five b-values ranging 
between 188 and 750 s/mm2) and assessed the 
influence of the choice of b-values on the measured D 
and f. Both parameters were markedly influenced by 
the choice of b-values. The best correlation with DCE-
MRI was achieved when the IVIM parameters were 
calculated without the highest b-value (750 s/mm2). 
Using this approach, significantly higher f from IVIM 
and ktrans and plasma fractional volume from DCE-
MRI were found for prostate cancers (7.2%, 0.39/min 
and 8.4% respectively) compared to normal prostate 
tissue  (3.7%, 0.18/min and 3.4% respectively)[12]. In 
summary, further research into prostate IVIM is needed, 
with a focus on selecting the most appropriate patient 
population and on standardizing image acquisition 
techniques and approaches to fit the IVIM parameters 
from the DW-MRI data. A summary of clinical studies of 
IVIM imaging in prostate cancer is presented in Table 1.

DIFFUSION KURTOSIS IMAGING IN 
PROSTATE CANCER
Diffusion kurtosis imaging (DKI) is another technique 

that has been used in attempts to more accurately 
characterize the multi-exponential behavior of diffusion 
decay in prostate cancer[13-18]. Metrics from DKI reflect 
excess kurtosis of the tissue, representing its deviation 
from Gaussian diffusion behavior[15]. Preliminary results 
suggest that DKI findings may have more value than 
findings from conventional DW-MRI for prostate cancer 
assessment.

In a study of 31 subjects (including healthy volun
teers and patients undergoing evaluation for raised PSA 
levels), Quentin et al[14] performed DKI with 4 b-values 
ranging between 0 and 1000 s/mm2 and with diffusion 
gradients applied in 20 different spatial directions; 
they found that there was a better fit to the diffusion 
weighted signal when using DKI compared to when 
using the monoexponential ADC[14]. Significantly higher 
mean (Kmean) and axial (Kax) kurtosis were reported in 
prostate tumors (Kmean 1.84 ± 0.43; Kax 1.78 ± 0.39,) 
compared to the normal PZ (Kmean 1.16 ± 0.13; Kax 1.09 
± 0.12, P < 0.001) or the transition/central zone (Kax 1.40 
± 0.12, Kmean 1.44 ± 0.17; P = 0.01, respectively)[14].

Another study of 47 patients with prostate cancer 
who underwent 3T DW-MRI using b-values up to 2000 
s/mm2 found that the DKI metric K, which represents 
non-Gaussian diffusion behavior, was significantly 
higher in prostate sextants involved by tumor compared 
to sextants containing non-cancerous prostate tissue 
(0.96 ± 0.24 vs 0.57 ± 0.07, P < 0.001) and was also 
significantly greater in Gleason score > 6 tumors (1.05 
± 0.26) compared to tumors with Gleason scores ≤ 6 
(0.89 ± 0.20; P < 0.001)[16]. For differentiating prostate 
sextants involved by cancer from non-cancerous 
prostate sextants, K showed significantly greater 
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Ref. No. of
patients

Pathologic 
reference

b -values
(s/mm2)

MR parameters PCa values1 Normal prostate 
values1

Significance

Döpfert et al[9] 13 TRUS biopsy 0, 50, 500, 
800

3.0 T; TR/TE: 2600/66 ms; 
FOV: 204 mm × 204 mm; 
Matrix: 136 × 136; slice 

thickness: 3 mm; 8 averages

ADC: 1.01 ± 0.22 
D: 0.84 ± 0.19 
D*: 7.52 ± 4.77
f: 14.27 ± 7.10 

ADC: 1.49 ± 0.17 
D: 1.21 ± 0.22 
D*: 6.82 ± 2.78 
f: 21.25 ± 8.32 

ADC, D, f significantly lower in 
PCa vs healthy prostate tissue
Higher variation in maps of D 
and f compared to ADC

Shinmoto et al[10] 26 TRUS biopsy 
or RP

0, 10, 20, 
30, 50, 80, 
100, 200, 
400, 1000

3.0 T; TR/TE: 5132/40 
ms; Matrix: 80 × 80; slice 

thickness/gap: 3.5/0.1 mm;
iPAT factor, 2; NEX = 2

ADC: 0.90 ± 0.16 
D: 0.50 ± 0.15  
D*: 5.35 ± 6.27
f: 35 ± 13

ADC: 1.76 ± 0.22
D: 0.89 ± 0.24
D*: 3.02 ± 0.86
f: 58 ± 11

ADC, D, f significantly lower in 
PCa vs noncancerous PZ
Improved fit in 81% of study 
subjects for biexponential curve

Kuru et al[11] 27 MR-TRUS 
fusion biopsy

0, 50, 100, 
150, 200, 
250, 800

3.0 T; TR/TE: 3100/52 
ms; FOV: 280 mm × 210 

mm; Matrix: 128 × 96; slice 
thickness: 3 mm; iPAT 

factor, 2; 5 averages

ADC: 0.88 ± 0.29
D: 1.04 ± 0.23 
D*: 31.1 ± 45.0
f: 9.5 ± 5.5

ADC: 1.56 ± 0.23
D: 1.44 ± 0.19 
D*: 10.9 ± 4.0
f: 11.1 ± 5.0

Only D and ADC showed high 
AUC (≥ 0.90) for PCa vs normal 
Limited differentiation of PCa 
grade using f or D*

Pang et al[12] 33 MR-TRUS 
fusion biopsy

0, 188, 
375, 563

3.0 T; TR/TE: 4584/59 ms; 
FOV:160 × 180 mm; slice 
thickness: 3.0 mm; iPAT 

factor, 2; 4+ averages

D: 0.99 ± 0.29
f: 7.2 ± 2.6
Ktrans: 0.39 ±0.22
Vp: 8.4 ± 6.6

D: 1.76 ± 0.35
f: 3.7 ± 1 .9
Ktrans: 0.18 ± 0.10
Vp: 3.4 ± 2.6

Significant increase in f for PCa 
vs normal prostate
Pearson’s correlation coefficient 
(r) for f and Ktrans of 0.51

1Values are mean ± SD [ADC: Apparent diffusion coefficient (μm2/ms); D: molecular diffusion coefficient (μm2/ms); D*: Perfusion-related diffusion 
coefficient (μm2/ms); f: Perfusion fraction (%); Ktrans: Volume transfer constant (min-1); Vp: Plasma fractional volume (%)]. AUC: Area under curve; FOV: 
Field of view; GS: Gleason score; iPAT: Integrated parallel acquisition techniques; IVIM: Intravoxel incoherent motion; MR: Magnetic resonance; NEX: 
Number of excitations; PCa: Prostate cancer; PZ: Peripheral zone; RP: Radical prostatectomy; T: Tesla; TE: Time of echo; TR: Time of repetition; TRUS: 
Transrectal ultrasound.

Table 1  Clinical studies of intravoxel incoherent motion imaging in prostate cancer
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with 2 b values. They found significant differences in the 
ADC, fractional anisotropy (FA), volume transfer constant 
(Ktrans), and rate constant (kep) values between 
prostate sextants containing prostate cancer vs prostate 
sextants containing benign PZ tissue (P < 0.0001 for 
all)[13]. For tumor detection, a significantly greater AUC 
was found for the combined DTI and DCE-MRI findings 
(0.93) compared to DTI (0.86,) or DCE-MRI (0.84) alone 
(P = 0.0017-0.0034)[13]. 

Despite the encouraging results obtained in the 
evaluation of prostate cancer with DKI and DTI, both 
alone and in combination with other MRI techniques, 
differentiating benign conditions such as prostatic 
hyperplasia from prostate cancer remains problematic. 
Tamura et al[18] performed DKI using 11 b-values (0-1500 
s/mm2) before radical prostatectomy in 20 patients and 
found DKI parameter K showed a trend toward higher 
levels in prostate cancer than in stromal benign prostatic 
hypertrophy, but there was marked overlap between 
the values in the 2 conditions (1.19 ± 0.24 vs 0.99 ± 
0.28, P = 0.051)[13]. Further efforts to aid discrimination 
between benign (e.g., inflammatory or hyperplastic) and 
malignant prostatic tissue are warranted.

DTI has also been applied in an effort to delineate 
the location and distribution of the periprostatic nerve 
fibers prior to prostatectomy, with the aim of improving 
nerve-sparing approaches. Panebianco et al[19] compared 
2D and 3D T2-weighted images to DTI obtained with 
16 gradient directions and b = 0 and 1000 s/mm2 in 
36 prostate cancer patients; reporting a partial ability 
to depict periprostatic nerve fibers using 2D and 3D 
T2 morphological sequences; with 3D-DTI allowing 
visualization in lal directions of the entire plexus of the 
periprostatic nerve fibers[19]. A summary of the clinical 
studies of DKI in prostate cancer is presented in Table 2.

sensitivity (0.93) than ADC (0.79) or the DKI parameter 
D (0.84; P < 0.001), which represents diffusion 
corrected for non-Gaussianity. There was no significant 
difference in specificity; P > 0.99)[16]. The sensitivity 
of K (0.69) was significantly greater than that of ADC 
(0.51) or D (0.49) for differentiating between low- and 
high-grade cancer sextants but the specificity was lower 
(0.70, 0.81 and 0.83 for K, ADC and D; P ≤0.023)[16]. 
The AUC for differentiating prostate sextants with 
Gleason Score ≤ 6 tumors from those with Gleason 
Score > 6 tumors was greater for K (0.70) than ADC 
(0.62) (P = 0.010)[16]. Similar findings were reported in 
a study that evaluated 19 prostate patients undergoing 
DW-MRI[17]. ADC and D values were significantly lower 
and K values were significantly higher in cancerous 
compared to non-cancerous PZ (ADC= 0.79 mum2/ms 
± 0.14 vs 1.23 ± 0.19 mum2/ms; D = 1.56 mum2/ms 
± 0.23 vs 2.54 ± 0.24 mum2/ms; K 0.96 ± 0.20 vs 
0.59 ± 0.08; P < 0.001 for all)[17]. In benign PZ and 
prostate cancer, D and K values overlapped less often 
than did ADC values[17]. A significant inverse correlation 
was observed between prostate cancer D and K values 
(Pearson correlation coefficient r = -0.729; P < 0.001)[17]. 
ADC and K values differed significantly in tumors with 
different Gleason scores (P ≤ 0.001), however D values 
were similar across tumors with different Gleason scores 
(P = 0.325)[17]. Gleason score correlated significantly 
with both the ADC value (r = -0.828; P < 0.001) and 
the K (r = 0.729; P < 0.001).

Li et al[13] evaluated the utility of diffusion tensor 
imaging (DTI) and DCE-MRI for detecting prostate 
cancer of the PZ in 33 patients undergoing 3T MRI of 
the prostate before biopsy. DTI does not require the 
introduction of a diffusional kurtosis tensor in addition 
to the diffusion tensor used in DTI, and can be obtained 
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Ref. No. of
patients

Pathologic 
reference

b -values
(s/mm2)

MR parameters Quantitative 
parameters1

Significance

Quentin et al[14] 31 Biopsy 0, 300, 600, 
1000

3.0 T; TR/TE: 1700/101 ms; FOV: 
204 × 204 mm; Matrix: 136 × 136; 

slice thickness: 6 mm; iPAT factor, 
2; 4 averages

Kaxial, PCa: 1.78 ± 0.39 
Kaxial, TZ: 1.40 ± 0.12
Kaxial, PZ:  1.09 ± 0.12

DKI better fit than 
monoexponential; 

Difference for K between PCa 
and normal TZ/PZ is significant 

Rosenkrantz et al[16] 47 Biopsy 0, 500, 1000, 
1500, 2000

3.0 T; TR/TE: 3500/81 ms; FOV: 
280 mm × 218 mm; Matrix: 100 × 
100; slice thickness: 4 mm; iPAT 

factor, 2; 6 averages

K, high GS: 1.05 ± 0.26
K, low GS: 0.89 ± 0.20

K, PZ:  0.57 ± 0.07

Significant difference between K 
in high GS vs low GS sextants; 

K found to have better sensitivity, 
AUC than ADC or D for PCa

Suo et al[17] 19 RP 0, 500, 800, 
1200, 1500, 

2000

3.0 T; TR/TE: 3940/106 ms; FOV: 
280 mm × 280 mm;  Matrix: 128 × 
128; slice thickness/gap: 3/1 mm; 

4 averages

K, PCa: 0.96 ± 0.20
K, PZ: 0.59 ± 0.08

Significant difference for K 
between PCa and normal PZ; 

GS correlates significantly with K

Tamura et al[18] 20 RP 0, 10, 20, 30, 
50, 80, 100, 
200, 400, 

1000, 1500

3.0 T; TR/TE: 5000/49 ms; FOV: 
240 × 240 mm; Matrix: 80 × 80; 

slice thickness/gap: 3.5/0.1 mm; 
iPAT factor, 2; NEX = 2 

K, PCa: 1.19 ± 0.24
K, BPH: 0.99 ± 0.28
K, PZ: 0.63 ± 0.23

Significant difference for K 
between PCa and normal PZ but 
marked overlap for K between 

PCa and BPH

1Values are mean ± SD [K: Kurtosis parameter (unitless); Kaxial: Axial kurtosis (unitless)]. AUC: Area under curve; BPH: Benign prostatic hyperplasia; 
DKI: Diffusional kurtosis imaging; FOV: Field of view; GS: Gleason score; iPAT: Integrated parallel acquisition techniques; MR: Magnetic resonance; 
NEX: Number of excitations; PCa: Prostate cancer; PZ: Peripheral zone; RP: Radical prostatectomy; T: Tesla; TE: Time of echo; TR: Time of repetition; TZ: 
Transitional zone.

Table 2  Clinical studies of diffusion kurtosis imaging in prostate cancer
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CONCLUSION
Preliminary results suggest that IVIM , DKI and DTI may 
contribute incremental value to conventional DW-MRI 
for the detection of prostate cancer, the assessment of 
tumor aggressiveness, and the prediction of adverse 
final pathologic outcomes. However, IVIM DKI and 
DTI metrics have been found to overlap substantially 
between different prostate cancer grades as well 
as between cancer and benign conditions. While 
combining these techniques with other multiparametric 
MR sequences may further increase their usefulness, 
they are still in the early stages of development, and 
further research is needed to establish their roles in the 
evaluation of prostate cancer.
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Abstract
Worldwide, lung cancer is the leading cause of mortality 

due to malignancy. The vast majority of cases of lung 
cancer are smoking related and the most effective way 
of reducing lung cancer incidence and mortality is by 
smoking cessation. In the Western world, smoking 
cessation policies have met with limited success. The 
other major means of reducing lung cancer deaths is 
to diagnose cases at an earlier more treatable stage 
employing screening programmes using chest radiographs 
or low dose computed tomography. In many countries 
smoking is still on the increase, and the sheer scale of 
the problem limits the affordability of such screening 
programmes. This short review article will evaluate the 
current evidence and potential areas of research which 
may benefit policy making across the world.

Key words:Lung cancer; Chest radiograph; Computed 
tomography; Screening; Health economics

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The use of low dose computed tomography 
(CT) for lung cancer screening is superior to the use 
of standard chest radiograph (CXR), and therefore 
standard CXR should not be used for this purpose. 
However, the application of novel computer assisted 
diagnosis software may influence the utility of CXR 
and may ultimately be a cost-efficient method in those 
countries where delivery of low-dose CT is not feasible 
due to infrastructure or costs constraints. 
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INTRODUCTION
Lung cancer is the most common cause of cancer 
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death in the United Kingdom accounting for 6% of 
overall national mortality and around 35000 deaths a 
year. In 2008 lung cancer was estimated to account for 
18% of deaths world wide. Both one year and 5 years 
survival are inversely proportional to disease stage[1]. 
Current statistics in Scotland, which has a population 
of approximately 5.2 million, show an incidence of 
approximately 1 in 1000 with 8 in 10000 people dying 
due to lung cancer[2]. Similar incidence rates exist in 
other countries, and in the United States approximately 
160000 deaths are due to lung cancer each year[3].

Most lung cancers are smoking related and smoking 
cessation is the most effective way of preventing this 
frequently fatal illness. The disease can be cured, 
especially if caught early. Stage 1, screening detected 
lung cancer has a 5-year survival rate in excess of 85%, 
whereas more advanced lung cancer invariably leads to 
death in less than 2 years[4]. As the lung cancer epidemic 
has grown and spread, ways of detecting the disease 
earlier, to improve the cure rate, have been explored. 
These have mainly been based around imaging using 
the chest radiograph (CXR) and computed tomography 
(CT).

CXR
In the early 1980s, a lung screening programme using 
4-monthly CXRs in high risk patients was developed 
at the Mayo Clinic[5]. Subjects selected were over 45 
years old male heavy smokers defined as one pack/
day. They were randomly assigned to a control group 
(4593 patients) or repeated CXR follow up at 4 mo 
interval (4618 patients) after they had undergone an 
initial CXR and sputum cytology examination that were 
both normal. The follow up success was 75% at 4 mo, 
and 92 lung cancers were detected by CXR (of which 
7 also had sputum cytology positive findings), while 
15 patients had normal CXR with abnormal sputum 
cytology for an overall incidence of 109 (2.4%). A 
significant number of these lung cancers were visible 
in retrospect. Furthermore, 52 of the lung cancer were 
classified as stage Ⅰ (early disease; 35 of these were 
peripheral lesions), 4 were stage 2 disease (3 perihilar 
and 1 with hilar enlargement) while the 35 had stage 3 
disease (15 peripheral lesions, 4 perihilar and 13 with 
hilar enlargement). 

Another study in New York randomised a similar 
population of 10040 subjects to annual CXR only vs 
additional 4-monthly sputum cytology[6]. This study 
showed similar outcome between the two groups, with 
288 detected lung cancers equally distributed between 
the two groups.

It was concluded from this study that the 4-monthly 
screening for lung cancer using chest radiography and 
sputum cytology, although capable of detecting up to 
20% of lung cancers, was unable to improve mortality 
advantage over patients who were offered annual 
testing[7].

A more recent attempt at using CXR screening 

was carried out in the Prostate, Lung, Colorectal and 
Ovarian cancer screening trial[8]. This study randomised 
154901 men and women aged 55-74 years to either 
standard care (77456) or annual screening (77445) for 
four years during the period 1993-2001. The number of 
lung cancer deaths was equal in both groups (1213 vs 
1230) with similar stage and histology of lung cancers. 
Therefore, it was concluded that annual CXR screening 
does not benefit outcome of lung cancer mortality.

From these large scale studies, as well as from the 
National Lung Screening Trial (NLST) (see below), it is 
concluded that the application of routine annual chest 
radiography for screening of high-risk patients for lung 
cancer, although detecting a significant number of lung 
cancer cases, is not beneficial in terms of improvement 
of mortality.

CT
The NLST compared CXRs with computed tomography 
for the screening of patients at high risk for developing 
lung cancer[9]. Men and women were selected in the age 
group 55-74 years with a history of cigarette smoking of 
at least 30 pack years or had these exposure rates but 
had quit smoking within 15 years. The subjects were 
randomised to either three annual screening posterior-
anterior CXRs (26732) or low-dose CT (26722). Almost 
4-fold higher positive screening tests were obtained 
with CT (24.2% vs 6.9%), with the false positive rate 
slightly lower in the CXRs group (94.5% vs 96.4%). 
The incidence of proven lung cancer was higher in the 
CT group compared to the CXR group (relative risk 1.13; 
95%CI: 1.03-1.23). More importantly, mortality due 
to lung cancer decreased from 309 deaths per 100000 
person-years in the radiography group to 247 deaths 
from lung cancer per 100000 person-years in the low-
dose CT group, a decrease of 20%. In addition, the CT 
group benefitted from other diagnoses that positively 
affected mortality rates, with 6.7% fewer patients dying 
in the low-dose CT group.

In Europe, several studies were started to evaluate 
the potential role of low-dose chest CT for lung cancer 
screening. Three studies did not demonstrate a benefit 
of lung cancer screening with CT in terms of mortality, 
but these were insufficiently powered to reliably draw 
such conclusion[10-12]. There are a further five ongoing 
studies that are yet to report on the final results, but 
some will be able to give answers to the question whe
ther CT screening improves outcome of lung cancer 
patients[13-17]. 

The Nederlands-Leuvens Longkanker Screening 
Onderzoek (NELSON) study is a Dutch/Belgian project, 
which recruited 20000 high-risk subjects and rando
mised half of them for low-dose CT and the other 
half for CXR screening[13]. It is the largest European 
study and has sufficient power to enable a statement 
whether low-dose CT screening has benefit over chest 
radiography screening.

Another study from Canada has reported the first 
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screening round results and is focused on inclusion 
of cytology using autofluorescence bronchoscopy as 
well as modelling approaches towards optimisation of 
predictive value for lung nodules[18].

A potential risk associated with screening is the false 
positive results that can lead to further investigations 
and additional costs. A randomized, controlled trial 
of low-dose CT vs chest radiography (n = 3318 in 
both arms) as part of the NLST demonstrated a false-
positive rate of 21% and 9% for single low-dose CT 
and chest radiography screening, respectively[19]. A 
total of 7% of participants with a false-positive low-
dose CT examination and 4% with a false-positive 
chest radiography subsequently underwent an invasive 
procedure.

Another potential risk associate with lung cancer 
screening is the potential increased risk of lifetime 
cancers as a result of ionising radiation. The estimated 
risk of cancer from exposure to CT ionising radiation 
is reported to be more when the screening is started 
earlier in life, or on annual basis, and in females. A study 
reported an estimated 5.5% increase in lung cancer risk 
attributable to annual CT-related radiation exposure and 
concluded that a mortality benefit of considerably more 
than 5% may be necessary to outweigh the potential 
radiation risks[20]. 

Screening programs are associated with additional 
costs, both from the screening procedure and the 
follow up interventions. Previous studies reported that 
screening for lung cancer appeared to be cost-effective 
in high risk, more elderly populations[21,22]. Other studies 
questioned the potential cost effectiveness of lung 
cancer screening. However, their results were based on 
lower estimated effectiveness of screening than what 
was demonstrated by the NLST[23,24].

A more recent cost-utility analysis of lung cancer 
screening by low dose CT reported that repeat annual 
lung cancer screening in high risk adults aged 50-64 
was highly cost-effective[25]. The study also indicated 
that offering smoking cessation interventions with the 
screening program improved the cost-effectiveness of 
lung cancer screening between 20%-45%.

A contrary report was published as part of a health 
technology assessment, which suggested that lung 
cancer screening would not be cost-effective[26]. However, 
it should be considered that this report was issued prior 
to the results of most of the recent large lung cancer 
screening trials.

The largest and most recent study, the NLST, 
also had an economic analysis and cost-effectiveness 
analysis performed[27]. This study demonstrated that 
the additional healthcare costs of performing low-dose 
CT screening would cost $1631 per person, with the 
incremental costs per life-year gained and the costs per 
quality adjusted life year gained coming in at $52000 
and $81000, respectively. Importantly, there was quite 
a wide range of life year gains depending on age (optimal 
age range 60-69 years), risk for developing lung cancer 
(highest risk groups benefitting most) and gender (with 

women benefitting least). This caused a range of costs 
for quality adjusted life year gained anywhere between 
$32000-$615000. The study did not show a cost-
effective benefit for chest radiography screening.

DISCUSSION
Clearly, based on the above studies, CT is superior to 
CXRs for screening in lung cancer. Although the NLST 
appears to have answered the question conclusively, 
there are still ongoing studies that may influence the 
manner in which screening will be approached in the 
future. Significant debate is still ongoing as to how 
often we should be screening, the optimal population 
that could benefit, interpretation of nodules, avoidance 
of false positive results and approaches including 
positron emission tomography-computed tomography, 
magnetic resonance imaging and autofluorescence 
bronchoscopy for instance[28-34]. Many of these points 
are still undergoing evaluation, and future study results 
are eagerly awaited.

There are some additional points to be taken into 
consideration, which may still give CXRs a potential role 
for screening of lung cancer.

First, CXRs have matured from a technical perspe
ctive, and the wide introduction of digital CXRs offers 
a new approach to application of computer assisted 
diagnosis (CAD). Thus, several studies have shown 
greater sensitivity for lung nodule detection using CAD 
methodologies, and this may be of benefit when using 
the test as a screening test[35,36]. However, a conclusive 
study showing the benefit of screening with chest 
radiography and added CAD has not been performed 
and could be important in this respect.

Second, CXRs are by far the cheaper of the two 
imaging modalities and more commonly available. This 
is an important issue, particularly in countries that are 
less well developed and where smoking continues to be 
on the increase and the lung cancer epidemic is on the 
rise. There is a high false negative rate using the CXR. 
CXR screening programmes should be backed up with 
cross-sectional imaging with a low threshold in place 
for investigating even small abnormalities detected 
on the CXR with CT scan. It may not be feasible to 
arrange for large-scale screening using CT and in these 
circumstances, one could consider using the CXR.

Whilst NLST demonstrated that benefits from early 
detection of lung cancer outweighs the risk of ionizing 
radiation, the potential risk is substantial. In NLST, 
participants received an average exposure of 8 mSv 
over 3 years of screening/diagnostic examinations 
which can potentially cause 1 cancer in every 2500 
screened[37]. Recently, multiple studies have been 
investigating the feasibility of radiation dose reduction 
to sub-mSv level whilst the diagnostic accuracy is 
maintained[38,39]. Since there is a high contrast resolution 
between air and lung nodules, significant radiation 
dose reduction can be achieved while maintaining good 
diagnostic quality. Various strategies such as reduced 
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tube voltage, tube current, or both is being used. The 
application of iterative reconstruction would maintain 
spatial resolution in low dose studies whilst maintain 
diagnostic accuracy[40]. 

Overall, it is highly likely that low-dose CT screening 
for patients at high risk for developing lung cancer is 
a cost-effective approach which will lead to improved 
outcome due to earlier detection and treatment of 
this highly lethal malignancy. In countries that have 
the resources available, it makes sense therefore to 
use low-dose CT as a screening methodology. For 
countries where finances or logistics render low-dose 
CT screening impossible to deliver, CXRs on an annual 
basis should be considered and additional use of CAD 
may improve sensitivity for earlier lesions.
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known as a cause of low back and lower extremity 
pain. Together with their secondary disorders they set 
a big burden on health care systems and economics 
worldwide. Despite modern imaging modalities, such 
as magnetic resonance imaging, for a large proportion 
of patients with low back pain (LBP) it remains difficult 
to provide a specific diagnosis. The fact that nearly 
all the lumbar structures are possible sources of LBP, 
may serve as a possible explanation. Furthermore, our 
clinical experience confirms, that imaging alone is not a 
sufficient approach explaining LBP. Here, the Oswestry 
Disability Index, as the most commonly used measure 
to quantify disability for LBP, may serve as an easy-to-
apply questionnaire to evaluate the patient’s ability to cope 
with everyday life. For therapeutic purposes, among 
the different options, the lumbar facet joint intra-
articular injection of corticosteroids in combination with 
an anaesthetic solution is one of the most frequently 
performed interventional procedures. Although widely 
used the clinical benefit of intra-articular steroid injections 
remains controversial. Therefore, prior to therapy, 
standardized diagnostic algorithms for an accurate 
assessment, classification and correlation of degenerative 
changes of the lumbar spine are needed.

Key words: Low back pain; Spine; Intervertebral disc 
disease; Facet joint osteoarthritis; Magnetic resonance 
imaging; Oswestry Disability Index
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Core tip: Low back pain, caused by intervertebral disc 
degeneration (IDD) and facet joint osteoarthritis (FJOA), 
is a widely spread musculoskeletal disorder in all ages 
worldwide. Although IDD and FJOA are common findings 
on lumbar magnetic resonance-imaging, the relationship 
between imaging findings and clinical pain-presentation 
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Abstract
Intervertebral disc degeneration and facet joint osteo
arthritis of the lumbar spine are, among others, well 
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as well as the benefit of different therapeutic options 
often remains unclear. This article briefly reviews the 
correlation of IDD and FJOA with clinical pain scores 
and discusses possible treatment options of FJOA with 
focus on the intra-articular injection of corticosteroids. 
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INTRODUCTION
Among others, intervertebral disc degeneration (IDD) 
and facet joint osteoarthritis (FJOA) have been identified 
as causes for low back pain (LBP). Magnetic resonance 
imaging (MRI) is the imaging method of choice for the 
evaluation of IDD and FJOA of the lumbar spine[1,2]. 
For the grading of IDD of the lumbar spine Pfirrmann 
et al[3] proposed a MRI-based 5-point scale which is 
based on MRI signal intensity, disc structure, distinction 
between nucleus and annulus and disc height on T2-
weighted, midsagittal images. Due to its more precise 
demonstration of bony details computed tomography 
(CT) often is the preferred modality in the evaluation 
of FJOA. Weishaupt et al[4] evaluated the significance of 
MRI in comparison to CT using an established 4-point 
scale. In summary, the authors conclude that an addi
tional CT scan is not required in the presence of a MRI 
examination. Due to the fact that nearly all lumbar 
structures are possible sources of LBP, for a large 
proportion of patients it remains difficult to provide 
a specific diagnosis. The Oswestry Disability Index 
(ODI) is the most commonly used measure to quantify 
disability for LBP[5] and could reflect the relationship 
between pain and increasing grades of IDD and FJOA. If 
FJOA is identified as source of pain, multiple therapeutic 
options have been described and established[6]. Among 
the different options, the lumbar facet joint (LFJ) intra-
articular injection of corticosteroids in combination with 
an anaesthetic solution is one of the most frequently 
performed interventional procedures[7]. The theory 
of this particular therapeutic approach is based on 
the idea that there is inflammation of the synovial 
structures of the degenerated facet joints. Thus intra-
articular steroid injection is performed to generate an 
anti-inflammatory effect in order to achieve pain relief. 
Although widely used the clinical benefit of intra-articular 
steroid injections remains controversial[8]. The aim of 
the presented article is to highlight the relationship of 
increasing grades of IDD/FJOA and clinical pain scores 
and to discuss therapeutic success of minimally invasive 
therapeutic procedures, such as intra-articular steroid 
injections in degenerated facet joints. 

SOURCES OF BACK PAIN
FJOA and pain correlation
Since the facet joints are the only synovial joints in the 
spine with hyaline cartilage overlying subchondral bone, 
a synovial membrane and a joint capsule, they develop 
degenerative changes that are equivalent to other 
peripheral joints. Different studies reported contradicting 
results about the prevalence of FJOA at lumbar levels. 
Kalichman et al[9] reported that FJOA is more prevalent 
at L4/5 (45.1%) followed by L5/S1 (38.2%) and L3/4 
(30.6%) whereas Abbas et al[10] describe a different 
descending order: L5/S1 (55%), L4/5 (27%) and L3/4 
(16%). Additionally, Abbas et al[10] describe that FJOA 
is an age dependant phenomenon, which increases 
cephalocaudally, whereas they found no correlation of 
FJOA with sex or the Body mass index. For the assess
ment of FJOA our group applied the 4-point scale as 
proposed by Weishaupt et al[4] on approximately 2400 
facet joints of the lumbar segments L4/5 and L5/S1. 
Assuming that grade Ⅰ changes already represent mild 
degenerative changes, nearly all patients in our study 
group showed degenerative alterations of the facet 
joints (97% L4/5; 98% L5/S1). In 150 patients Ashraf 
et al[11] classified degenerative changes of the lumbar 
spine on lateral radiographs according to the criteria 
of Kellgren and Lawrence. Additionally, functional 
disability was measured using the ODI. They found 
no significant correlation between the morphological 
severity of osteoarthritis and ODI scores. Peterson 
et al[12] evaluated 172 consecutive patients with LBP. 
Lumbar radiographs were judged with regard to the 
severity of disc and facet joint degeneration. Results 
were correlated with the data of the ODI. The authors 
describe a weak correlation between the values of LBP 
and radiologically assessed lumbar spine degeneration. 
A major limitation of the mentioned studies is the fact 
that degenerative changes of the cervical and lumbar 
spine were graded on plain film radiographs, which are 
because of superposition of limited diagnostic value. 
Additionally, severity of degeneration of intervertebral 
discs as well as of facet joints was taken into account 
for scoring. As already mentioned nearly all-lumbar 
structures are possible sources of LBP, so that an iso
lated contemplation of anatomic structures (facet joint, 
intervertebral disc) and their degenerative changes with 
regard to clinical importance is necessary. Therefore 
we correlated degenerative changes of facet joints at 
lumbar levels L4/5 and L5/S1 with the ODI. Our results 
demonstrate that there is only a weak correlation 
between signs of degeneration and clinical disability 
scores as evaluated by ODI. Taking into account that a 
huge majority of patients of all ages show degenerative 
changes of facet joints in the lower motion segments of 
the lumbar spine, these results should be considered in 
the future evaluation of lumbar MRIs. In the presence of 
other degenerative changes like IDD, osteochondrosis 
or Morbus Baastrup the finding of FJOA shouldn’t be 
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considered evidentiary as the cause of LBP. In fact, the 
presented results seem to prove that chronic LBP is a 
multifactorial disorder, which cannot be explained with a 
constricted view on one lumbar compartment.

IDD and pain correlation
It is widely accepted that IDD of the lumbar spine is one 
of the main cause of lower back pain[13,14]. The etiology 
of IDD is not fully explained - heavy physical loading[15], 
overweight[16,17], vibrations during vehicle driving[18] 
and smoking[19] have been suggested to be associated 
with IDD. Since radiological features of IDD are almost 
universal in adults, it often remains unclear to what 
extent these changes are responsible for the clinical 
symptoms of the patient. From the radiological point of 
view, in the first place a standardized nomenclature in 
the evaluation of intervertebral disc alterations is needed. 
Pfirrmann et al[3] proposed a morphologic grading system 
which is based on MRI T2-weighted sagittal imaging 
and showed a good intra- and interobserver reliability. 
The grading system reflects the loss of proteoglycan 
concentration[20] in the nucleus pulposus of the lumbar 
disc, which goes along with a decreasing signal intensity 
in T2-weighted imaging. The experience of our group 
confirms the fact that IDD is a general finding in MRI 
of the lower (L4/5 and L5/S1) lumbar segments even 
in young-aged patients. The vast majority of examined 
patients presents with Pfirrmann grade Ⅱ - grade Ⅳ 
changes, whereas a relatively low percentage of lumbar 
discs present with grade Ⅴ changes. Only a small 
number of lumbar discs show no degenerative changes. 
These experiences impressively illustrate the dilemma 
to rate the clinical symptoms of the patient correctly, 
based on a pervasive imaging finding. In consensus to 
the above mentioned results regarding the correlation of 
FJOA and ODI scores, also the presence of IDD in lumbar 
MRI can’t be considered evidentiary as a reason for LBP.

LFJ intra-articular steroid injections
LFJ intra-articular injections of corticosteroids in 
combination with an anaesthetic solution is one of the 
most frequently performed interventional procedures 
worldwide[7]. The theory of this particular therapeutic 
approach is based on the idea that there is inflammation 

of the synovial structures of the degenerated facet joints. 
Thus intra-articular steroid injection is performed to 
generate an anti-inflammatory effect in order to achieve 
pain relief. Although widely used the clinical benefit of 
intra-articular steroid injections remains controversial[8]. 
Lakemeier et al[21] compared the effectiveness of 
intra-articular steroid injections and radiofrequency 
denervation in relief of LBP associated with L3/L4 
- L5/S1 FJOA[21]. They investigated the therapeutic 
effect of aforementioned interventional procedures in 
a cohort of 56 patients randomized in two therapeutic 
groups. In their double-blinded study the authors found 
no significant differences in the therapeutic success 
between the two procedures over a follow-up period of 
6 mo. Ribeiro et al[22] compared the therapeutic success 
of intra-articular steroid injection vs intramuscular 
steroid application in patients with facet joint- related 
CLP. The experimental group received bilateral intra-
articular steroid injection of segments L3/4 - L5/S1 (in 
total 6 injections), while the control group received 6 
intramuscular injections on bilateral surface points of the 
paravertebral lumbar musculature. Both treatments were 
effective over the follow-up period of 6 mo compared 
to the baseline. Regarding pain - relief no significant 
difference between the procedures was observed. 
It is well known that besides technical modifications 
many additional factors are involved in therapeutic 
outcome. Gryll et al[23] reported about situational factors 
contributing to placebo effect during oral surgery (status 
of communicator of drug effects, attitude of dentist, 
attitude of dental technician and message of drug 
effects). Among the four variables only the attitude of 
the dentist and the dental technician led to a statistically 
significantly reduced fear of injection and lower ratings of 
pain experience from mandibular-block injection. Initial 
results of our group show, that the therapist’s attitude 
and empathy may increase the therapeutic effect of 
LFJ intra-articular steroid injections in patients suffering 
from chronic LBP. Therefore, we performed a CT-guided 
puncture (Figure 1) of the facet joints at lumbar levels 
L4/5 or L5/S1, followed by an injection of a mixture of 
4 mL of 0.5% bupivacaine and 1 mL of triamcinolone 
acetate (20 mg). After the therapeutic procedure we 
encouraged the patients of an experimental group to 
ask questions about the procedure and showed them 
representative CT-images. Patients of the control group 
left the interventional unit without further contact with 
the interventional radiologist. The initial results show 
a significant effect on pain relief during the early post-
interventional phase in the experimental group as 
compared to the control group. It seems that in patients 
who better understand therapies applied on them, 
an increase in therapeutic efficacy can be observed. 
Explanatory behind the higher efficacy might be the 
phenomenon of hetero-suggestion, which occurs during 
the post-interventional patient-radiologist dialog during 
image presentation and might be conveying a message 
into the subconscious[24]. This shows how the open and 
transparent handling can lead to a strong therapeutic 
alliance between patients and physicians for the benefit 
of patients.
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Figure 1  Computed tomography-guided puncture of the facet joints at 
lumbar levels L4/5 showing the needle trajectory.
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CONCLUSION
Age-dependent IDD and FJOA of the lumbar spine 
is reliably detected by MRI. The lack of significant 
correlation of IDD and FJOA with clinical pain scores 
such as the ODI confirms our experience that imaging 
alone is an insufficient approach explaining LBP. Clinical 
correlation is not an adjunct only but imperative for 
an adequate clinical approach in patients with LBP and 
lower extremity pain. Thus further studies are needed 
to correlate imaging data and clinical scores such as the 
Ostwestry disablility index. Among the different options 
for the treatment of LFJ-associated LBP, the intra-articular 
injection of corticosteroids and anaesthetic solutions is 
one of the most frequently performed procedures. Beside 
technical modifications it seems that patients who better 
understand therapies applied on them experience an 
increased therapeutic efficacy. This could be helpful in 
the daily clinical routine, where psychological phenomena 
such as hetero-suggestion can be used as a powerful and 
easy-to-apply tool, to support therapeutic procedures 
such as intra-articular injections.

REFERENCES
1	 Emch TM, Modic MT. Imaging of lumbar degenerative disk 

disease: history and current state. Skeletal Radiol 2011; 40: 
1175-1189 [PMID: 21847748 DOI: 10.1007/s00256-011-1163-x]

2	 Sasiadek MJ, Bladowska J. Imaging of degenerative spine disease-
-the state of the art. Adv Clin Exp Med 2012; 21: 133-142 [PMID: 
23214277]

3	 Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. 
Magnetic resonance classification of lumbar intervertebral disc 
degeneration. Spine (Phila Pa 1976) 2001; 26: 1873-1878 [PMID: 
11568697 DOI: 10.1097/00007632-200109010-00011]

4	 Weishaupt D, Zanetti M, Boos N, Hodler J. MR imaging and CT 
in osteoarthritis of the lumbar facet joints. Skeletal Radiol 1999; 28: 
215-219 [PMID: 10384992 DOI: 10.1007/s002560050503]

5	 Fairbank JC, Couper J, Davies JB, O’Brien JP. The Oswestry low 
back pain disability questionnaire. Physiotherapy 1980; 66: 271-273 
[PMID: 6450426]

6	 Cohen SP, Huang JH, Brummett C. Facet joint pain--advances 
in patient selection and treatment. Nat Rev Rheumatol 2013; 9: 
101-116 [PMID: 23165358 DOI: 10.1038/nrrheum.2012.198]

7	 Manchikanti L, Pampati V, Singh V, Falco FJ. Assessment of 
the escalating growth of facet joint interventions in the medicare 
population in the United States from 2000 to 2011. Pain Physician 
2013; 16: E365-E378 [PMID: 23877460]

8	 Manchikanti L, Datta S, Gupta S, Munglani R, Bryce DA, Ward SP, 
Benyamin RM, Sharma ML, Helm S, Fellows B, Hirsch JA. A critical 
review of the American Pain Society clinical practice guidelines for 
interventional techniques: part 2. Therapeutic interventions. Pain 
Physician 2010; 13: E215-E264 [PMID: 20648212]

9	 Kalichman L, Li L, Kim DH, Guermazi A, Berkin V, O’Donnell 
CJ, Hoffmann U, Cole R, Hunter DJ. Facet joint osteoarthritis and 
low back pain in the community-based population. Spine (Phila 
Pa 1976) 2008; 33: 2560-2565 [PMID: 18923337 DOI: 10.1097/
BRS.0b013e318184ef95]

10	 Abbas J, Hamoud K, Peleg S, May H, Masharawi Y, Cohen H, 
Peled N, Hershkovitz I. Facet joints arthrosis in normal and stenotic 
lumbar spines. Spine (Phila Pa 1976) 2011; 36: E1541-E1546 

197 August 28, 2015|Volume 7|Issue 8|WJR|www.wjgnet.com

Maataoui A et al . Management of low back pain



challenging both for clinicians and radiologist. It is a 
long and tortuous tube that can be affected by various 
pathologies whose signs and symptoms are usually non 
specific and can mimic other acute abdominal disorders. 
For these reasons, imaging plays a central role in the 
diagnosis of the different pathological conditions that can 
occur. They are important also in the management and 
follow up of chronic diseases. We expose and evaluate 
all the radiological methods that are now available for 
the study of the SB with particular emphasis on the 
technological improvement of cross-sectional imaging, 
such as computed tomography (CT) and magnetic 
resonance imaging (MRI). These techniques have, 
infact, highly improved in terms of execution times (fast 
acquisitions images), patients discomfort and radiation 
dose, for CT, with consequent reduced biological 
risks. Moreover, the new post-processing options with 
multiplanar reconstruction and isotropic images have 
made significant changes in the evaluation of the 
exams. Especially MRI scans have been improved by the 
advent of new sequences, such as diffusion weighted 
imaging and cine-MRI, parallel imaging and breath-hold 
sequences and can provide excellent soft-tissue contrast 
without the use of ionizing radiations.

Key words: Small bowel imaging; Magnetic resonance; 
Cross-sectional imaging; Computed tomography; Positron 
emission tomography-computed tomography
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Core tip: The small bowel (SB) has always been a 
challenging organ for clinical and radiologic evaluation. 
The purpose of our article is to evaluate all the imaging 
methods now available for the study of the SB with 
particular emphasis on the technological improvement 
of cross-sectional imaging.
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INTRODUCTION
Radiological studies of the small bowel were firstly 
performed at the beginning of this century by Morse and 
Cole[1] in 1927 and Pesquera[2] in 1929. From then until 
the early 2000s, barium contrast studies have been the 
only imaging methods to study the small bowel. In the 
last decade, a tremendous technological improvement 
of cross-sectional imaging [Ultrasound (US), computed 
tomography (CT), and magnetic resonance imaging 
(MRI)] have occurred. US scanners have significantly 
improved, now allowing a good visualization of the small 
bowel loops. Both CT and MRI scanners have become 
very fast (short execution times and less discomfort for 
the patients) and can create multiplanar reconstruction 
and isotropic images, the former with less radiation 
dose and the latter in the lack of ionizing radiations, 
particularly important in young patients who need 
periodic imaging examinations. Especially MRI scans 
have been improved by the advent of new sequences, 
such as diffusion weighted (DWI) and cine-MRI, parallel 
imaging and breath-hold sequences and can provide 
excellent soft-tissue contrast.

A complete exam requires the use of both intrave
nous and endoluminal contrast. The latter is necessary 
to obtain a good distension of the bowel loops and can 
be administered orally (MRI-Enterography) or through 
a nasojejunal tube (MRI-Enteroclysis). The MRI-Ente
rography is more comfortable for the patient but the 
MRI-Enteroclysis provides a better bowel distension, 
especially of the proximal loops, and, for this reason, is 
always the method of choice in patients with suspected 
jejunal lesions or recurrent intestinal subocclusion. 
Finally, since 2001, wireless capsule endoscopy has 
been introduced as another non-invasive technique 
for the evaluation of the entire small bowel, in which 
traditional endoscopy had severe limits[3]. Despite the 
important diagnostic innovation, the impossibility to 
perform therapeutic interventions is a high limit and, 
for this reason new endoscopic method were proposed 
in the subsequent years, such as Double-balloon endo
scopy, in 2003, Single-balloon enteroscopy in 2007 and 
spiral enteroscopy in 2008[3].

Alternatively, also scintigraphy and positron emis
sion tomography/computed tomography (PET/CT) 
has been reported, in several studies[4-6], as valid 
and non-invasive method to diagnose and assess 
disease activity in IBD. Regarding Scintigraphy, various 
biomarkers of inflammation, used to label white blood 
cells, such as technetium-99m hexamethylpropylene 
amine oxime (Tc-99m HMPAO WBC), pentavalent Tc-
99m dimercaptosuccinic acid [Tc-99m (V) DMSA] and 
fluorine-18 fluorodeoxyglucose (18F-FDG), are widely 
accepted as accurate for the diagnosis of IBD[4]. Studies 

on 18F-FDG PET/CT showed a significant correlation 
between the 18F-FDG uptake PET-CT and the Crohn’s disease 
endoscopy index of severity especially in segments with 
moderate to severe lesions. Moreover, 18F-FDG PET 
may potentially provide information on the dynamic 
inflammatory changes occurring in inflammatory bowel 
disease (IBD), particularly Crohn’s disease, being useful 
not only in the diagnosis but also in the follow up of the 
disease[5,6].

Thanks to these technical improvements in imaging, 
the cross-sectional techniques are replacing barium 
exams in the study of the small intestine, especially in 
IBD, both in adult and pediatric patients.

The “Porto criteria” recommend small-bowel follow-
through (SBFT) as the imaging modality of choice 
in children[7]. However, SBFT requires high radiation 
dose with associated risks and, when possible, should 
be replaced by alternative techniques, such as low-
dose CT or MRI[8-10], whose high accuracy is stated in 
the European Crohn’s and Colitis Organization (ECCO) 
guidelines[10]. Particularly, ECCO guidelines, in the 
pediatric section[11,12], report dynamic contrast-enhanced 
MRI as the best imaging method to study CD’s lesions. 
Also the Appropriateness Criteria of the American 
College of Radiology[13] confirm the high sensitivity 
and specificity of MRI (enterography or enteroclysis) in 
pediatric patients, similar to that of CT enterography but 
without the use of ionizing radiation.

However, many questions remain unsolved. First 
of all, it is important to determine whether these non-
invasive imaging techniques can replace endoscopy 
in the evaluation of the mucosal healing. In a recent 
study, MRE has shown an accuracy of 90% and 84% 
in determining ulcer healing and endoscopic remission, 
respectively[14], but these data need to be confirmed.

In the last years, the eradication of bowel inflam
mation at the level of all wall layers has been suggested 
as a goal of treatment more appropriate than the 
mucosal healing alone that seems to be too superficial.

Compared to endoscopy, cross sectional imaging, 
especially MRI, can provide information on the entire 
bowel wall. However, transmural healing has not yet 
been studied as the primary therapeutic endpoint in CD 
patients, unlike the mucosal healing that is becoming 
more and more a therapeutic goal[15].

Preliminary studies have reported encouraging results 
on the diagnostic accuracy of DWI sequence in patients 
with IBD so that it can be considered, in the future, as 
an alternative to contrast-enhanced sequences[16,17].

Future studies should also consider the interobserver 
variability due to the different experience of radiologists 
in evaluating DWI images and standard MRI images.

Another concrete future possibility for the diagnosis 
and management of IBD is represented by the new 
hybrid imaging modalities, such as PET/CT and PET/
MRI, which combine the morphological CT or MRI 
images with the functional PET information in a single 
diagnostic investigation. CT enterography combined 

Casciani E et al . Small bowel imaging of IBD

199 August 28, 2015|Volume 7|Issue 8|WJR|www.wjgnet.com



with the 18F-FDG PET exam seems to be particularly 
promising[18].

Groshar et al[19] reported a good accuracy of PET/CT 
in the differential diagnosis between acute and chronic 
inflammation. Infact, they found an important relation 
between the maximum standardized uptake value 
[SUV(max)] and the mural CT patterns, such as submu
cosal edema or fat, expression of active and chronic 
inflammation, respectively. However, a high number 
of false positive results have been registered due to 
the physiologic 18F-FDG uptake by the bowel wall[20,21]. 
Another important limitation is the high cumulative 
radiation dose required for the PET/CT exam, particularly 
because the IBD patients require numerous and 
repeated examinations[18].

Finally, no articles have been published on the use 
of PET/MRI in the diagnosis and follow up of IBD, even 
though this combined use of nuclear medicine and MRI, 
providing information on molecular and morphological 
events without the use of ionizing radiations, could 
change the future diagnostic approach. Infact, they 
seem to have high potential and can count on the advent 
of new MRI techniques, such as DWI and Spectroscopy, 
and new radiopharmaceuticals to label cells, such as 
radionuclides, fluorescent or bioluminescent markers 
(optical imaging) and MRI contrast agents (molecular 
MRI)[22]. A great hope is placed in this imaging inves
tigation which could effectively help in the diagnosis 
and follow up of IBD providing information on involved 
inflammatory cells and cytokines.
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fuse morphological and functional data are the most 
sensitive and specific, and positron emission tomography 
(PET)/computed tomography and PET/magnetic 
resonance imaging will almost certainly continue to 
evolve and become increasingly important in this regard.

Key words: Neoplasm metastasis; Radionuclide imaging; 
Magnetic resonance imaging; Computed tomography; 
Bone and bones
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Core tip: Early detection of skeletal metastasis is critical 
for accurate staging and optimal treatment. This paper 
briefly reviews our current understanding of the biological 
mechanisms through which tumours metastasise to bone 
and describes the available imaging methods to diagnose 
bone metastasis and monitor response to treatment.
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INTRODUCTION
Metastasis of malignant neoplasms to bone is common 
with metastases being far more prevalent than primary 
bone malignancies[1,2]. Indeed, bone is the third most 
common organ affected by metastasis, surpassed only 
by the lungs and liver[2-4], and is the most common site 
of distant metastasis from primary breast carcinoma[5]. 

Over the past twenty years, advances in our under
standing of tumour biology have led to the development 
of improved treatment strategies for many cancers. As 
a result, many patients are living longer with metastatic 
disease and the incidence of skeletal metastasis is 
continuing to rise. Based on post-mortem findings, 
approximately 70% of patients with breast or prostate 
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Abstract
Early detection of skeletal metastasis is critical for 
accurate staging and optimal treatment. This paper 
briefly reviews our current understanding of the biological 
mechanisms through which tumours metastasise to bone 
and describes the available imaging methods to diagnose 
bone metastasis and monitor response to treatment. 
Among the various imaging modalities currently available 
for imaging skeletal metastasis, hybrid techniques which 
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cancer have bone metastases[1,4]. Commensurate with 
the increased prevalence of bone metastasis, there 
is potential for significant comorbidities such as pain, 
limited mobility, hypercalcaemia, spinal cord or nerve 
root compression, myelosuppression and pathologic 
fracture[2,6]. Therefore, early detection of skeletal 
metastasis is critical for (1) accurate staging and optimal 
treatment; and (2) to allow the implementation of 
treatment strategies such as surgical fixation, radio
therapy, or bisphosphonate therapy to reduce the risk of 
complications and improve quality of life[7,8].

This paper briefly reviews our current understanding 
of the biological mechanisms through which tumours 
metastasise to bone and describes the available imaging 
methods to diagnose bone metastasis and monitor 
response to treatment. 

PATHOPHYSIOLOGY OF BONE 
METASTASIS
Certain primary malignant neoplasms such as breast 
carcinoma and prostate adenocarcinoma have a pro
pensity for metastasising to bone and are, therefore, 
termed osteotropic. Conversely, patients with cervical, 
endometrial, bladder and gastrointestinal tract tumours 
rarely develop skeletal metastases[9]. The selective 
deposition and proliferation of discrete circulating 
malignant cells within the skeleton relates to the 
“seed and soil” hypothesis of tumour biology originally 
conceptualised by Stephen Paget in the late 19th 
century. In accordance with this hypothesis, the bone 
environment represents a “fertile soil” in which some, 
but not all, cancer cell types (seeds) can flourish. 

Metastasis to bone can occur via direct extension, 
arterial or venous spread with the latter representing 
the most common form. Once in the circulation, entry of 
the cancer cells into the venous circulation of the bone 
marrow is facilitated by the slow blood flow and the 
fact that hematopoietically active bone marrow is well 
vascularised[1]. Adhesion molecules produced by tumour 
cells bind to marrow stromal cells and bone matrix[8]. 
The normal remodelling process of bone provides 
chemotactic and growth factors which support these 
cancer cells once in place[1]. After skeletal colonisation, 
the malignant cells interrupt normal bone cell turnover 
by releasing local cytokines and growth factors. Certain 
tumours release factors which upregulate osteoclast 
activity such as parathyroid hormone-related protein, 
tumour necrosis factor α or β, and other cytokines such 
as interleukin-1 and interleukin-6 which results in net 
osteolysis. Other cancer cell types release factors such 
as epidermal growth factor, transforming growth factor α 
and β, and insulin-like growth factors which upregulate 
osteoblasts resulting in net osteosclerosis[8,10]. Thus, 
osseous metastases can be osteoblastic (bone forming) 
or osteolytic (bone destructive), however, a combination 
of both processes occurs in most cancers[4]. Osseus 

metastases from kidney, thyroid and lung maligan
cies are predominantly osteolytic, while osteoblastic 
lesions are usually seen in prostate cancer and breast 
cancer[7]. Furthermore, osteolytic metastases tend to 
be aggressive, whereas sclerotic metastases typically 
demonstrate slower progression. An important point to 
realise is that tumour cell proliferation within the bone 
marrow invariably predates bone destruction which is, 
consequently, a relatively delayed manifestation in bone 
metastasis which has important implications in terms of 
diagnosis[6].

DISTRIBUTION OF BONE METASTASIS
Considering benign osseous lesions and bone metas
tases oftentimes have similar imaging features, the 
location of a lesion in the skeleton can sometimes be 
used to help distinguish between the two in equivocal 
cases. The vertebrae, pelvis, ribs and the ends of long 
bones are preferred destinations of metastases because 
of their high red marrow content[1,9,11]. Within the spine, 
most metastases are located in the lumbar spine, less 
frequently in the thoracic spine, and rarely in the cervical 
spine (52%, 36% and 12% respectively)[12]. Less 
frequent metastatic sites include the mandible, patella, 
and dital extremities. In the majority of instances, 
metastases in the appendicular skeleton are secondary 
to lung cancer and are typically located in the scaphoid, 
lunate or phalanges[7] (Figure 1).

PLAIN FILM
Plain radiographs are recommended to assess abnormal 
radionuclide uptake or the risk of pathological fracture 
and as initial imaging studies in patients with bone 
pain[5]. However, radiography is considered insensitive 
to screen for asymptomatic metastases[9]. Limited 
contrast in trabecular bone vis a vis cortical bone 
renders radiographic detection of lesions in the former 
more difficult and studies have shown that more than 
50% to 70% of bone must be destroyed to be reliably 
detected by plain radiographs[2,7]. Osteolytic lesions 
typically demonstrate thinning of trabeculae and ill-
defined margins with the latter representing abnormal 
trabeculae between the centre of the lesion and the 
radiologically normal bone. Conversely, sclerotic met
astases classically appear as nodular, rounded and 
fairly well circumscribed lesions secondary to thickened 
coarse trabeculae[8].

Skeletal metastases may respond to treatment with 
reactive new bone formation, or sclerosis. Sclerosis tends 
to be initiated at the margins of the lesion and progress 
over time towards the centre. Sclerotic change in an oste
olytic metastasis usually indicates a healing response 
to therapy, whereas worsening or developing osteolysis 
within sclerotic or mixed lesions, or progressive enlar
gement of an existing lesion, are indicators of disease 
progression[7]. Disadvantages of plain film for monitoring 
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treatment response are that (1) typically 3-6 mo are 
required before any changes manifest radiographically; 
and (2) plain films only reveal structural bone alterations, 
and do not provide information on the malignant cells 
within the metastatic soft tissue deposit. Furthermore, 
differentiating new sclerotic metastases secondary to 
disease progression from sclerotic lesions caused by 
healing and re-ossification is often challenging[3,6].

COMPUTED TOMOGRAPHY
Computed tomography (CT) provides excellent resol
ution of cortical and trabecular bone and is the imaging 
modality of choice for evaluating the ribs which have 
a high cortex to marrow ratio. The ability to apply 
dedicated bone algorithms to acquired images, adjust 
the window width and level, and view the skeleton in 
multiple planes using multiplanar reformatted images 
all serve to maximise the conspicuity of bone lesions 
and results in a higher sensitivity of CT compared 
to plain radiography in detecting both osteolytic and 
osteosclerotic metastases. The sensitivity and specificity 
of CT for detection of bone metastasis is 74% and 
56%, respectively (Table 1). A major advantage of CT is 
that investigation for skeletal metastasis or evaluating 
treatment response can be performed at the time 

of staging or restaging other organs which reduces 
the burden of imaging for the patient. Despite the 
limited soft tissue resolution of CT vis a vis magnetic 
resonance imaging (MRI), in many instances, CT can 
demonstrate bone marrow metastases before bone 
destruction occurs which results in earlier diagnosis and 
can improve prognosis and prevent complications[6]. A 
further advantage of CT is that it can used to guide percu
taneous biopsy when a tissue diagnosis is required[7]. 

Clinical trials have demonstrated a role for CT in 
evaluating for sclerotic change within a metastatic 
deposit which can occur in response to treatment of 
skeletal metastases with chemo/radiotherapy. Speci
fically, reactive sclerosis may be quantified by calculating 
the change in Hounsfield units within metastatic deposits 
following bisphosphonate therapy, thereby providing a 
valid objective measure of treatment response[3].

MRI
Due to its excellent soft tissue resolution, MRI is the 
imaging modality of choice for assessing metastatic 
spread in the marrow cavity, extension of tumour from 
the marrow cavity and involvement of surrounding 
structures[5]. Furthermore, MRI is highly sensitive for 
detecting skeletal metastasis as it has the capability 
to demonstrate an intramedullary metastatic deposit 
in advance of cortical destruction occurs and before 
a pathologic osteoblastic process manifests as focal 
accumulation of radiotracer on a bone scan (Figure 2)[6,8]. 
The sensitivity and specificity of MRI for detection of 
bone metastasis is 95% and 90%, respectively (Table 1). 
In addition, MRI is the technique of choice in suspected 
cases of cord compression from pathologic vertebral 
body fracture where a compromised oedematous 
spinal cord will demonstrate abnormal focal high T2 
and turbo-short tau inversion recovery (STIR) signal. 
Given that MRI does not involve ionising radiation, it is 
especially suited for the investigation of suspected bony 
metastasis in pregnant women. 

Normal bone marrow contains a high percentage 
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Imaging modality Sensitivity (%)[12] Specificity (%)[12]

18F NaF-PET/CT 100 97
MRI   95 90
SPECT   87 91
18F FDG-PET   98 56
CT   74 56
Bone Scintigraphy   78 48

Table 1  Sensitivity and specificity of imaging modalities in 
bone metastasis

PET: Positron emission tomography; CT: Computed tomography; MRI: 
Magnetic resonance imaging; SPECT: Single photon emission tomography; 
18F FDG: Fluorine 18 labelled fluorodeoxyglucose; 18F NaF: Fluorine 18 
labelled sodium fluoride.

Figure 1  Bone metastasis in the appendicular skeleton is most commonly due to primary lung malignancy. A: Axial computed tomography image of the upper 
thorax (soft tissue window) demonstrating a large right upper lobe mass with ipsilateral pulmonary and lymph node metastasis; B and C:  PA and lateral views of the 
right thumb demonstrating a lytic metastatic deposit in the middle phalanx.
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is manifested on DWI as an increase in the apparent 
diffusion coefficient (ADC) value of the metastatic 
deposit[6]. However, further studies are needed to define 
the precise imaging criteria, for example T1 and DWI 
signal characteristics and/or percentage signal change 
pre and post contrast, which should be used to evaluate 
the treatment response[3].

NUCLEAR MEDICINE
Morphological imaging techniques such as plain film, 
CT and MRI described above interrogate the structure 
of a lesion within bone. Conversely, nuclear medicine 
techniques quantitatively assess the function of bone or 
tumour cells[6]. Prior to describing the role of the nuclear 
medicine imaging modalities most commonly used for 
imaging skeletal metastases, it is pertinent to briefly 
review the various radioisotopes that are employed in 
these studies. For more comprehensive coverage of 
this topic the reader is referred to the recent review by 
Cuccurullo et al[2].

Osteotropic radioisotopes are bone seeking agents 
that accumulate at the site of active bone production 
regardless of whether the aetiology is benign or mali
gnant. The predominant osteotropic agents used in 
skeletal scintigraphy are metastable technetium 99 
labelled diphosphonates, among which methylene 
diphosphonate (99mTc-MDP) is used most commonly 
based on its effectiveness, low cost, widespread availa
bility and favourable dosimetry. 18Flabelled sodium 
fluoride (NaF) is an osteotropic compound used in 
positron emission tomography (PET) which has a higher 
first pass extraction rate than 99mTc-MDP. Indeed, 
studies indicate that the regional extraction of 18F NaF 
from plasma to bone is on average approximately three 
times higher in metastatic lesions than in adjacent 
normal bone tissue. Consequently, 18F NaF has very 
high selectivity for bone metastases, however its 
relatively low specificity when not used in conjunction 
with morphological imaging techniques (see hybrid 

of fat and demonstrates high signal intensity on T1- 
weighted sequences. Osseous metastases usually 
manifest as discrete foci of low T1 signal, corresponding 
to the replacement of normal fatty marrow by malignant 
cells. On a T2-weighted sequence, bone metastases 
usually demonstrate T2 hyperintensity due to their 
elevated water content and gadolinium enhancement 
due to increased vascularity[4,7]. 

The development of whole-body MRI in recent 
years, which uses fast pulse sequences over multiple 
anatomic stations to achieve a survey of the entire 
body, has resulted in the ability to use unenhanced T1-
weighted spin echo and STIR sequences to screen the 
whole body for marrow abnormalities with a sensitivity 
and specificity superior to skeletal scintigraphy[5-7]. 
One limitation of MRI is that cortical bone, with its very 
short T2 relaxation time, is very poorly interrogated. 
Therefore, bones with a low marrow volume such as the 
ribs are better evaluated with CT as described above[6].

An advantage of MRI is that it can sometimes 
be used to distinguish osteoporotic from malignant 
vertebral compression fractures. Oedema from osteo
porotic compression fractures should subside in within 
3 mo. If marrow oedema persists on a follow-up MRI 
study performed at least 12 wk after the initial scan, a 
pathologic fracture is likely[5], however, this correlation 
can be inconsistent and determining if marrow signal 
changes are due to fracture or tumour remains a 
diagnostic challenge using MRI alone[4].

MRI can be used to assess treatment response by 
evaluating the size and number of osseous metastases 
over time. It is important to note, however, that altera
tion in signal intensity alone on a T1-weighted sequence 
does not constitute a response to therapy. Recent studies 
suggest that quantitative diffusion weighted imaging 
(DWI) can be used to evaluate treatment response 
before a change in the tumour burden can be seen using 
non quantitative assessment. More specifically, early 
reduction in tumour cell volume following cell death 
with a corresponding increase in the extracellular space 
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Figure 2  Magnetic resonance imaging is superior to plain radiography for detection of bone metastasis. A: Lateral lumbar spine radiograph demonstrates 
subtle sclerotic metastatic deposits at the inferior endplate of T12 and L1 from a primary breast malignancy; Sagittal T1 (B) and short tau inversion recovery (STIR) (C) 
images of the spine acquired one day later demonstrate diffuse bone metastasis (abnormal low T1 and high STIR signal in the bone marrow) which is not evident on 
the radiograph. 
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imaging below) and the requirement of a cyclotron for 
production are limiting factors in its use[2]. 

In contrast to osteotropic agents, which have a 
high affinity for calcium, oncotropic radioisotopes 
demonstrate uptake into malignant cells and are 
classified as either specific or non-specific. Specific 
oncotropic agents are available to investigate for bone 
metastases from neuroendocrine tumours. For example, 
metaiodobenzylguanidine is a noradrenaline analogue, 
taken up specifically by the sympathetic nervous system 
and related tumours. When labelled with Iodine 123 
or Iodine 131 it may detect bone metastases from 
pheochromocytomas and paragangliomas. In addition, 
somatostatin receptor scintigraphy with Indium 111 
pentetreotide (octreoscan) and PET-CT using Gallium 68 
labelled somatostatin analogues can be used to diagnose 
both organ confined and metastatic neuroendocrine 
malignancies. Further information regarding available 
specific oncotropic tracers can be found on the Molecular 
Imaging and Contrast Agent Database http://www.
ncbi.nlm.nih.gov details. The most commonly used 
non-specific oncotropic radioisotope is the glucose 
analogue 18F labelledfluorodeoxyglucose (18F FDG). 
Uptake of 18F FDG occurs in cells with increased glucose 
metabolism such as neurons and mitotic neoplastic 
cells. Therefore, similar to osteotropic compounds, 
and as their name suggests, non-specific oncotropic 
radioisotopes are sensitive but not specific for skeletal 
metastasis.

SKELETAL SCINTIGRAPHY
Bone scintigraphy continues to be the most widely 
used radionuclide technique for investigation of skeletal 
metastasis primarily due to its widespread availability[2]. 
Radiotracer uptake depends on local blood flow, 
osteoblastic activity and extraction efficiency. Once 

accumulated in bone diphosphonates are absorbed by 
hydroxyapatite crystals on mineralizing bone surfaces[13]. 

A major advantage of radionuclide bone scanning is 
that imaging of the whole skeleton can be performed 
(Figure 3). This is important given that metastatic 
lesions can occur in regions of the appendicular skeleton 
that are not routinely included in a skeletal survey[9]. 
A further advantage relates the high sensitivity of 
scintigraphy which enables earlier detection of osseous 
metastases. The sensitivity and specificity of bone 
scintigraphy for detection of bone metastasis is 78% and 
48%, respectively (Table 1). In particular, studies indicate 
that only a 5%-10% alteration in the ratio of lesion to 
normal bone is necessary to manifest abnormal tracer 
accumulation on a bone scan. As a result, osteosclerotic 
bone metastases can be detected on bone scintigraphy 
up to 18 mo earlier than on plain radiographs[7]. 

Skeletal scintigraphy has some notable limitations. 
For example, bone scintigraphy is non-specific and 
multiple benign osseous lesions, such as eosinophilic 
granuloma fibrous dysplasia and enchondroma, can 
lead to a false positive diagnosis of bone metastasis[14]. 
Interpreting focal accumulation of radiotracer in the 
spine can be particularly problematic as degenerative 
disease may be indistinguishable from bone metastases. 
Consequently, other imaging modalities such as plain 
radiography, CT or MRI are often required for correlation 
to exclude benign causes[8]. Secondly, the spatial reso
lution of scintigraphy is poor measuring approximately 
1 cm and can result in difficulty determining the 
precise location of a lesion within a bone which can be 
of diagnostic significance[2]. Thirdly, bone scintigraphy 
assesses osteoblastic processes rather than tumour 
proliferation and, consequently, false negative results 
can occur[8]. Furthermore, primarily osteolytic lesions 
with limited reactive osteoblastic reaction, such as renal 
cell carcinoma metastases, typically demonstrate low or 
absent tracer accumulation leading to a false negative 
result (Figure 4)[6]. Finally, when bone metastases are 
extensive and diffuse, a bone scan on first inspection 
may appear normal due to the confluent nature of 
the lesions (referred to as a super scan because of 
the apparent good quality of the scan) and can be 
misinterpreted as a negative study[9,13]. It is therefore 
import to carefully assess for uptake in the kidneys 
on skeletal scintigraphy indicative of renal excretion of 
radiotracer which is characteristically absent on a super 
scan.

Certain clues and techniques can help to determine 
if focal uptake of radiotracer is secondary to a benign 
osseous lesion or metastasis. For example, vertebral 
body fractures have a characteristic appearance on 
bone scintigraphy, showing a horizontal linear pattern 
of increased tracer accumulation. Multiple linear abnorm
alities of varying intensity favour a benign aetiology with 
presumed osteoporotic fracture occurring at different 
time points. In addition, a short interval follow-up scan 
that shows reducing activity at a vertebral fracture site 
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Figure 3  Diffuse bone metastasis on bone scintigraphy. Abnormal 
accumulation of radiotracer throughout the spine, most pronounced in the upper 
thoracic spine with additional pelvic and bilateral rib metastases in a patient 
with primary breast malignancy. Focal accumulation of radiotracer in the left 
antecubital fossa represents artefact at the radiotracer injection site.
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suggests a benign aetiology and a healing fracture. 
Secondly, lesions that extend from the vertebral body 
into the posterior vertebral elements or involve the 
pedicle are more likely to represent metastases[13]. 
Finally, linear uptake of radiotracer in contiguous ribs is 
highly suggestive of trauma and not metastasis.

Bone metastases responding to treatment will 
demonstrate reduced or absent radiotracer uptake when 
compared with the pretreatment scan[6]. It is important 
to recognise, however, that early in the course of trea
tment a flare response can occur, which is characterized 
by a transient elevation in radiotracer accumulation 
secondary to the stimulation of osteoblasts during the 
repair process which can be misinterpreted as treat
ment failure, as it can have an imaging appearance 
indistinguishable from disease progression[7]. The flare 
response is most commonly associated with hormone 
based therapies and may last for up to 6 mo after 
therapy[13]. Progression of disease is suggested when 
new deposits develop or there is an interval increase in 
the is activityor size of existing deposits[3].

Single Photon Emission CT
Single photon emission CT (SPECT) imaging of the 
skeleton uses 99mTc-MDP, the same radionuclide 
used in conventional skeletal scintigraphy, however 
images are acquired in a cross-sectional rather than a 
planar fashion. Whereas planar imaging is limited by 

superimposition of structures, SPECT can show axial 
slices through the body, providing better localisation of 
abnormal radionuclide uptake[5,7]. The sensitivity and 
specificity of SPECT for detection of bone metastasis 
is 87% and 91%, respectively (Table 1). A limitation 
of SPECT when compared with other available nuclear 
medicine technique is an inability to generate absolute 
quantification values[6].

PET
PET is a nuclear medicine technique that produces high-
resolution tomographic images through the detection 
of high-energy photon pairs emitted during positron 
decay of a radioisotope. PET is superior to conventional 
bone scanning in terms of spatial resolution. For skeletal 
metastases, 18F NaF or 18F FDG are the radiophar
maceuticals most frequently employed[7].

The uptake mechanism of 18F NaF is similar to that 
of 99mTc-MDP. Specifically, following diffusion through 
the capillary wall into the extracellular fluid, fluoride 
ions undergo gradual exchange with the hydroxyl 
groups of hydroxy-apatite crystal within bone to form 
fluoro-apatite and subsequently deposited primarily 
on the surface of bone where re-modelling is maximal. 
Therefore, 18F NaF-PET demonstrates radiotracer 
accumulation at foci of osteoblastic activity[6,7]. The 
available literature indicates that 18F NaF-PET is 
substantially more sensitive and specific than skeletal 
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Figure 4  Lytic bone metastases are poorly demonstrated on bone scintigraphy. Plain radiograph (A) demonstrating a lytic metastatic deposit in the right proximal 
humerus in a patient with a large right renal cell carcinoma (B); Corresponding abnormal low T1 and high short tau inversion recovery signal on magnetic resonance 
imaging (C and D); Only the small osteoblastic component of the metastatic deposit demonstrates abnormal accumulation of radiotracer on bone scintigraphy (E). 
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scintigraphy and SPECT for detection of metastases, 
particularly for osteolytic lesions[4,15]. In addition, 
comparative studies have demonstrated that 18F NaF-
PET demonstrates higher sensitivity for detection of bone 
lesions when compared with 18F FDG-PET[8]. 

18F FDG-PET is a functional rather than anatomic 
imaging method that detects cellular metabolism of 
a glucose analogue. Many radiopharmaceuticals are 
available that can be imaged with PET, but 18F FDG is 
commonly used in oncology because of the high glucose 
uptake by many tumours[5]. Accumulation of 18F 
FDG is predominantly related to the amount of viable 

tumour cells. However, the sensitivity of 18F FDG-PET 
may vary among different histologies[4]. For example, 
it has been established that certain well-differentiated 
and indolent tumours, such as neuroendocrine and 
bronchial tumours, go undetected by 18F FDG because 
of the poor 18F FDG accumulation. Furthermore, in 
patients with primarily osteosclerotic metastases from 
prostate cancer, 18F FDG-PET has reduced sensitivity 
for the detection of skeletal metastases compared with 
99mTc-MDP scintigraphy[6]. This is due to the reduced 
metabolic activity in sclerotic bone metastases. The 
sensitivity and specificity of 18F FDG-PET for detection 
of bone metastasis is 98% and 56%, respectively (Table 
1).

A major advantage of 18F FDG-PET is the ability 
to compare the maximum standardised uptake value 
of a metastatic skeletal deposit between studies which 
provides an objective measure of the response to 
treatment. However, similar to skeletal scintigraphy, 
a potential limitation of 18F FDG-PET in assessing the 
treatmentresponse of metastatic bone disease is the 
flare phenomenon (described above) which may be 
seen after hormone therapy, which can be challenging 
to distinguish from bone marrow replacement by 
malignant cells, and result in false positive findings[3,6]. 

HYBRID IMAGING TECHNIQUES
It is clear from the preceding sections that the various 
imaging modalities traditionally used to investigate 
skeletal metastasis have idiosyncratic strengths and 
weaknesses. For example, an alteration in the stru
cture of bone in response to treatment may be well 
demonstrated on CT, whereas tumour cell response 
is usually best evaluated using PET[6]. It is intuitive, 
therefore, that combining imaging modalities can 
increase sensitivity and specificity to improve diagnostic 
accuracy. The sensitivity and specificity of 18F NaF-PET/
CT for detection of bone metastasis is 100% and 97%, 
respectively (Table 1). Indeed, technological advances 
have enabled the development of hybrid imaging 
techniques including SPECT/CT, PET/CT (Figures 5 and 
6) and, more recently, PET/MRI. These techniques are 
(semi-) quantitative providing a standardized uptake 
value and allow the fusion of anatomic data from cross 
sectional imaging with functional information from 
nuclear medicine studies. As a result, the radiologist 
can determine if focal radiotracer uptake on a nuclear 
medicine study corresponds to a discrete skeletal 
lesion. Similarly, diagnostic confidence increases when 
an osseous lesion suspicious for metastasis on cross 
sectional imaging avidly accumulates radiotracer. A 
recent meta-analysis by Liu et al[16] found that 18F FDG-
PET was the best modality to detect bone metastasis 
in patients with lung cancer, both on a per-patient and 
per-lesion basis while MRI had the highest specificity on 
a per-lesion basis. Furthermore, PET/CT was shown to 
be better than PET alone.

208 August 28, 2015|Volume 7|Issue 8|WJR|www.wjgnet.com

A

B

C

Figure 5  Single photon emission computed tomography has higher 
sensitivity and specificity for detection of bone metastasis when 
compared with bone scinitigraphy. A: Abnormal accumulation of radiotracer 
in the right clavicle on bone scintigraphy in a patient with primary lung 
malignancy; Axial (B) and coronal (C) single photon emission CT/CT images 
demonstrate the superior spatial and contrast resolution of this hybrid technique 
which enables improved detection and characterisation on bone metastases.
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The highest potential for early diagnosis of skeletal 
metastasis should, therefore, involve a combination of 
MRI and PET. To our knowledge, there is currently no 
published article comparing the accuracy of PET/CT and 
PET/MRI in diagnosing skeletal metastases and work in 
this area is warranted. One disadvantage of the hybrid 
imaging techniques involving CT is the radiation dose 
incurred by the patient, with a typical effective dose of 

approximately 22 mSv[5]. A low dose CT protocol can be 
used without significantly affecting the improved spatial 
localisation afforded by PET/CT vs PET alone, however, 
much of the precise anatomic detail is lost. Recent 
improvements in iterative reconstruction techniques are 
enabling low dose image acquisition while maintaining 
excellent contrast resolution and continued progress in 
this regard is likely.
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Figure 6  Single photon emission emission computed tomography-computed tomography is more sensitive for detection of bone metastasis than 
computed tomography alone. A: Coronal CT image of the left scapula (bone window) in a patient with primary lung malignancy does not demonstrate an aggressive 
bone lesion; Coronal and axial single photon emission CT/CT (B, C) and axial 18F fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT (D) demonstrate 
abnormal radiotracer accumulation in the left clavicle consistent with bone metastasis; E: Coronal PET maximum intensity projection image demonstrating 18F FDG 
avid primary lung malignancy and right hilar lymph node metastasis in addition to the metastatic deposit in the left scapula.
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EXPERIMENTAL IMAGING OF BONE 
METASTASIS
In this overview of imaging skeletal metastasis, it seems 
appropriate to briefly highlight experimental imaging 
strategies currently being explored that may influence 
the future of oncologic imaging.

Optical imaging techniques which involve transgenic 
expression of bioluminescent or fluorescent proteins in 
cancer cell lines are yielding novel information on how 
tumour cells invade, spread, proliferate and respond 
to treatment in small animal models of bone meta
stasis[17,18]. While such advances are critical to advancing 
our understanding of tumour biology, it will likely take 
many years before the results of this research manifest 
clinically.

Imaging research focused on tumour stimulated 
angiogenesis may well lead to improvements in imaging 
skeletal metastasis in the near future. Vascularity of 
osseous metastases can be visualised by cross sectional 
imaging and quantitative data obtained. Specifically, 
dynamic contrast-enhanced (DCE) MRI or CT can be 
employed to quantify variables in tissue vascularity, 
such as blood volume and perfusion. DCE imaging can 
be achieved by sequentially imaging the distribution of 
a systemically administered contrast agent producing 
imaging biomarkers that which can then be used to 
evaluate the response of a tumour to therapies designed 
to inhibit angiogenesis. Using this approach, potential 
treatment responses can be detected at an early stage 
using MRI and CT, before a change in the tumour 
volume can be reliably detected[6]. Therefore, DCE will 
likely continue to develop as a sensitive method to 
evaluate early tumour response.

CONCLUSION
The availability of improved chemotherapy regimens for 
many cancers together with a more aggressive approach 
by surgical oncologists means that many patients are 
now living longer with metastatic disease. Prolonged 
survival of patients with cancer results in a greater 
likelihood of developing distant metastasis which has, in 
turn, led to a higher prevalence of skeletal metastasis[19]. 
In line with these changes, considerable advances in 
imaging technology have enabled more reliable evalu
ation of bone metastases and treatment response. 
Among the various imaging modalities currently avail
able for imaging skeletal metastasis, hybrid techniques 
which fuse morphological and functional data are the 
most sensitive and specific, and PET/CT and PET/MRI will 
almost certainly continue to evolve and become increa
singly important in this regard. At present, however, no 
single imaging strategy is consistently superior for the 
assessment of metastatic bone disease across all tumour 
types and clinical scenarios[9]. The future of imaging 
bone metastasis will likely involve the development of an 
array of new radiotracers which will be tumour specific 

and greatly increase diagnostic accuracy.
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Abstract
AIM: To develop a new type of calibrated, biode
gradable, and imaging detectable microsphere and 
evaluated its embolization safety and efficacy on pig’s 
liver and spleen. 

METHODS: Six kinds of pharmaceutical excipient 
were combined and atomized to form our microsphere. 
Twenty-four male Lanyu pigs weighing 25-30 kg were 
used. The arteries of spleen and liver were embolized 
with Gelfoam, Embosphere, or our microsphere. The 
serum biochemical tests, computed tomography (CT), 
liver perfusion scan, and tissue microscopy examination 
were done to evaluate the safety and efficacy of embo
lization. 

RESULTS: Radiopaque microspheres with a size ranging 
from 300 to 400 μm were produced. Embolization of 
hepatic and splenic artery of pigs with our microsphere 
significantly reduced the blood flow of liver and resulted 
in splenic infarction. The follow-up CT imaging and the 
microscopic examination showed intraarterial degra
dation of Gelfoam and microsphere. The blood tests 
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demonstrated insignificant changes with regards to liver 
and renal functions. 

CONCLUSION: Our microspheres, with the unique 
characteristics, can be used for transcatheter arterial 
embolization with effects equivalent to or better than 
Gelfoam and Embosphere in pigs. 

Key words: Atomization; Pharmaceutical excipient; 
Microsphere; Arterial embolization

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Transcatheter arterial embolization (TAE) is the 
treatment of choice for intermediate stage hepatocellular 
carcinoma. Various embolization materials have been 
designed for this purpose. By using atomization tech
nique and a mixture of pharmaceutical excipient, we 
developed a new type of calibrated, biodegradable, and 
imaging detectable microsphere. We proved that our 
microspheres, with the unique characteristics, can be 
used for TAE with effects equivalent to or better than 
Gelfoam and Embosphere in pigs.

Liu YS, Lin XZ, Tsai HM, Tsai HW, Chen GC, Chen SF, Kang 
JW, Chou CM, Chen CY. Development of biodegradable 
radiopaque microsphere for arterial embolization-a pig study. 
World J Radiol 2015; 7(8): 212-219  Available from: URL: http://
www.wjgnet.com/1949-8470/full/v7/i8/212.htm  DOI: http://
dx.doi.org/10.4329/wjr.v7.i8.212

INTRODUCTION
Hepatocellular carcinoma (HCC), the most common 
primary liver cancer, is the sixth most commonly dia­
gnosed malignancy worldwide[1]. It is also the third 
leading cause of cancer-related mortality[1]. Conventional 
transcatheter arterial chemoembolization (cTACE) 
stands for the treatment of choice for Barcelona Clinic 
Liver Cancer stage B HCC[2,3]. By introducing embolic 
agents through an angio-catheter into the blood vessel, 
transcatheter arterial embolization (TAE) occludes 
tumor feeding vessels and thereby results in tumor 
shrinkage[4,5]. By adding chemotoxic agent(s) to the 
embolic materials, the cTACE evolved into more a 
controlled delivery of chemotherapy in the form of drug-
eluting bead transcatheter arterial chemoembolization 
(DEB-TACE)[6]. 

Commercially available embolic materials include 
metallic coils, oils (lipiodol), non-spherical particles 
(Gelfoam) and microspheres (Embosphere, DC Bead and 
Hepasphere)[7]. As a tumor may recanalize the occluded 
vessels or form new vessels, repeated TAE is required 
in order to control tumor growth and a biodegradable 
embolic material allowing for the re-catheterization 
of previously embolized vessels is therefore, ideally 
preferred. Gelfoam is the only commercially available 

biodegradable embolic material at this time; however, 
it is non-spherical which makes it unable to precisely 
control the level of embolization[8]. 

Calibrated microspheres allow the radiologist to 
choose the size of microspheres according to the size 
of the targeting vessels. The DEB-TACE using drug-
loaded microspheres showed less systemic toxicity and 
drug-related side-effects as compared to the cTACE[9]. 
However, both the Hepasphere and the DC Bead are 
not biodegradable, and it is reported that the long-
term presence of DC Bead microspheres containing 
a potentially harmful drug in the body elicits chronic 
inflammation and thus causes more tissue injury[10]. 
Furthermore, these microspheres including the Embos­
phere are not radiopaque and interventional radiologists 
can only estimate the devascularization through an 
angiography, but do not know the precise site of 
occlusion of the injected microspheres[11]. 

To develop a new type of spherical, biodegradable, 
imaging detectable, and drug-loadable embolic material 
is therefore crucial in order to improve the efficacy of 
tumor embolization treatment. A biodegradable excipient 
able to be formulated with chemotoxic agent(s) and 
radiopaque contrast with suitable consistency will be a 
candidate of material to construct a microsphere for drug 
delivery and vascular embolization. Atomizing technique 
which breaks up bulk liquids into droplets can be applied 
to produce particles of desired shape, size, and density. 
In this study, we constructed a biodegradable radiopaque 
microsphere by atomizing a mixture of pharmaceutical 
excipient and conducted arterial embolization study in 
pigs in an attempt to explore a new microsphere that 
fulfills the above requirements for arterial embolization 
of HCC. 

MATERIALS AND METHODS
Design of animal study 
The experiment was conducted after the approval 
of the ethical committee of the animal center of our 
university and in accordance with the guidelines set 
forth by the Agriculture Council of Taiwan on animal 
care. The animal protocol was designed to minimize 
pain or discomfort to the animals. The animals were 
acclimatized to laboratory conditions (23 ℃, 12 h/12 
h light/dark, 50% humidity, ad libitum access to food 
and water) during experimentation. Twenty-four male 
Lanyu pigs weighing 25-30 kg were included in the 
study. Arterial embolization of the liver with concomitant 
partial embolization of the spleen was used to test 
our newly developed embolic microsphere. Two other 
commonly used embolic materials for cTACE-Gelfoam 
and Embosphere were used for comparison. To better 
understand the acute and midterm effect of the embolic 
materials on pigs while avoid the potential anesthesia 
effects on pigs, blood tests were only checked on 
the day before embolization, 1 and 25 d after the 
embolization. To observe the evolutional change of our 
microsphere, non-enhanced CT scans were performed 
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on Day 4, 12, and 25 after the embolization. To estimate 
the blockade extent of liver blood flow by embolization 
materials, CT perfusion scans were performed on 
the pigs without embolization and immediately after 
embolization. All the animals were sacrificed 28 d after 
the embolization to examine the pathological changes in 
liver and/or spleen relating to embolization. 

Manufacture of new microsphere 
We combined several kinds of excipient from the 
handbook of pharmaceutical excipient to construct 
an excipient possessing suitable consistency for 
embolization. The excipient that we used included 
Lipiodol, Cetyl alcohol, Glycol monostearate, Stearyl acid, 
Polycaprolactone, and Cholesterol. All these materials 
are biodegradable and water insoluble. All these 
excipients were solid at room and body temperature, 
and become self-emulsifying oils at 65 ℃. Such a 
characteristic allowed us to melt and atomize it to make 
it into microsphere. In brief, the atomization procedure 
included a pressure type atomization technique for 
mass production of microspheres and a high frequency 
resonated technique to produce microspheres with a 
specific range of size. The size of microspheres was 
further examined by using a scanning electron micro­
scope. With an aim to embolize intrahepatic arteries, 
microspheres with sizes of 300 to 450 μm were selected 
for the following embolization experiment.

Procedures of arterial embolization 
The animals were fasted overnight and given free access 
to water. They were premedicated with intramuscular 
injection of Atropine (Sintong, Taoyuan, Taiwan) 0.02 
mg/kg, Xylazine (Bayer, Leverkusen, Germany) 0.1 
mL/kg, and Zoletil 50 (Virbac, Carros, France) 10 mg/kg. 
Following endotracheal intubation, the animals were 
anesthetized by using Propofol 12-20 mg/kg per hour 
(Tongchou, Taipei, Taiwan) intravenous injection or 
Isoflurane (Baxter, Guayama, United States) 1%-3% 
200 mL/kg per minute inhalation throughout the 
operation. All animals were subjected to celiac artery 
angiography before the embolization. The procedure 
was performed with a femoral approach by using the 
Seldinger technique. After placing a 4-F introducer 
sheath (Cordis, Roden, the Netherlands), a 2.7-F 
microcatheter catheter (Progreat, Terumo, Tokyo, 
Japan) was used to catheterize the hepatic proper 
artery for liver embolization and one of the branches 
of splenic artery for splenic embolization because 
complete embolization of spleen caused a significant 
morbidity and mortality. As many embolization materials 
were introduced as possible and the end point of the 
procedure was to obtain blood flow stasis of the selected 
hepatic and splenic arteries. 

Blood tests 
By using intramuscular injection of Xylazine (Bayer, 
Leverkusen, Germany) 0.1 mL/kg and Zoletil 50 (Virbac, 

Carros, France) 10 mg/kg to anesthetize pig, serum 
samples were obtained on the day before embolization 
and 1 and 25 d after the embolization. Serum levels 
of blood urea nitrogen (BUN), creatinine, aspartate 
aminotransferase (AST), alanine aminotransferase 
(ALT), and total bilirubin were analyzed by using D and 
P modular analyzer (Roche, Mannheim, Germany). 

Computed tomography 
Each pig was anesthetized when undergoing computed 
tomography (CT) scanning and liver perfusion study. 
CT scanning and perfusion study was performed by 
a 128-section multidetector CT scanner (Definition 
Flash, Siemens Medical Systems; Erlangen, Germany). 
A dynamic study of the selected area was performed 
in a single breath hold at the end of expiration at 
a static table position. A total of 50 mL of nonionic 
iodinated contrast medium was injected at a rate of 5 
mL/s, through an 18-gauge intravenous cannula. The 
liver blood volume (mL/100 mL) and the time that 
the liver started to be enhanced by contrast (time to 
start, second) were used to estimate the immediate 
embolization effects on liver perfusion. 

Histological examinations 
All animals were euthanized by barbiturate overdose 
(intravenous injection, 150 mg/kg pentobarbital sodium) 
for tissue collection. The transected liver and spleen 
harvested on the day of sacrifice were immediately 
fixed in a 10% formalin, sectioned, and stained with 
hematoxylin-eosin to investigate the changes of 
embolized arteries and peripheral tissues of both the 
spleen and liver. 

Statistical analysis 
The blood test results and the CT perfusion index 
between each group of pigs undergoing different 
treatments were analyzed by using one way ANOVA with 
LSD post-hoc test. A P value of < 0.05 was considered 
to be statistically significant.

RESULTS
New microsphere
As shown in Figure 1, microspheres with a size ranging 
from 300 to 400 μm were successfully produced. 
The size and shape were comparable to the current 
commercially used microsphere-Embosphere. Further­
more, due to radiopaque lipiodol being contained in 
our excipient mixture, our microsphere was different 
from the Embosphere in that it was radiopaque under 
fluoroscopy (Figure 2). 

Transcatheter arterial embolizationof liver and spleen
Figure 3A presents the angiography of the liver of pig. 
As there were no liver tumors, embolization materials 
were injected into the hepatic proper artery to embolize 
bilateral intrahepatic arteries. Besides the liver, we also 

214 August 28, 2015|Volume 7|Issue 8|WJR|www.wjgnet.com

Liu YS et al . Chen CY in microsphere for arterial embolization



CT perfusion imaging and study
As shown in Table 2, the embolization effect of our 
microsphere was comparable to that of Embosphere 
and Gelfoam, in that all showed a significant reduction 
of perfused liver blood volume and a delayed contrast 
enhancement of the liver. The liver perfusion scan further 
demonstrated areas in the liver with a reduced blood 
flow after embolization (Figure 4).

CT imaging
As shown in Figure 5, the CT imaging showed retention 
of lipiodol in the liver after embolization by using our 
microsphere which faded away gradually in the subse­
quent follow up imaging. In contrast, both Embosphere 
and Gelfoam are radiolucent and there was no hyper-
intensity area found in the liver of pigs embolized with 
either one of them. 

Pathology examination
Although the ingredients we used for our microsphere 
were all pharmaceutical excipient, the possible liver 
toxicity caused by such mixture can be a concern and 
was checked at first. Microscopically, the liver lobules 
did not have a significant pathology change after 
embolization with any of the three embolization materials 
(Figure 6). Infarction with shrinkage of the embolized 
part of spleen was noted in the pigs that underwent 
Embosphere and our microsphere embolization (Figure 
7A and B) but grossly normal, in pigs embolized with 
Gelfoam (Figure 7C). Upon microscopic examination, 
partial degradation of our microsphere and Gelfoam 
with peripheral leukocyte infiltration within and around 
the embolized splenic vessels was observed which was 
in contrast to the presence of intact Embosphere within 
the embolized vessels (Figure 8). The different severity 
of splenic infarction among gelfoam, embosphere, 
and our microsphere may be therefore, caused by 
the selection of arterial branch on TAE rather than the 
character of embolization materials per se. 

DISCUSSION
In this study, we successfully manufactured a micros­

embolized one of the branches of splenic artery to test 
the embolization effect on spleen (Figure 3B). 

Serum biochemical test
The blood tests confirmed the safety of the new 
microsphere based on our pig embolization experiment 
(Table 1). Similar to pigs embolized by Embosphere or 
Gelfoam, our microsphere embolization only caused 
mild increases in the serum levels of BUN, AST and 
ALT on the day after embolization and all returned to 
baseline at the end of experiment. Although the serum 
creatinine levels were higher in pigs receiving Gelfoam 
embolization on Day 25, the embolization did not cause 
any biochemical abnormality with regards to pig liver 
and the kidneys among groups embolized by different 
materials. 
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Figure 1  The microspheres in scanning electron microscope with a 
magnification of 150 ×.

Figure 2  The gross appearance and fluoroscopy picture of DC bead (left), 
Hepasphere (middle), and our microsphere (right).

Figure 3  The angiography of hepatic artery (A) and splenic artery (B).
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phere by atomizing mixture of pharmaceutical excipient. 
By using pig model, our microsphere was proven to be 
as safe and effective as currently used embolization 
materials-Embosphere and Gelfoam. Our microsphere 
was similar to Gelfoam in that it was biodegradable 
and Embosphere in that it was calibrated. Besides, our 
microsphere was radiopaque which can help radiologists 
to observe and monitor the entire embolization process.

Because the liver has dual blood supply coming from 
both portal vein and hepatic artery, arterial embolization 
by using commercial embolization materials or our 

microsphere did not cause any significant pathological 
or serum biochemical changes. The efficacy of embo­
lization can only be investigated from the reduced blood 
flow of liver on CT perfusion imaging and the extent 
of splenic infarction after embolization of splenic artery. 
Based on these two findings, our microsphere was 
proven to be as effective as Embosphere and Gelfoam. 

The size and the accurate caliber range of embo­
lization microspheres is important to correctly deliver 
it to tumoral or peritumoral vessels. Drug-eluting or 
simple particles of 100-500 μm size are delivered into 
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Day 0 Day 1 Day 25
Gelfoam Embosphere Microsphere Gelfoam Embosphere Microsphere Gelfoam Embosphere Microsphere
(n  = 8) (n  = 8) (n  = 8) (n  = 8) (n  = 8) (n  = 8) (n  = 7) (n  = 8) (n  = 8)

AST 27.8 ± 15.3 24.4 ± 9.9 29.5 ± 12.3     56.4 ± 30.8a,c  34.9 ± 16.7a 103.0 ± 80.4b 23.1 ± 10.5 30.1 ± 20.6 35.4 ± 10.8
ALT 48.3 ± 23.9   34.8 ± 12.1 44.4 ± 20.6   58.9 ± 20.1 46.4 ± 17.3  51.5 ± 26.7    34.3 ± 19.6a,c  22.8 ± 12.6c  40.8 ± 17.0c

T-BIL 0.38 ± 0.15   0.40 ± 0.23 0.39 ± 0.15   0.29 ± 0.20 0.73 ± 1.00  0.68 ± 0.58 0.40 ± 0.14 0.39 ± 0.22 0.56 ± 0.34
BUN 12.1 ± 11.6   8.7 ± 6.4 8.5 ± 3.5 19.4 ± 9.4      18.3 ± 8.5      16.4 ± 9.2 8.7 ± 7.2 7.2 ± 4.1     10.5 ± 4.6
Cr 0.85 ± 0.19   0.75 ± 0.27 0.81 ± 0.21   0.84 ± 0.17 0.73 ± 0.28  0.86 ± 0.25 1.03 ± 0.26 0.86 ± 0.33 0.91 ± 0.18

Table 1  Sequential changes of biochemical tests before and after embolization

a,cP < 0.05 by one way ANOVA test with LSD post-hoc test. AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; T-BIL: Total bilirubin; BUN: 
Blood urea nitrogen; Cr: Creatinine.

Microsphere GelfoamEmbosphere

Figure 4  The liver perfusion scan after our microsphere, Embosphere, or Gelfoam embolization showing blood flow reduced areas (green to blue areas) 
over the periphery of liver.

Day 4 Day 25Day 12

Figure 5  Serial non-enhanced computed tomography scans of pig’s liver taken on 4, 12, and 25 d after the microsphere embolization showing its 
radiopaque characteristic and the gradual fade along with time (white arrow).
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medium-sized vessels that irrigate tumor nodules with 
the aim of producing ischemia and finally exposing tumor 
cells to high concentrations of cytotoxic agents. Particles 

more than 500 μm occlude tumor feeding vessels 
and cause ischemia of both tumor and peritumoral 
liver[12]. By applying the atomizing technique, we were 
able to manufacture microspheres with a narrow size 
distribution as other calibrated materials such as DC-
bead does using a microfluidics technique. 

Drug eluting beads significantly reduced the peak 
plasma concentration of chemotoxic drug when com­
pared with cTACE[13] and therefore, DEB-TACE has a 
lower frequency of adverse events than cTACE[14]. The 
mechanism of drug elution is attributed to an ionic 
exchange process between the hydrogel sulfonate 
or carboxyl counter ions of bead and anionic drug 
moieties[15,16]. Such a characteristic has limited the 
selection of chemotoxic drug to only drugs with anionic 
moieties. Excipient is a pharmacologically inactive 
substance and it can be formulated with the active 
gradient of a medication to give it a suitable consistency 
or form to a drug. Our microsphere was constructed by 
a mixture of excipient and thus has a greater potential 
to combine with various chemotoxic agents for cTACE. 

Visualization of the microspheres during embolization 
would allow radiologists to investigate microsphere 
distribution within the tumor and liver and to evaluate 
as to whether distribution is homogeneous in the vascu­
lature and whether the entire target tissue is embolized. 
All of this information regarding the distribution of 
the microsphere can be further correlated with the 
outcome of patients and would be extremely valuable 
to support the optimization of embolization protocols for 
a given type and size of tumor. Owning to the fact that 
lipiodol was included in our formulation of excipient, our 
microsphere therefore has an additional advantage over 
the currently used microsphere (i.e., Embosphere and 
DC-bead) in that it was visible under fluoroscopy. 

Gelfoam is the only commercially available biode­
gradable embolic material at this time; however, it is not 
spherical and thus unable to accurately control the level 
of embolization. For temporary embolization such as 
repeated TAE designated for controlling tumor growth, 
a biodegradable embolic material clearly preferred. 
Our microsphere was manufactured by biodegradable 
excipient. As evidenced by the histology examination 
and serial follow up CT scan, our microsphere was 
proven to be biodegradable and was therefore, a more 
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Treatment Non-embolized Embosphere Microsphere Gelfoam

(n  = 3) (n  = 3) (n  = 2) (n  = 2)
Blood volume1 12.75 ± 0.69 9.60 ± 1.48 9.42 ± 0.24 10.22 ± 1.24
Mean decrease 3.16 ± 0.82 3.33 ± 0.73   2.54 ± 0.82
P value 0.008 0.004 0.021
Time to Start2 11.40 ± 1.57         15.44 ± 2.10        15.91 ± 0.39 15.44 ± 1.74
Mean delay 4.04 ± 1.33 4.51 ± 1.19   4.04 ± 1.33
P value 0.023 0.009 0.023

Table 2  Hemodynamic changes of liver before and after embolization

1Blood volume estimated by arterial enhancement; 2Time elapsed from contrast injection to the beginning of arterial 
enhancement; Data was expressed as mean ± SD; P value: Embolized group vs non-embolized group by one way 
ANOVA test with LSD post-hoc test.
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Figure 6  Microscopic findings of liver showing intraarterial embolization 
materials (black arrow) and intact peripheral liver lobules (black arrow 
heads) after Gelfoam (A), Embosphere (B), or our microsphere (C) 
embolization (H-E stain, original magnification × 40).
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advantageous embolization material than Embosphere. 
Although our microsphere has been proven to be 

useful for transcatheter arterial embolization in a pig 
model, the detailed physical properties such as rigidity 
to compression and in vivo deformation have not been 
studied. Deformation of microsphere in arteries and 
micro-catheters may lead to a more distal occlusion, and 
thus it is crucial when choosing a optimal sized micros­
phere to embolized targeted arteries[11]. In addition, we 
have not added chemotoxic agent to microsphere to 
evaluate the rate of drug eluting as it may complicate 
the evaluation of adverse effect of our microsphere 
if its safety has not been proved in advance. Studies 
regarding to these properties of our new microsphere 
are now ongoing. 

In summary, our microspheres possess the chara­
cteristics of calibrated, radiopaque, and biodegradable 
and we proved their efficacy for TAE is equal to or better 

than Gelfoam and Embosphere. 

COMMENTS
Background
Conventional transcatheter arterial chemoembolization (TACE) stands for the 
treatment of choice for Barcelona Clinic Liver Cancer stage B hepatocellular 
carcinoma (HCC). Drug-eluting bead transcatheter arterial chemoembolization 
controls the delivery of chemotoxic agent and reduces the side effects of 
chemotherapy. Biodegradable embolic material allows for the re-catheterization 
of embolized vessels and therefore, repetitive TACE. Calibrated microspheres 
allow the radiologist to choose the size of microspheres according to the size of 
the targeting vessels. Currently, there is no commercial microsphere that fulfills 
the above characteristics of an ideal embolization material. 

Research frontiers
The authors constructed a biodegradable radiopaque microsphere by atomizing 
a mixture of pharmaceutical excipient. The conducted arterial embolization 
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Figure 8  Microscopic findings of spleen showing intraarterial embolization 
materials (arrow heads) and periarterial reactions after Gelfoam (A), 
Embosphere (B), or our microsphere (C) embolization (H-E stain, original 
magnification × 40). Note the degrading Gelfoam and our microsphere and the 
intact Embosphere at 28 d after the embolization.

Figure 7  Gross appearance of spleen after Gelfoam (A), Embosphere (B), 
or our microsphere (C) embolization showing various degree of infarction 
over the distal end of spleen.
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study in pigs in an attempt to explore a new microsphere that fulfills the above 
requirements for arterial embolization of HCC.

Innovations and breakthroughs
Unlike DC-bead using a microfluidics technique to produce calibrated 
microsphere, the authors applied atomizing technique to manufacture 
microspheres with a narrow size distribution. The authors’ microsphere was 
constructed by a mixture of excipient and thus has a greater potential to 
combine with various chemotoxic agents than the currently developed drug-
eluting beads which uses ionic exchange process between the bead and anionic 
drug moieties. As evidenced by the histology examination and serial follow up 
CT scan, the authors’ microsphere was proven to be biodegradable and was 
therefore, a more advantageous embolization material than Embosphere. By 
using pig model, their microsphere was proven to be as safe and effective as 
currently used embolization materials-Embosphere and Gelfoam. 

Applications
Before applying the microsphere to patients with HCC, studies for the detailed 
physical properties such as rigidity to compression and in vivo deformation of 
microsphere and the rate of drug eluting from microsphere would be required. 
However, the study has demonstrated a brand new way and idea to produce 
embolization material for future arterial embolization. 

Terminology
Atomization is a technique which breaks up bulk liquids into droplets and has 
been applied to produce particles of desired shape, size, and density. Excipient 
is a pharmacologically inactive substance and it can be formulated with the 
active gradient of a medication to give it a suitable consistency or form to a 
drug.

Peer-review
This is a very well designed animal study. This biodegradable radiopaque 
microsphere has a high potential to develop into a commercial product used for 
transcatheter arterial embolization of HCC.
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