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Abstract
Visceral artery aneurysms (VAA) include splanchnic and 

renal artery aneurysms. They represent a rare clinical 
entity, although their detection is rising due to an 
increased use of cross-sectional imaging. Rupture is the 
most devastating complication, and is associated with 
a high morbidity and mortality. In addition, increased 
percutaneous endovascular interventions have raised the 
incidence of iatrogenic visceral artery pseudoaneurysms 
(VAPAs). For this reason, elective repair is preferable in 
the appropriately chosen patient. Controversy still exists 
regarding their treatment. Over the past decade, there 
has been steady increase in the utilization of minimally 
invasive, non-operative interventions, for vascular 
aneurysmal disease. All VAAs and VAPAs can technically 
be fixed by endovascular techniques but that does not 
mean they should. These catheter-based techniques 
constitute an excellent approach in the elective setting. 
However, in the emergent setting it may carry a higher 
morbidity and mortality. The decision for intervention 
has to take into account the size and the natural history 
of the lesion, the risk of rupture, which is high during 
pregnancy, and the relative risk of surgical or radiological 
intervention. For splanchnic artery aneurysms, we should 
recognize that we are not, in reality, well informed 
about their natural history. For most asymptomatic 
aneurysms, expectant treatment is acceptable. For 
large, symptomatic or aneurysms with a high risk of 
rupture, endovascular treatment has become the first-
line therapy. Treatment of VAPAs is always mandatory 
because of the high risk of rupture. We present our point 
of view on interventional radiology in the splanchnic 
arteries, focusing on what has been achieved and the 
remaining challenges. 

Key words: Visceral artery; Aneurysm; False aneurysm; 
Angiography; Embolization; Stent-graft

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This editorial deals with interventional radio
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what has been achieved and the remaining challenges. 
For splanchnic artery aneurysms, we should recognize 
that we are not, in reality, well informed about their 
natural history. The indications for the embolization of 
aneurysms are limited depending on the morphology 
of the aneurysm and surrounding vessels. Rotational 
angiography and other recently developed imaging 
techniques can help analyze the vascular anatomy of 
every lesion in decision making on the appropriate 
treatment for each patient when choosing between 
embolization, surgery and surveillance. 

Loffroy R, Favelier S, Pottecher P, Genson PY, Estivalet L, Gehin 
S, Cercueil JP, Krausé D. Endovascular management of visceral 
artery aneurysms: When to watch, when to intervene? World J 
Radiol 2015; 7(7): 143-148  Available from: URL: http://www.
wjgnet.com/1949-8470/full/v7/i7/143.htm  DOI: http://dx.doi.
org/10.4329/wjr.v7.i7.143

INTRODUCTION
Visceral aneurysms represent a rare clinical entity; 
however, 10%-20% will rupture and this is accompanied 
by a significant mortality rate of 20%-70%, depending 
on the location of the aneurysm. Their incidence is 
increasing and controversy still exists regarding their 
treatment[1]. The decision for intervention has to take 
into account the size and the natural history of the lesion, 
the risk of rupture, which is high during pregnancy, and 
the relative risk of surgical or radiological intervention. 
For most asymptomatic aneurysms, expectant treatment 
is acceptable. For large, symptomatic or aneurysms 
with a high risk of rupture, endovascular treatment has 
become the first-line therapy[2]. Treatment of visceral 
artery pseudoaneurysms (VAPAs) is always mandatory 
because of the high risk of rupture. The purpose of this 
article is to answer some questions about the current use 
of interventional techniques in the treatment of visceral 
artery aneurysms (VAAs) and VAPAs. 

WHAT ARE THE CURRENT THRESHOLDS 
FOR INTERVENTION IN VISCERAL 
ANEURYSMS?
We can divide the discussion between true VAAs and 
VAPAs because the thresholds are completely different. 
For VAPAs due to inflammation or pancreatitis [e.g., 
splenic, gastroduodenal (GDA), superior mesenteric 
artery (SMA), hepatic, or even renal aneurysms], 
trauma, or those occurring after surgery, the thresholds 
for treatment are very low. Even small aneurysms (2-5 
mm) should be treated regardless of diameter because 
the risk of rupture for VAPAs is not related to their size. 
The type of aneurysm may (rarely) spontaneously 
heal, but in most cases, VAPAs will increase over time 
and eventually rupture. We should treat all of these 
aneurysms immediately after diagnosis, irrespective of 

their location or origin[1-3].
For true aneurysms, the treatment threshold is 

different and depends mainly on anatomic location. The 
threshold for most true splenic artery aneurysms is 2 
cm in diameter at the largest axis. Even if peripheral 
thrombus is present, these aneurysms should be treated 
in cases of an overall diameter larger than 2 cm. Women 
of childbearing age should be treated regardless of the 
diameter because the risk increase significantly during 
pregnancy[3].

One of the vascular complications of portal hyper
tension, which could occur in cirrhotic patients, is the 
development of intrasplenic or extrasplenic aneurysms. 
These lesions should not be treated systematically 
except in cases of aneurysms > 4 cm in diameter and in 
extrasplenic locations. In most cases, multiple, diffuse, 
small aneurysms related to portal hypertension should 
be left untreated and followed by repeat computed 
tomography (CT) or magnetic resonance imaging 
(MRI) examinations. Once the portal hypertension and 
underlying cirrhotic disease is treated (e.g., via liver 
transplantation), the aneurysm may spontaneously 
decrease and completely disappear over time.

Other types of true aneurysms such as GDAs or 
those in the pancreaticoduodenal arcades, which can 
be caused by chronic hyperkinetic flow, should be 
treated as soon as they are diagnosed because they 
are at high risk of rupture, even when small in size. In 
such aneurysms associated with celiac trunk stenosis, 
inversion of the flow in the pancreaticoduodenal arcades 
to revascularize the liver or spleen needs to be preserved 
during the embolization procedure, which is sometimes 
a technical challenge[4].

For true hepatic or SMA aneurysms, the threshold for 
treatment is slightly lower than for splenic aneurysms. In 
most cases, we treat hepatic or SMA aneurysms when 
the large axis is > 1 to 1.5 cm.

The treatment of renal aneurysms is intended to 
prevent rupture either in the urinary tract or in the 
unclosed retroperitoneal space, as well as the develop
ment of systemic hypertension or renal failure in cases 
of intrarenal arteriovenous fistula development. Even 
small aneurysms could be the cause of changes to 
intrarenal hemodynamics and systemic hypertension 
and should, in this case, be treated endovascularly or 
surgically, depending on the type (saccular or fusiform) 
and location. In the case of isolated, non-symptomatic 
aneurysms in the renal arteries, the treatment threshold 
is around 1 to 1.5 cm[1-4].

For both visceral and renal arteries, extraparenchymal 
aneurysms take priority over intraparenchymal aneur
ysms because the risks and severity of major rupture 
and hemorrhage seem significantly higher for proximal 
extraparenchymal lesions.

HOW HAVE THRESHOLDS EVOLVED 
OVER THE LAST TWO DECADES?
The threshold for aneurysm treatment due to pan
creaticoduodenal arcade has evolved and is now very 
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low. This was different 15 to 20 years ago. Considering 
this type of true aneurysm, the relationship between the 
celiac trunk or SMA stenosis and the development of 
hyperkinetic aneurysms was not well known. Only in the 
last 8 to 10 years has the relationship between these 
two conditions been established[4].

The threshold for treatment of renal, hepatic, SMA, 
or splenic aneurysm has been established for 10 or 15 
years, and it has not significantly changed. However, 
we actually can treat all of these types of aneurysms by 
endovascular approaches instead of a more aggressive, 
invasive surgical approach. It’s easier to treat these 
aneurysms now due to the evolution of endovascular 
techniques through a better understanding of peripheral 
conditions, as well as employment of neurovascular 
techniques. For the last 10 years, we have been 
performing peripheral interventions, applying neuro 
techniques for peripheral purposes with success. We 
know that the risks of rupture are very low in SMA or 
hepatic aneurysms < 1 cm, but we can treat these small 
aneurysms efficiently and safely with the endovascular 
approach. Most clinicians and patients prefer that these 
aneurysms are treated, because after treatment, the 
problem is solved. These patients, if left untreated, should 
have follow-up with CT scan, MRI, or ultrasonography 
each year or even every 6 mo.

ARE THERE DIFFERENT THRESHOLDS 
FOR PATIENTS WITH OTHER 
UNDERLYING CONDITIONS?
Patients with vasculitis such as Ehlers-Danlos disease 
type Ⅳ who develop even very small, true aneurysms 
should be treated regardless of the size because the 
risk of rupture is very high due to intrinsic defects in 
the vascular wall. Aneurysms in patients with Ehlers-
Danlos syndrome will invariably increase over time 
and should be treated as soon as the diagnosis has 
been established, preferentially by endovascular 
reconstruction or segmental vascular exclusion instead 
of simple aneurysm coiling[1,2].

IS THERE A RELATIONSHIP BETWEEN 
THE TREATMENT THRESHOLD AND THE 
TYPE OF MATERIAL USED?
The threshold to decide if we treat is never directly 
related to the material we use. For example, a proximal 
3-cm-diameter splenic aneurysm can be treated with 
coiling, stent graft placement, segmental vascular 
exclusion, or even potentially a flow diverter.

Ten years ago, we only used coils or glue, because 
we didn’t have very smooth and flexible microcoils. We 
also didn’t have flexible stent grafts or flow diverters, 
and we couldn’t use an imaging-guided direct per
cutaneous approach in cases of inaccessible lesions 
due to vascular sinuosity or proximal obstruction. With 

the tools and techniques we have today, by preserving 
vessel patency, we can conservatively treat even large-
neck and fusiform aneurysms that could have only been 
treated by segmental vascular exclusion before. Now, 
we can exclude the entire aneurysm and preserve the 
afferent arteries in more than 90% to 95% of cases. It is 
particularly important for splenic and renal function that 
we can treat extraparenchymal or hilar aneurysms while 
preserving the parent arteries and distal flow[1-3]. 

WHAT ARE SOME ADVANCEMENTS 
IN ACCESS TECHNOLOGIES AND 
TECHNIQUES FOR THE TREATMENT OF 
VISCERAL ANEURYSMS?
We have now the opportunity to use neuroendovascular 
tools for peripheral aneurysm exclusion. Over the last 
10 years, many neurological techniques have been 
developed into dedicated peripheral applications. For 
instance, the use of a balloon remodeling technique was 
created initially for neurointerventions by Moret et al[5] 
15 years ago. Ten years ago, one main limiting factor 
in treating visceral aneurysms with large necks was the 
risk of coils protruding outside the aneurysm or occluding 
the parent arteries. The first use of a balloon remodeling 
technique to increase coil density and avoid protrusion of 
coils in the parent artery was performed by Moret et al[5] 
in 1997. This technique is routinely used in some centers 
to overcome limitations due to broad neck, unstable 
microcatheter, or to treat complex renal/splenic/SMA 
aneurysms. The combination of Onyx (Covidien) as an 
embolic agent with Onyx-compatible remodeling balloon 
has been used by several physicians to treat hilar renal 
and SMA aneurysms[6]. To preserve the parent artery, 
we can use bare stents and coiling through the mesh 
of the stent with a microcatheter and microcoils[7-11]. 
Alternatively, we can use kissing stents in cases of 
aneurysms located at bifurcations, which is often the case 
with renal arteries. To preserve vascularization of the 
kidney, we use a double-kissing stent or kissing-balloon 
remodeling technique and detachable coils. Another 
great technical advancement is the use of detachable 
coils instead of pushable coils. For neurointerventions, 
20 years ago, radiologists started using exclusively 
detachable coils for cerebral aneurysm embolization, 
and now there are many types of detachable coils for 
peripheral applications provided by various companies 
(e.g., Terumo Interventional Systems, Boston Scientific 
Corporation, Cook Medical, and Covidien).

This is a significant advancement because it has 
increased the safety of treatment of even large-necked 
aneurysms by reducing the risk of periprocedural distal 
embolization of coils, especially for splenic and renal 
locations.

Hepatic artery aneurysms are probably the easiest 
to treat, as there is dual flow to the liver (arterial and 
portal), and we can we can completely exclude seg
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coils[6,13]. If we cannot reach a distal aneurysm due to a 
tortuous access, we place a small catheter as close as 
possible to the aneurysm and inject a mixture of glue 
diluted by Lipiodol (Guerbet) in variable ratios depending 
on the flow and distance between the point of injection 
and the target. We can inject the glue slowly, moving 
distally to exclude both the aneurysm and the arterial 
segments beyond and behind the aneurysm. This is the 
so-called front-and-back-door occlusion.

In the same way, for inaccessible aneurysms, we 
can use liquid embolics injected through collaterals 
when the main artery has been occluded for another 
reason and the aneurysm still grows or after previous 
artery occlusion, or if coils have been placed but were 
not sufficiently packed. The aneurysm remains open 
because collaterals revascularize the aneurysm, requiring 
navigation of very thin neuro microcatheters through 
tortuous collaterals to occlude the aneurysm using Onyx 
or glue[6,13].

In cases when the aneurysms cannot be accessed 
by an endovascular approach or if proximal injection of 
liquid embolic agents is considered too dangerous, we 
can use a direct percutaneous ultrasound/CT-guided 
approach. This method could be used not only for 
intraparenchymal aneurysms in the spleen, liver, kidney, 
and pancreas, but also for extraparenchymal aneurysms, 
especially for SMA, GDA, or pancreaticoduodenal 
aneurysms that we cannot access safely.

Using cone-beam CT imaging guidance or con
ventional spiral CT, an 18-G guiding needle is first placed 
from the abdominal or back entry site to the target to 
stiffen the tract, and a microcatheter is navigated through 
the external needle into the aneurysm. Thrombin or even 
glue is slowly injected to get an immediate occlusion. 
Sometimes, we can fill the aneurysm with microcoils. 
If the lesion is clearly visible by ultrasonography, it’s 
easy to place the needle through the splenic/renal or 
hepatic parenchyma into the aneurysm. The needle tip 
is clearly visible in the aneurysm by using color duplex 
ultrasonography. This is a major improvement in the 
treatment of visceral aneurysms inaccessible by an 
endovascular approach.

ARE THERE ANY OTHER DEVICES OR 
TECHNIQUES THAT ARE AVAILABLE?
In cases of small aneurysms, there is a risk of per
foration when you place the first coils. If this occurs, 
the coils should be completely placed and detached as 
quickly as possible to stop the bleeding. When using the 
balloon technique, inflation of the balloon stops the flow 
or the bleeding if it occurs and helps solve the problem. 
During placement of the first coil in a small aneurysm, 
the remodeling balloon technique is very useful to avoid 
or address bleeding complications.

Another interesting technical approach to treat 
pseudoaneurysms with liquids while avoiding distal 
untargeted embolization is to inject liquid embolic or glue 

mentally the parent artery that is responsible for the 
aneurysm without any risk of ischemia to the liver. 
Hepatic aneurysms can be treated by different methods 
including coil packing of the aneurysm sac, segmental 
coil trapping of the parent artery (“sandwich technique”), 
placement of a covered stent in cases of proximal or 
relatively straight distal artery, or a combination of bare 
stent and microcoils through the mesh[8-10].

The main challenge is with the SMA and renal arteries 
because we must preserve distal flow and therefore 
maintain parent vessel patency by using remodeling 
coils/Onyx techniques, stent grafts, or a combination 
of bare stent and microcoils. Conversely, in cases of 
extraparenchymal splenic aneurysm, we use a different 
approach. The splenic artery is sometimes difficult to 
navigate, even with small and soft microcatheters. 
However, in most cases of splenic aneurysm, we can 
perform segmental splenic artery exclusion by deploying 
coils distally and proximally. Coil placement on both 
sides of the aneurysm is safe because there is enough 
collateralization through the gastric and pancreatic 
arteries, and this collateralization will revascularize the 
spleen at the ileum and help to preserve the intrasplenic 
blood flow.

We believe that the medial or proximal part of the 
splenic artery can be completely excluded without risk. 
It is probably the best treatment for splenic aneurysms, 
especially for pancreatitis-related pseudoaneurysm.

As mentioned previously, pseudoaneurysm due 
to inflammation, pancreatitis, trauma, and mycotic 
aneurysm should normally not be treated by packing 
the aneurysm alone, even if good results have been 
reported with this technique[12]. These pseudoaneurysms 
should preferentially be treated by segmental artery 
exclusion because the aneurysm is secondary to 
progressive regional arterial wall deterioration. If we only 
treat the aneurysm, the patient is at risk of aneurysm 
recurrence on both sides of the occluded neck because 
the wall is destroyed by the inflammatory process. In 
this case, the best and only efficient and safe treatment 
is to completely exclude the parent artery, distally and 
proximally, to be sure you’ve completely solved the 
regional problem. Placement of a covered stent with 
extensive proximal and distal landing zones could be an 
acceptable alternative.

Stent grafts may be useful to preserve the distal 
vascularization. We have used coronary stent grafts 
because of their high flexibility; they can be navigated 
through tortuous arteries[9-11]. These balloon-expandable 
stent grafts are mounted on very thin microcatheters 
and can reach distal aneurysms. Coronary stent grafts 
are limited by the length and diameters available, 
which range between 9 and 22 mm and 2 and 4.5 mm, 
respectively. Small dedicated stents are now available 
on the market for visceral aneurysms (V12, Maquet).

Inaccessible small aneurysms or pseudoaneurysms 
in the GDA or pancreaticoduodenal arcades may 
also be treated with liquid embolics, such as N-butyl 
cyanoacrylate glue (Glubran2, GEM) or Onyx instead of 
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through the microcatheter just in front of the aneurysm. 
The exact volume of contrast media necessary to fill the 
aneurysmal cavity and segmental arteries in front and 
back is estimated. Before injecting the glue, epinephrine, 
a vasoconstrictor, is injected to induce occlusive spasm 
of the artery distal to the aneurysm[13]. Using this 
technique, there is no risk of glue migration far into the 
distal arteries and parenchyma.

ARE THERE ANY CLINICAL SCENARIOS 
IN WHICH A SURGICAL APPROACH IS 
PREFERRED?
The remaining indications for a surgical approach for 
visceral aneurysms are few, even for the less common 
types of fusiform aneurysms. These aneurysms are 
normally not treated if the dilatation is less than two 
times the normal diameter of the artery. These may 
be treated wit a combination of stents and coils, stent 
grafts (often too rigid), as well as by new devices 
used for neurointervention, such as flow diverters or 
multilayer uncovered metallic stents. Due to vascular 
intima remodeling combined with modification of the 
hemodynamic flow leading to progressive thrombotic 
phenomena inside the aneurysm, the placement of such 
a new device leads to complete aneurysm occlusion 
in most cases while the arterial lumen is kept patent. 
Flow diverter stents are more and more often used to 
treat aneurysms with very large necks or that cannot 
be managed by a remodeling technique or covered 
stent placement because of insufficient safe landing 
zone[14]. When using a covered stent, especially for renal 
aneurysms, we often do not have sufficient landing 
zones on both sides of the aneurysm. This angiographic 
condition seems to be a good indication to use a flow 
diverter stent because there is no need for a landing 
zone with flow diverter implantation. Flow diverters keep 
the side branches patent, which is the main advantage 
of these devices compared to stent grafts.

Some European physicians have used multilayer 
stents to treat fusiform renal artery aneurysms or 
visceral aneurysms that cannot be coiled for technical 
reasons[14]. Preliminary results of the use of multilayer 
intra-arterial stents for peripheral applications are very 
promising. However, flow diverter placement requires 
dual-antiplatelet therapy for a minimum of 4 to 6 mo 
because of the risk of platelet aggregation on the dense 
metallic surface.

For splenic aneurysms, or aneurysms that can be 
treated by parent artery occlusion, we can also place 
Amplatzer plugs (St. Jude Medical). Plugs deployed 
distally and proximally to the aneurysm will lead quickly 
to complete occlusion of the parent artery[1-4]. This 
technique, mainly used for splenic aneurysms as well 
as hepatic aneurysms, seems very promising because 
it is quick, highly efficient, and probably less expensive 
compared to other treatment options. Furthermore, 
Amplatzer vascular plugs are safe in high-flow or 

short-segmental lesion cases, because the device can 
be retrieved and repositioned if the initial location is 
unsatisfactory. The main limiting factor is the rigidity of 
the device. The AVP Ⅳ family from St. Jude Medical is 
the most flexible, but we are still limited because the 
device requires a 4-F, 0.0038-inch inner lumen catheter. 
A new, more flexible microplug from Reverse Medical, 
the MVP microvascular plug, is available in two sizes 
for peripheral vascular use. Comparative trials with 
conventional microcoils are needed.

WHAT TRIALS ARE NEEDED IN THIS 
FIELD?
The thresholds for indication to treat are well known, but 
understanding which type of treatment is best to use 
remains questionable. It will be interesting to see if we 
can get better results by using new devices such as flow 
diverters compared with more conventional coiling or 
balloon remodeling[5,14]. When we coil an aneurysm, we 
completely exclude the aneurysm, but the neck remains 
unclosed even if there is some endothelialization over 
time. When using flow diverter stents, we do not treat 
the aneurysm itself, but we treat the arterial wall defect 
by closing the neck and reinforcing the adjacent side 
wall.

For standard coiling of simple aneurysms, it will be 
interesting to know if better results can be obtained in 
terms of completion and stability of aneurysm occlusion 
if we use hydrogel-coated coils instead of conventional 
uncoated coils.

Studies could also compare the mid- and long-
term results of coiling with hydrogel-coated coils to flow 
diverting stents. For cerebral aneurysms, interventional 
neuro are using more and more flow diverters instead of 
coiling so why not the same trends in visceral aneurysms?
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Abstract
Owing to technical advances and improvement of the 
software, diffusion weighted imaging and diffusion 
tensor imaging (DWI and DTI) greatly improved the 
diagnostic value of magnetic resonance imaging (MRI) 
of the pelvic region. These imaging sequences can 
exhibit important tissue contrast on the basis of random 
diffusion (Brownian motion) of water molecules in 
tissues. Quantitative measurements can be done with 
DWI and DTI by apparent diffusion coefficient (ADC) 
and fractional anisotropy (FA) values respectively. ADC 
and FA values may be changed by various physiological 
and pathological conditions providing additional 
information to conventional MRI. The quantitative DWI 
assists significantly in the differentiation of benign and 
malignant lesions. It can demonstrate the microstructural 
architecture and celluler density of the normal and 
diseased uterine zones. On the other hand, DWI and DTI 
are useful for monitoring the treatment outcome of the 
uterine lesions. In this review, we discussed advantages 
of DWI and DTI of the normal and diseased uterus. 

Key words: Magnetic resonance imaging; Diffusion 
weighted imaging; Diffusion tensor imaging; Uterus 
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Core tip: Diffusion weighted imaging (DWI) and diffusion 
tensor imaging (DTI) sequences greatly improved the 
diagnostic value of magnetic resonance imaging of 
the uterus with the additional benefits of functional 
information. They reflect the microstructural architecture 
and cellular density of the uterine zones and enable 
quantitative evaluation. Depending on this review, DWI 
and DTI appear to be applicable and reliable methods 
for demonstrating physiological changes of the uterus, 
benign and malignant characteristics of uterine zones 
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and monitoring the treatment outcome of the uterine 
diseases. 

Kara Bozkurt D, Bozkurt M, Nazli MA, Mutlu IN, Kilickesmez O. 
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INTRODUCTION
Diffusion weighted imaging (DWI) is a magnetic 
resonance imaging (MRI) sequence structured on the 
basis of diffusion (Brownian motion) of water molecules 
in the extracellular space and is being increasingly used 
to evaluate the female pelvis. The quantitative parameter 
acquired from DWI sequenceis the apparent diffusion 
coefficient (ADC) value. The basic factors affecting the 
ADC values are tissue structures, interactions between 
the molecules and cellular density. Thus, ADC is altered 
by many physiological and pathological conditions of the 
body[1].

Uterus is a fibromuscular solid organ under the 
effect of the hormones and is composed of three layers: 
the endometrial, the junctional and the myometrial 
zones. Physiological (menstrual cycle, menopausal 
period) fluctuations of these zones change the ADC 
values used in the evaluation of uterine abnormalities[1]. 

Diffusion is a multi-dimensional process, which 
occures in different values in different directions 
depending on the microstructure of the tissues. Since 
uterine myometrium is composed of smooth muscle 
bundles and connective tissue diffusion reflects aniso­
tropic features. Though DWI gives information about 
the direction of diffusion and cellularity of the tissue, 
anisotropic characteristics of tissues can be assessed 
appropriately by diffusion tensor imaging (DTI). It can 
be used to detect water diffusion directionality which in 
turn shows the microstructural architecture of normal 
and diseased tissue. Fractional anisotropy (FA) is the 
main quantitative parameter obtained from DTI data. 
Initially DTI has been used to show and evaluate the 
integrity of white matter tracts in neuroradiology. With 
the improvement of the MRI hardware and softwares, 
fast imaging techniques, after the use of DWI also DTI 
was implemented to abdominal imaging for some of the 
abdominal organs like uterus. The initial researches have 
been published regarding DTI of the uterus specimens of 
the patients to whom hysterectomy was performed for 
medical reasons[2-4] and then in vivo on the uterus of the 
patients’[5].

Non-functional (conventional) MRI provides excellent 
anatomical information of the uterus, however, the 
morphological appearance still may not differentiate 
some of the benign and malignant uterine lesions[6]. 
DWI and DTI which provide functional information 
and when combined with conventional MRI become a 

complementary diagnostic tool for the uterus and giving 
more information for the differentiation and extension 
of benign and malignant lesions, and for the follow up 
of treatment outcome after uterine arterial embolization 
(UAE), oncological therapies[7].

In this paper, we aimed to focus on and review their 
diagnostic importance of the DWI and DTI techniques of 
the normal and diseased uterus.

DWI AND DTI TECHNIQUE
Optimal MRI of the female pelvis should be performed 
on a high field strength MRI system (1.5 or 3 T) using 
local phased-array coils. High field strenght MRI and 
phased-array coils increase the signal-to-noise ratio, 
provide high resolution images for the DWI and DTI 
sequences. Besides development of ultra-fast pulse 
sequences such as echo-planar imaging and parallel 
imaging technique, enabled to prevent motion artefacts 
and consequently functional MRI of the female pelvis[8]. 

For conventional MRI T1, T2 and fat saturated T2-
weighted fast spin echo sequences followed with pre 
and post contrast three dimensional gradient-recalled 
echo volumetric interpolated breath-hold sequences 
and three plane imaging is necessary which give 
morphological information about the uterine zones. The 
addition of DWI and DTI sequences to the conventional 
MRI gives functional data about the uterus. 

DWI is acquired by the measurement of signal loss 
after a series of two motion-providing gradient (MPG) 
pulses with the addition of a 180° refocusing radio 
frequency pulse to both sides for enhancing the variations 
of molecular diffusion between tissues. The density of 
MPG pulses is shown by the b-value, an paramount 
criterion affecting the signal intensity of the DWI[7]. An 
appropriate b value is necessary for the female pelvic 
MRI. 

In several studies, DTI has been used to demonstrate 
fiber structures of the ex vivo uterus, because of 
problematic conditions leading to artefacts such as 
body motions, heartbeat, intestinal and respiratory 
movements, and uterine peristalses[2-4]. Fiocchi et al[5], 
examined the DTI of in vivo uterus with a 3 T MRI using 
a 3D tractography algorithm and revealed that DTI is 
useful for imaging fibre architecture of in vivo human 
uterus. 

DWI AND DTI OF NORMAL UTERUS
In reproductive age groups, T1 and T2 signal inten
sity characteristics of the uterine zones (endometrial, 
junctional and myometrial) demonstrate variations 
during ongoing phases of the menstrual cycle and with 
menauposal status. Physiological fluctuations affect the 
normal ADC values used in the evaluation of uterine 
pathologies[6].

On conventional MRI, the endometrial zone reflects 
high signal on T2-weighted sequences, however not 
so high like urinary bladder and low signal intensity on 
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T1-weighted sequences[9]. The junctional zone is the 
inner band of the myometrium and shows a low signal 
intensity in comparison to myometrial zone on T2-
weighted sequences, probably because of multifactorial 
reasons[10]. Existence of compact smooth muscles, low 
water content of the cells, and increased large nuclei 
are the contributing factors[10,11]. The outer band of 
myometrial zone shows high signal intensity on T2-
weighted sequences than the junctional zone, with high 
cellular water content and low cell density[9]. 

The cervix is composed of three different cervical 
zones that may be identified on high-resolution T2-
weighted sequences There is a hyperintense central 
layer, named endocervical canal including mucosa, 
secretions, and plica. Outside of this, there is a middle 
zone, that’s characterized by hypointense signal on T2-
weighted sequences because of fibrous stroma and 
smooth muscle. The peripheral exterior zone includes 
fibromuscular stroma reflecting low-intermediate signal 
on T2-weighted sequences[12]. 

The menstrual cycle includes of three different phases. 
The initial four days of the menstrual phase is nemed as 
menstruation. On the fifth day the proliferative (follicular) 
phase begins and continues until the ovulation which 
is estimated to occure on the 14th day of the menstrual 
cycle. The secretory (luteal) phase begins with ovulation 
and lasts on the first day of the next menstrual period[13].

Tsili et al[13], reported that the ADC values of the 
endometrial and myometrial zones were different in 
the three phases of the cycle (menstrual phase: 1.25 
± 0.27, 1.91 ± 0.35; proliferative phase: 1.39 ± 0.20, 
1.72 ± 0.27; secretory phase: 1.50 ± 0.18, 1.87±
0.28, respectively). A wide variation of ADC values of 
normal endometrial and myometrial zones is detected 
during different periods of the menstrual cycle. These 
variations probably depends on the physiologic-histologic 
fluctuations[14]. In the menstrual period, periodic contrac
tions of the spiral artery walls in the normal endometrial 
zone, cause interruption of the epithelium and rupture 
of the vessels. Endometrial discharge caused by the 
torn ends of venous structures, arteries and glands 
result in restricted diffusion in the endometrial zone 
during the menstrual phase. In the secretory phase, 
expanded uterine glands, prominent arteries in the 
normal endometrial zone, accompanied by less amount 
of cells in stratum basalis and higher interstitial fluid can 
be among the probable explanations for the higher ADC 
values[13].

Kido et al[1], examined both intraindividual and 
interindividual differences of the ADC values of the 
normal uterine zones during the phases of the menstrual 
cycle in young age group. In this report, the ADC values 
for myometrial and endometrial zones were lower in 
the menstrual phase in comparison to the periovulatory 
and the secretoryl phase, although significant variability 
among individuals was reported. These preliminary 
results must be kept in mind, that the menstrual cycle 
and individual differences in reproductive women should 
be taken into account during the interpretation of the 

ADC values of uterine zones[1].
Kuang et al[6], studied the ADCs of the normal 

uterine zones during different periods of the menstrual 
cycle between reproductive women with different ages. 
The ADC values of the uterine zones were statistically 
different from each other. Endometrial ADC values of 
the females in their 30 s were higher than the ones in 
their 20 s and in their 30 s in the midproliferative and 
midsecretory periods. Also the ADC values of endometrial 
zone for all age groups were lower in the midproliferative 
phase in comparison to midsecretory phase, however the 
ADC values of the myometrial and junctional zones were 
not statistically different between the phases and age 
groups. According to this study patient age, menstrual 
period and the zone evaluated should be taken into 
consideration during quantitative evaluation[6].

The relationship of the uterine zonal ADC values were 
investigated by Fornasa et al[15], between the different 
periods of the cycle. The ADC values of the endometrium 
calculated on the fifth day of the cycle were lower when 
compared with periovulatory ADC values at the fundus 
(mean 0.923 mm2/s vs 1.256 × 10-3 mm2/s) and at the 
isthmus (mean 1.297 mm2/s vs 1.529 × 10-3 mm2/s). 
Isthmic endometrial ADC values were higher than the 
fundal ADC values (mean 1.420 × 10-3 mm2/s vs 1.132 
mm2/s). These findings were statistically significant. 
Physiological fluctuations occurring in the ADC values of 
the endometrium of normal females should be kept in 
mind during the interpretation of the DW images of the 
patients[15].

DTI revealed two basic systems of fibers: circular 
and longitudinally oriented fibers as shown ex-vivo. 
Examination of the non cesarean scarred uteri showed 
anisotropy and fiber directions could be depicted[5]. 
Knowledge of the architectural data can help to 
understand the details of functionality during gestation 
and birth. The connective tissue architecture in the 
uterus of reproductive age is composed of three different 
layers. The first inner layer is a non-organized cluster-
like interweaving of the fiber complex, secondly circular 
fibers in the middle layer and finally longitudinal fibers 
in the exterior layer[16]. In the postmenopausal uterus, 
the cervical region primarily includes well oriented 
longitudinal fibers[4].

Fiocchi et al[5], argued that two third of the caesarean 
scarred uteri had altered fiber structure in comparison 
to normal uteri in sutural zone. Numeric data of 13 
volunteers (8 nulliparous-Ⅰ group, 5 with caesarean 
delivery-Ⅱ group) revealed lowest regional fiber 
number and density in the anterior isthmic portion 
(respectively 105, 77 and 9.3, 6.7), suture localization, 
especially in two patients with a big scar caused placental 
complication at subsequent delivery. The mean FA and 
ADC of the whole uterus were 0.4 ± 0.0 and 3.4 ± 0.4 
× 10-3 mm2/s respectively. The ADC of group Ⅰ was 
higher than group Ⅱ, but not statistically significant. In 
this study they concluded that 3 T DTI may show in-vivo 
human uterine fiber structures and may detect significant 
caesarean scars which may lead to subsequent placental 
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metastic lymph nodes with high signal against suppressed 
background signal of normal tissues, and this sequence 
may be used like a positron emission tomography image 
for fast and accurate cancer detection[8] (Figure 1).

Myometrial lesions
The most frequent lesions encountered in the myometrial 
zone are fibroids. These are benign overgrowths of 
uterine muscle, reported to be probably to be found in up 
to 70% of females of reproductive age[22]. 

Myometrial malignant lesions are leiomyosarcomas 
and stromal sarcomas[23]. Some of the benign fibroids, 
in association with different types of degeneration or 
cellular types may lead to high signal intensity on T2-
weighted sequences. Thus, the discrimination of benign 
and malignant myometrial lesions are challenging on 
conventional MRI.

Tamai et al[24] reported that DWI may be an useful for 
discriminating uterine sarcomas from benign fibroids. The 
ADC values of normal myometrial zone and degenerated 
fibroids were higher than uterine sarcomas and there 
was no overlap; however, there was an overlap with 
non-degenerated and cellular fibroids[24]. Pathological 
examination of the large fibroids with central necrosis 
revealed fibrosis. This finding was consistent with 
isotropic diffusion in DTI of the associated lesion. Fibrotic 
leiomyomas include non-parallel collagen fibrils, whereas 

complications. 

DWI AND DTI OF DISEASED UTERUS
The addition of DWI, and DTI sequences which serve as 
functional imaging in the MRI protocol for the evaluation 
of uterine pathologies have been offered by several 
papers[2,3,7,8]. Besides quantitative evaluation with values 
has been found out to be effective in the discrimination 
of malignancy from benign lesions[17-20]. 

Owing to the amount of water and cellular density 
uterine zones exhibit different signal intensities on the 
DWI. The endometrial zone and cervix display high 
signal, however the myometrial zone reflects a lower 
signal and the junctional zone shows a very low signal. 
Kilickesmez et al[8] reported that the mean ADC values 
of the volunteers for myometrial zone 1.76 × 10-3 mm2/s, 
junctional zone 0.99 × 10-3 mm2/s, endometrial zone 
1.65 × 10-3 mm2/s, and cervix as 1.71 × 10-3 mm2/s. 
Malignant lesions mostly display markedly high signal 
intensity on the DWI, due to water diffusion restriction in 
high cellular tissues of the malignant lesions[17,21]. 

Both DWI and DTI of the uterus is generally acquired 
in the axial slices, since the basic sequences of abdomen 
is in the axial plane, to decrease the acquisition time for 
covering whole pelvis along with the uterus.

DWI clearly detects the malignant tumors and 
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Figure 1  Forty-three years old woman with stage III squamous cell carcinoma of the uterine cervix invading vagina. A: Sagittal T2-weighted image of the 
uterus shows cervical cancer (long arrows) extending both to the corpus uteri and vagina (short arrows); B: Sagittal contrast-enhanced T1-weighted image with fat 
suppression shows enhancing cervical cancer (arrows). The tumor invades anterior vaginal wall (short arrows); C: Axial contrast-enhanced T1-weighted image with fat 
suppression shows enhancing cervical cancer (long arrows). There is suspicious invasion of the mass to the rectum (short arrows); D: Diffusion-weighted imaging with 
b = 1000 s/mm2 clearly shows a well-defined hyperintensity mass in the cervical area with no invasion to rectum (short arrows); E: On the apparent diffusion coefficient 
(ADC) map the tumor is hypointense (arrows). The ADC value within the mass is 0.73 × 10-3 mm2/s.

A B C

D E

1

1 Min/max: 662/817
1 Mean/SD: 739.7/32.5
1 Area: 2.77 cm2

1 104 pixels

Kara Bozkurt D et al . DWI and DTI of uterus



there were well-structured collagen bundles neighbou­
ring to smooth muscle cells in the normal myometrial 
zone[25,26]. Irregularity of these collagen bundles could 
be the reason for the lower degree of anisotropy in 
the fibroids when compared with the neighbouring 
myometrium. 

The ADC values may also be beneficial for deter
mining the therapeutic outcome after UAE, radiotherapy 
and/or chemotherapy[7]. The effect of UAE or focused 
ultrasound may be evaluated by the detection of ablated 
tissue with DWI. The ADC values of fibroids after 
treatment are lower when compared with initial ADC 
values[27,28]. 

Endometrial lesions
The most frequent gynecologic malignancy is endome­
trial cancer. It should be discriminated from benign 
hyperplasia of the endometrium along with polyps.

The ADC value of polyps (1.27-1.58 × 10-3 mm2/s) 
and of normal endometrial zone (1.53 × 10-3 mm2/s) is 
significantly higher than endometrial cancer (0.88-0.98 
× 10-3 mm2/s)[24,29] (Figures 2 and 3). 

Histologic grade, stage, level of myometrium invasion, 
existence of nodal metastases, invasion of lymphoid and 
vascular structures all effect the prognosis of endometrial 
cancer. However the most important factor effecting 
prognosis is the depth of myometrium invasion[30]. The 
success of DWI has been improved in the assessment 
of accurate myometrium inavasion detection and in 

differentiating tumor recurrence from post-theraupetic 
findings[31]. The first surgical staging of endometrium 
cancer was proposed in 1988, and than the update of the 
International Federation of Gynecology and Obstetrics 
(FIGO) staging was done in 2009[32]. In this revised FIGO 
staging system, stage ⅠA tumors include the tumors 
invading solely the inner half of the myometrial zone 
and the tumors confined to endometrium[32,33]. Tumors 
infiltrating the exterior half of the myometrial zone are 
defined as stage ⅠB tumors. These revisions include 
simplification of stage Ⅰ disease and determination of 
cervical infiltration as a distinct stage to increase the 
diagnostic value of MRI[30]. 

According to Fujii et al[29], the ADC value was 84.6% 
successful in detecting endometrial cancer. Toba et al[2] 
investigated the feasibility of DTI for evaluating the 
myometrial invasion of endometrial cancer. The degree 
of myometrium invasion was subgrouped as stage E 
(confined to endometrial zone), more than 50%. The 
ADC values of the cancer, inner or exterior myometrial 
zones were not statistically different. Tumoral FA 
values (0.21 ± 0.05) were lower than the inner leyer 
of the myometrial zone (0.44 ± 0.01) and exterior 
myometrium (0.32 ± 0.08) (P < 0.01). The inner or 
exterior myometrial FA values, (0.45 ± 0.05 vs 0.43 ± 
0.04) were not statistically different in stage E cancers. 
However, in stage S and D tumors the FA values of the 
inner or exterior myometrial FA zones were significantly 
different (0.5 ± 0.05 vs 0.3 ± 0.04, P < 0.01; 0.39 ± 0.03 
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Figure 2  A 57-year-old woman with endometrial carcinoma. A: Sagittal contrast-enhanced T1-weighted image with fat suppression shows enhancing endometrial 
cancer with infiltration of myometrium (arrows); B: Sagittal T2-weighted image demonstrating hyperintense endometrial cancer with infiltration of myometrium (arrows); 
C: Coronal fat supressed T2-weighted image reveals a tumor in the corpus uteri (long arrows), and bilateral metastatic lymphadenopathies along the iliac chains (short 
arrows); D: Coronal DWI (b = 1000 s/mm2) shows a marked hyperintense tumor in the corpus uteri (long arrows), and bilateral metastatic lymphadenopathies along 
the iliac chains (short arrows);  E: Axial apparent diffusion coefficient map reveals the right sided metastatic lymph node and endometrium with restricted diffusion.
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vs 0.22 ± 0.01, P < 0.01; respectively). Myometrial 
infiltration of endometrial tumor may be detected with 
the disruption of the anisotropic layer.

DWI and DTI have a potential role for the dis­
crimination of benign and malignant endometrial masses. 
It may also give additional information for preoperative 
assessment and should be performed as a part of routine 
MRI for endometrial tumors. Besides, DWI is a useful 
technique increasing the accuracy of staging[30].

Cervical lesions
Cervical cancer is a common gynaecological tumor. 

However, its incidence has decreased in developed 
countries as a result of screening with the Papanicolaou 
test (Pap smear), cervical cancer is still an important 
cause of tumor-related death in developing countries[34].

ADC measurements made significant supplement for 
the discrimination of normal cervical zone and cancers 
preoperatively. Besides there was correlation between 
tumor type, stage and ADC values[35]. 

According to McVeigh et al[36] the average median 
ADC of normal cervix was statistically higher than 
cervical cancers (2.09 × 10-3 mm2/s vs 1.09 × 10-3 
mm2/s), and returned to the normal level following 
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Figure 3  A 42-year-old woman with endometrial polyp. A: Hypointense polyp in the endometrial cavity on sagittal T2-weighted image mimicking low grade 
endometrial carcinoma (arrows); B: Sagittal contrast-enhanced T1-weighted image with fat suppression shows enhancing endometrial polyp (arrows); C: On the axial 
DWI (b = 1000 s/mm2) image, the mass is hypointense clearly excluding malignancy (arrows); D: Corresponding axial apparent diffusion coefficient (ADC) map. The 
ADC value within the mass is 1.85 × 10-3 mm2/s.
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Figure 4  Thirty two years old volunteer. A: Sagittal T2-weighted image of a normal uterus; B: 3D whole tractography image of the normal uterus. Red colors 
represent a right-left orientation, blue represents a cranio-caudal orientation and green represents an antero-posterior orientation of diffusion. Changes in the intensity 
of the color represent different strengths of anisotropy.
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chemotherapy and/or radiotherapy.
Kilickesmez et al[8] found out a statistically significant 

difference between the ADC values of malignant (0.88 
± 0.11) and benign (1.55 ± 0.33; P < 0.01) uterine 
lesions. In this study they reported a cut-off ADC level 
for malignant lesions at 1.05 × 10-3 mm2/s with a 
sensitivity, specificity, and accuracy of 95.83%, 94.55%, 
and 94.94%, respectively. This study demonstrated 
that quantitative DWI has the potential to discriminate 
normal and malignant lesions of the uterus. 

However, correlation of DWI and DTI with reference 
sequences is essential for the reason that resolution 
is relatively low and normal structures such as lymph 
nodes, bowel loops, and hemorrhage, endometromas, 
may show high signal like cancers on DWI[8] (Figure 
4). This phenomenon may lead to false-positive visual 
assessment. However, quantitative evaluation with ADC 
and FA values or correlation of DWI, DTI with reference 
sequences may overcome this[37].

Although not clearly proved like DWI (low ADC in 
malignant tumors), quantitative DTI also reveals diffe
rence in the FA value of benign vs malignant tissue, 
however statistical significance can be much more 
less detected. Besides there is confusion regarding FA 
value alterations which should be evaluated with further 
studies[2,38,39]. 

CONCLUSION
According to this review, DWI and DTI emerge to be 
applicable and reliable sequences for the determination 
of physiological fluctuations of the uterus, detection 
of malignant lesions of the uterus and monitoring the 
therapeutic outcome. When combined with conventional 
MRI sequences, DWI and DTI provide further data about 
physiological and pathological conditions of the uterus. 
DWI and DTI are noninvasive, do not cause radiation 
exposure or need for contrast injection. 
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Abstract
Colorectal cancer is one of the few malignant tumors in 
which synchronous or metachronous liver metastases 
[colorectal liver metastases (CRLMs)] may be treated 
with surgery. It has been demonstrated that resection 
of CRLMs improves the long-term prognosis. On the 
other hand, patients with un-resectable CRLMs may 
benefit from chemotherapy alone or in addition to liver-
directed therapies. The choice of the most appropriate 
therapeutic management of CRLMs depends mostly on 
the diagnostic imaging. Nowadays, multiple non-invasive 
imaging modalities are available and those have a pivotal 
role in the workup of patients with CRLMs. Although 
extensive research has been performed with regards 
to the diagnostic performance of ultrasonography, 
computed tomography, positron emission tomography 
and magnetic resonance for the detection of CRLMs, 
the optimal imaging strategies for staging and follow 
up are still to be established. This largely due to the 
progressive technological and pharmacological advances 
which are constantly improving the accuracy of each 
imaging modality. This review describes the non-invasive 
imaging approaches of CRLMs reporting the technical 
features, the clinical indications, the advantages and 
the potential limitations of each modality, as well as 
including some information on the development of new 
imaging modalities, the role of new contrast media and 
the feasibility of using parametric image analysis as 
diagnostic marker of presence of CRLMs. 
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Core tip: The present review describes the non invasive 
imaging approaches of colorectal liver metastases 
colorectal liver metastases (CRLMs) reporting the technical 
features, the clinical indications, the advantages and the 
potential limitations of each modality [ultrasonography, 
computed tomography (CT); magnetic resonance imaging 
(MRI), positron emission tomography (PET)/CT, PET/MRI] 
as well as including some information on the development 
of new imaging modalities, the role of new contrast media 
and the feasibility of using parametric image analysis as 
diagnostic marker of presence of CRLMs.

Mainenti PP, Romano F, Pizzuti L, Segreto S, Storto G, 
Mannelli L, Imbriaco M, Camera L, Maurea S. Non-invasive 
diagnostic imaging of colorectal liver metastases. World J Radiol 
2015; 7(7): 157-169  Available from: URL: http://www.wjgnet.
com/1949-8470/full/v7/i7/157.htm  DOI: http://dx.doi.org/10.4329/
wjr.v7.i7.157

INTRODUCTION
Annually over 130000 new cases of colorectal cancer 
(CRC) are diagnosed in the United States, representing 
the third most common cancer in both men and women, 
with more than 50000 deaths each year[1].  

Liver metastases are detected approximately in 
up to 20%-25% of patients with CRC at the time of 
diagnosis[2]. The 5-year cumulative rate of metachronous 
colorectal liver metastases [colorectal liver metastases 
(CRLMs)] is reported to be 15%[2]. Overall, approximately 
50% of patients with CRC will develop liver metastases[3]. 

CRC is one of the few malignant tumors in which 
synchronous or metachronous liver metastases may 
be treated with surgery. CRLMs are resectable in about 
20%-30% of the cases[4] with a 5-year survival of about 
50%-60% in comparison to a survival of less than 5% 
of patients with CRLMs not amenable to liver surgery[5]. 

In patients who are not suitable candidates for 
surgery, chemotherapy alone or in addition to local 
hepatic treatments, such as intrahepatic arterial infusion 
chemotherapy or radiofrequency ablation or laser therapy 
or cryotherapy, may be performed. These treatments 
options have been shown to increase survival, too[6-11].

Common to any therapy is the need for pretreatment 
anatomic planning to assess feasibility and avoid injury 
to adjacent structures such as vasculature, biliary ducts 
and surrounding organs. 

The surgical criteria, which permit to select the 
candidates for liver resection, are represented by the 
size of the lesion, number and location with respect to 
anatomic landmarks of the CRLMs, as well as the number 
of segments involved, the volume of the remaining liver 
and the general clinical parameters[6,7]. Metastases can be 
completely resected if at least 2 adjacent liver segments 
can be spared and if the future liver remnant is at least 
20% of total pre-resection liver volume[8] in patients with 
normal liver function and more than 40% in patients with 

reduced liver function[12,13]. 
Moreover anatomic variants of hepatic arteries, biliary 

tree and portal venous system need to be excluded 
because the surgical resection may be problematic, and 
thus additional surgery steps may be required[14]. 

Obviously, diagnostic imaging plays a crucial role 
in selecting the more appropriate therapy for patients 
with CRLMs, by detecting the lesions, determining the 
resectability and assessing the response to treatments. 

Even though many non invasive imaging modalities 
are now available and effective in detection and follow 
up of CRLMs, such as ultrasonography (US), computed 
tomography (CT), positron emission tomography (PET) 
and magnetic resonance imaging (MRI), each offering 
some advantages as disadvantages over the others, the 
optimal imaging strategy in patients with CRLMs have 
still to be designed. 

The lack of a worldwide well defined CRLMs imaging 
protocol is in part due to continuous and rapid tech
nological and pharmacological developments which 
are progressively improving the performance of each 
imaging modality. 

This review describes the non-invasive imaging 
approaches of CRLMs reporting the technical features, 
the clinical indications, the advantages and the potential 
limitations of each modality, as well as including some 
information on the development of new imaging moda
lities, the role of new contrast media and the feasibility of 
using parametric image analysis as diagnostic marker of 
presence of CRLMs. 

US
Because of its non-invasive character, low cost, no radia
tion exposure, good patient acceptance and widespread 
availability, US is often the first choice for screening 
patients with malignancy and/or suspected liver lesions,
and it is widely used in the evaluation of liver meta
stases[15-19]. 

In particular, the sensitivity of US for CRLMs detec
tion is variable ranging from 50% to 76%[17,20]; however 
US sensitivity depends mostly on the size of the lesion 
and it can be as low as 20% if liver lesions are less than 
10 mm[15,16]. Despite of this limitation, in daily practice, 
US plays still a clinical role in distinguishing two different 
groups of patients with liver metastases: (1) patients 
with diffuse metastases who are no longer eligible for 
curative treatment; and (2) patients without metastases 
or a very limited number of them. Further diagnostic 
investigation with tomographic imaging is mandatory 
for the patients of the group 2 to define the correct 
therapeutic management. 

During the last few years, the contrast-enhanced 
ultrasound (CEUS) has progressively gained a huge role 
in the evaluation of liver lesions, improving detection 
and characterization of both primary or secondary 
liver lesions[21-28]. The added role of CEUS compared 
to the baseline US (b-US) has been observed for 
CRLMs detection, too[29]. A few studies have shown a 
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significantly better sensitivity of CEUS vs b-US in the 
identification of CRLMs measuring less than 10 mm; 
moreover CEUS should replace b-US for the detection 
of CRLMs in patients being treated with neoadjuvant 
systemic chemotherapy[30-33].

Westwood et al[29] in their recent meta-analysis 
of 19 studies on liver CEUS with Sonovue stated that 
CEUS shows a similar performance to liver CT and MRI 
in the characterization of incidentally detected focal liver 
lesions with lower costs respect to MRI and it may be 
adequate to rule out CRLMs; in particular, similarly to CT 
and MRI even with CEUS the CRLMs are better detected 
in post-contrast portal and late phases[31].

Nevertheless some limitations of CEUS need to 
be considered. CEUS presents still low sensitivity for 
very small focal liver lesions (< 5 mm), due to the low 
spatial resolution, and thus very small CRLMs might be 
missed[29]. In addition, CEUS does not go beyond certain 
limitations of the US examinations, like the difficulty 
in the evaluation of the sub-diaphragmatic liver or the 
interposition of the intestine, and above all the notable 
weakness of being operator dependent. Moreover liver 
steatosis and fibrosis are an important limitation that 
can increase the possibility of missing deep seated 
metastases[34]. Finally, another aspect to consider is 
that CEUS does not offer comprehensive information for 
surgical planning as both CT and MRI do. Bolondi et al[35] 
report that even if the use of CEUS is largely accepted 
in clinical practice its role in the diagnostic algorithm of 
liver lesions has not yet been established. 

Beyond the scope of the present review because of 
the invasive approach, the following US technique merit 
to be mentioned: the US-guided percutaneous biopsy 
which allow characterizing indeterminate hepatic lesions 
and the intra-operative ultra-sonography which offer the 
highest accuracy rates in CRLMs detection[36,37]. 

MULTIDETECTOR CT 
Multidetector CT MDCT is considered the imaging 
modality of choice for CRC staging and follow up, 
because it provides excellent coverage of the entire 
chest/abdomen/pelvis offering a global one session 
staging. Nevertheless up to 25% of CRLMs may be 
missed[38]. The current MDCT devices enable high spatial 
resolution studies of the entire liver generating slice 
thickness ≤ 1 mm and isotropic pixel sizes and, thus, 
allowing high quality reformatted multiplanar (MPR) 
and volumetric three-dimensional rendering (3D VR) 
reconstructions. The resulting high definition images 
define accurately the main features of each lesion, as the 
sizes, the margins, the segmental spatial distribution, 
the relation with the vascular and biliary structure, and 
the volume of the remaining liver. 

The additional diagnostic value of using thin colli
mation in the detection of hepatic lesions is debated. 
Some authors have demonstrated that the use of a 
thinner section thickness (i.e., 2.5 mm vs ≥ 5 mm 
slice thickness) at CT improves the detection of hepatic 

lesions[39], as well as, the accuracy of 16-MDCT using 
a 1.5 mm collimation might be superior to previous CT 
techniques in differentiating between hepatic metastases 
and hepatic cysts[40]. On the contrary, other authors 
reported that image reconstruction with MDCT at 
collimations less than 5 mm did not improve sensitivity in 
the detection of hepatic metastases 1.5 cm or smaller[41], 
as well as, a slice thickness ≤ 1 mm does not improve 
hepatic lesion detection and it provides a significant 
increase of image noise[42]. As a result of the above 
information, a CRLMs protocol scanning of 2-4 mm of 
collimation may be recommended. 

The value of unenhanced scans lies mainly in the 
characterization of small lesions as being solid or cystic 
or in the identification of calcified CRLMs. About the 
contrast-enhanced (ce) scanning protocol, the venous 
phase is well recognized as the optimal timing to 
detect CRLMs. Arterial and equilibrium phase CT have 
no incremental value compared to hepatic venous 
phase MDCT in the detection of CRLMs, as a result a 
multiphasic scanning protocol implies an unjustified 
additional radiation exposure[43,44]. Moreover the single 
portal venous phase contrast enhanced MDCT (ce-
MDCT) scanning protocol enables accurate preoperative 
assessment of the local CRC staging (T and N), too[45]. 

The performance of MDCT in the CRLMs detection is 
variable showing unsatisfactory sensitivity and specificity 
values for lesions < 10 mm[46] or in presence of fatty 
liver which is often a consequence of chemotherapy[47]. 
Furthermore, incidental findings such as small heman
giomas and cysts measuring less than 10 mm in size can 
be difficult to differentiate from metastases because of 
volume averaging[48,49]. 

Contrast medium allergies as well as renal impair
ment may limit the use of the ce-CT; however they do 
not represent absolute contraindications because of the 
possibility of a supporting therapy. 

MRI
Currently, MRI represents the most accurate modality 
for evaluating CRLMs; it provides anatomic details and 
has a high detection rate, even for lesions smaller than 
10 mm[38,48-51]. 

The recent technological advances (high magnetic 
field strength > 1 T, high gradients, parallel imaging 
techniques, fast dynamic sequences, breath-hold 
sequences) have improved the liver application of MRI 
increasing the signal-to-noise ratio, the contrast-to-
noise ratio (CNR), the spatial resolution and the image 
quality as well as reducing the scan times.

The unenhanced standard MRI protocol for detecting 
and characterizing focal liver lesions includes both T1- 
and T2-weighted images. For T1-weighted imaging, the 
in-phase and opposed-phase gradient-recalled echo 
(GRE) sequences are acquired to assess the presence of 
parenchymal fatty infiltration or focal sparing of diffuse 
fatty infiltration. For T2-weighted imaging, the turbo-
spin echo (TSE) or the fast spin echo without and with 
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have to be reported about the differences between 
MRI and CT contrast-enhanced scanning protocol: the 
exposure to ionizing radiation suggests to use single 
phase CT protocol and to reserve multiphasic studies 
only when really necessary; although the MRI of the 
liver is the most accurate modality for detecting CRLMs, 
in the clinical practice it is frequently used after a staging 
whole-body ce-MDCT to solve problems of differential 
diagnosis; that is why a multiphasic MRI liver protocol 
may be necessary to characterize correctly a liver lesion 
defined as undetermined at ce-MDCT. 

Gadolinium-based contrast agents may cause 
collateral effects, such as acute non-renal adverse 
reactions (e.g., anaphylactoid reactions), acute renal 
adverse reactions (e.g., contrast induced nephropathy), 
delayed adverse reactions [nephrogenic systemic fibrosis 
(NSF)] and problems at the site of injection (e.g., local 
necrosis)[60]. NSF is a rare potentially fatal disease 
that has been observed in patients with severe renal 
insufficiency exposed to gadolinium contrast agent. 
To prevent the risk of NSF it is suggested to avoid the 
intravenous (iv) administration of gadolinium contrast 
agents in patients who have a glomerular filtration rate 
lower than 30 mL/min per 1.73 m2 as well as in those 
who are on dialysis or have acutely renal impairment. 
This point represents a recommendation rather than an 
absolute contraindication.  

Reticulo-endothelial contrast agents
All reticuloendothelial system (RES) agents are super-
paramagnetic iron oxide-based contrast agents (SPIO). 
SPIO particles are taken up by RES cells of the normal 
liver parenchyma, the spleen and the lymph nodes. They 
shorten T2 and T2* relaxation times resulting in a loss 
of signal intensity in normal liver parenchyma. On the 
opposite, malignant liver lesions do not have a substantial 
number of RES cells and appear as hyperintense lesions 
with distinct borders in contrast to the hypointense liver 
parenchyma after application of SPIO on T2-weighted 
MRI. 

Although SPIO agents have showed high accuracy in 
the detection of liver lesions[40,61-64], hepatocyte-specific 
contrast agents are preferred to these molecules in 
clinical practice[65].

Hepato-biliary contrast agents
Hepatobiliary agents represent a heterogeneous group 
of paramagnetic molecules of which a fraction is taken 
up by hepatocytes and excreted into the bile. On T1 
weighted images, lesions not containing hepatocytes are 
hypointense to the surrounding enhanced parenchyma 
during the hepato-biliary phase (HBP). Presently, the 
hepatobiliary agents actually available are mangafodipir 
trisodium (MT, Teslascan®, GE Healthcare), godobenate 
dimeglumine (Gd-BOPTA, Multihance®, Bracco) and 
gadoxetic acid (Gd-EOB-DTPA, Primovist®, Schering). 

MT has limited assessment of vascular structures due 
to its inability to be administered as a bolus. Gd-BOPTA 
and Gd-EOB-DTPA show biphasic liver enhancement 

fat suppression are preferred over the single-shot TSE 
pulse sequences, because the latter do not offer an 
optimal soft tissue contrast. For detection of focal lesions 
a TE of approximately 80-100 ms is adopted, however 
a heavily T2-weighted sequences with a time of echo of 
approximately 160-180 ms may help in differentiation 
between solid and non-solid lesions (e.g., metastasis/
HCC vs haemangioma/cyst)[52-54].

Recent clinically important advances in MRI include 
the addition of diffusion-weighted imaging (DWI). DWI is 
a functional technique that looks at the Brownian motion 
of water in tissues. In biological tissues, the Brownian 
motion is restricted by interactions with cell membranes 
and macromolecules on a microscopic level as well as 
it is modified by any architectural tissue changes[55]. 
Increased tissue cellularity observed in tumors restricts 
Brownian motion, which can be quantified by calculation 
of the apparent diffusion coefficient (ADC) on derived 
ADC parametric maps. Of note, ADC has been shown 
to be inversely correlated with tumor cellularity and it 
can be considered a quantitative biomarker parameter 
of pathology. Metastases tend to restrict diffusion and 
the addition of DWI to the standard liver MRI protocol 
improves sensitivity and specificity for lesion detection 
and characterization[56-58]. The added value of DWI is 
even more evident in the detection of CRLMs ≤ 1 cm 
with sensitivity of 92% compared to 71% of late phase 
hepato-biliary contrast agent MRI[59]. Hence, these 
sequences are now routinely included in a liver MRI 
protocols. 

Successively, the contrast-enhanced sequences 
are performed. Three different groups of MRI contrast 
agents for hepatic imaging are available: the non-specific 
extracellular gadolinium chelates, the organs-specific 
(reticulo-endothelial) and the liver-specific intracellular 
(hepato-biliary) contrast agents. 

Non-specific gadolinium chelates
Extracellular gadolinium chelates are the contrast agent 
more frequently used for MRI. Several agents with similar 
properties are on the market, including gadopentetate 
dimeglumine (Magnevist, Schering, Berlin, Germany), 
Gd-DTPA-BMA (Omniscan®, GE Healthcare, Chalfont 
St. Giles, United Kingdom) and Gd-DOTA (Dotarem, 
Guerbet, Aulnay-sous-Bois, France). 

Non-specific extracellular gadolinium chelates have 
pharmacokinetics similar to those of iodinated contrast 
agents and are excreted almost exclusively by passive 
glomerular filtration through the kidneys. Because of 
their small size, gadolinium chelates are rapidly cleared 
from the intravascular space into the extracellular 
interstitial space according to the concentration difference 
of the contrast agent between the two compartments. 
The transfer of the molecules occurs in the opposite 
direction, when the concentration gradient inverts[60]. 

About the contrast-enhanced scanning protocol, 
the T1-weighted 3D-GRE breath hold (BH) sequences 
are obtained during the arterial, portal venous phase 
and the equilibrium phase. The following considerations 
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with an early vascular and extracellular phase allowing 
arterial, portal venous and equilibrium phase and a 
delayed HBP with a peak to 20-40 min for Gd-EOB-
DTPA and 60-90 min for Gd-BOPTA. The advantages 
of the Gd-EOB-DTPA over Gd-BOPTA are the higher 
biliary excretion approximately close to the 50% of the 
delivered dose respect to 3%-5%, the high relaxivity, 
the earlier onset and the longer duration of contrast, 
which facilitates imaging and image quality[65,66].

HBP improves the sensitivity of MRI in the detection of 
CRLMs[59]. In addition hepatocyte-specific contrast agents 
allow detection of the “disappearing liver metastases”[13],
which mimic a complete response to neoadjuvant che
motherapy leading to a mismatch between imaging 
response and true pathological complete response. A 
false complete imaging response is more often observed 
with CT and PET-CT[67], while the current data suggest 
that MRI with hepato-biliary contrast agents represent 
the most appropriate imaging modality for assessment 
of patients with CRLMs treated with neoadjuvant 
chemotherapy[68].

Despite of the great ability of MRI in detection of 
CRLMs, above all with the introduction of DWI and 
HBP, this modality still presents some limitations in 
patients who have difficulty holding their breath. 
Motion artefacts can heavily degrade images especially 
in dynamic acquisitions. Different sequences can be 
performed to study dynamic and HBP such as volumetric 
interpolated BH examination (Siemens Healthcare, 
Erlangen, Germany), liver acquisition with acceleration 
volume acquisition (GE Healthcare, Waukesha, Wis), or 
enhanced high-resolution isotropic volume excitation 
(Philips Healthcare, Best, the Netherlands) or respiratory-
triggered T1-WI, this latter independent from patient’s
collaboration[69]. Recently Yoon et al[70] have evaluated 
in a large number of patients the image quality and 
diagnostic performance in evaluation of focal liver lesions 
of the respiratory-triggered 3D T1W-GRE sequence 
compared to standard BH T1W-GRE in HBP. Their results 
demonstrate that in no-collaborative patients respiratory-
triggered 3D T1W-GRE images showed clearer liver 
margins and intrahepatic vascular structures as well as 
better image quality, so providing a better diagnostic 
performance. Overall image quality of respiratory-
triggered 3D T1W-GRE was also better than that of 
BH T1W-GRE in patients with sufficient breath-holding 
capacity (n = 309, 3.96 ± 0.88, 3.81 ± 0.6, respectively, 
P < 0.001).

18F-FDG-PET AND 18F-FDG-PET/CT
18F-FDG-PET is the most sensitive non-invasive imaging 
modality for the detection of CRLMs on a per patient 
basis[15,38,49,50]; however PET is limited by the low spatial 
resolution, the lack of clear anatomic landmarks, and 
the physiological uptake of the parenchyma which can 
mask small hepatic lesions. As a result, the detection 
of CRLMs by 18F-FDG-PET is directly related to the size 
of the liver metastases: 14% of hepatic lesions ≤ 15 

mm[71] and 5%-36% of hepatic lesion ≤ 10 mm[72-74] 
were identified by 18F-FDG-PET. 

Therefore, to overcome the above limitations, PET 
has been combined with CT to realize the hybrid modality 
PET/CT. This combination provides simultaneous 
functional and anatomic diagnostic information. The 
combination of PET with CT improves the distinction of 
physiological 18F-FDG uptake from pathology and also 
aids the localization of metastases within the segmental 
anatomy of the liver, but does not overcome the intrinsic
limits of PET modality such as the poor spatial resolution 
or the inaccurate identification of small non-hyper
metabolic lesions. That is why performing the CT of 
the PET/CT examination with the administration of iv 
iodinated contrast medium improves the performance 
of the PET/CT modality. 18F-FDG-PET/ce-CT increases 
significantly the detection of CRLMs compared with 
18FDG-PET/CT[75]. 

18F-FDG-PET does not require breath holding during 
acquisition, thus respiratory movements may reduce 
conspicuity of small liver lesions with potential errors 
in the detection of focal sub-diaphragmatic 18F-FDG 
uptakes and respiratory phase mismatch between 
the PET and CT data. Revheim et al[76] have recently 
investigated the added role of two tailored 18F-FDG-
PET liver protocols [prolonged liver acquisition time (PL-
PET) and repeated breath-hold respiratory gated liver 
acquisition (RGL-PET)] to a standard whole body (sWB) 
18F-FDG-PET/CT protocol to improve detection of CRLMs. 
The PL-PET protocol lasted 8 min and covered the liver 
with two bed positions, while patients of the RGL-PET 
protocol were asked to alternate breaths and BHs for 10 
min. The addition of tailored liver-specific 18F-FDG PET 
protocols to sWB-PET scan improved the detection of 
CRLMs compared to sWB-PET alone; more lesions were 
detected and a higher CRLMs SUV max was measured, 
with a substantial reduction of the background noise 
related to physiologic liver uptake. 

The role of PET/CT in CRLMs is yet evolving. Due 
to the high cost and an additional radiation exposure, 
18F-FDG-PET/CT is reserved for the detection of occult 
extra-hepatic disease in patients with CRLMs amenable 
of surgical resection to avoid the morbidity of a futile 
invasive therapy[77].

Moreover further clinical roles of 18F-FDG-PET/CT 
may be the following: (1) identification of the primary 
colorectal neoplasm and evaluation of its local extent[78,79]; 
(2) after a curative resection, the detection of local or 
distant recurrence of the disease[80] as well as solving 
ambiguous cases of unexplained CEA rise without 
conventional radiological explanation and in their pro
gnostic stratification[81]; and (3) metabolic monitoring of 
the tumor response to the therapy[82]. 

18F-FDG-PET/MRI
As stated above, both PET and CT show a few limitations 
in the evaluation of liver lesions; recently PET/MRI has 
been proposed as an alternative hybrid imaging modality. 
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Because of the great sensitivity of MRI in recognizing 
small liver metastases, its combination with the 
metabolic data obtained by PET may lead to an improved 
diagnostic accuracy. 

Nowadays, the role of PET-MRI in evaluating CRLMs 
is becoming a topic of major interest, however at 
present insufficient data is available because hybrid 
devices are present in few highly specialized centers. 

Recent studies have enrolled patients with CRLMs 
to evaluate the performance of PET-MRI[83-85]. Drzezga 
et al[85] compared PET/CT and PET-MRI in 32 oncologic 
patients, four of those had CRC and with seven liver 
lesions. Overall conclusion of this study was that PET/
MRI was comparable to PET/CT. Quick et al[86] studied 80 
patients who underwent a double-scanning protocol with 
PET/ MRI and PET/CT with 195 tracer-avid lesions and 
rated image quality. Their results show that integrated 
PET/MR hybrid imaging is feasible in clinical setting with 
similar detection rates as those of PET/CT. Partovi et al[87] 
and Kershah et al[88] investigated the role of PET/MRI in 
120 patients with various primary neoplasms (13 CRCs) 
who underwent double-scanning protocol with PET/MR 
and PET/CT in a sequential design following a single-
tracer injection of FDG. They observed that hybrid PET-
MRI imaging led to a better diagnostic confidence in the 
characterization of focal liver lesions, taking advantage 
from the synergic evaluation of ADC and SUVmax. 
Nielsen et al[89] investigated the possible role of PET/MRI 
in evaluation of therapeutic response in twenty patients 
with CRLMs treated with radiofrequency or microwave 
ablation. The sensitivity of MRI in detecting small 
intrahepatic lesions combined with the ability of 18F-FDG-
PET to visualize enhanced metabolism at the ablation 
site suggests that 18F-FDG-PET/MRI could potentially 
improve the accuracy of early detection of progressive 
disease, and thus allow swifter and more effective 
decision-making regarding appropriate treatment. 

NON-CONVENTIONAL PARAMETRIC 
IMAGING OF CRLMs
This section is dedicated to morphological and functional 
liver parametric imaging proposed for detecting occult 
CRLMs and predicting which patients are at risk to 
develop metachronous liver disease. At present, the real 
role of parametric images has to be further investigated, 
as a result they are not routinely performed in the 
diagnostic clinical management of patients with CRC.  

Different studies[90,91] have focused on methods 
targeting liver perfusion to individuate occult CRLMs 
before they become overt on morphological imaging. 
Changes of liver hemodynamics may indeed be related 
to the presence of occult liver metastases and may also 
predict the development of metachronous ones. It is well 
known that the liver receives a dual blood supply from 
the portal and systemic circulation. Normally in healthy 
subjects approximately two thirds of this blood supply is 
carried by the portal vein and one third by the common 

hepatic artery. During the onset of liver metastases this 
relation changes because of the increase of arterial blood 
flow (arterialization) and decrease of portal venous in-
flow[92]. 

Imaging can allow recognizing and quantifying 
these perfusional changes occurring in the liver micro-
vasculature even before any visible morphological signs. 
For this purpose, doppler perfusion index (DPI) is an 
US measure of the ratio of arterial hepatic blood flow to 
total hepatic blood flow[93,94]. Kopljar et al[95] compared 
two different groups with and without liver metastases 
and observed that patients with liver metastases 
showed greater DPI determined by increased arterial 
hepatic blood flow associated to a smaller portal cross-
sectional area portal blood flow. The strong operator 
dependence of the technique represents the major limit 
of this method. 

Perfusion CT allows evaluation hepatic hemodynamic 
changes and provides quantitative perfusional data 
useful for the precocious detection of liver metastases[96]. 
However, to produce reliable enhancement curves the 
perfusion CT necessitates of multiple high temporal 
resolution acquisitions after administration of iv contrast 
medium, this leads to radiation overexposure; moreover 
the breathing cycle can cause severe motion and dis
tortion artifacts[97]. 

Thanks to the lack of ionizing exposure, perfusion 
MRI seems to be more promising as a reliable tool for the 
evaluation of focal and global perfusion indexes[98]. The 
perfusion parameters evaluated with dynamic contrast-
enhanced MRI are essentially represented by Ktrans 
(volume transfer constant) and Kep (rate constant). 
Ktrans is the rate constant of contrast agent transfer 
from the plasma compartment into the extracellular 
extravascular space, whereas Kep is the rate constant 
of contrast agent that escape from the extracellular 
extravascular space back into the plasma compartment. 
De Bruyne et al[99] found that a decrease in Ktrans 
of more than 40% after bevacizumab-containing 
chemotherapy was associated with better progression-
free survival. Further investigations are needed to 
understand the real role of perfusion MRI in CRLMs. 

Different authors[100-103] have investigated the role of 
CT texture analysis (TA) to identify the early changes in 
liver texture heralding the possible presence of occult 
liver micro-metastases. Texture analysis does not require 
any additional phase and it can be easily obtained from 
routinely acquired clinical CT data. This technique is 
based on the assumption that presence of liver occult 
lesions can be suspected by the amount of spatial 
heterogeneity on CT which can be assessed quantifying 
the texture parameters. These parameters go beyond 
human visual evaluation and include as main explored 
values the brightness (quantitative measurement of the 
mean grey level intensity), entropy (grade of inhomo
geneity) and uniformity (distribution of grey levels). 
As different studies are investigating the potential role 
of TA, it is debated which is the more appropriate CT 
phase to analyze. Ganeshan et al[100] applied TA to non-
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contrast enhanced CT scan of patients with CRC showing 
significant changes of TA parameters in the non diseased 
part of the liver of patients with CRLMs compared to 
those without. Similar results are reached even using 
TA on routinely acquired portal phase images[101-103]. 
The exact reasons to explain the relationship between 
an altered texture in apparently disease-free liver areas 
and the presence of occult micro-metastases or the 
development of metachronous live metastases are not 
quite clear. Probably the alterations of texture features 
are related to subtle tumor-induced structural and/or 
hemodynamic changes. 

As it has been well demonstrated that the presence 
of micro-metastasis is related to subtle changes in 
liver hemodynamics, some authors are investigating 
the role of blood oxygenation level dependent MRI in 
early detection of CRLMs. Barash et al[104,105] evaluated 
in mice the pathological changes in liver perfusion 
assessing the hemodynamic response imaging (HRI), a 
method that involves hypercapnic challenge with brief 
inhalation of 5% CO2 followed by hyperoxic challenge 
with brief inhalation of carbogen. They demonstrated 
that during CO2 enrichment there is an increase in 
portal flow compared to arterial hepatic flow, and that 
the higher deoxyhemoglobin levels produced a decrease 
in fMRI signal intensity. Conversely hyperoxia signifies 
vascular density and tissue perfusion. Edrei et al[106,107] 
more recently applied this method to demonstrate in 
a mouse model the early hemodynamic changes that 
occur in CRLMs, and their modification with advance of 
liver involvement. The HRI method showed enhanced 
sensitivity for small CRLM (1-2 mm) detection compared 
with ce-MRI (82% vs 38%, respectively) as well as it 
demonstrated hemodynamic changes occurring during 
CRLMs antiangiogenic treatment. 

DETECTION OF CRLMs: WHICH IS THE 
MOST ACCURATE MODALITY?
A huge literature is available about the performances of 
each imaging modality in the evaluation of CRLMs; as a 
consequence, we will describe mostly the data of meta-
analysis reports in this section. 

Kinkel et al[15] performed a meta-analysis including 
papers published between 1985 and 2000 and concluded 
that, at equivalent specificity (≥ 85%), 18F-FDG-PET 
(90%; CI: 80, 97) is the most sensitive non invasive 
imaging modality compared to US (55%; CI: 41, 68), 
CT (72%; CI: 63, 80) and MR (76%; CI: 57, 91) for the 
detection of hepatic metastases from colorectal, gastric 
and esophageal cancers on a patient basis. 

Bipat et al[49] performed a meta-analysis including 
papers published between 1990 and 2003 and concluded 
that 18F-FDG-PET is the most sensitive diagnostic tool 
for the detection of hepatic metastases from CRC on 
a per patient basis, but not on a per lesion basis. On a 
per patient basis, the sensitivity of CT, MR, 18F-FDG-PET 
were 64% (CI: 55, 72), 65% (CI: 58, 70) and 76% (CI: 

61, 86), respectively. For lesion of 1 cm or larger SPIO-
enhanced MRI was the most accurate modality. 

Niekel et al[38] performed a meta-analysis including 
papers published between 1990 and 2010 and con
cluded that, MRI is the preferred fist-line modality for 
evaluating CRLMs in patients who have not previously 
undergone therapy; it provides anatomic details and 
has a high detection rate for lesions smaller than 10 
mm. 18F-FDG-PET can be used as the second line-
modality because it is valuable in the evaluation of extra-
hepatic disease. The role of 18F-FDG-PET/CT was not 
clear owing the small number of studies. At equivalent 
specificity, the sensitivity of CT, MR and 18F-FDG-PET 
was 75% (CI: 69, 79), 80% (CI: 75, 62) and 81% (CI: 
66, 91), respectively, on a per lesion basis, and 84% 
(CI: 67, 93), 88% (CI: 65, 97) and 94% (CI: 92, 96), 
respectively, on a per patient basis. 

van Kessel et al[68] performed a meta-analysis 
including papers published between 2005 and 2011 and 
concluded that, MRI is the most appropriate imaging 
modality for preoperative assessment of patients with 
CRLMs treated with neoadjuvant chemotherapy. The 
sensitivity of CT, MRI, 18F-FDG-PET and 18F-FDG-PET/CT 
were 70% (CI: 47, 62), 86% (CI: 70, 94), 54% (CI: 
47, 62) and 52% (CI: 38, 65), respectively, on a per 
patient basis.  

Seo et al[108] reported the comparison of Gd-EOB-
DTPA-MRI and 18F-FDG-PET/ce-CT in 68 patients with 
103 CRLMs and concluded that Gd-EOB-DTPA-MRI is 
more accurate than 18F-FDG-PET/ce-CT, especially for 
detection of small (≤ 1 cm) lesions. The sensitivity, the 
specificity, the positive and negative predictive values 
on a patients basis were 100%, 71%, 97% and 100% 
respectively for Gd-EOB-DTPA-MRI, and 93%, 71%, 
97% and 57% respectively for 18F-FDG-PET/ce-CT. 

Muhi et al[109] reported the comparison of ce-
CT, ce-US, SPIO-MRI and Gd-EOB-DTPA-MRI in 111 
patients with CRC, 46 of whom presented 112 hepatic 
metastases. The sensitivity of ce-US, ce-CT, SPIO-
MRI and Gd-EOB-DTPA-MRI, was 73%, 63%, 80% 
and 95%, respectively, considering all the lesions, and 
41%, 26%, 63% and 92%, respectively, considering 
the lesions ≤ 10 mm. The sensitivity of MRI was 
significantly better than the other modalities. Although 
the sensitivity of Gd-EOB-DTPA-MRI was superior to 
that of SPIO-MRI especially for lesions ≤ 10 mm, the 
difference was not statistically significant. No significant 
differences in positive predictive value were disclosed 
between any of the images sets for all the lesions, 
lesions > 1 cm and lesions ≤ 1 cm. 

Berger-Kulemann et al[47] evaluated the performance 
of ce-MDCT and gadoxetic acid enhanced MRI in 
the detection of CRLMs in patients with diffuse fatty 
infiltration of the liver. MDCT identified 49 (72%) and MRI 
66 (97%) of 68 lesions confirmed by hystopathology. 
Statistical analysis showed that the MRI was superior 
to MDCT with a significant difference considering all the 
lesions (P < 0.001) and small lesions (≤ 1 cm; P < 
0.001), while there was no-significant difference between 
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the two modalities in the detection of lesions > 1 cm.
Zech et al[110] reported that Gd-EOB-DTPA-MRI can 

lead to cost savings respect to extracellular-contrast-
medium-MRI by improving pre-operative planning, reduc
ing additional imaging and decreasing intra-operative 
changes. 

Chen et al[111] performed a meta-analysis including 
13 papers published between 2011 and 2012 (6/13 
papers dealt with CRLMs) and concluded that, Gd-
EOB-DTPA-MRI presents high sensitivity (93%; CI: 90, 
95) and specificity (95%; CI: 91, 97) for detection of 
CRLMs. 

Maffione et al[112] have evaluated the diagnostic 
performance of 18F-FDG PET and PET/CT for staging 
liver metastases in patients with CRC including in their 
meta-analysis studies published from 2004 to 2014. 
They conclude that 18F-FDG-PET/CT is highly accurate 
for the detection of CRLMs on a per-patient basis 
(pooled sensitivity and specificity of 93%) while on a 
per-lesion basis results were lower (pooled sensitivity 
and specificity of 60% and 79%). Comparing PET with 
different imaging modalities their results show that 
PET had a lower sensitivity than MRI and CT on a per-
patient basis (93%, 100% and 98%) and a per-lesion 
basis (66%, 89% and 79%). In contrast, PET appeared 
more specific than MRI and CT (86%, 81% and 67%).

Maas et al[80] published a meta-analysis comparing 
PET, PET-CT and CT for whole body staging in patients 
with suspected recurrence of CRC. The Authors found 
PET and PET-CT to have the highest diagnostic per
formance with an area under the curve of 0.94 for both 
PET and PET-CT compared to 0.83 for CT scan. PET/CT 
appears as the whole body technique of choice because 
of its greater ability respect to CT to identify extra-hepatic 
and additional sites of disease and also for the detection 
of local recurrence. 

MANAGEMENT OF CRLMS: WHICH 
IMAGING PROTOCOL?
The main clinical scenarios to be managed in patients 
with CRLMs are the following: (1) detection of liver 
metastases as part of global staging of newly diagnosed 
CRC; and (2) pre-surgical planning of CRLMs resection; 
c) surveillance/monitoring of treatment response of the 
CRLMs. 

Although the optimal imaging strategy is not well 
established, yet, we will suggest a diagnostic algorithm 
for each clinical scenario underscoring in part information 
just reported above. 
 
Detection of CRLMs of newly diagnosed CRC 
ce-CT is currently regarded as the standard for one 
session whole-body staging, including the liver, for 
initially diagnosed CRC patients. However, as stated 
above, ce-CT may miss up to 25% of CRLMs also using 
a multiphasic acquisition protocol and its performance 
worsens in presence of hepatic steatosis[47]. Furthermore, 

ce-CT shows limitations in characterizing small (< 1 
cm) hypoattenuating lesions, which may be defined as 
indeterminate or “too-small-to-characterize” (TSCT)[46]. 

Currently, liver MRI is increasingly used to evaluate 
CRLMs. The higher accuracy of MRI in comparison with 
CT and PET/CT for detection of CRLMs, especially for 
lesions < 1 cm, has been just largely mentioned in 
the previous section. However, it is unclear which CRC 
patients should receive liver MRI in addition to standard 
staging CT. Recently, Han et al[113] have investigated 
the clinical impact of liver MRI in staging evaluation of 
newly diagnosed CRC patients in three ce-CT groups 
of patients: (1) patients who demonstrate diminutive 
indeterminate hypoattenuating TSCT lesions; (2) 
patients with metastasis-negative hepatic findings; and 
(3) suspicious or non-TSCT indeterminate lesions. The 
Authors concluded that liver MRI provides little benefit 
for detecting synchronous CRLMs in the groups 1 and 2, 
while it has a significant impact in the group 3. Moreover 
in the setting of hepatic steatosis, MRI with hepato-biliary 
contrast agents is superior to ce-MDCT in detecting 
CRLMs[47]. 

Both US and PET/CT play a marginal role. As stated 
above, US may be used to identify patients with diffuse 
liver metastases who may not need further hepatic 
diagnostic investigation, whereas PET/CT show a high 
performance in identifying patients with liver metastases. 

Pre-surgical planning of CRLMs resection
The current National Comprehensive Cancer Network 
(NCCN) guidelines state that liver MRI can be consider 
to further evaluate patients diagnosed with potentially 
resectable CRLMs on CT[114]. This recommendation takes 
into account the fact that liver MRI is most reliable in 
defining the number, the size and the location of CRLMs, 
may detect additional CRLMs that are undiagnosed 
on CT and therefore may change the treatment plan. 
Moreover it provides information about the volume of 
the future liver remnant, of the biliary ductal system 
and of the hepatic parenchyma, such as steatosis, iron 
deposition, fibrosis, that may impair liver function. 

ce-MDCT and ce-MRI angiography have shown similar 
performance for preoperative hepatic vascular anatomic 
evaluation[115], however CT may have some advantages 
over MRI as rapid acquisition, less susceptibility to 
motion, thin collimation, which assure excellent MPR 
and 3D images. ce-MDCT may be preferred to ce-MRI 
angiography in situations where detailed vascular infor
mation is necessary prior to complex hepatic resection. 

18F-FDG-PET/CT may be recommended for the 
detection of occult extra-hepatic disease prior of CRLMs 
surgical resection to avoid not useful invasive treatment. 

Surveillance/monitoring of the treatment response of 
the CRLMs
As diagnostic imaging can help identify the best 
therapeutic strategy for treatment of CRLMs, equally it 
plays a key role in assessing response to treatment.
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The criteria for monitoring CRLMs response to 
chemotherapy are the response evaluation criteria in 
solid tumors, which consist of a simple single dimension 
measurement of tumor size with efficacy determined 
by tumor shrinkage[116]. In the evaluation of patients 
with CRLMs treated with chemotherapy, ce-MRI should 
be preferred to both ce-MDCT and 18F-FDG-PET/CT 
for the following reasons: (1) the steatosis induced by 
chemotherapy decreases the liver-to-lesion contrast, 
hindering the detection and delineation of the lesions 
on ce-MDCT; and (2) the necrosis, the reduction of the 
size of the lesions and the decrease in metabolic activity 
of cancer cells hamper the diagnostic performance of 
18F-FDGPET/CT; it is still not clear if the disappearance 
of metabolic activity of a lesion can be considered a 
complete response[117,118]. Today, MRI with DWI and liver 
specific contrast agents provide the most sensitive tool 
for detecting CRLMs in patients who have undergone 
neoadjuvant chemotherapy. 

After systemic or local therapy, the change in size 
of the CRLMs may not be representative of a response, 
because the initial post-treatment examinations often 
fail to demonstrate shrinkage of the tumor. In such 
cases radiologists can misinterpret a slight increase in 
size of a recently treated lesion as tumor progression, 
whereas it is often sign of early response to anti-
angiogenic treatment. The CT “pseudo-progression” is 
defined as the increase in size of a lesion after treatment 
associated with a reduction of attenuation, due to intra-
lesional edema, together with a decrease in the tumor 
markers[119]. In these instances, the evaluation of 
changes in size and enhancement of the lesion as well 
as following the lesion up over time, preferably using 
the same modality, helps determine the efficacy of the 
treatment[120]. 

After a local hepatic treatment, the current NCCN 
guidelines[114] suggest surveillance imaging with CT or 
MRI every 3-6 mo for 2 years, then every 6 mo for 
3-5 years. The NCCN guidelines do not recommend 
PET/CT for assessing treatment response, because 
of false-negative (necrotic lesions) and false-positive 
(inflammation and surgery) results may occur. 

CONCLUSION
Several imaging techniques are available in management 
of CRLMs. 

US plays a marginal role due to the operator-
dependence, the lack of panoramic view and the low 
sensitivity for lesions < 10 mm. US may select patients 
with diffuse secondary liver involvement who do not 
benefit of further hepatic imaging. 

Actually, ce-MDCT is the preferred imaging modality 
for initial global staging, allowing also an optimal pre-
treatment planning for curative CRLMs resection. 

MRI provides additional information respect to ce-
MDCT when suspicious or non-TSCT indeterminate 
hepatic lesions are present on ce-MDCT, in presence 
of hepatic steatosis or in the post-chemotherapy liver 

evaluation. 
18F-FDG-PET/CT may be proposed to detect occult 

extra-hepatic disease prior of CRLMs resection to avoid 
inappropriate surgical treatment. 

18F-PET-MRI may represent the future elective 
diagnostic tool because it combines the high accuracy 
for CRLMs detection of MRI with the high performance 
of extra-hepatic metastases evaluation of PET. 

Non-conventional parametric imaging may play a 
future role for detecting occult CRLMs and predicting 
which patients are at risk to develop metachronous 
liver disease, but these techniques have to be further 
investigated.
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Abstract 
Various imaging modalities are available for the 
diagnosis, staging and response evaluation of patients 
with renal cell carcinoma (RCC). While contrast enhanced 
computed tomography (CT) is used as the standard of 

imaging for size, morphological evaluation and response 
assessment in RCC, a new functional imaging technique 
like perfusion CT (pCT), goes down to the molecular 
level and provides new perspectives in imaging of RCC. 
pCT depicts regional tumor perfusion and vascular 
permeability which are indirect parameters of tumor 
angiogenesis and thereby provides vital information 
regarding tumor microenvironment. Also response 
evaluation using pCT may predate the size criteria used 
in Response Evaluation Criteria in Solid Tumors, as 
changes in the perfusion occurs earlier following tissue 
kinase inhibitors before any actual change in size. This 
may potentially help in predicting prognosis, better 
selection of therapy and more accurate and better 
response evaluation in patients with RCC. This article 
describes the techniques and role of pCT in staging and 
response assessment in patients with RCCs.

Key words: Angiogenesis; Anti-angiogenic therapy; 
Perfusion computed tomography; Renal cell carcinoma 
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Core tip: Perfusion computed tomography is a functional 
imaging technique. It can be used to predict the 
histologic grade and early as well as more accurate 
response evaluation in renal cell carcinoma (RCC). This 
has the potential to help in better selection of therapy 
and improve prognosis in RCC.
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INTRODUCTION
Renal cell carcinoma (RCC) is the most common 
primary tumor of the kidney. Hypervascularity is 
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an important feature of primary RCC as well as its 
metastases. Angiogenesis plays an important role in the 
growth of the primary tumor and the spread of distant 
metastases. 

Depending on the histologic type and the stage of 
tumors, the treatment options vary from surgery to 
chemotherapy. With the advent of new anti-angiogenic 
agents acting at a molecular level, the treatment of RCC 
has undergone a paradigm shift. These drugs include 
sorafenib, sunitinib, pazopanib, and axitinib that target 
key growth factors like the vascular endothelial growth 
factor and tyrosine kinase, monoclonal antibody (e.g., 
bevacizumab), and mammalian target of rapamycin 
inhibitors (e.g., temsirolimus and everolimus).

The evaluation of the treatment response in patients 
on these drugs is a challenge. Because of their cytostatic 
nature, most of these agents produce no significant 
change in the size of tumor as compared to earlier 
agents which were cytotoxic. Thus traditional response 
evaluation based only on size will not be accurate in 
predicting actual response.

Hence there is a need for tumor evaluation with new 
functional imaging techniques like perfusion computed 
tomography (pCT) and dynamic contrast enhanced 
magnetic resonance imaging. These make feasible 
grading of the tumor, prognosticating and targeted 
therapy. These are predicted based on certain perfusion 
parameters, namely blood flow (BF), blood volume (BV), 
mean transit time (MTT) and permeability (PMB) which 
shall be dealt in detail in the subsequent paragraphs. 
Also different histologic types of tumors have been 
shown to have different perfusion parameters which will 
have an impact on the prognosis[1].

PCT: PRINCIPLE
pCT is based on the temporal changes in tissue 
attenuation after intravenous administration of iodinated 
contrast media. Tissue iodine concentration determines 
enhancement and is an indirect reflection of tissue 
vascularity and vascular physiology[2,3]. Two phases 
are seen in tissue enhancement based on the contrast 
dynamics and contrast distribution in the intravascular 
and extravascular compartment[2]. Initial phase contrast 
enhancement is due to intravascular space distribution 
and lasts for approximately 40 to 60 s[2-4]. Contrast 
extravasation from the intravascular to the extravascular 
compartment across the capillary basement membrane 
marks the onset of the second phase.

BF and BV determine the first phase, whereas 
vascular PMB to the contrast media is the main deter
mining factor during the second phase[2]. In pCT, images 
are taken in quick succession in the region of interest 
during these two phases. A tissue attenuation curve is 
plotted after recording the temporal changes in tissue 
attenuation. Quantification of tissue perfusion is done by 
applying proper mathematical modeling[2].

PCT: TECHNIQUE
pCT protocol consists of a baseline image acquisition 
without contrast enhancement. Dynamic acquisition 
performed sequentially after intravenous injection of 
contrast media follows subsequently[2].

Unenhanced CT acquisition
An unenhanced CT scan of the upper abdomen covering 
the kidneys is initially performed to locate the renal lesion. 
It also acts as a localizer to further select the region 
of interest in the contrast-enhanced dynamic imaging 
phase. Larger coverage (8-16 cm) is currently obtained 
with the use of newer scanners having increased rows of 
detectors[2].

Dynamic CT acquisition
Images are acquired every 3 to 5 s (Table 1) in the 
initial cine phase for a total of approximately 40 to 60 
s during the first-pass study[2-4]. For obtaining PMB 
measurements, a second phase lasting from 2 to 10 
min is supplemented after the first-pass study[2,3]. The 
second phase images are acquired every 10 to 20 s[2].

In the pCT study, a predefined scan volume (80 
mm for shuttle axial technique and 40 mm for cine 
technique) in the Z-axis is selected to cover the lesion[5]. 

For lesions smaller than 20 mm, cine technique is 
useful. One hundred milliliters of non-ionic iodinated 
contrast is administered intravenously for the pCT study 
maintaining a flow rate of 5 mL/s followed by 40 mL of 
normal saline flush at the same flow rate[5].

In cine mode acquisition, 8 contiguous sections, 
collimated to 5 mm, with temporal resolution of 1 s 
by are obtained without table movement using the 
following parameters: 100 Kv, 80 mAs, rotation time 0.5 
s, and scan field of view of 50 cm[5]. Whereas in shuttle-
mode acquisition, 8 contiguous sections, collimated to 
5 mm, with temporal resolution of 2.8 s are obtained 
with table movement (21 passes) and using following 
parameters: 100 Kv, 80 mAs, rotation time 0.4 s, and 
scan field of view of 50 cm[5]. In order to include both 
first-pass enhancement and delayed phase, the total 
duration of scan is approximately 60 s. After pCT scans, 
a conventional contrast enhanced CT of the abdomen 
and thorax is performed immediately. Excretory phase 
CT urography may be obtained after 5 to 10 min after 
the contrast media injection whenever required[5].

Das CJ et al . Perfusion CT in RCC
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Table 1  Protocol for dynamic perfusion computed tomography 
acquisition

No. of scans Cycle time (s) Accumulated time since start of scan (s)

3 3                                     9
9   1.5 22.5
5 3 37.5
5 6 68.0
22 (in total) Examination time: 68



PCT: IMAGE INTERPRETATION
Post processing is done to correct for the motion artifacts 
and the data are analyzed at a work station. The slice 
showing the maximal transverse tumor diameter is 
chosen for further analysis. An arterial input is defined 
by putting a circular region-of-interest (ROI) over the 
abdominal aorta at the level of the renal vessels. Similarly, 
ROIs are also placed manually (covering 1 cm2) over the 
renal tumor and the normal renal cortex of the affected 
kidney or the contralateral kidney. Tumor ROI is placed 
in solid enhancing area avoiding necrosis, calcification, 
hemorrhage and cysts.

A tissue time attenuation curve is generated using in-
built software. Perfusion parameters (BV, BF, MTT, PMB, 
MIP) are also calculated. The perfusion parameters are 
obtained and their definitions have been enumerated in 
Table 2.

Histogram analysis in pCT
Differentiation between the different tumor types 
on the basis of qualitative interpretation of contrast 
enhancement patterns may be possible but quantitative 
methods of measuring enhancement provides a higher 
degree of accuracy[6]. Quantitative method is associated 
with less subjective variability. ROI-based method of 
assessing enhancement has demonstrated high accuracy 
in differentiating clear cell RCC (ccRCC) from papillary 
RCC (pRCC)[6]. Limitations of ROI-based methods 
include invariability in ROI placement amongst different 
observers, difficulty in selecting the exact location of ROI 
and technical problems such as misregistration between 
pre- and post-contrast acquisitions[6].

Therefore, to overcome the limitations of ROI 
placement, a tool that can perform automatic registra
tion, lesion segmentation, and whole-lesion (WL) 
enhancement analysis is needed. Furthermore, histogram 
distribution has been used to discriminate ccRCC from 
pRCC using analysis of the WL enhancement pattern[6]. 

Whole lesion parameter of third quartile enhancement 
has been found to have the highest accuracy (area under 
curve 0.98), with sensitivity of 96% and specificity of 
90%[6]. Special software is used to obtain a histogram of 
the voxel-based enhancement values and computation of 
the mean, median, and third quartile enhancement of the 
sorted values done. Histogram distribution parameters 
like kurtosis and skewness off-line are subsequently 
obtained from the values computed[6].

pCT parameters in normal kidneys
Chen et al[7] have reported CT perfusion values for 
normal renal cortex; the average BF was reported to be 
454.32 mL/100 mL per minute (Figure 1). Difference 
between BF, BV, MTT, and PMB of normal renal cortex 
and RCC are shown in Table 3. Perfusion parameters in 
two representative cases are shown in Table 4.

pCT in renal tumours
Predicting the histologic grade: Pre-operative tumor 
histotyping using perfusion parameters can be used to 
prognosticate patients and is important in patients with 
small renal tumors. Chen et al[7] found that mean values 
of BF, BV were significantly higher and mean MTT was 
significantly lower in ccRCC than in pRCC (P < 0.05 
(Figures 1 and 2).

Similarly Gigli et al[1] have shown a correlation 
between tumor histological subtype and perfusion index. 
Significant differences in perfusion values were found 
in ccRCC of different Fuhrman grades. High perfusion 
index corresponded with high microvessel density (MVD) 
while those with lower MVD showed lower perfusion 
indices.

Previous studies have shown that there was a 
significant difference in PS and MTT values of malignant 
lesions (ccRCCs, pRCCs, and chromophobe RCCs) and 
the normal renal cortex (P < 0.001 and P = 0.029, 
respectively) but BF and BV values did not differ 
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Table 2  Computed tomography perfusion parameters[2-4]

Perfusion parameters Definition Unit Biomarker

Regional blood flow Blood flow per unit volume or mass of tissue mL/100 mL per minute Tumour vascularization
Regional tumour blood volume Ratio of blood volume to tumour volume mL/100 mL Tumour vascularization
Permeability/blood flow extraction 
(PMB/PS/k-trans)

Rate of transfer of contrast agent from the intravascular to the 
extravascular compartment

mL/100 gm per minute Vascular immaturity

Mean transit time Average time taken to travel from artery to vein s Perfusion pressure
Time to peak Time from arrival of the contrast in major arterial vessels to 

thepeak enhancement
s Perfusion pressure

Maximum peak intensity Maximum increase in tissue density after contrast injection HU Tissue blood volume

Table 3  Perfusion computed tomography parameter values for kidney (renal cell carcinoma vs  normal renal cortex)[7] 

Normal renal cortex (mean ± SD) Renal cell carcinoma (mean ± SD) t  value P  value

Blood flow (mL/min per 100 g)   454.32 ± 110.90   261.96 ± 175.86   -7.620 0.000
Blood volume (mL/100 g) 23.53 ± 5.71 17.17 ± 8.34   -5.193 0.000
Mean transit time (s)   3.62 ± 1.38   7.08 ± 3.42     7.670 0.000
Permeability (mL/min per 100 g)   63.95 ± 18.85   25.07 ± 13.20 -14.193 0.000

Das CJ et al . Perfusion CT in RCC



and the neoangiogenesis associated with RCCs[8]. The 
difference in normal cortex and tumoral PS values has 
been found to best predict RCCs with a cutoff greater 
than 2.5 mL/100 g per minute having sensitivity, speci
ficity, and accuracy of 100%, 66.67%, and 95.92%[5]. 
Hence, evaluation of the different perfusion parameters 
can depict histologic grade of RCCs.

significantly[8,9]. Also the permeability surface area 
product, MTT, and BF values were reported to be signi
ficantly lower in malignant lesions as compared with 
oncocytomas[8].

BF and BV are two perfusion parameters which have 
been found to have significant histological correlation 
(P < 0.01) with MVD as a prognostic marker for RCCs 
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Figure 1  Perfusion computed tomography in normal renal parenchyma vs renal cell carcinoma in a 50-year-old man with left renal cell carcinoma (clear 
cell type). A: Contrast computed tomography (CT) images showed a large, hyperenhancing mass in left kidney with central necrosis (arrow). Colour-coded perfusion 
maps show various perfusion parameters in normal right kidney and diseased left kidney. Red being the region with highest perfusion parameter with purple being 
the least; B: Time attenuation curve and the perfusion parameters in normal right kidney. Normal renal parenchyma is seen to have high perfusion in the range of 255 
mL/100 mL per minute; C: Time attenuation curve and perfusion parameters in the left renal cell carcinoma. There is delayed wash-out of contrast in the region of the 
tumour as depicted in the graph. MIP: Maximum peak intensity; TTP: Time to peak; BF: Blood flow; BV: Blood volume; MTT: Mean transit time; PMB: Permeanbility.
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Figure 2  Perfusion computed tomography in a 63-year-old lady with right renal cell carcinoma (chromophobe type). A: Contrast computed tomography (CT) 
images show tumor in right kidney (white arrow) with retroperitoneal nodal metastases (arrowhead). Colour-coded perfusion maps show the perfusion parameters; 
B: Time attenuation curve and perfusion parameters with region-of-interest in the right renal cell carcinoma depict delayed wash-out of contrast. MIP: Maximum peak 
intensity; TTP: Time to peak; BF: Blood flow; BV: Blood volume; MTT: Mean transit time; PMB: Permeanbility.
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Table 4  Response evaluation using changes in computed tomography perfusion parameters in two representative cases

Date of study MIP (HU) TTP (s) BF (mL/100 mL per minute) BV (mL/100 mL) MTT (s) PMB (mL/100 mL per minute)

Case 1 2013-4-2 Normal cortex 120 11.1    202.9 31.6   8.7 47.1
Renal tumour 134 13.5    184.9 30.8 10.4   45.95

2013-9-11 Normal cortex 121 13.2 209 30.2   9.2 50.2
Renal tumour   79 11.5 174 13.2        5 18.1

2013-11-20 Normal cortex 130 10.8 229              32   9.6 45.3
Renal tumour   42 12.3        5.7   1.2 12.4   8.2

Case 2 2013-10-23 Normal cortex 157 11.9 236 27.8   8.9 43.7
Renal tumour   88 12.3      64.4   9.3   8.9 18.7

2013-12-26 Normal cortex 140 15.2    170.9 29.5 10.5 42.1
Renal tumour      82.7 14.8      60.9   7.9   8.4 13.8

2013-8-3 Normal cortex 216 12.5 315              38      72 55.2
Renal tumour      84.6 12.3      72.3                8   7.4 10.8

BF: Blood flow; BV: Blood volume; MTT: Mean transit time; PMB: Permeability; MIP: Maximum peak intensity; TTP: Time to peak.
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Response evaluation with anti-angiogenic therapy: 
Predicting response assessment with anti-angiogenic 
therapy can be done with pCT (e.g., colorectal)[10]. It is 
known that growth of primary tumor as well as seeding 
of distant metastasis in patients with renal tumors 
requires angiogenesis. By inhibiting angiogenesis, it is 
possible to target both the primary tumor as well as 
metastases.

The role of several antiangiogenic therapies in RCC 
are currently being evaluated in clinical trials[11-14]. 

However, these anti-angiogenic therapies are predo
minantly cytostatic in action rather than cytotoxic 
and induce disease stabilization rather than tumor 
regression (Figures 3-5). Thereby, traditional response 
assessment based on size criteria by using the Response 
Evaluation Criteria in Solid Tumors (RECIST) is rendered 

inadequate for follow-up and prognostication of patients 
on anti-angiogenic therapy. In such instances, functional 
evaluation with pCT can play a major role. There are 
few studies highlighting the role of pCT for assessing 
effect of antiangiogenesis[15-17].

Significant differences in pCT parameters have been 
described between treated tumors and control tumors 
in a rat model by Kan et al[16]. There was significant 
difference in these parameters after interventional 
therapy as compared with the pre-therapy in an investi
gation in a rabbit model[17].

Maksimovic et al[18] in their study using tyrosine 
kinase inhibitor sorafenib found that perfusion par
ameters changes appear much earlier before changes 
in size during therapy. Also early disease progression 
identification seen as new areas of tumour perfusion 
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Figure 3  Perfusion computed tomography in a 55-year-old lady with metastatic left renal cell carcinoma. A: Contrast computed tomography (CT) images show 
heterogeneous necrotic mass in left kidney with abdominal wall metastatic deposit in left lumbar region (arrow) and colour-coded perfusion maps show the perfusion 
parameters; B: Time attenuation curve and perfusion parameters with region-of-interest placed in the metastatic left lumbar lesion depict delayed wash-out of contrast 
from the tumour deposit. MIP: Maximum peak intensity; TTP: Time to peak; BF: Blood flow; BV: Blood volume; MTT: Mean transit time; PMB: Permeanbility.

Das CJ et al . Perfusion CT in RCC



176 July 28, 2015|Volume 7|Issue 7|WJR|www.wjgnet.com

A

B
Mean
Std. deviation Area/volume

MIP (HU)

TTP (s)

BF(A) (mL/100 
mL per minute)

BV(A) (mL/
100 mL)

MTT(A) (s)

PMB(A) (mL/
100 mL per 

minute)

88.01

12.33

64.41

9.34

8.93

18.72

1

0         15        30         45       60       75
t /s

50

40

30

20

10

0

-10

CT (HU)

Mean
Std. deviation Area/volume

MIP (HU)

TTP (s)

BF(A) (mL/100 
mL per minute)

BV(A) (mL/
100 mL)

MTT(A) (s)

PMB(A) (mL/
100 mL per 

minute)

72.87

14.02

43.66

6.44

9.42

13.21

1

0         15        30         45       60       75
t /s

30

20

10

0

-10

CT (HU)

Zoon
96

Zoon
96

Figure 5  Perfusion parameters showing partial response with anti-angiogenic therapy. Comparison of perfusion parameters in right side chromophobe renal 
cell carcinoma (same patient as shown in Figure 2) after start of anti-angiogenic therapy shows partial response as permeability (PMB) in follow-up scan (B) at 
6 mo interval decreased compared to baseline scan (A). The PMB measured 18.72 mL/100 mL per minute at baseline (A) while in follow-up scan (B), PMB was 
13.2 mL/100 mL per minute. There was no interval change in lesion size and would have been labeled as stable disease in absence of perfusion parameters. MIP: 
Maximum peak intensity; TTP: Time to peak; BF: Blood flow; BV: Blood volume; MTT: Mean transit time; CT: Computed tomography.
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Figure 4  Perfusion parameters vs size evaluation in depicting partial response. Comparison of perfusion parameters in a case of left side clear cell renal cell 
carcinoma after start of anti-angiogenic therapy. Follow-up scan at 6 mo interval (B) showed at 6 mo interval shows decrease in permeability as compared to baseline 
scan (A) suggestive of partial response. However, no change in size of lesion noted between baseline (C) and follow-up (D) scans which would have been labelled 
as stable disease. MIP: Maximum peak intensity; TTP: Time to peak; BF: Blood flow; BV: Blood volume; MTT: Mean transit time; PMB: Permeanbility; CT: Computed 
tomography.
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would enable clinicians to change therapy. A targeted 
biopsy and therapy by identification of the specific area 
at an early stage can be performed[19].

Perfusion parameters can also be utilized to pro
gnosticate response to therapy. Patients responding 
to antiangiogenic therapy had higher baseline values 
of BF and BV than in those patients whose perfusion 
parameters remained stable throughout follow-up[20].

Significant decrease in BF, BV and PMB can be seen 
in those patients responding to antiangiogenic therapy 
(case 1 in Table 4) (Figures 3 and 4) while those 
showing progression showed increase in these perfusion 
parameters over serial follow-up (case 2 in Table 4) 
(Figure 5).

Evaluation of metastases: Metastases are commonly 
seen in RCCs. Most are hematogenous and are highly 
vascular. Amongst the different histologic subtypes, 

ccRCCs have the highest risk of developing metastatic 
disease and is seen in more than 90% of cases[21]. Since 
maximum anatomic coverage during pCT is limited, 
hence evaluation of distant metastasis is challenging 
considering the increasing radiation burden with increase 
in the region covered. However, evaluation of RCC 
metastases is made possible in most cases because 
of the characteristic distribution of these metastases 
in lung bases, liver, adrenal glands, pancreas, retro
peritoneal lymph nodes (Figure 2) and lumbar fossa 
(Figure 6)[22]. The renal metastases show similar 
contrast enhancement as the parent tumor and may be 
evaluated for treatment response by using pCT.

Pitfalls of pCT 
As true for any imaging technique, pCT also has certain 
technical limitations. These include high radiation burden 
as shown in Table 5 because of the repetitive scans 
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Figure 6  Perfusion parameters showing progressive disease with anti-angiogenic therapy. Comparison of perfusion parameters in left metastatic renal cell 
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acquired over a period of time and limited anatomic 
coverage. As the scan has to be repeated within a 
short span of time, the actual anatomic length that can 
be covered is limited (maximum up to about 20 cm). 
This imposes a limitation on the evaluation of distant 
metastases which may be present in such patients.

CONCLUSION
pCT is an evolving imaging modality which provides 
deeper insights into the molecular behavior of tumor 
angiogenesis and thereby facilitating targeted therapy. 
It has revolutionized oncologic imaging by progno
sticating and evaluating therapy response at an earlier 
stage. Other potential benefits include identifying 
tumor histological subtype and predicting potentially 
aggressive tumors which can help clinicians to better 
plan the therapy of patients. As an emerging technique, 
pCT is currently used in evaluation of malignancies 
of different body parts such as kidneys, brain, lung, 
liver, pancreas and colon. In the future, pCT is likely to 
become the in vivo biomarker for tumor behavior and 
response evaluation in malignant lesions of different 
body parts.
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Dynamic acquisition Chest and abdomen 
scan (routine)

Exposure time (s)   33        14.24
Scan length (mm) 155 655
Collimation (mm)        1.2        0.6
KVp 100 100
Ma 523 211
CTDI vol (mGy)    180.1        7.2
DLP (mGycm)    2789.69      458.68

Table 5  Comparison of the acquisition parameters and dose 
in dynamic acquisition of perfusion computed tomography and 
normal contrast enhanced computed tomography chest and 
abdomen in our institute

CTDI vol: Computed tomography dose index volumetric; DLP: Dose 
length product.
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Abstract
Echinococcosis is a zoonotic disease. Liver is the most 
common site of involvement. Renal involvement is 
seen in 2% to 3% of patients. Computed tomography 
findings in renal hydatid typically include: a cyst with 
thick or calcified wall, unilocular cyst with detached 
membrane, a multiloculated cyst with mixed internal 
density and daughter cysts with lower density than 
maternal matrix. Rarely type Ⅳ hydatid cysts may mimic 
hypovascular renal cell carcinoma. We report a case 
of previously asymptomatic middle aged female who 
presented with mild intermittent pain and a complex 
renal lesion on imaging which was considered to be a 
hypovascular renal carcinoma or urothelial neoplasm. 
However, by serendipity, the patient had spontaneous 
hydatiduria and later was definitively diagnosed and 
stented. Hydatid disease should always be considered 
amongst the top differential diagnosis of an isolated 
“complex” renal lesion which remains indeterminate on 
imaging.

Key words: Hydatidoses; Echinococcosis; Hydatiduria; 
Kidney diseases; Cystic; Hydatid; Renal

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Renal hydatid is generally secondary to 
disseminated hydatidoses or associated with hepatic 
involvement. Isolated renal involvement is far less 
common and reported in less than 5% of all hydatid 
cases. Without appropriate history a subset of renal 
hydatid, especially type 4 cyst may simulate cystic 
renal/urothelial neoplasm or other complex cystic lesions 
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such as abscess. Radiologists must harbour a high index 
of suspicion and look for subtle imaging signs such 
as calcification and non enhancing “solid” component 
to include this diagnosis in the differential of complex 
renal lesion. Absence of relevant history or hepatic 
involvement should not prevent diagnosticians from 
entertaining this rare diagnosis.

Bhaya A, Shinde AP. Isolated renal hydatid presenting as a 
complex renal lesion followed by spontaneous hydatiduria. World 
J Radiol 2015; 7(7): 180-183  Available from: URL: http://www.
wjgnet.com/1949-8470/full/v7/i7/180.htm  DOI: http://dx.doi.
org/10.4329/wjr.v7.i7.180

INTRODUCTION
Hydatid disease is mainly caused by Echinococcus 
granulosus[1]. It often manifests as a slow growing 
cystic lesion. We report a case of renal hydatid disease 
suspicious for complex cyst/urothelial neoplasm on 
computed tomography (CT) scan. The patient was 
extensively investigated and later presented with 
spontaneous hydatiduria.

CASE REPORT
A 42-year-old female patient, resident of central India 
presented with mild right lumbar pain over one month. 
There was no dysuria, vomiting or fever. Routine 
laboratory investigations were within normal range 
except for urinary pus cells (10-12/hpf). Ultrasonography 
(USG) revealed a complex hetero-echoic lesion in the 
right kidney (Figure 1).

CT scan revealed a poorly demarcated lobulated, 
isodense lesion on plain images becoming better 
delineated on contrast study and measuring 2.2 
(craniocaudal) cm × 2.8 (anteroposterior) cm × 3.5 
(transverse) cm within interpolar region. The lesion 
exhibited few small irregular calcific foci and mild contrast 
enhancement. In addition, a hypo-attenuating, non-
enhancing cystic area was noted adjacent to the lesion 
(Figure 2).

The right kidney revealed delayed contrast excretion. 
The previously noted cystic component did not opacify 
on the delayed scan. The left kidney was normal. The 
ureters and bladder were normal (Figure 3).

This was provisionally diagnosed as renal abscess 
possibly tubercular. The differential diagnosis of 
urothelial neoplasm was communicated to the referring 
general physician and urological consultation was 
strongly recommended.

A few days later she reported passage of fleshy/
mucoid matter per urethra which she collected in a 
container. These were submitted for histopathological 
analysis. In view of high index of suspicion of a neoplastic 
lesion, the patient underwent ureteroscopy following 
which a double J stent was placed. Urine did not reveal 

any malignant cells. The patient improved clinically and 
was discharged on a course of antibiotics. 

Histopathology
Gross examination: Multiple flat membranous pieces, 
the largest measuring 2 cm × 1 cm × 0.3 cm. These 
were greyish white, translucent and soft with smooth 
surfaces (Figure 4).

Microscopic examination: Lamellated layer with focal 
calcification and occasional brood capsules consistent 
with hydatid cyst (Figure 5). 

Follow up
Serological test for Echinococcus antibody was done and 
reported as positive. The patient remained asymptomatic. 
Follow up USG a month later revealed resolution of 
the lesion. The right kidney appeared normal without 
hydronephrosis (Figure 6). The left kidney and bladder 
were normal. No lesions were detected in the liver or 
spleen. The chest radiograph was unremarkable. 

DISCUSSION
Echinococcosis is a zoonotic disease and is endemic 
in Mediterranean and other sheep rearing countries. 
However, due to increasing travel and tourism it may 
be found even in developed countries. In India, annual 
incidence of Hydatid disease per 100000 persons vary 
from 1 to 200[1]. The liver is most common site of 
involvement[2]. Renal involvement is seen in 2% to 3%[2,3]. 

Gharbi et al[4], classified hydatid cysts based upon 
sonographic morphology into five types (Table 1)[5]. 

Type 4 hydatid cysts have heterogeneous appearance 
similar to pseudotumor. CT scan is reportedly a problem 
solving modality in these cases especially as it is sensitive 
to calcifications and enhancement of the cyst wall[6]. 

Imaging spectrum of CT Renal hydatid varies and 
depends on stage of cyst. Typical CT findings for renal 
hydatidoses include a cyst with thick or calcified wall, a 
unilocular cyst with detached membrane, a multiloculated 
cyst with mixed internal density and daughter cysts with 
lower density than maternal matrix[4,6]. 

Despite multimodality imaging, in a subset of 
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Figure 1  Initial ultrasound image reveals heteroechoic indeterminate renal 
sinus/renal pelvic lesion (white arrow). Doppler revealed negligible vascularity.
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patients, no definitive diagnosis can be made and the 
differential diagnosis often includes infected renal cysts, 
abscess, pyonephrosis and neoplasms[7,8]. Rarely Type 
IV hydatid cysts may mimic hypo vascular renal cell 
carcinoma[9]. 

On the other hand, in endemic countries, unusual 
neoplasms such as mucinous cystadenoma/carcinoma 
may be misdiagnosed as renal hydatid[10]. 

Hydatiduria accompanies 10%-20% of cases of 
renal hydatidoses and is basically microscopic. Gross 

182 July 28, 2015|Volume 7|Issue 7|WJR|www.wjgnet.com

Figure 2  Composite of non contrast axial MDCT-post contrast corticomedullary and post contrast nephrographic phases reveals poorly enhancing 
isodense lesion within the renal pelvis exhibiting calcific specks (white arrow) and hypo-attenuating lesion along its lateral aspect (red arrows). Subtle 
thickening of the urothelial walls is present. 

Figure 4  Photograph of the fleshy membranes passed spontaneously by 
the patient few days after ureteroscopy.

Figure 3  Delayed oblique coronal multiplanar reformat MDCT image shows 
the lesion as a filling defect within the collecting system. The lesion and 
laterally placed cortical cyst are inseparable. Additionally, persistent nephrogram 
is noted.

Figure 5  Microscopy (magnification 100 ×) revealed characteristic hydatid 
lamellated layer (arrow) with occasional brood capsules.

Figure 6  Follow up ultrasound revealed normal right kidney.

RK RK

Table 1  Sonographic appearance of hydatid cysts in Gharbi 
classification[5]

Type Ⅰ Well-defined, purely anechoic lesions that may be 
indistinguishable from simple renal cysts. Multiple 
echogenic foci due to hydatid sands may be seen in the cyst 
(22%)

Type Ⅱ Focal or diffuse detachment of the inner germinal layer 
results in a floating membrane inside the cyst (4%)

Type Ⅲ Multiseptated cysts with multiple daughter cysts (54%)
Type Ⅳ Heterogeneous, solid appearance with infolded membranes, 

and internal echoes (12%)
Type Ⅴ Solid appearance, calcifications in the cyst wall, and 

germinative membranes (8%)
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Treatment
Albendazole 15 mg/kg per day for 28 d followed by 2 wk interval and repeated 
total three cycles.

Related reports
Enzyme-linked immunosorbent assay ELISA for detection of anti-Echinococcus 
antibodies (immunoglobulin G) was positive.

Peer-review
This is an interesting case.
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passage of hydatid cysts in urine though near diagnostic 
is rather uncommon and infrequently reported. We 
came across only two reports of gross hydatiduria in 
the Indian scenario - one with extensive liver and renal 
hydatid while the other revealed cystic renal lesion 
following investigation for hydatiduria. Both did not 
report any dilemma on imaging unlike our case[11,12]. 

Histologically, Hydatid cyst comprises of pericyst or 
fibrous layer, middle lamellated membrane and inner 
germinal layer which produces scolices. In patients with 
ruptured cysts and hydatiduria the membranes do not 
reveal pericyst[12].

Isolated renal hydatid involvement presents a further 
diagnostic challenge (as occurred in our patient). In 
our opinion, hydatid cyst should always be considered 
in the differential diagnosis of isolated complex cystic 
renal lesion. Absence of relevant history or hepatic 
involvement should not prevent diagnosticians from 
entertaining this rare diagnosis.  

Renal hydatid may present with unusual imaging 
characteristics, resembling complex cyst or hypovascular 
solid-cystic neoplasm. This is particularly relevant in non-
endemic countries wherein the Radiologists may not be 
aware of these unusual imaging features resulting in 
delayed and/or misdiagnosis.

COMMENTS 
Case characteristics
Middle aged lady with non colicky right lumbar pain.

Clinical diagnosis
Neither tenderness nor any mass felt.

Differential diagnosis
Chronic renal infection, renal stone disease or occult neoplasm.

Laboratory diagnosis
Urine analysis revealed mild pyuria suggestive of urinary tract infection.

Imaging diagnosis
Ultrasound and computed tomography scan suspicious for urothelial cystic 
neoplasm.

Pathological diagnosis
Histopathology and microscopy suggestive of ruptured hydatid cyst.
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