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Abstract
The human gut is colonized by a community of microbiota, primarily bacteria,
that exist in a symbiotic relationship with the host. Intestinal microbiota-host
interactions play a critical role in the regulation of human physiology.
Deleterious changes to the composition of gut microbiota, referred to as gut
dysbiosis, has been linked to the development and progression of numerous
diseases, including cardiovascular disease (CVD). Imbalances in host-microbial
interaction impair homeostatic mechanisms that regulate health and can activate
multiple pathways leading to CVD risk factor progression. Most CVD risk
factors, including aging, obesity, dietary patterns, and a sedentary lifestyle, have
been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal
inflammation and reduced integrity of the gut barrier, which in turn increases
circulating levels of bacterial structural components and microbial metabolites,
including trimethylamine-N-oxide and short-chain fatty acids, that may facilitate
the development of CVD. This article reviews the normal function and
composition of the gut microbiome, mechanisms leading to the leaky gut
syndrome, its mechanistic link to CVD and potential novel therapeutic
approaches aimed towards restoring gut microbiome and CVD prevention. As
CVD is the leading cause of deaths globally, investigating the gut microbiota as a
locus of intervention presents a novel and clinically relevant avenue for future
research.
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Core tip: As cardiovascular diseases (CVD) remain the leading cause of mortality, this
article reviews the current literature dysbiosis and its role in CVD progression to present
a novel therapeutic avenue. In this paper, we provide a comprehensive review on the
composition and development of gut microbiota, its changes (dysbiosis) due to
endogenous and exogenous factors and the mechanistic association of dysbiosis with
development of CVD. Additionally, we explore the potential therapeutic approaches
focused at restoring gut microbiota and their impact on CVD.
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INTRODUCTION
The  human  body  hosts  trillions  of  microorganisms,  and  together  they  form  an
interactive ecosystem within and without outside world. The changes and interactions
within this ecosystem affect the human body in health and diseases. The entourage of
the associated microflora in the host is referred to as the microbiome. Majority of the
microflora colonizing human body are found in the gastrointestinal tract, especially in
the colon. The gut microbiota plays a major role in maintaining nutrition and immune
system, which, in turn, affects the host's susceptibility and response to pathologic
conditions. Imbalance in the intestinal microbiome, also known as gut dysbiosis, is
associated  with  several  conditions  including gastrointestinal  disorders,  asthma,
allergies,  central  nervous  system  disorders,  metabolic  syndrome,  cancers  and
cardiovascular disease (CVD)[1,2].

CVD, a leading cause of death worldwide, stems from risk factors like smoking,
lipid metabolism, diabetes and unregulated blood pressure. Atherosclerosis, the key
pathophysiologic  mechanism  underlying  the  development  of  CVD,  involves  a
complex interaction of vasculature, immune system and lipid metabolism. The gut
microbiome affects all the component risk factors of atherosclerosis - both directly and
indirectly, thus playing an important, albeit poorly understood role, in CVD[2]. In this
review, we outline the role of gut microbiota in CVD and areas of future research and
potential interventions.

HUMAN GUT MICROBIOTA

Composition, development and function
It is estimated that the human gut is home to approximately 1000 to 1150 microbial
species[3]. The microbial gene pool has been shown to exceed the size of the human
genome and is  termed as metagenome[4].  The international  Metagenomics of  the
Human  Intestinal  Tract  Project  identified  the  gene  database  of  the  human  gut
microbiome, from stool samples of 124 individuals who were healthy, overweight and
obese and patients with inflammatory bowel disease. This study found 3.3 million
non-redundant microbial genes, derived from 576.7 gigabases of sequence, which is
approximately 150 times larger than the human genome size[3]. The two major phyla,
Bacteroidetes and Firmicutes accounted for 90% of microbial species inhabiting human
gut, with the rest comprised of Actinobacteria, Cyanobacteria, Fusobacteria, Proteobacteria
and Verrucomicrobia[3,5,6].

Starting  from  birth,  multiple  factors  (both  intrinsic  and  extrinsic)  affect  the
development of human gut microbiota pool including host genome, geography and
lifestyle factors (e.g. diet, disease, antibiotic exposure, etc.) (Figure 1)[7]. In the perinatal
life,  maternal  flora,  delivery method,  breastfeeding,  and weaning off  breastmilk
affects  the  development  of  microbiome.  Notably,  the  gut  microbiota  of  infants
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delivered vaginally consists of Lactobacillus, Prevotella, and Atopobium, whereas babies
delivered by caesarean section predominantly carry maternal skin microflora in their
guts,  consisting mainly of  Staphylococcus[8].  As  the  infant  matures,  the  dominant
aerobic microbiome diversifies to form an anaerobic environment, as evidenced by a
high abundance of Bifidobacteria and Clostridia in adolescents compared to adults[9].
Interestingly, the metabolic environment of the gut changes as the microbiota evolves
with age. The composition of core gut microbiota has been shown to be essentially
stable throughout adulthood[9]. Changes occur with old age in accordance with the
decline of physiological functions (Figure 2).  As the immune system declines, an
increase in facultative anaerobes, a shift in the ratio of Bacteroidetes to Firmicutes phyla,
and a marked decrease in Bifidobacteria have been noted[9].

The gut microbiome plays an important function in both healthy and diseased
individuals.  It  protects  the host  from epithelial  cell  injury and enteropathogens,
regulates fat metabolism, affects the absorption of various nutrients and optimizes
digestion[10,11]. The immune system is continuously modified by the introduction of
components  of  the  microbiome  through  the  leaks  in  the  intestinal  wall.  This
interaction  shapes  the  immune  system,  which  in  turn  also  changes  the  gut
microbiota[7,12].

Leaky gut syndrome
Intestinal  mucosal  epithelial  barrier,  which protects  the internal  milieu from the
hostile external environment, is maintained by the formation of tight junctions (TJs, a
complex made of intramembranous proteins, occludin and several molecules from
claudin family of proteins) that spread between the epithelial cells, thus creating a
semi-permeable seal[13]. Lipopolysaccharides (LPS, an endotoxin) is a component of
Gram-negative  bacterial  cell  wall  and  is  a  known  inducer  of  the  inflammatory
response. LPS, via  toll-like receptors (TLRs) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway, induces expression of inflammatory
mediators and activates the innate immune system[14]. Higher levels of bloodstream
endotoxins (especially > 50 pg/mL) have been associated with a threefold increased
risk of atherosclerosis[15]. Gut microbiota is a large source of LPS, and under normal
conditions with a functional intestinal barrier, it causes no harm and lower levels of
LPS have been detected in healthy subjects[16,17]. In a diseased state, this barrier loses its
protective function leading to increased intestinal permeability,  especially to the
locally  produced LPS by the  gut  bacteria.  Earlier,  it  was  thought  that  leaky gut
develops  because  of  specific  pathological  conditions,  but  more  recently,  several
studies have indicated a causal role of leaky gut rather than a consequence of the
pathologic conditions[18-20]. In order to understand the role of gut microbiota in CVD,
we have first to understand the factors contributing to the leaky gut syndrome.

Nutritional factors
Dyslipidemia is a known risk factor for CVD. High-energy diet and excessive fat
intake are associated with significantly increased levels of LPS in blood[21,22].  Two
pathways are proposed to be involved in the increased LPS with such diets - direct
and indirect.  In the direct pathway, food high in fat  content causes an increased
accumulation of chylomicrons increasing the local intercellular pressure contributing
to loosening of the tight junctions. The loosening of tight junctions allows a generous
influx of larger molecules such as LPS[23,24]. In the indirect pathway, the dietary fat
stimulates mast cell activation in the intestinal mucosa with subsequent release of
histamine  and  other  inflammatory  mediators  known  to  increase  intestinal
permeability[25]. Similar to a high-fat diet, high carbohydrate intake can also lead to
increased intestinal permeability and endotoxins levels[26].  With the expansion of
industrial  food processing,  the  human gut  is  increasingly  exposed to  new food
additives  such  as  nanoparticles,  emulsifiers,  organic  solvents,  and  microbial
transglutaminases. These products compromise the integrity of the intestinal barrier
and expose the immune system to a number of foreign particles[27].

Endogenous factors
Genetic susceptibility has been implicated in several autoimmune intestinal diseases
that  may  contribute  to  the  leaky  gut  such  as  celiac  disease  and  autoimmune
enteropathy[28].  Zonulin  is  a  physiological  modulator  of  TJs  and  is  activated  by
intestinal mucosa-microbiota interactions. Zonulin regulates antigen trafficking, and
its upregulation in genetically susceptible individuals can lead to inflammatory and
autoimmune processes[29]. Autoimmune disorders have been seen as a consequence of
increased intestinal wall permeability; however, the reverse (i.e. autoimmune disorder
causing increased intestinal wall permeability) has also been suggested in animal
studies[30].

Other endogenous factors include the role of alterations in the enteric nervous
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Figure 1

Figure 1  Factors affecting gut microbiome development.

system, and conditions compromising intestinal integrity. The enteric nervous system
is a collection of neurons in the gastrointestinal tract, which functions independently
from  the  central  nervous  system  secreting  various  neurotransmitters  including
serotonin and histamine. In murine models, the downregulation of serotonin reuptake
transporter has been associated with increased proinflammatory bowel response,
increased  intestinal  permeability  and  increased  fructose-induced  endotoxin
translocation leading to liver steatosis[31-33]. Studies have reported intestinal insult like
major abdominal surgeries, shock and trauma compromises intestinal integrity as a
cause or as a consequence of systemic inflammation[34].

Intestinal infections
The integrity of the intestinal barrier is also prone to many pathogen microorganisms
and toxins. Helicobacter pylori can cause interruption of TJs by delivering cytotoxin-
associated  gene  A,  which  results  in  loss  of  polarity  of  epithelial  cells [35 ,36].
Enteropathogenic Escherichia coli secretes EspM and NIeA proteins which can induce
TJ mislocalization[37,38]. Clostridium difficile toxin A increases paracellular permeability
and translocation of zonula occludens-1 protein leading to degradation of filamentous
actin[39].  TJ  disruption  was  also  implicated  in  cases  of  infection  with  Vibrio
parahaemolyticus and Salmonella enterica[40,41].

Lifestyle factors
Chronic stress and alcohol consumption can also affect the gut microbiome. Studies
suggest a key role of corticotropin-releasing factor (CRF) and its receptors (CRFR1
and CRFR2)  in  the  pathophysiological  mechanism of  development  of  the  leaky
gut[42,43]. Acetaldehyde, a product of alcohol metabolism, promotes phosphorylation of
tight junction proteins in the intestinal epithelium causing direct damage in addition
to indirect damage by an increase in nitric oxide which damages microtubules[44].
Alcohol also alters  the composition of  gut microbiota with an increase in Gram-
negative bacteria[44].

ROLE GUT MICROBIOTA IN CARDIOVASCULAR DISEASES
Atherosclerosis  is  an  inflammatory  disease  with  a  growing  body  of  evidence
supporting a potential  autoimmune background[45].  Infection is  one of  the major
contributors  to  inflammation  in  the  body  and  is  a  proposed  mechanism  of
atherosclerosis. A large number of microorganisms such as Chlamydophila pneumoniae,
Porphyromonas gingivalis,  Helicobacter  pylori,  Influenza A virus,  Hepatitis  C virus,
cytomegalovirus, and human immunodeficiency virus have been associated with an
increased  risk  of  cardiovascular  diseases [46].  Infections  contribute  towards
atherosclerosis via two predominant mechanisms: direct infection of the blood vessel
wall (making it prone to plaque formation), or indirectly with an infection at a distant
site by promoting proinflammatory mediators from a systemic immune response
affect plaque growth (Figure 3)[47].  Additionally, dysbiosis also contributes to the
production of atherosclerotic metabolites in the gut like trimethylamine N-oxide
(TMAO) and can alter bile acid metabolism[48]. In this section, we will discuss the role
and the evidence for each of the proposed mechanisms.
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Figure 2

Figure 2  Evolution of gut microbiome with age and host’s immune function.

Direct infection
Over 50 species of bacterial DNA have been observed in atherosclerotic plaques[49].
Proteobacteria phylum (Chryseomonas and Helicobacter genera) is found to be most
abundant in atherosclerotic plaques[49]. Firmicutes phylum (Anaeroglobus, Clostridium,
Eubacterium, Lactobacillales and Roseburia genera) is predominantly found in the oral
and gut cavity and is also present in atherosclerotic plaques[49]. Other bacteria that
have  been  shown  to  be  altered  in  the  gut  among  patients  with  atherosclerotic
cardiovascular disease includes Lactobacillales,  Collinsella  (stenotic atherosclerotic
plaques in the carotid artery leading to cerebrovascular events), Enterobacteriaceae and
Streptococcus  spp (Table 1)[50,51].  In fact,  it  has been suggested that gut microbiota,
especially Bacteroides, Clostridium and Lactobacillales could be considered as diagnostic
markers in patients suffering from coronary artery disease[52].

Indirect infection
Microorganisms,  through inflammatory cytokine  production and stimulation of
acute-phase reactants, contribute to the development of atherosclerosis by further
adding to the chronic inflammation within the atheromatous plaques[46]. In murine
models, the use of antibiotics has shown an alteration in the gut microbiome, which
affects carbohydrate and lipid metabolism. Initial studies investigating the role of
pathogens in the development of atherosclerotic plaques had accounted for single
microorganisms and not the overall microbiome, more recently it is being recognized
that the aggregate number of microorganisms which an individual is colonized or
infected with correlates more with atherogenesis, a concept referred to as "pathogen
burden" or "infectious burden"[53].

Another  possible  mechanism for  increased inflammation is  cross-reactivity or
molecular  mimicry between self-antigens  and bacterial  antigens  like  heat-shock
proteins and oxidized low-density lipoproteins[54].  Human heat-shock protein 60
(hHSP60) is expressed on the arterial endothelium in response to stress such as acute
hypertension, hypercholesterolemia and in reperfusion injury. Also, a major antigenic
component  of  bacteria  during  infection  is  the  bacterial  heat-shock  protein  60s
(HSP60s). Due to the high degree of homology between human and bacterial HSP, it
is  suggested  that  the  antibodies  formed  against  bacteria  can  target  host  cells
expressing hHSP60. Indeed, high titres of serum antibody to mycobacterial HSP-65
were found in subjects with coronary or carotid atherosclerosis and post-myocardial
infarction state[55].

As mentioned before,  dysbiosis also leads to alteration in the immune system,
which causes increased inflammation and atherogenesis. TLRs have been known to
play a crucial role in bacterial infection and activation of the innate immune response.
Once activated by ligands such as LPS, TLR dimerizes with the interleukin-1 receptor
(IL-1R)  forming a  complex  that  binds  myeloid  differentiation primary response
protein, MyD88, leading to downstream signalling cascade ultimately activating NF-
κB. This cascade results in stimulation of the synthesis of proinflammatory cytokines,
chemokines  and  costimulatory  molecules[56].  TLR’s  expression  is  found in  most
cardiovascular cells like endothelial cells, cardiomyocytes, adventitial fibroblasts, and
macrophages.  Among  TLRs,  TLR4  is  best  understood.  Studies  have  described
activation of  TLR4 by saturated fatty acids,  acting as a  ligand through the same
downstream pathways as for LPS resulting in the production of proinflammatory
cytokines and chemokines[57,58]. Additionally, saturated fatty acids contribute to the
induction of  the inflammation by alternating gut  microbiota in favour of  Gram-
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Figure 3

Figure 3  Proposed mechanisms of micro pathogen mediated atherosclerotic cardiovascular diseases.
ASCVD: Atherosclerotic cardiovascular diseases.

negative bacteria, thus, increasing LPS levels. These processes promote translocation
of bacteria and endotoxins into the bloodstream from the intestinal lumen due to an
increase in intestinal permeability, further adding to the activation of TLR4[59]. In the
animal  models  with  a  genetic  deficiency  of  TLR4  and  MyD88  genes,  reduced
proinflammatory  cytokines  and  decreased  plaque  lipid  content  and  aortic
atherosclerosis  were  observed[60].  Human  studies  have  also  shown  increased
expression of TLR1, TLR2 and TLR4 in atherosclerotic plaques, suggesting a potential
role in pathogenesis[61].

Production of proatherogenic metabolites
TMAO is an intestinal microbiota metabolite of choline and phosphatidylcholine.
Dietary components such as choline, phosphatidylcholine, and carnitine, found in
various animal-based products and energy drinks, are metabolized by gut microbiota
to trimethylamine (TMA), and then oxidized by flavin monooxidases 3 in the liver to
TMAO[62,63]. Flavin monooxidases 3 is an important regulator of TMAO synthesis and
is regulated by farnesoid X receptor (FXR) whose expression can be upregulated by
bile acids. TMAO can lead to atherogenesis via  multiple mechanisms, though the
underlying pathway is not completely understood. It  inhibits reverse cholesterol
transport causing reduced cholesterol removal from peripheral macrophages, and
also  affects  atheroprotective  effects  of  high-density  lipoprotein  thus  promotes
atherosclerosis[64].  TMAO  also  acts  on  platelets  and  increases  platelet  hyperre-
sponsiveness by enhancing the stimulus-dependent release of Ca2+ from intracellular
Ca2+ stores leading to increased thrombotic risk[63]. The effects of TMAO have also
been observed in vascular cells promoting proinflammatory protein activation such as
interleukin-6, cyclooxygenase-2, intercellular adhesion molecule-1 and E-cadherin –
through the NF-κB signalling pathway[65]. Tang et al[62] showed elevated TMAO levels
were associated with increased risk of major adverse cardiovascular events, including
death, myocardial infarction and stroke over a 3-year follow-up period involving
more than 4000 human subjects. A strong correlation between TMAO levels and CVD
was noted even after adjustments of traditional risk factors. Also, an increased risk
was associated with a graded increase in TMAO levels with a significant risk of major
adverse cardiovascular events seen in the highest quartile.

There  are  an  increasing  number  of  studies  explaining  the  complex  interplay
between intestinal  microflora,  bile  acids  and metabolic  disease.  Bile  acids  affect
cardiac function and play a significant, yet poorly understood, role in CVD[66]. Direct
and indirect pathways have been proposed to explain their effects in CVD. In the
direct  pathway,  bile  acids  have  been  shown  to  interact  with  cardiac  myocytes
affecting muscle contractility and electrical excitation. In the indirect pathway, bile
acids  play  a  significant  role  in  lipid  metabolism,  plaque  formation,  endothelial
vasodilation and neovascularization of injured organs[66]. Having been metabolized by
intestinal  microflora,  bile  acid  metabolites  affect  different  metabolic  pathways
through FXR-induced signalling[67]. FXR is an endogenous bile acid sensor, a member
of the nuclear receptor family with chenodeoxycholic  acid being its  most  potent
ligand. FXR acts as a receptor-transcription factor which, after being bound by ligand,
regulates promoter activity in a coordinated manner. In adult human tissues, FXR
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Table 1  Microorganisms associated with cardiovascular disease

Microorganisms associated with cardiovascular disease

C. pneumoniae

P. gingivalis

H. pylori

Lactobacillales

Influenza A

Cytomegalovirus

Human immunodeficiency virus

Enterobacteriaceae

Streptococcus parasanguinis

Collinsella

Veillonella

Aggregatibacter

Firmicutes

Bacteroidetes

Actinobacteria

Fusobacteria

Proteobacteria

Candidate division TM7 single-cell isolate TM7c

Spirochaetes

SR1

Tenericutes

Deinococcus-Thermus

Gemmatimonadetes

Chloroflexi

Neisseria polysaccharea

Neisseria subflava

Waddlia chondrophila

Prevotella

Beggiatoa sp. P5

Alloprevotella rava

Megasphaera micronuciformis

Acidovorax sp. CF316

Atopobium parvulum

Solobacterium moorei

Clostridium difficile

expression has been found in adrenal glands, colon, liver, small intestine, kidneys and
heart whereas no expression detected in brain, lung and skeletal muscles[68]. In vitro
studies have recognized the prevention of vascular inflammation and neointimal
proliferation as the potential roles FXR activation in the vascular smooth muscle
cells[69].

THERAPEUTIC INTERVENTIONS: IMPROVING GUT
MICROBIOME AND PREVENTING CARDIOVASCULAR
DISEASE
As our understanding of the gut microbiome and its role in CVD grows, the gut
microbiome is emerging as a major potential target for intervention among patients
with  CVD for  improving clinical  outcomes.  The currently  proposed therapeutic
interventions  are  targeted  towards  the  restoration  of  the  intestinal  barrier  and
improvement of gut microbiota. In this section, we will discuss the role of dietary
modification and supplementation in the gut microbiome, followed by the possible
role of faecal transplantation and targeting microbial enzyme pathways for further
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prevention of CVD.

Low-fermentable oligo-, di- and monosaccharides and polyols diet
Fermentable oligo-, di- and monosaccharides and polyols group includes short-chain
carbohydrates and sugar alcohols that have poor absorption in the small intestine due
to osmotic activity and undergo rapid fermentation by gut microflora[70]. Studies have
shown their potential therapeutic effects in diseases that are associated with increased
intestinal  permeability,  such as  non-celiac  gluten sensitivity  and irritable  bowel
syndrome[71-74].  These findings suggest  their  potential  role in dyslipidaemias and
atherosclerosis, though further investigations are warranted.

Dietary fibers/prebiotics
Whole-grain intake has been inversely associated with metabolic  syndrome and
mortality from CVD, independent of demographic, lifestyle and dietary factors[75].
Epidemiologic studies have also suggested a decreased risk of CVD with adequate
dietary fiber intake likely through the reduction of low-density lipoprotein levels[76].
Prebiotics are fibers, mostly oligosaccharides, that are selectively fermented (mostly
Lactobacilli and Bifidobacteria genera) and exert changes on both the composition and
function of the gastrointestinal microflora to confer benefits upon host well-being and
health[77]. Their proposed health benefits were observed in a mouse model, where a
diet rich in various inulin-type fructans, was associated with a reduced burden of
atherosclerosis[78].

Probiotics
Probiotics  are  live  viable  microorganisms  (predominantly  Lactobacilli  and
Bifidobacteria) that improve microbial balance in the gut, thus exerting positive health
effects[79].  In a randomized trial,  consumption of  live Lactobacillus  Plantarum  was
shown  to  diversify  homogenous  gut  microbial  flora  and  was  associated  with  a
reduction in incident CVD events[80]. Naruszewicz et al[81], in a study of 36 healthy
volunteers  who  were  active  smokers  showed  an  inverse  correlation  between
administration of Lactobacillus Plantarum and blood pressure levels, fibrinogen levels,
degree of adhesion of isolated monocytes and levels of proinflammatory cytokines
suggesting its potential role in primary prevention of atherosclerosis. Reduced levels
of low-density lipoprotein were noted in women with normal or moderately elevated
cholesterol after ingestion of fermented milk containing Lactobacillus acidophilus and
Bifidobacterium longum[82]. Another study found Akkermancia muciniphila to suppress
inflammation and atherosclerotic lesion formation in the apolipoprotein E-deficient
(ApoE-/-) mice. It was proposed that A. muciniphila reduce circulating endotoxins and
improve the intestinal barrier by increasing the expression of TJ proteins[83]. Looking
through the prism of intestinal microflora and gut permeability, probiotics appear to
be  promising  protective  agents,  especially  with  regards  to  prophylaxis  of
atherosclerosis. Larger clinical trials with hard clinical outcomes are awaited for this
approach to gain more credibility.

Anthocyanin
Anthocyanins  represent  a  group  of  flavonoids  that  commonly  found  in  fruits,
vegetables,  grains,  and  even  red  wine.  They  play  a  protective  role  against
atherosclerosis after being transformed to various metabolites by gut microbiota[84,85].
Protocatechuic  acid  (PCA)  is  a  metabolite  derived  from  human  gut  microbiota
metabolism of anthocyanin called cyanidin-3-O-glucoside[86]. PCA had been shown to
inhibit atherosclerosis by reducing monocyte inflammation and adhesion in ApoE-/-
mice[87,88]. PCA has also shown to decrease miR-10b expression in macrophages, which
induces gene expression promoting reverse cholesterol  transport contributing to
regression of established atherosclerotic plaque in ApoE-/- mouse model[85]. Human
studies are needed to show a clinical benefit of anthocyanin as a food supplement in
the prevention of atherosclerosis.

Faecal microbiota transplantation
Faecal microbiota transplantation (FMT) is described as the restoration of “healthy”
functional gut microflora by administrating a faecal solution from a donor into the
intestinal tract of the recipient. The beneficial effect of FMT for recurrent clostridium
difficile infection has been proven and is now a part of the guidelines for the treatment
of recurrent clostridium difficile. It has also been explored as a therapeutic intervention
in several other pathologies such as irritable bowel syndrome, metabolic syndrome,
neurodevelopmental disorders, autoimmune diseases, allergic diseases and chronic
fatigue syndrome[89,90].

In  a  mouse  model,  gut  microbial  transplantation  was  conducted  from  the
atherosclerosis-prone strain of mice and atherosclerosis–resistant strain of mice to
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apolipoprotein e null mice in which resident intestinal microbes were first suppressed
with  antibiotics.  Mice  which  received  FMT  from  atherosclerosis-prone  strain
demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden
as compared with recipients of atherosclerosis-resistant strain[91]. In another study
with  human  subjects,  allogenic  FMT  from  lean  subjects  to  obese  subjects  with
metabolic syndrome leads to improved insulin sensitivity and glucose metabolism[92].
The role of FMT as a secondary or primary prevention strategy to improve CVD
outcomes remains to be explored with a severe limitation of its delivery method and
possible complications of exposing the host to other infections.

Targeting enzyme pathways
Aortic lesions have a positive correlation with TMAO but an inverse correlation with
choline levels[93]. Inhibition of FMO gene expression has been shown to reduce TMAO
levels, alteration of lipid and cholesterol metabolism, and reduction in atherosclerotic
lesions[94-96]. A study by Wang et al[97] showed that 3,3-dimethyl-1-butanol, a structural
analogue of choline, inhibits microbial TMA lyases resulting in reduced TMAO levels
and atherosclerotic lesion development in mice. In 2018, Roberts et al[98] reported the
development of  choline analogues iodomethylcholine and fluoro-methyl choline
which can irreversibly inactivate choline TMA lyase activity. In animal models, these
potent  inhibitors  reduced plasma TMAO levels  >  95% after  a  single  dose,  for  a
sustained  period  and  without  any  reported  toxicity.  The  inhibitor  selectively
accumulated within intestinal microbes to millimolar levels, a concentration over 1-
million-fold higher than needed for a therapeutic effect[98]. These studies reveal that
mechanism-based inhibition of gut microbial TMA and TMAO production reduces
thrombosis potential, a critical adverse complication in heart disease. They also offer a
generalizable approach for the selective nonlethal targeting of gut microbial enzymes
linked to host disease limiting systemic exposure of the inhibitor in the host. Despite
holding significant potential, these agents still need to undergo human testing for
efficacy and safety evaluation.

CONCLUSION
Gut microbiota represents an inseparable part of the human organism and remains an
area of exploration in its role in the development of various pathological conditions.
So far, significant progress of acknowledging our co-habitants has been made with
respect to discovering its genome, functions, composition differences across different
age and cultural groups. In addition, the recognition of the leaky gut syndrome has
paved the way to reveal potential pathophysiological mechanisms behind numerous
associations  between  the  gut  microbiota  and  CVD.  Several  factors  have  been
identified,  exogenous  and  endogenous,  in  the  leaky  gut  and  has  made  gut
microbiome alteration a potential therapeutic target in managing several diseases
including potentially CVD. However, much needs to be explored to evaluate the
translation of benefits observed predominantly in animal studies to human subjects.
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Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. The
prevalence of the disease increases with age, strongly implying an age-related
process underlying the pathology. At a time when people are living longer than
ever before, an exponential increase in disease prevalence is predicted
worldwide. Hence unraveling the underlying mechanics of the disease is
paramount for the development of innovative treatment and prevention
strategies. The role of voltage-gated sodium channels is fundamental in cardiac
electrophysiology and may provide novel insights into the arrhythmogenesis of
AF. Nav1.5 is the predominant cardiac isoform, responsible for the action
potential upstroke. Recent studies have demonstrated that Nav1.8 (an isoform
predominantly expressed within the peripheral nervous system) is responsible
for cellular arrhythmogenesis through the enhancement of pro-arrhythmogenic
currents. Animal studies have shown a decline in Nav1.5 leading to a diminished
action potential upstroke during phase 0. Furthermore, the study of human tissue
demonstrates an inverse expression of sodium channel isoforms; reduction of
Nav1.5 and increase of Nav1.8 in both heart failure and ventricular hypertrophy.
This strongly suggests that the expression of voltage-gated sodium channels play
a crucial role in the development of arrhythmias in the diseased heart. Targeting
aberrant sodium currents has led to novel therapeutic approaches in tackling AF
and continues to be an area of emerging research. This review will explore how
voltage-gated sodium channels may predispose the elderly heart to AF through
the examination of laboratory and clinical based evidence.

Key words: Voltage-gated; Sodium channels; Ageing; Atrial fibrillation; Nav1.5; Nav1.8;
Late sodium current; Cardiac electrophysiology
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Core tip: Nav1.8 has been implicated by multiple studies in producing the late sodium
current, predisposing the cardiomyocyte to arrhythmogenic activity. Animal models have
demonstrated an enhancement of this aberrant current in aged hearts. Human studies
have identified a reduction of Nav1.5 and an increase in Nav1.8 in both heart failure and
left ventricular hypertrophy, strongly suggesting that voltage-gated sodium channel
expression plays a central role in the development of arrhythmia. Clinically, sodium
channel blockade through Ranolazine has proved promising in terminating the
arrhythmia. Prevention of atrial fibrillation should focus on lifestyle management, as
well as targeting cardiac risk factors. Irbesartan has been demonstrated to slow atrial
remodelling, prevent atrial fibrillation in animal models, as well as avert the arrhythmia
in human subjects.

Citation: Isaac E, Cooper SM, Jones SA, Loubani M. Do age-associated changes of voltage-
gated sodium channel isoforms expressed in the mammalian heart predispose the elderly to
atrial fibrillation? World J Cardiol 2020; 12(4): 123-135
URL: https://www.wjgnet.com/1949-8462/full/v12/i4/123.htm
DOI: https://dx.doi.org/10.4330/wjc.v12.i4.123

INTRODUCTION
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting an estimated
33.5 million people worldwide[1]. Prevalence of AF increases with age; 2.8% of the
affected population under the age of 45, 16.6% between 45-65 and 80.5% aged 65 and
over[2]. Altered expression of sodium channel isoforms associated with ageing has
been demonstrated in animal models[3,4] though yet to be identified within the human
heart. Furthermore, mutations in the SCN5a gene coding for the predominant Nav1.5
isoform are strongly associated with a spectrum of cardiac arrhythmias including;
Long QT syndrome, Brugada’s syndrome and AF[5-8].  Unravelling the mechanistic
processes that underlie rhythm disturbances in the pathogenesis of AF is a paramount
strategic  goal  to  enable  the  development  of  innovative  therapies  for  both  the
prevention and treatment of the condition.

EPIDEMIOLOGY AND HEALTHCARE BURDEN OF AF
When age alone is considered as a major risk factor for developing AF[9], an ageing
population will inevitably give rise to an increased prevalence of the arrhythmia. The
European Union predicts the incidence of AF to more than double in it's over 55
populous by 2060[10].  More immediately worrying projections are estimated in the
United States from 5.2 million cases in 2010 to 12.1 million by 2030[11].  AF carries
significant morbidity with sufferers at notably higher risk of stroke[12], heart failure[13],
myocardial infarction[14] and death[15]. Inpatient hospitalization specifically due to AF
continues to rise by roughly 1% a year, placing a significant burden on healthcare
resources[16].

Over five years, the direct cost of AF in the United Kingdom rose dramatically from
£244  million  to  £458  million,  taking  into  account  hospitalisation  and  drug
expenditure. Appreciating the cost of long term nursing home care as a consequence
of the condition tallied an additional £111 million in the year 2000, more than double
that in 1995[17]. Hospital care burden of AF continues to escalate around the globe with
Korea claiming a rise of 420% between 2006-2015. The majority of these cases were
due to major bleeding as a consequence of anticoagulation. The majority of patients
were 70 years and older and the total cost of care for AF related hospital admissions
rose from €68.4 million to €388.4 million over 9 years[18].

Further to the concerning rise in the prevalence of AF, placing a significant burden
on healthcare resources worldwide; the consequences of current therapeutic strategies
addressing the potentially fatal pro-thrombotic risks of AF, have inadvertently led to a
sharp  rise  in  hospital  admissions  due  to  adverse  effects  of  said  treatment.
Appreciating the role of voltage-gated sodium channels (VGSCs) in the development
of AF offers a fresh perspective on therapeutic approaches.
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VOLTAGE-GATED SODIUM CHANNELS
VGSCs are transmembrane protein complexes that produce the depolarising influx of
sodium ions at the initiation and duration of the action potential (AP)[19]. There are
nine subtypes of VGSCs that are expressed within the mammalian class. Each isoform
has specific features; activation/inactivation voltage threshold, amino acid sequence,
and gene. VGSCs are expressed proportionately differently depending on the bodily
tissues. The standardised nomenclature for these channels was first proposed by
Goldin et al[20] in the year 2000. Nav 1.1, 1.2, 1.3 and 1.6 are predominantly expressed in
the central nervous system[21]. Nav1.4 is dominant in skeletal muscle. Nav 1.5 is the
predominant cardiac isoform, making up nearly 90% of all sodium channel isoforms
expressed in the heart; responsible for over two-thirds of the total sodium current[22].
Finally,  Nav  1.7,  1.8  and 1.9  are abundantly expressed in the peripheral  nervous
system[23] (Table 1).

CARDIAC SODIUM CURRENTS AND ARRYTHMOGENISIS

Fast and late sodium currents
The sodium current (INa) can be appreciated as two phases; the peak (fast) sodium
current and the late (slow) sodium current (INaL). The majority of the depolarizing Na+

current  is  generated  by  the  fast  INa  of  which  Nav1.5  the  predominant  channel
responsible. This produces the AP upstroke and “maximum upstroke velocity” (Vmax).
The late sodium current is produced by a slow, steady influx of Na+ which persists
throughout the AP. These two currents determine not only the peak of the AP and
velocity of depolarisation but also in shaping AP morphology through the length of
the plateau phase, repolarisation and therefore the refractory period. As illustrated in
(Figure  1)  an  enhanced  INaL  prolongs  AP  duration.  This  is  directly  linked  to
afterdepolarizations-a symptom of cellular electrical instability[24-26].

Afterdepolarizations
Afterdepolarisations describe the spontaneous, delayed depolarization of the cell due
to abnormal ion flux during the AP. An abnormally enhanced influx of Na+ underlies
improper calcium handling leading to afterdepolarizations[25,27].  The depolarising
sodium currents activate the influx of calcium through Cav1.2 channels. This triggers a
calcium-induced calcium release from the sarcoplasmic reticulum via RyR2 receptors.
A key process in excitation-contraction coupling. Overloaded cytosolic Ca2+ must be
removed by the Ca2+/Na+ exchanger[27], widely accepted although still debated, three
Na+ ions move into the cell for one Ca2+ ion out leading to an overall positive charge
and therefore a further depolarising current[25]. The late sodium current (INaL) plays a
pivotal  role  in this  pathological  development[24-29].  An unusually heightened late
current slows repolarization of the cell due to an uncharacteristically persistent influx
of Na+ ions maintaining a positive membrane potential. Nav1.8 has been specifically
implicated in this process as blocking the channel has been shown to reduce the late
sodium  current,  suppressing  the  development  of  afterdepolarizations  in  the
ventricular myocytes of mice and rabbits[30].

Gene mutation of the cardiac isoform in AF
Mutations in the SCN5a gene encoding for the Nav1.5 isoform aid our understanding
of cardiac sodium currents as they are strongly associated with a spectrum of cardiac
arrhythmias  including;  Long  QT  syndrome,  Brugada’s  syndrome  and  AF[5-8].
Mutations in the SCN5a  gene may penetrate as either gain-of-function or loss-of-
function of the Nav1.5 channel (Figure 2).

Gain-of-function describes a phenomenon where the sodium influx is enhanced
due to aberrant channel gating; incomplete inactivation or late inactivation of the
channel at more depolarized potentials. This enhances the late current, prolonging AP
duration, leading to afterdepolarizations described above[26].

Loss-of-function mutations lead to a lower expression of Nav1.5 or the expression of
faulty channels. Mutated channels exhibit altered functionality of the voltage-sensor
domain,  meaning  poor  availability  of  Na+  ions;  channels  are  activated  at  more
depolarized potentials and inactivated at less depolarised potentials[31,32]. This leads to
a diminished AP upstroke and slowed depolarisation of the cardiomyocyte.

With regards to AF, both loss-of-function and gain of function mutations have been
identified in familial forms of the disease[6,33,34]. Loss-of-function mutations increase the
risk of AF due to decelerated conduction throughout the atria as a consequence of
poor Na+ availability. Gain-of-function variants lead to hyperexcitable cardiomyocytes
due to prolonged INaL.
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Table 1  Properties of voltage-gated sodium channel isoforms

Voltage-gated sodium channel
isoform Tissue Gene Amino acid length Activated Inactivated Associated β-

subunit

Nav1.1 Brain SCN1A 2009aa (human and rat) -33 mV -72 mV β1, β2, β3, β4

Nav1.2 Brain SCN2A 2005aa (human); 2006aa
(rat)

-24 mV -53 mV β1, β2, β3, β4

Nav1.3 Brain SCN3A 1951aa (human and rat) -23 to -26 mV -65 to -69 mV β1 and β3

Nav1.4 Skeletal muscle SCN4A 1836aa (human); 1840aa
(rat)

-26 to -30 mV -56 mV β1

Nav1.5 Heart SCN5A 2016aa (human); 1951aa
(rat)

-47 mV -84 mV β1, β2, β3, β4

Nav1.6 Brain SCN8A 1980aa (human); 1976aa
(rat)

-37.7 mV -98 mV β1 and β2

Nav1.7 PNS SCN9A 1977aa (human); 1984aa
(rat)

-31 mV -61 to -78 mV β1 and β2

Nav1.8 PNS SCN10A 1957aa (human) -16 to -21 mV -30 mV Not established

Nav1.9 PNS SCN11A 1792aa (human); 1765aa
(rat)

-47 to -54 mV -44 to -54 mV Not established

Illustrating the standardised nomenclature, regional tissue where the isoform predominantly located, gene, amino acid length, activation and inactivation
membrane potentials and associated beta subunits. PNS: Peripheral nervous system; aa: Amino acids; mV: millivolts. Adapted from Catterall et al[23], 2005,
with permission.

Role of non-cardiac isoforms in arrhythmogenesis
Nav1.8 has been identified as responsible for producing the late sodium current and
consequent arrhythmia in both mouse and human subjects[26,28,30,35]. Nav1.8 is coded by
the  SCN10a  gene.  Unlike  its  neuronal  counterparts  Nav1.8  is  resistant  to  the
neurotoxin and sodium current blocker TTX- a functional similarity to the cardiac
isoform. In the human chromosome, the gene is located adjacent to SCN5a and shares
65% of its amino acid sequence[36]. Its close genetic and functional kinship to Nav1.5,
coupled with a strong association in underpinning arrhythmogenic APs has made
Nav1.8 a target of close study in recent years[37].

From a clinical perspective, we appreciate that patients with cardiovascular risk
factors and co-morbidities are more likely to develop arrhythmia[38]. The mechanistic
role of VGSCs underlying this clinical observation is of great interest. Dybkova et al[28]

at  the  German  Centre  for  Cardiovascular  Research  demonstrate-in  human  left
ventricular myocytes- a significant upregulation of Nav1.8 coupled with reduced
expression of Nav1.5 in patients with heart failure. Furthermore, they illustrate that
Nav1.8 contributes to AP duration and inhibition decreases the late sodium current
suppressing cellular proarrhythmogenic triggers[28]. This is significant as not only does
this  support  the  literature  in  implicating  Nav1.8  to  the  late  current  and
arrhythmogenesis, but it also begins to identify a deeper pathophysiological process
of the diseased heart and its susceptibility to arrhythmia.

The failing heart will express greater amounts of the CNS isoform which is a less
excitable  channel,  needing  a  much  higher  membrane  potential  for  activation
(activated  at-16mV  to  -21mV  as  opposed  to  -41mV  for  Nav1.5).  Hence  cellular
depolarisation is  slowed.  Its  inactivation is  at  -31mV as opposed to -84mV. This
difference in gating mechanics of Nav1.8 allows Na+ influx during the plateau &
repolarisation phase predisposing the myocyte to afterdepolarizations. The loss of Nav

1.5 means the availability of Na+ through open sodium channels in phase 0 of the AP
is reduced. Reduced expression of Nav1.5 will mimic the effect of a loss-of-function
mutation; Vmax will be diminished with a delayed AP upstroke as illustrated in (Figure
3).

The same research group further published similar results with regards to the role
of Nav1.8 to the late current and the same inverse relationship of isoform expression in
patients was also seen in patients with left  ventricular hypertrophy[39].  The same
observation of inversed VGSC expression in two separate-though closely related-
disease entities offers a deeper appreciation of why patients suffering from cardiac
illness are more susceptible to developing arrhythmia.
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Figure 1

Figure 1  Peak and Late sodium currents on action potential morphology. A: Top left: An illustration of a normal sodium current within a cardiomyocyte with its
rapid peak current and short late current; Bottom left: An action potential as a result of normal sodium ion influx. Plateau and repolarisation phases are not prolonged
and no afterdepolarizations present; B: Top right: An Illustration of a pathologically enhanced late sodium current; Bottom right: An action potential as a consequence
of enhanced late sodium current with a prolonged plateau and repolarisation period. The late upstroke between phase 2 and phase 3 represents an after
depolarisation brought about due to the aberrant late sodium current. Adapted from Vadnais et al[74], 2010 with permission.

AGEING HEART
At a time where people are living longer than ever before, age-associated pathologies
are  becoming  ever  more  commonplace  in  medical  practice.  A  myriad  of
cardiovascular diseases are recognised to be heavily associated with the ageing heart
including;  AF,  left  ventricular  hypertrophy,  heart  failure  and  ischaemic  heart
disease[40]. Remodelling describes the adaptation of the structure and function of the
heart to allow it to meet physiological demand. During the ageing process, the heart
undergoes four forms of remodelling; electrical, ionic, functional and structural[41].

AF will lead to progressive remodelling of the atria which in turn will promote
abnormalities in each of these categories[42].  Functional remodelling describes the
mechanical deterioration of the heart with age. This impairs the hearts central role in
delivering oxygenated blood to bodily tissues. The aged heart demonstrates a decline
in heart rate, reduced beat to beat variation, and significant myocardial stiffness due
to fibrosis[43]. Fibrosis promotes AF due to interrupting the continuity of fibre bundles
hence leading to  a  disruption of  normal  electrophysiology;  impaired cell-to-cell
signalling and diminished conduction velocity[44,45].

A major characteristic of electrical remodelling of the aged heart, and one central to
the development of AF, is compromised pacemaker function. Sinoatrial node (SAN)
loses automaticity with age due to poor excitability of SAN myocytes[46]. The loss of
pacemaker function of the SAN underpins the development of ectopic focal points
throughout  the  atria.  The uncoordinated electrical  firing of  multiple  foci  means
irregular contraction of the atria. Random impulses pass through the bundle of hiss to
the ventricles meaning irregular ventricular contraction. This process is illustrated in
the characteristic uneven baseline trace and irregularly timed QRS complexes on the
electrocardiogram (ECG) of a patient with AF.

Electrophysiological remodelling leads to deviation of the normal action potential.
This is ultimately underpinned through the changes of ion channel expression and
function. With regards to VGSCs, Multiple sodium ion transcripts are downregulated
with  age  leading  to;  shortened  AP  upstroke,  impaired  Vmax,  and  prolonged  AP
duration[47]. Currently, there no studies comparing the expression of this channel with
age in human subjects.

We  know  that  VGSCs  play  a  role  in  maintaining  the  plateau  phase  and  the
refractory period. The prolonged refractory period is a common feature of the elderly
heart demonstrated in animal models[47,48]. A study by Baba investigating the sodium
current in aged and adult canines produced contradicting results, concluding that
there was no change in INa density in aged atrial cells and no structural remodelling of
the fast Na+ current with age[49]. These results stand fairly solitary contradicting a large
body of evidence suggesting otherwise. Anyukhovsky et al[50] also carried out canine

WJC https://www.wjgnet.com April 26, 2020 Volume 12 Issue 4

Isaac E et al. Role of sodium channels in atrial fibrillation

127



Figure 2

Figure 2  Gain of function effects of SCN5a mutations on channel gating. Top left: Curves illustrating the fraction of channels activated (white squares) and the
fraction of channels inactivated (grey squares) vs membrane potential. Green squares demonstrate the effect of a gain of function mutation resulting in incomplete
inactivation of sodium channels at higher membrane potentials. This results in a higher fraction of channels inappropriately activated for a longer period, therefore
developing an enhanced late current (Bottom left); Top right: Curves illustrating the delayed inactivation of sodium channels due to gain of function mutations resulting
in an increased window current where channels may reactivate, again leading to increased late current; Bottom right: A normal action potential (blue) and an action
potential with a prolonged plateau and repolarisation phases (green) as a consequence of faulty sodium channel gating mechanics brought about by gain of function
mutations in SCN5a gene leading to aberrant sodium currents. Adapted from Wilde et al[75], 2018, with permission.

studies investigating the effects of age and noted a significantly longer AP duration in
aged dogs hence predisposing them to AF.

Currently, there is a niche within the literature for the study of the age-associated
expression of cardiac sodium channels in human subjects. We would expect to see a
reduction in Nav1.5 and upregulation of non-cardiac isoforms, particularly Nav18 in
keeping with the literature[28,39]. Even so, the mechanisms of altered expression are
poorly understood, though likely ties closely with the effect of stress age and disease
places on the heart. Figure 4 shows the visual schematic representing the relative
gating kinetics of Nav1.5 and Nav1.8.

SODIUM CHANNEL BLOCKADE AS A NOVEL THERAPUTIC
TARGET FOR AF
A-803467 is a specific blocker of the Nav1.8 channel. It has been successfully utilised in
several  studies  in  diminishing  the  INaL  and  restoring  normal  AP  morphology.
Furthermore, it has been demonstrated to prevent electrical remodelling and reduce
the incidence and duration of paroxysmal AF in canines[51]. Blocking the 1.8 channel
using this agent has also been shown to suppress ventricular arrhythmia induced via
acute ischaemia[52]. Further research into the clinical use of this agent, or one of similar
pharmacodynamics, is needed as results so far have only been achieved in laboratory
settings.

Traditionally, pharmacological treatment for AF has mainly been focused around
the use of Amiodarone (class III arrhythmic), Digoxin (cardiac glycoside), β-blockers
such as Sotalol as well as calcium channel blockers Diltiazem and Verapamil. These
are the drugs currently recommended for the management of AF by the National
Institute for Health Care Excellence (NICE) guidelines. Sodium channel blockade is a
novel therapeutic approach in the management of AF and a rapidly emerging field of
research with promising clinical implications. Table 2 summarises the family of class I
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Figure 3

Figure 3  Loss of function effects of SCN5a mutations on channel gating. Top Left: Curves illustrating the fraction of channels activated (white squares) and the
fraction of channels inactivated (grey squares) vs membrane potential. Orange squares represent the effect of loss of function mutation on channel activation, the
white curve is shifted to the right demonstrating a delay; Top right: Orange squares here represent the effect of loss of function mutation on channel inactivation. The
grey curve is shifted to the left demonstrating early inactivation. Both of these effects mean a reduction in Na+ availability and a decreased peak sodium current
(Bottom left); Bottom right: A normal action potential (blue) juxtaposed alongside an action potential due to a loss of function mutation (orange). Action potential
upstroke is diminished and slowed. Adapted from Wilde et al[75], 2018, with permission.

antiarrhythmic drugs. Sodium channel blockers are more frequently used for the
termination  of  ventricular  arrhythmias  as  opposed to  atrial  tachycardia.  Of  the
clinically available sodium channel blockers,  Ranolazine is  of  particular interest.
Multiple studies have illustrated its efficacy in terminating atrial tachyarrhythmia
through specific blockade of the proarrhythmogenic late sodium current, reducing the
risk of adverse electrophysiological effects.

Ranolazine is presently the only Vaughan-Williams class I antiarrhythmic drug of
its kind. It is currently within the recommended NICE protocol for the treatment of
stable angina[53]. It is a potent blocker of the late sodium current and also shown to
mildly inhibit other ion currents such as Ikr,  and Ica

[54].  It is specific in not only for
targeting  INaL,  but  also  atrial  myocytes  compared  to  ventricular  myocytes[55].  Its
selectivity  for  the  late  sodium  current  is  three  times  that  of  the  peak  current,
demonstrating its superiority over Flecanide[56]. Its efficacy in native cardiomyocytes
was just as potent as it was in experimental conditions[57,58]. A clinical trial in 2007
investigated the efficacy of Ranolazine as an anti-anginal medication.  Total  6560
patients admitted with non-ST elevation myocardial infarction were randomised to
receive either Ranolazine or a placebo. Patients had continuous ECG monitoring
during  their  hospital  stay.  The  Ranolazine  group  had  a  significantly  reduced
incidence of ventricular tachycardia (P ≤ 0.001) and although the incidence of new-
onset AF was low in both groups, the intervention arm also showed a statistically
significant reduction compared to control[59].

Since its initial promising pre-clinical and clinical investigation, Ranolazine has
continued to produce spectacular results including: terminating acutely induced AF
in horses through cardioversion[60],  found to be protective against  AF in chronic
ischaemic heart disease[61] and even effective in the conversion of postoperative AF in
cardiac surgery[62]. The randomised control trial HARMONY tested the efficacy of
Ranolazine in reducing “AF Burden” in patients with paroxysmal AF and those with
implanted pacemakers over 12 wk. This was qualified through clinical laboratory
tests,  ECGs and symptom diaries.  On its  own it  did not  significantly reduce AF
burden,  however when paired with a  moderate  dose of  dronedarone had a 59%
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Figure 4

Figure 4  Visual Schematic representing the relative gating kinetics of Nav1.5 and Nav1.8. Nav1.5 represented
by the double-headed blue arrow activates at -41 mV and deactivates at -83 mV. Nav1.8 represented by the double-
headed orange arrow activates at -16 mV and deactivates at -31 mV.

reduction  in  AF  burden,  including  fewer  AF  outbreaks  and  improved  patient
symptoms[63]. The clinical applications of Ranolazine continue to impress. It has been
superior in and preventing and terminating post-operative AF when combined with
amiodarone, compared to conventional chemical cardioversion-especially in patients
undergoing coronary artery bypass grafting. In the RAFAELLO trial, 241 patients
with AF who underwent electrical cardioversion received either 350 mg, 500 mg or
750 mg twice daily of Ranolazine or a placebo. Patients tolerated the drug well and
the higher dose arms of the trial showed a significant reduction in AF recurrence[64].

The evidence supporting the efficacy of Ranolazine beyond that of an anti-anginal
medication continues to accumulate.  However,  there are key questions yet  to be
answered  regarding  its  clinical  use.  The  long-term  effects  of  the  drug  are  still
unknown due to its novelty. Also, whether it can be used as a stand-alone medication
for the treatment and prevention of patients with AF-outside of a surgical context is
unclear. Furthermore, the potential benefit of the drug in preventing AF in the elderly
population is yet to be studied. None-the-less, Ranolazine has hugely expanded the
potential for sodium channel blockade as an antiarrhythmic strategy both in pre-
clinical and clinical trials.

PREVENTION OF AF

Lifestyle
Research has shed much light on the mechanics of VGSCs in arrhythmia as well as
beginning to offer novel therapeutic approaches. Primary prevention strategies are
much the  same focusing  upon common modifiable  cardiac  risk  factors;  obesity,
smoking, alcohol,  hypertension, hypercholesterolaemia and diabetes[65].  First and
foremost, lifestyle management is the cornerstone of a healthy heart and should be the
first approach to disease prevention by primary care physicians. Adherence to healthy
lifestyle moderates the risk of cardiovascular disease[66] and addressing these issues
early significantly reduces one’s risk of AF and its consequent complications[67].

However, obesity continues to plague the western world. The United Kingdom
parliament published a report in August 2019 claiming 28.7% of adults in England are
obese and a further 35.6% are overweight[68]. The causes of such drastic figures are
manifold and beyond the  scope of  this  review.  However,  what  is  clear  is  that  a
concerning proportion of the population is at risk for the development of cardiac
disease. Prevention should aim at tackling the root of pathology before medication
becomes necessary. This holds especially true of modifiable cardiac risk factors.

In China, a recent study by Cai et al[69] aimed to investigate how community-based
lifestyle  intervention  in  the  obese  over  60  populous  affected  weight  loss  and
cardiometabolic  risk  factors.  The  intervention  arm  of  the  study  demonstrated
significant weight loss as well as; blood pressure, waist circumference, fasting blood
glucose,  triglycerides,  high-density  lipoprotein  and  low-density  lipoprotein
cholesterol This study demonstrates that adherence to a healthy lifestyle through
community-based interventions is effective at reducing cardiovascular risk factors[69].

Medication
Failing lifestyle intervention, early detection and medical management of risk factors
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Table 2  Summary of sodium channel blockers (class I antiarrhythmics)

Drug Subclass Pharmacological
targets

Electrophysiological
effects

Corresponding
therapeutic
mechanisms

Major clinical
applications

Quinidine; ajmaline;
disopyramide

Ia Nav1.5 open state;
intermediate
dissociation kinetics;
often concomitant K+
channel block

Reduction in peak INa,
AP generation,
increased excitation
threshold; slowing of
AP conduction in the
atria, ventricles, and
specialized conduction
pathways; concomitant
IK block increasing AP
duration and refractory
period, increase in QT
interval

(1) Reduction in ectopic
ventricular/atrial
automaticity; (2)
Reduction in accessory
pathway conduction;
and (3) Increase in
refractory period
decreasing re-entrant
tendency

SVTs, recurrent AF, VT,
VF

Lidocaine; mexiletine Ib Nav1.5 open state; rapid
dissociation; window
current

Reduction in peak INa,
AP generation with
increased excitation
threshold; slowed AP
conduction in the atria,
ventricles and
specialised ventricular
conduction pathways;
shortening of AP
duration and refractory
period in normal
ventricular and Purkinje
myocytes; prolongation
of ERP, reduced
window current in
ischaemic, partially
repolarised cells. Little
ECG effect, slight QTc
shortening

(1) Reduction in ectopic
ventricular automaticity;
(2) Reduction in DAD-
induced triggered
activity; and (3)
Reduced re-entrant
tendency by converting
unidirectional to
bidirectional block
particularly In
ischaemic, partially
depolarised
myocardium

VT and VF particularly
after myocardial
infarction

Propafenone; flecainide Ic Nav1.5 inactivated state;
slow dissociation

Reduction in peak INa,
AP generation with
increased excitation
threshold; slowing of
AP conduction in atria,
ventricles, and
specialised ventricular
conduction pathways;
reduced overall
excitability;
prolongation of APD at
higher heart rates;
increase in QRS
duration

(1) Reduction in ectopic
ventricular/atrial
automaticity; (2)
Reduction in DAD-
induced triggered
activity; and (3)
Reduced re-entry
tendency slowed
conduction and reduced
excitability particularly
at rapid heart rates
blocking re-entrant
pathways showing
depressed conduction

SVTs (atrial tachycardia,
atrial flutter, AF,
tachycardias involving
Accessory pathways).
Ventricular
tachyarrhythmias
resistant to other
treatment in the absence
of structural heart
disease, premature
ventricular contraction,
catecholaminergic
polymorphic VT

Ranolazine Id Nav1.5 late current. Reduction in the late
Na+ current, affection
AP recovery,
refractoriness,
repolarisation reserve
and QT interval

(1) Decrease in AP
recovery time; and (2)
Reduction in EAD-
induced triggered
activity

Stable angina, VT. A
new class of drug for the
management of atrial
tachyarrhythmias

Highlighting subclassification, pharmacological targets, electrophysiological effects, therapeutic mechanisms and clinical applications. AP: Action
potential; SVT: Supraventricular tachycardia; DAD: Delayed afterdepolarizations; EAD: Early afterdepolarizations; ERP: Effective refractory period.
Adapted from Lei et al[76], 2018, with permission.

is paramount. Irbesartan is a commonly prescribed angiotensin receptor blocker used
to treat hypertension. Its renal safety profile allows for the drug to be administered to
patients undergoing haemodialysis  under NICE guidelines.  As such,  it  warrants
consideration for elderly patients in whom kidney function may be impaired due to
age or polypharmacy. Interestingly, Irbesartan has been demonstrated to prevent
sodium channel remodelling and improved intra-atrial conduction in canine models
of  AF[70].  Canine  studies  have  also  demonstrated  its  efficacy  in  reducing  the
progression of atrial fibrosis[71].

It’s potential for AF suppression in human studies was investigated by the SILK
study. The drug did not appear to have an advantage over Amlodipine in preventing
AF recurrence in patients who have had ablation or electrical cardioversion for the
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arrhythmia[72]. However, this relatively small-scale clinical trial of 98 patients already
with the condition does not discredit the potential preventative benefits of the drug. A
meta-analysis of randomized controlled trials tallying a total of 13184 patients found
that  recurrence  of  AF  was  significantly  reduced  in  patients  using  angiotensin-
converting-enzyme inhibitors  and angiotensin receptor  blockers.  Irbesartan was
found to be particularly effective[73].  The collective evidence from laboratory and
clinical  studies  suggests  that  Irbesartan  certainly  warrants  consideration  as  a
preventative strategy of AF, particularly in elderly patients where renal function may
be compromised.

CONCLUSION
The role of VGSCs in cardiac arrhythmia is fundamental, proving to be an exciting
and rapidly emerging field of research. In recent years much light has been shed on
the role of Nav1.8 in the arrhythmogenic process.  New approaches targeting this
channel in the treatment of arrhythmia have proved promising. To date, the emphasis
of lifestyle management, and early medical intervention in the prevention of cardiac
disease cannot be overstated. As we explore the mechanics of AF in both laboratory
and clinical settings, our understanding of cardiac electrophysiology continues to
evolve from the world of basic science through to the heart of clinical practice.
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Abstract
BACKGROUND
Even though percutaneous coronary intervention (PCI) improved the survival of
patients with acute myocardial infarction, still multivessel coronary artery
disease remains an important factor burdening prognosis and it is being
associated with a worse prognosis compared to single-vessel disease (SVD).

AIM
To compare the clinical profile and outcomes after the primary PCI in young
patients with SVD vs multivessel disease (MVD).

METHODS
The retrospective cohort of patients were divided into two groups: SVD and
MVD group. The study population consisted of both male and female young (≤
45 years) patients presented with ST-elevation myocardial infarction (STEMI) at
the National Institute of Cardiovascular Disease, Karachi, Pakistan and
undergone primary PCI from 1st July 2017 to 31st March 2018. Pre and post-
procedure management of the patients was as per the guidelines and institutional
protocols.

RESULTS
A total of 571 patients with STEMI, ≤ 45 years were stratified into two groups by
the number of vessels involved, 342 (59.9%) with SVD and 229 (40.1%) with
MVD. The average age of these patients was 39.04 ± 4.86 years. A lower
prevalence of hypertension and diabetes was observed in SVD as compare to
MVD group (25.1% vs 38%, P < 0.01; 11.7% vs 27.5%, P < 0.001) respectively.
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While, smoking was more prevalent among the SVD group as compare to MVD
group (36.3% vs 28.4%, P = 0.05). The high-C Lesion was observed in a
significantly higher number of younger patients with MVD as compared to SVD
group (48.8% vs 39.2%, P = 0.021). Post-procedure thrombolysis in myocardial
infarction flow grade was found to be not associated with the number of diseased
vessels with a P value of 0.426 and thrombolysis in myocardial infarction flow
grade III was observed in 98% vs 96.5% of the patients is SVD vs MVD group.

CONCLUSION
The MVD comprised of around 40% of the young patients presented with STEMI.
Also, this study shows that diabetes and hypertension have a certain role in the
pathogenesis of multivessel diseases, therefore, preventive measures for diabetes
and hypertension can be effective strategies in reducing the burden of premature
STEMI.

Key words: Young; Multivessel disease; Primary percutaneous coronary intervention; ST-
elevation myocardial infarction; Premature coronary artery diseases; Single-vessel disease

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Premature coronary artery diseases are at rise. Multivessel disease (MVD) is
associated with poor prognosis. MVD comprised of around 40.1% of the young patients
with ST-elevation myocardial infarction. Prevalence of hypertension and diabetes was
high in ST-elevation myocardial infarction patients with MVD. In-hospital outcomes of
primary percutaneous coronary intervention were not different for patient with MVD.
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INTRODUCTION
Coronary artery disease (CAD) have been surging day by day, in the third world
countries[1].  The 45 years or below is one of the globally accepted cutoff value for
premature CAD[2], the cutoff value for young CAD in various studies varying from 35
to 55 years[3,4]. The field of cardiology has received great attention in the last decades
with the young CAD with varying risk profiles and different prognosis and the length
of severe coronary phase[5]. The ischemic coronary disease appears in young patients,
generally  below  40  to  45  years,  when  multiple  coronary  risk  factors  occur:
Hyperlipidemia, diabetes mellitus,  obesity,  arterial  hypertension, smoking and a
family history of ischemic heart disease. Among the conventional risk factors of CAD,
premature myocardial infarction (MI) was reported to be associated with smoking,
family related history of coronary artery disease and dyslipidemia[5,6].

The worst presentation of coronary artery disease is ST-elevation MI (STEMI)[7], and
primary percutaneous coronary intervention (PCI) is the guidelines recommended
treatment for the patients with STEMI[8]. The primary purpose of revascularization is
to open the infarct-related (culprit) artery in the setting of STEMI[9].  A significant
atherosclerotic cardiovascular disease in more than one coronary artery is not an
uncommon  angiographic  finding  and  in  the  setting  of  acute  MI,  significant
atherosclerotic cardiovascular disease in multiple vessels is observed to be associated
with increased complications and adverse clinical course[10-12].

Despite its prognostic importance, there is a paucity of data regarding the role of
the number of vessels diseased in determining the outcome of management in young
patients presenting with STEMI. Therefore, this study was conducted to carry out the
comparative assessment of clinical profile and outcomes after the primary PCI in
young patients with single-vessel disease (SVD) vs multivessel disease (MVD).
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MATERIALS AND METHODS
This  retrospective study was conducted after  the approval  of  the ethical  review
committee of the institution (ERC-29/2019). The study population consisted of both
male and female young (≤ 45 years) patients presented with STEMI at the National
Institute of Cardiovascular Disease, Karachi, Pakistan and undergone primary PCI
from 1st  July 2017 to 31st  March 2018. Data for the study were extracted from the
institution database of prospectively collected National Cardiovascular Data Registry
(NCDRTM  CathPCI Registry®).  Patients with a prior history of any cardiac-related
surgery  or  intervention  were  excluded  from  the  study.  Informed  consent  was
obtained from all the patients and all the diagnostic and primary PCI procedures were
performed by the consultant cardiologists (with more than five years of experience)
and only culprit artery was attempted with conventional stenting technique followed
by post-dilation. Pre and post-procedure management of the patients was as per the
guidelines and institutional protocols. Patient’s baseline characteristics, demographic
details,  angiographic  findings,  and in-hospital  outcome and complications were
retrieved for this study. Patients with significant stenosis, ≥ 50%, in more than one
vessesls or left main artery were labelled as MVD.

The clinical profile consisted of demographic details [gender, age (years), and body
mass index (kg/m2)], angina status within past two weeks (Canadian Cardiovascular
Society  angina  grade),  and  angiographic  findings  [number  of  diseased  vessels,
localization of culprit lesion, lesion complexity, pre and post-procedural thrombolysis
in MI (TIMI) flow grade, presence of thrombus and bifurcating lesion]. The post-
procedural outcomes included death, re-infarction, heart failure, cardiogenic shock,
and needed dialysis.

Statistical analysis
Statistical analysis of extracted data was performed using IBM SPSS Statistics for
Windows (IBM Corp.,  Armonk,  NY,  United  States),  Version  21.0.  Patients  were
categorized into two groups i.e., patients with SVD and patients with MVD (two or
three vessels). Summary statistics such as mean ± SD for age (years) and body mass
index (kg/m2)  and frequency and percentage  for  all  other  study variables  were
computed for both of the groups. The comparative assessments of results between the
SVD and MVD group were  performed by applying appropriate  t-test  or  Mann-
Whitney  U  test  for  continuous  variables  and  χ2  test  or  Fisher  exact  test  for  the
categorical  response  variables.  Any  P  value  ≤  0.05  was  considered  statistically
significant.

RESULTS
A total of n = 571 patients with ST-segment elevation myocardial, less than and equal
to 45 years were stratified into two groups by the number of vessels involved, 342
(59.9%) with SVD and 229 (40.1%) with MVD. The average age of these patients was
39.04 ± 4.86 years and a significant difference was observed in the average age of
young patients in SVD group as compared to MVD group, 38.24 ± 5.18 years vs 40.24
± 4.06 years (P < 0.001). We observed a lower prevalence of hypertension and diabetes
in SVD group as compare to MVD group (25.1% vs 38%, P < 0.01) and (11.7% vs 27.5%,
P < 0.001) respectively. While, smoking was more prevalent among the SVD group as
compare to  MVD group (36.3% vs  28.4%,  P  =  0.05).  A positive  family  history of
premature CAD and obesity were not significantly differed in both SVD and MVD
groups. Similarly, gender and Canadian Cardiovascular Society angina grade within
past two weeks were statistically insignificant in both SVD and MVD group. The
baseline clinical and demographic characteristics stratified by the number of vessels
involved are presented in Table 1.

The angiographic and pre-procedural characteristics stratified by the number of
vessels involved are presented in Table 2.  Culprit left anterior descending artery
occurred in a significantly higher number of patients in single vessel as compare to
multivessel groups (71.9% vs 50.2%), while, culprit right coronary artery (RCA) and
circumflex artery (LCX) were more frequent in patients with MVD as compared to
SVD, (34.5% vs  21.3%) and (12.7% vs  5.3%) respectively.  The high-C Lesion was
observed  in  a  significantly  higher  number  of  younger  patients  with  MVD  as
compared to SVD group (48.8% vs 39.2%, P = 0.021).

Post-procedure  outcomes  stratified  by  the  number  of  vessels  involved  are
presented in Table 3. Post-procedure TIMI flow grade was found to be not associated
with the number of diseased vessels with a P value of 0.426 and TIMI flow grade III
was observed in 98% vs  96.5% of the patients is  SVD vs  MVD group. In-hospital
mortality rate was 1.7% vs  0.9%, P  = 0.335, for MVD and SVD group respectively.
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Table 1  Baseline clinical and demographic characteristics stratified by number of vessels
involved, n (%)

Characteristics Total
Involved vessels

P value
Single vessel Multivessel

Total 571 342 (59.9) 229 (40.1) -

Clinical characteristics

Age (mean ± SD, yr) 39.04 ± 4.86 38.24 ± 5.18 40.24 ± 4.06 < 0.001

Body mass index (mean ± SD, kg/m2) 26.24 ± 4.01 26.25 ± 4.07 26.22 ± 3.94 0.929

Male gender 501 (87.7) 303 (88.6) 198 (86.5) 0.446

Hypertension 173 (30.3) 86 (25.1) 87 (38) 0.001

Diabetes 103 (18) 40 (11.7) 63 (27.5) < 0.001

Positive family history 41 (7.2) 27 (7.9) 14 (6.1) 0.419

Smoking 189 (33.1) 124 (36.3) 65 (28.4) 0.050

Obesity 89 (15.6) 55 (16.1) 34 (14.8) 0.690

CCS angina grade (within past two weeks)

No symptoms, no angina 272 (47.6) 158 (46.2) 114 (49.8) 0.367

CCS I 33 (5.8) 22 (6.4) 11 (4.8)

CCS II 66 (11.6) 35 (10.2) 31 (13.5)

CCS III 105 (18.4) 70 (20.5) 35 (15.3)

CCS IV 95 (16.6) 57 (16.7) 38 (16.6)

CCS: Canadian Cardiovascular Society.

Similarly, post-procedure in-hospital rate of cardiogenic shock, heart failure, and
dialysis  were  observed higher  MVD group as  compared to  SVD group,  but  not
statistically significant.

DISCUSSION
To the  best  of  our  knowledge,  this  study  is  first  of  its  kind  in  Pakistani  young
population. Aim of this study was to assess the differences in clinical profile and
outcomes after primary PCI in young patients with SVD vs MVD. Main findings of
our study are, 40.1% (229) young patients presented with STEMI had MVD. The MVD
in young patients was found to be associated with age (years), hypertension, and
diabetes mellitus, whereas, SVD were found to be associated with smoking. Young
patients with MVD were more likely to have the angiographic finding of culprit RCA
and LCX as against left anterior descending artery for the young patients with SVD
and more likely to have high/C lesions. Post-procedure in-hospital outcomes among
young patients were not significantly different between SVD and MVD patients,
however, mortality and other complications, such as cardiogenic shock, heart failure,
or dialysis, were relatively more frequent among patients with MVD.

In our study the prevalence of MVD was 40.1% among the young (≤ 45 years)
patients presenting with STEMI, similarly, a recently published local study by Batra et
al[13] reported MVD in 38% of young (≤ 40 years) patients diagnosed with STEMI. Noor
et al[14] reported MVD in 36.6% among the patients under 35 years of age presented
with acute coronary syndrome (ACS) and another study by Anjum et al[15] reported
28% of young (≤ 35 years) patients with MVD among patients presented with ACS. In
our population,  MVD reported increasing with age and severity of  presentation.
Studies from the various parts of the world reported MVD ranging from 16% to 55.6%
of  the  young  patients  with  ACS  depending  on  the  cutoff  value  of  age  for  the
classification of young[16-21].

Batra  et  al[11]  reported  that  MVD  was  a  predictor  of  increased  morbidity  and
mortality in patients undergoing primary PCI for STEMI. Although, MVD is observed
to be less frequent in cases of premature CAD patients[13], however, it is important to
understand its association with risk factors in order to control the burden of disease in
productive years of life. In our study MVD in young was found to be associated with
relatively older age, 40.24 ± 4.06 years vs 38.24 ± 5.18 years (P < 0.001). However, this
wasn’t the case in various other parts of the world[18,19]. It was reported that diabetes
mellitus and hypertension were less commonly observed risk factors among young
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Table 2  Angiographic and pre-procedural characteristics stratified by number of vessels
involved, n (%)

Characteristics Total
Involved vessels

P value
Single vessel Multivessel

Total 571 342 (59.9) 229 (40.1) -

Culprit vessel

Left anterior descending artery 361 (63.2) 246 (71.9) 115 (50.2) < 0.001

Right coronary artery 152 (26.6) 73 (21.3) 79 (34.5)

Circumflex artery 47 (8.2) 18 (5.3) 29 (12.7)

Posterior descending artery 6 (1.1) 3 (0.9) 3 (1.3)

Left main 5 (0.9) 2 (0.6) 3 (1.3)

Pre-procedure TIMI flow grade

TIMI - 0 321 (56.2) 185 (54.1) 136 (59.4) 0.066

TIMI - 1 58 (10.2) 38 (11.1) 20 (8.7)

TIMI - 2 111 (19.4) 61 (17.8) 50 (21.8)

TIMI - 3 81 (14.2) 58 (17) 23 (10)

Lesion complexity

Non-high/non-C lesion 325 (56.9) 208 (60.8) 117 (51.1) 0.021

High/C lesion 246 (43.1) 134 (39.2) 112 (48.9)

Thrombus presence

No 102 (17.9) 58 (17) 44 (19.2) 0.491

Yes 469 (82.1) 284 (83) 185 (80.8)

Bifurcation lesion

No 427 (74.8) 254 (74.3) 173 (75.5) 0.731

Yes 144 (25.2) 88 (25.7) 56 (24.5)

TIMI: Thrombolysis in myocardial infarction.

patients[13], but both have significant associations with MVD[11]. Similar to these past
findings,  in  our  study,  we  observed  that  MVD  in  young  STEMI  patients  was
significantly associated with hypertension, and diabetes mellitus with 27.5% vs 11.7%,
P < 0.001 and 38% vs 25.1%, P < 0.01 respectively.

In our study angiographic findings of culprit RCA (34.5% vs 21.3%) and LCX (12.7%
vs 5.3%) were more common in young patients with MVD as compared to SVD and
these were the similar observations made for young as well as entire STEMI patients
in the past studies[11,18,19]. Similarly, MVD among young is found to be associated with
poor pre-procedural TIMI flow grade and complex (high C) lesions.

The presence of MVD is a prognostic indicator for the patients undergoing primary
PCI[11], whoever, despite multiple investigations the mechanism behind its prognostic
value is unexplained. MVD was reported to be associated with the increased use of
contrast volume (172.46 ± 28.39 mL vs 150.25 ± 33.2 mL, P < 0.001)[11], which increases
the risk of  post-procedural  morbidities  including contrast-induced acute kidney
injury.  Continuing  the  observations  made  by  Anello  et  al[18],  in  our  study  post-
procedural in-hospital outcomes of primary PCI for STEMI were not significantly
different for young patients with MVD as compared to SVD. However, MVD patients
tends to have relatively higher rate of in-hospital mortality (1.7% vs 0.9%, P = 0.355),
cardiogenic shock (0.9% vs 0.0%, P = 0.083), heart failure (0.9% vs 0.0%, P = 0.083), and
dialysis (0.4% vs 0.0%, P = 0.221).

The most recent evidence suggests that as against the culprit vessel only strategy,
multivessel  PCI or complete revascularization in STEMI patients with MVD was
superior with reduced risk of re-infarction or cardiovascular mortality[22]. However,
more targeted research efforts are required in young patients to ensure the early
returning to work.

In conclusion, MVD comprised of around 40.1% of young patients (≤ 45 years)
presented with STEMI. It was found to be associated with age, hypertension, and
diabetes mellitus. In-hospital outcomes of primary PCI in patients with MVD were
not significantly different from the patients with SVD. Also, this study shows that
diabetes mellitus and hypertension have a certain role in the pathogenesis of MVD in
young patients, preventive measures for diabetes mellitus and hypertension can be
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Table 3  Post-procedure outcomes stratified by number of vessels involved, n (%)

Characteristics Total
Involved vessels

P value
Single vessel Multivessel

Total 571 342 (59.9) 229 (40.1) -

Contrast volume (mL) 135.65 ± 44.28 134.3 ± 42.97 137.66 ± 46.18 0.375

Fluro time (min) 13.2 ± 6.69 12.83 ± 6.53 13.75 ± 6.91 0.107

Number of stents deployed 1.09 ± 0.66 1.01 ± 0.44 1.21 ± 0.87 < 0.001

Post-procedure TIMI flow grade

TIMI - 0 3 (0.5) 2 (0.6) 1 (0.4) 0.426

TIMI - 1 3 (0.5) 2 (0.6) 1 (0.4)

TIMI - 2 9 (1.6) 3 (0.9) 6 (2.6)

TIMI - 3 556 (97.4) 335 (98) 221 (96.5)

Post-procedure in-hospital outcomes

Composite adverse events 11 (1.9) 6 (1.8) 5 (2.2) 0.715

Re-infarction 3 (0.5) 3 (0.9) 0 (0) 0.155

Cardiogenic shock 2 (0.4) 0 (0) 2 (0.9) 0.083

Heart failure 2 (0.4) 0 (0) 2 (0.9) 0.083

Dialysis 1 (0.2) 0 (0) 1 (0.4) 0.221

Mortality 7 (1.2) 3 (0.9) 4 (1.7) 0.355

TIMI: Thrombolysis in myocardial infarction.

effective strategies in reducing the burden of premature CAD.

ARTICLE HIGHLIGHTS
Research background
Even though percutaneous coronary intervention (PCI) improved the survival of patients with
acute myocardial infarction, the multivessel coronary artery disease remains an important factor
burdening prognosis, and it is being associated with a worse prognosis compared to single-
vessel disease (SVD).

Research motivation
Despite its prognostic importance, there is a paucity of data regarding the role of the number of
vessels diseased in determining the outcome of management in young patients presenting with
ST-elevation myocardial infarction (STEMI).

Research objectives
This  study was conducted to  carry out  the  comparative  assessment  of  clinical  profile  and
outcomes after the primary PCI in young patients with SVD vs multivessel disease (MVD).

Research methods
Patients were divided into SVD and MVD group. The study population consisted of both male
and female young (≤ 45 years) patients presented with STEMI and undergone primary PCI from
1st July 2017 to 31st March 2018. Pre and post-procedure management of the patients was as per
the guidelines and institutional protocols.

Research results
A total of 571 patients with STEMI (≤ 45 years) were stratified into two groups by the number of
vessels involved. The average age of these patients was 39.04 ± 4.86 years. A lower prevalence of
hypertension and diabetes was observed in SVD as compare to MVD group. Smoking was more
prevalent among the SVD group as compare to MVD group. The high-C Lesion was observed in
a significantly higher number of younger patients with MVD as compared to SVD group. Post-
procedure thrombolysis in myocardial infarction flow grade was found to be not associated with
the number of diseased vessels and thrombolysis in myocardial infarction flow grade III was
observed in 98% vs 96.5% of the patients (SVD vs MVD group).

Research conclusions
The MVD comprised of around 40% of the young patients presented with STEMI. Also, this
study shows that diabetes mellitus and hypertension have a certain role in the pathogenesis of
MVD in young patients, preventive measures for diabetes mellitus and hypertension can be
effective strategies in reducing the burden of premature coronary artery disease.
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Abstract
BACKGROUND
Caloric stimulation of the vestibular system is associated with autonomic
response. The lateralization in the nervous system activities also involves the
autonomic nervous system.

AIM
To compare the effect of the right and left ear caloric test on the cardiac
sympathovagal tone in healthy persons.

METHODS
This self-control study was conducted on 12 healthy male volunteers. The
minimal ice water caloric test was applied for vestibular stimulation. This was
done by irrigating 1 milliliter of 4 ± 2 °C ice water into the external ear canal in 1
s. In each experiment, only one ear was stimulated. For each ear, the pessimum
position was considered as sham control and the optimum position was set as
caloric vestibular stimulation of horizontal semicircular channel. The order of
right or left caloric vestibular stimulation and the sequence of optimum or
pessimum head position in each set were random. The recovery time between
each calorie test was 5 min. The short-term heart rate variability (HRV) was used
for cardiac sympathovagal tone metrics. All variables were compared using the
analysis of variance.

RESULTS
After caloric vestibular stimulation, the short-term time-domain and frequency-
domain HRV indices as well as, the systolic and the diastolic arterial blood
pressure, the respiratory rate and the respiratory amplitude, had no significant
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changes. These negative results were similar in the right and the left sides.
Nystagmus duration of left caloric vestibular stimulations in the optimum and
the pessimum positions had significant differences (e.g., 72.14 ± 39.06 vs 45.35 ±
35.65, P < 0.01). Nystagmus duration of right caloric vestibular stimulations in the
optimum and the pessimum positions had also significant differences (e.g., 86.42
± 67.20 vs 50.71 ± 29.73, P < 0.01). The time of the start of the nystagmus following
caloric vestibular stimulation had no differences in both sides and both positions.

CONCLUSION
Minimal ice water caloric stimulation of the right and left vestibular system did
not affect the cardiac sympathovagal balance according to HRV indices.

Key words: Caloric stimulation; Heart rate variability; Vestibular system; Autonomic;
Laterality
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Core tip: The caloric test can induce an isolated and unilateral stimulation of the
vestibular system and can be considered as a model for studying the concept of the
laterality of vestibulo-autonomic reflex. In contrast to microgravity methods or tilt test,
the caloric test can provide specific data because it does not cause hemodynamic
compensatory responses due to orthostasis.
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INTRODUCTION
The vestibular system provides sensory information for static and dynamic balance of
the body. The physiological stimuli of the vestibular system are linear and angular
accelerations. The effect of the vestibular system on the autonomic nervous system
activity is generally called vestibulo-sympathetic reflex[1-5].  It is also known as the
vestibulo-autonomic reflex[6]. A well-documented example of this reflex is the open-
loop feedforward control of blood pressure during orthostatic challenges[7-9]. But any
active  or  passive  orthostatic  challenges  or  body  movements  in  addition  to  the
vestibular system also stimulates a variety of mechanical receptors in the muscles and
the cardiovascular system. These sensory signals are distributed in the brain stem and
other parts of the central nervous system and may affect the autonomic tone[10-14]. In
order to eliminate these movement induced effects from vestibulo-sympathetic reflex,
the vestibular system must be stimulated by non-physiological methods like sound,
vibration, caloric test and galvanic stimulation[15-19].  Caloric test is one of the most
useful laboratory methods to determine the response of the labyrinth. It is also one of
the  few methods that  allow the  assessment  of  one labyrinth independent  of  the
other[20-23].  In  vestibular  epithelium  the  slow  or  type  II  sensory  cells  are  more
responsive to  caloric  test[24].  The caloric  test  specifically  stimulates  the lateral  or
horizontal semicircular duct. There are two reasons for this phenomenon. The first
reason is the closeness of this duct to the thermal stimulus in the outer ear. The second
reason is the position of this duct in the same direction of thermal convections in the
outer ear duct during caloric test. Vestibular stimulation in the caloric test has two
mechanisms. One of them is a direct effect of temperature on vestibular afferents
and/or receptors. This mechanism is independent of the head position and it matters
less  in  quantity.  The  second  and  first-known  mechanism  is  due  to  endolymph
convection which is depended on the head position. The optimum position means the
head is  flexed 30 degrees  forward in the supine position.  This  position puts  the
horizontal semicircular ducts in vertical or gravity plane. The pessimum position
means the head is extended 60 degrees backward in the supine position. This position
puts the horizontal semicircular ducts in the horizontal plane and eliminates the effect
of gravity on endolymph convection (Figure 1).

Caloric stimulation of vestibular system is associated with autonomic response[25-27].
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Figure 1

Figure 1  Schematic drawing of horizontal semi-circular canal axis and its alignment with gravity plane in
supine and upright orientations. A: Arrow shows the angle between horizontal canal and vertical line in supine
position; B: Arrow shows the vertical position of horizontal canal following the 30˚ forward tilt in supine position e.g.,
the optimum position in supine state; C: Arrow shows the horizental position of horizontal canal following the 60˚
backward tilt in supine position e.g., the pessimum position in supine state; D: Arrow shows the angle between
horizontal canal and horizental line in upright position; E: Arrow shows the horizental position of horizontal canal
following the 30˚ forward tilt in upright position e.g., the pessimum position in upright state; F: Arrow shows the
vertical position of horizontal canal following the 60˚ backward tilt in upright position e.g., the optimum position in
upright state. In optimum position the horizontal canal axis is vertical and in the gravity plane (B and F). In pessimum
position this axis is horizontal and eliminates the effect of gravity on endolymph convection (C and E).

Similarly some of these autonomic effects are related to changes in skin temperature
or  the  activation  of  other  sensory  afferents  and  are  unrelated  to  stimulation  of
vestibular  system[28].  However,  head positioning to some extent  can unmask the
vestibular from the non-vestibular or thermoreceptors-induced autonomic effect, at
least theoretically.

The lateralization in the nervous system activities also involves the autonomic
nervous system[29-31]. In the review of available literature and databases, we cannot
find  any  report  about  the  autonomic  laterality  of  the  caloric  test  in  normal
participants. There are many reports about the differences in caloric test response
parameters between right and left ear, for example, the duration and the time of onset
or offset of nystagmus or the speed of its slow or fast phases. However, it is well
documented that the caloric test may induce asymmetric stimulation and its output or
the  vestibulo  ocular  reflex  has  an  inter-aural  difference.  The  reasons  for  these
asymmetric responses are generally attributed to the variation in the shape or in the
size of external ear canals or middle ear as well as to the coplanarity of canals[32-36].

However, the lateralization may also play a role in caloric test outcomes including
its autonomic effects. In this self-control study, we compared the effect of the caloric
test on the cardiac sympathovagal tone in healthy persons in two states, the optimum
and the pessimum positions, then the difference between the right and the left caloric
vestibular stimulations on heart rate variability (HRV) were evaluated.

MATERIALS AND METHODS
This self-control  study was conducted on 12 healthy male volunteers.  The study
protocol was confirmed by the research council of Golestan University of Medical
Sciences. The ethic number was ir.goums.REC.1396.275. The subjects underwent the
general clinical and otoscopic examination. They had no drug history. None of them
were smokers. They had no history of chronic illness or hospitalization last year. All
participants were informed about the study and assigned the informed consent. There
was not any exclusion of the case from this study because of a closed ear canal, rigid
ear  wax,  rupture  of  the  tympanum,  a  history  of  Dizziness,  vertigo,  tinnitus,
spontaneous nystagmus, deviation of the visual axis and eye movement disorders. All
experiments  were  performed  in  the  morning  and  between  10  h  and  12  h.  The
volunteers  were  fasting  at  least  3  h  before  the  experiment.  The  caloric  test  was
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performed in the supine position in a dim-light room. Each ear was tested twice, in
forward or optimum and in backward or pessimum bending modes, as shown in
Figure 2. The order of right or left ear vestibular stimulation was randomly assigned
for each volunteer. The sequence of the forward or backward head bending for the
caloric test was also randomly assigned for every volunteer. This was done to reduce
the conditioning effect of the first caloric test experience on the results of the next
caloric tests on the same subject. The recovery time between each calorie test was 5
min. The one-milliliter ice water caloric test was applied for vestibular stimulation. In
this method, cold induction was performed with 1 milliliter of ice water at about 4 °C
in 1 s[34,37].  After  stable positioning of  the head in the optimum or the pessimum
positions, the head was transiently turned laterally to put the external ear channel in
the proper place for ice water irrigation and 2-3 s following the infusion phase of the
caloric test, the head was then turned to its recording position. During recording, the
subjects were asked to do mental tasks. This was done to reduce the subject's focus on
vestibular stimulation and to prevent central inhibition of the nystagmus. The start of
the nystagmus and its duration were visually monitored because of a lack of video-
oculography and electronystagmography equipment in our lab.  Respiration and
electrocardiograph were recorded continuously by PowerLab recorder 8/30 ML870
and Dual Bio/Stim ML 408, AD Instrument Ltd. Australia. The sampling rate was 1
kHz. The lead II electrocardiograph signals were used for data analysis in successive 5
min after the caloric test. HRV was measured in time domain and frequency domain
methods. The power spectrum was calculated using the fast-Fourier transformation.
Three frequency bands were selected: very-low-frequency (VLF) band (0.003-0.04 Hz),
low-frequency (LF) band (0.04-0.15 Hz), and high-frequency (HF) band (0.15-0.4 Hz).
For overcoming the effect of total power inequality on the absolute value of LF and
HF components, the spectral densities were normalized on the basis of the very-low
frequency component. The normalized value of LF and HF were calculated according
to the following equation: [LF or HF (ms2)]/ [total power (ms2)-very-low-frequency
(ms2)] and were used for statistical analysis[38].

The variables were compared using the analysis of variance before and after the
caloric  tests  (Figure 2).  The statistical  review of the study was performed by Dr.
Mohamd Fayaz, the biomedical statistician in Shahid Beheshti University of Medical
Sciences, Tehran, Iran.

RESULTS
The mean ± SD of age, weight, and height of participants were 28.23 ± 6.02 years,
80.21 ± 16.45 kilograms and 179.57 ± 6.93 centimetres respectively. The mean ± SD of
the average heart rate in beat per minute and the arterial blood pressure in mmHg
before the vestibular stimulation, after the vestibular stimulation in the optimum
(+30º) and in the pessimum (-60º) positions and following the last recovery stage
following the vestibular stimulation, are shown in Table 1. There were no significant
changes  in  the  average  heart  rate  and  arterial  blood  pressure  after  vestibular
stimulation.  The side and the position of  the  vestibular  stimulation had also  no
significant effects on average heart rate and arterial blood pressure.

The mean ± SD of respiratory rate after vestibular stimulation in optimum position
was slightly more than the pessimum position in both sides (18.54 ± 2.40 vs 17.42 ±
2.45  in  the  left  side  and 18.54  ±  2.04  vs  17.88  ±  2.74  in  the  right  side),  but  these
differences were not statistically significant (Figure 3).

The mean ± SD of respiratory amplitude after vestibular stimulation in optimum
position was slightly less than the pessimum position in both sides (5.82 ± 2.35 vs 6.41
±  3.01  in  the  left  side  and 5.86  ±  2.43  vs  6.56  ±  3.14  in  the  right  side),  but  these
differences were not statistically significant (Figure 4). For all volunteers, vertigo and
the nystagmus of the caloric test had been eliminated at the same 5-min recording
stage and before the start of the next recovery phase.

The mean ± SD of the time domain and the frequency domain indices of HRV
before  vestibular  stimulation,  after  it  and  following  the  last  recovery  stage  are
summarized in Table 2.

Nystagmus duration of left caloric vestibular stimulations in the optimum and the
pessimum positions had significant differences (e.g., 72.14 ± 39.06 vs 45.35 ± 35.65, P <
0.01). Nystagmus duration of right caloric vestibular stimulations in the optimum and
the pessimum positions had also significant differences (e.g., 86.42 ± 67.20 vs 50.71 ±
29.73, P < 0.01) Figure 5.
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Figure 2

Figure 2  The study design and timeline. Each horizontal arrow is equal to 5 min.

DISCUSSION
These data indicated that despite inducing vestibular stimulation, the 1-s-1-mL ice
water caloric test of the right and the left ear had on effect on the short-term HRV
indices of cardiac sympathovagal tone in healthy persons. We observed more prolong
duration of the nystagmus time in the optimum position. However, the HRV indices
had  no  significant  differences  following  1-s-1-mL  ice  water  caloric  test  in  the
pessimum and the optimum positions. Kasbekar et al[39] reported similar results for a
standard bi-thermal caloric test. They used 250 mL of 44 ˚C and 30˚C water for caloric
stimulation in a fixed order sequence for the right or the left side in all patients. They
report no significant changes in heart rate and blood pressure and concluded that the
caloric  test  in  stable  cardiac  patients  had no significant  effect  on  hemodynamic
parameters[39]. Jauregui-Renaud et al[40] reported changes in HRV indices following
caloric stimulation. They used 30 ˚C water for caloric stimulation during 120 s and
also they used only 2 min periods for calculating the frequency domain indices of
HRV and despite these setting, they concluded that the increase in HF power was a
manifestation of the effect of the caloric test on respiratory frequency[40].  We also
observed a non-significant increase in the respiratory frequency. It occurred during 5
min interval following 1-s caloric test with 1 mL ice water. But we observed that this
effect was more prominent in the optimum position than the pessimum position.

The 1-s-1-mL ice water caloric test caused vestibular stimulation as indicated by
inducing the nystagmus. This observation was similar to previous reports[34,37]. The
caloric test causes vestibular stimulation by indirect and direct mechanisms. The
indirect  or  the  main  specific  mechanism  is  the  endolymph  convection  and  is
depended on the head position. The direct or the nonspecific mechanism is due to
thermal changes in the activity of vestibular afferents and is independent of the head
position.  The  pessimum position  puts  the  horizontal  semi-circular  ducts  in  the
horizontal  plane  and eliminates  the  effect  of  gravity  on  endolymph convection.
Therefore, it  is used as a type of self-control verification for induction of specific
vestibular stimulation; which is only inducible for horizontal semi-circular duct in
optimum position. The duration of nystagmus in the optimum position was more
than pessimum position in both sides and had significant differences (P < 0.01). This
finding was expected and indicated a proper vestibular stimulation by the 1-s-1-mL
ice water caloric test.

However,  the  intensity  and  duration  of  1-s-1-mL  ice  water  caloric  test  were
inadequate to elicit a vestibulo-autonomic reflex. The vestibular and the autonomic
system may have different sensitivity to caloric stimulation because the vestibular
stimulation by 1-s-1-mL ice water caloric test did not provide adequate input for an
autonomic output.  Many studies  reported autonomic effect  following vestibular
stimulation[18,19,25,27,41] and also many studies reported no autonomic effect following
vestibular stimulation[39,42-44]. In addition to adequate vestibular input, the effect size of
the  vestibulo-autonomic  reflex  must  also  set  appropriate  to  show its  autonomic
laterality. Indeed, many factors can be considered as potential sources of inequality of
vestibular effects of caloric stimulation between right and left ears. They are the inter-
aural differences in the volume and in the shape of the external ear channels, the
variation of co-planarity of semi-circular channels between right and left sides and the
laterality in the processing of vestibular inputs per se[22,45-48].
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Table 1  The mean ± SD of average heart rate and blood pressure (n = 12)

The condition of recording Average heart rate Systolic pressure Diastolic pressure

Before vestibular stimulation 72.33 ± 9.47 123.07 ± 15.41 70.07 ± 6.74

Left vestibular stimulation at +30º 73.41 ± 8.95 127.29 ± 11.68 72.86 ± 5.55

Left vestibular stimulation at -60º 72.16 ± 8.69 127.21 ± 12.03 71.36 ± 7.93

Right vestibular stimulation at +30º 73.13 ± 8.24 128.07 ± 15.42 74.07 ± 6.74

Right vestibular stimulation at -60º 72.13 ± 9.56 126.36 ± 11.15 70.36 ± 7.15

Last recovery stage 70.85 ± 9.10 122.29 ± 11.34 70.64 ± 7.17

The hemispheric dominance of autonomic networks may also cause asymmetric
autonomic response following exposure to the one identical stimulus at the right or
left side[29-31,49,50].

However, our data did not show any significant differences in short term HRV
indices  following 1-s-1-mL ice  water  caloric  test  on both sides.  McGinley et  al[49]

reported lateralization only for sympathetic responses. In the same study, they also
used a unilateral facial cooling method for selective increase of parasympathetic tone
in one-side and recorded its effect on HRV. They observed no differences between
right  and left  side facial  cooling stimulation by this  method and concluded that
despite  prominent  lateralization  for  sympathetic  activity,  there  was  no
parasympathetic  lateralization[49].  We  did  caloric  vestibular  stimulation  in  the
pessimum  and  the  optimum  conditions  and  it  may  cause  some  degree  of
simultaneous  cervicosympathetic  effect.  Bolton  et  al[51]  reported  a  very  complex
interaction among cervical proprioception afferents, respiratory muscles, sympathetic
tone  and  vestibular  system  in  cats.  However,  there  are  limited  data  about
cervicosympathetic effect on respiration, heart rate and blood pressure in normal
humans[52,53].

Our data may provide further clinical support regarding the cardiovascular safety
of the 1-s-1-mL ice water caloric test. There is limited data about the safety of different
methods  of  vestibular  assessment  including  the  caloric  test  in  cardiovascular
patients[39]. The research implication of this data is introducing a model for studying
the concept of the laterality of vestibulo-autonomic reflex. In contrast to microgravity
methods or tilt test, the caloric test can provide specific data because it does not cause
hemodynamic  compensatory  responses  due  to  orthostasis.  Therefore,  adequate
vestibular stimulation by irritation with more volume of cold water or in longer
duration e.g., more than a few seconds may cause different results.

This study had some limitations and any generalization of data need more caution.
They included small sample size, visual monitoring of nystagmus and using fixed
level  of  caloric  stimulation.  Galvanic  vestibular  stimulations  with  increasing
intensities,  measuring  the  velocity  of  different  phases  of  nystagmus  by
electronystagmography and larger sample size can provide better data about cardiac
autonomic laterality of vestibular system.
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Table 2  The mean ± SD of the time and the frequency domain indices of heart rate variability (n = 12)

Before vestibular stimulation
Left vestibular stimulation Right vestibular stimulation

Last recovery stage
at +30˚ at -60˚ at +30˚ at -60˚

Total power (ms²) 2009.5 ± 147.9 2905.6 ± 2506.5 8698.7 ± 2185.8 2277.4 ± 1556.3 5063.2 ± 4842.9 3173.9 ± 2562.7

HF ms² 628.25 ± 592.3 871.51 ± 819.6 2472.36 ± 629.6 527.50 ± 415.7 1493.71 ± 1900.2 848.51 ± 862.5

nHF (nu) 47.63 ± 19.35 42.76 ± 12.34 40.25 ± 12.96 40.59 ± 14.81 40.56 ± 10.08 40.15 ± 13.76

LF ms² 434.94 ± 320.27 697.00 ± 554.68 2048.37 ± 479.73 581.52 ± 551.35 1015.51 ± 905.88 753.21 ± 457.60

nLF (nu) 44.85 ± 18.78 45.31 ± 17.48 46.85 ± 17.52 50.57 ± 17.97 43.09 ± 17.83 49.76 ± 18.71

LF/HF 1.33 ± 1.07 1.34 ± 1.21 1.32 ± 0.7 1.57 ± 1.05 1.18 ± 0.71 1.61 ± 1.38

SDNN (ms) 44.85 ± 17.85 56.55 ± 26.06 70.95 ± 63.38 50.12 ± 16.48 61.24 ± 25.08 55.63 ± 18.84

SD delta NN (ms) 36.00 ± 20.42 48.76 ± 34.26 67.81 ± 81.36 40.04 ± 17.64 58.44 ± 40.01 49.45 ± 29.70

SDNN/SD delta NN 1.429 ± 0.468 1.421 ± 0.561 1.359 ± 0.525 1.385 ± 0.388 1.318 ± 0.548 1.321 ± 0.441

RMSSD 35.95 ± 20.39 48.70 ± 34.22 67.69 ± 81.18 39.98 ± 17.61 58.36 ± 39.96 49.37 ± 29.63

Maximum NN (ms) 988.5 ± 158.4 1085.5 ± 273.35 1197.6 ± 352.8 1033.6 ± 193.9 1267.6 ± 384.1 1122.2 ± 232.8

Minimum NN (ms) 704.30 ± 82.52 687.78 ± 72.81 685.34 ± 104.34 685.00 ± 59.56 690.15 ± 119.1 695.47 ± 85.85

Range NN (ms) 284.2 ± 113.7 397.8 ± 279.8 511.7 ± 380.1 348.6 ± 159.1 577.4 ± 404.4 426.7 ± 248.7

Mean NN (ms) 843.2 ± 113.6 829.2 ± 106.0 844.0 ± 113.9 829.9 ± 90.9 846.2 ± 119.0 860.2 ± 114.0

Normals (%) 99.13 ± 1.34 99.41 ± 1.07 98.93 ± 1.56 99.43 ± 0.96 98.54 ± 2.29 98.10 ± 3.86

Ectopics (%) 0.87 ± 1.34 0.56 ± 0.99 1.07 ± 1.56 0.57 ± 0.96 1.43 ± 2.27 1.88 ± 3.86

VLF: Very-low-frequency; LF: Low-frequency; HF: High-frequency; nLF: Normalized value of LF; nHF: Normalized value of HF; NN: Beat-to-beat
intervals of normal sinus rhythm; SDNN: Standard deviation of NN intervals; SD delta NN: Standard deviation of the differences between adjacent NN
intervals; RMSSD: Square root of the mean of the squares of the successive differences between adjacent NNs.

Figure 3

Figure 3  The mean ± SD of respiratory rate before vestibular stimulation, after it and following the last recovery stage (n = 12).
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Figure 4

Figure 4  The mean ± SD of respiratory amplitude before vestibular stimulation, after it and following the last recovery stage (n = 12).

Figure 5

Figure 5  The mean ± SD of nystagmus duration in seconds after caloric vestibular stimulation of each ear in the optimum (+30º) and in the pessimum
(+60º) conditions (n = 12).

ARTICLE HIGHLIGHTS
Research background
The caloric vestibular stimulation provides the opportunity for isolated and unilateral activation
of the vestibular system. Therefore, it may be very helpful as a model for comparison of the
effect of vestibulo-autonomic reflex on cardiovascular system and for exploration of differences
between the right and the left sides.

Research motivation
There is  very limited information about the autonomic laterality.  The autonomic effects  of
vestibular system are well documented but the reports about the laterality of vestibular effect on
cardiovascular system is rare.

Research objectives
To compare the effect of the caloric test on the cardiac sympathovagal tone and to study any
difference  between  the  autonomic  effects  of  the  right  and  the  left  side  caloric  vestibular
stimulations.
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Research methods
This self-control study was conducted on 12 healthy male volunteers. The minimal ice water
caloric test was applied for vestibular stimulation in the optimum and in the pessimum positions
for each side. The time domain and the frequency domain indices of the heart rate variability
were used as markers of cardiac sympathovagal tone.

Research results
Caloric test induced nystagmus and vestibular stimulation in the optimum positions but had no
effect on blood pressure, average heart rate and heart rate variability.

Research conclusions
The minimal ice water caloric test was well tolerable, provided inadequate vestibular autonomic
stimulation and may have introduced a model for studying the concept of the laterality of
vestibulo-autonomic reflex.

Research perspectives
The vestibular and the autonomic system may have different sensitivity to caloric stimulation
and the irritation with more volume of cold water or in longer duration e.g., more than a few
seconds may cause adequate autonomic vestibular stimulation.
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Abstract
BACKGROUND
Often in patients with significant three-vessel or left main disease there is
coexistent significant peripheral disease rendering them poor candidates for
percutaneous left ventricular support during revascularization. Evidence on the
management of such cases is limited.

CASE SUMMARY
We describe a case of such a patient with critical distal left main disease and
chronically occluded right coronary artery who presented with chest pain and a
non-ST elevation myocardial infarction and had significantly impaired left
ventricular function. With the aid of our cardiothoracic surgeons a cut down
subclavian Impella 5.0 was inserted and high risk rotablation percutaneous
coronary intervention carried out successfully.

CONCLUSION
This case highlights the need for cross-specialty collaborations in such high-risk
cases were alternative access is needed for insertion of large bore mechanical
circulatory support devices.

Key words: Impella; Subclavian; Rotablation; Left main; Percutaneous coronary
intervention; Case report
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Core tip: This case highlights the importance of the coming together of the cardiothoracic
surgeons and interventional cardiologists in treating patients in caridogenic shock with
high risk coronary anatomy features. In this particular case the Impella 5.0 was
implanted using a surgical cut down through the subclavian access and supported
extreme high risk unprotected left main rotablation percutaneous coronary intervention.
The patient made an excellent recovery with remarkable left ventricular function
improvement in one-year follow-up.

Citation: Panoulas V, Monteagudo-Vela M, Kalogeras K, Simon A. Subclavian Impella 5.0 to
the rescue in a non-ST elevation myocardial infarction patient requiring unprotected left main
rotablation: A case report. World J Cardiol 2020; 12(4): 155-160
URL: https://www.wjgnet.com/1949-8462/full/v12/i4/155.htm
DOI: https://dx.doi.org/10.4330/wjc.v12.i4.155

INTRODUCTION
In patients with stable coronary disease, the use of Impella for high risk percutaneous
coronary intervention (PCI) has been associated with improved mid-term outcomes
compared  to  intra-aortic  balloon  pump[1,2].  Data  from  the  large  retrospective
evaluation of the USpella registry[3] support the feasibility, safety, and hemodynamic
usefulness of Impella device for the treatment of unprotected left main interventions
using  the  percutaneous  2.5  and CP Impellas.  However,  often  in  these  high-risk
patients, the iliofemoral disease is so extensive that does not allow percutaneous
peripheral arterial interventions. Limited reports exist on the management of such
patients that require alternative access for mechanical circulatory support.

CASE PRESENTATION
We present a case of a well-functioning 71-year-old gentleman who was originally
admitted with chest pain via the primary PCI pathway.

On admission he had a blood pressure of 145/85 mmHg with regular pulse and a
soft ejection systolic murmur. His lung auscultation revealed bibasal crepitations and
he had pitting oedema to his mid shins. He was saturating on air at 94%.

His electrocardiogram showed transient anteroseptal ST elevation and a small
troponin rise of 400 ng/L.

His left ventricular (LV) function was severely impaired with ejection fraction of
30%, inferior partial scar and hypokinesia elsewhere. He also had mild aortic stenosis.

He had extensive peripheral arterial disease (PAD) with external iliac diameters of
3.5 mm bilaterally, previous aortic stent, endovascular aneurysm repair for abdominal
aortic aneurysm (Figure 1A), right carotid endarterectomy, old right basal ganglia
ischaemic infarct, hypertension, hypercholesterolaemia and smoking.

FINAL DIAGNOSIS
Coronary angiogram performed immediately on admission (Figure 1B) showed a
tight  calcific  distal  left  main  stem (LMS)  bifurcation,  tight  proximal  calcific  left
circumflex and significant calcific mid left anterior descending lesions. Right coronary
artery was chronically occluded proximally and collateralized by the left system. By
the end of the diagnostic procedure his chest pain had settled and the patient was
discussed with the on-call surgeon.

In essence this patient presented with a non-ST elevation myocardial infarction
with critical distal calcific left main disease, which was his last remaining conduit as
his right coronary artery was a chronic total occlusion.
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Figure 1

Figure 1  Heavily diseased peripheral and coronary vascular trees. A: 3D reconstructions of abdominal and ilio-
femoral arterial systems showing previous abdominal aneurysm, and endovascular aneurysm repair alongside the
extensive ilio-femoral disease; B: Initial coronary angiogram demonstrating tight distal left main stem and proximal left
circumflex calcific disease. The right coronary artery is a chronic total occlusion.

TREATMENT
The heart team agreed on urgent coronary artery bypass grafting. However, over the
next couple of days, while completing his pre-surgical work-up (including carotid
doppers,  deptartmental  echocardiogram and lung function tests),  he  developed
recurrent transient STE chest pains with troponin rise up to 7000 ng/L, pulmonary
oedema and impending cardiogenic shock with LV deterioration to 15%.

At that stage, an urgent decision was made by the heart team for high-risk PCI
using Impella 5.0 support via the subclavian access, under general anaesthesia. The
subclavian artery was dissected and exposed. A 10-mm silver-coated Dacron graft
was anastomosed to the subclavian artery and a 5.0 Impella was placed successfully in
the LV (Figure 2).

Subsequently using the right femoral access and an 8F EBU 3.5 guidecather the left
main was initially rotablated with 1.75 mm burr. The loss of pulsatility during the
runs was prominent,  however mean arterial  pressure was sustained at  about  55
mmHg  due  to  the  presence  of  the  5.0  Impella  (Figure  3).  Despite  a  couple  of
complications and equipment failures, including localized LMS dissection balloon
entrapment on coronary wire and undeployed stent dislodgement, a good result was
obtained with reverse culotte LMS bifurcation stenting and targeted PCI of mid left
anterior descending and proximal left circumflex lesions (Figure 4).

OUTCOME AND FOLLOW-UP
Following his successful LMS bifurcation rotablation PCI the patients was extubated
the following day and the Impella 5.0 explanted 5 d later.  He made an excellent
recovery and was discharged home 10 d later. On one-year follow up the patient was
doing remarkably well and his LV had recovered fully, with a current ejection fraction
of 55%. He is fully compliant with his heart failure and antiplatelet regime. He still
has mild aortic stenosis for which he will be kept under surveillance on an annual
basis.
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Figure 2

Figure 2  A 10-mm silver-coated Dacron graft was anastomosed to the subclavian artery and an Impella 5.0
was inserted.

DISCUSSION
This case illustrates the importance of cross-specialty collaboration in overcoming
challenges  in  coronary  revascularization  of  high-risk  patients  with  prohibited
iliofemoral access for percutaneous mechanical circulatory support devices.

The co-existence of PAD and cardiovascular disease (CVD) is common with nearly
45% of  patients  with PAD suffering from simultaneous cardiovascular disease[4].
Recently the first use of intravascular lithotripsy (IVL) to treat vascular disease using
the  Shockwave  IVL  device  (Shockwave  Medical  Inc)  in  iliofemoral  arteries  for
modification of calcified plaque in an attempt to facilitate percutaneous Impella CP
implantation  was  described[5].  Furthermore  a  fully  percutaneous  transaxillary
approach for implantation of Impella CP was been described and is feasible[6,7]. When
it comes, however, to implantation of an Impella 5.0 percutaneous options are limited
(e.g. transcaval[8]), whereas surgical axillary cut-down has been established as a safe
technique[9].

An alternative approach to tackling this case may have been the use of Impella 5.0
to stabilize the patient prior to off-pump CABG. However, our surgical team felt that
in  view of  the  ongoing ischaemic  symptoms,  the  surgical  risk  would have been
prohibitive and an immediate treatment with PCI would be the preferred option.

CONCLUSION
Our case report suggests that the use of surgical cut down to facilitate last remaining
conduit  high risk  PCI  in  unstable  patients  with poor  left  ventricular  function is
feasible and safe. (1) Impella 5.0 provides a high level of support, which allows the
operators  to  optimize their  revascularization techniques and overcome,  without
stress, complications that may occur during high risk left main PCI (last conduit); (2)
The Impella 5.0 can be inserted using subclavian cut down in cases with peripheral
vascular access not amenable to large bore access. The transcaval access technique,
even though promising for Impella 5.0, has yet to be widely adopted; and (3) Despite
the emergence of IVL often in patients with very extensive disease IVL and peripheral
angioplasty may not  be feasible  and a cross-specialty collaboration is  needed to
facilitate use of alternative access for mechanical circulatory support.

WJC https://www.wjgnet.com April 26, 2020 Volume 12 Issue 4

Panoulas V et al. Subclavian Impella 5.0 LMS rotablation PCI

158



Figure 3

Figure 3  During rotablation runs with the 1.75 mm burr the pulsatility was lost, however, the mean arterial pressure was maintained due to the presence of
the Impella.

Figure 4

Figure 4  After a stormy procedure a good angiographic and intravenous ultrasound result was obtained. A: Support issues despite use of guideliner leading
on to stent dismounting off its balloon undeployed after it got trapped on a calcific bend; B: Localised small perforation/dissection at the distal left main; C: Extreme left
circumflex tortuosity causing deformation of Choice PT XS coronary wire and balloon trapping on the wire; D: Spider view and intravenous ultrasound in distal left main
stem showing good stent expansion and apposition; E: LAO cranial view showing good final left main stem Culotte result.
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