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Abstract

Type 2 diabetes mellitus (T2DM) is a silent progressive
polygenic metabolic disorder resulting from ineffective
insulin cascading in the body. World-wide, about 415
million people are suffering from T2DM with a projected
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rise to 642 million in 2040. T2DM is treated with several
classes of oral antidiabetic drugs (OADs) viz. biguanides,
sulfonylureas, thiazolidinediones, meglitinides, etc.
Treatment strategies for T2DM are to minimize long-term
micro and macro vascular complications by achieving
an optimized glycemic control. Genetic variations in
the human genome not only disclose the risk of T2DM
development but also predict the personalized response
to drug therapy. Inter-individual variability in response to
OAD:s is due to polymorphisms in genes encoding drug
receptors, transporters, and metabolizing enzymes for
example, genetic variants in solute carrier transporters
(SLC22A1, SLC22A2, SLC22A3, SLC47A1 and SLC47A2)
are actively involved in glycemic/HbA1lc management of
metformin. In addition, CYP gene encoding Cytochrome
P450 enzymes also play a crucial role with respect
to metabolism of drugs. Pharmacogenetic studies
provide insights on the relationship between individual
genetic variants and variable therapeutic outcomes of
various OADs. Clinical utility of pharmacogenetic study
is to predict the therapeutic dose of various OADs on
individual basis. Pharmacogenetics therefore, is a
step towards personalized medicine which will greatly
improve the efficacy of diabetes treatment.

Key words: Type 2 diabetes mellitus; Pharmacogenetics;
Genetic variants; Oral antidiabetic drugs; Personalized
medicine

© The Author(s) 2016. Published by Baishideng Publishing
Group Inc. All rights reserved.

Core tip: Type 2 diabetes mellitus (T2DM) is a highly
prevalent metabolic disorder, characterized by chronic
hyperglycemia. It results from an interaction of environ-
mental as well as genetic factors. Several genes have
been identified associated with disease development
and therapeutic outcomes. Inter-individual variations
in the human genome affect both, risk of T2DM deve-
lopment and personalized response to identical drug
therapies. Pharmacogenetic approaches focus on
single nucleotide polymorphisms and their influence on
individual drug response, efficacy and toxicity. In the
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present study, an effort has been made to review the
genetic polymorphisms in candidate genes associated
with efficacy of oral antidiabetic drugs.

Singh S, Usman K, Banerjee M. Pharmacogenetic studies
update in type 2 diabetes mellitus. World J Diabetes 2016;
7(15): 302-315 Available from: URL: http://www.wjgnet.
com/1948-9358/full/v7/i15/302.htm DOI: http://dx.doi.
org/10.4239/wjd.v7.115.302

INTRODUCTION

Type 2 diabetes mellitus (T2DM) has been considered
as a major health problem for both developed as well
as developing countries. The global burden of diabetes
is presently 415 million affected people, expected to
rise to 642 million in 2040 and about 193 million people
still undiagnosed. The Indian estimate is also alarming
which shows 69.2 million people affected with T2DM in
2015 which will rise to 123.5 million in 2040™,

Diabetes is traditionally known as a “silent disease”
manifesting no symptoms until it progresses to severe
damage of target organs. Diabetes has been classified
under various categories depending upon their age of
onset and severity'”. The most prevalent adult-onset
diabetes is T2DM characterized by hyperglycemia
caused by defects in both insulin secretion and insulin
signaling cascade. T2DM is a potential contributor
to considerable morbidity in the form of metabolic
complications viz. heart disease, stroke, neuropathy,
kidney disease, vision disorder, peripheral vascular
disease, ulcerations and amputations, infection,
digestive diseases, oral complications and depression.
T2DM is a multifactorial disease with high genetic
variability in which certain candidate genes interfere
with management of glycemic control in the body.
Polymorphisms in the candidate genes may affect
the susceptibility or risk of disease development and
progression””’,

Pharmacogenomics establishes the use of an indivi-
dual’s genetic information to guide treatment therapy
and has become an important tool in achieving “per-
sonalized medicine”. The discoveries of novel genetic
polymorphisms in drug transporters, and metabolizing
enzymes have given an insight into the biological
phenomena of drug efficacy and toxicity (Figure 1).
Pharmacologically, several classes of drugs are currently
being prescribed to treat T2DM patients, including
biguanides, sulfonylureas, meglitinides, thiazoli-
dinediones (TZDs), a-Glucosidase inhibitors, dipeptidyl
peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1
(GLP-1) agonist, sodium-glucose co-transporter-2
inhibitors, insulin and its analogues®*®. Clinically, it
is often observed that T2DM patients who receive
identical antidiabetic regimens often exhibit significant
variation in glycemic control, glycated haemoglobin
(HbA1c) level, drug efficacy, tolerability and incidence
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of adverse effects!". Inter-individual differences can be
attributed to polymorphisms of certain candidate genes
involved in drug absorption, transportation, distribution,
metabolism and signaling cascade of oral antidiabetic
drugs (OADs)™,

PHARMACOGENETICS

The term “pharmacogenetics” was coined by Vogel
et al™ which explains the differential response of
individuals to identical medication. Clinical observations
of inherited inter-individual differences during treat-
ment were documented for the first time in 1950s™*
giving rise to a new field, i.e., pharmacogenetics and
later pharmacogenomics. Pharmacogenomics is being
used for genome-wide approaches to recognize the
inherited inter-individual differences in response to
drugs. Pharmacogenetics reveals that single nucleotide
variations in genes (encoding drug receptor, transporters
and metabolizing enzymes) are related to the efficacy
and toxicity of drugst*®*®, for example CYP2D6, CYP2C8
and CYP2C9 are marked CYP enzymes that are actively
involved in metabolism of various therapeutic agents*.,

The inter-individual differences are contributed by
numerous factors, i.e., physical inactivity, race/ethnic
diversity, hypertension, age, gender, etc™. During
past decades, pharmacogenetic study was restricted to
observations of familial response to a particular drug.
However, genome-wide association studies, candidate
gene approach and linkage analysis have transformed
the area of pharmacogenetics/pharmacogenomics.
These studies have elucidated the role of genetic
variations for a particular drug and their doses on a
personalized basis.

PHARMACOGENETICS OF T2DM IN

PROSPECT WITH OADS

Treatment strategy for T2DM is mainly based on efficacy
of OADs assessed by level of fasting/postprandial
plasma glucose and/or HbA1c!,

BIGUANIDES

Metformin (N’,N’-dimethylbiguanide) is prescribed
as a first-line medication for newly diagnosed T2DM
patients®!!. Antihyperglycemic effects of metformin
includes down regulation of hepatic gluconeogenesis,
improvement in insulin sensitivity and significant redu-
ction in insulin resistance®. The precise mechanism(s)
of metformin action are still not fully elucidated. At
physiological pH metformin serves as an organic cation
being transported across the membrane by different
isoforms of organic cation transporters (OCTs) viz.
OCT1 expressed in hepatocytes, OCT2 in basolateral
membrane of kidney. Metformin is transported from
intestinal lumen into the epithelial cells via OCT3 and
plasma membrane monoamine transporter. Uptake
of metfomin from blood into hepatocytes is mediated
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Wild type Figure 1 Effects of gene polymorphisms on drug

RS efficacy and toxicity.
Genetic variants
(involved in drug metabolism, transport, distribution and excretion)
Altered functions of gene products
\
{ } }
Drug receptors Drug transporters Prisingleitipuy
enzymes
| / |
Variations in drug efficacy Variations in drug toxicity
(pharmacodynamics) (pharmacokinetics)
Metformin Figure 2 Schematic representation of cellular
O G‘ & E} locations of metformin transporters. SLC22A3:

Solute carrier family 22 member 3; SLC29A4: Solute

SLC29A4 ‘ ' .! SLCZZA 3 carrier family 29 member 4.

Enterocyte

b8
SLC29A4
O”D ﬂ)jstream
\
D I @

'SLC22A3

Blood stream D O Renal tubular lumen

by OCT1 and OCT3 (Figure 2). Metformin interferes different degrees of efficacy and toxicity (Figure 2).
with mitochondrial respiratory chain complex 1 by
increasing AMP/ATP ratio, which promotes the activation
of AMP kinase™?7. Metformin-induced AMP kinase =~ GENES ASSOCIATED WITH BIGUANIDE
activation leads to transcriptional inhibition of hepatic TREATMENT

gluconeogenesis'®'. Metformin is not metabolized and
excreted-out through urine via active renal tubular ~ Solute carrier family 22 member 1

secretion. Metformin excretion in bile and urine is  Solute carrier family 22 member 1 (SLC22A1) gene
also facilitated by various isoforms of Multidrug and encodes the OCT1 which is expressed in hepatocytes
Toxin Extrusion transporters (MATE1 and MATE2)?%%", and mediates the electrogenic transport of drugs™®.
Therapeutic response of metformin differs inter- OCT1 helps in transport of metformin into the liver
individually due to genetic polymorphisms. Single (hepatocytes) and subsequent activity. It has been
nucleotide polymorphisms (SNPs) in the genes encoding hypothesized that highly polymorphic SLC22A1 gene will
metformin transporters viz. OCT1, OCT2, MATE1L, influence the therapeutic success rate of metformin. In
MATE2, etc., leads to significant association with the  a South Indian study™, it was reported that rs622342
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variant of SLC22A1 gene was significantly associated
with efficacy of metformin. They found that T2DM
patients with rs622342 “AA” homozygotes had 5.6
times increased possibility of responding to metformin
treatment. A recent pharmacogenetic study performed
in a Chinese population demonstrated that T2DM
patients with “"AA” genotype of SLC22A1 rs594709
might have maximum plasma glucose lowering effect
from metformin monotherapy®®®. Shu et a*" studied
the effect of loss of function polymorphism in SLC22A1
gene variants, i.e., rs12208357 (R61C), rs34130495
(G401S), rs72552763 (420del), rs34059508 (G465R).
They concluded the study as these variants were
significantly associated with lower efficacy of metformin
in glucose tolerance test. However, in a subsequent
GoDARTs study, two common SLC22A1 variants, R61C
(rs12208357) and 420del (rs72552763) were reported
to have no association with impaired initial response to
metformin, or metformin monotherapy failure®.

Solute carrier family 22 member 2

Solute carrier family 22 member 2 (SLC22A2) gene
encodes the OCT2. OCT2 is a drug transporter
and expressed in renal tubular cells thought to be
responsible for their elimination®*%, Loss of function
mutation in SLC22A2 gene has been significantly
correlated with metformin disposition. In several studies,
SLC22A2 gene has been reported as highly polymorphic
in nature®**", Zolk et al® found that SLC22A2 variant
808G > T (270Ala > Ser) significantly transforms the
uptake of drugs. In healthy subjects, rs316019 (A270S)
variant appeared responsible for decreased renal clear-
ance of Metformin®® while in a contradictory study a
significant correlation of rs316019 was reported with
increased metformin renal clearance™. Song et a/*”
investigated the influence of rs201919874 (T199I) and
rs145450955 (T201M) to the disposition of metformin
in healthy individuals and reported that both were
significantly associated with increased metformin
plasma concentration and reduced renal clearance. A
recent randomized cohort study performed in T2DM
patients with one year follow-up demonstrated that
efficacy of metformin was also influenced by SLC22A2
variant, rs316019 (808G > T)*!..

Solute carrier family 22 member 3

Solute carrier family 22 member 3 (SLC22A3) gene
encodes for OCT3 which is expressed in liver, kidney
and placenta. In public SNP database (http://www.
ncbi.nim.nih.gov/SNP/) five non-synonymous variants
(ssj0008476, rs8187717, rs8187725, rs12212246,
rs9365165) of human SLC22A3 gene were reported™®,
However, compared to OCT1 and OCT2, very few
studies have reported about OCT3 variants and met-
formin therapeutics. In a pharmacologic study, Chen
et al** studied the role of OCT3 variants ssj0008476
(T44M), rs8187725 (T400I) and V423F were found
to be significantly associated with altered response to
metformin action.
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Solute carrier family 47 member 1

Solute carrier family 47 member 1 (SLC47A1) gene
encodes the multidrug toxin extrusion receptor 1
expressed on apical domain of proximal and distal renal
tubular cells and serves as an electro neutral organic
cation/H" exchanger. Since genetic polymorphisms
in SLC47A1 associated with altered transport/excre-
tion function might have great influence on metformin
disposition, it is important to identify them in various
ethnic populations and correlate in terms of therapeu-
tic response. An intronic variant rs2289669 (G > A)
in SLC47A1 was demonstrated to reduce HbAlc level
significantly in metformin users™**. While in a DPP
(Diabetes Preventation Programme) study, SLC47A1
variant rs8065082 (C > T) was reported for lower diabetes
incidence in individuals treated with metformin®!. In
a recent case control study the polymorphic effect of
rs594709 in SLC22A1 and rs2289669 in SLC47A1 was
evaluated in T2DM cases and no significant association
was reported. The study concluded that carriers of allele
“A” of rs594709 showed better efficacy for metformin™®.
In Chinese population, the SLC47A1 variant rs2289669
(G > A) appeared to promote metformin efficacy by
delaying its excretion mechanism*.

Solute carrier family 47 member 2

Solute carrier family 47 member 2 (SLC47A2) encodes
for multidrug toxin extrusion receptor 2 (MATE2),
expressed in apical membrane proximal tubule cells. It
facilitates the disposition of metformin from renal tubular
cells into urine. Choi et a*”? characterized variants of
SLC47A2 to recognize their association with metformin.
The study showed that homozygous individuals for
rs12943590 (130G > A) of MATE2-K is significantly
associated with poor plasma glucose control of metformin
assessed by relative differences in HbA1C level.

SULFONYLUREAS

Sulfonylureas (SUs), insulin secretagogues are one of
the most common classes of OADs being prescribed
either alone or in combination since 1960s™*®, The
second generation drugs viz. glimepiride, glibenclamide
(glyburide), gliclazide and glipizide are most common
representatives belonging to the group of SUs. The first-
generation drugs viz. tolbutamide and chlorpropamide
are no longer prescribed™. All SUs stimulate insulin
secretion by binding to sulfonylurea receptor 1 (SUR1),
a protein having 1581-amino acids. This interaction
depolarizes the cell membrane of pancreatic beta cells
by closing ATP-sensitive potassium (KATP) channels.
Subsequent effect of depolarization leads to Ca** influx
which trigger an enhanced insulin secretion from beta
cells in glucose-independent manner'*!, KATP channel
is a heterooctameric protein complex constructed by
four inward-rectifier K" channel, i.e., Kir6.2 (forming
pore of KATP channel) coupled with SUR1, surrounding
the pore!. In neonates, inactivating mutations in
genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCCS8)
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Kir6.2 variant

SUR1 variant

Improper closing
of KATP channel

Pancreatic
cell

uoNa.I9s
uInsul paonpay

involved in insulin synthesis
and secretion

'

[ Reduced insulin J

{ Decreased expression of genes

production and secretion

'

[ Impaired plasma J

glucose concentration

Figure 3 Schematic diagram showing the Kir6.2 and SUR1 variants
affecting sulfonylurea efficacy. Pancreatic § cell membrane with SUR1/Kir6.2
variant leads to improper closing of KATP channel on binding with SUs. This
subsequently leads to poor membrane depolarization and less influx of Ca®*
ions which will result in less and delayed insulin secretion. Hence, low level of
insulin molecules will be available to bind with IRS1 and lead to an impaired
signaling cascade resulting in poor management of glycemic condition. SUs:
Sulfonylureas; SUR1: Sulfonylurea receptor 1; KATP: ATP-sensitive potassium
channel; IRS1: Insulin receptor substrate 1; SUR 1: Sulfonylurea Receptor 1.

are responsible for T2DM, while activating mutations
lead to hypoglycemia™. Polymorphisms in the genes
ABCC8, KCNJ11, CYP2C9, TCF7L2, NOS1AP (nitric
oxide synthase 1 adaptor protein) have been reported
for altered response to SUs®™“*%. Impairment of Kir6.2
(KCNJ11) and SUR1 (ABCCS8) will lead to improper
signaling cascade of insulin as shown in Figure 3.

GENES ASSOCIATED WITH
SULFONYLUREA TREATMENT

Potassium inwardly-rectifying channel, subfamily J,
member 11

ATP-sensitive potassium channel (KATP) is a trans-
membrane protein of pancreatic p-cells encoded by
potassium inwardly-rectifying channel and subfamily J,
member 11 (KCNJj11). Two hundred and nineteen SNPs
have been reported for the KCNJ11 gene located on
chromosome 11p15.1. Polymorphisms in KCNJ11 have
been reported for development of diabetes because of its
key role in insulin secretion®®. Only 6 SNPs viz. rs5210,
rs5215, rs5218, rs5219, rs886288, rs2285676 have
been reported to be associated with diabetes”™. A study
found that in T2DM patients the rs5210 variant located
at 3’ UTR of KCNJ11 improves the clinical efficacy of
gliclazide™. The most widely studied KCNJ11 gene
variant rs5219 (E23K) was significantly associated
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with the onset of T2DM in Asian Indian and Chinese
populations®*°®, However, studies performed on
Caucasian individuals demonstrated for no significant
differences in glycated hemoglobin®*®!. Some studies
have reported that diabetic patients having KCNJ11
gene variants respond better to pharmacotherapy with
SUs as compared to insulin®**",

ATP-binding cassette, subfamily C member 8
ATP-binding cassette, subfamily C member 8 (ABCCS8)
located at 11p15.1, encodes for SUR1 which modulate
the activity of KATP channel®, Variants of ABCC8 gene
rs1799854 (C/T) and rs1801261 have been studied
extensively and are reported for inconsistent association
with T2DM®*7% ABCC8 variant rs1799854 has been
reported for significant association with sulfonylurea
efficacy in terms of HbAlc level®”. In one study, the
genetic variants of ABCC8 were reported for significant
reduction in HbA1c concentration””. Activating mutation
in the genes encoding SUR1 (ABCC8) and Kir6.2
(KCNJ11) may lead to altered signaling cascade of
insulin secretagogues resulting in therapeutic failure of
SUs. The Arg972 variant of insulin receptor substrate
1 is reported for an enhanced risk of secondary failure
to SUs in T2DM patients”’?. A study carried out in
Chinese T2DM patients with two months follow-up,
demonstrated that Ser1369Ala variant of ABCCS8 is
significantly associated with therapeutic success of
gliclazide!”®. Carriers and non-carriers of SUR1-437A/T
variant did not differ in insulin response stimulated by
tolbutamide during OGT test!",

Cytochrome P450 2C9

SUs viz. tolbutamide, glimperide, glipizide and glibenc-
lamide are metabolized to active metabolites in the
liver mainly by cytochrome P450 2C9 (CYP2C9)"
which are ultimately excreted by the kidney®. It has
been reported that CYP2C9 variants were significantly
associated with efficacy of SUs in diabetic patients””’.
Two variants of CYP2C9 gene, i.e., rs1057910 (CYP2C9*3)
and rs1799853 (CYP2C9*2) have been significantly
associated with missense amino acid polymorphisms
resulting in decreased metabolism of SUs in healthy
volunteers”, While in T2DM patients treated with SUs,
CYP2C9*3 variant was reported with an enhanced risk
of severe hypoglycemia”®”®!. Certain T2DM patients with
CYP2(C9 gene variants Ile359Leu and Arg144Cys were
reported for 30%-80% reduction in renal clearance of
glibenclamide suggesting lower doses of this antidiabetic
drug to decrease the risk of hypoglycemiat®’>77#81,

Transcription factor 7-like 2

Transcription factor 7-like 2 (TCF7L2) is encoded by
TCF7L2 gene which is actively involved in proliferation
and differentiation of cells. It is required for secretion
of glucose stimulated insulin from pancreatic p-cells.
TCF7L2 is a key transcription factor, which regulates
glucose metabolism in insulin dependent manner. It
serves as a chief regulator in coordinating the proinsulin
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synthesis and its processing to produce mature insu-
lin®*, Hence, nucleotide variation in TCF7L2 gene
may lead to alteration in insulin secretion™"! resulting
reduced insulin secretion will lead to hyperglycemia.
TCF7L2 gene is expressed in developing and mature
pancreatic beta cells'®! and secretion of insulin is
decreased in individuals having risk alleles™ . Miyake
et al®”! studied association of TCF7L2 variants with
susceptibility to T2DM in 4087 Japanese patients. They
found that rs7903146, rs12255372 and rs11196205
were significantly associated with T2DM while rs290487
and rs11196218 were reported for no association.
Polymorphisms in TCF7L2 gene has been reported for
strong association with T2DM affecting therapeutic
response to SUs'™®®, TCF7L2 SNPs were reported
to influence the risk of T2DM™®, Polymorphisms in
TCF7L2, rs12255372 and rs7903146 were reported
for decreased response to sulfonylurea efficacy™®. The
SNPs rs12255372T and rs7903146T were represented
to be significantly associated with enhanced expression
of TCF7L2 gene in beta cells, altering insulin release and
predisposing individuals to T2DM®°!,

TZDS

TZDs are insulin sensitizers, they promote uptake of
glucose by tissue and skeletal muscles, down regu-
late glucose output from liver®!, Rosiglitazone and
pioglitazone are medical representatives of TZD group.
The exact molecular mechanism of TZDs is far from
clear. However, data indicates that TZDs primarily bind
with the peroxisome proliferator-activated receptor y
(PPARy) in adipose tissue and affect their metabolism.
On binding with PPARy, TZDs stimulate adipocytes
differentiation® and decrease plasma glucose level in
T2DM patients®®"*), Several studies have reported that
TZDs improve both glucose homeostasis and insulin
cascading in T2DM cases®®*®, hence may prevent the
progression from altered plasma glucose tolerance to
T2DM development™®®!, Numerous potential mechanisms
are reported by which TZDs improve molecular action
of insulin in both liver® ' and skeletal muscles®”*°!,
These include reduced content of intra-hepatocellular
and intra-myocellular triglycerides®®®**® and altered
body composition®”*®®], It also decreases synthesis
and/or action of proinflammatory cytokines!'***!, TZDs
upregulate expression of genes in adipocytes resulting in
increased level of adiponectin in plasma circulationt%*%],
with positive effects on insulin sensitivity™®’ and reduced
hyperglycemia. Some previous studies reported that use
of rosiglitazone (a TZD drug) as compared to pioglitazone
could cause severe side effects, the risk of myocardial
infarction and also lead to death due to cardiovascular
dysfunctiont'**'!l, Several gene variants have been
identified for significant association with therapeutic
outcome of TZDs. Adiponectin, resistin, leptin, TNF-a
and PPARy are commonly called adipocytokines which
are key regulators of insulin resistance!**?,
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GENES ASSOCIATED WITH TZD
TREATMENT

PPARy

PPARy belonging to the nuclear receptor family regu-
lates metabolism of carbohydrates, regulates lipid
homeostasis and adipocyte differentiation!*?!. It is also
a key mediator of insulin signaling™**. In humans, TZDs
bind to PPARy with high specificity. At physiological pH
PPARy forms a dimer with retinoid X receptor (RXR).
Binding of TZDs to the PPARy-RXR complex stimulates
a conformational change™" which subsequently leads
to the binding of the above heterodimer complex to the
PPARy response elements (PPRE) in the target genes!''®..
It results in improved insulin sensitivity via glycolysis,
lipogenesis, adipogenesis and increased glucose uptake
and utilization™”. Single nucleotide variations in PPARy
gene may affect the binding affinity with TZDs and its
therapeutic efficacy (Figure 4). In PPARy gene, loss-
of-function mutations are significantly associated with
insulin resistance and T2DM**8l, Multiple studies have
reported that missense polymorphism Prol2Ala (CCA-
to-GCA) in PPARy gene is associated with decreased
risk of T2DM development!**** and improved insulin
sensitivity!>>*%!, A pilot study performed on South Indian
population, evaluated the effect of Pro12Ala variants
on therapeutic success to pioglitazone, and reported a
significant association with glycemic control?*, T2DM
cases with Prol2Ala variant of PPARy gene, showed
significant glycemic control [fasting plasma glucose (FPG)
and HbA1clevel] for rosiglitazone treatment as compared
with carriers having wild-type genotype™*. Zhang et
al'**® demonstrated that in Chinese patients, amino
acid variants Thr394Thr and Gly482Ser of peroxisome
proliferator-activated receptor gamma coactivator
1-alpha were also significantly associated with efficacy
of rosiglitazone.

Adipocytokines

Variants of adiponectin (ADIPOQ) gene have been
reported for changes in FPG and level of HbAlc after
12 wk of rosiglitazone treatment. A study carried out
by Liu et al*” in T2DM Chinese patients demonstrated
that sequence variation in leptin and TNF alpha gene
interferes with therapeutic response to rosiglitazone.
Nucleotide variants rs2241766 (45T/G) and rs266729
(-11377C/G) of ADIPOQ gene!*®, rs1800629 (-308 G/A)
of TNF-o. and rs7799039 (-2548G/A) of leptin gene!”
were found to affect the rosiglitazone therapeutics
and reverse insulin resistance in Chinese patients.
In a pilot study, it was found that single nucleotide
polymorphism at -420 (G/G) in resistin gene may serve
as an independent predictor for down regulation of
insulin resistance and hyperglycemia associated with
pioglitazone therapeutics**.

Cytochrome P450
Metabolism of rosiglitazone is mainly metabolized by
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Figure 4 Schematic representations of peroxisome proli-
erator-activated receptor y variants affecting the efficacy
of thiazolidinediones. TZDs: Thiazolidinediones; PPARy:
Peroxisome proliferator-activated receptor y.
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CYP2C8 and CYP2C9"® while biotransformation of
pioglitazone is mainly metabolized by CYP2C8 and
CYP3A4™, Nucleotide polymorphisms in CYP2C8 gene
were significantly associated with impaired clearance
of rosiglitazone. Polymorphisms in CYP2C8*3 encoding
for a reduced functioning of CYP2C8 enzyme, was
reported for altered drug clearance!**!. Hence genetic
variants of CYP2C8 may contribute to the degree of TZD
therapeutics.

MEGLITINIDE

Meglitinide, insulin secretagogues act by inhibiting KATP
channel leading to promote insulin secretion. Molecular
mechanism of both sulphonylureas and meglitinide
are similar. Sulphonylureas and meglitinide inhibit the
activity of KATP channel by binding at two different
sites of the SUR1 subunit'*?, Meglitinides have shorter
duration of action and more rapid onset as compared
with SUs. Repaglinide (a benzoic acid derivative) and
nateglinide (a derivative of d-phenylalanine) belonging
to meglitinide stimulate early secretion of insulin.
Due to their short action, a potential adverse effect of
meglitinide is to induce hypoglycemia'**!. Repaglinide
is 100% metabolized in liver and hence excreted
mainly via bile. Genetic polymorphisms associated with
response to meglitinide were mapped in SLCO1B1,
CYP2C8, CYP3A4, TCF7L2, SLC30A8, IGF2BP2,
KCNJ11, KCNQ1, UCP2, NAMPT, MDR1, PAX4 and
NeuroD1V#* Qut of these SLCO1B1 is reported to
facilitate the hepatic uptake of a drug repaglinide!*”.

GENES ASSOCIATED WITH MEGLITINIDE
TREATMENT

Solute Carrier Organic anion transporter family member
1B1

Solute Carrier Organic anion transporter family member
1B1 (SLCO1B1) gene, mainly expressed in basolateral
membrane (hepatocytes) encodes for organic anion-
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transporting polypeptide 1B1 (OATP1B1). Genetic poly-
morphisms in SLCO1B1 have been reported to exert
significant influence on repaglinide pharmacokinetics
with reduced exposure after administration of a single
dose of repaglinide™*. Genetic variant of SLCOB1 gene
(521T > C) markedly affected the pharmacokinetics
of nateglinide!*, Cellular uptake of various drugs is
regulated by OATP1B1. Several studies have demon-
strated the pivotal role of SLCOB1 gene variants in phar-
macokinetics of meglitinides™****>**1, Nateglinide is
catabolized by CYP2C9. A study performed in Chinese
male volunteers has demonstrated that genetic variants
of SLCOB1 (521T > C) and CYP2C9 (CYP2C9*3) could
affect the nateglinide efficacy™*?.

OTHER GENES

CYP2C8 and CYP3A4, both are actively engaged in
metabolism of repaglinide. Clinical studies demonstrate
that individuals with CYP2C8*3 variant have greater
clearance of OADs as compared to wild-type genotype'™.
A Chinese population treated with repaglinide and
genotyped for KCNQ1 variants rs2237892 (C/T) and
rs2237895 (C/A) were found to be associated with
therapeutic efficacy of repaglinide™”. Single nucleotide
polymorphisms in SLC30A8 viz. Arg325Trp (rs13266634)
and Arg325GIn (rs16889462) have been reported to
be significantly associated with T2DM development and
repaglinide efficacy™. KCNJ11 SNP rs5219 (Lys23Glu)
has been found to be associated with poor regulation of
fasting/postprandial glucose and HbA1lc levels in T2DM
patients with “"GA” or “"AA” genotype in contrast with
“GG". T2DM patients having “TT” genotype of TCF7L2
gene rs290487 (C/T) demonstrated better efficacy for
repaglinide treatment with respect to triglyceride, LDL
and fasting insulin as compared to patients with “CC" or
“CT” genotype™™”.

DIPEPTIDYL PEPTIDASE 4

DPP-4 is involved in the degradation of two incretin
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Figure 5 Clinical applications of pharmacogenetics in type 2 diabetes mellitus. T2DM: Type 2 diabetes mellitus; HbA1c: Glycated haemoglobin.

Table 1 Currently available antidiabetic drugs and their associated candidate genes involved in efficacy/toxicity

Class Common medical representatives Mechanism of action Candidate genes involved in Ref.
pharmacotherapy
Biguanide Metformin AMP-kinase activation SLC22A1, SLC22A2, SLC22A3, [28-39]
SLC47A1, SLC47A2

Sulfonylureas Gliburide, gliclazide, Inhibition of KATP channel on plasma KCNJ11, ABCC8, CYP2C9, [8,10,48-91]
Glimepiride, glipizide membrane of B-cells TCF7L2

Thiazolidinediones Pioglitazone, rosiglitazone Activates PPAR-y PPAR~y, ADIPOQ, TNF-a, LEP, [92-131]

CYP2C8
Meglitinides Nateglinide, repaglinide Inhibition of KATP channel on Plasma SLCOBI1, CYP2C8, KCNQ]1, [78,106,132-144]
Membrane of B-cells SLC30A8, KCNJ11, TCF7L2

DPP-4 inhibitors Alogliptin, linagliptin, Inhibits DPP-4, Affect GLP-1 receptor Possibly TCF7L2 [145-148]

saxagliptin, sitagliptin, pathway
vildagliptin

a-glucosidase Acarbose, miglitol, voglibose Inhibits intestinal a-glucosidase Yet to identify? [10]

inhibitors

SGLT-2 inhibitors Canagliflozin, dapagliflozin, Inhibits SGLT2 transporters in kidney Yet to identify? [10]

empagliflozin
GLP-1 agonist Exenatide, liraglutide Activate GLP-1 receptor Yet to identify? [10]

DPP-4: Dipeptidyl peptidase-4; SGLT-2: Sodium glucose transporter-2; GLP-1: Glucagon like peptide-1; KATP: ATP-sensitive potassium channel; PPARy:

Peroxisome proliferator-activated receptor y.

hormones viz. GLP-1 and gastric inhibitory polypeptide.
These hormones bring about a glucose dependent
stimulation of insulin release. These hormones are
also responsible for reduction in circulating plasma
glucose levels by interrupting glucagon secretion
and subsequently improve beta cell sensitization by
glucose™*!, DPP-4 inhibitors inhibit function of DPP-4
enzyme, thus reducing glucagon secretion. Sitagliptin,
vildagliptin and saxagliptin are medical representatives of
DPP4 inhibitors. Sitagliptin was the first DPP-4 inhibitor
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approved by Food and Drug Administration (FDA) in
2006'*], Metabolism of saxagliptin (a DPP-4 inhibitor)
is catalyzed by CYP3A4/A5 while sitagliptin is metabo-
lized by CYP3A4 with minor contribution of CYP2C8!*",
Zimdahl et al'**®! investigated the effect of TCF7L2
variants for therapeutic efficacy of linagliptin, a DPP-4
inhibitor. Linagliptin was found to significantly improve
glucose homeostasis in both cases with and without
TCF7L2 risk alleles for diabetes. Effects of genetic
polymorphisms associated with DPP-4 inhibitors remain
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to be investigated.

CONCLUSION

About 70 genetic loci have been identified to be asso-
ciated with T2DM™®), Pharmacogenetics, an expanding
area of research provides a platform to understand
and improve pharmacological treatment. Over the last
decade, the number of available antidiabetic drugs has
considerably increased. However, clinical treatment
of T2DM patients has become more complex due to
different degrees of therapeutic outcomes. Personalized
differences during OADs therapeutics have been linked
with numerous variants related to drug-transporters,
drug-targets, drug catabolizing enzymes and T2DM risk
genes (Table 1). Although inter-individual differences in
respect to efficacy and toxicity of OADs are significantly
associated with genetic makeup, it is clear that different
degrees of response to antidiabetics cannot be predicted
by studying the genetic differences alone. The role of
genetic variations with respect to therapeutic outcomes
must be further tested via clinical trials thus leading to
a personalized pharmacotherapy. The present scenario
and future prospect of Pharmacogenetic studies has
been elaborated in Figure 5.
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Abstract

AIM: To investigate the presence of total gut viral
content in obese mice, and establish correlation
with obesity associated metabolic measures and gut
microbiome.

METHODS: Fresh fecal samples were collected from
normal and obese (Leptin deficient: Lep®°®) mice.
Total viral DNA and RNA was isolated and quantified for
establishing the correlation with metabolic measures
and composition of gut bacterial communities.

RESULTS: In this report, we found that obese mice
feces have higher viral contents in terms of total
viral DNA and RNA (P < 0.001). Interestingly, these
increased viral DNA and RNA content were tightly
correlated with metabolic measures, /.e., body weight,
fat mass and fasting blood glucose. Total viral content
were positively correlated with firmicutes (R*> > 0.6),
whilst negatively correlated with bacteroidetes and
bifidobacteria.

CONCLUSION: This study suggests the strong corre-
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lation of increased viral population into the gut of obese
mice and opens new avenues to explore the role of gut
virome in pathophysiology of obesity.

Key words: Obesity; Gut; Microbiome; Virome; DNA;
RNA; Virus; Fat mass

© The Author(s) 2016. Published by Baishideng Publishing
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Core tip: Gut microbiome is known for major con-
stituents of bacterial population, and their association
with obesity, but microbes like viruses are majorly
neglected. Our investigation on the basis of hypothesis
that viruses are an important part of microbial world,
and found in substantial numbers into human gut, we
investigated whether viral content have any correlation
with obesity in mice models. Interestingly, we found
that DNA and RNA viral fecal content was significantly
increased in obese mice as compared to normal. This
suggests that viral population may have role to regulate
host metabolism and might impact obesity prevalence
via alteration of gut microbiome composition. Our
findings open a new area of research to explore the role
of gut virome in obesity.

Yadav H, Jain S, Nagpal R, Marotta F. Increased fecal viral
content associated with obesity in mice. World J Diabetes
2016; 7(15): 316-320 Available from: URL: http://www.
wjgnet.com/1948-9358/full/v7/i15/316.htm DOI: http://dx.doi.
org/10.4239/wjd.v7.i115.316

INTRODUCTION

Obesity is reaching on higher epidemic around the
globe!™!, This is because of lack of successful and
effective strategies to prevent and treat this health
ailment. The pathophysiology of obesity is highly
complex, and involves various factors, i.e., genetics,
environment and life style!”, Abdominal or central
obesity (abdominal fat accumulation) is strongly
correlated with increased incidence of insulin resistance
and metabolic syndrome®. Abdominal fat is in close
proximity with gastrointestinal tract, and have various
gut-adipose communication through various gut hor-
mones and adipokines'®.. Recently, role of gut micro-
biome in obesity pathophysiology have been well
established and known to play significant role in obesity
progression™. Human and rodent studies suggest that
presence of gut microbiome increases the risk of weight
gain and insulin resistance'. Various mechanisms have
been proposed to explain the role of gut-microbiome on
obesity progression, i.e., increased energy harvesting
capacity, low grade inflammation, endotoxemia and
other metabolic interferences”’. Recently, plethora
of literature has been generated to explore the role
of gut microbiome (especially bacterial community)
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in metabolic regulation. Therefore modulation of gut
microbiome has been considered one of the important
strategies to develop therapies against obesity and
diabetes”’.

Most of the studies conducted for exploring the
role of gut microbiome in obesity have been focused
on bacterial communities and their correlation with
host metabolism'™., Role of viruses present into gut
are not investigated in relation with obesity and their
impact on host metabolism and associated gut bacterial
microbiome. Viruses play a critical role in maintaining
bacterial population in specific environment, i.e.,
gut, where they establish a commensal relation with
their partners™. Specific viral particles, especially
bacteriophages might play an important role in main-
taining certain bacterial strains of gut microbiome, that
are correlated with obesity occurrence'™. From our best
knowledge, none of the studies investigated the direct
link of gut virome with obesity. We hypothesize that
changes in gut viral community (gut-virome), might
play an important role in maintaining and colonizing
gut bacterial species that impact host metabolism.
Hence establishing the role of gut-viral community on
influencing gut microbiome and host metabolism will
open new avenues for development of therapeutic
strategies against obesity via targeting gut virome. In
this study, we investigated the correlation between gut-
virome, obesity associated metabolic measures and gut
bacterial communities in mice.

MATERIALS AND METHODS

Animals, sample collection and biochemical analysis
Lep® and C571/B6 mice (male; age 6-8 wk old) were
housed in a light controlled facility by maintaining 12
h light/dark cycle. Mice were maintained in identical
conditions and fed with similar diet and water, adlibitum.
Body weight was measured using a microscale balance
(Cole-Parmer, IL, United States). Total fat mass was
measured weighing all the major fat depots, i.e.,
epididymal, perirenal, mesenteric, supra subscapular,
anterior subcutaneous and posterior subcutaneous fat
depots). Fasting (12-14 h) blood glucose was measured
using Bayer Contour glucometer (Bayers Contour
Diabetes Solutions, Thane, India). Fresh fecal samples
were collected from each mouse by light abdominal
squeezing and immediately stored in a sterile, DNase
and RNase free vials at -80 C till further use. All the
animal protocols and procedures were approved by
institutional animal ethics committee from University of
Punjab and PGIMER, Chandigarh, India.

Viral DNA and RNA isolation and quantification

Fecal viral DNA and RNA was isolated using Qiagen
viral DNA and RNA isolation kits following the manu-
facturer’s instructions. DNA and RNA quality have been
checked using Agilent 2100 Bioanalyzer. Viral DNA
and RNA have been quantified using NanoDrop One
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Figure 1 Fecal viral DNA and RNA content was significantly increased in obese mice and shown strong correlations with obesity associated measures
and gut bacterial microbiome. A-D: Fecal viral DNA (A and B) and fecal viral RNA (C and D) content was found to be dramatically increased in obese animals; E-J:
Viral DNA was positively correlated with body weight (E), fat mass (F), blood glucose (G) and firmicutes (H), whilst negatively correlated with bacteroidetes (1) and
bifidobacteria (J). Values presented here are means (n = 7) and standard error of means. Values indicated with “a“ are significantly different at the level of P < 0.001.

Table 1 Primers used for gut microbial community analysis

Gene Name

Primer sequence (5’ —3’)

Universal F (Total)
Universal R (Total)
Bifidobacteria F
Bifidobacteria R
Bacteroidetes 934F
Bacteroidetes 1060R
Firmicutes 934F
Firmicutes 1060R

TCCTACGGGAGGCAGCAGT
GACTACCAGGGTATCTAATCCTGTT
GCGTGCTTAACACATGCAAGTC
CACCCGTTTCCAGGAGCTATT
GGARCATGTGGTTTAATTCGATGAT
AGCTGACGACAACCATGCAG
GGAGYATGTGGTTTAATTCGAAGCA
AGCTGACGACAACCATGCAC

Spectrophotometer with fluorescent method (Thermo-
Fisher Scientific, United States). Viral DNA and RNA
quantity has been calculated nanogram per gram of
fecal sample.
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Bacterial DNA quantification

Mouse total fecal DNA was isolated from separate fecal
pallets than viral DNA/RNA isolation, using DNeasy kit
(Qiagen). Real time PCR was performed to measure
the major obesity associated bacterial community,
i.e., Firmicutes, bacteroidetes and Bifidobacteria using
microbe specific primers (Table 1). Results are presented
here as percent of bacterial DNA abundance normalized
by total bacterial DNA.

Statistical analysis

All the data expressed is mean and standard error
of means. Statistical significance among the groups
was calculated using two-tailed t test and/or one way
analysis of variance, that followed by post-hoc tests.
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Figure 2 Fecal viral RNA content was significantly correlated with obesity associated measures and gut bacterial microbiome. A-F: Fecal viral RNA content
was positively correlated with body weight (A), fat mass (B), blood glucose (C) and firmicutes (D), whilst negatively correlated with bacteroidetes (E) and bifidobacteria

(F). Values presented here are means (n = 7) and standard error of means.

Data with less than 0.05 P-values considered statistically
significance.

RESULTS

Microbiome studies clearly suggest that we are
surrounded by microbes, in which viruses makes a
significant numbers. Around 10*" viral particles have
been estimated on earth, and human feces consist
around 10° viral particles/gram®*?, Mammalian virome
collectively called for viruses that infect eukaryotic cells
(eukaryotic virome), bacterial cells (bacterial virome),
archeal cells (archeal virome) and virus derived genetic
elements in host chromosomes that can change host-
gene expression, express proteins, or even generate
infectious virus (prophages, endogenous retroviruses,
endogenous viral elements)™. Viral infections have been
associated with prevalence of obesity in animals and
humans, and termed as infectobesity!**!. Considering the
technological limitations for sequencing and analyzing
datasets for viral communities, studies of virome has
been lagged behind than bacterial microbiome. In
present study, we analyzed total fecal viral content in
normal vs obese (leptin deficient Lep®®) mice and
correlated with obesity related measures. Interestingly,
we found that fecal viral DNA and RNA in obese samples
was significantly higher than normal mice (Figures
1 and 2), suggesting that total DNA and RNA viral
communities have been significantly increased in obese
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mice. Although, our studies completely lack the types
of viruses enriched in obese mice gut as compared to
normal, but these very interesting observations indicate
that total load of viruses have been increased in obese
gut. Therefore, these results provide a strong basis to
further explore the role of gut virome in obesity.

DISCUSSION

We have observed that fecal DNA and RNA viral
population positively correlated with firmicutes bacterial
communities, which is known to be associated with
increased obesity™!. While viral contents were negatively
correlated with bacteroidetes and bifidobacteria, that are
known to be associated with lean-ness™. These results
can be speculated in a way, that gut virome (especially
bacteriophages) might have interaction with gut
bacterial microbiome to modulate the bacterial species
abundance in obese vs normal mice. Although, these
studies gives us an intrigued and important preliminary
information about the abundance of DNA and RNA
viruses in obese and normal mice, but still detailed
analysis to find out the types of viruses and their
functionality remains completely unknown. Therefore,
further studies to explore the types of viruses that are
associated with increased viral DNA and RNA contents in
normal vs obese mice are highly warranted.

Viruses are highly mutagenic and carries individual
variations in gut viral communities have been described
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earlier. Viral proteins can interact with host cells and

can induce biological response, i.e., inflammation, rece-
ptor based cell signaling or gene expression, to modulate
adipose tissue biology!*'. Hence, the results of this
study also indicate that increased viral population might
be contributing to release of higher amount of certain
viral proteins that can interact directly with host cells to
modulate metabolism and cause obesity. Therefore it will
be very important to establish how these viral species
and their end products (i.e., proteins) are playing role in
modulation of gut bacterial communities, as well as their
impact on host metabolism.

COMMENTS

Background

Viruses have been known to infection host, bacterial and other broad array of
organisms. Gut bacterial microbiome have been known to play critical role in
obesity pathology, but the role of gut virome have not been explored.

Research frontiers

The facts that viruses interacts with host cells as well as infects bacterial cells
to control bacterial growth, studying virome compositions is one of the important
aspects in the microbiome biology and its impact of health. Role of gut virome
in obesity and gut bacterial microbiome modulation will open new frontiers of
investigations.

Innovations and breakthroughs

The authors first time have reported that total viral population have been
changed in obesity mice and correlated with metabolic and gut bacterial
microbiome.

Applications

This study further open new avenues to find different types of viral populations
in obese vs normal population and can develop them as a new drug targets or
biomarkers.

Terminology
Gut virome is considered as collective viral community present in fecal samples.

Peer-review

In the current study, the authors explored the association between fecal viral
content and obesity in mice. The results are significant as the fecal viral DNA
and RNA content found to be elevated in obese mice model.
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