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Abstract
Type 2 diabetes mellitus (T2DM) is a silent progressive 
polygenic metabolic disorder resulting from ineffective 
insulin cascading in the body. World-wide, about 415 
million people are suffering from T2DM with a projected 

rise to 642 million in 2040. T2DM is treated with several 
classes of oral antidiabetic drugs (OADs) viz.  biguanides, 
sulfonylureas, thiazolidinediones, meglitinides, etc. 
Treatment strategies for T2DM are to minimize long-term 
micro and macro vascular complications by achieving 
an optimized glycemic control. Genetic variations in 
the human genome not only disclose the risk of T2DM 
development but also predict the personalized response 
to drug therapy. Inter-individual variability in response to 
OADs is due to polymorphisms in genes encoding drug 
receptors, transporters, and metabolizing enzymes for 
example, genetic variants in solute carrier transporters 
(SLC22A1 , SLC22A2, SLC22A3, SLC47A1  and SLC47A2 ) 
are actively involved in glycemic/HbA1c management of 
metformin. In addition, CYP gene encoding Cytochrome 
P450 enzymes also play a crucial role with respect 
to metabolism of drugs. Pharmacogenetic studies 
provide insights on the relationship between individual 
genetic variants and variable therapeutic outcomes of 
various OADs. Clinical utility of pharmacogenetic study 
is to predict the therapeutic dose of various OADs on 
individual basis. Pharmacogenetics therefore, is a 
step towards personalized medicine which will greatly 
improve the efficacy of diabetes treatment. 

Key words: Type 2 diabetes mellitus; Pharmacogenetics; 
Genetic variants; Oral antidiabetic drugs; Personalized 
medicine

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Type 2 diabetes mellitus (T2DM) is a highly 
prevalent metabolic disorder, characterized by chronic 
hyperglycemia. It results from an interaction of environ
mental as well as genetic factors. Several genes have 
been identified associated with disease development 
and therapeutic outcomes. Inter-individual variations 
in the human genome affect both, risk of T2DM deve
lopment and personalized response to identical drug 
therapies. Pharmacogenetic approaches focus on 
single nucleotide polymorphisms and their influence on 
individual drug response, efficacy and toxicity. In the 
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present study, an effort has been made to review the 
genetic polymorphisms in candidate genes associated 
with efficacy of oral antidiabetic drugs. 
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) has been considered 
as a major health problem for both developed as well 
as developing countries. The global burden of diabetes 
is presently 415 million affected people, expected to 
rise to 642 million in 2040 and about 193 million people 
still undiagnosed. The Indian estimate is also alarming 
which shows 69.2 million people affected with T2DM in 
2015 which will rise to 123.5 million in 2040[1]. 

Diabetes is traditionally known as a “silent disease” 
manifesting no symptoms until it progresses to severe 
damage of target organs. Diabetes has been classified 
under various categories depending upon their age of 
onset and severity[2]. The most prevalent adult-onset 
diabetes is T2DM characterized by hyperglycemia 
caused by defects in both insulin secretion and insulin 
signaling cascade. T2DM is a potential contributor 
to considerable morbidity in the form of metabolic 
complications viz. heart disease, stroke, neuropathy, 
kidney disease, vision disorder, peripheral vascular 
disease, ulcerations and amputations, infection, 
digestive diseases, oral complications and depression. 
T2DM is a multifactorial disease with high genetic 
variability in which certain candidate genes interfere 
with management of glycemic control in the body. 
Polymorphisms in the candidate genes may affect 
the susceptibility or risk of disease development and 
progression[3-7]. 

Pharmacogenomics establishes the use of an indivi
dual’s genetic information to guide treatment therapy 
and has become an important tool in achieving “per
sonalized medicine”. The discoveries of novel genetic 
polymorphisms in drug transporters, and metabolizing 
enzymes have given an insight into the biological 
phenomena of drug efficacy and toxicity (Figure 1). 
Pharmacologically, several classes of drugs are currently 
being prescribed to treat T2DM patients, including 
biguanides, sulfonylureas, meglitinides, thiazoli
dinediones (TZDs), α-Glucosidase inhibitors, dipeptidyl 
peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 
(GLP-1) agonist, sodium-glucose co-transporter-2  
inhibitors, insulin and its analogues[8-10]. Clinically, it 
is often observed that T2DM patients who receive 
identical antidiabetic regimens often exhibit significant 
variation in glycemic control, glycated haemoglobin 
(HbA1c) level, drug efficacy, tolerability and incidence 

of adverse effects[11]. Inter-individual differences can be 
attributed to polymorphisms of certain candidate genes 
involved in drug absorption, transportation, distribution, 
metabolism and signaling cascade of oral antidiabetic 
drugs (OADs)[11].

PHARMACOGENETICS
The term “pharmacogenetics” was coined by Vogel 
et al[12] which explains the differential response of 
individuals to identical medication. Clinical observations 
of inherited inter-individual differences during treat
ment were documented for the first time in 1950s[13-15] 
giving rise to a new field, i.e., pharmacogenetics and 
later pharmacogenomics. Pharmacogenomics is being 
used for genome-wide approaches to recognize the 
inherited inter-individual differences in response to 
drugs. Pharmacogenetics reveals that single nucleotide 
variations in genes (encoding drug receptor, transporters 
and metabolizing enzymes) are related to the efficacy 
and toxicity of drugs[16-18], for example CYP2D6, CYP2C8 
and CYP2C9 are marked CYP enzymes that are actively 
involved in metabolism of various therapeutic agents[19].

The inter-individual differences are contributed by 
numerous factors, i.e., physical inactivity, race/ethnic 
diversity, hypertension, age, gender, etc[20]. During 
past decades, pharmacogenetic study was restricted to 
observations of familial response to a particular drug. 
However, genome-wide association studies, candidate 
gene approach and linkage analysis have transformed 
the area of pharmacogenetics/pharmacogenomics. 
These studies have elucidated the role of genetic 
variations for a particular drug and their doses on a 
personalized basis. 

PHARMACOGENETICS OF T2DM IN 
PROSPECT WITH OADS
Treatment strategy for T2DM is mainly based on efficacy 
of OADs assessed by level of fasting/postprandial 
plasma glucose and/or HbA1c[10].

BIGUANIDES
Metformin (N’,N’-dimethylbiguanide) is prescribed 
as a first-line medication for newly diagnosed T2DM 
patients[21]. Antihyperglycemic effects of metformin 
includes down regulation of hepatic gluconeogenesis, 
improvement in insulin sensitivity and significant redu­
ction in insulin resistance[22]. The precise mechanism(s) 
of metformin action are still not fully elucidated. At 
physiological pH metformin serves as an organic cation 
being transported across the membrane by different 
isoforms of organic cation transporters (OCTs) viz. 
OCT1 expressed in hepatocytes, OCT2 in basolateral 
membrane of kidney. Metformin is transported from 
intestinal lumen into the epithelial cells via OCT3 and 
plasma membrane monoamine transporter. Uptake 
of metfomin from blood into hepatocytes is mediated 
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different degrees of efficacy and toxicity (Figure 2).

GENES ASSOCIATED WITH BIGUANIDE 

TREATMENT
Solute carrier family 22 member 1 
Solute carrier family 22 member 1 (SLC22A1) gene 
encodes the OCT1 which is expressed in hepatocytes 
and mediates the electrogenic transport of drugs[28]. 
OCT1 helps in transport of metformin into the liver 
(hepatocytes) and subsequent activity. It has been 
hypothesized that highly polymorphic SLC22A1 gene will 
influence the therapeutic success rate of metformin. In 
a South Indian study[29], it was reported that rs622342 

by OCT1 and OCT3 (Figure 2). Metformin interferes 
with mitochondrial respiratory chain complex 1 by 
increasing AMP/ATP ratio, which promotes the activation 
of AMP kinase[23,24]. Metformin-induced AMP kinase 
activation leads to transcriptional inhibition of hepatic 
gluconeogenesis[25]. Metformin is not metabolized and 
excreted-out through urine via active renal tubular 
secretion. Metformin excretion in bile and urine is 
also facilitated by various isoforms of Multidrug and 
Toxin Extrusion transporters (MATE1 and MATE2)[26,27]. 
Therapeutic response of metformin differs inter-
individually due to genetic polymorphisms. Single 
nucleotide polymorphisms (SNPs) in the genes encoding 
metformin transporters viz. OCT1, OCT2, MATE1, 
MATE2, etc., leads to significant association with the 

Wild type 
gene

Genetic variants 
(involved in drug metabolism, transport, distribution and excretion)

Altered functions of gene products

Drug receptors Drug transporters Drug metabolizing 
enzymes

Variations in drug efficacy
(pharmacodynamics)

Variations in drug toxicity
(pharmacokinetics)

Pharmacogenetics

Figure 1  Effects of gene polymorphisms on drug 
efficacy and toxicity.
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Figure 2  Schematic representation of cellular 
locations of metformin transporters. SLC22A3: 
Solute carrier family 22 member 3; SLC29A4: Solute 
carrier family 29 member 4.
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variant of SLC22A1 gene was significantly associated 
with efficacy of metformin. They found that T2DM 
patients with rs622342 “AA” homozygotes had 5.6 
times increased possibility of responding to metformin 
treatment. A recent pharmacogenetic study performed 
in a Chinese population demonstrated that T2DM 
patients with “AA” genotype of SLC22A1 rs594709 
might have maximum plasma glucose lowering effect 
from metformin monotherapy[30]. Shu et al[31] studied 
the effect of loss of function polymorphism in SLC22A1 
gene variants, i.e., rs12208357 (R61C), rs34130495 
(G401S), rs72552763 (420del), rs34059508 (G465R). 
They concluded the study as these variants were 
significantly associated with lower efficacy of metformin 
in glucose tolerance test. However, in a subsequent 
GoDARTs study, two common SLC22A1 variants, R61C 
(rs12208357) and 420del (rs72552763) were reported 
to have no association with impaired initial response to 
metformin, or metformin monotherapy failure[32].

Solute carrier family 22 member 2 
Solute carrier family 22 member 2 (SLC22A2) gene 
encodes the OCT2. OCT2 is a drug transporter 
and expressed in renal tubular cells thought to be 
responsible for their elimination[33,34]. Loss of function 
mutation in SLC22A2 gene has been significantly 
correlated with metformin disposition. In several studies, 
SLC22A2 gene has been reported as highly polymorphic 
in nature[34-37]. Zolk et al[38] found that SLC22A2 variant 
808G > T (270Ala > Ser) significantly transforms the 
uptake of drugs. In healthy subjects, rs316019 (A270S) 
variant appeared responsible for decreased renal clear
ance of Metformin[30] while in a contradictory study a 
significant correlation of rs316019 was reported with 
increased metformin renal clearance[39]. Song et al[40] 
investigated the influence of rs201919874 (T199I) and 
rs145450955 (T201M) to the disposition of metformin 
in healthy individuals and reported that both were 
significantly associated with increased metformin 
plasma concentration and reduced renal clearance. A 
recent randomized cohort study performed in T2DM 
patients with one year follow-up demonstrated that 
efficacy of metformin was also influenced by SLC22A2 
variant, rs316019 (808G > T)[41].

Solute carrier family 22 member 3 
Solute carrier family 22 member 3 (SLC22A3) gene 
encodes for OCT3 which is expressed in liver, kidney 
and placenta. In public SNP database (http://www.
ncbi.nlm.nih.gov/SNP/) five non-synonymous variants 
(ssj0008476, rs8187717, rs8187725, rs12212246, 
rs9365165) of human SLC22A3 gene were reported[42]. 
However, compared to OCT1 and OCT2, very few 
studies have reported about OCT3 variants and met
formin therapeutics. In a pharmacologic study, Chen 
et al[43] studied the role of OCT3 variants ssj0008476 
(T44M), rs8187725 (T400I) and V423F were found 
to be significantly associated with altered response to 
metformin action.

Solute carrier family 47 member 1 
Solute carrier family 47 member 1 (SLC47A1) gene 
encodes the multidrug toxin extrusion receptor 1 
expressed on apical domain of proximal and distal renal 
tubular cells and serves as an electro neutral organic 
cation/H+ exchanger. Since genetic polymorphisms 
in SLC47A1 associated with altered transport/excre
tion function might have great influence on metformin 
disposition, it is important to identify them in various 
ethnic populations and correlate in terms of therapeu
tic response. An intronic variant rs2289669 (G > A) 
in SLC47A1 was demonstrated to reduce HbA1c level 
significantly in metformin users[44]. While in a DPP 
(Diabetes Preventation Programme) study, SLC47A1 
variant rs8065082 (C > T) was reported for lower diabetes 
incidence in individuals treated with metformin[45]. In 
a recent case control study the polymorphic effect of 
rs594709 in SLC22A1 and rs2289669 in SLC47A1 was 
evaluated in T2DM cases and no significant association 
was reported. The study concluded that carriers of allele 
“A” of rs594709 showed better efficacy for metformin[30]. 
In Chinese population, the SLC47A1 variant rs2289669 
(G > A) appeared to promote metformin efficacy by 
delaying its excretion mechanism[46]. 

Solute carrier family 47 member 2 
Solute carrier family 47 member 2 (SLC47A2) encodes 
for multidrug toxin extrusion receptor 2 (MATE2), 
expressed in apical membrane proximal tubule cells. It 
facilitates the disposition of metformin from renal tubular 
cells into urine. Choi et al[47] characterized variants of 
SLC47A2 to recognize their association with metformin. 
The study showed that homozygous individuals for 
rs12943590 (130G > A) of MATE2-K is significantly 
associated with poor plasma glucose control of metformin 
assessed by relative differences in HbA1C level.

SULFONYLUREAS
Sulfonylureas (SUs), insulin secretagogues are one of 
the most common classes of OADs being prescribed 
either alone or in combination since 1960s[8,48]. The 
second generation drugs viz. glimepiride, glibenclamide 
(glyburide), gliclazide and glipizide are most common 
representatives belonging to the group of SUs. The first-
generation drugs viz. tolbutamide and chlorpropamide 
are no longer prescribed[10]. All SUs stimulate insulin 
secretion by binding to sulfonylurea receptor 1 (SUR1), 
a protein having 1581-amino acids. This interaction 
depolarizes the cell membrane of pancreatic beta cells 
by closing ATP-sensitive potassium (KATP) channels. 
Subsequent effect of depolarization leads to Ca2+ influx 
which trigger an enhanced insulin secretion from beta 
cells in glucose-independent manner[49]. KATP channel 
is a heterooctameric protein complex constructed by 
four inward-rectifier K+ channel, i.e., Kir6.2 (forming 
pore of KATP channel) coupled with SUR1, surrounding 
the pore[49]. In neonates, inactivating mutations in 
genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) 
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are responsible for T2DM, while activating mutations 
lead to hypoglycemia[50]. Polymorphisms in the genes 
ABCC8, KCNJ11, CYP2C9, TCF7L2, NOS1AP (nitric 
oxide synthase 1 adaptor protein) have been reported 
for altered response to SUs[51,52]. Impairment of Kir6.2 
(KCNJ11) and SUR1 (ABCC8) will lead to improper 
signaling cascade of insulin as shown in Figure 3.

GENES ASSOCIATED WITH 
SULFONYLUREA TREATMENT
Potassium inwardly-rectifying channel, subfamily J, 
member 11 
ATP-sensitive potassium channel (KATP) is a trans
membrane protein of pancreatic β-cells encoded by 
potassium inwardly-rectifying channel and subfamily J, 
member 11 (KCNJ11). Two hundred and nineteen SNPs 
have been reported for the KCNJ11 gene located on 
chromosome 11p15.1. Polymorphisms in KCNJ11 have 
been reported for development of diabetes because of its 
key role in insulin secretion[53]. Only 6 SNPs viz. rs5210, 
rs5215, rs5218, rs5219, rs886288, rs2285676 have 
been reported to be associated with diabetes[54]. A study 
found that in T2DM patients the rs5210 variant located 
at 3’ UTR of KCNJ11 improves the clinical efficacy of 
gliclazide[52]. The most widely studied KCNJ11 gene 
variant rs5219 (E23K) was significantly associated 

with the onset of T2DM in Asian Indian and Chinese 
populations[55,56]. However, studies performed on 
Caucasian individuals demonstrated for no significant 
differences in glycated hemoglobin[57,58]. Some studies 
have reported that diabetic patients having KCNJ11 
gene variants respond better to pharmacotherapy with 
SUs as compared to insulin[59-61].

ATP-binding cassette, subfamily C member 8
ATP-binding cassette, subfamily C member 8 (ABCC8) 
located at 11p15.1, encodes for SUR1 which modulate 
the activity of KATP channel[62]. Variants of ABCC8 gene 
rs1799854 (C/T) and rs1801261 have been studied 
extensively and are reported for inconsistent association 
with T2DM[63-70]. ABCC8 variant rs1799854 has been 
reported for significant association with sulfonylurea 
efficacy in terms of HbA1c level[57]. In one study, the 
genetic variants of ABCC8 were reported for significant 
reduction in HbA1c concentration[71]. Activating mutation 
in the genes encoding SUR1 (ABCC8) and Kir6.2 
(KCNJ11) may lead to altered signaling cascade of 
insulin secretagogues resulting in therapeutic failure of 
SUs. The Arg972 variant of insulin receptor substrate 
1 is reported for an enhanced risk of secondary failure 
to SUs in T2DM patients[72]. A study carried out in 
Chinese T2DM patients with two months follow-up, 
demonstrated that Ser1369Ala variant of ABCC8 is 
significantly associated with therapeutic success of 
gliclazide[73]. Carriers and non-carriers of SUR1-437A/T 
variant did not differ in insulin response stimulated by 
tolbutamide during OGT test[74].

Cytochrome P450 2C9 
SUs viz. tolbutamide, glimperide, glipizide and glibenc
lamide are metabolized to active metabolites in the 
liver mainly by cytochrome P450 2C9 (CYP2C9)[75] 

which are ultimately excreted by the kidney[76]. It has 
been reported that CYP2C9 variants were significantly 
associated with efficacy of SUs in diabetic patients[77]. 
Two variants of CYP2C9 gene, i.e., rs1057910 (CYP2C9*3) 
and rs1799853 (CYP2C9*2) have been significantly 
associated with missense amino acid polymorphisms 
resulting in decreased metabolism of SUs in healthy 
volunteers[74]. While in T2DM patients treated with SUs, 
CYP2C9*3 variant was reported with an enhanced risk 
of severe hypoglycemia[78,79]. Certain T2DM patients with 
CYP2C9 gene variants Ile359Leu and Arg144Cys were 
reported for 30%-80% reduction in renal clearance of 
glibenclamide suggesting lower doses of this antidiabetic 
drug to decrease the risk of hypoglycemia[51,75,77,80,81].

Transcription factor 7-like 2 
Transcription factor 7-like 2 (TCF7L2) is encoded by 
TCF7L2 gene which is actively involved in proliferation 
and differentiation of cells. It is required for secretion 
of glucose stimulated insulin from pancreatic β-cells. 
TCF7L2 is a key transcription factor, which regulates 
glucose metabolism in insulin dependent manner. It 
serves as a chief regulator in coordinating the proinsulin 
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Figure 3  Schematic diagram showing the Kir6.2 and SUR1 variants 
affecting sulfonylurea efficacy. Pancreatic β cell membrane with SUR1/Kir6.2 
variant leads to improper closing of KATP channel on binding with SUs. This 
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synthesis and its processing to produce mature insu
lin[82]. Hence, nucleotide variation in TCF7L2 gene 
may lead to alteration in insulin secretion[31] resulting 
reduced insulin secretion will lead to hyperglycemia. 
TCF7L2 gene is expressed in developing and mature 
pancreatic beta cells[83] and secretion of insulin is 
decreased in individuals having risk alleles[84-86]. Miyake 
et al[87] studied association of TCF7L2 variants with 
susceptibility to T2DM in 4087 Japanese patients. They 
found that rs7903146, rs12255372 and rs11196205 
were significantly associated with T2DM while rs290487 
and rs11196218 were reported for no association. 
Polymorphisms in TCF7L2 gene has been reported for 
strong association with T2DM affecting therapeutic 
response to SUs[88]. TCF7L2 SNPs were reported 
to influence the risk of T2DM[89]. Polymorphisms in 
TCF7L2, rs12255372 and rs7903146 were reported 
for decreased response to sulfonylurea efficacy[88]. The 
SNPs rs12255372T and rs7903146T were represented 
to be significantly associated with enhanced expression 
of TCF7L2 gene in beta cells, altering insulin release and 
predisposing individuals to T2DM[90,91].

TZDS 
TZDs are insulin sensitizers, they promote uptake of 
glucose by tissue and skeletal muscles, down regu
late glucose output from liver[92]. Rosiglitazone and 
pioglitazone are medical representatives of TZD group. 
The exact molecular mechanism of TZDs is far from 
clear. However, data indicates that TZDs primarily bind 
with the peroxisome proliferator-activated receptor γ 
(PPARγ) in adipose tissue and affect their metabolism. 
On binding with PPARγ, TZDs stimulate adipocytes 
differentiation[93] and decrease plasma glucose level in 
T2DM patients[94,95]. Several studies have reported that 
TZDs improve both glucose homeostasis and insulin 
cascading in T2DM cases[96-98], hence may prevent the 
progression from altered plasma glucose tolerance to 
T2DM development[99]. Numerous potential mechanisms 
are reported by which TZDs improve molecular action 
of insulin in both liver[98,100] and skeletal muscles[97,101]. 
These include reduced content of intra-hepatocellular 
and intra-myocellular triglycerides[98,102] and altered 
body composition[97,103]. It also decreases synthesis 
and/or action of proinflammatory cytokines[104,105]. TZDs 
upregulate expression of genes in adipocytes resulting in 
increased level of adiponectin in plasma circulation[106-108], 
with positive effects on insulin sensitivity[109] and reduced 
hyperglycemia. Some previous studies reported that use 
of rosiglitazone (a TZD drug) as compared to pioglitazone 
could cause severe side effects, the risk of myocardial 
infarction and also lead to death due to cardiovascular 
dysfunction[110,111]. Several gene variants have been 
identified for significant association with therapeutic 
outcome of TZDs. Adiponectin, resistin, leptin, TNF-α 
and PPARγ are commonly called adipocytokines which 
are key regulators of insulin resistance[112].

GENES ASSOCIATED WITH TZD 
TREATMENT
PPARγ 
PPARγ belonging to the nuclear receptor family regu
lates metabolism of carbohydrates, regulates lipid 
homeostasis and adipocyte differentiation[113]. It is also 
a key mediator of insulin signaling[114]. In humans, TZDs 
bind to PPARγ with high specificity. At physiological pH 
PPARγ forms a dimer with retinoid X receptor (RXR). 
Binding of TZDs to the PPARγ-RXR complex stimulates 
a conformational change[115] which subsequently leads 
to the binding of the above heterodimer complex to the 
PPARγ response elements (PPRE) in the target genes[116]. 
It results in improved insulin sensitivity via glycolysis, 
lipogenesis, adipogenesis and increased glucose uptake 
and utilization[117]. Single nucleotide variations in PPARγ 
gene may affect the binding affinity with TZDs and its 
therapeutic efficacy (Figure 4). In PPARγ  gene, loss-
of-function mutations are significantly associated with 
insulin resistance and T2DM[118]. Multiple studies have 
reported that missense polymorphism Pro12Ala (CCA-
to-GCA) in PPARγ  gene is associated with decreased 
risk of T2DM development[119-121] and improved insulin 
sensitivity[122,123]. A pilot study performed on South Indian 
population, evaluated the effect of Pro12Ala variants 
on therapeutic success to pioglitazone, and reported a 
significant association with glycemic control[124]. T2DM 
cases with Pro12Ala variant of PPARγ  gene, showed 
significant glycemic control [fasting plasma glucose (FPG) 
and HbA1C level] for rosiglitazone treatment as compared 
with carriers having wild-type genotype[125]. Zhang et 
al[126] demonstrated that in Chinese patients, amino 
acid variants Thr394Thr and Gly482Ser of peroxisome 
proliferator-activated receptor gamma coactivator 
1-alpha were also significantly associated with efficacy 
of rosiglitazone.

Adipocytokines
Variants of adiponectin (ADIPOQ) gene have been 
reported for changes in FPG and level of HbA1c after 
12 wk of rosiglitazone treatment. A study carried out 
by Liu et al[127] in T2DM Chinese patients demonstrated 
that sequence variation in leptin and TNF alpha gene 
interferes with therapeutic response to rosiglitazone. 
Nucleotide variants rs2241766 (45T/G) and rs266729 
(-11377C/G) of ADIPOQ gene[128], rs1800629 (-308 G/A) 
of TNF-α and rs7799039 (-2548G/A) of leptin gene[127] 

were found to affect the rosiglitazone therapeutics 
and reverse insulin resistance in Chinese patients. 
In a pilot study, it was found that single nucleotide 
polymorphism at -420 (G/G) in resistin gene may serve 
as an independent predictor for down regulation of 
insulin resistance and hyperglycemia associated with 
pioglitazone therapeutics[129]. 

Cytochrome P450
Metabolism of rosiglitazone is mainly metabolized by 
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CYP2C8 and CYP2C9[78] while biotransformation of 
pioglitazone is mainly metabolized by CYP2C8 and 
CYP3A4[130]. Nucleotide polymorphisms in CYP2C8 gene 
were significantly associated with impaired clearance 
of rosiglitazone. Polymorphisms in CYP2C8*3 encoding 
for a reduced functioning of CYP2C8 enzyme, was 
reported for altered drug clearance[131]. Hence genetic 
variants of CYP2C8 may contribute to the degree of TZD 
therapeutics. 

MEGLITINIDE
Meglitinide, insulin secretagogues act by inhibiting KATP 
channel leading to promote insulin secretion. Molecular 
mechanism of both sulphonylureas and meglitinide 
are similar. Sulphonylureas and meglitinide inhibit the 
activity of KATP channel by binding at two different 
sites of the SUR1 subunit[132]. Meglitinides have shorter 
duration of action and more rapid onset as compared 
with SUs. Repaglinide (a benzoic acid derivative) and 
nateglinide (a derivative of d-phenylalanine) belonging 
to meglitinide stimulate early secretion of insulin. 
Due to their short action, a potential adverse effect of 
meglitinide is to induce hypoglycemia[133]. Repaglinide 
is 100% metabolized in liver and hence excreted 
mainly via bile. Genetic polymorphisms associated with 
response to meglitinide were mapped in SLCO1B1, 
CYP2C8, CYP3A4, TCF7L2, SLC30A8, IGF2BP2, 
KCNJ11, KCNQ1, UCP2, NAMPT, MDR1, PAX4 and 
NeuroD1[78,134-139]. Out of these SLCO1B1 is reported to 
facilitate the hepatic uptake of a drug repaglinide[140].

GENES ASSOCIATED WITH MEGLITINIDE 
TREATMENT
Solute Carrier Organic anion transporter family member 
1B1 
Solute Carrier Organic anion transporter family member 
1B1 (SLCO1B1) gene, mainly expressed in basolateral 
membrane (hepatocytes) encodes for organic anion-

transporting polypeptide 1B1 (OATP1B1). Genetic poly
morphisms in SLCO1B1 have been reported to exert 
significant influence on repaglinide pharmacokinetics 
with reduced exposure after administration of a single 
dose of repaglinide[141]. Genetic variant of SLCOB1 gene 
(521T > C) markedly affected the pharmacokinetics 
of nateglinide[134]. Cellular uptake of various drugs is 
regulated by OATP1B1. Several studies have demon
strated the pivotal role of SLCOB1 gene variants in phar
macokinetics of meglitinides[134,142-144]. Nateglinide is 
catabolized by CYP2C9. A study performed in Chinese 
male volunteers has demonstrated that genetic variants 
of SLCOB1 (521T > C) and CYP2C9 (CYP2C9*3) could 
affect the nateglinide efficacy[139].

OTHER GENES
CYP2C8 and CYP3A4, both are actively engaged in 
metabolism of repaglinide. Clinical studies demonstrate 
that individuals with CYP2C8*3 variant have greater 
clearance of OADs as compared to wild-type genotype[78]. 
A Chinese population treated with repaglinide and 
genotyped for KCNQ1 variants rs2237892 (C/T) and 
rs2237895 (C/A) were found to be associated with 
therapeutic efficacy of repaglinide[137]. Single nucleotide 
polymorphisms in SLC30A8 viz. Arg325Trp (rs13266634) 
and Arg325Gln (rs16889462) have been reported to 
be significantly associated with T2DM development and 
repaglinide efficacy[135]. KCNJ11 SNP rs5219 (Lys23Glu) 
has been found to be associated with poor regulation of 
fasting/postprandial glucose and HbA1c levels in T2DM 
patients with “GA” or “AA” genotype in contrast with 
“GG”. T2DM patients having “TT” genotype of TCF7L2 
gene rs290487 (C/T) demonstrated better efficacy for 
repaglinide treatment with respect to triglyceride, LDL 
and fasting insulin as compared to patients with “CC” or 
“CT” genotype[107].

DIPEPTIDYL PEPTIDASE 4 
DPP-4 is involved in the degradation of two incretin 

Wild type PPARg Variant PPARg

PPARg-RXR complex PPARg-RXR complex

TZDs

Expression/transcription of insulin-
responsive genes

Poor expression/transcription of 
insulin-responsive genes

Improved insulin sensitivity Altered insulin sensitivity

Figure 4  Schematic representations of peroxisome proli­
erator-activated receptor γ variants affecting the efficacy 
of thiazolidinediones. TZDs: Thiazolidinediones; PPARγ: 
Peroxisome proliferator-activated receptor γ.

PPARg-TZDs
(higher specificity) PPARg-TZDs

(low specificity)
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hormones viz. GLP-1 and gastric inhibitory polypeptide. 
These hormones bring about a glucose dependent 
stimulation of insulin release. These hormones are 
also responsible for reduction in circulating plasma 
glucose levels by interrupting glucagon secretion 
and subsequently improve beta cell sensitization by 
glucose[145]. DPP-4 inhibitors inhibit function of DPP-4 
enzyme, thus reducing glucagon secretion. Sitagliptin, 
vildagliptin and saxagliptin are medical representatives of 
DPP4 inhibitors. Sitagliptin was the first DPP-4 inhibitor 

approved by Food and Drug Administration (FDA) in 
2006[146]. Metabolism of saxagliptin (a DPP-4 inhibitor) 
is catalyzed by CYP3A4/A5 while sitagliptin is metabo
lized by CYP3A4 with minor contribution of CYP2C8[147]. 
Zimdahl et al[148] investigated the effect of TCF7L2 
variants for therapeutic efficacy of linagliptin, a DPP-4 
inhibitor. Linagliptin was found to significantly improve 
glucose homeostasis in both cases with and without 
TCF7L2 risk alleles for diabetes. Effects of genetic 
polymorphisms associated with DPP-4 inhibitors remain 

  Class Common medical representatives Mechanism of action Candidate genes involved in 
pharmacotherapy

Ref.

  Biguanide Metformin AMP-kinase activation SLC22A1, SLC22A2, SLC22A3, 
SLC47A1, SLC47A2

[28-39]

  Sulfonylureas Gliburide, gliclazide, 
Glimepiride, glipizide

Inhibition of KATP channel on plasma 
membrane of β-cells

KCNJ11, ABCC8, CYP2C9, 
TCF7L2

[8,10,48-91]

  Thiazolidinediones Pioglitazone, rosiglitazone Activates PPAR-γ PPAR-γ , ADIPOQ, TNF-α , LEP, 
CYP2C8

[92-131]

  Meglitinides Nateglinide, repaglinide Inhibition of KATP channel on Plasma 
Membrane of β-cells

SLCOB1, CYP2C8, KCNQ1, 
SLC30A8, KCNJ11, TCF7L2

[78,106,132-144]

  DPP-4 inhibitors Alogliptin, linagliptin, 
saxagliptin, sitagliptin, 

vildagliptin

Inhibits DPP-4, Affect GLP-1 receptor 
pathway

Possibly TCF7L2 [145-148]

  α-glucosidase 
  inhibitors

Acarbose, miglitol, voglibose Inhibits intestinal α-glucosidase Yet to identify? [10]

  SGLT-2 inhibitors Canagliflozin, dapagliflozin, 
empagliflozin

Inhibits SGLT2 transporters in kidney Yet to identify? [10]

  GLP-1 agonist Exenatide, liraglutide Activate GLP-1 receptor Yet to identify? [10]

Table 1  Currently available antidiabetic drugs and their associated candidate genes involved in efficacy/toxicity

DPP-4: Dipeptidyl peptidase-4; SGLT-2: Sodium glucose transporter-2; GLP-1: Glucagon like peptide-1; KATP: ATP-sensitive potassium channel; PPARγ: 
Peroxisome proliferator-activated receptor γ.

Diagnosis of T2DM

Present scenario 
Treatment 

(diet control or 
pharmacotherapy

Future prospective

First-line 
treatment

(metformin)

Genotype profiling of 
patients for prediction 

of first-line therapeutics

Glycemic/HbA1c 
target

Adverse effects Good responders Poor responders

Increased dose/
duration of treatment 

or alternative 
combinations

First-line treatment 
continued with 
desired dose

Lower dose or      
different drugs

Target 
achieved

Target not 
achieved/adverse 

effects

Prescription 
continued

Second line 
treatment (drug-
combinations)

Figure 5  Clinical applications of pharmacogenetics in type 2 diabetes mellitus. T2DM: Type 2 diabetes mellitus; HbA1c: Glycated haemoglobin.

Singh S et al . Pharmacogenetics of T2DM



310 August 10, 2016|Volume 7|Issue 15|WJD|www.wjgnet.com

to be investigated.

CONCLUSION
About 70 genetic loci have been identified to be asso
ciated with T2DM[149]. Pharmacogenetics, an expanding 
area of research provides a platform to understand 
and improve pharmacological treatment. Over the last 
decade, the number of available antidiabetic drugs has 
considerably increased. However, clinical treatment 
of T2DM patients has become more complex due to 
different degrees of therapeutic outcomes. Personalized 
differences during OADs therapeutics have been linked 
with numerous variants related to drug-transporters, 
drug-targets, drug catabolizing enzymes and T2DM risk 
genes (Table 1). Although inter-individual differences in 
respect to efficacy and toxicity of OADs are significantly 
associated with genetic makeup, it is clear that different 
degrees of response to antidiabetics cannot be predicted 
by studying the genetic differences alone. The role of 
genetic variations with respect to therapeutic outcomes 
must be further tested via clinical trials thus leading to 
a personalized pharmacotherapy. The present scenario 
and future prospect of Pharmacogenetic studies has 
been elaborated in Figure 5. 
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Abstract
AIM: To investigate the presence of total gut viral 
content in obese mice, and establish correlation 
with obesity associated metabolic measures and gut 
microbiome.
 
METHODS: Fresh fecal samples were collected from 
normal and obese (Leptin deficient: Lepob/ob) mice. 
Total viral DNA and RNA was isolated and quantified for 
establishing the correlation with metabolic measures 
and composition of gut bacterial communities.
 
RESULTS: In this report, we found that obese mice 
feces have higher viral contents in terms of total 
viral DNA and RNA (P  < 0.001). Interestingly, these 
increased viral DNA and RNA content were tightly 
correlated with metabolic measures, i.e. , body weight, 
fat mass and fasting blood glucose. Total viral content 
were positively correlated with firmicutes (R2 > 0.6), 
whilst negatively correlated with bacteroidetes and 
bifidobacteria. 
 
CONCLUSION: This study suggests the strong corre
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lation of increased viral population into the gut of obese 
mice and opens new avenues to explore the role of gut 
virome in pathophysiology of obesity.
 
Key words: Obesity; Gut; Microbiome; Virome; DNA; 
RNA; Virus; Fat mass
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Core tip: Gut microbiome is known for major con
stituents of bacterial population, and their association 
with obesity, but microbes like viruses are majorly 
neglected. Our investigation on the basis of hypothesis 
that viruses are an important part of microbial world, 
and found in substantial numbers into human gut, we 
investigated whether viral content have any correlation 
with obesity in mice models. Interestingly, we found 
that DNA and RNA viral fecal content was significantly 
increased in obese mice as compared to normal. This 
suggests that viral population may have role to regulate 
host metabolism and might impact obesity prevalence 
via  alteration of gut microbiome composition. Our 
findings open a new area of research to explore the role 
of gut virome in obesity.

Yadav H, Jain S, Nagpal R, Marotta F. Increased fecal viral 
content associated with obesity in mice. World J Diabetes 
2016; 7(15): 316-320  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v7/i15/316.htm  DOI: http://dx.doi.
org/10.4239/wjd.v7.i15.316

INTRODUCTION
Obesity is reaching on higher epidemic around the 
globe[1]. This is because of lack of successful and 
effective strategies to prevent and treat this health 
ailment. The pathophysiology of obesity is highly 
complex, and involves various factors, i.e., genetics, 
environment and life style[2]. Abdominal or central 
obesity (abdominal fat accumulation) is strongly 
correlated with increased incidence of insulin resistance 
and metabolic syndrome[3]. Abdominal fat is in close 
proximity with gastrointestinal tract, and have various 
gut-adipose communication through various gut hor
mones and adipokines[4]. Recently, role of gut micro
biome in obesity pathophysiology have been well 
estab­lished and known to play significant role in obesity 
progression[5]. Human and rodent studies suggest that 
presence of gut microbiome increases the risk of weight 
gain and insulin resistance[6]. Various mechanisms have 
been proposed to explain the role of gut-microbiome on 
obesity progression, i.e., increased energy harvesting 
capacity, low grade inflammation, endotoxemia and 
other metabolic interferences[7]. Recently, plethora 
of literature has been generated to explore the role 
of gut microbiome (especially bacterial community) 

in metabolic regulation. Therefore modulation of gut 
microbiome has been considered one of the important 
strategies to develop therapies against obesity and 
diabetes[7].

Most of the studies conducted for exploring the 
role of gut microbiome in obesity have been focused 
on bacterial communities and their correlation with 
host metabolism[8]. Role of viruses present into gut 
are not investigated in relation with obesity and their 
impact on host metabolism and associated gut bacterial 
microbiome. Viruses play a critical role in maintaining 
bacterial population in specific environment, i.e., 
gut, where they establish a commensal relation with 
their partners[9]. Specific viral particles, especially 
bacteriophages might play an important role in main
taining certain bacterial strains of gut microbiome, that 
are correlated with obesity occurrence[6]. From our best 
knowledge, none of the studies investigated the direct 
link of gut virome with obesity. We hypothesize that 
changes in gut viral community (gut-virome), might 
play an important role in maintaining and colonizing 
gut bacterial species that impact host metabolism. 
Hence establishing the role of gut-viral community on 
influencing gut microbiome and host metabolism will 
open new avenues for development of therapeutic 
strategies against obesity via targeting gut virome. In 
this study, we investigated the correlation between gut-
virome, obesity associated metabolic measures and gut 
bacterial communities in mice.

MATERIALS AND METHODS
Animals, sample collection and biochemical analysis
Lepob/ob and C57J/B6 mice (male; age 6-8 wk old) were 
housed in a light controlled facility by maintaining 12 
h light/dark cycle. Mice were maintained in identical 
conditions and fed with similar diet and water, adlibitum. 
Body weight was measured using a microscale balance 
(Cole-Parmer, IL, United States). Total fat mass was 
measured weighing all the major fat depots, i.e., 
epididymal, perirenal, mesenteric, supra subscapular, 
anterior subcutaneous and posterior subcutaneous fat 
depots). Fasting (12-14 h) blood glucose was measured 
using Bayer Contour glucometer (Bayers Contour 
Diabetes Solutions, Thane, India). Fresh fecal samples 
were collected from each mouse by light abdominal 
squeezing and immediately stored in a sterile, DNase 
and RNase free vials at -80 ℃ till further use. All the 
animal protocols and procedures were approved by 
institutional animal ethics committee from University of 
Punjab and PGIMER, Chandigarh, India. 
 
Viral DNA and RNA isolation and quantification
Fecal viral DNA and RNA was isolated using Qiagen 
viral DNA and RNA isolation kits following the manu
facturer’s instructions. DNA and RNA quality have been 
checked using Agilent 2100 Bioanalyzer. Viral DNA 
and RNA have been quantified using NanoDrop One 

317 August 10, 2016|Volume 7|Issue 15|WJD|www.wjgnet.com

Yadav H et al . Link between gut-virome and obesity



318 August 10, 2016|Volume 7|Issue 15|WJD|www.wjgnet.com

Bacterial DNA quantification
Mouse total fecal DNA was isolated from separate fecal 
pallets than viral DNA/RNA isolation, using DNeasy kit 
(Qiagen). Real time PCR was performed to measure 
the major obesity associated bacterial community, 
i.e., Firmicutes, bacteroidetes and Bifidobacteria using 
microbe specific primers (Table 1). Results are presented 
here as percent of bacterial DNA abundance normalized 
by total bacterial DNA.
 
Statistical analysis
All the data expressed is mean and standard error 
of means. Statistical significance among the groups 
was calculated using two-tailed t test and/or one way 
analysis of variance, that followed by post-hoc tests. 

Spectrophotometer with fluorescent method (Thermo-
Fisher Scientific, United States). Viral DNA and RNA 
quantity has been calculated nanogram per gram of 
fecal sample.
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Figure 1  Fecal viral DNA and RNA content was significantly increased in obese mice and shown strong correlations with obesity associated measures 
and gut bacterial microbiome. A-D: Fecal viral DNA (A and B) and fecal viral RNA (C and D) content was found to be dramatically increased in obese animals; E-J: 
Viral DNA was positively correlated with body weight (E), fat mass (F), blood glucose (G) and firmicutes (H), whilst negatively correlated with bacteroidetes (I) and 
bifidobacteria (J). Values presented here are means (n = 7) and standard error of means. Values indicated with “a“ are significantly different at the level of P < 0.001.

Table 1  Primers used for gut microbial community analysis

Gene Name Primer sequence (5’ →3’)

Universal F (Total) TCCTACGGGAGGCAGCAGT
Universal R (Total) GACTACCAGGGTATCTAATCCTGTT
Bifidobacteria F GCGTGCTTAACACATGCAAGTC
Bifidobacteria R CACCCGTTTCCAGGAGCTATT
Bacteroidetes 934F GGARCATGTGGTTTAATTCGATGAT
Bacteroidetes 1060R AGCTGACGACAACCATGCAG
Firmicutes 934F GGAGYATGTGGTTTAATTCGAAGCA
Firmicutes 1060R AGCTGACGACAACCATGCAC
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Data with less than 0.05 P-values considered statistically 
significance. 

RESULTS 
Microbiome studies clearly suggest that we are 
surrounded by microbes, in which viruses makes a 
significant numbers. Around 1031 viral particles have 
been estimated on earth, and human feces consist 
around 109 viral particles/gram[10-12]. Mammalian virome 
collectively called for viruses that infect eukaryotic cells 
(eukaryotic virome), bacterial cells (bacterial virome), 
archeal cells (archeal virome) and virus derived genetic 
elements in host chromosomes that can change host-
gene expression, express proteins, or even generate 
infectious virus (prophages, endogenous retroviruses, 
endogenous viral elements)[13]. Viral infections have been 
associated with prevalence of obesity in animals and 
humans, and termed as infectobesity[14]. Considering the 
technological limitations for sequencing and analyzing 
datasets for viral communities, studies of virome has 
been lagged behind than bacterial microbiome. In 
present study, we analyzed total fecal viral content in 
normal vs obese (leptin deficient Lepob/ob) mice and 
correlated with obesity related measures. Interestingly, 
we found that fecal viral DNA and RNA in obese samples 
was significantly higher than normal mice (Figures 
1 and 2), suggesting that total DNA and RNA viral 
communities have been significantly increased in obese 

mice. Although, our studies completely lack the types 
of viruses enriched in obese mice gut as compared to 
normal, but these very interesting observations indicate 
that total load of viruses have been increased in obese 
gut. Therefore, these results provide a strong basis to 
further explore the role of gut virome in obesity.

DISCUSSION 
We have observed that fecal DNA and RNA viral 
population positively correlated with firmicutes bacterial 
communities, which is known to be associated with 
increased obesity[5]. While viral contents were negatively 
correlated with bacteroidetes and bifidobacteria, that are 
known to be associated with lean-ness[5]. These results 
can be speculated in a way, that gut virome (especially 
bacteriophages) might have interaction with gut 
bacterial microbiome to modulate the bacterial species 
abundance in obese vs normal mice. Although, these 
studies gives us an intrigued and important preliminary 
information about the abundance of DNA and RNA 
viruses in obese and normal mice, but still detailed 
analysis to find out the types of viruses and their 
functionality remains completely unknown. Therefore, 
further studies to explore the types of viruses that are 
associated with increased viral DNA and RNA contents in 
normal vs obese mice are highly warranted. 

Viruses are highly mutagenic and carries individual 
variations in gut viral communities have been described 

Figure 2  Fecal viral RNA content was significantly correlated with obesity associated measures and gut bacterial microbiome. A-F: Fecal viral RNA content 
was positively correlated with body weight (A), fat mass (B), blood glucose (C) and firmicutes (D), whilst negatively correlated with bacteroidetes (E) and bifidobacteria 
(F). Values presented here are means (n = 7) and standard error of means.
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earlier[9]. Viral proteins can interact with host cells and 
can induce biological response, i.e., inflammation, rece
ptor based cell signaling or gene expression, to modulate 
adipose tissue biology[15]. Hence, the results of this 
study also indicate that increased viral population might 
be contributing to release of higher amount of certain 
viral proteins that can interact directly with host cells to 
modulate metabolism and cause obesity. Therefore it will 
be very important to establish how these viral species 
and their end products (i.e., proteins) are playing role in 
modulation of gut bacterial communities, as well as their 
impact on host metabolism.
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and RNA content found to be elevated in obese mice model.
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