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Abstract
Blood glucose control in intensive care unit (ICU) pa-
tients, addressed to actively maintain blood glucose 
concentration within defined thresholds, is based on 
two major therapeutic interventions: to supply an ad-
equate calories load and, when necessary, to continu-
ously infuse insulin titrated to patients needs: intensive 
insulin therapy (IIT). Short acting insulin analogues 
(SAIA) have been synthesized to improve the chronic 
treatment of patients with diabetes but, because of the 
pharmacokinetic characteristics that include shorter on-
set and off-set, they can be effectively used also in ICU 
patients and have the potential to be associated with a 
more limited risk of inducing episodes of iatrogenic hy-
poglycemia. Medical therapies carry an intrinsic risk for 
collateral effects; this can be more harmful in patients 
with unstable clinical conditions like ICU patients. To 
minimize these risks, the use of short acting drugs in 
ICU patients have gained a progressively larger room in 
ICU and now pharmaceutical companies and research-
ers design drugs dedicated to this subset of medical 
practice. In this article we report the rationale of using 
short acting drugs in ICU patients (i.e. , sedation and 
treatment of arterial hypertension) and we also de-
scribe SAIA and their therapeutic use in ICU with the 
potential to minimize iatrogenic hypoglycemia related 

to IIT. The pharmacodynamic and pharmachokinetic 
characteristics of SAIA will be also discussed.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Insulin analogues; Short acting drugs; In-
tensive insulin therapy; Glycemia management; Inten-
sive care

Core tip: In this article we report the rationale of using 
short acting drugs in intensive care unit (ICU) patients 
(i.e. , sedation and treatment of arterial hypertension) 
and we also describe short acting insulin analogues 
(SAIA) and their pharmacokinetic (PK) and pharma-
codynamic profile. SAIA have been synthesized to 
improve the chronic treatment of patients with diabe-
tes but, because of the PK characteristics that include 
shorter onset and offset, they can be effectively used 
also in ICU patients and have the potential to be asso-
ciated with a more limited risk of inducing episodes of 
iatrogenic hypoglycemia.

Bilotta F, Guerra C, Badenes R, Lolli S, Rosa G. Short acting 
insulin analogues in intensive care unit patients. World J Dia-
betes 2014; 5(3): 230-234  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i3/230.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i3.230

INTRODUCTION
Blood glucose control in intensive care unit (ICU) pa-
tients, addressed to actively maintain blood glucose 
concentration (BGC) within defined thresholds, is based 
on two major therapeutic interventions: to supply an ad-
equate calories load and, when necessary, to continuously 
infuse insulin titrated to patients needs: intensive insulin 
therapy (IIT)[1,2]. Among the most relevant risks related 
to active management of  BGC is the induction of  iatro-
genic hypoglycemia[1-4]. Endogenous insulin is a 51 amino 
acids protein formed by 2 chains (A and B chains) linked 
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by disulphide bridges: “A” chain comprises 21 amino ac-
ids and has an N-terminal helix linked to an anti-parallel 
C-terminal helix with a critical role in the tertiary struc-
ture; “B” chain comprises 30 amino acids and has a cen-
tral helical segment where it joins the N- and C-terminal 
helices of  the A chain[5]. Physiologically, insulin is released 
by the pancreas with a characteristic biphasic profile as 
response to BGC increase: a rapid phase, due to exocy-
tosis of  “ready pool” granules and associated with the 
release of  5%-10% of  the insulin contained in the beta 
cells, is activated within few minutes after an increase in 
BGC and terminates rapidly; a slow phase, due to the re-
lease of  “reserve pool” granules, and lasts longer. Beside 
BGC driven insulin release, there is also a continuous 
insulin secretion throughout the day, not associated with 
meals that accounts for about 50% of  the whole daily en-
dogenous insulin secretion[5].

As underlined by several authors and by the patho-
physiology of  chetoacidosis in diabetic patients and in 
ICU patients, to supply an adequate calories load is a 
preliminary step for optimal management of  BGC and 
should be established before insulin infusion is instituted, 
even in patients with high BGC values[1,2,6].

Currently the standard of  care for the treatment of  
hyperglycemia in ICU patients is to establish intensive in-
sulin therapy by infusing rapid (R) insulin but-and this is 
among the most important drawback of  this therapeutic 
approach-it induces some additional risk of  iatrogenic 
hypoglycemia[1]. Various strategies have been used to 
minimize the risk of  inducing hypoglycemia when IIT is 
instituted, these include: to adopt a tighter BGC monitor-
ing protocol, to target a narrower BGC range, to increase 
the supplied calories load[1,7-10].

In 2001, a large randomized controlled trial in criti-
cally ill surgical patients demonstrated that tight glucose 
control (defined as the restoration and maintenance of  
BCG at or below 6.1 ± 2.1 mmol/L) by IIT was associat-
ed with a decreased mortality and rate of  complications[6]. 
Currently, other authors demonstrated that the incidence 
of  moderate hypoglycemia was significantly increased 
when target was BGC < 6.7 mmol/L and BGC < 8.3 
mmol/L may be a reasonable target for clinical practice[8]. 
Widening the target-range BGC might reduce the risk of  
hypoglycemia and hyperglycemia developing, thus limit-
ing neuronal damage[2]. In the subgroup of  neurocritical 
care patients both hypoglycemia and hyperglycemia may 
cause extended neuronal damage and potentially long-
lasting brain injury[1,2]. These patients must therefore 
undergo strict glycemia monitoring and abnormal blood 
glucose values should be immediately corrected[1].

In this article we report the rationale of  using short 
acting drugs in ICU patients (i.e., sedation and treatment 
of  arterial hypertension) and we also describe short act-
ing insulin analogues (SAIA) and their therapeutic use in 
ICU with the potential to minimize iatrogenic hypoglyce-
mia related to IIT. The pharmacodynamic and pharma-
chokinetic characteristics of  SAIA will be discussed.

RATIONALE FOR USING SHORT ACTING 
DRUGS IN CRITICAL CARE PATIENTS
In pharmaceutical research there is a trend to provide 
short acting drugs-also called “soft” drugs-to treat critical-
ly ill patients and the unstable phase of  acute illness and 
for anesthesia/sedation and perioperative management[11]. 
The use of  short acting vasodilators (i.e., nitroglycerin) 
in the acute phase of  acute myocardial infarction, acute 
episodes of  arterial hypertension in the treatment of  the 
acute phase of  heart failure and pulmonary edema is the 
paradigm of  the need for short acting drugs in the treat-
ment of  acute illness[12-14]. Recent antihypertensive drugs 
(as esmolol) and short acting opioids (as remifentanil) are 
prototypical “soft” drugs designed to fulfill the need for 
limiting drug-related residual effects when infusion is dis-
continued[11]. These molecules frequently rely on plasmatic 
metabolism by non specific bloodstream esterases. A 
common molecular paradigm to reduce pharmacokinetic 
(PK) characteristics (including onset and half  life) is to 
modify the parent compound into a “soft” drug by adding 
an ester linkage, thus, increasing its susceptibility to blood-
stream metabolism[11]. In anesthesia new drugs have been 
developed (midazolam, propofol, desflurane) modifying 
existing compounds in order to shorten anesthesia induc-
tion and awakening times[11,15].

Antihypertensive
Sympathetic stimulation contributes to cerebral hyper-
emia during emergence from craniotomy. B-blocking 
drugs may be considered to limit hemodynamic changes 
of  neurosurgical recovery. Esmolol blunted the increase 
in cerebral blood flow during recovery from neurosurgi-
cal anesthesia[16]. Hypertensive emergencies generally 
require intravenous treatment to achieve a rapid decrease 
in blood pressure and patients admitted to these care set-
tings may be sicker than patients treated with oral agents. 
The first choice antihypertensive drug varied by treat-
ment location. In ICU nitroglycerine was by far the most 
widely used (60%); in the emergency department furose-
mide was used in 34% of  patients and nitroglycerine was 
used in 27%; perioperatively urapidil was used in 34% 
of  patients and clonidine was used in 28%[12]. While ni-
troglycerine should be used as an adjunctive therapy, the 
high rates of  use in the European registry for Studying 
the Treatment of  Acute hypertension population likely 
reflect familiarity with its use, together with its ease of  
administration, titration and rapid reversibility[12].

Analgesia-sedation 
Analgesics and sedatives are commonly prescribed in 
ICU environment for patient comfort; however, recent 
studies have shown that these medications can them-
selves lead to adverse patient outcomes[17]. The use of  
short acting medications is associated with improved out-
comes such as decreased time of  mechanical ventilation 
and ICU length of  stay[17]. Using a short-acting opioid 
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with short context-sensitive half-life in an analgesia based 
sedation protocol may significantly decrease the duration 
of  mechanical ventilation and the ICU length of  stay 
even though not significantly in long term sedation, while 
improving the achievement of  sedation goals despite a 
lower requirement for adjunctive hypnotic agents, with 
no additional costs. The context-sensitive half-life of  
remifentanil is significantly shorter than those of  other 
opiates. In the remifentanil group, the decreases in need 
for mechanical ventilation and ICU length of  stay were 
associated with a significant decrease in the use of  add-
on hypnotics, suggesting that remifentanil was faster ad-
justable to the required sedation level[18].

Regarding sedation, Clinical Practice Guidelines[19] 
recommend the use of  propofol-rapid onset of  sedation 
(highly lipid soluble and quickly crosses the blood-brain 
barrier), and rapid offset (quickly redistribution with high 
hepatic and extrahepatic clearance)-and dexmedetomi-
dine (selective α2-receptor agonist rapidly redistributed 
into peripheral tissues) over benzodiazepines fot ICU 
sedation.

Inhaled anesthetics (short acting drugs) may be ideal 
sedatives for the ICU[20] because of  their pulmonary 
elimination, limited amount of  metabolism, bronchodi-
lation and cardioprotective effects[21]. However, inhaled 
anesthetics are not widely used for sedation in the ICU, 
since most modern ICU ventilators do not readily accom-
modate an anesthetic vaporizer. The new anesthetic con-
serving device, AnaConDa (Sedana Medical™, Sweden) 
uses a syringe pump to deliver inhaled anesthetic in liquid 
form into the breathing circuit of  a standard ICU ventila-
tor. Belda et al[22] adapted a classical PK model to obtain 
an infusion scheme for the clinical use of  the AnaConDa 
with sevoflurane. Another short acting drug in ICU.

SHORT ACTING INSULIN ANALOGUES
SAIA were developed to improve postprandial glycemic 
control and to minimize BGC excursions in diabetic pa-
tients[23-25]. Due to a PK profile closer to that of  endog-
enous insulin, when physiologically released by the trigger 
of  meals, SAIA have a faster rise in plasma concentration, 
higher peak concentration and shorter subcutaneous resi-
dence time than unmodified human insulin[26]. The clinical 
use of  SAIA is associated with lower postprandial peak 
BGC as compared with rapid insulin and doesn’t increase 
the incidence of  hypoglycemia[23-25].

Currently, 3 SAIA are available for clinical use: lyspro 
insulin (Humalog®; Eli Lilly, Indianapolis, IN, United 
States), aspart insulin (Novolog®/NovoRapid®; Novo 
Nordisk, Bagsvaerd, Denmark) and glulisine insulin (Api-
dra®; Sanofi, Paris, France).

Lyspro insulin, first SAIA that became available for 
clinical use in 1996, is characterized by a change in the 
amino acid sequence of  insulin B chain-proline in posi-
tion 28 and lysine in position 29 are inverted [Lys(B28), 
Pro(B29)]-that results in a reduced self  association[27-29]. 
These changes result in an insulin molecule with a re-
duced capacity for self-association[27,28]. Proline at posi-

tion B28 near the COOH-terminal of  the B-chain of  
human insulin is important for the proper configuration 
of  a p-sheet involving residues B24 through B26. Two 
insulin molecules align along this surface in an antiparallel 
orientation to form a nonpolar dimer. At this point, the 
nonpolar dimer interacts with zinc to form a hexamer, 
the basis of  Regular insulin formulations. The sequence 
of  lysine at B28 and proline at B29 can be found in 
insulin-like growth factor Ⅰ (IGF-Ⅰ) and is thought to 
be responsible for its lower degree of  self-association in 
comparison to insulin. Accordingly, IGF-Ⅰ is the model 
upon which the structure of  lyspro is based[27-29]. As a 
result of  these modifications, lyspro exhibits monomeric 
behavior in solution, binds zinc less avidly, and displays 
faster pharmacodynamic action than human Regular in-
sulin (Humulin R®). These findings are consistent with 
the rapid absorption expected from monomeric insulin 
injected subcutaneously[27,29].

Aspart insulin, second SAIA to achieve regulatory 
approval in 2000, is characterized by a change in the 
amino acid sequence of  insulin B chain-proline in posi-
tion 28 is substituted with the charged aspartic acid-this 
reduces self-association of  the molecule, allowing only 
weak dimeric and hexameric formation and thereby rapid 
dissociation after subcutaneous injection[27,29,30]. Receptor 
interaction kinetic studies have shown that aspart insulin 
behaves essentially like human insulin with regard to both 
the insulin and IGF-Ⅰ receptor with a similar potency 
to that of  human insulin[29,30]. Aspart insulin is absorbed 
twice as fast as regular insulin and reaches a maximum 
concentration in plasma of  approximately twice that of  
human insulin. Its activity profile is very similar to that of  
human insulin[29,30].

Glulysin insulin, third SAIA to receive regulatory ap-
proval, is characterized by a change in the amino acid 
sequence of  insulin B chain-lysine and glutamic acid are 
substituted for asparagine and glycine in positions 3 and 
29 respectively-it is thought that this latter substitution 
is predominantly responsible for its PK properties[27,29,31]. 
Studies indicate that glulisine has a very comparable PK 
and pharmacodynamic profile to insulin lispro[27,29,31]. 
Overall, the bioequivalence of  glulisine is similar to that 
of  human insulin[27,29,31].

DISCUSSION
In this review article we originally report the use of  SAIA 
in critical care patients. The pharmacodynamic and phar-
macokinetic characteristics of  SAIA available for clinical 
use are described and the rationale for using shorter act-
ing insulin is presented.

Altered pharmacology in the intensive care unit
Critically ill patients, not infrequently present alterations 
of  physiological parameters that determine the suc-
cess/failure of  therapeutic interventions as well as the 
final outcome[32]. Most common and complex syndromes 
occurring in ICU affect drug absorption, disposition, 
metabolism and elimination[33]. Pharmacological man-
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agement of  ICU patients requires consideration of  the 
unique PKs associated with these clinical conditions and 
the likely occurrence of  drug interaction[34]. Rational 
adjustment in drug choice and dosing contributes to the 
appropriateness of  treatment of  those patients[35].

Adverse drug events in intensive care unit
Intensive care medicine provides great benefits to pa-
tients with life-threatening acute illness or trauma. These 
benefits are a consequence of  advancements in diagnos-
tic testing, technological interventions and pharmacother-
apy. Simultaneously, the complexity and intensity of  care 
required by ICU patients is also associated with greater 
risks resulting from care[36]. Adverse drug events (ADEs), 
including adverse reactions and medication errors, are 
harmful and occur with alarming frequency in critically ill 
patients[37].

Patients in ICUs may be at especially high risk of  an 
ADE for the following reasons[38,39]: (1) The complexity 
of  diseases; (2) Pathophysiological status characterized 
by a wide range of  changes in organ dysfunction (altering 
PKs); (3) The high number of  medications administered; 
(4) Administration of  complex drug regimens; and (5) 
Increased length of  hospital stay. Hypoglycemia and hy-
perglycemia are in the 10 top ADE in the ICU[40].

Drug-drug interactions in ICU 
Drug-drug interactions (DDIs) in the ICU are associated 
with longer ICU stays, ADE and end-organ damage[41]. 
Critically ill patients are at an increased risk of  ADE 
related to DDIs because of  the large number of  medica-
tions that they receive and PK characteristics of  the ad-
ministered medications[42].

The 10 most frequently ocurring DDI in the ICU 
include insuline/metoprolol (moderate severity rating, 
β-blockers may enhance the hypoglycemic effects of  in-
sulin) and insulin/prednisone (moderate severity rating, 
corticosteroids may diminish the hypoglycaemic effect of  
antidiabetic agents)[43].

In this context, medical therapies carry an intrinsic 
risk for collateral effects; this can be more harmful in 
patients with unstable clinical conditions like ICU pa-
tients[44]. To minimize these risks, the use of  short acting 
drugs in ICU patients have gained a progressively larger 
room in ICU and now pharmaceutical companies and re-
searchers design drugs dedicated to this subset of  medical 
practice[11]. SAIA have been synthesized to improve the 
chronic treatment of  patients with diabetes but, because 
of  the PK characteristics that include shorter onset and 
offset, they can be effectively used also in ICU patients 
and have the potential to be associated with a more limit-
ed risk of  inducing episodes of  iatrogenic hypoglycemia. 
Clinical studies addressed to assess the dosing profile and 
the safety of  SAIA when used-as intravenous continuous 
therapy- to accomplish IIT in ICU patients.
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Abstract
Diabetes mellitus (diabetes) is a devastating disease 
that affects millions of people globally and causes a 
myriad of complications that lead to both patient mor-
bidity and mortality. Currently available therapies, 
including insulin injection and beta cell replacement 
through either pancreas or pancreatic islet transplanta-
tion, are limited by the availability of organs. Stem cells 
provide an alternative treatment option for beta cell 
replacement through selective differentiation of stem 
cells into cells that recognize glucose and produce and 
secrete insulin. Embryonic stem cells, albeit pluripotent, 
face a number of challenges, including ethical and politi-
cal concerns and potential teratoma formation. Adipose 
tissue represents an alternative source of multipotent 
mesenchymal stem cells, which can be obtained us-
ing a relatively simple, non-invasive, and inexpensive 
method. Similarly to other adult mesenchymal stem 
cells, adipose-derived stem cells (ADSCs) are capable 
of differentiating into insulin-producing cells. They are 
also capable of vasculogenesis and angiogenesis, which 
facilitate engraftment of donor pancreatic islets when 
co-transplanted. Additionally, anti-inflammatory and 
immunomodulatory effects of ADSCs can protect donor 

islets during the early phase of transplantation and sub-
sequently improve engraftment of donor islets into the 
recipient organ. Although ADSC-therapy is still in its in-
fancy, the potential benefits of ADSCs are far reaching.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes mellitus; Diabetes; Insulin; Stem 
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Core tip: Adipose-derived stem cells (ADSCs) can pro-
vide a promising cell therapy for treatment of diabetes 
and associated complications. ADSCs’ multipotency al-
lows differentiation into insulin-producing β-cells. Anti-
inflammatory and immunomodulatory capabilities of AD-
SCs can facilitate enhanced engraftment of transplanted 
donor islets. Although many challenges lie ahead for 
ADSC-based cell therapies are used clinically to treat 
diabetic hyperglycemia, ADSCs represent a novel treat-
ment option to many diabetic patients worldwide.

Paek HJ, Kim C, Williams SK. Adipose stem cell-based regen-
erative medicine for reversal of diabetic hyperglycemia. World J 
Diabetes 2014; 5(3): 235-243  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v5/i3/235.htm  DOI: http://dx.doi.
org/10.4239/wjd.v5.i3.235

INTRODUCTION
Diabetes mellitus (diabetes) is a chronic disease, affecting 
over 347 million people globally[1-8]. Due to diets with high 
fat and high sugar accompanied by sedentary lifestyles, the 
global epidemic of  diabetes is expected to rise. Further-
more, the economic burden imposed by diabetes and its 
complications easily exceeds $100 billion annually[9].

The most common treatment for type 1 and some 
type 2 diabetes is insulin therapy. Intensive insulin treat-
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ment can maintain normoglycemia, and control acute 
hypoglycemia as well as long-term complications[10,11], 
however, fails to achieve normal hemoglobin A1c levels. 
Advancements in commercial glucose monitors, insulin 
formulation, and insulin pumps are also providing im-
proved control of  diabetic symptoms[10,12]. However, even 
with widely available insulin therapy, the life expectancy 
of  diabetic patients is approximately 12 years shorter on 
average than that of  non-diabetic individuals[9,13]. Ad-
ditionally, those with child-onset type 1 diabetes have a 
significantly increased risk of  retinopathy, nephropathy, 
neuropathy, and various cardio-, cerebro- and peripheral 
vascular diseases[5,6,9,10,14-21].

More definitive treatment options for type 1 diabetes, 
which is characterized by autoimmune destruction of  
insulin-producing β-cells in pancreatic islets of  Langer-
hans, are pancreas or pancreatic islet transplantation[22-26]. 
Over a century ago, pancreas extracts were the first trans-
plants tested in diabetic patients[27]. Modern-day pancreas 
and pancreatic islet transplantations are relatively effective 
in normalizing fasting and postprandial blood glucose 
levels, hemoglobin A1c levels as well as restoring insulin 
and C-peptide production[9]. However, the severe shortage 
of  available donors limit the widespread adoption of  this 
form of  therapy[10,28], and thus, appear to only benefit less 
than 0.5% of  type 1 diabetics[28]. Additionally, life-long 
requirement of  immunosuppression and adverse effects 
caused by immunosuppressants, such as nephrotoxicity, 
hypertension, and hypersensitivity to infection, often leads 
to patient non-compliance[10,28,29]. Lastly, reoccurring auto-
immunity against pancreatic β-cells continues to be a ma-
jor challenge associated with transplantation therapies[9].

Recent advancements in stem cell isolation and differ-
entiation methodologies have resulted in production of  
cell lines with the capability to synthesize, package, and 
subsequently secrete insulin in response to glucose. Al-
beit pluripotent, embryonic stem (ES) cell differentiation 
often leads to the development of  multiple cell lineages, 
resulting in a mixed population of  cells along with target 
cells[9]. Definitive endodermal markers are also absent in 
ES cells, and undifferentiated teratogenic ES cells may 
pose serious risks as well[9,28]. Due to ethical and legal 
concerns and risks of  teratoma formation, embryonic 
stem cells face austere challenges in becoming a clinically 
viable solution although cellular isolation device may 
provide a method to implant embryonic stem cells with 
insulin producing capabilities[30].

Multipotent progenitor cells are now known to be 
localized in many different organs[31]. Although multipo-
tent, adult stem cells provide a relatively reliable source of  
mesenchymal stem cells for cell-based therapies. Recently, 
adult stem cells from bone marrow, umbilical cord blood, 
pancreatic duct, periosteum, and adipose tissue have 
shown a capacity to differentiate into insulin-producing 
cells[32-43].

Among the many tissue sources for adult stem cells, 
adipose tissue is particularly attractive based on its stem 
cell abundance and ease of  tissue procurement through 
a minimally invasive and relatively inexpensive proce-

dure[44-48]. Mesenchymal stem cells from bone marrow 
and adipose tissue share similar cell populations, along 
with cell characteristics[49-51]. Adipose tissue has also 
been reported to contain a significantly greater number 
of  mesenchymal stem cells than bone marrow per unit 
weight[6,52-54]. In this review, adipose-derived stem cells 
will be specifically examined for their utility in developing 
treatments for diabetes and diabetic complications.

Direct differentiation into pancreatic hormone producing 
cells
Kodama et al[55] proposed four mechanisms of  pancreatic 
regeneration: (1) replication of  mature β-cells; (2) differ-
entiation of  stem cells; (3) cell fusion; and (4) transdiffer-
entiation of  one stem cell type to another. Most studies 
on cell-based therapies focus on direct differentiation of  
stem cells into insulin-producing β-cells.

Mesenchymal stem cells derived from adipose tissue 
exhibit unique characteristics well suited for transdif-
ferentiation into a pancreatic endocrine lineage, which 
is of  the endodermal origin. Freshly isolated adipose-
derived stem cells (ADSCs) also expressed stem cell fac-
tor (SCF) and its receptor (c-kit)[44,56], but not ABCG2, 
nestin, Thy-1, and Isl-1. Lin et al[6] reported that ADSCs 
constitutively expressed glucagon and NeuroD as well 
as insulin. The proliferative ADSCs, on the other hand, 
expressed the transcription factor Isl-1 and Pax-6, which 
are critical transcription factors required for β cell de-
velopment[44,56], as a previous study showed that forma-
tion of  insulin- and glucagon-positive cells were found 
inhibited during development of  Isl-1 knock-out mice[57]. 
Therefore, the intrinsic expression of  Isl-1 in ADSCs 
provides a considerable advantage for generating insulin-
producing cells. Proliferative ADSCs also express stem 
cell markers nestin, ABCG2, SCF, and Thy-1. Nestin 
was originally thought to be a neural stem/progenitor 
cell marker but was recently reported to be a multipo-
tent pancreatic stem cell marker as well, detected within 
pancreatic islets[16,58]. ABCG2 has also shown to be as-
sociated with pancreatic islet-derived precursor cells and 
neural stem cells[10,59]. Kojima et al[60] demonstrated that 
extrapancreatic insulin-producing cells, which were posi-
tive for proinsulin and insulin, were present in the adi-
pose tissue of  streptozotocin-induced diabetic rodents. 
Based on these intrinsic characteristics, ADSCs can serve 
as a promising source of  pancreatic hormone-producing 
cells following differentiation.

Derivation of  insulin producing cells from stem cells 
is made possible through the understanding of  key steps 
during embryonic development and the coordinated ac-
tivation of  intracellular transcription factors. Similar to 
embryonic stem cells[61-65], derivation of  insulin-producing 
cells from ADSC is executed through a progressive multi-
stage differentiation protocol: starting from definitive 
endoderm into pancreatic endoderm and finally into 
pancreatic hormone-expressing cell[2,44,56,66-68]. outlines the 
culture conditions used by various groups to stimulate 
ADSCs into an insulin-producing cell lineage.

All of  the differentiated cell populations reported 
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were stained positively for dithizone, indicating the pres-
ence of  endogenous insulin. Furthermore, these stem 
cell-derived insulin producing cells exhibited abundant 
expression of  Pdx-1, C-peptide, insulin, glucagon, so-
matostain, pancreatic polypeptide, and Glut-2[2,44,56]. En-
hanced expression of  Isl-1, Pax-4, Ngn-3, Ipf-1,  Pax-6, 
Nkx-2.2, Nkx-6.1, FoxA2, GLP-1 receptor, and glucoki-
nase was also confirmed in differentiated cells, implicat-
ing pancreatic lineage[2,16,44,56,69]. Interestingly, transcrip-
tion of  leptin and adiponectin was also well maintained 
in differentiated cells, still demonstrating adipose tissue 
characteristics. Additionally, expression of  visfatin, 
which activates insulin receptors and has a blood glucose 
lowering effect similar to insulin, was significantly upreg-
ulated following differentiation into an insulin producing 
phenotype[44].

Following transplantation of  human ADSC-derived 
insulin producing cells into streptozotocin-induced dia-
betic mice, a significant level of  human C-peptide was 
detected in subjects, demonstrating successful insulin 
production in vivo. Although these differentiated cells 
demonstrated a capacity to lower blood glucose levels, 
the insulin secretion level compared to mature pancreatic 
islets was significantly lower, and they failed to restore 
normoglycemia in STZ-induced diabetic mice[6,44,67].

The ability of  ADSCs to differentiate into insulin-
producing cells akin to mature native pancreatic cells also 
remains under question. Dor et al[70] used a genetic lineage 
tracing method to determine whether pancreatic stem 
cells contribute to pancreatic β-cell replenishment during 
adult life. In this study, they demonstrated that terminally 
differentiated mature β-cells maintain their prolifera-
tive capacity and serve as a major source of  new β-cells 
in mice, contrary to previously reported studies[71-74]. 
Although this study directly rejected pluripotent adult 
stem cells’ role in replacing β-cells in vivo following partial 
pancreatectomy, it does not directly refute the utility of  
insulin-producing cells, differentiated from adult stem 
cells in vitro, as a potential new treatment option for dia-
betics as demonstrated by a number of  studies previously 
reported[71-74].

Engraftment of transplanted islets
Success of  pancreatic islet transplantation depends on 
successful engraftment into the recipient liver where do-
nor islets are transfused through the hepatic portal vein. 
However, apoptosis, inflammation and ischemia frequent-
ly interfere with successful engraftment[75], and therefore 
two or more pancreata are frequently required to procure 
sufficient numbers of  islets for each transplant. This is 
a major limitation to the widespread use of  this therapy, 
considering the acute shortage of  donor organs. Due to 
unavoidable destruction of  native islet structures, includ-
ing intraislet vasculature, during isolation, islet engraft-
ment could take up to several weeks[76,77]. Further deterio-
ration of  islets and β-cell death can occur due to ischemia 
and inflammation, ultimately leading to graft failure[78,79]. 
A mean to improve engraftment of  transplanted islets 

will lead to a reduction of  the required number of  pan-
creata and more positive clinical outcomes.

Adipose-derived stem cells have been reported to 
possess inherent regenerative angiogenic potential and 
anti-apoptoic capability through their secretion of  tro-
phic factors[80-82]. ADSCs also have anti-inflammatory 
and immunomodulatory properties, including suppres-
sion of  T-cell proliferation[82-88]. Therefore, ADSCs can 
potentially allow improved engraftment of  transplanted 
islets with enhanced vascularization and suppression of  
inflammation.

ohmura et al[79] tested hybrid islet transplantation by 
co-transplanting allogeneic mouse pancreatic islets along 
with autologous ADSC under the kidney capsule of  re-
cipient mice and demonstrated that autologous murine 
ADSCs were able to significantly prolong allogeneic islet 
survival and achieve normoglycemia for up to 14 d. Al-
logeneic islets alone could not survive under the kidney 
capsule for longer than 2 d, and normoglycemia was 
never achieved. The islets following hybrid transplanta-
tion showed well-preserved islet architecture and were 
surrounded by endothelial cells compared to islet grafts 
transplanted without ADSCs, suggesting vascularization 
had been improved. Infiltration by CD4+/CD8+ T cells 
and CD68+ macrophages were also markedly reduced, 
suggesting successful anti-inflammation and immuno-
modulation by ADSCs and prolonged graft islet retention 
when ADSCs were co-transplanted with donor islets[79]. 
Although it is still uncertain whether this hybrid trans-
plantation method will work in a clinical model, which 
utilizes the hepatic portal vein route for islet transplanta-
tion rather than the kidney capsule, the potentially enor-
mous benefits of  ADSCs in islet engraftment is clearly 
promising.

Veriter et al[89] also showed the utility of  ADSCs by 
co-encapsulating xenogeneic porcine islets with autolo-
gous primate ADSCs in semipermeable capsules and 
transplanting them in primates. Compared to islets encap-
sulated alone, improved oxygenation, graft survival and 
function, and glycated hemoglobin correction, as well as 
greater vasculogenesis were observed in co-encapsulated 
implants, consequently reducing the cellular stress imme-
diately following transplantation[89].

It is widely accepted that a significantly large num-
ber of  pancreatic islets are lost during the first 10-14 d 
following infusion into human liver through the portal 
vein[90], even in the presence of  immunosuppression. 
Furthermore, 60% of  transplanted islets were reported 
to die during this period even in syngeneic animal mod-
els[91]. An ability to prevent such early death immediately 
following transplantation, as demonstrated by ohmura 
et al[79], Veriter et al[89] and Cavallari et al[92], using ADSCs, 
may prove to be enormously beneficial to the successful 
engraftment of  transplanted islets.

Challenges and opportunities for ADSCs in diabetes
Several uncertain factors in stem cell-based cell therapy 
for diabetes still remain: (1) the absence of  gold-standard, 
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sulin secretion will fail due to a lack of  innervation[106,107]. 
These structural challenges are critical to overcome for 
stem cell-derived β-cells or islets to be clinically viable in 
the future.

Nearly all of  the insulin-producing cells derived 
from adult stem cells co-express glucagon, somatostatin, 
pancreatic polypeptide along with insulin, all of  which 
are characteristic of  immature pancreatic islets of  Lang-
erhans. This suggests an incomplete differentiation of  
stem cells, and could be one of  the main reasons why 
these cells were unable to achieve normoglycemia in dia-
betic animals. Further differentiation and maturation are 
required to achieve a more mature substitute capable of  
functioning similarly to a normal pancreas. However, oth-
ers also argue that terminally differentiated mature β-cells 
might not be required for treatment of  diabetes. Konno 
et al[108] and Kajiyama et al[109] reported that transplantation 
of  adipose-derived stem cells overexpressing Pdx-1 ame-
liorated hyperglycemia and improved survival rate. Fur-
thermore, ecto-pancreatic transplantation enabled nor-
malization of  hemoglobin A1c levels and subsequently 
attenuated or partially reversed nerve and kidney damages 
caused by diabetes[10,110,111]. Achieving normal hemoglobin 
A1c levels may also prove to be critical for future stem 
cell-based therapies.

Diabetic conditions present a uniquely detrimental en-
vironment to various cell types. The proliferative capabil-
ity of  mesenchymal stem cells isolated from adipose tis-
sue of  streptozotocin-induced type 1 and 2 diabetic rats 
was reported to be compromised[112]. When ADSCs were 
exposed to high glucose concentration in vitro prior to 
implantation into a hindlimb ischemia model, their pro-
liferative capacity and ability to reverse hindlimb ischemia 
were significantly and irreversibly reduced, compared to 
ADSCs cultured at a normal glucose concentration[112]. In 
type 1 diabetic patients, however, autoimmunity did not 
seem to fundamentally influence the regenerative capabil-
ity of  islets and their progenitor cells[34,113]. Hess et al[114] 
demonstrated that bone marrow derived stem cells initi-
ated pancreatic regeneration and reversed hyperglycemia 
by stimulating proliferation of  the recipient’s innate pan-
creatic progenitor cells and β-cells. It is highly possible 
the same mechanism can be utilized for ADSCs, and 
therefore, warrants further investigation as well. Improv-
ing the relative regenerative capacity of  pancreatic islets 
using ADSCs would potentially benefit diabetic patients.

Transplantation of  islet-like cells or pancreas-like tis-
sues generated from stem cells in vitro may be accompa-
nied by graft rejection, graft hypertrophy with subsequent 
chronic hypoglycemia, and potentially malignant transfor-
mation. The intrinsic immunomodulatory capabilities of  
ADSCs have shown to enhance engraftment of  multiple 
types of  tissues when co-transplanted[115-117]. Vanikar et 
al[115] reported that transfusion of  ADSCs may reduce the 
need of  immunosuppression during renal transplanta-
tions. The ability to reduce the required dosage of  im-
munosuppressants would subsequently minimize compli-
cations caused by these agents and improve the clinical 

reproducible differentiation protocol for generating 
insulin-producing cells from adult stem cells; (2) an exact 
dosage of  stem cell-derived β-cells to reverse diabetic 
conditions and feasibility of  producing such dosage in 
vitro; (3) proliferative capacity and maintenance of  differ-
entiated insulin-producing cells; (4) sensitivity to counter-
regulatory hormones; (5) potential adverse effects of  
undifferentiated adult stem cells; and (6) potential in vivo 
migration of  differentiated cells following implanta-
tion[8,15]. Consensus of  investigators on the criteria for 
transdifferentiation and plasticity to avoid confusion with 
cell fusion, contaminating stem cell populations, and to 
prevent over interpretation of  the data, is necessary[8,93-95].

A major challenge also lies in imitating the physiologi-
cal mechanism of  insulin secretion. Insulin secretion oc-
curs through complex regulatory systems, involving mul-
tiple hormonal feedback mechanisms and neurological 
stimulation, within the islet of  Langerhans. For instance, 
insulin secretion by β-cells can inhibit glucagon secre-
tion by α-cells[96]. Somatostatin secreted by δ-cells also 
regulates insulin secretion by β-cell[97]. In order to mimic 
normal or near normal metabolic control, differentiated 
cells must be able to interact with existing pancreatic en-
docrine cells. Another mechanism of  controlling insulin 
release is through the secretion of  incretin hormones, 
including glucose-dependent insulinotropic peptide and 
glucagon-like peptide 1[10,98-101]. These intestinal tract sig-
naling hormones have shown to be responsible for up 
to 70% of  glucose-induced postprandial insulin secre-
tion[99,100]. An ability to respond to these signals is also a 
critical characteristic that stem cell-derived β-cells need 
to possess in order to closely mimic physiological pro-
cesses. Lastly, insulin secretion is a pulsatile rather than a 
constant release, and such pulsatility may be significant 
in its action[102]. Stem cells differentiated into a pancreatic 
lineage that simply produces insulin, even in a glucose-
responsive manner, without capability to accommodate 
these complex interactions, will unavoidably fail to re-
verse diabetic conditions.

The general architecture of  natural pancreatic islets 
also poses another challenge for the efficacy of  dif-
ferentiated insulin-producing cells. Individual islets are 
highly vascularized and innervated. The endothelial cells 
comprising the microvasculatures of  pancreatic islets of  
Langerhans may even be glucose responsive[10,103]. Stem 
cell-derived islet-like structures thus far have not shown 
to contain any intrinsic vascularity within them when de-
rived in vitro, and therefore rely on the circulation external 
to the cell aggregates. The distance between β-cells and 
capillaries can potentially affect the kinetics of  insulin re-
lease, and non-physiological integration of  islet-like struc-
tures to circulation may in turn affect the engraftment, 
survival, and efficacy of  implants[104]. Insulin release by 
β-cells is affected not only by increased blood glucose 
level but also by nervous control (cephalic phase) mostly 
through cholinergic neurons during meal ingestion[10,105]. 
Even with whole organ or pancreatic islet transplanta-
tion, complete restoration of  the cephalic phase of  in-
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outcome of  islet transplantation.
Approximately 90% of  people with diabetes are suf-

fering from type 2 diabetes. However, only a few cases of  
stem cell-based research were performed recently[118-122] to 
develop a therapeutic option for type 2 diabetes, as type 
1 diabetes has stood as the forefront. Deriving insulin-
secreting β-cells from stem cells for treatment of  type 
1 diabetes seems relatively straightforward compared to 
developing an alternative treatment option for type 2 
diabetes. Further research on the complex disease mecha-
nisms of  type 2 diabetes in association with the potential 
utility of  stem cells may improve the quality of  life for 
hundreds of  millions patients.

CONCLUSION
It is now undeniable that the utility of  ADSCs in the 
treatment of  diabetes is extremely promising. The abun-
dance of  available source tissue, high frequency and mul-
tipotency of  adipose-derived mesenchymal stem cells, its 
trophic and regenerative capabilities, all serve as valuable 
solutions to the ever-increasing diabetic population and 
associated health crises observed around the world. Un-
derstanding of  ADSCs and the development of  ADSC-
based treatments for diabetes are still considered to be in 
their infancy, and numerous challenges and opportuni-
ties still lie ahead. The exact mechanism of  generating 
insulin-producing cells from ADSCs as well as further 
maturation of  those cells into functional pancreatic islets 
still needs to be further explored. Sustainability of  differ-
entiated insulin-producing cells is still under investigation. 
Autoimmune attack on β-cells, which is a fundamental 
disease mechanism of  type 1 diabetes, has not been 
completely resolved and can make any future cell-based 
therapy unfeasible.

Current therapies for diabetes ranging from insulin 
injection to pancreatic islet transplantation are not truly 
the best options for patients. Stem cells that are theoreti-
cally limitless in numbers and multipotent will provide 
hopes and viable therapies for millions of  diabetic pa-
tients in the future. However, if  all stem cell-based thera-
pies only eliminate the need for glucose monitoring and 
insulin injection for convenience and modestly improve 
diabetic symptoms, it would not justify the adoption 
of  these therapies in the future. Therefore, stem cell-
based therapies must be able to provide fundamentally 
improved multifaceted metabolic controls and concomi-
tantly improve long-term prognosis in diabetic patients to 
be widely accepted as a clinically viable therapy.
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Abstract
In healthy people, balance between glucose production 
and its utilization is precisely controlled. When circulat-
ing glucose reaches a critical threshold level, pancreatic 
β cells secrete insulin that has two major actions: to 
lower circulating glucose levels by facilitating its uptake 
mainly into skeletal muscle while inhibiting its produc-
tion by the liver. Interestingly, dietary triglycerides are 
the main source of fatty acids to fulfill energy needs of 
oxidative tissues. Normally, the unconsumed fraction 
of excess of fatty acids is stored in lipid droplets that 
are localized in adipocytes to provide energy during 
fasting periods. Thus, adipose tissue acts as a trap for 
fatty acid excess liberated from plasma triglycerides. 
When the buffering action of adipose tissue to store 
fatty acids is impaired, fatty acids that build up in other 

tissues are metabolized as sphingolipid derivatives such 
as ceramides. Several studies suggest that ceramides 
are among the most active lipid second messengers to 
inhibit the insulin signaling pathway and this review de-
scribes the major role played by ceramide accumulation 
in the development of insulin resistance of peripherals 
tissues through the targeting of specific proteins of the 
insulin signaling pathway.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Muscle and liver represent major sites for 
insulin-mediated glucose metabolism. The ability of 
insulin to promote its peripheral action is reduced sig-
nificantly by excess of saturated fat that stimulates in-
tracellular production of second-messenger lipids such 
as ceramide. Studies suggest that ceramide could be 
important contributors to lipotoxicity, as the inhibition 
of early steps its biosynthesis pathway has large ben-
eficial effects in rodent models of obesity and diabetes. 
In this review, we describe mechanisms by which ce-
ramide acts on insulin-sensitive tissues and we propose 
that targeting this lipid family could be an interesting 
approach to fight diabetes.
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both developed and developing countries. Indeed, there 
is a dramatic increasing incidence of  diabetes in most of  
these countries. In 2005, 217 million people worldwide 
had diabetes, and the World Health Organisation predicts 
that it will increase to 366 million in 2030[1]. In 2050, 
33% of  the population of  the United States will suffer 
from diabetes[2]. One consequence is that over the years, 
diabetes has become life-threatening, with increased risk 
of  cardiovascular diseases, retinopathy, kidney failure, 
and nerve and artery damages[3]. Diabetes is one of  the 
first causes of  haemodialysis, of  blindness and of  non-
traumatic amputation of  the legs. Another consequence 
is the increasing of  health spending due to diabetes. For 
example, in the United States, diabetes costing is actually 
evaluated to more than $174 billion per year and it’s ex-
pected to increase in subsequent years[2].

PATHOPHYSIOLOGY OF TYPE 2 
DIABETES
There are different types of  diabetes: (1) type 1 diabetes 
or maturity onset diabetes of  the young associated to im-
pairment of  insulin production; and (2) type 2 diabetes, 
corresponding to 85%-90% of  all diabetes, with both 
insulin secretion defects and peripheral insulin resistance. 
Type 2 diabetes is associated with obesity and although 
genetic factors play a role in the pathophysiology of  this 
disease, other environmental factors such as diet and 
physical activity both play large roles. Several mechanisms 
have been proposed to explain both insulin resistance and 
insulin secretion defects observed in type 2 diabetes. Li-
potoxicity, glucotoxicity, low grad systemic inflammation, 
oxidative stress and endoplasmic reticulum stress[4-6] cor-
respond to different mechanisms that converge on a com-
mon pathway to induce insulin resistance. In this review 
we will focus on cellular lipid toxicity, i.e., lipotoxicity.

LIPOTOXICITY
Systemic lipid imbalances are common in metabolic 
syndrome, in pre-diabetes and in type 2 diabetes and it 
is now clear that lipotoxicity can induce glucose dysregu-
lation and participate to the pathophysiology of  type 2 
diabetes[7-9]. For example, prospective epidemiological 
studies performed in population with low or high risk to 
develop type 2 diabetes have shown that high free fatty 
acid (FFA) concentrations in plasma are associated with 
the risk of  incident type 2 diabetes[10-12].

A major characteristic of  type 2 diabetes is the loss of  
the ability of  pancreatic β cells to increase insulin secre-
tion to maintain normoglycemia in the face of  insulin 
resistance[13]. Because of  genetic predisposition, β cells 
could be unable to compensate the insulin resistance in-
duced by FFA, but chronic exposition of  β cells to high 
levels of  FFA could equally explain defects in β cell func-
tion and decreased mass observed in type 2 diabetes. In-
deed, in vitro studies have shown that FFA are associated 
with a decrease of  insulin expression, synthesis and pro-

cessing[14-16]. Another mechanism that can explain insulin 
secretion dysfunction in type 2 diabetes is that high FFA 
levels in islets induce β cell death[17]. In this review, we 
will not deal with this topic but we will rather focus our 
message on lipid-induced peripheral insulin resistance. To 
more information on lipotoxicity in pancreatic beta cells, 
confer to the excellent review of  Boslem et al[18].

Since skeletal muscle constitutes 40% of  human body 
mass and is quantitatively the most important tissue in 
regard to insulin-stimulated glucose disposal, it is con-
sidered the main cellular target in the development of  
insulin resistance. Thus, most of  the studies investigating 
mechanisms of  lipotoxicity induced insulin resistance 
were mostly performed in muscle tissue.

In 1963, Randle et al[19] have postulated that a com-
petition between glucose and fatty acids for their oxida-
tion and uptake is responsible for the onset of  insulin 
resistance in muscle and adipose tissue. In vivo studies 
performed in both rodents and humans confirmed such 
insulin resistance obtained after lipid infusion but they 
also demonstrated that, in opposite to Randle’s hypothe-
sis, insulin resistance induced by lipids was not secondary 
to decreased glycolysis[20]. Indeed, lipids act directly on in-
sulin signaling, resulting in an inhibition of  the transloca-
tion of  the insulin sensitive glucose transporter GLUT4 
to the plasma membrane in response to the hormone, 
with subsequent reduced glucose uptake[21-25]. In human, 
data clearly show a strong correlation between lipid intra-
muscular content and insulin resistance[26-28] and a cross-
sectional analysis performed in young, normal weight and 
non-diabetic adults reveals that a better correlation exists 
between muscle insulin sensitivity, assessed by the hy-
perinsulinaemic-euglycaemic clamp technique, and intra-
myocellular lipid content rather than with circulating lipid 
levels, body mass index, fasting blood glucose and age[29].

Liver is another important organ implicated in insulin 
resistance and, like in muscle indirect data also suggest an 
inverse relationship between lipid liver content and insu-
lin sensibility. Indeed, ectopic lipid accumulation in the 
liver, termed nonalcoholic fatty liver disease (NAFLD), 
is associated with insulin resistance. Interestingly, in an 
animal model of  lipodystrophy with steatosis, but with-
out increased visceral fat, lipid liver content is associated 
with insulin resistance. Insulin resistance is reversed after 
reduction of  steatosis with liver transplantation or re-
combinant leptin treatment[30]. Such association between 
steatosis and insulin resistance has also been observed in 
patients with severe lipodystrophy with equally a good 
response to recombinant leptin therapy[31]. Similarly, he-
patic specific overexpression of  lipoprotein lipase leads 
specifically to hepatic steatosis and hepatic insulin resis-
tance[32,33]. During type 2 diabetes, reduction of  steatosis 
by caloric restriction, or gastric bypass, is associated with 
increased insulin sensibility independently of  visceral fat 
mass reduction[34,35].

Strong evidence exists between ectopic lipid accumu-
lation and insulin resistance. However, in some cases, like 
in the “athlete’s paradox”, there is a lack of  correlation 
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between ectopic lipid accumulation and peripheral insulin 
resistance. Indeed, athletes display high insulin sensitivity 
but also present increased levels of  intramuscular fatty 
acids[36]. Thus, it seems that ectopic accumulation of  fatty 
acids in non-adipose tissues can only be used as markers 
for the onset of  insulin resistance but cannot be consid-
ered as a direct cause. Even if  they do not seem to be di-
rectly involved, fatty acids contribute to insulin resistance 
as they lead to the synthesis of  many lipid derivative in-
termediates such as diacylglycerol (DAG) and ceramide.

Over the years, studies have provided conclusive 
proof  that ceramide plays a key role in the progression of  
insulin resistance in insulin sensitive tissues, targeting and 
inhibiting specific actors of  the insulin signaling pathway.

INSULIN SIGNALING PATHWAY AND 
METABOLIC FUNCTIONS
Insulin is a polypeptide hormone whose major physi-
ological role is to control glucose homeostasis by stimu-
lating glucose uptake into insulin sensitive tissues (skeletal 
muscle and adipose tissue) and by inhibiting glucose out-
put from the liver[37]. Insulin consists of  two polypeptide 
chains, a α chain of  21 amino acid residues linked by two 
disulfide bonds to a β chain of  30 amino acid residues. 
Insulin is produced in the β cells of  the Islets of  Lang-
erhans found in the pancreas. It is initially synthesized 
as an immature single polypeptide chain of  110 amino 
acids called pre-proinsulin. Pre-proinsulin contains an 
N-terminal domain of  24 amino acids that acts to direct 
the polypeptide to the endoplasmic reticulum during 
translation. This domain is later cleaved to yield proin-
sulin. Proinsulin is transported to the secretory vesicles 
of  the pancreatic β cells, where a proteolytic enzyme 
removes the central 35 residues of  the peptide (termed 
the C-peptide) that connect α and β chains to produce 
insulin. Insulin is then released into the blood stream by 
exocytosis. Secretion of  the hormone is regulated by the 
glucose abundance in the plasma.

In skeletal muscle, insulin promotes the uptake of  
glucose and its conversion into glycogen. This tissue is an 
important target of  the hormone, representing the major 
site of  glucose disposal in vivo[37] and is reported to medi-
ate 70%-80% of  whole body insulin-stimulated glucose 
transport[38]. In the liver, insulin stimulates the synthesis 
of  glycogen while inhibiting gluconeogenesis and glyco-
genolysis, halting hepatic glucose output. In adipocytes, 
insulin promotes the uptake of  glucose and its conver-
sion into a glycerophosphate of  which can be esterified 
by 3 fatty acids, allowing to form triglycerides for long 
term storage, whereas simultaneously inhibiting the lipo-
lytic pathway[39]. In addition to glucose metabolism, insu-
lin also regulates many other cellular processes including 
amino acid transport, lipogenesis, protein synthesis and 
mitogenesis.

The first step in the activation of  the insulin signaling 
pathway is the binding of  insulin with its membrane re-
ceptor, the insulin receptor (IR). IR is a heterotetrameric 

complex of  two subunits: α-subunit, and β-subunit that 
possess a transmembrane domain and an intracellular 
part. Binding of  insulin to α subunits of  IR induces a 
rapid conformational change in the receptor. This in 
turn stimulates the intrinsic tyrosine kinase activity of  
the β subunit resulting in trans-autophosphorylation of  
tyrosine residues in the intracellular region of  the β sub-
units[40]. As a result of  this autophosphorylation, the IR 
becomes catalytically active and promotes the tyrosine 
phosphorylation of  a number of  cellular proteins includ-
ing the IR Substrate (IRS) proteins.

IRS proteins are major physiological targets of  the ac-
tivated insulin receptor kinase. Six different IRS isoforms 
have been identified so far[41]. In skeletal muscle and adi-
pose tissue, IRS1 is the isoform that mediate insulin sig-
naling. In the liver, however, IRS2 is the one that drives 
insulin metabolic functions. In the pancreas, IRS2 is an 
important regulator of  cell growth and regeneration[41]. 
Studies have also shown that both IRS3 and IRS4 can be 
activated in response to insulin and insulin-like growth 
factor 1 (IGF1)[42] and that IRS3 can mediate insulin sig-
naling in adipocytes[42]. Mice lacking either IRS3 or IRS4, 
however, display no major phenotype, suggesting that 
neither isoform plays a direct role in controlling glucose 
metabolism[43,44] but may rather act as negative regulators 
of  the IGF1 signaling pathway by suppressing the func-
tion of  other IRS isoforms[45].

One key molecule that is activated by the IRSs in 
response to insulin is phosphoinositide-3-kinase (PI3K). 
PI3K is a lipid kinase, which phosphorylates the D3 po-
sition of  the inositol ring within inositol lipids resulting 
in the generation of  3-phosphoinositides (e.g., PI-3P, PI-
3,4P2, and PI-3,4,5P3). Eight mammalian isoforms of  
PI3K exist and they are grouped into three classes on the 
basis of  their substrate specificity and structure: class Ⅰ, 
class Ⅱ, and class Ⅲ. Only class Ⅰ can phosphorylate 
phosphatidylinositol, 4, 5-bisphosphate (PIP2)[46]. Follow-
ing PI3K activation, PIP3 is generated from the substrate 
PIP2. PIP3 binds a protein displaying a PH domain and 
called the 3-phosphoinositide-dependent protein Kinase 
1 (PDK1). Activated-PDK1 triggers downstream targets 
such as protein kinase B (PKB/Akt)[47].

PKB/Akt also called Akt is the third central node 
activated by insulin. It plays a crucial role in mediating 
signaling effects on metabolism, cell growth and cell 
cycle[48,49]. PKB/Akt has three isoforms: PKBα/Akt1, 
ubiquitously expressed, PKBβ/Akt2 mostly present in in-
sulin responsive tissues (liver, adipose tissue and muscle), 
and PKBγ/Akt3 predominant in the brain. PKBβ/Akt2 
is the isoform implicated in the regulation of  glucose 
metabolism since neither PKBα Akt1 nor PKBγ/Akt3 
ablation affects glucose metabolism[50].

PKB/Akt is activated through PI3K-produced PIP3 
which binds its PH domain. Then, PKB/Akt is recruited 
to the plasma membrane where it is activated by phos-
phorylation on two critical sites: threonine 308 (T308) in 
the activation loop and serine 473 (S473) in the hydropho-
bic motif[51]. PDK1 phosphorylates PKB/Akt on T308. 
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disease[70,71]. Elevated DAG content and activation of  
protein kinase C (PKC)ε has been associated with hepatic 
insulin resistance and the involvement of  this “lipid-
activated pathway” has been validated through the use of  
antisense oligonucleotide against PKCε in rats. Knocking 
down PKCε expression in liver protected rats from lipid-
induced hepatic insulin resistance, despite increase in he-
patic lipid content[72].

Several studies have decrypted the mechanism by 
which DAG-activated PKCs inhibit insulin signaling in 
liver. They show that IRS proteins are likely to be PKC’s 
preferential targets. DAG-activated PKCs inhibit IRSs ac-
tivity through their phosphorylation on several serine res-
idues, preventing consequently insulin activation of  IRSs 
through their phosphorylation on tyrosine residues[73-75].

In muscle, however, data are contradictory. Itani et 
al[76] were the first to point out the positive association 
between DAG content and muscle insulin resistance by 
comparing a group of  subject receiving a lipid infusion 
to a control group. Lipid infusion resulted in a 3-fold 
increase in total DAG content in muscle, and reduced 
insulin sensitivity. Straczkowski et al[77] observed that total 
muscle DAG concentrations were higher in obese com-
pared to lean controls and lean offspring type 2 diabetics, 
and this increased DAG content was inversely related to 
insulin sensitivity. Other studies have also confirmed this 
correlation[78,79].

However, the association between DAG and muscle 
insulin resistance is still questioned. Indeed, Vistisen et 
al[80] performed muscle biopsies during glucose clamps 
and they observed a reduction in insulin sensitivity af-
ter lipid infusion, without any changes in muscle DAG 
content. These results were confirmed by Anastasiou et 
al[81] that compared obese type 2 diabetic patients to non-
diabetics subjects and found no difference in muscle 
DAG content between the groups. Similarly, Perreault et 
al[82] compared insulin resistant obese patients to glucose 
tolerant obese patients and again found no difference in 
DAG content between the groups. Even more intriguing, 
Amati el al[83] observed a two-fold increase in DAG con-
tent in insulin sensitive human muscle biopsies compared 
to insulin resistant human muscle biopsies. More recently, 
the same group showed no difference in muscle DAG 
content between lean subjects compared to obese insulin 
resistance patients[84].

Altogether, and in opposite to liver, it seems that 
DAG does not appear to be a crucial player in the onset 
of  insulin resistance in muscle, and maybe more investi-
gations are needed to really be able to conclude.

CERAMIDE AND INSULIN RESISTANCE
Ceramide biosynthesis
One of  the main sphingolipid that has been demonstrat-
ed to play a crucial role in insulin resistance is ceramide. 
During obesity, ceramide is mainly generated from long 
chain fatty acyl-CoAs[85,86], and has been shown to be tox-
ic lipid when it accumulates in tissues during obesity[87-89].

The kinase that phosphorylates the S473 site is the com-
plex mammalian target of  rapamycin complex 2, a regula-
tor of  cell growth and proliferation[52].

PKB/Akt is highly activated within minutes following 
cell exposure to insulin to mediate the metabolic effects 
of  the hormone[49,53].

Indeed, principle roles of  PKB/Akt in insulin sensi-
tive tissues are to: (1) Stimulate glucose uptake in muscle 
and adipose tissue; (2) Trigger glucose storage as glyco-
gen in muscle and in the liver; (3) Stimulate the conver-
sion of  glucose excess into lipids in the liver; (4) Induce 
protein synthesis in muscle; (5) Inhibit glycogen break-
down in both muscle and liver; (6) Suppress liberation 
of  free fatty acids from adipose tissue; (7) Inhibit de novo 
production of  glucose in the liver; and (8) Impede pro-
tein breakdown in muscle (Figure 1).

Considering the crucial role PKB/Akt plays in medi-
ating insulin metabolic actions in cells, impairing PKB/
Akt activity represents the best way to compromise the 
whole system.

LIPID SECOND MESSENGER AND LOSS 
OF INSULIN SENSITIVITY
In pathological situations such as obesity and type 2 
diabetes that are characterized by insulin resistance, ec-
topic fatty acid accumulation is increased due to reduced 
mitochondrial fatty acid oxidation and to enhanced fatty 
acid uptake[54-57]. This increased fat content inversely cor-
relates with insulin sensitivity in skeletal muscle, liver and 
adipocytes[58-61].

Interestingly and depending on the degree of  satura-
tion, free fatty acid may exert different effects on insulin 
signaling. Studies have demonstrated that saturated fatty 
acids such as palmitate (16:0) and stearate (18:0) impair 
insulin sensitivity in muscle[62,63], whereas mono-unsatu-
rated fatty acids or poly-unsaturated fatty acids have no 
effect or even enhance insulin action[64-66]. Although the 
exact reasons behind these differences are unclear, stud-
ies have suggested that unsaturated fatty acids may be 
preferentially targeted for triglyceride synthesis and stor-
age, whilst saturated fatty acids may be used for synthesis 
of  critical lipid intermediates such as DAG and ceramide. 
These two lipid second messengers have been demon-
strated to mediate deleterious actions of  saturated fatty 
acids on insulin signaling.

DAG AND INSULIN RESISTANCE
DAG is a glyceride consisting of  two fatty acid chains 
covalently bonded to a glycerol molecule. DAG, interme-
diate of  both triglyceride and phospholipid metabolism, 
is an important second messenger involved in intracellular 
signaling[67].

DAG has been shown to accumulate in insulin resis-
tant liver[68,69] and studies have shown that intra-hepatic 
DAG is an important mediator of  hepatic insulin re-
sistance in obese people with nonalcoholic fatty liver 
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Ceramide is a bioactive sphingolipid that has been 
implicated in mediating or regulating many cellular pro-
cesses, including cell cycle arrest, proliferation, apoptosis, 
senescence, and stress responses. Ceramide plays also an 
important role in cell membrane structure[90].

Formation of  ceramide can be induced by different 
stimuli such as tumor necrosis factor-α, heat stress, oxida-
tive stress, ionizing radiation, and chemotherapeutics[91].

Multiple metabolic pathways converge to ceramide 
(Figure 2): (1) The de novo synthesis pathway from satu-
rated fatty acids that takes place in the endoplasmic 
reticulum; (2) The sphingomyelinase pathway that uses 
sphingomyelinase to break down sphingomyelin in the 
cell membrane to release ceramide; and (3) The salvage 
pathway in lysosomes that occurs through breakdown of  
complex sphingolipids to give sphingosine, which is then 
rescued by reacylation to form ceramide.

In time of  fatty acid plethora, the de novo ceramide bio-
synthesis pathway is the pathway that is likely to be most 
harnessed to synthesize ceramide. It occurs in the leaflet 
membrane of  the endoplasmic reticulum where ceramide 
is synthesized through a series of  reactions[92,93]. De novo 
synthesis of  ceramide begins with the condensation of  
palmitate and serine to form 3-keto-dihydrosphingosine 
(Figure 2). This reaction is catalyzed by serine palmitoyl 
transferase (SPT) and is the rate-limiting step of  the 
pathway. In turn, 3-keto-dihydrosphingosine is reduced 
to dihydrosphingosine, which is then followed by acyla-
tion by ceramide synthases (CerS) to produce dihydrocer-
amide. In mammals, six CerS isoforms are expressed and 
are called CerS 1 to 6. They carry out the same chemical 
reaction, but display distinct specificities for the acyl-CoA 
chain length they use for N-acylation[94]. Thus, CerS iso-
forms are responsible for the fatty acid composition of  
ceramide. Interestingly, several studies have shown distinct 
cellular functions for ceramides with different N-acyl 
chain length[95,96]. The final reaction to produce ceramide 
is catalysed by dihydroceramide desaturase.

Inverse relationship between ceramide content and 
insulin sensitivity
Studies in animal and models: One of  the early stud-
ies that analyzed ceramide content in obese Zucker fa/fa 
rats (rats homozygous for truncated, non-functional 
leptin receptor) was Turinsky et al[97] in 1990. The authors 
found that these rats present an increase in ceramide 
content in both muscle and liver. Increased ceramide 
content was also detected in insulin resistant models of  
rodents, as in ob/ob mice, mice fed on high fat diet, and 
in intra-lipid infused mice[85,98,99]. Altogether these reports 
illustrate the inverse relationship between ceramide and 
insulin sensitivity in rodent muscle. This association was 
also confirmed in vitro in cultured C2C12 and L6 myo-
tubes, as well as in adipocytes[99-101]. Exposing cultured 
muscle cells to saturated fatty acids (like palmitate) at-
tenuates insulin activation of  glycogen synthesis and 
glucose transport concomitantly with increasing intracel-
lular ceramide amounts[63,99]. Additionally, incubation of  
muscle cells and adipocytes with analogues of  ceramide 
mimics the inhibitory effects of  FFAs on insulin signal-
ing and suppresses insulin-stimulated glycogen synthesis 
and glucose transport[100,101].

Studies in human subjects: In accordance with data 
obtained in rodents, studies in human subjects also sup-
port the inverse relationship between ceramide accumula-
tion and insulin sensitivity. It has been shown that under 
basal conditions, total amount of  ceramide in skeletal 
muscle is increased in obese subjects compared to lean 
ones[83,84,87]. Another study performed in human skeletal 
muscle of  lean normoglycemic subjects revealed again an 
inverse relationship between muscle ceramide accumula-
tion and insulin sensitivity[102]. The same authors show 
in another study a ceramide accumulation in muscle of  
type 2 diabetic patient offsprings compared to muscle of  
control subjects[77]. Furthermore, the group of  Goodpas-
ter demonstrated that physical exercise reduces ceramide 
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content in obese and insulin resistant subjects, and this 
was correlated with improved insulin sensitivity[83,103]. Like 
in muscle, accumulation of  ceramide content in human 
adipocytes has also been demonstrated to be related to 
insulin resistance[104,105].

Altogether, these studies prove a solid association 
between insulin resistance and an increase in ceramide 
content in both muscle and adipocytes.

Unlike in muscle and adipose cells, a role of  ceramide 
in the onset of  hepatic insulin resistance is more debated. 
Indeed, some studies see no ceramide accumulation in 
fatty liver[68,70,71], making improbable these lipids as me-
diators hepatic insulin resistance. This is in contradic-
tion with another study showing increases in hamster 
hepatic ceramide levels in response to lipopolysaccharide 
administration[106]. In addition, Longato et al[107] saw a dys-
regulated ceramide metabolism in high fat diet-induced 
hepatic steatosis.

Interestingly, and in opposite to muscle and adipose 
tissue, ceramide cannot accumulate in the liver. Indeed, 
very recently, Watt et al[108] have shown that lipid infusion 
in healthy subjects resulted in a rapid hepatic secretion 
of  ceramide in the circulation, primarily within very low-
density lipoprotein[109,110], thereby protecting the liver from 
the deleterious effects of  their intracellular accumulation. 
It would be interesting, however, to assess whether lipid-
induced ceramide secretion is affected in fatty liver (ste-
atosis).

Altogether, if  ceramide does not seem to accumulate 

in liver during lipotoxic conditions, its secretion into the 
circulation could be deleterious for other peripheral tis-
sues such as pancreatic β cells and muscle cells.

Implication of ceramide in the progression of insulin 
resistance
Two methods were used to validate the implication of  
ceramide in impaired insulin sensibility: the first one 
was to inhibit ceramide production, and the second was 
to enhance ceramide metabolism towards less harmful 
sphingolipid species.

Inhibition of  ceramide production improves insulin 
sensitivity: One method used to demonstrate the role 
of  ceramide in the onset of  insulin resistance was to 
inhibit ceramide biosynthesis. The most commonly stud-
ied molecular target involved in suppressing ceramide 
production is the enzyme SPT, enzyme that catalyzes 
the initial rate-limiting step in de novo ceramide synthesis 
(Figure 3)[90]. Several potent inhibitors of  SPT have been 
documented, although the most widely used is myriocin, 
a naturally occurring fungal metabolite isolated from 
Myriococcum albomyces[111]. In studies carried out in 
vivo, administration of  myriocin was found to attenuate 
PKB/Akt inhibition in response to lipid infusion or high-
fat feeding, as well as improving glucose tolerance and 
peripheral insulin sensitivity in obese ob/ob mice and 
Zucker Diabetic Fatty rats[112-114]. As expected, these ben-
eficial effects of  myriocin were associated with reduced 
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levels of  ceramide and were reproduced when alternative 
inhibitors of  de novo ceramide synthesis such as L-cyclo-
serine (which also inhibits SPT) and Fenretinide (dihydro-
ceramide synthase inhibitor) were used[63,115].

Studies performed in vitro in myotubes confirmed 
what was observed in vivo. They demonstrated that acute 
inhibition of  SPT using myriocin ameliorates the loss in 
insulin-stimulated PKB/Akt activation in cultured L6 or 
C2C12 myotubes caused by palmitate-driven ceramide 
synthesis[62,63].

Interestingly, a very recent study shows that inhibi-
tion of  the de novo synthesis of  ceramide using myriocin 
reduces hepatic lipid accumulation in liver of  rats with 
NAFLD[116]. This inhibition of  ceramide biosynthesis is 
accompanied with decreased in both DAG and triglycer-
ide contents, resulting in amelioration of  hepatic insulin 
resistance and improvement of  glucose homeostasis[116].

Stimulation of  ceramide conversion into less harm-
ful sphingolipids improves insulin sensibility: The 
degradation of  ceramide is initiated by the action of  
ceramidase that produces sphingosine, which is then 
phosphorylated to sphingosine-1-phosphate (S1P) by 
sphingosine kinase[117]. S1P is the final metabolic prod-
uct of  sphingolipid degradation and can function as an 

intracellular second messenger or in an autocrine and/or 
paracrine manner to activate and signal through S1P re-
ceptors[118]. Interestingly, S1P itself  opposes the effects of  
ceramide on intracellular signaling. S1P has been shown 
to ameliorate insulin-stimulated glucose uptake, possibly 
through the activation of  PKB/Akt[118-121]. Therefore, 
studies have aimed at finding ways to enhance ceramide 
metabolism into S1P in muscle in order to restore their 
insulin sensitivity. Bruce et al[122] used transgenic mice 
overexpressing sphingosine kinase. They show that high 
fat fed transgenic mice display improved insulin sensitiv-
ity compared to control mice. In addition, they used a 
drug called FTY720 which inhibits ceramide synthase 
activity and decrease ceramide accumulation in skeletal 
muscle[123]. As expected, they saw an improvement of  
insulin sensitivity. FTY720 prevented muscle ceramide 
accumulation in high fat fed mice and subsequently im-
proved glucose homeostasis[124]. Other studies show that 
overexpression of  ceramidase (converting ceramide to 
sphingosine) protects from lipid-induced muscle insulin 
resistance in C2C12 myotubes[125].

Altogether, these results demonstrate that preventing 
the aberrant accumulation of  ceramide by promoting its 
metabolism into sphingosine and sphingosine-derivatives 
might restore normal insulin sensitivity and glucose me-
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tabolism in models of  insulin resistance.

Ceramide inhibitory effect on the insulin signaling 
pathway
Several studies have reported that ceramide may attenuate 
insulin-stimulated glucose transport and glycogen synthe-
sis by antagonizing early events in insulin signaling such 
as activation of  IRS-1[126] and possibly PI3K[127]. How-
ever, these results are controversial, as several groups 
reported no defects in the activation of  these molecules 
upon challenging cells with ceramide[100,101]. In contrast, a 
number of  groups suggested that PKB/Akt is the target 
of  ceramide, and that inhibition of  this kinase may ac-
count for reduced glucose transport and apoptosis ob-
served in ceramide treated cells[99-101,128]. Consistent with 
this, defects in PKB/Akt activation have been noted in a 
variety of  ceramide-treated cell types, including 3T3-L1 
adipocytes[101], foetal brown adipocytes[129], L6 rat and 
C2C12 mouse skeletal muscle[99,100], A75R5 smooth muscle 
cells[130], and MCF7 breast cancer cells[131].

Furthermore, the inhibition of  PKB/Akt by ceramide 
is not limited to experiments using exogenously sup-
plied lipids. The hormonal activation of  PKB/Akt is also 
blunted in muscle cells treated with free fatty acids in a 
manner which is dependent on the intracellular conver-
sion of  palmitate to ceramide[62,63,99]. Taken together these 
results suggest that ability of  ceramide to impair PKB/
Akt activity may be an important determinant of  insulin 
sensitivity.

A key issue is the mechanism by which ceramide 
inhibits PKB/Akt activity. Depending on the cell enrich-
ment in caveolin-enriched domain[132], ceramide inhib-
its the insulin-stimulated PKB/Akt either through the 
protein phosphatase 2A (PP2A), or via the atypical PKC 
(aPKC) pathway (Figure 3).

PP2A depended inhibition of  insulin-induced acti-
vation of  PKB/Akt: PP2A is a cytoplasmic serine/thre-
onine phosphatase ubiquitously expressed that plays an 
important role in the regulation of  diverse cellular pro-
cesses, including metabolic enzymes, hormone receptors, 
kinase cascades, and cell growth[133]. It has been shown 
that insulin inhibits PP2A in physiologic conditions[134]. In 
contrast, several groups demonstrated that ceramide acti-
vates PP2A to promote the de-phosphorylation of  PKB/
Akt[62,135,136]. Two different inhibitors of  PP2A activity, 
okadaic acid or SV40 small T antigen that binds with 
PP2A[137] were used to demonstrate the role of  ceramide-
induced PP2A inactivation of  PKB/Akt. The presence 
of  either inhibitor in cells treated with palmitate or short 
chain ceramide analogue (C2-ceramide), alleviated inhibi-
tion on PKB/Akt and re-established a normal, insulin 
signaling[62,128]. Therefore, one way for ceramide to inhibit 
PKB/Akt activity is by promoting its dephosphorylation 
at Thr308 and Ser473 through activation of  PP2A.

Atypical PKCs another ceramide-stimulated protein 
altering PKB/Akt activation: The second mechanism 

of  inactivation of  PKB/Akt by ceramide requires the 
activation of  aPKCs (PKCζ/λ). There is mounting evi-
dence in the literature suggesting that aPKC may regulate 
PKB/Akt signaling and that the relationship between the 
two kinases may be subject to modulation by ceramide. 
It is 20 years since investigators first demonstrated that 
PKCζ/λ could associate with PKB/Akt in COS-7 fibro-
blasts[138]. It has also been demonstrated that PKCζ inter-
acts directly with PKB/Akt in other cells types such as 
Chinese hamster ovary cells and COS-1 cells[139], as well 
as the BT-549 human breast cancer cell line[140].

In pathological conditions, ceramide-activated aPKCs 
impair insulin signaling. aPKCs phosphorylate PKB/Akt 
on its Thr34/Ser34 residue (Thr34 in PKBα and PKBβ, 
Ser34 in PKBγ), thus preventing PIP3 to bind the kinase 
on its PH domain, and to translocate to the plasma mem-
brane and its subsequent activation in response to insu-
lin[132,141,142]. Based on these observations, it was proposed 
that an increase in intracellular ceramide leading to the 
activation of  aPKCs promotes the stabilization of  the 
aPKC-PKB/Akt complex and attenuates the recruitment 
of  PKB/Akt to the plasma membrane as a result of  dis-
rupted PIP3 binding (Figure 3).

CERAMIDE, A THERAPEUTIC TARGET?
Mechanisms by which saturated fatty acids act on insulin 
signaling are now getting clearer. They involve several lip-
id and protein intermediates that play an essential role to 
mediate the deleterious effects of  accumulated saturated 
lipids in insulin sensitive tissues. Thus, two main options 
exist to counteract the action of  these fatty acids on insu-
lin signaling: (1) acting on ceramide downstream signaling 
targets (aPKCs or PP2A); or (2) modulating directly ce-
ramide content[143]. Considering the large involvement of  
both aPKCs and PP2A in numerous paths[144,145], it would 
be more logical to try to directly inhibit the accumulation 
of  ceramides in tissues. Several problems would arise 
with a complete inhibition of  ceramide biosynthesis since 
these bioactive sphingolipids are in the center of  sphin-
golipid metabolism. Indeed, ceramide signaling has been 
directly or indirectly involved in the diverse functions 
such as regulation of  cell growth, differentiation, senes-
cence, necrosis, proliferation, and apoptosis[90]. Therefore, 
inhibiting completely ceramide biosynthesis would be 
likely to be very harmful to the cells. Targeting specific 
ceramides species would be more appropriate since it has 
been shown that specific ceramide species could be asso-
ciated with different functions, depending upon the cell 
type[94].

Concretely, it will be important to determine which 
ceramide species accumulate under lipotoxic conditions 
and then to evaluate whether these identified ceramide 
species enhance or reduce the deleterious effects of  lipo-
toxicity in insulin sensitive tissues.

Interestingly, data existing already suggest that ce-
ramide with distinct acyl chain-length are associated with 
different cell dysfunction in lipotoxic conditions. The 
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enzyme responsible of  generating different ceramide acyl 
chain-length is the CerS. Six mammalian CerS have been 
described, with each utilizing fatty acyl CoAs of  relatively 
defined chain lengths for ceramide synthesis[94]. In pan-
creatic β-cells, C18:0, C22:0 and C24:1 ceramides induce 
apoptosis, and inhibition of  the CerS (CerS4) respon-
sible for their synthesis blocks this phenomenon[146]. In 
the liver, CerS1 and CerS6, producing mainly C16:0 and 
C18:0 ceramides are associated with insulin resistance[147], 
whereas C22:0 and C24:0 ceramides produced through 
CerS2 are rather protective[148].

In muscle cells, however, no definitive and conclusive 
investigation has been carried out to date. The expression 
of  C16:0, C18:0 and C24:0 ceramide species are increased 
in myotubes of  type 2 diabetic patients compared to lean 
donors[149]. However, one recent paper shows that over-
expression of  each CerS isoform in L6 muscle cells does 
not point out any ceramide species in the generation of  
insulin resistance[150]. Since the implication of  ceramide 
in the onset of  insulin resistance in muscle has been con-
vincingly demonstrated both in vivo and in vitro (see previ-
ous chapters), more investigations are needed before to 
make any conclusion in this tissue.

In summary, deciphering the mechanisms by which 
ceramides act negatively on insulin signaling has already 
been a step forward. However, the identification of  the 
putative ceramide species that mediates lipotoxicity in 
cells or pushing ceramides to be converted into less toxic 
lipids remains the priority in order to find a way to coun-
teract ceramide negative actions.
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Abstract
Murry et al  in 1986 discovered the intrinsic mechanism 
of profound protection called ischemic preconditioning. 
The complex cellular signaling cascades underlying this 
phenomenon remain controversial and are only partially 
understood. However, evidence suggests that adenos-
ine, released during the initial ischemic insult, activates 
a variety of G protein-coupled agonists, such as opi-
oids, bradykinin, and catecholamines, resulting in the 
activation of protein kinases, especially protein kinase C 
(PKC). This leads to the translocation of PKC from the 
cytoplasm to the sarcolemma, where it stimulates the 
opening of the ATP-sensitive K+ channel, which con-
fers resistance to ischemia. It is known that a range of 
different hypoglycemic agents that activate the same 
signaling cascades at various cellular levels can inter-
fere with protection from ischemic preconditioning. This 
review examines the effects of several hypoglycemic 
agents on myocardial ischemic preconditioning in ani-
mal studies and clinical trials.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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INTRODUCTION
In the last 3 decades, the prevalence of  diabetes mel-
litus in adults 18 years and older has increased 2-fold[1]. 
Approximately 50%-60% of  patients with diabetes die 
from cardiovascular disease (CVD)[2]. Among various 
CVDs, acute myocardial infarction (AMI) has a high rate 
of  mortality, and infarct size is a primary determinant of  
prognosis in these patients[3-5]. Furthermore, patients with 
diabetes are more likely than patients without diabetes to 
develop heart failure after AMI[6]. Thus, the development 
of  new cardioprotective strategies capable of  protecting 
the myocardium are imperative in order to improve clini-
cal outcomes in diabetic patients with coronary heart dis-
ease. Moreover, hyperglycemia is an important risk factor 
for coronary artery disease and death; however, the use 
of  some medications to achieve glycemic control is con-
troversial, as their use has not consistently been shown 
to reduce mortality. The University Group Diabetes Pro-
gram (UGDP) in 1970 showed that the administration of  
tolbutamide, a first-generation sulfonylurea, may increase 
the risk of  cardiovascular death[7].

As a cardioprotective strategy, ischemic precondition-
ing (IPC) has received much attention for its powerful 
infarct size-limiting effect. This intrinsic mechanism of  
profound protection was suggested by Murry et al[8] in 
1986 who found in a canine model that 4 consecutive pe-
riods of  coronary occlusion of  5 min were able to reduce 
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the infarct size by as much as 75%, after induction by a 
subsequent period of  occlusion for 40 min. For the first 
time, it was demonstrated that limitation of  infarct size 
was theoretically possible.

IPC causes 2 phases of  protection: “early” or “first 
window” and “second window of  protection” (SWOP). 
The first window protects the heart for about 2 h and 
then wanes; the SWOP appears 24 h after the initiation 
of  the IPC protocol and can last for 3 d (Figure 1)[9].

Although IPC was initially referred to as the ability 
of  short periods of  ischemia to limit infarct size, some 
investigators extended this definition to include a benefi-
cial effect on reperfusion-induced arrhythmias[10] and on 
myocardial stunning[11].

Experimental findings on IPC cannot be directly 
extrapolated to humans, because of  obvious ethical re-
strictions and because its mechanisms are different from 
those of  other animal species. IPC in human hearts has 
been demonstrated by results of  in vitro experiments using 
human ventricular myocytes[12] and atrial trabeculae[13]. In 
addition, surrogate clinical endpoints have also been used, 
including contractile function, electrocardiographic isch-
emic changes, or biochemical evidence of  cell damage.

CELLULAR MECHANISMS OF CLASSICAL 
PRECONDITIONING
The cellular mechanisms that confer resistance to isch-
emia have been extensively studied. However, these 
pathways remain controversial and are only partially un-
derstood[14,15]. It has been proposed that endogenous ade-
nosine released during the brief  ischemia of  the IPC pro-
tocol enhances the release of  G-protein coupled receptor 
(GPCR) agonists, such as opioids, adenosine, bradykinin, 
or catecholamines[16-18]. These GPCR agonists appear to 
work simultaneously and in parallel to provide redun-
dancy to the preconditioning stimulus. Although these 3 
receptors trigger signaling through divergent pathways, 
this signaling activates prosurvival kinase or reperfusion 
injury salvage kinase paths, including phosphatidylinositol 

3-kinase, protein kinase B, and protein kinase C[14,15]. In 
turn, it leads to the translocation of  protein kinases from 
the cytoplasm to sarcolemmal receptors[19] and mitochon-
drial membranes[20], where it phosphorylates a substrate 
protein, the ATP-sensitive K+ (KATP) channel[21]. Mari-
novic et al[22] demonstrated in mouse cardiac myocyte cells 
that the opening of  the sarcolemmal KATP channels 
plays an important role in the prevention of  cardiomyo-
cyte apoptosis during metabolic stress, and may interact 
with mitochondrial channels. Thus, opening of  KATP 
channels are strongly involved in the protection provided 
by preconditioning[23-26].

Due to the growing knowledge about the cellular 
pathways of  this important protective mechanism, we 
must consider whether IPC can be applied as a cardio-
protective therapy in ischemic heart disease patients.

PHARMACOLOGICAL INTERACTIONS
Pharmacological agents have the capacity to either in-
terfere with signaling or trigger protection. The use of  
agents capable of  mimicking the protective effects of  
preconditioning, besides brief  ischemia, may offer a more 
benign approach for eliciting cardioprotection. Agents 
commonly used in coronary disease may interfere with 
the protection of  IPC pathways. Penson et al[27] demon-
strated in rat-isolated atria and ventricles that activation 
of  beta-adrenoceptors mimics preconditioning. However, 
β-adrenoceptor blockers impair cardioprotection in ani-
mals[28]. Other agents such as Ca2+ channel blockers[29] 
and nonsteroidal anti-inflammatories may interfere with 
protection by IPC pathways[30,31]. Liu et al[16] reported 
that an adenosine receptor antagonist could block IPC 
protection and that adenosine or the A1-selective agonist 
adenosine, instead of  brief  ischemia, could duplicate IPC 
protection. Other potential candidates currently in clinical 
use include nicorandil or diazoxide[32,33]. These drugs have 
been shown to open KATP channels in ischemic cardio-
myocytes, and might act as pharmacological imitators of  
the preconditioning phenomenon.

HYPOGLYCEMIC DRUGS AND IPC
Hyperglycemia is an important risk factor for coronary 
artery disease and death. However, the use of  some hy-
poglycemic medications is controversial, because they 
have not been shown to reduce mortality. Indeed, physi-
cians face challenges regarding the use of  new agents in 
patients with diabetes who are at high cardiovascular risk. 
Several factors contribute to this concern, and among 
these is IPC. As described above, the UGDP raised con-
cerns that the administration of  tolbutamide may increase 
the risk of  cardiovascular death, but this result remained 
unexplained until data were reported suggesting deleteri-
ous effects of  some sulfonylureas (glyburide), specifically 
in the mechanisms of  IPC[23,24].

Insulin secretagogues stimulate insulin secretion by 
the shutdown of  the KATP channel in pancreatic β 
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Figure 1  Diagrammatic representation of the temporal nature of the 2 
windows of preconditioning (adapted from Baxter et al [9]). SWOP: Second 
window of protection.



cells[34]. KATP channels are composed of  2 types of  sub-
units, inwardly rectifying K+ channels (Kir6.x) and sulfo-
nylurea receptors (SURx), arranged as tetradimeric com-
plexes (Kir6.x/SURx)[35]. Closure of  the KATP channel 
results in membrane depolarization and influx of  calcium 
(Ca2+) into the β cell. The increase in intracellular Ca2+ 
causes release of  insulin from β cell secretory granules. 
KATP channels are also abundant in both cardiomyo-
cytes[36,37] and arterial smooth muscle cells[38].

The β cell and cardiac muscle KATP channels have 
been shown to possess a common pore-forming subunit 
(Kir6.2) but different sulfonylurea receptor subunits 
(SUR1 and SUR2A, respectively). Although the roles of  
KATP channel in extrapancreatic tissues are less well 
characterized, it is likely that they open in response to 
metabolic stress, such as during cardiac ischemia[39]. Thus, 
the ideal sulfonylurea for treatment of  type 2 diabetes 
would be one that interacts only with the β cell KATP 
channel.

EFFECT OF SULFONYLUREAS ON IPC
There is concern about the effect of  sulfonylureas on 
preconditioning protection. Unfortunately, little is known 
about the ability of  the clinically used insulin secreta-
gogues to interfere with IPC. To evaluate studies on the 
effects of  sulfonylureas on IPC, it is important to assess 
their selectivity for SUR receptor subtypes. These drugs 
have a range of  affinities for KATP channels with differ-
ent SUR isoform composition, resulting in different abili-
ties to stimulate the KATP channel activity. Tolbutamide 
has a high affinity for SUR 1 receptors in β cells, but a 
very low affinity for SUR 2A receptors in the myocardi-
um[40,41]. Glibenclamide (glyburide) inhibits cardiac as well 
as pancreatic receptors with high affinity[42,43]. Glimepiride 
has affinity for pancreatic and cardiac SUR comparable 
to glibenclamide, thereby, does not differentiate between 
B cells, cardiac muscle, or smooth muscle KATP chan-
nels[43,44]. In contrast, preliminary studies reported that 
glimepiride had less cardiovascular activity than gliben-
clamide had[45-48]. Several reasons seem to correlate with 
this finding and, among them, highlight the difference 
in selectivity for SUR between in vitro and in vivo studies, 
and different effects of  doses utilized in most studies and 
in treatment of  patients with type 2 diabetes mellitus. In 
addition, gliclazide, a second generation sulfonylurea, is 
distinguished by having a higher selectivity for pancreatic 
SUR receptors[43,49].

Numerous studies using animal models support the 
hypothesis that IPC is impaired by glibenclamide[23,47,50,51]. 
Studies using human hearts analyzed IPC in isolated 
human atrial muscle trabeculae, obtained from type 2 
diabetic patients treated with sulfonylureas before coro-
nary artery surgery, and noted that IPC was abolished in 
patients receiving sulfonylureas[52]. Tomai et al[53] evaluated 
IPC in 20 patients pretreated with either glibenclamide or 
placebo. They recorded ST-segment changes on ECGs 
during 2 subsequent episodes of  intracoronary balloon 
inflation. They concluded that human IPC during brief  

repeated coronary occlusions was completely abolished 
by pretreatment with glibenclamide. Similar results were 
shown when the effects of  glibenclamide and glimepiride 
were compared during balloon inflation in percutaneous 
transluminal coronary angioplasty[45,54].

Tomai et al[55] investigated the effects of  glibenclamide 
on the “warm up phenomenon”, which is a clinical 
model of  IPC. It refers to an increased tolerance to 
myocardial ischemia during the second of  2 consecutive 
exercise tests. In this study, glibenclamide abolished the 
improvement in ischemic threshold during the second ex-
ercise test, compared with placebo[55]. Ovünç[56], in a simi-
lar study reported concordant results and suggested that 
glibenclamide should be used with caution in patients 
with coronary heart disease and diabetes mellitus, be-
cause this agent leads to a decrease in ischemic threshold 
and exercise capacity. Ferreira et al[57], in a study in which 
IPC was evaluated by 2 consecutive exercise tests, also 
investigated the effects of  chronic treatment with gliben-
clamide. Forty patients with angina pectoris were allocat-
ed into 3 groups: 20 nondiabetic patients, 10 diabetic pa-
tients receiving treatment with glibenclamide for at least 
6 mo, and 10 diabetic patients receiving other treatments. 
All patients underwent 2 consecutive exercise tests. The 
results suggested that IPC protection was blocked in dia-
betic patients exposed to long-term treatment with glib-
enclamide. In a recent study, Bilinska et al[58] evaluated 64 
men, 17 nondiabetic and 47 diabetic, aged 54 ± 5 years. 
Diabetic patients were allocated into 3 groups: one treat-
ed with glibenclamide, one with gliclazide, and the other 
with diet. All patients performed 2 consecutive exercise 
tests, with 30 min between them. The authors compared 
the improvement in ischemic parameters among these 
groups of  patients and concluded that the warm-up ef-
fect was preserved in diabetic patients treated with diet, 
partially preserved in patients treated with gliclazide, and 
abolished in patients treated with glibenclamide. In con-
trast, other studies reported no effect of  treatment with 
glibenclamide on the electrocardiographic shifts of  the 
ST-segment during consecutive exercise tests[59,60].

In summary, most studies with glibenclamide (glybu-
ride) reported deleterious effects on IPC, suggesting cau-
tion with the use of  this agent in patients at high risk for 
myocardial ischemia.

In animal studies, glimepiride treatment facilitated the 
cardioprotective effect elicited by IPC[47,48,61-63]. Indeed, 
data from clinical studies is of  great interest. Experimen-
tal findings on IPC cannot be directly extrapolated to 
humans, because in humans its mechanisms are differ-
ent from those in other animal species. Thus, Klepzig et 
al[45] compared the effects of  glibenclamide, glimepiride, 
and placebo administration on ST-segment shifts during 
balloon inflation in percutaneous transluminal coronary 
angioplasty. They concluded that IPC was maintained 
after glimepiride administration and prevented after 
glibenclamide. Lee et al[46], studied the impact of  gliben-
clamide or glimepiride administration on cardioprotective 
effects in patients with and without diabetes undergoing 
coronary angioplasty. The results demonstrated that the 
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effect of  glinides on type 2 diabetic patients with coro-
nary artery disease would be of  great interest for both 
therapeutic and scientific reasons.

EFFECT OF INCRETINS ON IPC
Incretins are gut-derived peptides secreted in response 
to meals, specifically in the presence and absorption of  
nutrients in the intestinal lumen. The major incretins are 
glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic peptide. Incretin is mainly represented by 
GLP-1. The half-life of  GLP-1(7-36) in circulation is 
very brief  (1 to 2 min), as it is rapidly degraded by the en-
zyme dipeptidyl peptidase-Ⅳ (DPP-Ⅳ) to the metabolite 
GLP-1(9-36), which does not act on the GLP-1 receptor. 
GLP-1 receptors are expressed in pancreatic islet cells 
and in the kidney, lung, brain, gastrointestinal tract, and 
heart[67]. The incretin modulator class includes the GLP-1 
analogues or mimetics, which are functional agonists of  
the GLP-1 receptor. In addition, oral inhibitors of  DPP-
Ⅳ, in essence, increase the plasma concentrations of  
the biologically active form of  endogenously secreted 
incretins[68]. Bose et al[69] observed in an isolated rat heart 
model that GLP-1(7-36) is protective against myocardial 
ischemia-reperfusion injury when given either as a pre-
conditioning mimetic or at reperfusion. Although several 
investigators have reported the cardioprotective effect of  
GLP-1, there is a lack of  studies about its effects on IPC. 
Our research group compared the actions of  the DPP-Ⅳ 
inhibitor (vildagliptin) and repaglinide using an IPC pro-
tocol. The results showed that vildagliptin preserved IPC 
in 72% of  54 patients, while repaglinide maintained the 
cardioprotective response in only 17% of  42 patients[70]. 
Our group demonstrated 2 effects of  hypoglycemic 
drugs on IPC. These findings support the importance 
of  identifying underlying mechanisms of  endogenous 
myocardial protection to improve the protective effect of  
pharmacological therapy (Table 1).

EFFECTS OF GLITAZONES ON IPC
The glitazones or thiazolidinediones offer the first thera-
peutic option specifically directed at reversing the basic 
problem of  type 2 diabetes, which is resistance to insu-
lin. These drugs act on tissues such as liver and skeletal 
muscle, sensitizing them to insulin action, and thereby 
increasing glucose uptake and decreasing its hepatic out-
put. The oldest and best-studied glitazone is troglitazone, 
which was withdrawn from the market by the United 
States Food and Drug Administration (FDA) because of  
concerns about its safety. Muriglitazar, which stimulates 
both PPARγ and alpha receptors, increased adverse car-
diovascular events and was also withdrawn by its manu-
facturer after rejection by the FDA. Roziglitazone and 
pioglitazone are also drugs in the PPARγ agonist family. 
Nissen et al[71] reported in a meta-analysis a significant 
increase in the risk of  myocardial infarction with rosigli-
tazone and a trend towards increased risk of  death from 
cardiovascular causes. This information has been includ-

changes in the ST-segment and metabolic parameters 
were more severe after pretreatment with glibenclamide 
than with glimepiride, in patients with and without type 2 
diabetes.

Only a few studies[45,46] have used IPC protocols in hu-
mans to evaluate the effect of  glimepiride. To date, these 
trials have revealed beneficial effects on cardioprotective 
mechanisms.

In isolated Langendorff  perfused rat hearts, the in-
farct sizes were smaller in the group treated with glicla-
zide compared with the group treated with glibenclamide. 
However, the glimepiride group had a smaller infarct size 
than the gliclazide group[48]. In an in-vivo rat study, Mad-
dock et al[51] compared the effects of  glibenclamide and 
gliclazide on IPC and nicorandil-induced protection. The 
IPC protocol consisted of  2 cycles of  5 min of  regional 
ischemia/reperfusion preceding prolonged ischemia. Gli-
clazide had no adverse effects on IPC or on nicorandil-
induced protection. Loubani et al[64] assessed the dose-
response effect of  gliclazide and glibenclamide on IPC. 
Different doses of  glibenclamide and gliclazide were add-
ed for 10 min prior to implementation of  the IPC proto-
col. The cardioprotection was abolished by gliclazide only 
at supratherapeutic concentrations, while glibenclamide 
prevented IPC at all concentrations.

Bilinska et al[58] evaluated the effects of  diet, gliben-
clamide, or gliclazide on the warm-up phenomenon in 
type 2 diabetic patients with stable angina. They con-
cluded that the warm-up effect was partially preserved in 
the gliclazide-treated and abolished in the glibenclamide-
treated group.

The analysis of  the reported data described above 
suggests that gliclazide does not induce potentially harm-
ful IPC effects.

EFFECT OF GLINIDES ON IPC
The drugs from the glinide class are characterized as in-
sulinotropic agents with a rapid onset and short duration 
of  action. Although glinides do not have a sulfonylurea 
structure, their role as an insulin secretagogue occurs by 
binding to the Kir6.2/SUR1 complex, which leads to the 
closure of  KATP channels. 

Glinides non-selectively inhibit the pancreatic, myo-
cardial, and non-vascular smooth muscle KATP chan-
nels[65]. For these reasons, the selectivity of  glinides for 
the pancreatic compared with the cardiovascular KATP 
channels has relevance for IPC. Unfortunately, little is 
known about the ability of  the clinically used glinides 
to interfere with IPC. An original study conducted in 
our service[66], evaluated the effect of  repaglinide on the 
warm-up phenomenon. Forty-two patients with type 2 
diabetes mellitus and coronary artery disease underwent 2 
consecutive treadmill exercise tests. After 7 d of  receiving 
repaglinide, 83% of  patients no longer had myocardial 
IPC.

Due to the great difference of  in vitro selectivity ratios 
of  repaglinide and other drugs in the glinide class (miti-
glinide and nateglinide)[43,65], clinical studies assessing the 
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ed in the prescribing information for all rosiglitazone-
containing products. However, the glitazones have been 
shown to improve many of  the traditional as well as the 
emerging risk factors associated with CVD[72]. The effect 
of  the glitazones, rosiglitazone, and pioglitazone on IPC 
is still a matter of  debate in the literature, as experimental 
studies demonstrate contradictory results. Methodologi-
cal differences are one of  the reasons for that. In studies 
using rat models, pioglitazone was associated with benefi-
cial effects on cardiomyocyte injury, limiting infarct size, 
and ventricular arrhythmias[73-75]. These beneficial effects 
may be related to the opening of  mitochondrial (ATP)-
sensitive potassium channels[76] and by other kinases like 
phosphatidylinositol 3 kinase and P42/44 MAPK by 
pioglitazone[77]. On the other hand, in a porcine model, 
pioglitazone and rosiglitazone had the opposite results[78]. 
Finally, in the clinical setting, the possible actions of  the 
glitazones on IPC are still uncertain.

EFFECTS OF METFORMIN ON IPC
The cardiovascular benefits observed in diabetic patients 

with chronic coronary artery disease with the use of  
metformin[79] have also been observed in experimental 
studies, which have shown positive results of  metfor-
min in the cardiovascular system, and that includes its 
effect in IPC. It is still not completely understood how 
metformin protects IPC in the heart, but it is postulated 
that it activates some kinases involved in IPC, such as 
(AMP)-activated protein kinase[80], which increases ad-
enosine, activating cardioprotective mechanisms. Recent 
studies have also demonstrated that metformin increases 
hexokinase Ⅱ, another important kinase found in mito-
chondria, which seems to be one of  the end-effectors of  
IPC, and that ultimately protects many cell types, includ-
ing cardiomyocytes, against apoptosis and ischemic cell 
death[81]. Ischemia inhibits the loss of  hexokinase Ⅱ from 
mitochondria, consequently preventing the opening of  
the mitochondrial permeability transition pore. This pore 
is responsible for the stabilization of  the mitochondrial 
membrane potential, the prevention of  cytochrome C 
release and also the reduction in reactive oxygen spe-
cies production, which all finally lead to mitochondrial 
protection against ischemic injury[82,83]. These actions 
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Table 1  Effects of hypoglycemic drugs on ischemic preconditioning

Study Model Diabetic drug Effect

Animal studies
   Gross et al[23], 1992 Dogs Glibenclamide (glyburide) Abolished
   Toombs et al[50], 1993 Rabbits Glibenclamide Abolished
   Mocanu et al[47], 2001 Rats Glimepiride Preserved
   Maddock et al[51], 2004 Rats Glibenclamide Abolished

Glimepiride Preserved
   Hausenloy et al[61], 2013 Rats Glimepiride Preserved
   Ye et al[62], 2008 Rats Pioglitazone Preserved

Glibenclamide (glyburide) Abolished
Glimepiride Preserved

   Horimoto et al[63], 2002 Rabbits Glibenclamide Abolished
Glimepiride Preserved

   Bose et al[69], 2005 Rats Native sequenced human GLP-1 Preserved
   Zhu et al[73], 2011 Rats Pioglitazone IPC mimic
   Sasaki et al[74], 2007 Rats Pioglitazone IPC mimic
   Ahmed et al[75], 2011 Rats Pioglitazone IPC mimic
   Li et al[76], 2008 Rats Pioglitazone Preserved
   Wynne et al[77], 2005 Rats Pioglitazone IPC mimic
   Sarraf et al[78], 2012 Porcine Pioglitazone Abolished

Rosiglitazone Abolished
Human studies
   Cleveland et al[52], 1997 Atrial muscle trabeculae Glibenclamide (glyburide) Abolished
   Tomai et al[53], 1994 Human Glibenclamide Abolished
   Klepzig et al[45], 1999 Human Glibenclamide Abolished

Glimepiride Preserved
   Lee et al[54], 2002 Human Glibenclamide Abolished
   Tomai et al[55], 1999 Human Glibenclamide Abolished
   Ovünç[56], 2000 Human Glibenclamide Abolished
   Ferreira et al[57], 2005 Human Glibenclamide Abolished
   Bilinska et al[58], 2007 Human Glibenclamide Abolished

Gliclazide Partially preserved
   Bogaty et al[59], 1998 Human Glibenclamide Preserved
   Correa et al[60], 1997 Human Glibenclamide Preserved
   Loubani et al[64], 2005 Right atrial appendages Glibenclamide Abolished

Gliclazide Preserved (but abolished in supratherapeutic concentrations)
   Hueb et al[66], 2007 Human Repaglinide Abolished
   Rahmi et al[70], 2013 Human Repaglinide Abolished

Vildagliptin Preserved

GLP-1: Glucagon-like peptide-1; IPC: Ischemic preconditioning.
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associated with metabolic alterations, such as the preven-
tion of  acidosis through enhanced coupling of  glycolysis 
and glucose oxidation and inhibition of  fatty acid oxida-
tion[81], are the responsible pathways by which metformin 
protects the myocardium from ischemia, in addition to its 
well-known effects in glucose control.

CLINICAL IMPLICATIONS
Ischemic preconditioning is a complex, dynamic phe-
nomenon that can be the target of  drug activities affect-
ing the heart’s ability to adapt to ischemic stress. In the 
clinical setting, however, the literature contains conflicting 
results regarding whether the use of  conventional oral 
hypoglycemic agents affect cardiovascular mortality[84-90]. 
The findings from studies about the effects of  hypogly-
cemic drugs on IPC have implications for diabetic pa-
tients, especially for those with a high risk of  myocardial 
ischemic events, because the results infer that the myo-
cardium may or may not benefit from a cardioprotective 
response when under the influence of  such drugs. The 
most important consideration in this matter is that thera-
peutic options for diabetes treatment go beyond glucose-
lowering efficacy in populations with increased risk of  
coronary ischemic events, and further large clinical trials 
will be necessary to determine whether the interference 
with myocardial preconditioning translates into clinical 
evidence.
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Abstract
Type 2 diabetes is a complicated metabolic disorder 
with both short- and long-term undesirable complica-
tions. In recent years, there has been growing evidence 
that functional foods and their bioactive compounds, 
due to their biological properties, may be used as 
complementary treatment for type 2 diabetes mellitus. 
In this review, we have highlighted various functional 
foods as missing part of medical nutrition therapy in 
diabetic patients. Several in vitro , animal models and 
some human studies, have demonstrated that function-
al foods and nutraceuticals may improve postprandial 
hyperglycemia and adipose tissue metabolism modulate 

carbohydrate and lipid metabolism. Functional foods 
may also improve dyslipidemia and insulin resistance, 
and attenuate oxidative stress and inflammatory pro-
cesses and subsequently could prevent the develop-
ment of long-term diabetes complications including 
cardiovascular disease, neuropathy, nephropathy and 
retinopathy. In conclusion available data indicate that 
a functional foods-based diet may be a novel and com-
prehensive dietary approach for management of type 2 
diabetes.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes; Insulin resistance; Func-
tional foods; Whole grain; Legumes; Nuts; Fruits; 
Herbs or spices; Vegetables; Prebiotics; Probiotics

Core tip: Medical nutrition therapy (MNT) is a main part 
of type 2 diabetes management. Apparently the thera-
peutic and medicinal properties of foods maybe a miss-
ing step during MNT process, and could enhance the 
effectiveness of dietary management of type 2 diabetes.
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INTRODUCTION
Type 2 diabetes is a metabolic disorder characterized 
by hyperglycemia, developing insulin resistance, β-cell 
dysfunction and impaired insulin secretion[1,2]. Multiple 
metabolic disorders including impaired lipid and lipopro-
tein metabolism, oxidative stress (over production of  free 
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radicals and defect in endogenous antioxidant defense 
system), sub-clinical inflammation, vascular endothelial 
dysfunction and hypertension are commonly accompa-
nied by type 2 diabetes[3-5]; these metabolic disorders lead 
to long-term pathogenic conditions such as micro- and 
macro-vascular complications including neuropathy, reti-
nopathy, nephropathy, and a decreased quality of  life and 
an increased mortality rate[6,7].

Despite availability of  many pharmacological inter-
ventions including oral hypoglycemic agents and insulin 
therapy for diabetes management, current evidence 
shows an alarming rising trend in the occurrence of  un-
desirable complications among these patients[1].

Medical nutrition therapy (MNT) is also a main part 
of  type 2 diabetes management; estimation of  energy 
and nutrients requirements, carbohydrate counting as 
well as glycemic index and glycemic load, recommenda-
tion for dietary fats and cholesterol and protein intakes, 
explanation the foods exchange list for patients and com-
mon important recommendations for a healthy diet are 
the main components of  diet planning in type 2 diabetic 
patients[8,9]; however it is not clear whether this approach 
per se is sufficiently adequate for prevention of  long-term 
complications of  diabetes. Administration of  various 
supplements, including antioxidant vitamins, fibers, ω3 
fatty acids, numerous nutraceuticals, and herbs has also 
been proposed for glycemic control but data available 
supporting these recommendations for diabetic patients 
are insufficient[10-14]. Apparently the therapeutic and me-
dicinal properties of  foods maybe a missing step during 
MNT process, and could enhance the effectiveness of  
dietary management of  type 2 diabetes.

During the past two decades, the concept of  func-
tional food is fast expanding; functional foods beyond 
the basic nutritional functions have potential benefits to 
promote health and reduce the risk of  chronic diseases 
and have hence been given much attention[15,16]. In recent 
years, researchers have focused on properties of  the bio-
active compounds of  functional foods in the control of  
various aspects of  diabetes mellitus; some protective ef-
fects of  these compounds and food sources have been in-
vestigated in vitro and in vivo, and several clinical trials have 
even confirmed these advantages in diabetic patients[17-19].

Here, based on the multiple biological properties 
of  functional foods and their bioactive compounds, a 
functional foods-based diet has been hypothesized as a 
novel and comprehensive dietary approach for manage-
ment of  type 2 diabetes and prevention of  long-term 
complications.

RESEARCH
The evidence cited in this review was obtained through 
searches in PubMed, Scopus, and Google scholar using 
the following key words: “Type 2 diabetes or hypergly-
cemia”, “insulin resistance”, “cardiovascular disease”, 
“obesity”, “metabolic syndrome”, “oxidative stress”, “in-
flammation”, long-term diabetic complications” in com-
bination with “functional foods”, “nutraceuticals”, “bio-

active food compounds”, “fiber”, “polyphenols”, “whole 
grain”, “legumes”, “nuts”, “fruits”, “herbs or spices” 
“vegetables”, “prebiotics”, “probiotics”, and “bioactive 
peptides”. Relevant articles of  acceptable quality were 
used. Briefly, in this article we tried to highlight some 
of  the following important functional foods including 
whole grains, phytochemical-rich fruits and vegetables, 
legumes, nuts, dairy products, green tea and some spices, 
as required components of  a health-promoting diet for 
diabetic patients.

Whole grains
Grains and cereal-based products are the basic sources 
providing energy and carbohydrate in human diets. Since 
the dietary carbohydrate sources in type 2 diabetic pa-
tients play a determining role in glycemic and insulin 
secretary response, the use of  functional grains including 
whole grain cereals, and bakery products prepared using 
whole wheat, rye, oat, and barley is the first step in plan-
ning of  a functional foods-based diet.

Some previous studies report that dietary carbohy-
drate modification in patients with metabolic syndrome 
resulted in favorable metabolic consequences especially 
increased insulin sensitivity, decreased adipocyte cell size, 
and modulated expression of  adipose tissue genes in-
volved in insulin signaling pathways (insulin-like-growth-
factor binding protein-5, insulin receptors, hormone-
sensitive lipase[20,21].

Compared to refined grains, whole grains (WGs) have 
more non-digestible complex polysaccharides includ-
ing soluble and insoluble fibers, inulin, β-glucan, and 
resistant starches, as well as non-carbohydrate functional 
components including carotenoids, phytates and phytoes-
terogens, phenolic acids (ferulic acid, vanilic acid, caffeic 
acid, syringic acid, P-cumaric acid), and tocopherols. The 
most well-known protective effects of  whole grain-based 
products against obesity, type 2 diabetes, cardiovascular 
diseases, hypertension, metabolic syndrome and various 
types of  cancer, have been attributed to these bioactive 
compounds[22-25]. Among the several mechanisms avail-
able in current data regarding the beneficial effects of  
WGs and cereal-based products in diabetic patients, some 
of  the more important are that bioactive compounds of  
WGs could effectively regulate glycemic response, in-
crease insulin sensitivity, improve pancreatic β-cell func-
tions and increase insulin secretion[26,27]. High contents of  
inulin and β-glucan, main soluble and fermentable fibers 
in WGs, in addition to their hypolipidemic and hypogly-
cemic effects, act as prebiotics in the gut and modulate 
gut microbiota via stimulation of  growth and activity of  
bifidobacteria and lactic acid bacteria[28,29], effects leading 
to more metabolic responses (Figure 1).

Long-term follow-ups of  diabetic patients indicate 
that higher consumption of  whole grain, cereal fiber, 
bran, and germ were associated with decreased all-cause 
and cardiovascular disease-cause mortality[30]. Epidemio-
logical studies also confirmed that regular consumption 
of  WGs products could modify the main risk factors of  
atherosclerotic diseases including triglyceride and LDL-C 
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levels, blood pressure and serum homocysteine levels, as 
well as vascular functions, and oxidative and inflamma-
tory status[31].

Rye, a widely used grain especially in Northern and 
Eastern Europe, is considered a functional grain. The 
high fiber content of  rye products decreases digestion 
and absorption of  dietary carbohydrates, and increase 
metabolites derived from colonic fermentation of  the 
soluble fiber of  rye products, including propionic and bu-
tyric acids which effectively stimulate secretion of  insulin 
from β-cells; studies have indicated that the bioactive 
compounds of  rye (phenolic acids, tannins, benzoic acid, 
phenylalanine) derivates have a similar efficacy with anti-
diabetic drugs in insulin secretion[26,32]. In one study, the 
consumption of  rye products in the breakfast meal in-
creased colonic fermentation, decreased ghrelin levels and 
satiety rating in the late postprandial phase after breakfast 
as well as energy intake at a subsequent lunch meal, and 
improved acute glucose and insulin responses[32].

Oat meal products have also been investigated as 
healthy carbohydrate sources for diabetic patients; they 
are rich sources of  soluble fiber especially β-glucan, anti-
oxidants and bioactive compounds including carotenoids, 
phytic acid, phenolic acids (hydroxycinammic acids, caf-
feic acid, ferulic acid), flavonoids and phytosterols[33]. 
Studies show that consumption of  oat products improves 
glycemic, insulinemic, and lipidemic responses in diabetic 
patients, and act as active ingredient reducing postpran-
dial glycemia[34,35]. In diabetic animal models, oat products 
attenuated hyperglycemia-induced retinal oxidative stress, 
increased glycogen content of  liver, decreased plasma 
free fatty acids and succinate dehydrogenase activity and 
inhibited pancreatic β-cell apoptosis as well[36].

The beneficial effects of  barley and its by products 
for diabetic patients are mainly attributed to its high 
content of  β-glucan; Administration of  barley β-glucan 
extract in pre-diabetic subjects improved glucose toler-
ance and insulin resistance index[27]. In addition, barley 
may use as base of  a meal; the use of  barley combined 

with refined grains such as white rice maybe a practical 
way to attenuate their undesirable effects on glycemic 
control; in a randomized crossover study, combination of  
cooked barley with white rice dose-dependently reduced 
the area under the curves of  plasma glucose and insulin 
concentrations, suppressed postprandial decrease of  
plasma desacyl ghrelin levels and consequently increased 
satiety[37]. The hypolipidemic properties, antioxidant and 
anti inflammatory activities of  barley products have also 
been investigated[38,39]. In animal diabetic models, barley 
improved some features of  fatty liver, decreased lipid 
content of  the liver, increased fatty acid oxidation and 
adiponectin levels[40].

Several positive effects of  whole wheat and its byprod-
ucts on carbohydrate and insulin metabolism have also 
been reported; wheat bran and whole wheat products are 
rich sources of  dietary fiber, magnesium (main cofactor 
of  enzymes involved in glucose metabolism and insulin 
secretion), potassium, phenolic acids, α-tocopherols, ca-
rotenoids and antioxidants[41]. It is believed that the major-
ity of  beneficial effects of  whole wheat grain are related 
to bran and germ fractions; wheat bran is a main source 
of  fiber, lignans, phenolic acid and alkylresorcinol, and 
beyond the health promotion of  gastrointestinal tract and 
weight management, could improve postprandial glycemic 
response, glycosylated hemoglobin, lipid disorders and 
other cardiovascular risk factors in diabetic patients[42]. 
Studies showed that alkylresorcinol of  wheat bran inhib-
ited platelet activity and aggregation, decreased triglyceride 
de novo synthesis, and decreased cardiovascular disease 
risk factors[43]. Wheat germ is rich in non-digestible oligo-
saccharides, phytosterols, benzoquinone and flavonoids 
that play a potent role in induction of  antioxidant and an-
ti-inflammatory properties and modulation of  immunity 
responses[44]. Avemar, fermented wheat germ extract, had 
interesting properties in the treatment of  cardiovascular 
disease, and improved metabolic abnormalities includ-
ing hyperglycemia, lipid peroxidation and abdominal fat 
gain[45].
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Whole grains

Fructooligosaccharids, inulin,
β-glucan, resistance starches

↑ Growth and activity 
of lactobacillus and 
bifidobacteria, modulation 
of gut microbiota

↓ Production of
endotoxemic metabolites

↓ Lipogenesis, inflammation and steatosis 
in liver
↓ Macrophage infiltration in adipose tissue
↑ Insulin sensitivity in skeletal muscle

↑ Secretion of GLP-1, PYY
↓ Secretion of ghrelin

↑ Satiety and ↓ energy intake
Improve pancreatic β-cell 
function and insulin secretion

Improve glycemic control
Weight management
Improve insulin sensitivity

Figure 1  Role of prebiotic compounds of whole grains and cereal-based products in modulation of gut microbiota and con sequent metabolic effects 
could lead to better glycemic control.
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cals, and considering the colors in selection of  these food 
groups provide a wide range of  nutraceuticals. In Table 
1, some phytochemical-rich fruits and vegetables, their 
bioactive compounds and favorable effects on diabetic 
related conditions are reviewed. Studies showed that to-
mato and its by products, as main sources of  lycopene, 
β-carotene, flavonoids and other bioactive components, 
could attenuate blood pressure and dyslipidemia, decrease 
cardiovascular risk factors and enhance antioxidant de-
fense system; other sources of  lycopene and carotenoids 
such as grapefruit and watermelon have also beneficial 
properties to regulate lipid and lipoprotein metabolism, 
blood pressure and vascular function. Anthocyanins-rich 
fruits including red apple, berries family, grapes, cherries, 
red cabbage, and pomegranate have mainly hypoglycemic 
effects (↓ digestion and absorption of  dietary carbohy-
drates, ↓ postprandial glycemic response and ↓ glycosyl-
ated hemoglobin) as well as protective properties against 
oxidative damages (Table 1).

LEGUMES
Legumes (peas, beans, lentils, peanuts) are valuable 
sources of  dietary protein, non-digestible carbohydrates 
including dietary fiber, resistance starches, oligosaccha-
rides, and bioactive compounds such as functional fatty 
acids (linoleic acid, α-linolenic acid), isoflavones (daidzein, 
genistein, glycitein), phenolic acids, saponins, and phytic 
acid; some polyphenols including pelargonidin, cyanidin, 
delphinidin, and malvidin are also found in legumes[134,135]. 
Legumes are considered a component of  a healthy diet 
and there is much evidence showing that regular con-
sumption of  legumes has protective effects against 
obesity, type 2 diabetes, and cardiovascular disease[136]. 
Legumes may be considered as an important component 
of  a functional-foods based diet for management of  type 
2 diabetes. α-amylase inhibitory peptides are one of  the 
bioactive compounds in legumes and beans that reduce 
digestion and absorption of  dietary carbohydrates, and 
modulate postprandial glycemic response; other bioactive 
peptides of  grain legumes including the 7S globulin α 

chain and conglutin γ have unique properties to regulate 
lipid metabolism and normalize lipid and lipoprotein lev-
els[137]. Low glycemic index, high fiber and phytochemical 
content of  legumes have made them functional food for 
diabetic patients.

Lentils (Lens culinaris), the most consumed legume 
grains, are rich sources of  dietary fiber, slowly digestible 
starch and resistant starch, tannins, β-glucan, functional 
antioxidant ingredients, a wide range of  phenolic acids 
including gallic acid, proanthcyanidins, prodelphinidin, 
procyanidins, catechins, epicatechin, kampferol, querce-
tin, cinapic acid and apigenin[138]. Studies show that bio-
active proteins of  lentil reduce plasma levels of  LDL-C, 
triglyceride content of  the liver, and adipose tissue lipo-
protein lipase activity; moreover, polyphenols of  lentil 
could prevent angiotensin Ⅱ-induced hypertension, and 
pathological changes including vascular remodeling and 

Brown rice and its byproducts is another grain in-
vestigated as a functional food. Compared to white rice, 
brown rice has lower glycemic load and glycemic index, 
and higher content of  fiber, vitamins and minerals, phytic 
acids, polyphenols, tocopherols, tocotrienols, and other 
bioactive compounds[46]; consumption of  brown rice has 
benefits on glycemic control, dyslipidemia, endothelial 
function, abdominal obesity and liver functions in type 
2 diabetic patients[47]. Studies show that γ-orizanol found 
in brown rice modulates high-fat diet induces oxidative 
stress, improves β-cell function, enhances glucose-stim-
ulated insulin secretion and prevents the development 
of  type 2 diabetes[48]. Germinated and pre-germinated 
brown rice, as more interesting functional foods, have 
unique components including γ-amino butyric acid, and 
bioactive acylated steryl glucosides with potent anti-
diabetic properties; these bioactive components attenuate 
oxidative-induced peripheral nervous system, prevent 
diabetic neuropathy, inhibit oxidative-induced pancreatic 
β-cell apoptosis and enhance insulin secretion[49-51]. Bran 
rice, a byproduct of  brown rice, contains within 31% fi-
ber (mainly insoluble fiber), β-glucan, pectin, tocopherols, 
orizanol, ferulic acid, lutein, xanthine, vitamin K, thiamin, 
niacin, pantothenic acid, α-lipoic acid, coenzyme Q10 and 
other nutraceuticals; administration of  bran rice in dia-
betic patients reduced glycosylated hemoglobin, LDL-C 
and total cholesterol as well as increased HDL-C[52].

In conclusion, replacement of  whole grain and cereal-
based products with refined grains in diet planning may 
be an effective and practical strategy for MNT in type 
2 diabetic patients; this approach beyond the improve-
ment of  glycemic control, leads to more benefits for 
management of  other aspects of  diabetes, attenuation of  
diabetes-induced metabolic disorders, and prevents long-
term complications especially atherosclerosis and cardio-
vascular disease.

PHYTOCHEMICAL-RICH FRUITS AND 
VEGETABLES
Fruits and vegetables are rich sources of  dietary fiber 
(soluble and insoluble fiber), vitamins, and various phy-
tochemicals and play a vital role in health promotion and 
prevention of  chronic disease[53]. Dietary modification 
based on fruits and vegetables certainly is a definitely im-
portant strategy for management of  type 2 diabetes and 
prevention of  its complications; several studies indicate 
that regular consumption of  various fruits and vegetables 
in diabetic patients can lead to an improved glycemic 
control, reduced HbA1c and triglyceride levels, enhanced 
antioxidant defense system, attenuated oxidative stress 
and inflammatory markers, decreased risk of  diabetic 
retinopathy, and a lower burden of  carotid atherosclero-
sis[54-57]. Since various fruits and vegetables provide many 
different micronutrients and bioactive compounds, con-
sumption of  varied fruits and vegetables is mainly recom-
mended; it should be noted that the color of  fruits and 
vegetables reflects predominant pigmented phytochemi-
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Table 1  Bioactive compounds and functional properties of some of favorable fruits and vegetables

Ref. Possible functional properties in diabetes Main bioactive components and phytochemicals Fruits and vegetables

[58-62] ↓ Systolic and diastolic blood pressure
↑ apolipoprotein a1 and HDL-C
↓ LDL oxidation, improve diabetes-induced lipid disorders
↓ cardiovascular risk factors
↓ aldose reductase activity and cataract
↑ antioxidative enzymes activity

Lycopene, β-carotene, flavonoids, anthocyanins, 
phytoan, phyto flava, quercetin, kampferol

Tomato and its by products

[63-65] ↓ Triglyceride levels, enhance endogenous antioxidant defense 
system, regulation of appetite

Lycopene, pectin, naringin, hesperidin Grapefruit

[66-69] ↑ Nitric oxide biosynthesis, improve endothelial function
↓ blood pressure
↑ plasma arginine levels and consequently
↓ insulin resistance and adipocyte size

Lycopene, carotenoids, cytrolin Watermelon

[70-73] ↓ Absorption of dietary carbohydrate
↓ postprandial glycemia, improve pancreatic β-cell function
↓ free radical generation
↓ lipid peroxidation
↑ plasma total antioxidant capacity, prevent vascular damage, 
improve dyslipidemia

Soluble fiber, quercetin, catechins, epicatechin, 
P-cumaric acid, chlorogenic acid, gallic acid, 

phlordizin, procyanidins

Red apple, apple peel, apple 
and its by products 

[74-81] Glycemic control, inhibit α-glucosidase and α-amylase activity
↓ digestion and absorption of dietary carbohydrates
↓ insulin resistance, improve dyslipidemia
↓ postprandial oxidative stress
↓ lipid peroxidation
↑ plasma total antioxidant capacity
↓ systolic blood pressure
↑ antioxidative enzymes activity
↑ adipocytes lipolysis
↓ inflammatory processes, modulation of peroxisome 
proliferator-activated receptors

Anthocyanins, tannins, ellagitanins, α-carotene, 
β-carotene, lutein, delphinidins, pelargonidins, 
ciyanidins, catechins, hydroxy-cinnamic acid

Berries; cranberry, 
blackberry, black raspberry, 

blueberry, red raspberry, 
strawberries

[82-86] Protective effects on vascular system
↓ platelet hyperactivity and aggregation
↓ cardiovascular diseases
↓ oxidative damage
↓ rennin-angiotensin activity
↑ production of nitric oxide
↓ blood pressure
↑ bone-marrow-derived endothelial progenitor cells

Anthocyanins, resveratrol Grapes, grape by products

[87-91] ↓ Hyperglycemia
↓ HbA1c, improve lipid disorders, anti-inflammatory properties 
(inhibit cyclooxygenase)
↓ abdominal fat
↓ microalbuminuria, improve metabolic syndrome and fatty 
liver features
↓ oxidative stress
↓ production of cytokines, induction of PPARγ
↓ diabetic neuropathy

Anthocyanins, quercetin, hydroxy-cinnamic acid, 
carotenoids, melatonin, phenolic acids, gallic 

acid, lutein, xanthine, β-carotene 

Cherries

[92-95] ↓ Hyperglycemia, attenuate hyperglycemia-induced metabolic 
disorders
↓ lipid peroxidation, induction of gluthathione reductase, 
glutathione peroxidase, superoxide dismutase, delay 
progression of nephropathy
↓ inflammatory processes, improve dyslipidemia

Isothiocyanates, anthocyanins (red cabbage), 
carotenoids, lutein, β-carotene

Cabbage, Cauliflower

[96-100] ↓ Hyperglycemia
↑ endothelial nitric oxide synthase activity, inhibit angiotensin 
converting enzyme
↓ blood pressure, improve vascular function
↓ cholesterol and atherogenic lipids
↓ lipid peroxidation
↓ progression of atherosclerosis
↑ plasma total antioxidant capacity, modulate activation of 
PPARγ and nuclear factor κB
↑ activity of paraxonase 1 and HDL-C levels
↓ serum resistin levels and ameliorate obesity-induced insulin 
resistance

Anthocyanins, tannins, catechins, gallocatechins, 
punicalagin  acid, ellagic acid, gallic acid, 

oleanolic acid, ursolic acid, uallic acid

Pomegranate and its by 
products, pomegranate peel 

and seeds
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vascular fibrosis[139,140].
Beans are also other important legume grains in the 

human diet with high content of  fiber, phytate, ω3 fatty 
acids, antioxidants, phenolic compounds. The hypogly-
cemic effect of  beans (via inhibition of  α-amylase and 
β-glucosidase activity) has been reported as being similar 
to those of  anti-diabetic drugs[141-143]. Including beans 
(pinto, dark red kidney, black beans) in diet planning for 
type 2 diabetic patients effectively helps weight manage-
ment, attenuates postprandial glycemic response, and 
improves dyslipidemia[144-146].

Soybean, a rich source of  unique phytoesterogens 
(genistein, daidzein, glycitein), is another important 
functional food which has been considered in diabetes; 
the isoflavones and bioactive peptides of  soybean have 

favorable effects on glycemic control and insulin sensi-
tivity, dyslipidemia, and kidney function[147-149]. It seems 
that the anti-diabetic effects of  soybean mainly occur 
through interaction with estrogen receptors (ERs); stud-
ies show that soy isoflavones selectively bind to both 
α and β estrogen receptors; ERα is considered as key 
modulator of  glucose and lipid metabolism, and regulate 
insulin biosynthesis and secretion as well as pancreatic 
β-cell survival[150]. Soy protein could induce insulin sen-
sitivity and improve lipid homeostasis via activation of  
peroxisome proliferator-activated receptor and liver X 
receptors, and inhibition of  the sterol regulatory ele-
ment binding protein-1c[151]. Regular consumption of  soy 
products could help diabetic patients in the management 
of  dyslipidemia[152]. Soy protein and isoflavones decrease 
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[101-105] ↓ Hyperglycemia, induce insulin secretion from β-cell
↓ blood pressure, inhibit enzyme involved in cholesterol 
biosynthesis, improve dyslipidemia, prevent atherosclerosis
↓ lipid peroxidation
↓ platelet hyperactivity and aggregation, regulate glycolysis, 
gluconeogenesis and carbohydrate metabolism pathways
↑ insulin sensitivity

Allyl sulfors, flavonoids, quercetin, 
dihydroflavonols, anthocyanins (red onion)

Garlic, onions

[106-111] ↓ Endothelial macrophage activation
↓ hyperactivity and aggregation of platelet, improve vascular 
function
↓ oxidative stress and inhibit stress-sensitive signaling 
pathways
↓ digestion of dietary lipids, improve dyslipidemia
↓ pro-inflammatory cytokines
↓ lipid peroxidation

Lutein, xanthine, α-cryptoxanthin, 
β-cryptoxanthin, naringenin, hesperidin, 

β-carotene, phytosterols

Citrus fruits

[112-113] ↓ Free radical generation and lipid peroxidation, binding to bile 
acids
↑ cholesterol excretion, improve lipid profile
↑ plasma total antioxidant capacity

Lutein, betaine, violaxanthine, opioid peptides 
(rubisculins), P-cumaric acid, ferulic acid

Spinach

[114-115] Improve glycemic and insulinemic response
↓ systemic inflammation
↓ cardiovascular disease risk factors

Carotenoids, pectin, oleic and linolenic acids Pumpkin

[116] Improve hyperglycemia and dyslipidemia
↑ adiponectin, antioxidant and anti-inflammatory effect

Fiber, polyphenols, chlorogenic acid, flavonoids, 
anthocyanins

Plums

[117-119] Improve dyslipidemia, anti-inflammatory properties
↓ lipid peroxidation
↑ plasma total antioxidant capacity

Soluble fiber (pectin), α-carotene, β-carotene 
lutein, phenolic acids, stilbenes

Carrots

[120-122] Inhibit α-amylase
↓ postprandial glycemia
↑ glycogen synthesis, improve dyslipidemia
↓ lipid peroxidation, protective effect against diabetic 
nephropathy

Carotenoids, quercetin, kampferol, gallic acid, 
caffeic acid, catechins, tannins, mangiferin

Mango

[123-127] Regulate carbohydrate metabolism 
(↑ glucokinase and glucose-6-phosphate dehydrogenase 
activity
↓ glucose-6-phosphatase activity)
↓ lipid peroxidation
↓ protein carbonylation
↑ antioxidant enzyme activity, improve metabolic syndrome 
features
↑ insulin sensitivity
↓carbohydrate absorption
↓ plasma free fatty acid 

Anthocyanins, alkaloid compounds (berberine, 
oxycontin)

Barberry

[128-131] Protective effects against diabetic neuropathy
↓ lipid peroxidation, induce antioxidant enzymes, protect liver 
and kidney against oxidative damage

Dietary fiber, polyphenols, acid cinnamic, 
melatonin

Date fruit

[132-133] Improve lipid and lipoprotein metabolism
↑ insulin sensitivity
↓ blood pressure

Dietary fiber, pectin, flavonoids, gallic acid, 
chlorogenic acid, catechins, anthocyanins

Figs

PPARγ: Peroxisome proliferator-activated receptor γ.
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production of  atherogenic apolipoproteins such as apo B, 
increase biosynthesis of  HDL-C, induce LDL-C recep-
tors, increase biosynthesis and excretion of  bile acids, 
decrease gastrointestinal absorption of  steroids, induce 
favorable changes in hormonal status, including the insu-
lin to glucagon ratio, and thyroid hormones which lead to 
improvement of  dyslipidemia[153,154]. Recently two bioac-
tive peptides, identified in glycinin (a main soy protein), 
have unique hypolipidemic properties. These peptides 
inhibit 3-hydroxy-3methyl glutaryl CoA reductase, key en-
zyme involved in cholesterol biosynthesis. β-conglycinin, 
another main soy bioactive protein with anti-atherogenic 
properties via regulation of  lipogenesis, decease liver 
lipogenic enzyme activity, inhibits fatty acid biosynthesis 
in liver, and facilitates fatty acid β-oxidation; other bio-
logical activities of  soy peptides include antioxidant, anti-
inflammatory, and hypotensive effect[155].

Another feature of  soybean and soy products as well 
as other legumes which may highlight them as main part 
of  a functional foods-based diet, is their established ef-
fectiveness in weigh management; since the overweight 
and obesity are the common problems in diabetic pa-
tients and main contributors in development of  insulin 
resistance, benefit from anti-obesity properties of  le-
gumes is considered another key approach in these pa-
tients. Thermogenic effects, induction of  satiety through 
some important appetite regulatory gut peptides, media-
tion in gene expression and secretion of  key adipocyto-
kines such as leptin and adiponectin, as well as inhibitory 
effects on proliferation and differentiation of  adipocytes 
are some of  the mechanisms that could explain the role 
of  legumes on weight management[140,156-159]. In conclu-
sion, considering the potential benefits of  legumes and 
its by products, regular consumption of  these functional 
foods may be an effective strategy for management of  
various aspects of  type 2 diabetes.

NUTS
Based on current evidence, nuts may play a protective 
effect against cardiovascular disease risk factors. Al-
monds, pistachios, walnuts and hazelnuts are commonly 
used nuts; these functional foods are considered as rich 
sources of  high-biological value proteins, bioactive pep-
tides, functional fatty acids (mono and poly unsaturated 
fatty acids), fiber, phytosterols, polyphenols, tocopherols 
and other antioxidant vitamins; the antioxidative effect 
of  nuts mainly is related to a high content of  α and γ 
tocopherol, phenolic acids, melatonin, oleic acid and se-
lenium, while the anti-inflammatory effect is related to 
ellagic acid, α-linolenic acid and magnesium[160,161].

Most current evidence reveals that consumption of  
nuts in type 2 diabetic patients other than improving the 
overall diet quality also has beneficial effects on postpran-
dial glycemic response following high-carbohydrate meals, 
attenuates postprandial oxidative stress and inflammatory 
processes, normalizes lipid and lipoprotein levels and 
decreases lipid atherogenicity, and improves insulin resis-
tance[162,163]. Moreover, habitual intake of  nuts could help 

to effectively manage weight especially in diabetic patients; 
the anti-obesity effects of  nuts investigated in some stud-
ies may be attributed to thermogenic effects, induction of  
satiety, decreased dietary fat absorption, and increased fat 
excretion; bioactive components of  nuts also modulate 
regulatory appetite neurotransmitters and adipose tissue 
metabolism, as well as decrease proliferation and differen-
tiation of  adipocytes, inhibit lipogenesis and induce fatty 
acid β-oxidation[164,165]. Studies show that consumption of  
nuts effectively decreases serum levels of  high-sensitivity 
C-reactive protein; a well measure of  systemic low-grade 
inflammation, interleukin 6 (a potent pro-inflammatory 
cytokine) and fibrinogen while increase plasma concentra-
tion of  adiponectin, a potent anti-inflammatory cytokine 
released from adipose tissue; dietary patterns, high in nuts, 
were also related to lower levels of  soluble inflammatory 
and cardiovascular risk markers including intercellular 
adhesion molecule 1 and vascular cell adhesion molecule 
1[166,167]. Another beneficial effect of  nuts which is impor-
tant especially in diabetic patients is favorably influence on 
endothelial function; high content of  L-arginine, a main 
precursor of  nitric oxide, as well as antioxidants and poly-
phenols could contribute to this effect[161].

In conclusion, it seems that a diet enriched with nuts 
may be an effective strategy to improve glycemic con-
trol and prevent cardiovascular disease in type 2 diabetic 
patients.

OTHER BENEFICIAL FUNCTIONAL FOODS 
AND BIOACTIVE COMPONENTS FOR 
DIABETIC PATIENTS
Although there are a large number of  natural foods, 
nutraceuticals or bioactive components that could be 
considered as functional ingredients and have beneficial 
effects for diabetes management, addressing all these is-
sues is beyond the scope of  this article. Table 2 shows 
some of  these potential functional foods including dairy 
products and probiotics, fish meat, green tea, spices are 
presented.

CONCLUSION
Type 2 diabetes is a complicated metabolic disorder with 
both short- and long-term undesirable complications as 
well as various pathogenic conditions including dyslipid-
emia, vascular dysfunction, oxidative stress, sub-clinical 
inflammation, and altered signaling pathways. Ineffective-
ness of  the current medical treatments in management 
of  long-term diabetes complications confirms that other 
complementary approaches are required; the use of  func-
tional foods and bioactive compounds is one of  these 
new approaches. Functional foods and their bioactive 
compounds could attenuate carbohydrate metabolism 
and hyperglycemia, improve pancreatic β-cell function 
and insulin secretion as well as insulin resistance, regulate 
lipid and lipoprotein metabolism and adipose tissue me-
tabolism, modulate oxidative/antioxidative balance and 
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inflammatory processes, improve weight management 
and prevent micro and macro vascular complications.

Considering the beneficial properties of  functional 
foods, it seems that diet planning based on these healthy 
foods may be considered an effective strategy for man-
agement of  various aspects of  diabetes and promotion 

of  health in diabetic patients.
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Table 2  Bioactive compounds and functional properties of some of favorable functional foods

Ref. Possible functional properties in diabetes  Main bioactive components and nutraceuticals Functional foods  

[168-179] Improve the features of metabolic syndrome, modulate gut microbiota, 
regulate satiety and food intake
↑ adiponectin, modulate adipocytokines, induce thermogenesis, lipolysis 
and β-oxidation
↑ dietary fat excretion
↓ adiposity and body weight
↓ oxidative stress and inflammatory markers, hypo-lipidemic and anti-
thrombotic effects
↑ insulin sensitivity, modulate immune responses in diabetic patients
↑ total antioxidant capacity
↓ lipid peroxidation
↓ HbA1c

Calcium, vitamin B, bioactive proteins such as 
casein and whey, immunoglobulines, bioactive 
peptides (α- and β-lactorphines, lactoferrin, 
lactoferricin, α-lactalbumin, β-lactoglobulin, 
growth factors), conjugated linoleic acids, lactic 
acid bacteria and bifidobacteria

Dairy products 
and probiotics

[180-185] Improve hypertriglyceridemia and hypertension
↓ cardiovascular disease
↓ insulin resistance and inflammation, improve glycemic management
↓ proteinuria
↓ oxidative stress, inhibit lipogenesis and induce lipolysis, induce PPARα 
and  PPARβ
↓ adiposity and weight management
↑ thermogenesis and energy expenditure, inhibit angiotensin converting 
enzyme and modulate blood pressure

Bioactive peptides, antioxidant compounds, 
ω3 fatty acids (docosahexaenoic acid, 
eicosapentaenoic acid), selenium, taurine

Fish and seafood

[186-189] Regulate cholesterol metabolism
↓ LDL oxidation, protect vascular endothelium against atherogenesis, 
inhibit platelet aggregation
↓ atherosclerosis development
↓ pro-inflammatory cytokines, activate PPARγ, improve sub-clinical 
inflammation

Oleic acid, ω3 fatty acids, Flavonoids, cinnamic 
acid, benzoic acid, lignans, cumaric acid, ferulic 
acid, tocopherols, carotenoids, oleuropein, 
oleocanthal

Olive oil

[190-193] Promote endogenous antioxidant defense system, induce superoxide 
dismutase and catalase
↓ lipid peroxidation, improve glycemic control
↑ insulin sensitivity
↓ gluconeogenesis 
↑ glycogen content
↓ glycation of collagen and fibrosis, protect cardiac muscle, regulate 
lipid metabolism as well as adipose tissue metabolism, inhibit lipogenic 
enzymes
↓ satiety
↑ thermogenesis
↓ proliferation and differentiation of adipocytes
↓ pro-inflammatory cytokines
↓ monocyte chemotactic protein-1

Polyphenols, phenolic acids, catechins, 
epigallocatechin-3-gallat, chlorophyll, 
carotenoids, pectin, plant sterols

Green tea

[194-196] ↑ Iinsulin sensitivity, improve peripheral uptake of glucose, increase 
glycolysis and gluconeogenesis, hypoglycemic and hypolipidemic effects, 
antioxidant and anti-inflammatory properties

Cinnamaldehyde, cinnamic acid, coumarin, 
catechins, epicatechin, procyanidins B-2

Cinnamon 

[197-199] Inhibit enzymes involved in inflammation including cyclooxygenase-2, 
lipoxygenase, and nuclear factor κB, inhibit α-glucosidase and α-amylase 
activity
↓ postprandial  glycemic response
↓ proteinuria, activate PPARγ and regulate carbohydrate and lipid 
metabolism,  prevent diabetic cataract

Curcuminoids, stigmasterol, β-sitosterol, 
2-hydroxy methyl anthraquinone, bioactive 
peptide turmerin

Turmeric

[200-203] Attenuate oxidative stress, protective effects against oxidative damage
↓ serum creatinine and urea, improve dyslipidemia
↓ atherogenic lipoprotein levels
↓ lipid peroxidation in renal tissue, inhibit α-glucosidase activity
↓ carbohydrate digestion and absorption, protect liver against diabetes-
induced oxidative damage

Tannins, flavonoids, anthocyanins,  phenolic 
acid, gallic acid

Sumac

PPAR: Peroxisome proliferator-activated receptor.
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factors linked with long-term survival is the absence of 
features of the metabolic syndrome and more specifi-
cally the presence of insulin sensitivity. Genetic factors 
also play a role, with a family history of longevity and 
an absence of type 2 diabetes and hypertension in the 
family being important considerations. There is thus a 
complex interaction between multiple risk factors in de-
termining which patients with type 1 diabetes are likely 
to live into older age. However, these patients can 
often be identified clinically based on a combination of 
factors as outlined above.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: People with type 1 diabetes are generally as-
sumed to have a shortened lifespan. This contention is 
supported by a number of epidemiological studies con-
firming a trend towards premature death, primarily due 
to cardiovascular disease. However, a subset of type 
1 individuals survives for many years, living for over 
50 years or more with type 1 diabetes. This review 
explores the clinical features that are linked to long-
term survival in people with type 1 diabetes, allowing 
identification of these individuals. Recognising these 
individuals will aid in assessing prognosis, and treating 
the identified risk factors could improve survival.
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INTRODUCTION
Prior to the discovery of  insulin, patients with type 1 
diabetes had an expected lifespan of  less than 3 years[1]. 
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Abstract
While the lifespan of people with type 1 diabetes has 
increased progressively since the advent of insulin 
therapy, these patients still experience premature 
mortality, primarily from cardiovascular disease (CVD). 
However, a subgroup of those with type 1 diabetes 
survives well into old age without significant morbidity. 
It is the purpose of this review to explore the factors 
which may help in identifying these patients. It might 
be expected that hyperglycaemia plays a major role in 
explaining the increased incidence of CVD and mortal-
ity of these individuals. However, while a number of 
publications have associated poor long term glycaemic 
control with an increase in both all-cause mortality and 
CVD in those with type 1 diabetes, it is apparent that 
good glycaemic control alone cannot explain why some 
patients with type 1 diabetes avoid fatal CVD events. 
Lipid disorders may occur in those with type 1 diabetes, 
but the occurrence of elevated high-density lipoprotein-
cholesterol is positively associated with longevity in 
this population. Non-renal hypertension, by itself is a 
significant risk factor for CVD but if adequately treated 
does not appear to mitigate against longevity. How-
ever, the presence of nephropathy is a major risk factor 
and its absence after 15-20 years of diabetes appears 
to be a marker of long-term survival. One of the major 
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With the advent of  modern therapy, survival has in-
creased progressively. However, those with type 1 diabe-
tes remain with an increased incidence of  coronary artery 
disease (CAD) and mortality compared to the general 
population. By 1991, reported standard mortality rates 
for those with type 1 diabetes under the age of  60 years 
were 9.1 for males and 13.5 for females[2]. Subsequently, 
a cohort of  23751 patients from the United Kingdom 
and diagnosed with diabetes under the age of  30 years 
between 1972 and 1993 were analysed for cardiovascular 
mortality up to 2000[3]. These results confirmed higher 
mortality rates at younger ages for those with type 1 dia-
betes (Figure 1). Of  interest, not only are the mortality 
rates for women with diabetes considerably higher than 
for women without diabetes, but also higher than for 
men without diabetes. Soedamah-Muthu et al[4], utilizing 
the United Kingdom General Practice research database, 
have also confirmed that the risk of  cardiovascular dis-
ease (CVD) remains high in patients with type 1 diabetes. 
Typically, patients with type 1 diabetes reach a 10-year 
risk of  fatal CVD of  5% about 10 to 15 years before 
the general population. Furthermore, incidence rates of  
CAD in type 1 patients range between 1.2% and 2% per 
year, vs 0.1% and 0.5% in the general population[5]. The 
incidence of  stroke is also increased in type 1 diabetes, 
with overall standardised incidence ratios being 17.94 for 
men and 26.11 for women[6].

It is therefore clear, that despite a better understand-
ing and treatment of  appropriate risk factors and bet-
ter general care, those with type 1 diabetes still have a 
tendency towards a shortened life span, primarily due to 
premature CVD. Yet a subgroup of  individuals with type 
1 diabetes survives well into old age in relatively good 
health. This review explores the factors that may help to 
identify these patients. This can be done either by identi-
fying a group of  long-surviving type 1 patients and ana-
lysing any unique clinical or biological features that may 
be specific to this cohort, or by assessing surrogate end-
points of  vascular disease, such as carotid artery Intima-
Media Thickness (IMT) measurement or arterial calcifica-
tion and identifying those who appear to be “protected” 
from vascular disease.

THE ROLE OF GLYCAEMIC CONTROL
Type 1 diabetes is a condition of  “pure” hyperglycaemia. 
The only abnormality is one of  β-cell failure and insulin 
deficiency in an otherwise “normal” or “healthy” indi-
vidual. It could therefore be expected that hyperglycaemia 
might play a major role in explaining the increased inci-
dence of  CVD and mortality seen in these individuals. A 
number of  publications have associated poor long-term 
glycaemic control with an increase in both all-cause mor-
tality and CVD in those with type 1 diabetes. Grauslund 
et al[7] demonstrated a direct relationship between HbA1c 
and survival. When patients were categorized into quar-
tiles of  HbA1c measurements, patients in the highest 
quartile had a significantly higher risk of  all-cause mortal-
ity, cardiovascular mortality and ischaemic heart disease 

when compared to patients in the lowest quartile (Figure 
2). While at the conclusion of  the Diabetes Control and 
Complications Trial (DCCT) there was no significant dif-
ference between the conventional and intensive treatment 
groups regarding cardiovascular outcomes or death from 
CVD, the 10-year Epidemiology of  Diabetes Interven-
tions and Complications (EDIC) follow-up demonstrated 
a significant difference between the two groups with re-
gard to both CV outcomes and death. An overall 42% risk 
reduction was seen in the previously intensively treated 
group[8]. This sustained effect of  improved control in 
the DCCT years was ascribed to “metabolic memory”. 
Patients followed in the DCCT/EDIC cohort were also 
submitted to IMT measurements, and it was demonstrat-
ed that intensive therapy during the DCCT resulted in de-
creased progression of  IMT six year after the end of  the 
trial[9]. These findings imply that early glycaemic control is 
an important factor in preventing CVD in type 1 diabetes.

However, good blood glucose levels alone cannot ex-
plain why some patients with type 1 diabetes avoid fatal 
CVD events. In the “Golden Years Cohort” of  400 type 
1 patients who survived for over 50 years with diabe-
tes[10], the mean HbA1c was 7.6% (± 1.4), with some of  
these patients having HbA1c levels as high as 8.5%-9%. 
None had an HbA1c below 7%. In addition, a number 
of  other publications have shown only a weak correla-
tion between long-term glycaemic control, CVD and 
mortality. Larsen et al[11], performed coronary angiogra-
phy on 29 asymptomatic patients with a mean duration 
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of  type 1 diabetes of  30.6 years. Of  these, 34% had sig-
nificant coronary artery stenosis. While a significant rela-
tionship existed between stenosis and glycaemic control 
(a 6.1% increase in vessel stenosis for every 1% increase 
in HbA1c over 18 years), glycaemic control was less 
significant as a risk factor than the age of  the subjects 
and the effect of  elevated serum cholesterol. In another 
cohort of  125 patients with a mean duration of  diabetes 
of  22 years[12], IMT was compared to an index of  life-
time glycaemic exposure. This demonstrated significantly 
increased IMT only on those at the highest tertile of  
glycaemic exposure. IMT measurements performed in 
148 long-surviving patients with type 1 diabetes (duration 
> 15 years)[13] showed no significant correlation between 
HbA1c and IMT, although ordinal logistic regression 
showed that for every 1% increase in HbA1c, there was 
a 27% less chance of  the IMT falling into the low-risk 
group (defined as an IMT below 0.6 mm and no plaque). 
A prospective observational study of  a meta-analysis of  
the relationship between CVD and glycaemic control[14], 
revealed an only moderate increase in cardiovascular risk 
with increasing levels of  glycated haemoglobin in per-
sons with diabetes mellitus. However, this meta-analysis 
included patients with both type 1 and type 2 diabetes. 
The data suggested that there is an increased risk of  
CVD of  15% for every 1% increase in HbA1c (RR = 
1.15; 95%CI: 0.92-1.43).

The evidence therefore suggests that while early good 
glycaemic control is important in the prevention of  CVD 
and survival, the importance of  glycaemic control may 
diminish as patients survive longer. While glycaemic con-
trol is clearly a risk factor for CAD and mortality in type 
1 diabetes, this is not the major determinant of  survival. 
Good glycaemic control alone cannot explain why some 
type 1 patients survive into old age.

LIPIDS IN TYPE 1 DIABETES
Patients with type 1 diabetes may show quantitative lipid 
disorders. There is a clear relationship between the level 
of  glycaemic control and lipid abnormalities, with an inde-
pendent correlation between HbA1c and low-density lipo-
protein (LDL)-cholesterol, non-high-density lipoprotein 
(HDL) cholesterol and triglycerides[15]. Abnormal lipid lev-
els are associated with worse cardiovascular outcomes[5]. 
The lipid profiles of  patients with well-controlled type 1 
diabetes are very different from those with poor glycaemic 
control[16], related possibly to the presence of  adequate 
peripheral insulin levels in the better controlled subjects. 
There are direct metabolic consequences of  administer-
ing insulin subcutaneously. Peripheral hyperinsulinemia 
is associated with increased lipoprotein lipase activity[17], 
which may account for reduced triglyceride levels. In addi-
tion, LDL-cholesterol may also be slightly reduced due to 
decreased very LDL production[18]. The more sensitive the 
individual is to insulin, the greater is this effect.

As might be expected, Serum LDL-cholesterol and 
non-HDL-cholesterol levels are positively associated with 
not only an increase in IMT[9], increased Arterial Stiff-

ness[19] and coronary artery stenosis[11], but also CAD and 
mortality[5,7,20]. A major factor that appears to be associated 
with prolonged survival in patients with type 1 diabetes is 
elevated HDL-cholesterol. HDL levels are often elevated 
in those with type 1 diabetes. This is more marked with 
better glycaemic control and may be due to an elevated 
lipoprotein lipase/hepatic lipase ratio (Increased periph-
eral lipoprotein lipase activity due to peripheral hyperin-
sulinemia from subcutaneous insulin administration and 
normal hepatic lipase activity). Bain et al[10] reported a high 
mean HDL-level in those surviving over 50 years with dia-
betes (1.84 ± 0.057 mmol/L), and this was associated with 
lower triglyceride levels (1.49 ± 0.79 mmol/L). In long-
surviving type 1 patients, IMT measurements showed a 
significant inverse association to HDL levels and com-
puted tomography/HDL ratios for all measure of  risk (IM 
thickness and/or plaque)[13]. A number of  other studies 
have supported the protective effects of  HDL-cholesterol 
with regard to CVD[5,7,9,11,20]. In addition to this direct as-
sociation between HDL-cholesterol and CVD, higher 
HDL-cholesterol levels may provide protection against 
the development of  albuminuria[21].

Therefore, it can be concluded that in addition to the 
expected effect of  dyslipidaemia (high LDL and non-
HDL-cholesterol), HDL-cholesterol itself  exerts a signifi-
cant protective effect on the development of  CVD in pa-
tients with type 1 diabetes and elevated HDL-cholesterol 
levels appears to play a major role in longevity in these 
patients.

BLOOD PRESSURE AS A RISK FACTOR
Hypertension in those with type 1 diabetes is often a 
manifestation of  underlying nephropathy. However, 
hypertension can also occur as a stand-alone risk factor 
(non-renal hypertension). A significant positive associa-
tion between high blood pressure and arterial stiffness 
in youth with type 1 diabetes was demonstrated in the 
SEARCH CVD Study[19].

In type 1 diabetes, hypertension without nephropathy 
has been shown to be a major risk factor for the develop-
ment of  carotid artery plaque [OR = 5.26 (P < 0.004)], 
but the effect of  hypertension on IMT was moderate 
and not significant[13]. In the DCCT/EDIC at 6 years, 
the presence of  hypertension and particularly systolic 
hypertension was significant, but had less of  an effect 
on IMT than did smoking, lipids or glycaemic control[9]. 
In the Golden years cohort[10], 29% of  the patients were 
receiving antihypertensive treatment but had nevertheless 
survived for over 50 years with diabetes.

It therefore appears as though hypertension itself, 
while a significant risk factor for CVD, if  treated does 
not mitigate against longevity in this population.

MICROVASCULAR DISEASE AS A 
MARKER OF SURVIVAL
The presence of  diabetic nephropathy, microalbuminuria 
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were blind. In relatively long-surviving people with type 
1 diabetes, the presence of  retinopathy had a significant 
association with the presence of  plaque (OR = 3.65; P 
< 0.033), independent of  glycaemic control[13]. However, 
there was no association between the presence of  reti-
nopathy and IMT measurements. It therefore appears as 
though retinopathy is not a major risk factor for CVD 
or mortality in those with type 1 diabetes, as opposed to 
those with type 2 diabetes where the presence of  retinop-
athy may indicate CAD and mortality risk[27].

With regard to peripheral neuropathy, no prospective 
trials link the presence of  neuropathy to either CAD or 
mortality other than the EURODIAB study, which did 
detect peripheral and autonomic neuropathy as risk mark-
ers for future mortality[20].

TYPE 1 DIABETES AND THE METABOLIC 
SYNDROME
There is no reason to expect patients with type 1 diabetes 
to have a lower prevalence of  obesity and the metabolic 
syndrome (MetS) than the general population and a MetS 
frequency in type 1 patients of  over 30% has been re-
ported[28]. A significant relationship exists between mor-
tality and central obesity in those with type 1 diabetes[20] 
and type 1 subjects with the MetS have been shown to 
have an increased prevalence of  macrovascular disease[29]. 
The presence of  MetS features in patients with type 1 
diabetes is associated with risk factors similar to many 
patients with type 2 diabetes, and the superimposition 
of  the insulin resistance due to obesity or the MetS in a 
patient who already has type 1 diabetes has been termed 
“Double diabetes”[30].

Identifying patients with the MetS in the presence of  
type 1 diabetes is difficult. Of  the diagnostic criteria, the 
presence of  dysglycaemia is a foregone conclusion and 
cannot be used. Hypertension should only be included if  
it is non-renal as nephropathy-induced hypertension has 
other implications as outlined above. Quantifying insu-
lin resistance is also difficult and requires a euglycaemic 
clamp study to document it properly. A derived estimate 
of  glucose disposal rate has been suggested to measure 
of  insulin resistance[31] but this includes the presence 
of  hypertension and waist-hip ratio in the formula and 
therefore cannot be used in assessing insulin resistance 
in the context of  the MetS, since both of  these variables 
are separate components of  the MetS in their own right. 
Insulin dosage provides a surrogate measurement of  
insulin resistance in these patients, and in their series of  
long-surviving type 1 patients, Distiller et al[32] arbitrarily 
chose insulin doses in the top quartile of  their series of  
patients (0.75 U/kg body weight), to be a measure of  
insulin resistance. In this series, a multiple linear regres-
sion analysis showed a significant relationship between 
waist circumference and insulin dose and carotid artery 
IMT when corrected for age of  onset, current age and 
duration of  diabetes. Interestingly, neither body mass 
index (BMI) nor HbA1c were significantly associated 
with carotid artery IMT. Overall, there was a significant 

or macroalbuminuria is a significant risk factor for CAD, 
cardiovascular mortality and all cause mortality, and there 
is a strong independent relationship between albuminuria 
and CAD (Table 1)[7]. The occurrence of  stroke in sub-
jects with type 1 diabetes is also increased by the presence 
of  nephropathy [microalbuminuria: HR = 3.2 (1.9-5.6), 
macroalbuminuria: HR = 4.9 (2.9-8.2), End Stage Re-
nal Disease: HR = 7.5 (4.2-13.3)][22]. The DCCT/EDIC 
Study showed a sustained effect of  good glycaemic con-
trol[23] on the reduction in albumin excretion 7 years after 
the conclusion of  the DCCT study, with an 83% risk 
reduction in those patients initially treated with intensive 
therapy, confirming the concept of  “metabolic memory”. 
The long-term risk of  a reduction in estimated glomeru-
lar filtration rate (eGFR) was also shown to be 50% lower 
among those who were treated early in the course of  type 
1 diabetes with intensive diabetes therapy than among 
those treated with conventional diabetes therapy[24]. The 
development of  hypertension was also delayed in the 
intensively treated group. These effects appeared to be 
largely mediated by the levels of  glycaemia achieved dur-
ing the DCCT. However, as pointed out by the authors, a 
long time elapsed between treatment intensification dur-
ing the DCCT early in the course of  the diabetes and the 
effect on eGFR, and the advantages of  improved glycae-
mic control in persons already with advanced complica-
tions may not apply. This further supports the contention 
that good glycaemic control in the early years of  the dia-
betes may be more important achieved in those who have 
had the condition for some years.

In type 1 diabetes, the peak incidence of  nephropathy 
occurs between 15 and 20 years after the development 
of  the diabetes[25,26]. Progression from microalbuminuria 
to overt neuropathy has been shown to reduce from 
45% in those with diabetes of  less than 15 years, to 26% 
in those with diabetes of  over 15 years duration. By the 
time someone has had diabetes for over 40 years, it drops 
to just 4% per year[25]. In this regard, none of  the long 
surviving patient in the “Golden Years cohort”[10] had 
evidence of  overt nephropathy.

It is therefore apparent, that those individuals with 
type 1 diabetes who are likely to survive, would remain 
free of  any evidence of  nephropathy.

No prospective studies in type 1 patients have found a 
strong independent relationship between retinopathy and 
CVD or mortality. However, the presence of  retinopathy 
increases the risk of  stroke[22]. Severe diabetic retinopathy 
was common in the “Golden Years Cohort”[10]. Forty-
three percent of  subjects had had laser therapy and 2% 
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Table 1  Cox proportional hazard models for risk of cardio
vascular disease from nephropathy (from: Grausland et al [7])

All cause mortality Cardiovascular mortality IHD

Creatinine > 120 μmol/L 5.1 6.29 4.25
Microalbuminuria   1.32 1.44 1.40
Macroalbuminuria 2.4 2.57 1.77

Distiller LA. Prognosis in type 1 diabetes

IHD: Ischaemic heart disease.



increase in IMT in type 1 subjects with the MetS (Figure 
3). A significant association was demonstrated between 
IMT risk and the number of  features of  the MetS (P = 
0.01). Fifty percent of  patients with 0-1 features had low 
risk IMT, whereas 60% of  patients with 3-4 features had 
high risk IMT measures. This finding was confirmed 
by the SEARCH CVD Study[16], a longitudinal study of  
298 youth with diabetes, where those with the MetS had 
consistently increased arterial wall stiffness when com-
pared to type 1 patients without the Syndrome and with 
the same duration of  diabetes. This was born out by 
the “Golden Years Cohort”[10], where the patients were 
generally on low doses of  insulin. The mean daily insulin 
dose was 37.5 U (± 16.2) (0.52 U/kg body weight), the 
mean BMI of  these long surviving patients was 25 kg/m2, 
and HDL-cholesterol was high and triglycerides were 
low. These features could be considered the antithesis of  
the MetS.

GENETIC FACTORS
The best predictor of  old age is the age one’s parents 
achieved. This adage was supported by the “Golden Years 
Cohort”[10], where on average, both parents of  those 
surviving 50 years with diabetes lived to over 70 years. 
Furthermore, a family history of  either type 2 diabetes or 
hypertension has been shown to result in significantly in-
creased IMT in type 1 diabetes subjects[12].

Clearly, a complex interaction exists between multiple 
risk factors in determining which patients with type 1 dia-
betes are likely to live into older age (Figure 4). However, 

these patients can often be identified clinically based on a 
combination of  factors (Table 2).

CONCLUSION
While the longevity of  those with type 1 diabetes has im-
proved considerably over the past century, these patients 
remain with a reduced life expectancy compared to the 
non-diabetic population. Nevertheless, a subgroup of  
these individuals may survive into older age despite their 
diabetes. Certain clinical and biochemical features can 
identify these people. This understanding may provide 
clinicians with further evidence that correction of  modi-
fiable risk factors like glycaemic control, blood pressure 
control, avoidance of  excessive weight gain and lipid con-
trol is vital in ensuring the ongoing longevity of  patients 
with type 1 diabetes.
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Lower blood pressures
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 HDL: High density lipoprotein.
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Abstract
Growing prevalence of diabetes (type 2 as well as type 
1) and its related morbidity due to vascular complica-
tions creates a large burden on medical care worldwide. 
Understanding the molecular pathogenesis of chronic 
micro-, macro- and avascular complications mediated 
by hyperglycemia is of crucial importance since novel 
therapeutic targets can be identified and tested. Thia-
mine (vitamin B1) is an essential cofactor of several 
enzymes involved in carbohydrate metabolism and 
published data suggest that thiamine metabolism in 
diabetes is deficient. This review aims to point out the 
physiological role of thiamine in metabolism of glucose 
and amino acids, to present overview of thiamine me-
tabolism and to describe the consequences of thiamine 
deficiency (either clinically manifest or latent). Further-
more, we want to explain why thiamine demands are 
increased in diabetes and to summarise data indicat-
ing thiamine mishandling in diabetics (by review of 
the studies mapping the prevalence and the degree of 

thiamine deficiency in diabetics). Finally, we would like 
to summarise the evidence for the beneficial effect of 
thiamine supplementation in progression of hypergly-
cemia-related pathology and, therefore, to justify its 
importance in determining the harmful impact of hy-
perglycemia in diabetes. Based on the data presented it 
could be concluded that although experimental studies 
mostly resulted in beneficial effects, clinical studies of 
appropriate size and duration focusing on the effect of 
thiamine supplementation/therapy on hard endpoints 
are missing at present. Moreover, it is not currently 
clear which mechanisms contribute to the deficient ac-
tion of thiamine in diabetes most. Experimental studies 
on the molecular mechanisms of thiamine deficiency 
in diabetes are critically needed before clear answer to 
diabetes community could be given.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes; Thiamine; Vitamin B1; Transke-
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Core tip: Published data suggest deficient action of thi-
amine in diabetes, however, it is not currently clear by 
which mechanisms. Plasma levels might be decreased 
in diabetics (although renal function has a prevailing 
effect), nevertheless, intracellular concentration of thia-
mine diphosphate is the crucial parameter and there is 
not a direct relationship with the plasma thiamine since 
the rate of transmembrane transport (via  thiamine 
transporters) and intracellular activation by thiamine 
pyrophosphokinase might affected by hyperglycemia 
at first place. Experimental studies on the molecular 
mechanisms of thiamine deficiency in diabetes are criti-
cally needed before clear answer to diabetes commu-
nity could be given.
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INTRODUCTION
Diabetes mellitus, the most common metabolic disease 
resulting from insufficient insulin action (either absolute 
or relative), is characterized by various degree of  chronic 
hyperglycemia and is often accompanied by specific 
microvascular complications including nephropathy, 
retinopathy and neuropathy. Diabetes also substantially 
increases the risk of  macrovascular complications (coro-
nary heart disease, stroke and peripheral vascular disease). 
Both micro- and macrovascular complications affecting 
diabetic patients are associated with reduced quality of  
life and contribute substantially to considerable morbidity 
and mortality.

Hyperglycemia (the cumulative exposure to excess 
of  glucose as well as individual pattern of  glucose fluc-
tuation) together with increased availability of  free fatty 
acids (a consequence of  deregulated lipolysis in adipose 
tissue as well as their “spill over” in case of  adipocyte 
saturation in obese subjects) are the two dominant meta-
bolic alterations characterising gluco- and lipotoxicity in 
diabetes and are causally responsible for the development 
of  vascular complications.

Although selected aspects of  thiamine metabolism 
abnormalities in relation to diabetes has been reviewed 
earlier[1,2], comprehensive view and findings from recent 
studies were not included. In this review we therefore 
aim (A) to point out the physiological role of  thiamine 
in metabolism of  glucose and amino acids, to present 
overview of  thiamine metabolism and to describe the 
consequences of  thiamine deficiency (either clinically 
manifest or latent). Furthermore, (B) we want to explain 
why thiamine demands are increased in diabetes and to 
summarise data indicating thiamine mishandling in dia-
betics (review of  the studies mapping the prevalence and 
the degree of  thiamine deficiency in diabetics). Finally, (C) 
we would like to summarise the evidence for the benefi-
cial effect of  thiamine supplementation in progression of  
hyperglycemia-related pathology and, therefore, to justify 
its importance in determining the harmful impact of  hy-
perglycemia in diabetes.

PHYSIOLOGICAL ROLE OF THIAMINE 
IN GLUCOSE METABOLISM, THIAMINE 
METABOLISM AND CONSEQUENCES OF 
ITS DEFICIENCY
Role of thiamine in energy metabolism 
Thiamine (vitamin B1) is a water soluble vitamin that be-

longs to the large group of  B vitamins. Several forms of  
thiamine exist: (1) free thiamine; (2) thiamine monophos-
phate (TMP); (3) thiamine diphosphate (TDP); (4) thia-
mine triphosphate; and (5) adenosine thiamine triphos-
phate. The active form of  thiamine-TDP-together with 
magnesium is an essential cofactor of  several enzymes 
important for carbohydrate [transketolase (TKT), pyru-
vate dehydrogenase and α-ketoglutarate dehydrogenase] 
and amino acid (branched-chain α-keto acid dehydroge-
nase) metabolism[3].

Overview of thiamine metabolism
As thiamine is an essential micronutrient for humans 
its needs are supplied from diet rich in thiamine, such 
as yeast, pork, legume and cereal grains. Enzyme called 
thiaminase I (EC2.5.1.2), present in raw fish, shellfish, 
tea and coffee, decreases thiamine absorption. Thiamine 
is absorbed in the small intestine, predominantly in the 
duodenum. Thiamine esters are hydrolysed by pancre-
atic nucleotide pyrophosphatase (EC3.6.1.9) or alkaline 
phosphatase (EC3.1.3.1) to form unphosphorylated 
thiamine that is taken-up by enterocytes via thiamine 
transporters at low concentrations or via passive diffusion 
at higher concentrations[4]. Within enterocyte thiamine is 
phosphorylated by thiamine pyrophosphokinase (TPK1, 
EC2.7.6.2) to TDP preventing its return back to the in-
testinal lumen. Most of  the TDP must be hydrolysed to 
cross the basolateral membrane using specific ATP-de-
pendent transporter or reduced folate carrier 1 (RFC-1)[5]. 
Thiamine and TMP are the most abundant forms in plas-
ma. Uptake of  thiamine and TMP by cells is mediated 
by specific thiamine transporters 1 (THTR1 encoded by 
SLC19A2 gene) and 2 (THTR2 encoded by SLC19A3) 
and RFC-1. Majority of  thiamine in the cytoplasm (ap-
proximately 90%) is phosphorylated by TPK1 to TDP 
and used as a cofactor of  cytosolic enzymes while the 
rest remains unphosphorylated[3]. Most of  the TDP (ap-
proximately 90%) is transported into mitochondria via 
thiamine transporter from the solute carrier family of  
proteins encoded by the SLC25A19 gene[6]. Two muta-
tions in the SLC25A19 cause Amish lethal microcephaly, 
an autosomal recessive disorder characterized by severe 
microcephaly, delayed brain development, α-ketoglutaric 
aciduria and premature death[7]. Overview of  intracellular 
thiamine metabolism is presented in Figure 1. Thiamine 
also crosses blood-brain barrier[8] and placenta[9].

Thiamine is excreted by kidneys and its rate depends 
on glomerular filtration, tubular reabsorption and also 
on plasma thiamine concentration[10]. Normally, thiamine 
filtered in glomerulus is effectively reabsorbed in the 
proximal tubule through thiamine/H+ antiport[11]. Long-
term diuretic therapy is known to produce thiamine 
deficiency[10]. As thiamine deficiency develops, thiamine 
urinary excretion falls rapidly[12].

Thiamine deficiency
Thiamine reserves are low, limited amount (up to 30 
mg) is stored in skeletal muscle, brain, heart and kidneys. 
Thiamine stores may become depleted within weeks of  
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a deficient diet since the biological half-life of  thiamine 
is 9 to 18 d[13]. Thiamine deficiency can result from de-
creased intake (most often due to its low content in diet 
or compromised absorption), increased demands (e.g., in 
pregnancy) or increased renal loss. In developed countries 
overt thiamine deficiency due to a malnutrition is rare, 
however, occurs in various health conditions with alcohol 
abuse and chronic diseases (e.g., cancer) being the most 
common causes. Secondary thiamine deficiency can also 
accompany heart failure, severe infections or long-term 
diuretic use.

Although all cell types utilize thiamine, the nervous 
system is particularly sensitive to thiamine deficiency 
due to its role in the synthesis of  acetylcholine and 
γ-aminobutyric acid in the brain. Also the heart is strong-
ly sensitive to thiamine limitation due to the high level 
of  oxidative metabolism. Early symptoms of  thiamine 
deficiency are in general nonspecific including fatigue, 
anorexia, nausea, weight loss and depression. Serious 
thiamine deficiency can clinically manifest as beriberi, 
Wernicke’s encephalopathy or Korsakoff ’s psychosis[14]. 
Beriberi, classically categorized as dry or wet, is present 
in populations relying on diet constituting predominantly 
of  polished rice (very low thiamine content). Wet beriberi 
(also known as thiamine deficiency with cardiopathy) af-
fects primarily heart and can lead to a congestive heart 
failure with peripheral oedemas, tachycardia, dyspnoea 
and weakness[15]. Patients with dry form usually suffer 
from peripheral neuropathy leading to paralysis, weak-
ness, leg paraesthesia, wasting of  muscle and various 
other symptoms.

Thiamine deficiency is common in alcoholics as alcohol 
negatively affects thiamine uptake and intracellular phos-
phorylation, thus contributing to a marked thiamine defi-
ciency. Central nervous system manifestations of  thiamine 
deficiency in alcoholics are known as Wernicke-Korsakoff  
syndrome. The symptoms include changes of  mental sta-
tus (e.g., confusion), ocular signs (nystagmus) and ataxia. 
Thiamine deficiency in alcoholics can also be accompanied 
by severe loss of  memory denoted as Korsakoff  psychosis. 
Both symptoms commonly occurs together constituting so 

called Wernicke-Korsakoff  syndrome[16].
Intracellular thiamine deficit due to mutations in the 

gene SLC19A2 encoding for THTR1 causes thiamine-
responsive megaloblastic anaemia syndrome (TRMA)[17]. 
TRMA is an autosomal recessive disorder that typically 
manifests as megaloblastic anaemia, hearing loss and 
diabetes[18].

Supplementation in case of  proven thiamine defi-
ciency can be achieved by free thiamine that was shown 
to increase plasma thiamine levels as well as intracellular 
TDP although the rate of  thiamine transport through the 
plasma membrane is quite slow[19]. Several lipophilic thia-
mine derivatives have been synthesized (e.g., fursultiamine 
and sulbutiamine) which are able to diffuse through plas-
ma membrane independent of  transporters thus being 
more effective than free thiamine. Within the cell they are 
converted to thiamine. Benfotiamine (S-benzoylthiamine 
O-monophosphate) is another derivative with better 
availability than thiamine (reflected by higher plasma 
thiamine levels). However benfotiamine must be dephos-
phorylated to S-benzoylthiamine by ecto-alkaline phos-
phatase to become lipophilic prior crossing plasma mem-
brane. No adverse effects of  either high-dose thiamine 
or benfotiamine supplementation have been reported so 
far probably due to an efficient renal excretion or rapid 
uptake by hepatocytes with subsequent transformation to 
thiamine and release into the blood, respectively[19].

Laboratory test used for estimation of thiamine status
The two main tests routinely used for the assessment of  
thiamine status are the measurement of  erythrocyte TKT 
activity and the so called thiamine effect. The former is 
measured by a kinetic reaction without adding thiamine. 
Thiamine effect expresses the increase of  TKT activity 
after addition of  saturating amount of  thiamine to the 
reaction. The increase up to 15% is considered as normal 
thiamine status, higher increase is an indicator of  mild 
(up to 25%) or severe (more than 25%) thiamine defi-
ciency[15]. Plasma thiamine levels can also be measured al-
though they predominantly reflect thiamine intake rather 
than cellular levels. Combination of  erythrocyte TKT 
activity and thiamine effect measurement is considered as 
the most reliable indicator of  thiamine status in clinical 
settings.

DIABETES AS A STATE OF INCREASED 
DEMAND FOR THIAMINE AND THE 
EVIDENCE FOR THE ALTERED THIAMINE 
METABOLISM IN DIABETES
Consequences of hyperglycemia for thiamine availability
Diabetes of  all types is ex definitione characterised by hy-
perglycemia. Contribution of  fasting and postprandial 
glucose elevation is variable though in various degrees of  
abnormal glucose tolerance and most likely also interindi-
vidually. Increased glucose supply stimulates its intracel-
lular metabolism (glycolysis) with subsequent increase in 
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cells in high glucose conditions (26 mmol/L) decreases 
both mRNA and protein expression of  THTR1 and 
THTR2 compared to 5 mmol/L glucose[25]. Renal clear-
ance of  thiamine is increased by 8-fold in experimental 
model of  diabetes. Interestingly, increased clearance was 
prevented by high-dose thiamine supplementation[26]. 
Thiamine renal clearance is also increased in subjects with 
T1DM (by 24-fold) and T2DM (by 16-fold)[24].

Further changes of  thiamine metabolism probably oc-
cur with the development of  chronic diabetic microvas-
cular complications namely diabetic nephropathy togeth-
er with chronic kidney disease (CKD). While in diabetics 
with preserved renal function plasma thiamine levels tend 
to be lower most likely on account of  increased renal 
clearance, in subjects with CKD stages corresponding 
with renal insufficiency and failure the situation dramati-
cally changes. We have previously comprehensively stud-
ied plasma and intracellular parameters of  thiamine me-
tabolism in diabetics with the aim to dissect the complex 
relationships between the effect of  diabetes and renal 
function[27]. We reported that plasma levels of  thiamine 
and its esters and TKT activity in RBCs increased with 
severity of  diabetic nephropathy (and CKD respectively) 
being highest in subjects with end-stage renal disease, 
however, levels of  TDP in RBCs did not show propor-
tional trend. Since the effectiveness of  intracellular TDP 
production depends on substrate availability (i.e., the rate 
of  transmembrane transport via thiamine transporters) 
and TPK activity we therefore hypothesized that these 
could be the processes diminished by hyperglycemia and 
the causal reasons for the failure of  protective action 
of  PPP under hyperglycemia. While T1DM and T2DM 
patients with normal renal function have been shown 
to have a higher expression of  THTR1 and THTR2 in 
mononuclear cells compared to healthy subjects by one 
study[28], data on TPK activity and THTR2 expression in 
diabetes are missing at all. Obviously, there is still a large 
gap in our understanding of  the precise molecular mech-
anisms of  thiamine deficiency and the problem definitely 
warrants further study.

OVERVIEW OF IN VITRO, ANIMAL AND 
HUMAN STUDIES WITH THIAMINE OR 
BENFOTIAMINE SUPPLEMENTATION IN 
DIABETIC CONDITIONS
In vitro studies
Several studies explored the effect of  thiamine and/or 
benfotiamine on pathways implicated in the pathogenesis 
of  hyperglycemia-induced damage in vitro. Cultivation 
of  RBC in hyperglycemia with addition of  thiamine in-
creased activity of  TKT, decreased production of  triose 
phosphates and methylglyoxal and increased concentra-
tions of  sedoheptulose-7-phosphate and ribose-5-
phosphate[29]. Benfotiamine as well as thiamine have been 
shown to correct defective replication of  human umbili-
cal vein endothelial cells (HUVEC) and to decrease their 

the production of  reactive oxygen species (ROS) in mito-
chondria[20,21]. Overproduction of  ROS in mitochondria 
links- via inhibition of  the key glycolytic enzyme glyceral-
dehyde-3-phosphate dehydrogenase-hyperglycemia with 
activation of  several biochemical pathways involved in 
the development of  microvascular complications of  dia-
betes incl. hexosamine and polyol pathways, production 
of  advanced glycation end products (AGEs) and activa-
tion of  protein kinase C[22]. However, cells in general are 
capable of  either decreasing overproduction of  ROS by 
enzymatic and non-enzymatic antioxidant mechanisms 
and/or eliminating of  damaging metabolites and their 
substrates (generated by overloaded glycolysis) that ac-
cumulate within cells. Pentose phosphate pathway (PPP) 
is an example of  the latter mechanism. PPP represents an 
alternative pathway for glucose oxidation fulfilling three 
important functions: (1) production of  reducing equiva-
lent NADPH necessary for reduction of  oxidized gluta-
thione thus supporting intracellular antioxidant defence; 
(2) production of  ribose-5-phosphate required for the 
synthesis of  nucleotides; and (3) metabolic use of  pentos-
es obtained from the diet. PPP consists of  two branches: 
(1) irreversible oxidative branch necessary for NADPH 
and pentose phosphates production; and (2) reversible 
non-oxidative branch in which interconversion of  three 
to seven carbons containing sugars occurs. TKT (EC 
2.2.1.1), one of  the key enzymes of  non-oxidative branch 
of  PPP, can limit the activation of  damaging pathways 
through lowering availability of  their precursors. TKT 
transports two-carbon units and catalyses formation of  
ribose-5-phosphate from glycolytic intermediates. As a 
cofactor of  TKT, thiamine may have a profound effect 
on glucose metabolism through the regulation of  PPP 
and indeed, TKT activation by benfotiamine (see below) 
in endothelial cells blocked several pathways responsible 
for hyperglycemic damage and prevented development 
and progression of  diabetic complications in animal 
models[23]. The mechanism responsible for the observed 
effect upon activation of  non-oxidative reversible branch 
of  PPP by thiamine or its derivative benfotiamine was 
the diminished accumulation of  triosephosphates and 
fructose-6-phosphate induced by hyperglycemia[2].

Thiamine mishandling in diabetes
Little is known about the precise mechanisms how diabe-
tes affects thiamine metabolism. Patients with type 1 and 
2 diabetes mellitus (T1DM and T2DM) do not have a 
marked thiamine deficiency [conventionally defined as an 
increase of  TKT activity in red blood cells (RBC) higher 
than 15% after addition of  saturating amount of  TDP]. 
However, plasma thiamine levels in diabetics are de-
creased by 75% compared to healthy subjects[24]. RFC-1 
and THTR1 protein expression in RBCs obtained from 
diabetic patients (both T1DM and T2DM) is higher than 
in healthy subjects[24].

Experimental evidence suggests abnormal thiamine 
handling in the kidneys in diabetes that might be one 
of  the reasons for decreased plasma thiamine levels in 
diabetics. Incubation of  human primary proximal tubule 
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production of  AGEs induced by hyperglycemia[30]. Thia-
mine also suppressed markers of  endothelial cell damage 
(inhibited cell migration and increased von Willebrand 
factor secretion) induced by hyperglycemia in bovine aor-
tic endothelial cells[31]. Both thiamine and benfotiamine 
decreased activation of  polyol pathway (aldose reductase 
mRNA expression, enzyme activity and intracellular lev-
els of  sorbitol) while increasing expression and activity 
of  TKT in HUVEC and bovine retinal pericytes cultured 
in hyperglycemia[32]. Notably, benfotiamine restored im-
pairment of  endothelial progenitor cells differentiation 
caused by hyperglycemia[33]. Possible benfotiamine anti-
oxidant properties and protective effect on DNA have 
also been investigated. Benfotiamine prevented oxidative 
stress (probably through direct antioxidant effect) and 
also DNA damage[34]. The same study also confirmed 
that benfotiamine increased TKT expression and activity. 
Intermittent exposure of  human retinal pericytes to fluc-
tuating glucose levels induced their apoptosis, the effect 
was however prevented by thiamine and benfotiamine[35]. 
It has also been studied whether thiamine and/or ben-
fotiamine affect glucose and lipid metabolism in human 
skeletal muscle cells. Benfotiamine but not thiamine 
increased glucose oxidation while lipid oxidation and 
metabolism was influenced by neither of  the two. Benfo-
tiamine also down-regulated NADPH oxidase 4 expres-
sion[36].

Animal models
The first published study exploring the effect of  thiamine 
and benfotiamine supplementation on peripheral nerve 
function and production of  AGEs in diabetic rats found 
that benfotiamine but not thiamine had protective effect 
with respect to both processes[37]. Already mentioned key 
study provided evidence for the role of  PPP in diabetes 
showing that benfotiamine (activating TKT) inhibited 
three harmful pathways and NF-κ signalling activated by 
hyperglycemia and prevented development of  diabetic 
retinopathy in experimental rats[23]. The group of  Thor-
nalley published a series of  papers investigating the effect 
of  thiamine and/or benfotiamine supplementation on 
the development of  diabetic microvascular complica-
tions, predominantly diabetic nephropathy. They found 
that thiamine and benfotiamine were able to suppress 
the accumulation of  AGEs in the kidney, eye, nerves and 
plasma of  diabetic rats[38]. Furthermore, they reported 
that high-dose thiamine and benfotiamine therapy pre-
vented diabetic nephropathy through increased TKT ex-
pression, decreased level of  triosephosphates a decreased 
protein kinase C activation. Importantly, since no changes 
in fasting plasma glucose and HbA1c were observed 
this effect is independent of  diabetes compensation[26]. 
Furthermore, high-dose thiamine therapy had positive 
effect on diabetes-induced dyslipidaemia (preventing the 
increase of  plasma cholesterol and triglycerides but not 
high-density lipoprotein decrease). Benfotiamine and low-
dose thiamine failed to achieve the same effect[39]. They 
also quantified AGEs in plasma of  diabetic rats. Both 
thiamine and benfotiamine supplementation have been 

shown to normalize AGEs derived from methylglyoxal 
and glyoxal. On the contrary, carboxy methyl lysine and 
N-epsilon(1-carboxyethyl)lysine residues have been nor-
malized by thiamine only[40]. Finally, they quantified pro-
tein damage caused by glycation, oxidation and nitration 
in diabetic rats and found increased AGEs content in the 
diabetic kidney, eye, nerve and plasma that was reversed 
by thiamine and benfotiamine therapy. Thiamine itself  
also reversed increase of  plasma glycation free adducts. 
Both therapies reversed increased urinary excretion of  
glycation, oxidation and nitration free adducts[41]. Several 
studies evaluated the effect of  thiamine/benfotiamine 
treatment with respect to heart function in diabetes 
animal model. Benfotiamine alleviated abnormalities in 
parameters related to the contractile dysfunction in dia-
betic mouse. It also reduced oxidative stress induced by 
diabetes however production of  AGEs was unchanged[42]. 
High-dose thiamine therapy prevented diabetes-induced 
cardiac fibrosis through increased expression of  genes 
with pro-fibrotic effect and decreased matrix metallopro-
teinase activity in hearts of  diabetic rats[43]. Another study 
revealed that benfotiamine therapy protected diabetic 
mice from heart failure with several pathogenic mecha-
nism suggested including improved cardiac perfusion, 
reduced fibrosis and cardiomyocyte apoptosis[44]. Same 
authors found that benfotiamine improved prognosis of  
diabetic mice after myocardial infarction in terms of  sur-
vival, functional recovery, reduced cardiomyocyte apop-
tosis and neurohormonal activation[45]. The same was true 
for control non-diabetic mice probably due to increased 
activity of  pyruvate dehydrogenase in hearts of  diabetic 
rats by thiamine treatment. Subsequent in vitro experiment 
revealed that responsible molecular mechanism may be 
suppression of  O-glycosylated protein[46]. Both in vitro and 
in vivo benfotiamine supplementation had positive effect 
on cardiac progenitor cells in terms of  their prolifera-
tion, abundance, functionality and TKT activity (all listed 
parameters being compromised by hyperglycemia)[47]. In 
mouse diabetes model of  limb ischemia benfotiamine 
increased TKT activity, prevented toe necrosis, improved 
perfusion and restored vasodilation. Moreover, benfo-
tiamine prevented accumulation of  AGEs in vessels and 
inhibited pro-apoptotic caspase-3 in muscles[48]. Another 
work assessed cerebral oxidative stress in diabetic mice. 
Benfotiamine was found to lower oxidative stress (esti-
mated as reduced/oxidized glutathione) however levels 
of  AGEs, protein carbonyl and tumor necrosis factor-α 
were unchanged[49]. Administration of  benfotiamine and 
fenofibrate alone or in combination attenuated endothe-
lial dysfunction and nephropathy in diabetic rats. Lipid 
profile however was normalized only by fenofibrate not 
by benfotiamine[50].

Human studies
Only few studies in diabetic patients have been published 
so far that explored the effect of  thiamine or benfo-
tiamine treatment on hard endpoints, i.e., development or 
progression of  clinically manifest diabetic complications, 
namely kidney disease and neuropathy. In the pilot study, 
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high-dose thiamine therapy for 3 mo significantly de-
creased urinary albumin excretion (UAE) without affect-
ing glycaemic control, lipids and blood pressure in T2DM 
patients[51]. In another study however, 3 mo of  benfo-
tiamine therapy improved thiamine status (assessed as a 
TKT activity and the whole blood thiamine concentra-
tion) but did not change UAE and/or kidney marker of  
tubular damage in T2DM patients[52]. The same authors 
also determined AGEs production and markers of  en-
dothelial dysfunction and low-grade inflammation in the 
same cohort. Benfotiamine did not affect any of  the as-
certained markers[53]. In patients with diabetic neuropathy, 
short-term benfotiamine therapy was found to improve 
neuropathy score and to decrease the pain perception[54]. 
In the recent study, long-term (1 year) benfotiamine ther-
apy did not affect peripheral nerve function and soluble 
inflammatory markers (e.g., interleukin-6 or E-selectin) 
despite significantly increasing the whole blood levels of  
thiamine and TDP in T1DM patients[55]. This study was 
however criticized for inappropriate study design and 
definition of  end-points[55]. Several other studies in hu-
man diabetics explored various surrogate markers related 
to pathologic processes occurring in hyperglycemia, the 
results are summarized in Table 1.

CONCLUSION
Since glucose metabolism depends on thiamine as an 
enzyme cofactor, it is biologically feasible to suppose that 
adequate thiamine supplementation in diabetics might 
have a profound effect on metabolic compensation and 
thus development of  vascular complications. It could 
also possibly influence earlier stages of  abnormal glucose 
tolerance such as components of  metabolic syndrome. 
Data on surrogate markers of  endothelial dysfunction 
and cardiovascular disease indicate that thiamine could 
be of  interest also for the broader spectrum of  diseases 
apart from diabetes. While experimental studies mostly 
resulted in beneficial effects clinical studies of  appropri-
ate size and duration focusing on the effect of  thiamine 
supplementation/therapy on hard endpoints are miss-
ing at present. Moreover, it is not currently clear which 
mechanisms contribute to the deficient action of  thia-

mine most. Based on the data presented boosting solely 
plasma levels might not be the right way to go since 
intracellular TDP levels are not a mere reflection of  the 
plasma levels of  their precursor. Apparently experimental 
studies on the molecular mechanisms of  thiamine defi-
ciency in diabetes are critically needed before giving clear 
answer to diabetes community.
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Abstract
Diabetes is the sixth leading cause of death in the Unit-
ed States. To date, most research and resulting clinical 
strategies have focused on the individual with short-
term health improvements that have not been main-
tained over time. Researchers more recently have rec-
ognized the need to consider the social determinants of 
diabetes and health along with individual factors. The 
purpose of this literature review is to examine current 
understanding of the social determinants affecting dia-
betes and health. A search of medical and nursing liter-
ature was conducted using PubMed, PsychInfo, CINAHL 
and MEDLINE databases, selecting articles published 
between 2000 and 2013. Search terms included: type 
2 diabetes, social determinants, and health determi-
nants. Inclusion criteria were: English language, human 
studies, social determinants of diabetes and health, 
and research in the United States. Additional search 
methods included reference chaining of the literature. 
Twenty research articles met the inclusion criteria for 
the review and analysis and included quantitative and 
qualitative methods. All studies selected for this review 
were descriptive in nature (n  = 20). Fifteen studies 
were quantitative studies and five were qualitative 
studies. No intervention studies met inclusion criteria. 
Each study is summarized and critiqued. Study findings 
indicate that external or upstream factors consistently 

affect individuals diagnosed with diabetes, influencing 
self-management. Significant methodological limitations 
result directly from small sample sizes, convenience or 
nonprobability sampling, and low statistical power.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes; Social determinants; Heal-
th determinants; Research; United States

Core tip: Social determinants of health and diabetes 
need to be considered when focusing on improving 
diabetes outcomes. Future research studies should fo-
cus on testing health outcomes of people with diabetes 
within the social determinants of health framework. 
Such research is particularly significant due to high 
rates of diabetes and subsequent disease sequelae.

Clark ML, Utz SW. Social determinants of type 2 diabetes and 
health in the United States. World J Diabetes 2014; 5(3): 296-304  
Available from: URL: http://www.wjgnet.com/1948-9358/full/
v5/i3/296.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.296

INTRODUCTION
Diabetes Mellitus affects approximately 25.6 million indi-
viduals or 11.3% of  those over age 20. It is the sixth lead-
ing cause of  death in the United States[1]. Diabetes places 
the individual at risk for serious long term complications 
including blindness, cardiovascular disease, end stage 
renal disease, hypertension, stroke, neuropathy, lower 
limb amputations, and premature death[1]. Estimated an-
nual healthcare cost in 2012 for diabetes and its resulting 
complications was $245 billion[2]. Given the consider-
able differences internationally in methods of  allocating 
health care resources, systems of  funding and/or paying 
for care, and cultural attitudes to health and health care, 
the purpose of  this review of  the literature is to examine 
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current understanding of  the social determinants affect-
ing diabetes and health in the United States, and to make 
recommendations for future research.

Historically, research and resulting clinical approaches 
focusing on the individual have led to improvement in 
self-management outcomes and reduction of  cardiovas-
cular risk factors; however, these short-term improve-
ments have not been maintained over time. Researchers 
more recently have recognized the need to consider 
factors external to the individual, namely the social de-
terminants of  diabetes and health in order to achieve the 
goal of  sustainable improvement in health outcomes[3,4]. 
For example, the United States government document 
Healthy People 2020 emphasizes the social and envi-
ronmental factors that affect the individual and his/her 
health. A Healthy People 2020 goal for the diabetes 
health indicator is to “reduce the disease and economic 
burden of  diabetes mellitus, and improve the quality of  
life for all persons who have, or at risk for diabetes”[5].

Social determinants of  health are social-ecological 
factors affecting health[6]. The person, his/her social net-
work, and cultural and environmental conditions form 
the overall framework. Constructs include external/envi-
ronmental socio-ecological influences on the individual 
(Figure 1); for example, culture, environment, education, 
working conditions, access to medical care, and com-
munity infrastructure[5]. Therefore, external or upstream 
determinants such as social support and elements of  the 
community affect the health of  the individual. Specific 
socio-ecological factors identified from this literature re-
view are examined below.

Built environment/community infrastructure
Components of  the physical environment include factors 
such as transportation, neighborhood safety, and healthy 
food. When barriers to these factors are present to in-
dividuals with diabetes, inadequate access to resources 
among such disadvantaged populations means fewer 

resources are available to overcome barriers, thus effects 
are magnified[7-9]. For example, limited transportation 
in rural areas may require travel outside the local com-
munity to gain access to healthcare providers or access 
to healthy foods[6]. Urban residents may face transporta-
tion barriers such as lack of  sidewalks[9], discouraging 
individuals from walking as a form of  physical activity. 
Lack of  public transportation in rural or urban areas can 
hinder travel for access to healthcare. Lack of  neighbor-
hood safety contributes to health disparities. An example 
of  compounding factors is as follows: urban centers may 
have high crime rates with consequently fewer businesses 
and employment; reduced access to services including 
food and medical care; and diminished opportunity for 
outdoor activity including exercise[10]. Research has shown 
a relationship between improved health outcomes and ac-
cess to healthy foods[11,12]. Emerging research in the area 
of  nutraceuticals indicates that certain foods may provide 
health benefits to reduce disease process progression in 
diabetes and hyperlipidemia[12]. However, this relationship 
is a complicated one, as demonstrated by Jones-Smith et 
al[13] who found that, even with access to healthy food, 
socioeconomic status remains a strong predictor for obe-
sity among African Americans diagnosed with diabetes.

Economic stability
Research has demonstrated a direct relationship between 
socio-economic status and health outcomes; however, 
other factors may explain a degree of  variance in this 
relationship[14]. Zheng et al[14] found that education level, 
employment, and family income affect socioeconomic 
status and therefore health.

Education
Greater educational attainment has been linked with im-
proved health outcomes[15] possibly because of  a greater 
likelihood of  socio-economic stability compared to those 
with lower levels of  education. Other related factors may 
be the stability derived from marriage and/or a wider 
range of  opportunities for better employment[15]. More-
over, research has shown that individuals with higher lev-
els of  education are more likely to participate in preven-
tive healthcare including eating healthier (foods), being 
more physically active, and avoiding obesity[16].

Health care/access to medical care
Individuals may be subject to disparity in the availability 
of  healthcare resources, including access to medical care, 
based on factors such as socioeconomic status, place of  
residence, race/ethnicity, and culture. Socioeconomic 
factors include educational level which in turn influences 
health insurance status[16]. Low income inner cities and re-
mote rural regions often lack both primary and specialty 
healthcare providers, decreasing access to healthcare for 
inhabitants with chronic illnesses such as diabetes, hyper-
tension, and cardiovascular disease. Absent or inadequate 
care may result in worsening or compounding of  long-
term effects of  chronic diseases[17,18]. For example, recent 
research focusing on infants born preterm or with low 
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Figure 1  Social determinants influencing the individual’s self-manage-
ment of type 2 diabetes.



birth weight demonstrates an increase in the develop-
ment of  insulin resistance and impaired glucose tolerance 
as adults[19,20]. Lower socioeconomic status may be associ-
ated with an individual’s perception that lack of  a col-
laborative patient-provider relationship is associated with 
improved diabetes outcomes[21].

Culture/social and community support
Social support includes individuals’ “formal and infor-
mal relationships that give rise to a belief  that one is 
cared for or supported emotionally in a defined situation 
such as working toward improving health outcomes”[22]. 

Degree of  social support may vary between individuals 
and among ethnic groups; for example, research revealed 
that Hispanic individuals diagnosed with diabetes pre-
fer group medical visits for self-management support 
whereas individuals from other ethnic groups have no 
preference[23]. Just as greater social support correlates 
with improved self-management outcomes, the percep-
tion of  negative or low levels of  social support has been 
shown to increase the risk of  fewer self-management 
behaviors[24].

RESEARCH
A search of  medical and nursing literature was conducted 
using PubMed, PsychInfo, CINAHL and MEDLINE 
databases. Additional search methods included reference 
chaining of  the literature. Search terms included type 2 
diabetes, social determinants and health determinants. 
Inclusion criteria were English language, human studies, 
social determinants of  diabetes and health, and research 

in the United States. Exclusion criteria were type 1 dia-
betes, reviews, and studies not focusing primarily on 
social determinants of  diabetes and health; for example, 
biomarkers. The initial search of  the literature retrieved 
59036 articles on type 2 diabetes; 12871 articles on social 
determinants; 14866 articles on health determinants. Sixty 
one duplicate articles, one book review brief, one editorial 
commentary, and two conference proceeding abstracts 
were also excluded (Figure 2). Twenty articles met criteria 
for the review (Table 1).

Twenty articles met the inclusion criteria for the re-
view and analysis. All studies selected for this review were 
descriptive in nature (n = 20). Fifteen studies were quanti-
tative studies and five were qualitative studies[25-29,32-44]. Al-
though sample size ranged from 15 to 81917 participants, 
many samples were fewer than one hundred subjects. All 
studies focused on individuals diagnosed with diabetes. 
There were no interventional or randomized control 
trial studies. The majority were cross-sectional, collecting 
data only once. For quantitative studies, two were mixed 
methods, including a survey and interview; five were 
secondary data analysis, and eight were surveys. Qualita-
tive studies used either focus groups or individual semi-
structured interviews (n = 5). Fourteen studies focused 
on social determinants from the patient or client per-
spective; three studies focused both on staff/healthcare 
provider and patient/client, while three studies viewed 
social determinants of  health from the perspective of  the 
healthcare provider alone. All studies focused on one or 
more of  the constructs of  social determinants of  health: 
built environment, economic stability, health care, or cul-
ture/social support.

Built environment/community infrastructure
Authors of  four articles discussed the built environment 
and community infrastructure. Research studies used pur-
posive sampling, limiting the generalizability of  findings 
to other populations. Three studies focused on popula-
tions known to have a disproportionate burden of  type 2 
diabetes, including African Americans and Hispanic/La-
tino. The built environment was a stronger predictor of  
health outcomes than race. Three studies[25-27] reported on 
upstream social determinants and the influence on food 
environments for at risk immigrant Hispanic population. 
Findings included high rates of  poverty with 60% of  liv-
ing below United States definition of  poverty and 40% 
living at 170% below federal poverty level. Educational 
attainment was less than the United States average with 
80% of  individuals not entering college. Thirty-three per-
cent had not completed elementary school. In compari-
son the national United States rate of  high school com-
pletion is 89.9% in 2010[25]. One study focused on Asian 
Americans. No studies included American Indians or 
Pacific Islanders. Two studies were community-based, fo-
cusing on food environment and access to healthy food. 
Transportation was discussed in three articles as a barrier 
to access both healthcare and healthy food. Research par-
ticipants reported lack of  access to quality, quantity, and 
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                       Initial Search
Databases: PubMed, PsychINFO, CINAHL, Medline
Terms: type 2 diabetes (n  = 43501)
           Social determinants (n  = 1463)
           Health determinants (n  = 516)

                     Total = 219 articles

Step 1 abstract review

Excluded (n  = 121)
  Not focused on social determinants
  of diabetes and health

Included (n  = 98)

Step 2 article review and analysis

Excluded (n  = 78)
  Duplication of included articles
  Not related to the scope of the study
  (Non-United States, non-research)

Included (n  = 20)
  Peer reviewed
  Published in English
  United States
  Original research

Figure 2  Manuscript selection for systematic review of the social determi-
nants of diabetes and health.
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American populations[26,34,37]. Findings included individual 
acknowledgement that economic distress in diabetes self-
management was important however, factors were also 
identified as sources of  additional strength for individu-
als diagnosed with diabetes. Sources of  support included 
culture and/or social support[26,34]. The influences of  
economic factors by race/ethnicity on diabetes outcomes 
were non-conclusive. Therefore, economic stability may 
be a strong determinant of  diabetes and health regardless 
of  race/ethnicity. Studies focused on target populations, 
limiting to selected urban regions for study.

Health care/access to medical care
There were nine studies found in which researchers ex-
amined the role of  health care and/or access to medical 
care within the social determinants of  diabetes and health 
framework. One study compared patients’ and health-
care providers’ perspectives on diabetes management[32]. 
Another research report examined healthcare providers’ 
perception of  patient barriers to diabetes management[29]. 
The remaining seven articles focused on the patient’s 
perceptions of  healthcare related to diabetes manage-
ment and barriers to care. Sample size for the patient-
only studies ranged from 13 to 81917. Eight studies 
were cross-sectional descriptive in design, and one was a 
secondary data analysis from the Behavioral Risk Factor 
Surveillance System. Most researchers reported that pa-
tients viewed their health in a more positive light than did 
providers based on medical record reviews. The concerns 
of  healthcare provider included the costs associated with 
diabetes management[29,32]. Patient-provider communica-
tion varied among patients. Three articles focused on 
positive health outcomes with open patient-provider 
communication[31,40,43]. One article described physicians 
as often initiating communication about medication ad-
herence, whereas patients were hesitant to initiate com-
munication with physicians relating to medication burden 
and costs[28]. This may, in part, explain perceived lack of  
patient medication adherence which increases the po-
tential for poorer health outcomes. One qualitative study 
described patients’ preference for diabetes care teams in 
which the team’s link between patient and physician was 
a nurse[31]. Two studies demonstrated increased quality 
of  life and better glycemic control with positive patient-
provider communication[40,43]. However, when looking at 
diabetes prevention and knowledge, two studies reported 
the need for provision of  diabetes education focusing on 
basic management and the need for discussion of  weight 
management or weight loss for diabetes prevention[33,41].

Culture/social and community support
Seven articles met the inclusion criteria focusing on the 
constructs of  culture and community support. Four of  
the seven researchers reported on cross-sectional surveys, 
one study involved focus groups in a community setting, 
one study used a phenomenological method of  analysis, 
and one used mixed methods incorporating a computer 
diary and individual interviews. Two of  the seven articles 

included healthcare provider perceptions. Of  these two 
articles, one had a sample of  both patient and healthcare 
provider. Sample size for the seven articles ranged from 
12 to 273. Two articles focused on cultural determinants 
of  diabetes and health in Latino/Hispanic populations. 
Cultural beliefs in Hispanic populations included the be-
lief  that diabetes was caused by increased stress[30]. The 
authors noted that the discovery of  this belief  provides 
an opportunity for healthcare providers or trusted com-
munity sources to provide education to increase diabetes 
knowledge. Three articles focused on the traditional roles 
of  gender and culture, whereby married women pro-
vided increased support to their spouse when he voiced 
concerns about diabetes and health[26,36,39]. One article 
focusing on Korean Americans found that women had 
an increase in unmet needs when providing support for 
their spouses, which negatively affected their diabetes 
self-care[36]. Two articles discussed social support or social 
networks as positive influences for diabetes self-man-
agement and health[26,32]. However, one article described 
African American patients’ concern about their diabetes 
management and health when multiple members of  their 
social network were diagnosed with diabetes or experi-
enced complications of  diabetes[35]. One article discussed 
healthcare providers’ perceived barriers in rural health-
care settings[29], pointing out an apparent lack of  cultur-
ally appropriate educational materials within healthcare 
clinic settings.

CONCLUSION
This critique of  the literature about social determinants 
of  diabetes and health focused on research of  United 
States populations published between 2000 and 2013. 
A total of  20 research studies met established criteria. 
All 20 studies identified for this review were descriptive. 
The majority of  studies were published in journals with a 
focus on public health or nursing. Results of  this review 
are useful for health professionals who develop programs 
and/or interventions for people diagnosed with diabetes 
because evidence indicates that social determinants affect 
patient adherence, effectiveness of  treatments, and over-
all health outcomes.

Study findings indicate that external or upstream fac-
tors prominently affect individuals diagnosed with diabe-
tes, in part by influencing self-management and in turn 
exerting lasting effects on long-term diabetes and health 
outcomes. The most significant methodological limita-
tions of  the studies examined result directly from small 
sample size, convenience or nonprobability sampling, and 
low statistical power. Methodological limitations of  stud-
ies included in this review also include a lack of  interven-
tion studies. Future research needs to include community-
based intervention studies focusing on the reduction of  
diabetes disparities and improvement of  health outcomes 
within the social determinants of  health framework. Such 
research is particularly needed given the high rates of  dia-
betes and subsequent disease sequelae. Cultural tailoring 
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of  diabetes prevention educational materials and cultural 
tailoring of  education in group settings may afford the 
means to increase patients’ knowledge of  the disease for 
earlier diagnosis and earlier intervention to prevent dia-
betes complications. Encouragement of  spousal support 
within the construct of  acknowledging cultural norms 
may provide a means for improving diabetes outcomes 
and health. The influence of  social determinants of  
health on diabetes outcomes needs to be tested in in-
tervention studies to provide a foundation for effective 
interventions to impact the current epidemic of  diabetes 
in the United States and around the globe. Prospective 
interventional studies evaluating the influence of  social 
determinants will be key to lay a foundation for effective 
interventions and improvement of  diabetes and health 
outcomes.
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Abstract
Type 2 diabetes mellitus is a metabolic disorder of 
deranged fat, protein and carbohydrate metabolism 
resulting in hyperglycemia as a result of insulin resis-
tance and inadequate insulin secretion. Although a 
wide variety of diabetes therapies is available, yet lim-
ited efficacy, adverse effects, cost, contraindications, 
renal dosage adjustments, inflexible dosing schedules 
and weight gain significantly limit their use. In addi-
tion, many patients in the United States fail to meet the 
therapeutic HbA1c goal of < 7% set by the American 
Diabetes Association. As such new and emerging diabe-
tes therapies with different mechanisms of action hope 
to address some of these drawbacks to improve the 
patient with type 2 diabetes. This article reviews new 
and emerging classes, including the sodium-glucose 

cotransporter-2 inhibitors, 11β-Hydroxysteroid dehy-
drogenase type 1 inhibitors, glycogen phosphorylase 
inhibitors; protein tyrosine phosphatase 1B inhibitors, G 
Protein-Coupled receptor agonists and glucokinase acti-
vators. These emerging diabetes agents hold the prom-
ise of providing benefit of glucose lowering, weight 
reduction, low hypoglycemia risk, improve insulin sensi-
tivity, pancreatic β cell preservation, and oral formula-
tion availability. However, further studies are needed 
to evaluate their safety profile, cardiovascular effects, 
and efficacy durability in order to determine their role 
in type 2 diabetes management.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes mellitus; Sodium dependent 
glucose co-transporter 2 inhibitors; 11β-Hydroxysteroid 
dehydrogenase type 1 inhibitors; Glycogen phosphory-
lase inhibitors; Protein tyrosine phosphatase 1B inhibi-
tors; G protein-coupled receptor agonists; Glucokinase 
activators

Core tip: Type 2 diabetes mellitus is a metabolic dis-
order of deranged fat, protein and carbohydrate me-
tabolism resulting in hyperglycemia. Limited efficacy, 
adverse effects, cost, contraindications, renal dosage 
adjustments, inflexible dosing schedules and weight 
gain significantly limit the use of currently available an-
ti-hyperglycemic agents. In the past, drug researchers 
targeted defects of pancreatic β-cell failure and insulin 
resistance, but more recent attention has shifted to 
other contributing factors. This article reviews new and 
emerging diabetes classes, including the sodium-glu-
cose cotransporter-2 inhibitors, 11β-Hydroxysteroid de-
hydrogenase type 1 inhibitors, glycogen phosphorylase 
inhibitors, protein tyrosine phosphatase 1B inhibitors, 
G protein-coupled receptor agonists, and glucokinase 
activators.
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INTRODUCTION
Type 2 diabetes mellitus is a metabolic disorder of  de-
ranged fat, protein and carbohydrate metabolism result-
ing in hyperglycemia from insulin resistance and inade-
quate insulin secretion, which can cause complications of  
nephropathy, retinopathy, neuropathy, and cardiovascular 
disorders[1,2].

Diabetes mellitus is an epidemic in the United States 
and the world. According to the International Diabetes 
Federation’s 2013 statistics, 382 million people worldwide 
have diabetes, which is estimated to increase to 592 million 
by 2035[3]. The Centers for Disease Control and Preven-
tion estimates 79 million Americans have pre-diabetes and 
approximately 26 million have diabetes mellitus of  which 
seven million of  these are still undiagnosed[4].

Despite a wide variety of  available food and drug as-
sociation (FDA) approved oral and injectable diabetes 
therapies, limited efficacy, adverse effects, cost, contra-
indications, renal dosage adjustments, inflexible dosing 
schedules and weight gain significantly limit their use[5,6].

In addition, less than 50% of  patients with type 2 dia-
betes in the United States achieve the HbA1c goal of  < 
7% set by the American Diabetes Association[7].

Currently available oral agent classes include sulfonyl-
ureas, meglitinides, biguanide, α-glucosidase inhibitors, 
dipeptidyl peptidase-4 (DPP-4) inhibitors, dopamine 
agonist, bile acid sequestrant, thiazolidinediones and their 
combinations. Injectable agents include insulin, amylin 
analogue and incretin mimetics.

In the past, drug researchers and manufacturers target-
ed the primary pathophysiologic defects in type 2 diabetes 
of  pancreatic β-cell failure and insulin resistance, but more 
recent attention has shifted to other contributing factors 
including increased glucose reabsorption by the kidneys, 
and the contributing effects to hyperglycemia by glucagon, 
glucocorticoid, glycogen, 11β-Hydroxysteroid dehydro-
genase-2 and others. As such new and emerging diabetes 
therapies with new mechanisms of  action hope to address 
these contributing pathophysiologic defects and offer new 
approaches in order for the patient to achieve therapeutic 
goals[1,6]. Table 1 lists the new and emerging drug therapy 
and approaches[8].

An ideal antihyperglycemic agent will be a safe, toler-
able, efficacious, cost effective oral agent with a flexible 
dosage schedule providing clinically significant weight 
loss with cardiovascular and mortality benefits. This ar-
ticle reviews several new classes of  antihyperglycemic 
agents, including the sodium-glucose cotransporter-2 
inhibitors (which are furthest along in development); 
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD-1) 
inhibitors, glycogen phosphorylase inhibitors, protein 

tyrosine phosphatase 1B inhibitors, G Protein-Coupled 
receptor agonists and glucokinase (GK) activators.

SODIUM DEPENDENT GLUCOSE 
CO-TRANSPORTER 2 INHIBITORS
Kidney and sodium dependent glucose co-transporter 2 
transporters
Glucose homeostasis involves the liver, pancreas and 
the kidney[9]. Glucose transporter proteins (GLUT) and 
sodium-dependent glucose co-transporters (SGLT) are 
responsible for glucose transportation across the plasma 
membrane into cells[10].

Over the course of  24 h, the kidney filters 180 g of  
glucose while only 500 mg is excreted in the urine, and 
the rest is reabsorbed as it flows from the glomerulus 
to the proximal convoluted tubules then to the blood-
stream[10]. GLUTs and SGLTs are involved in this glucose 
reabsorption and active transportation of  glucose across 
cell membranes against concentration gradients[10,11].

SGLT-1 is responsible for 10% of  glucose uptake and 
is expressed in the heart, skeletal muscle, gastrointestinal 
tract, liver, lung and the S3 segment of  the proximal tu-
bule of  the kidney, while SGLT-2 is responsible for 90% 
of  glucose uptake and is expressed in the S1 segment of  
the proximal tubule of  the kidneys[11,12].

In addition to the reabsorption of  approximately 99% 
of  glucose, recent studies show the kidney takes up lac-
tate, glutamine, glycerol, and alanine and converts them 
to glucose by the process of  gluconephrogenesis, which 
can account for about 20% of  all glucose released into 
the circulation and nearly 90% of  the glucose released by 
the kidney[13].

The SGLT-2 inhibitors inhibit SGLT-2, which in-
creases renal excretion of  glucose thus reducing glucose 
in the plasma. Due to the minimal glucose uptake by 
SGLT-1 and the important roles of  SGLT-2 in glucose 
reabsorption, several researchers and manufacturers have 
turned their attention to SGLT-2 inhibitors for treating 
hyperglycemia[14-16]. There are several SGLT-2 inhibitors 
in varying phases of  studies including dapagliflozin, em-
pagliflozin, ipragliflozin, ertugliflozin, luseogliflozin, tofo-
gliflozin and LX4211[6,17].

The FDA approved canagliflozin (Invokana®) to treat 
type 2 diabetes based on the agreement that post market-
ing studies will be completed for evaluating cardiovascu-
lar outcomes, malignancies, severe pancreatitis, hypersen-
sitivity and photosensitivity reactions; liver abnormalities, 
adverse events during pregnancy, bone safety, and two 
pediatric studies under the Pediatric Research Equity Act 
CR[18].

Dapagliflozin was approved in Europe, Australia, Bra-
zil, Mexico and New Zealand as Forxiga®, but the FDA 
initially delayed its approval as there were concerns of  
increased breast and bladder cancer in patients taking the 
drug compared to placebo[19].

In January 2014, the FDA approved dapagliflozin 
as Farxiga® with six postmarketing studies including a 
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cardiovascular outcomes trial (CVOT) to evaluate the 
cardiovascular risk in patients with high cardiovascular 
disease risk and the evaluation of  bladder cancer risk in 
patients enrolled in the CVOT[20].

Although there are several SGLT-2 inhibitors in 
varying phases of  development, canagliflozin and dapa-
gliflozin will be presented here due to availability of  hu-
man safety and efficacy data.

Canagliflozin (invokana®) clinical trials
Wilding et al[14] designed a randomized, double-blind, 
placebo-controlled, phase 3, multicenter, 52-wk study to 
evaluate the safety and efficacy of  canagliflozin added 
to metformin plus sulphonylurea in patients with type 2 
diabetes.

The trial, called CANagliflozin Treatment And Trial 
Analysis-Metformin plus SUIphonylurea, included pa-
tients if  they were 18-80 years with type 2 diabetes, who 
were stable on maximum or near maximum dosages of  
metformin and sulfonylureas with an A1c ≥ 7% and ≤ 
10.5%[14].

The primary efficacy endpoint was A1c change from 
baseline to 26 wk. The secondary end points included 
change in baseline A1c at 52-wk, change in baseline in 
fasting plasma glucose (FPG), systolic blood pressure 
(BP), percent change in body weight, triglycerides, and 
high density lipoprotein (HDL) cholesterol, and percent 
patients reaching A1c 7%[14]. The investigators evaluated 
safety by observing adverse event reports, vital signs and 
laboratory tests[14]. Patients were randomized to receive 

either 100 mg or 300 mg canagliflozin or placebo in addi-
tion to their metformin and sulphonylurea therapies[14].

Results of  the study show that 381 (81%) of  469 
patients, who were randomized to the study, completed 
the 52-wk study. By week 26, the A1c was significantly re-
duced in the canagliflozin 100 mg and 300 mg study arm 
to -0.85% and 1.06% which was statistically significant 
compared to baseline and the A1c was sustained over 
the entire 52 wk study period[14]. Results are presented 
in Table 2[14]. FPG was significantly improved at 26 wk 
and 52 wk with both canagliflozin 100 mg and 300 mg 
compared to placebo. Canagliflozin significantly reduced 
weight but there were no significant changes with systolic 
blood pressure, pulse or cholesterol parameters[14].

Safety profile and adverse events: Although investiga-
tors reported that adverse effects were higher with cana-
gliflozin than placebo, they were comparable across the 
treatment groups. Patients on canagliflozin had higher 
rates of  genital mycotic infections compared to placebo, 
which were described as mild to moderate in severity[14]. 
Patients who developed a mycotic infection, especially 
women, had a prior history of  genital mycotic infections 
compared to those women who received canagliflozin 
and did not have adverse effects[14]. Genital mycotic in-
fections were treated without interrupting canagliflozin 
therapy[14].

Canagliflozin compared to sitagliptin
Canagliflozin has been shown to be non-inferior to sita-
gliptin and in another analysis superior to sitagliptin with 
regard to lowering of  A1c[16].

In a randomized, double-blind, active-control, multi-
center, phase three, 52-wk study, Schernthaner evaluated 
the efficacy and safety of  canagliflozin 300 mg compared 
with sitagliptin 100 mg as add-on therapy in patients with 
type 2 diabetes mellitus inadequately controlled with met-
formin and a sulfonylurea[16].

The inclusion criteria were similar to the previously 
described study, and patients were randomized to receive 
either 300 mg canagliflozin or 100 mg sitagliptin[16]. The 
primary efficacy endpoint was A1c change from baseline 
to 52 wk while the secondary endpoints were similar to 
the previously described study[16].

Results of  the study show that 464 (61%) of  755 
patients, who were randomized to receive either cana-
gliflozin 300 mg or sitagliptin 100 mg daily, completed 
the study. Most of  the withdrawals were observed in 
the sitagliptin therapy arm of  the trial due to the lack of  
glycemic rescue therapy[16]. Canagliflozin demonstrated 
both noninferiority and in another analysis, showed supe-
riority to sitagliptin 100 mg in reducing A1c (-1.03% and 
-0.66%, respectively). There were greater reductions with 
canagliflozin vs sitagliptin in FPG, body weight, and sys-
tolic BP. More patients on canagliflozin compared with 
sitagliptin achieved A1c < 7.0%, and A1c < 6.5% at week 
52, though the authors did not confirm statistical signifi-
cance[16]. Results are presented in Table 3[16].
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Table 1  Emerging classes of medications and approaches[8]

SGLT inhibitors
11β-HSD-1 inhibitors
GKA
AMPK agonists
SIRT activators
PTP-1B inhibitors
GCGR antagonists
GR antagonists
Novel insulin sensitizers
GPR119 agonists
Other drugs augmenting GLP-1 secretion: GPR40, G-protein coupled 
bile acid receptor (TGR5) agonists
Acyl-CoA: DGAT1 inhibitors
FGF-21-receptor agonists
Ranolazine
Other glucometabolic approaches
Other metabolic approaches
Anti-inflammatory approaches
Induction of immune tolerance
Pancreatic beta cell protection and regeneration
Pancreatic islet cell transplantation
Various antidiabetic approaches

SGLT: Sodium-dependent glucose co-transporter; 11beta-HSD-1: 11beta-
hydroxysteroid dehydrogenase type 1; GKA: Glucokinase activators; 
AMPK: Adenosine monophosphate activated protein kinase; SIRT: Sirtuin; 
PTP-1B: Protein tyrosine phosphatase-1B; GCGR: Glucagon receptor; GR: 
Glucocorticoid receptor; GPR119: G-protein coupled receptor 119; GLP-1: 
Glucagon like peptide-1; Acyl-CoA: Acyl-coenzymeA; DGAT1: Diacylg-
lycerol acyltransferase1; FGF-21: Fibroblast growth factor-21.
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randomized parallel-group, double-blind, placebo-con-
trolled study to evaluate the safety and efficacy of  dapa-
gliflozin. The primary objective was to compare the mean 
change from baseline A1c in type 2, treatment-naïve adult 
patients (age 18-79) with A1c ≥ 7% and ≤ 10%[23].

Patients were randomly assigned to one of  five once-
daily dapagliflozin doses (2.5, 5, 10, 20 or 50 mg), metfor-
min XR (750 mg force titration to 1500 mg) or placebo. 
Investigators also evaluated changes in FPG, weight, and 
adverse effects[23].

Results of  the study show that 348 (89%) of  389, 
who were randomized to the study completed the study 
at week 12[23]. At the end of  the study, dapagliflozin had 
statistically significant mean dose-dependent reduction 
of  A1c from -0.55% to -0.90% when compared with 
placebo -0.18% but not with metformin of  -0.73%[23]. 

Dapagliflozin also had significant reduction in FPG of  
-16 to -31 mg/dL compared to 6 mg/dL with placebo 
and -18 mg/dL with metformin[23]. Dapagliflozin caused 
a weight loss change of  -1.3 to 2 kg[23]. In this trial, dapa-
gliflozin did not demonstrate any renal function chang-
es[23]. The percentage of  patients achieving A1c < 7% was 
40%-59% for the dapagliflozin group vs 32% for placebo 
and 54% for metformin[23]. Hypoglycemia was reported 
in 6%-10% of  patients treated with dapagliflozin but this 
was not dose related, compared to 4% of  placebo pa-
tients and 9% of  metformin-treated patients[23].

Dapagliflozin in combination with metformin
Henry et al[24] conducted two randomized, double-blind, 

Safety profile and adverse events: There were no dif-
ferences in adverse effects, hypoglycemia or discontinua-
tion of  therapy between treatment groups. Nevertheless, 
canagliflozin had higher rates of  genital mycotic infec-
tions (vulvovaginitis in females and balanitis in males) 
compared to sitagliptin[16]. In other studies, canagliflozin 
is implicated in urinary tract infections, hypoglycemia and 
gastrointestinal upset when used alone or in combination 
with other antihyperglycemic therapy[21].

Canagliflozin was associated with a dose dependent 
increase in serum creatinine, decrease in estimated glo-
merular filtration rate, renal impairment, and acute failure 
in patients especially those with moderate renal impair-
ment and hypovolemia[22].

 Canagliflozin 100-300 mg is recommended for pa-
tients with creatinine clearance > 60 mL/min per 1.73 m2 
and canagliflozin 100-mg is recommended for patients 
with creatinine clearance of  45-60 mL/min per 1.73m2[22]. 
Canagliflozin is not recommended in patients with cre-
atinine clearance of  30-44 mL/min per 1.73 m2

, and it 
is contraindicated in patients with creatinine clearance 
of  < 30 mL/min per 1.73m2[22]. Clinicians should assess 
patients’ renal functions when initiating therapy and for 
long term drug monitoring. This agent will be a safe and 
efficacious addition to a dual therapy regimen such as 
metformin and sulfonylurea based on this study[16].

DAPAGLIFLOZIN AS MONOTHERAPY
List et al[23] designed a prospective, dose ranging 12-wk, 
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Table 2  Results of phase 3, CANagliflozin treatment and trial analysis-metformin plus SUIphonylurea, n  = 469[14]

Parameters Canagliflozin 100 mg Canagliflozin 300 mg Placebo Comments

A1c (%) week 26 -0.85     -1.06    -0.13 P < 0.001
A1c (%) week 52 -0.74     -0.96    -0.01 P < 0.001
% Patients with A1c < 7% week 26  43.2  56.6 18.0 P < 0.001
% Patients with A1c < 7% week 52  39.4  52.6 18.7 P < 0.001
FPG (mg/dL) week 26 -21.6 -34.2 - P < 0.001
FPG (mg/dL) week 52 -28.8 -37.8 - P < 0.001
Weight -1.10   -1.7 - P < 0.001
Change in systolic blood pressure (mmHg) -2.20   -1.6 - Non significant
Change in pulse (beats/min)  0.90   -1.2  -0.4 Non significant

A1c: Hemoglobin A1c; FPG: Fasting plasma glucose.

Table 3  Results of canagliflozin compared with sitagliptin for patients with type 2 diabetes: (n  = 755)[16]

Parameters Canagliflozin 300 mg Sitagliptin 100 mg Comments

A1c (%) week 52     -1.03   -0.66 Non inferiority to sitagliptin (upper limit of the 
95%CI < 0.3%) and superiority to sitagliptin (upper 

limit of the 95%CI < 0.0%)
Percent (%) of patients with A1c < 7% at week 52  47.6 35.3 Not significant
Percent (%) of patients with A1c < 6.5% at week 52  22.5 18.9 Not significant
FPG (mg/dL) week 26 -29.9   -5.9 P < 0.001
Weight (kg)   -2.3   -0.1 P < 0.001
Change in systolic blood pressure (mmHg)   -5.1      0.9 P < 0.001
Change in diastolic blood pressure (mmHg)   -3.0   -0.3 Not significant

A1c: Hemoglobin A1c; FPG: Fasting plasma glucose.
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three-arm 24-wk trials to compare the combination of  
dapagliflozin plus metformin vs dapagliflozin mono-
therapy and metformin monotherapy to determine if  the 
combination would be an advantage for treatment naïve 
type 2 diabetes patients with high baseline A1c.

Study 1 compared dapagliflozin 5 mg in combination 
with metformin XR, dapagliflozin 5 mg in combination 
with placebo, and metformin XR plus placebo. Study 
2 compared dapagliflozin 10 mg in combination with 
metformin XR, dapagliflozin 10 mg in combination with 
placebo, and metformin XR plus placebo[24].

Eligible patients had a baseline A1c 7.5%-12%, and 
the primary endpoint was a change in A1c from baseline 
while the investigators also evaluated the change in FPG 
and weight as secondary endpoints[24].

Results show that in both trials, the combination of  
dapagliflozin and metformin resulted in significantly 
lower reductions in A1c compared with either metformin 
or dapagliflozin monotherapy[24]. Results of  the study are 
presented in Table 4[24]. The combination therapy was sta-
tistically superior to monotherapy in reduction of  FPG 
and was more effective than metformin for weight reduc-
tion. Dapagliflozin 10 mg was non-inferior to metformin 
in reducing A1c in study 2[24].

Safety profile and adverse events: Adverse effects of  
mild to moderate cases of  genital infection of  vulvo-
vaginitis and balanitis and urinary tract infections were 
reported and treated without discontinuing the study[24]. 
There were no major hypoglycemic events reported. 
Diarrhea was more common in patients on combination 
therapy with metformin than with dapagliflozin therapy 

alone[24].

Summary of  SGLT-2 inhibitors: Canagliflozin and 
dapagliflozin have been shown to lower renal threshold 
for glucose in a dose dependent fashion by increasing 
urinary glucose excretion through SGLT-2 inhibition, 
which leads to clinical significant reduction in A1c, FPG, 
and body weight[14,24]. The reduction in renal threshold 
is above the threshold for hypoglycemia demonstrating 
this agent has a low risk of  hypoglycemia[17]. The SGLT-2 
inhibitors can be used with any other agent whether in a 
treatment naïve patient or a patient with a long history of  
type 2 diabetes[22,23,25]. Both therapies are safe and toler-
able, but clinicians need to observe for genital infections, 
which can be easily treated without discontinuation of  
therapy.

METABOLIC APPROACHES TO THERAPY
11β-HSD-1 inhibitors
High levels of  glucocorticoids have been associated 
with hyperglycemia, insulin resistance, dyslipidemia and 
visceral obesity[4]. 11β-HSD is an enzyme, presenting as 
two distinct isoenzymes: 11β-HSD-1 and 11β-HSD-2. 
11β-HSD-1 is found in the liver and adipose tissue 
and converts inactive cortisone to active cortisol while 
11β-HSD-2 is found primarily in the kidneys and colon 
and it inactivates glucocorticoids by converting active cor-
tisol to inactive cortisone[4,26].

It has been suggested that the increased glucocorti-
coid activity in the white adipose tissue by 11β-HSD-1 is 
a key player in the development of  visceral obesity, insu-
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Table 4  Dapagliflozin in combination with metformin[24]

Study 1 Study 2

Parameters DAPA 5 ± MET DAPA 5 ± PBO MET ± PBO DAPA 10 ± MET DAPA 10 ± PBO MET ± PBO
A1c at 24 wk (%)
   Baseline (n)    9.21 (185)       9.14 (196)       9.14 (195)     9.1 (202)        9.03 (216)      9.03 (203)
   A1c (%) at 24 wk (baseline change)    7.13 (-2.05)       7.96 (-1.19)       7.79 (-1.35)     7.1 (-1.98) 7.59 (-1.45) 7.6 (-1.44)
   DAPA ± MET vs DAPA -0.86 (-1.11, -0.62) -0.53 (-0.74, -0.32)
   P value < 0.0001 < 0.0001
   DAPA ± MET vs MET -0.70 (-0.94, -0.45) -0.43 (-0.75, -0.33)
   P value < 0.0001 < 0.0001
Patients with A1c < 7% at 24 wk
   n (%) 96/185 (52.4%) 46/196 (22.5%) 68/195 (34.6%) 92/202 (46.6%)   69/216 (31.7%) 72/203 (35.2%)
   DAPA ± MET vs DAPA              29.9 22.5 14.9
   P value < 0.0001         0.0012
   DAPA ± MET vs MET              17.8 11.3
   P value < 0.0001         0.0165
Plasma glucose at 24 wk (mg/dL)
   Baseline FPG (mg/dL)  193.14 (n = 192)  190.62 (n = 203)  196.56 (n = 200) 189.36 (n = 209) 197.28 (n = 216)  189.72 (n = 207)
   FPG after 24 wk (baseline change)      132.3 (-61.02)       150.3 (-41.94)       161.1 (-33.48) 130.86 (-60.3) 147.6 (-46.44)  156.42 (-34.74)
   DAPA ± MET vs DAPA -19.08  -13.86
   P value < 0.0001 < 0.0001
   DAPA ± MET vs MET -27.54  -25.56
   P value < 0.0001 < 0.0001
Total body weight at 24 wk (kg)
   Baseline weight (n)   84.24 (192)  86.20 (203)  85.75 (200)  88.56 (209)      88.53 (219)    87.24 (208)
   Change from baseline -2.66 (-3.14, -2.19) -2.61 (-3.07, -2.15)  -1.29 (-1.76, -0.82) -3.33 (-3.80, -2.86) -2.73 (-3.19, -2.27) -1.36 (-1.83, -0.89)

DAPA: Dapagliflozin; MET: Metformin; PBO: Placebo; FPG: Fasting plasma glucose; A1c: Hemoglobin A1c.
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lin resistance, diabetes, type 2 diabetes, dyslipidemia and 
hypertension in mice[27]. Increased levels of  11β-HSD-1 
in adipose tissue produce a metabolic syndrome in mice 
while 11β-HSD-1 deficiency or inhibition has beneficial 
metabolic effects on liver metabolism[27].

In humans, researchers discover that though patients 
with glucocorticoid excess develop central obesity, yet the 
circulating glucocorticoid levels are normal. The metabol-
ic syndrome resembles Cushing’s syndrome, but without 
the elevated circulating glucocorticoid levels. Researchers 
suggest that it is the increased activity of  11β-HSD-1 in 
humans, which is metabolizing cortisol from cortisone 
within adipose tissue that may play a major role in the 
pathophysiology of  obesity[28]. Inhibition of  this enzyme 
may potentially decrease weight and blood glucose.

Non selective 11β-HSD-1 inhibitors
Older non-selective 11β-HSD-1 inhibitors such as li-
quorice and its active metabolite glycyrrhizic and glycyr-
rhetinic acids inhibit both 11β-HSD-1 and 11β-HSD-2 
enzymes[29].

Ingesting liquorice and glycyrrhizic or glycyrrhetinic 
acids have been shown to produce a type of  “mineralo-
corticoid excess” syndrome, hypertension encephalopa-
thy, and hypokalemic paralysis[29]. It can also cause weight 
loss, sodium retention, potassium loss, and hypertension 
through the inhibition of  11β-HSD-2[29].

Carbenoxolone, a non-selective 11β-HSD-1 inhibitor 
and product of  liquorice reduces glucose concentrations 
and increases weight loss; inhibits hepatic triglyceride 
production, inhibits lipolysis, and increase HDL-C levels, 
but also causes sodium retention, potassium loss, and hy-
pertension by inhibiting 11β-HSD-2[29].

Vitamin A enriched diets also decrease fat and improve 
insulin sensitivity in animals and humans as it may inhibit 
11β-HSD-1 and mRNA[29]. These non-selective agents 
were evaluated in small trials with short durations[29].

Several 11β-HSD-1 inhibitors have been developed 
and are being tested for patients with obesity and dia-
betes, including INCB013739, MK0916, PF915275, 
AMG221 produced by a variety of  manufacturers. 
Results from INCB013739 clinical studies show that 
11β-HSD-1 inhibitors when administered to patients 
with type 2 diabetes for 2 wk prevented the conversion 

of  oral cortisone to cortisol, decreased hepatic gluconeo-
genesis, decreased fasting plasma glucose and low density 
lipoprotein cholesterol[30].

Clinical trial of INCB13739 (a 11β-HSD-1 inhibitor)
Rosenstock et al[30] evaluated the efficacy and safety of  the 
agent INCB13739 (an 11β-HSD-1 inhibitor) for patients 
with type 2 diabetes, who were inadequately controlled 
on a mean dosage of  1.5 g daily of  metformin therapy.

The study was a double-blind, placebo-controlled 
parallel study conducted with 302 type 2 diabetes mel-
litus patients on metformin therapy with an A1c of  7% 
to 11%[30]. Patients received one of  five dosages (5, 15, 
50, 100 or 200 mg) of  INCB13739 or placebo once daily 
for 12 wk in addition to metformin. The primary end 
point was a change in A1c at the end of  12 wk. Investiga-
tors also reviewed FPG, lipids, weight loss, and adverse 
events[16,30]. Patients had a mean duration of  type 2 dia-
betes of  6.2 years with baseline body mass index of  32.4 
kg/m2, A1c 8.3% and FPG 173 mg/dL[30].

Results of  the study show that 228 of  302 (75%) 
patients completed the study[30]. At the end of  the study, 
INCB13739 resulted in a dose dependent reduction in 
A1c of  -0.38% and -0.47% in the 100 mg and 200 mg 
groups respectively[30]. However, it was noted that there 
were more significant A1c changes in obese patients on 
the higher dosages[30]. In addition, those with A1c > 8% 
had more significant decrease in A1c which was dos-
age dependent[30]. Results of  the study are presented in 
Table 5[30]. The investigators reported that at the end of  
12 wk, 25% of  patients who were randomized to the 100 
mg and 200 mg therapy groups achieved an A1c < 7% 
compared to 9.5% of  placebo patients[30]. FPG decreased 
in a dose and time dependent fashion in the 100-200 mg 
treatment groups while there was significant weight loss 
in the 15, 100 and 200 mg groups[30]. The investigators 
reported that this study group had generally controlled 
blood pressure and plasma lipids at baseline but there was 
a modest dose dependent decrease in total cholesterol 
-7 mg/dL (ptrend = 0.026) from baseline in the 200 mg 
group[30]. There was no significant difference with HDL 
cholesterol[30].

Safety profile and adverse events: The therapy was well 
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Table 5  Efficacy assessment of INCB13739 in combination with metformin[30]

Placebo 5 mg 15 mg 50 mg 100 mg 200 mg

Baseline A1c (%)       8.3 ± 1        8.2 ± 1       8.3 ± 1       8.3 ± 1       8.2 ± 1       8.2 ± 1
LS mean change A1c (%) from baseline     0.09 ± 1    -0.21 ± 1b,e    -0.11 ± 1    -0.09 ± 2   -0.38 ± 1a,e     0.47 ± 1d,h

A1c > 8% (n) -0.10 ± 0.2 (23) -0.39 ± 0.2e (23) -0.24 ± 0.2 (18)   -0.65 ± 0.3b,e (11)   -0.72 ± 0.2a,e (16) 0.65 ± 0.2 (19)
A1c (%) for BMI > 30 mg/m2 (n)  0.17 ± 0.1 (29)  -0.24 ± 0.2b,f (23) -0.10 ± 0.2 (26) -0.25 ± 0.2b (18) -0.36 ± 0.2a (26)   -0.76 ± 0.2d,h (18)
Baseline FPG (mg/dL)      179 ± 51       172 ± 41      175 ± 44      178 ± 53      170 ± 64      165 ± 41
LS mean change from baseline (mg/dL)     12.6 ± 6.1           6 ± 6.3       2.3 ± 6.4     -4.7 ± 7.2b     -1.6 ± 6.1b    -11.5 ± 6.2d,f

Weight (kg)      -0.2 ± 0.3      -0.5 ± 0.38      -0.6 ± 0.4e         0 ± 0.4     -1.1 ± 0.3b,e      -0.9 ± 0.3h

HOMA-IR     0.25 ± 0.4    -0.29 ± 0.4     0.33 ± 0.4   -0.42 ± 0.5     0.51 ± 0.4    -1.06 ± 0.4a,e

Data are placebo adjusted least-squares (LS) mean change from baseline: mean ± SE. aP < 0.05, bP < 0.01, dP < 0.01, active vs Placebo, eP < 0.05, fP < 0.01, hP 
< 0.01, week 12 vs baseline. A1c: Hemoglobin A1c; FPG: Fasting plasma glucose; LS: Least squares; BMI: Body mass index; HOMA-IR: Homeostatic model 
assessment-insulin resistance.
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tolerated and adverse events were similar across all treat-
ment groups[30]. There were no serious events reported 
except for cardiac arrest unrelated to study therapy and 
there were no hypoglycemia reported. The most common 
adverse event in four patients was nausea in the 200 mg 
group but this resolved during continuation of  therapy[30]. 

It was noted that there was also a dose dependent 
statistically significant reduction in Homeostasis Model 
Assessment of  Insulin Resistance (HOMA-IR) suggest-
ing an insulin sensitizing mechanism of  action in the 200 
mg group[30]. The authors concluded that in patients with 
type 2 diabetes inadequately controlled with metformin, 
INCB13739 added to metformin significantly improved 
A1C, FPG and HOMA-IR[30]. INCB13739 also decreased 
weight though it did not affect the waist to hip ratio[30].

Summary: 11β-HSD-1 is increased in the adipose tis-
sues of  obese patients and those with the metabolic syn-
drome. 11β-HSD-1 inhibitors may be a viable option for 
these patients since it converts inactive cortisol to active 
cortisol in target tissues, which inhibits pancreatic beta 
cell insulin production, and prevents peripheral glucose 
uptake promoting weight loss, and decrease in blood glu-
cose[30]. Researchers and clinicians have questions with re-
gard to effects on the immune system, duration and tim-
ing of  therapy, the long term effects of  weight and lipids, 
glycemic control, insulin action, atherosclerotic plaque 
formation and cardiovascular risk[30]. The reduction in 
A1c was moderate but further studies will answer many 
of  these questions to determine the safety and efficacy 
of  11β-HSD-1 inhibitors.

Glycogen phosphorylase inhibitors
The liver contributes to glucose production by both glu-
coneogenesis (glucose synthesis) and glycogenolysis (gly-
cogen breakdown)[31]. Type 2 diabetes is characterized by 
excessive glucose production and inadequate suppression 
of  hepatic gluconeogenesis postprandially[31].

Except for metformin, the production of  gluco-
neogenesis inhibitors has yielded disappointing results 
with an increase in compensatory hepatic glycogenoly-
sis, which maintains excessive hepatic glucose produc-
tion[31,32]. Researchers hypothesized that glycogenolysis in-
hibition can improve blood glucose control by observing 
patients with hepatic glycogen storage disease experience 
intermittent hypoglycemia[31]. Glycogen phosphorylase is 
an enzyme that catalyzes the breakdown of  glycogen to 
glucose-1-phosphate in the liver and tissues that demand 
high energy[33].

Hepatic glycogenolysis has a major role in the regula-
tion of  plasma glucose levels in diabetic mice, and sug-
gests that glycogen phosphorylase inhibitors may be use-
ful in the treatment of  type 2 diabetes[31]. Further studies 
will elucidate if  this is so.

Two types of  glycogen phosphorylase inhibitors ex-
ist[31]. One is a glucose analog, which binds near the active 
site of  the enzyme, and the other is caffeine and other 
heteroaromatic analogs which bind at the purine inhibitory 

site (I-site). The I-site is a target for therapy as compounds 
which bind at this inhibitory site are more potent in the 
presence of  high glucose concentrations[31]. Researchers 
hypothesized that the inhibitory activity can be regulated 
by blood glucose concentrations and the inhibitory activity 
can decrease as normal blood glucose is achieved, which 
would decrease the risk of  hypoglycemia[31].

CP-91149-a glycogen phosphorylase inhibitor in 
animal studies: CP-91149 was identified as a potent 
inhibitor of  hepatic glucose production in in vivo stud-
ies in diabetic ob/ob mice[31]. CP-91149 exhibited rapid 
dose dependent decreases in plasma glucose concentra-
tions (36-120 mg/dL) at 10, 25, and 50 mg/kg doses (p 
< 0.001) without producing hypoglycemia. Hypoglycemia 
was defined as glucose < 60 mg/dL for CP91149 in this 
study[31]. Administration of  CP-91149 to normoglycemia 
non diabetic mice at 25-100 mg/dL did not affect glucose 
lowering. The glucose lowering of  CP91149 was accom-
panied by an inhibition of  hepatic glycogen breakdown 
in the diabetic ob/ob mice[31].

CP-316819-a glycogen phosphorylase inhibitor: 
CP-316819 is an analogue of  CP-91149, which binds to 
the inhibitor site of  glycogen phosphorylase to prevent its 
transformation to a more active form of  the enzyme[33].

One of  the concerns was that this analogue does not 
demonstrate hepatic specificity, so potentially affecting 
skeletal tissues and having possible deleterious effects to 
patients who exercise[33]. In a study by Baker, CP-316819 
reduced glycogen phosphorylation activation in rat skel-
etal muscle at rest and maximal contraction, which pro-
duced a modest reduction in muscle lactate production[33]. 
According to the researcher, the study demonstrated that 
the concern related to potential negative effects of  gly-
cogen phosphorylase inhibition on quality of  life due to 
impaired muscle function are unfounded[33].

Summary of glycogen phosphorylase inhibitors
These findings support the possible use of  the glycogen 
phosphorylase inhibitors as a possible addition to the 
treatment of  patients with type 2 diabetes. Further stud-
ies are needed to evaluate the effects of  glycogen phos-
phorylase inhibition after chronic oral dosages and under 
a variety of  exercise activities[33].

PROTEIN TYROSINE PHOSPHATASE 1B 
INHIBITORS
Type 2 diabetes and obesity are both characterized by in-
sulin and leptin resistance[34,35].

Insulin resistance is found in tissues important for 
glucose homeostasis such as the liver, fat, central nervous 
system and muscle[34]. Leptin suppresses food intake and 
increases energy expenditure, but its levels are elevated in 
obesity demonstrating leptin resistance. Protein tyrosine 
phosphatases play a major role in leptin resistance by 
suppressing leptin signaling[36].
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Protein tyrosine phosphatase 1B (PTP-1B) is an en-
zyme that removes phosphate from tyrosine residues in 
protein such as insulin receptors, so it is described as a 
negative regulator for insulin and leptin, by dephosphory-
lating phosphorylated tyrosine residues from the insulin 
receptor[34]. PTP-1B activity is increased in insulin resis-
tance and obese patients[34].

Summary
Diabetes mice treat with specific PTP-1B inhibitors ex-
hibited normalized BG control, improved insulin sensitiv-
ity, and modulated fat storage, and lipogenesis in adipose 
tissue[34]. Therefore these inhibitors have emerged as a po-
tential oral agent that can provide a strategy for the treat-
ment of  type 2 diabetes and obesity and may work best in 
patients with beta cell function that releases insulin[35].

Further studies will elucidate if  these agents can also 
be a potential addition to the armamentarium of  oral 
diabetes agents affecting both obesity and the metabolic 
syndrome.

G-PROTEIN-COUPLED RECEPTOR 119 
AGONISTS
A dysfunction in pancreatic β cell leading to decreased 
insulin secretion is a major abnormality in type 2 diabetes 
mellitus[37]. The pharmacotherapy approach of  stimulat-
ing insulin release in a glucose-dependent manner using 
G-protein-coupled receptor has been investigated[38]. 
Specifically, G-protein-coupled receptor 119 (GPR119) 
is largely distributed in pancreatic islet cells, somewhat in 
the gastrointestinal tract, and found to be involved in glu-
cose metabolism[39-41].

GPR119 may be stimulated by endogenous ligands 
or synthetic compounds resulting in an elevated cyclic 
adenosine monophosphate[42]. Studies have shown that 
stimulation of  GPR119 yields glucose-dependent insulin 
release from the pancreatic β cells, glucagon-like peptide 
1 (GLP-1) and glucose-dependent insulinotropic peptide 
secretions from intestinal cells[42]. Thus, pharmacologi-
cal agents that target GPR119 results in glucose reduc-
tion with low hypoglycemia risk, body weight loss, and 
potential for pancreatic β cell preservation[42]. These 
characteristics are very similar to the commercially avail-
able GLP-1 agonists, however the studied GPR119 
agents may be orally administered. Several GPR119 mol-
ecules (GSK1292263, MBX-2982, PSN-821, AR231453, 
AR-7947) have been studied in preclinical and/or early 
clinical trials with poor outcomes due to loss of  pharma-
cological effect or minimal glycemic lowering effect[42]. 
Furthermore, GPR119 agonists have also been consid-
ered in combination with DPP-4 inhibitors in an attempt 
to enhance the GLP-1 effects[42].

Summary
GPR119 agonists have strong potential to meet the needs 
of  patients with type 2 diabetes because of  their relative 
safety profile, lack of  weight gain, oral formulation, and 

possible β cell preservation effect. However, there have 
been challenges to their development due to potential 
tachyphylaxis and low anti-hyperglycemia efficacy.

GK ACTIVATORS
GK is a key enzyme in the hexokinase family that facili-
tates glucose homeostasis via glucose phosphorylation 
and metabolism mainly in the pancreatic β cells and he-
patocytes[43-45]. GK functions as a glucose sensor in pan-
creatic β cells, thereby stimulating glucose-stimulated in-
sulin secretion and regulating glucose metabolism within 
the liver, including gluconeogenesis, glycolysis, glycogen 
synthesis, glucose oxidation, lipogenesis, urea, and uric 
acid production[43,45-48].

Since the initial development of  small molecules 
known as GK activators (GKAs) that bind to an alloste-
ric site of  the enzyme in 2003, more than 150 patents 
have been established[49-51]. Preclinical and clinical phase 
trials of  GKAs have demonstrated glucose lowering ef-
fect in both animal and humans[52]. This novel class of  
anti-diabetic agents holds promise particularly because 
both mechanistic actions of  GK are impaired in type 2 
diabetes[53]. However, there are concerns about potential 
side effects including hyperlipidemia, hypoglycemia, and 
fatty liver that may limit the development of  GKAs[54]. 
For example, a small Phase Ⅰ clinical trial involving the 
GKA piragliatin was discontinued in type 2 diabetes pa-
tients with unrevealed rationale[55].

Another GKA molecule, MK0941 was evaluated in a 
54-wk Phase Ⅱ trial in type 2 diabetes patients, but was 
discontinued because of  observed hyperlipidemia, vascu-
lar hypertension and early therapy failure[56].

Summary of GKA
GKAs offer a unique pharmacotherapeutics approach to 
type 2 diabetes management and have demonstrated use-
ful potential in glycemic management. However, further 
development is needed to address the potential side ef-
fects observed in clinical trials. Additional advancements 
may include modifications of  the GKAs structures and 
activities to minimize hypoglycemia, hyperlipidemia, fatty 
liver, and vascular hypertension[44].

CONCLUSION
The management of  type 2 diabetes present many treat-
ment challenges, but new and emerging drug therapies 
are a welcome addition to complement the current 
agents. The SGLT-2 inhibitors have shown significant 
benefits as monotherapy and in combination with avail-
able agents like metformin, sulphonylurea and insulin 
therapy. The selective 11β-HSD-1 inhibitor is another 
class of  possibly safe and efficacious agent that lowers 
fasting blood glucose, A1c and weight, although the A1c 
lowering was modest. The glycogen phosphorylase in-
hibitors appear to show rapid and safe blood glucose de-
creases in mice without the risk of  hypoglycemia. Hope-
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fully similar results translate into human studies. PTP-1B 
is still in clinical trials and may show significant decrease 
in weight and glucose levels in insulin and leptin resistant 
patients. Mice studies show positive results of  normalized 
blood glucose control, improved insulin sensitivity and 
improvements in lipogenesis. The GPR119 agonists have 
strong potential for meeting the needs of  type 2 diabetes 
patients because of  their safety profile, lack of  weight 
gain and possible beta cell preservation effect. However, 
the GK inhibitors may have some potential problems as 
agents so far have been discontinued due to dyslipidemia, 
vascular hypertension and early therapy failure. Prescrib-
ers and pharmacists may have to recognize that these 
new agents may not be first line agents due to costs, 
monitoring parameters, modest reductions of  A1c, and 
lack of  cardiovascular disease data. Further studies will 
help to more clearly define these new and emerging anti-
hyperglycemia agents’ roles in therapy.
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Abstract
Genetic linkage analyses, genome-wide association 
studies of single nucleotide polymorphisms, copy num-
ber variation surveys, and mutation screenings found 
the human chromosomal 12q24 locus, with the genes 
SH2B3  and ATXN2 in its core, to be associated with an 
exceptionally wide spectrum of disease susceptibilities. 
Hematopoietic traits of red and white blood cells (like 
erythrocytosis and myeloproliferative disease), autoim-
mune disorders (like type 1 diabetes, coeliac disease, 
juvenile idiopathic arthritis, rheumatoid arthritis, throm-
botic antiphospholipid syndrome, lupus erythemato-
sus, multiple sclerosis, hypothyroidism and vitiligo), 
also vascular pathology (like kidney glomerular filtra-
tion rate deficits, serum urate levels, plasma beta-2-
microglobulin levels, retinal microcirculation problems, 
diastolic and systolic blood pressure and hypertension, 
cardiovascular infarction), furthermore obesity, neuro-
degenerative conditions (like the polyglutamine-expan-
sion disorder spinocerebellar ataxia type 2, Parkinson’s 
disease, the motor-neuron disease amyotrophic lateral 
sclerosis, and progressive supranuclear palsy), and 

finally longevity were reported. Now it is important to 
clarify, in which ways the loss or gain of function of 
the locally encoded proteins SH2B3/LNK and ataxin-2, 
respectively, contribute to these polygenic health prob-
lems. SH2B3/LNK is known to repress the JAK2/ABL1 
dependent proliferation of white blood cells. Its null 
mutations in human and mouse are triggers of autoim-
mune traits and leukemia (acute lymphoblastic leuke-
mia or chronic myeloid leukemia-like), while missense 
mutations were found in erythrocytosis-1 patients. 
Ataxin-2 is known to act on RNA-processing and trophic 
receptor internalization. While its polyglutamine-expan-
sion mediated gain-of-function causes neuronal atro-
phy in human and mouse, its deletion leads to obesity 
and insulin resistance in mice. Thus, it is conceivable 
that the polygenic pathogenesis of type 1 diabetes is 
enhanced by an SH2B3-dysregulation-mediated predis-
position to autoimmune diseases that conspires with an 
ATXN2-deficiency-mediated predisposition to lipid and 
glucose metabolism pathology.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes mellitus type 1; 12q24; ATXN2 ; 
Obesity; SH2B3 ; Autoimmune

Core tip: Within the multifactorial pathogenesis of type 
1 diabetes mellitus (T1D), a genetic risk mediated by 
the chromosome 12q24 locus was consistently ob-
served. Mutations in the ATXN2 gene there trigger the 
pathogenesis of obesity, while mutations in the SH2B3 
gene there trigger the pathogenesis of autoimmune 
processes. Given that both genes show co-regulated 
expression, their combined effects may drive these two 
core aspects of T1D. Tissue and phenotype studies of 
mouse mutants will identify molecular targets for causal 
therapies.
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INTRODUCTION
The pathogenesis of  many common multifactorial dis-
eases was successfully elucidated over the past years, prin-
cipally through genome-wide association studies (GWAS) 
in many thousands of  sporadic patients vs control indi-
viduals. For diabetes mellitus type 1 (T1D), more than 40 
chromosomal loci were uncovered to modulate disease 
risk[1,2]. However, now the challenge consists in establish-
ing causality between one of  the multiple genes contained 
in any locus and one of  the disease features. One promis-
ing approach is the careful consideration of  phenotypes 
and pathology caused by disruption or overexpression 
of  any candidate gene, e.g., in mouse, and the subsequent 
comparison with relevant traits that occur within the first 
years of  the disease course. Thus, clinical information 
may help to guide the characterization of  mutant animals, 
while conversely the tissue analysis of  mutant animals 
may help to elucidate presymptomatic stages of  disease. 
A particularly complex example is the subject of  this 
review-the association of  T1D and many other medical 
conditions with mostly two single nucleotide polymor-
phisms (SNPs) on chromosome 12q24-rs3184504 and 
rs653178.

THE EXCEPTIONALLY PLEIOTROPIC 
DISEASE SUSCEPTIBILITY LOCUS ON 
CHROMOSOME 12Q24 EXTENDS FROM 
THE SH2B3 GENE ACROSS THE ATXN2 
GENE, BUT MAY STRETCH BEYOND 
THESE BORDERS
Chromosome 12q contains one of  the largest blocks 
of  linkage disequilibrium (LD) in the human genome[3]. 
It was observed early on in European/Asian/African 
populations and found to span > 1 Megabase pairs 
(Mbp) across several genes including the growth repres-
sor SH2B3, the RNA processing factor ATXN2, the 
nuclear localization inhibitor BRAP, the mitochondrial 
fatty acid beta-oxidation enzyme ACAD10, the alco-
hol metabolism enzyme ALDH2, and the stress kinase 
MAPKAPK5[4]. The core LD block was localized to exon 
1 of  the ATXN2 gene in a population of  European 
ancestry, and was explained by positive selection of  the 
(CAG)-repeat size in this exon[4]. Indeed, the most fre-
quently observed disease associations at this 12q24 locus 
are within a 200000 basepairs (bp) fragment, which com-
prises the ATXN2 gene and the immediately adjacent 
SH2B3 gene (Figure 1). According to the United States 
National Center for Biotechnology Information refer-
ence sequences, human SH2B3 is transcribed in orienta-

tion from the centromere, covering about 46000 bp, and 
spans 9 predicted exons to constitute an mRNA of  5425 
nucleotides, which encodes a protein of  575 amino acids. 
ATXN2 is transcribed in orientation from the telomere, 
covering about 147000 bp, and spans 24 predicted ex-
ons with several splice-isoforms, of  which the longest 
constitutes an mRNA of  4712 nucleotides and encodes 
a protein of  1313 amino acids. The missense SNP 
rs3184504 in SH2B3 open reading frame (resulting in the 
substitution W262R) was observed in perfect cosegrega-
tion (r2 = 1) with the SNP rs653178 deep within intron 
2 of  the ATXN2 gene[5], in spite of  a physical distance 
of  123148 bp. Since rs653178 is far away from ATXN2 
splice sites and since the W262 codon in SH2B3 is not 
conserved between human and mouse[6], both of  these 
polymorphisms are probably innocent bystanders and 
are noticed only through their frequency, depending on 
their random distribution within population stratifica-
tions. They are presumably coinherited with other rare 
sequence variants, e.g., within the promoters or within the 
mRNA 3’-untranslated regions, which alter the transcript 
expression levels slightly upwards or downwards. Indeed, 
both of  these cosegregating SH2B3 and ATXN2 vari-
ants correlated with significant changes in the expression 
of  both ATXN2 and SH2B3 mRNAs[7]. This coinheri-
tance together with correlated expression changes makes 
it inherently difficult to establish causality between any 
of  the individual traits within a complex disease and any 
of  the neighbouring genes. This is exemplified by the 
allocation of  six hematologic and three blood pressure 
traits to the region from SH2B3 to ATXN2 by genome-
wide studies, reflecting the exceptional pleiotropy of  this 
locus[8]. The 12q24 linkage disequilibrium block in some 
studies of  restricted populations included further genes, 
namely CUTL2, FAM109A, SH2B3, ATXN2, BRAP, 
ACAD10, ALDH2, MAPKAPK5, TMEM116, ERP29[9], 
NAA25/C12orf30, TRAFD1, HECTD4/C12orf51, 
RPL6, PTPN11[10-12], thus extending across 1.5 Mbp. For 
these reasons it is crucial to consider monogenic mutants 
for each gene and their phenotypic effects, so as to decide 
which of  them might contribute to each of  the diseases. 
However, for most of  these genes the relevant mouse 
mutants are not yet characterized.

NULL MUTATIONS IN MOUSE AND 
HUMAN DEMONSTRATE SH2B3 TO 
REPRESS THE PROLIFERATION OF 
WHITE BLOOD CELLS, IN PARTICULAR 
B-LYMPHOCYTES
The generation of  mice with deletion of  SH2B3 (also 
called Lnk) demonstrated primary splenomegaly and 
extramedullary hematopoiesis with progenitor hyper-
sensitivity to various cytokines[13]. It caused the ac-
cumulation of  pre-B and immature B-lymphocytes in 
enlarged spleens as well as an increase in B-lineage cells 
in the bone marrow, in parallel to unimpaired T-cell de-
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velopment in thymus[14]. It accelerated and exacerbated 
oncogenic JAK2-induced myeloproliferative diseases 
through an expansion of  myeloid progenitors, acceler-
ated myelofibrosis and finally features of  chronic myeloid 
leukemia (CML). These murine data supported notions 
that SH2B3 directly inhibits oncogenic JAK2 and coop-
erates with the BCR/ABL oncogene in the development 
of  CML[15]. Deletion of  SH2B3 was also observed in a 
genomic and transcriptomic study of  patients with BCR-
ABL1-positive acute lymphoblastic leukemia with poor 
outcome (Ph-like ALL), together with promising thera-
peutic benefits from tyrosine kinase inhibitors[16]. Human 
germline homozygous SH2B3 mutations including a 
frameshift with translation stop resulted in growth retar-
dation, high white cell counts in parallel to anemia and 
thrombocytopenia, splenomegaly and liver cirrhosis, au-
toimmune Hashimoto thyroiditis, speech delay and ALL. 
In addition, this study identified homozygous somatic 
SH2B3 frameshift mutations in ALL cases[17]. A 5 bp de-
letion of  SH2B3, which was predicted to affect both the 
PH domain and the SH2 domain, manifested clinically 
as primary myelofibrosis. In contrast, a somatic E208Q 
missense mutation in the PH domain was observed in a 
patient with essential thrombocythemia[18]. SH2B3 was 
also shown to interact with platelet-derived growth factor 
receptor and repress its downstream signaling[19]. Inter-
estingly, a selective increase in red blood cells (isolated 
erythrocytosis) was observed in two individuals with the 
SH2B3 missense mutations E208X and A215V[20]. How-
ever, SH2B3 sequencing in 23 erythrocytosis patients 
uncovered only one non-synonymous polymorphism 
of  unclear relevance[6]. Systematic SH2B3 sequencing 
analysis in 42 patients with chronic phase myeloprolif-
erative neoplasms detected a missense mutation in 7% 
of  cases, either in the SH2 domain or in the C-terminal 
domain, which were always accompanied by a JAK2 mu-
tation[21]. Myeloproliferative SH2B3 mutations within the 
PH domain were also shown to reduce SH2B3 function 

without altering its binding properties to JAK2, CBL and 
14-3-3[22]. An analysis of  peripheral mononuclear blood 
cells stimulated with anti-CD28 and anti-CD3 antibodies 
detected an increased proliferation of  T-lymphocytes in 
carriers of  the W262R missense SH2B3 variant, indepen-
dent of  the presence of  juvenile type 1 diabetes[23]. In vitro 
studies had previously shown SH2B3 to attenuate the 
ability of  SH2B1 to promote JAK2 activation and subse-
quent tyrosine phosphorylation of  insulin receptor sub-
strate-1 by JAK2[24]. SH2B3-deficient hematopoietic stem 
cells displayed an increased postnatal expansion and en-
hanced thrombopoietin responsiveness[25]. In subsequent 
studies they showed increased resistance to apoptosis due 
to enhanced expression of  Bcl-xL upon thrombopoietin 
stimulation[26]. A limitation of  growth by SH2B3 was also 
observed in the rat neuronal PC12 cell line and in prima-
ry cortical neurons, where neurotrophin-induced neurite 
outgrowth was downregulated by the binding of  SH2B3 
to the phosphorylated neurotrophin receptor TrkA and 
the repression of  downstream signaling[27].

AUTOIMMUNE DISEASES (EOSINOPHIL 
NUMBERS, COELIAC DISEASE, 
JUVENILE IDIOPATHIC ARTHRITIS, 
RHEUMATOID ARTHRITIS, THROMBOTIC 
ANTIPHOSPHOLIPID SYNDROME, 
LUPUS ERYTHEMATOSUS, MULTIPLE 
SCLEROSIS, HYPOTHYROIDISM, 
VITILIGO) MAY BE MODULATED BY 
SH2B3
Possibly as an effect of  SH2B3 on B-lymphocyte prolif-
eration, the 12q24 locus modulates the risk for various 
autoimmune diseases. A GWAS in the Icelandic popula-
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SH2B3-ATXN2 genomic locus

Figure 1  The core 200000 bp region of the chromosome 12q24 locus covering the immediately adjacent SH2B3 and ATXN2 genes, with an illustration of 
the single nucleotide polymorphism rs3184504 encoding the W272R missense variant of the SH2B3/LNK protein (as shown in the United States National 
Center for Biotechnology Information database) as well as the (CAG)-repeat structure encoding the unstable polyglutamine domain of the ataxin-2 protein.
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derived inflammatory biomarker in diabetes and infarc-
tion also showed the association with the SH2B3 SNP 
rs3184504[46]. Candidate studies of  2 and 21 SNPs in 
T1D cases from Russia and United States, respectively, 
replicated the SH2B3 association[47,48]. Since the effect is 
so consistent, SH2B3 SNP genotyping was integrated 
into a signature of  8 polymorphisms that provide optimal 
prediction of  T1D risk[49]. However, it is likely that the 
SH2B3 sequence variant rs3184504 is not biologically re-
sponsible by itself, since sequencing studies failed to find 
similar SH2B3 variants in NOD mice that model many 
T1D features[50].

EVIDENCE FROM MOUSE MUTANTS 
IMPLICATES ATXN2 IN METABOLIC 
SYNDROME
While the autoimmune component of  T1D might be ex-
plained by the SH2B3 effect on lymphocyte proliferation, 
some metabolic features of  T1D might be exacerbated by 
the ataxin-2 effect on glucose and lipid metabolism. Mice 
with targeted deletion of  Atxn2 exon 1 and frameshift in 
homozygous state displayed marked obesity and infertil-
ity in two independently generated mutant lines[51,52]. He-
patic lipid and glycogen accumulation was evident already 
at age 6 mo. As in other insulin resistance syndromes, 
pancreatic and blood serum insulin levels were increased, 
in parallel to a reduction of  insulin receptor (IR) protein 
levels in the liver, in spite of  increased IR mRNA levels. 
Serum cholesterol was significantly increased[52]. Although 
ataxin-2 is mostly localized at the rough endoplasmic 
reticulum and has strong effects on mRNA process-
ing[53-59], its effect on the IR is possibly explained through 
interactions with the endocytic internalization machinery 
of  receptor tyrosine kinases[60,61]. TDP-43 is an interac-
tor protein of  ataxin-2 via joint RNA-binding[57], was also 
demonstrated to regulate glucose homeostasis and fat 
deposition, with its levels showing direct correlation with 
the expression levels of  the obesity gene Tbc1d1, while its 
deletion affects the splicing of  apolipoprotein A-Ⅱ[62-64].

EVIDENCE FROM HUMAN MUTATIONS 
IMPLICATES ATXN2 IN OBESITY
The investigation of  obesity in 92 children by systematic 
sequencing of  the ATXN2 coding regions demonstrated 
a greatly increased frequency of  the SNP rs695872 al-
lele C and an overrepresentation of  (CAG)-repeat sizes 
> 22[65]. Indeed, obesity and polyphagia were marked 
features of  infants in middle stages of  the neurodegen-
erative process caused by (CAG)-repeat expansions in 
ATXN2[66]. Thus, monogenic evidence links obesity to 
ATXN2 both in mice and in human. This is possibly 
reflected by a genome-wide SNP genotyping analysis, 
where SH2B3 variants were associated with low-density 
lipoprotein (LDL) cholesterol[67]. Interestingly, an asso-
ciation with obesity was also observed for the ataxin-2 

tion studying eosinophil counts observed association with 
the SH2B3 SNP rs3184504[28]. A GWAS into coeliac dis-
ease found the SH2B3 SNP rs3184504 and the ATXN2 
intronic SNP rs653178 to be associated[29]. Follow up 
studies of  coeliac disease focusing on 9 and 11 candidate 
SNPs confirmed the association with SH2B3[30,31], and re-
ported upregulation of  SH2B3 mRNA expression levels 
in intestinal mucosa to be triggered by coeliac disease and 
by the risk allele T of  the SH2B3 SNP rs3184504[31]. Fur-
ther haplotype studies were confirmatory, and functional 
experiments indicated that carriers of  the rs3184504 risk 
allele show stronger activation of  the NOD2 recogni-
tion pathway in response to lipopolysaccharides and 
muramyl dipeptide[32]. A candidate study of  sixteen SNPs 
known from coeliac disease and from T1D found an as-
sociation of  the ATXN2 SNP rs653178 with juvenile 
idiopathic arthritis[33]. GWAS studies into rheumatoid 
arthritis indicated association with SH2B3 particularly 
among rheumatoid-factor-positive patients[34]. A GWAS 
meta-analysis confirmed that the ATXN2 intronic SNP 
rs653178 is associated not only with coeliac disease, but 
also with rheumatoid arthritis[35]. A study of  thrombo-
philia in antiphospholipid antibody positive individuals 
by array-comparative genomic hybridization analysis 
of  copy number variations with subsequent fine map-
ping identified a risk haplotype comprising one SH2B3 
SNP and two ATXN2 SNPs[36]. A GWAS of  systemic 
lupus erythematosus observed association with the SNP 
rs17696736 within the ERP29 gene downstream from 
SH2B3[9]. A candidate study of  12 SNPs in almost 3000 
Spanish multiple sclerosis patients detected association 
with the SH2B3 SNP rs3184504[37]. A GWAS into hypo-
thyroidism reported the SH2B3 SNP rs3184504 to be 
associated, with autoimmune Hashimoto thyroiditis as a 
likely explanation for this observation[38]. A GWAS into 
the autoimmune skin disease vitiligo reported an associa-
tion with the 12q24 locus extending from the SH2B3 
across the ATXN2 gene[39].

T1D MELLITUS
The first GWAS into T1D encountered a maximal as-
sociation with the 12q24 SNP rs17696736 in an intron 
of  the C12ORF30/NAA25 gene, while the effect was 
consistently observed also in its neighbourhood across 
a 1.5 Mbp LD block[10]. An extended GWAS confirmed 
this observation and pointed out that the association 
with the W272R missense variant encoded in exon 3 of  
SH2B3 was sufficient to model the regional effect[40]. 
GWAS of  additional cases corroborated the association 
with SH2B3[41], a further GWAS with meta-analysis and 
combined comparisons supported the association with 
rs3184504[42], and also a GWAS of  affected sib-pair fami-
lies showed association with the region from the SH2B3 
SNP rs739496 across the ERP29 SNP rs17696736 until 
the SNP rs10850061 beyond PTPN11[11,43]. GWAS of  
autoantibody positive T1D patients again detected the 
association with SH2B3[44,45]. GWAS of  soluble inter-
cellular adhesion molecule-1 levels as an endothelium-
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binding protein 1 (A2BP1 or RBFOX1) both in a GWAS 
among Pima Indians and in a candidate approach among 
French Caucasian adults[68].

ATXN2 IS IMPORTANT FOR 
NEURODEGENERATIVE DISEASES
The polyglutamine (polyQ) domain at the N-terminal 
end of  ataxin-2 normally has a size of  Q22-23, usually 
encoded by a (CAG)8CAA(CAG)4CAA(CAG)8 sequence 
in exon 1 of  the ATXN2 gene on chromosome 12q24. 
Its unstable expansion to large sizes beyond (CAG)31 is 
the monogenic cause of  an autosomal dominant multi-
system atrophy of  the nervous system, which was named 
spinocerebellar ataxia type 2[69-86]. CAG-repeat expansions 
with cytosine adenosine adenosine (CAA) interruptions 
may also manifest as Parkinson’s disease[87,88]. Intermedi-
ate CAG-repeat sizes of  26-31 units, sometimes with 
CAA interruptions, act as polygenic risk factor for the 
motor-neuron disease amyotrophic lateral sclerosis[57,89]. 
Intermediate CAG-repeat expansions enhance also the 
risk for progressive supranuclear palsy[90]. Published 
evidence suggests that the polyglutamine expansions in-
crease the half-life of  ataxin-2 and that a gain-of-toxic-
function through accumulation of  ataxin-2 aggregates 
with sequestration of  interactor proteins such as the 
poly(A)-binding-protein PABPC1 underlies the neuro-
degenerative process[57,91]. In spite of  the vast evidence 
that excess ataxin-2 is the biological cause for neuronal 
death, SNP genotyping and association studies curiously 
found an SH2B3 allele haplotype to be more informative 
and to better predict amyotrophic lateral sclerosis risk 
than the ATXN2 alleles[92]. This observation underscores 
old experiences that maximal linkage logarithm of  odds 
scores and maximal haplotype association scores within 
any chromosomal region depend on random population 
stratification effects and on the frequency/informativity 
of  alleles. Thus, they are not suitable for the fine map-
ping of  disease genes.

LONGEVITY
Interestingly, the discovery set of  a GWAS of  exceptional 
longevity in centenarians detected a significant association 
with the ATXN2 SNP rs653178, in parallel to several 
other disease associated SNPs, while the strongest effect 
correlated with the SNP rs2075650 at the TOMM40/
apolipoprotein E (APOEO locus. TOMM40 encodes the 
channel forming subunit of  the translocase across the 
mitochondrial outer membrane, while APOE encodes 
the apolipoprotein E, which mediates the binding and 
clearance of  lipoprotein particles such as chylomicrons 
and very LDLs. Apolipoprotein E polymorphisms are 
the main known genetic factors associated with the risk 
of  Alzheimer’s disease[93,94]. While it remained unclear in 
this longevity GWAS, whether an LD effect was consis-
tently observed also for SNPs that surround ATXN2, 
and whether blood cell traits, autoimmune disorders, 
obesity, neurodegenerative processes or vascular pathol-

ogy were underlying this observation, the authors re-
ported their observation of  a reduced frequency of  the 
ATXN2 SNP rs653178 allele T among centenarians [with 
a log10(BayesFactor) of  1.2] in the light of  previous 
ATXN2 GWAS association data with hypertension[93,94].

KIDNEY DISEASE, MICROCIRCULATION, 
HYPERTENSION AND CARDIOVASCULAR 
INFARCTION
Indeed, several independent GWAS found renal func-
tion (estimated glomerular filtration rate on the basis 
of  cystatin c) and chronic kidney disease to be modu-
lated by the rs653178 variant within an intron of  the 
ATXN2 gene in populations of  European and African 
ancestry[5,95-97]. Also a GWAS into plasma levels of  beta-
2-microglobulin as a biomarker of  kidney function, 
cardiovascular diseases and mortality reported an associa-
tion with the ATXN2 SNP rs653178[98]. Furthermore, a 
recent GWAS into serum urate concentrations uncovered 
an association with the ATXN2 SNP rs653178[99]. The 
analysis of  83 candidate SNPs showed kidney disease 
variants to be associated with vascular phenotypes only 
in the case of  rs653178 within the ATXN2 gene and 
two SNPs at the SH2B3 locus[100]. A GWAS studying 
microcirculation as measured by retinal venular caliber 
reported 4 loci, with only the rs10774625 SNP within an 
ATXN2 intron showing also significant association with 
hypertension and coronary heart disease[12]. The ATXN2 
SNP rs653178 and the SH2B3 SNP rs3184504 associa-
tion with diastolic as well as systolic blood pressure, mean 
arterial pressure and pulse pressure was reported in three 
independent GWAS of  populations with European and 
African ancestry[7,101-103]. Similarly, an association of  the 
SH2B3 SNP rs3184504 with diastolic and systolic blood 
pressure and hypertension was detected in a GWAS of  
200000 individuals of  European descent[104]. A GWAS as-
sociation of  the ATXN2 SNP rs653178 with myocardial 
infarction was shown in Icelandic individuals[28]. A recent 
candidate SNP study replicated the association between 
the SH2B3 SNP rs3184504 and coronary heart disease 
also in South Asian patients[105]. Thus, it appears that the 
12q24 locus has a marked effect on vascular pathology.

RED BLOOD CELL TRAITS
It is unclear whether the above vascular disorders are 
consequences of  vessel wall pathology or of  blood cell 
pathology. It may therefore be relevant that a GWAS into 
the genetic basis of  six traits of  erythrocytes (including 
hemoglobin concentration, hematocrit, mean corpuscular 
volume, mean corpuscular hemoglobin, mean corpuscu-
lar hemoglobin concentration and red blood cell count) 
also showed associations with the 12q24 locus from 
SH2B3 across the ATXN2 gene[106].

CONCLUSION
For further mechanistic insights it will be important to 
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generate and characterize rodent mutants for each of  the 
genes in the pleiotropic 12q24 disease susceptibility locus. 

With the limited knowledge available so far, it is cred-
ible that SH2B3 modulates B-lymphocyte proliferation 
and autoimmune traits. Ataxin-2 gain-of-function is a 
well-established modulator of  several neurodegenerative 
diseases, while its deficiency appears to predispose to in-
sulin resistance, blood cholesterol elevation, hepatic gly-
cogen and lipid accumulation with overall obesity. Thus, 
downstream effects of  both genes might cooperate to 
enhance the risk for type 1 diabetes.

Since T1D is an age-associated disease, it will be im-
portant to age Atxn2-null mice beyond 6 mo to the end 
of  their natural lifespan around 2 years. This will allow us 
to assess whether their obesity leads to hypertension and 
vascular pathology, e.g., in kidneys, whether red blood cell 
traits are altered, and whether their longevity is abnormal. 
In particular, the insulin resistance/obesity/dyslipidemia/
hepatosteatosis induced by Atxn2-null mutations should 
be studied regarding their long-term consequences. Mech-
anistically, it will be intriguing to elucidate how the RNA 
processing effects of  ataxin-2 lead to this pathology.

In view of  the polyQ expansion effects extending 
the protein half-life and causing a gain-of-function of  
ataxin-2, it is conceivable that the polyQ shrinkage sizes 
(Q13-21) could mediate a decreased half-life of  the pro-
tein and a partial loss-of-function. Thus, these rare vari-
ants might be associated with phenotypes that were ob-
served in the Atxn2-null mouse, such as obesity, insulin-
resistance and diabetes mellitus.
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Abstract
Ghrelin is a 28 amino acid peptide mainly derived from 
the oxyntic gland of the stomach. Both acylated (AG) 
and unacylated (UAG) forms of ghrelin are found in 
the circulation. Initially, AG was considered as the only 
bioactive form of ghrelin. However, recent advances 
indicate that both AG and UAG exert distinct and com-
mon effects in organisms. Soon after its discovery, 
ghrelin was shown to promote appetite and adiposity 
in animal and human models. In response to these an-
abolic effects, an impressive number of elements have 
suggested the influence of ghrelin on the regulation of 
metabolic functions and the development of obesity-
related disorders. However, due to the complexity of 

its biochemical nature and the physiological processes 
it governs, some of the effects of ghrelin are still de-
bated in the literature. Evidence suggests that ghrelin 
influences glucose homeostasis through the modula-
tion of insulin secretion and insulin receptor signaling. 
On the other hand, insulin was also shown to influence 
circulating levels of ghrelin. Here, we review the rela-
tionship between ghrelin and insulin and we describe 
the impact of this interaction on the modulation of glu-
cose homeostasis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Acylated ghrelin; Unacylated ghrelin; Insu-
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Core tip: The present invited review intends to summa-
rize the current knowledge on the relationships between 
ghrelin, insulin and glucose homeostasis in cellular, ani-
mal and human models.
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INTRODUCTION
Obesity and ensuing metabolic complications are major 
concerns for public health and these disturbances are 
anticipated to cause the first reduction of  life expectancy 
in modern history[1]. Unfortunately, efforts to curb and 
especially prevent this alarming trend have so far been 
met with disappointment. Although it was initially hypoth-
esized that metabolic dysfunctions develop in response to 
overeating and sedentarity, recent advances show that the 
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pathophysiological process is much more complex than 
anticipated. That is, obesogenic environmental and genetic 
factors disturb homeostatic crosstalk between tissues, pro-
mote excessive fat deposition and ultimately alter cellular 
functions[2-7]. Recently, a close relationship between the de-
velopment of  obesity-related disturbances and gut-derived 
hormonal dysregulations has been clearly established[8-11]. 
For instance, studies of  gut-derived peptides such as 
peptide tyrosine-tyrosine 3-36, glucagon-like peptide 1, 
glucose-dependent insulinotropic peptide and oxynto-
modulin have provided key information regarding factors 
promoting satiety, insulin secretion and glucose disposal. 
More recently, studies on ghrelin have significantly im-
proved our understanding of  mechanisms underlying the 
stimulation of  food intake, lipid accumulation in adipose 
tissues and the development of  metabolic dysfunctions 
such as insulin resistance and type 2 diabetes[12].

Ghrelin is a 28 amino acid peptide predominantly 
produced by the stomach[13-15] but also expressed at lower 
levels in other tissues such as the liver, pancreas, heart, 
central nervous system (CNS), esophagus and testis[16-18]. 
Although it was isolated from rat stomach extracts[13] 
ghrelin was initially shown to induce potent somatotro-
phic activity in the anterior pituitary[19-21]. Subsequent 
studies have also revealed the relevance of  ghrelin in the 
regulation of  appetite, storage and metabolism of  energy 
substrates, inflammation, stress and other key biological 
functions[22,23]. Strong evidence indicates the effects of  
ghrelin in the regulation of  metabolic functions and its 
potential role in the etiology of  obesity-related dysfunc-
tions such as insulin resistance and type 2 diabetes[24]. For 
the purpose of  the present work, we will emphasize on 
reviewing the inter-relationships between ghrelin, insulin 
and glucose homeostasis.

GHRELIN RECEPTOR
In the circulation, ghrelin is present under acylated (AG) 
and unacylated (UAG) forms[13]. The enzyme ghrelin 
o-acyltransferase (GOAT) was shown to be mandatory 
for the posttranslational addition of  the acyl chain on 
serine-3 of  ghrelin[25]. In blood, the half-life of  AG is ap-
proximately 10 min while UAG displays more stability 
with a half-life of  more than 35 min[26]. Although UAG 
accounts for approximately 50%-90% of  total ghrelin 
concentrations in the circulation, this form was initially 
considered as an artifact devoid of  biological activity[26,27]. 
However, recent advances indicate that UAG indepen-
dently mediates specific biological functions while shar-
ing others with AG.

The effects of  AG are mediated through the activa-
tion of  the native growth hormone (GH) secretagogue 
receptor 1a (GHS-R1a)[13,28]. Following the discovery of  
ghrelin, the AG form was reported to stimulate the re-
lease of  GH and to promote appetite through its action 
on the brain[13,29-31]. In contrast to its acylated counterpart, 
UAG was not shown to interact with the GHS-R1a. It 
has recently been suggested that AG and UAG may exert 

their effects through the interaction with other recep-
tors than the already identified GHS-R1a. The human 
ghrelin analog BIM-28163, which fully inhibits GHS-R1a 
receptor activation induced by native ghrelin, was shown 
to blunt AG-induced GH secretion[32]. However, since 
both AG and BIM-28163 induce neuronal activation in 
the dorsomedial hypothalamus, an important nucleus 
involved in regulating food intake, it is suggested that an 
unknown ghrelin receptor could mediate AG’s action in 
promoting weight gain[33,34]. Accordingly, it is proposed 
that the GHS-R1a acutely mediates AG action on ap-
petite, whereas an unknown ghrelin receptor modulates 
its chronic peripheral weight-increasing effects[35,36]. It has 
also been suggested that GHS-R1a could heterodimer-
ize with G protein-coupled receptor 83 (Gpr83)[37]. This 
study shows that the Gpr83/GHS-R1a dimerization 
affects ghrelin’s ability to activate its only known endog-
enous receptor, indicating that Gpr83 is an important 
regulator of  ghrelin receptor activity. AG was also shown 
to interact with several other G protein-coupled recep-
tors such as the dopamine receptor subtypes 1 and 2 
(DRD1/2) and melanocortin receptor 3 (MC3R) in the 
central nervous system[37-41]. Because the existence of  
another ghrelin receptor remains speculative, the follow-
ing sections will emphasize on the interactions between 
GHS-R1a and insulin synthesis/release and signalling.

In a landmark article, Tschöp et al[30] had observed 
that AG increases both food intake and adiposity in rats 
and mice, suggesting that the hormone promotes positive 
energy balance. GHS-R1a is predominantly expressed 
in the central areas known to be influenced by insulin, 
including hypothalamic neuropeptide Y (NPY)/agouti-
related protein (AgRP) neurons[42,43]. Furthermore, we 
and others have reported that the orexigenic effects of  
AG are mediated through the activation of  NPY and 
AgRP as well as the inhibition of  proopiomelanocortin 
(POMC)/cocaine- and amphetamine-regulated transcript 
(CART) neurons in the arcuate nucleus (ARC) of  the 
hypothalamus[29,44-49]. It has recently been hypothesized 
that the adipogenic effects of  both AG and UAG could 
be mediated in the CNS by the activation of  GHS-R1a[50]. 
Mice lacking GHS-R1a are protected against early-onset 
obesity, indicating the importance of  ghrelin signaling in 
regulating body weight[51]. The effect of  AG on food in-
take is believed to be mainly attributable to its interaction 
with the melanocortin system[44,52]. In fact, in the hypo-
thalamus, ghrelin promotes the expression of  the enzyme 
prolylcarboxypeptidase and therefore the degradation of  
melanocortin receptor agonist α-melanocyte-stimulating 
hormone[53]. Central melanocortin signaling has been 
shown to directly regulate insulin levels and to be inde-
pendently involved in the control of  glucose homeosta-
sis[54]. Moreover, the melanocortin system is an important 
downstream target for the effects of  insulin to regulate 
food intake and body weight[55]. The melanocortin system 
is active in areas where both insulin and ghrelin signalling 
components are expressed; therefore, potential crosstalks 
between these systems could be envisaged.
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COMMON PATHWAY FOR GHRELIN AND 
INSULIN RECEPTOR SIGNALING
in the central nervous system
As mentioned above, it is believed that the effects of  
ghrelin on feeding are mainly exerted through the 
ARC[29,56,57]. Since the central administration of  ghrelin in-
creases the mRNA expression of  NPY and AgRP while 
inhibiting the transcription of  POMC and CART, it has 
been suggested that the orexigenic actions of  ghrelin are 

mediated through the activation of  these neurons[29,44-49,58]. 
As presented in Figure 1A, GHS-R1a activation regulates 
intracellular calcium through the adenylate cyclase-protein 
kinase A (PKA) and phospholipase C-protein kinase C 
(PKC) pathways[43,59]. The PKA pathway has been shown 
to be related to the orexigenic effects of  ghrelin since 
inhibitors of  PKC do not influence the calcium response 
to ghrelin in NPY neurons of  the ARC[43]. Consequently, 
GHS-R1a activation in the ARC elicits calcium signaling 
through N-type calcium channel-dependent mechanisms.
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Figure 1  Crosstalks between ghrelin and insulin signaling. A: In the CNS, the interaction between GHS-R1a and ghrelin leads to the activation of PKC and PKA 
and ultimately to the opening of calcium channels. In the ARC, AG’s orexigenic effects are solely mediated through PKA activation and the intracellular entry of Ca2+; 
which in turn, generate a depolarization/activation of NPY neurons. GHS-R1a activation also triggers AMPK phosphorylation. Also, the activation insulin signaling path-
way leads to a phosphorylation cascade that involves PI3K, Akt/PKB and mTORC1. mTORC1 has been shown to reduce food intake by inhibiting NPY expression in 
ARC neurons. This suggests the existence of a crosstalk between these two signaling pathways, considering that AMPK inhibits mTORC1 activation while ghrelin also 
reduces the anorexigenic effects of insulin-mTORC1. GHS-R1a could also mediate mTORC1 activation through an AMPK-independent mechanism. Moreover, GHS-
R1a has been shown to dimerize with some GPCRs such as Gpr83, DRD1/2 and MC3R; B: In the periphery, the adipogenic effects of ghrelin have been shown to 
synergize with insulin signaling. In contrast to its central effects, the interaction between GHS-R1a and AG leads to decreases in AMPK activity in the periphery. GHS-
R1a also activates Akt, PKB, mTORC1 and ultimately PPAR-γ to stimulate insulin-induced adipogenesis. CNS: Central nervous system; PKC: Protein kinase C; PKA: 
Protein kinase A; ARC: Arcuate nucleus; GHS-R1a: Growth hormone secretagogue receptor 1a; NPY: Neuropeptide Y; AG: Acylated ghrelin; AMPK: AMP-activated 
protein kinase; mTORC1: Mechanistic target of rapamycin complex 1; MC3R: Melanocortin receptor 3; DRD1/2: Dopamine receptor subtypes 1 and 2; Gpr83: G 
protein-coupled receptor 83; GPCR: G protein-coupled receptors; PPAR-γ: Peroxisome proliferator-activated receptor γ; IR: Insulin receptor.
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in AMPK activation between the brain and the periphery, 
it is expected that ghrelin and insulin signaling crosstalks 
will be different in the CNS versus the periphery. In the 
periphery, it was observed that ghrelin stimulates adipo-
genesis[10,22]. The adipogenic effects of  ghrelin are mediat-
ed, at least in part, through the activation of  peroxisome 
proliferator-activated receptor γ (PPAR-γ), a nuclear 
receptor whose activity is positively influenced by key 
components of  the insulin pathway, namely Akt/PKB 
and mTORC1[71-73]. In fact in the periphery, AG promotes 
adipogenesis through PPAR-γ. Interestingly, a fully op-
erational form of  the mTORC1 complex is required for 
PPAR-γ activation; suggesting that AG’s adipogenic ef-
fects could be mediated through mTORC1. Consistently, 
ghrelin promotes activation of  the Akt/PKB pathway in 
macrophages, and this activation results in an enhanced 
activation of  PPAR-γ[74]. Unlike in the CNS, GHS-R1a 
adipogenic actions seem to synergize with the insulin 
signaling pathway, establishing the need to further under-
stand the discrepancies between mTOR, AMPK, insulin 
and ghrelin action in the brain versus peripheral tissues. It 
is noteworthy that both endogenous and pharmacological 
activation of  AMPK prevent adipogenesis while down-
regulating the expression of  key adipogenic genes includ-
ing PPAR-γ in the periphery[75,76]. Overall, these elements 
suggest that ghrelin needs to inhibit peripheral AMPK to 
exert its effects on fat accumulation.

It is also suggested that the insulin signaling pathway 
and insulin per se can affect ghrelin production and signal-
ing. It has been shown that components of  the mTOR 
signaling pathway are expressed in the endocrine cells of  
gastric mucosa, where nearly all ghrelin-positive cells are 
positively stained for these signaling molecules[77]. More-
over, rapamycin, a mTORC1 inhibitor increases gastric 
ghrelin mRNA, gastric preproghrelin levels and circulat-
ing ghrelin, demonstrating that the mTORC1 signaling 
pathway is crucial in ghrelin expression and secretion[78]. 
Therefore, insulin could also directly affect ghrelin se-
cretion. Altogether, these findings strongly suggest the 
existence of  a link between ghrelin and insulin signaling 
pathways. The following sections will focus on the physi-
ological impact of  such a relationship on glucose ho-
meostasis, insulin secretion and ghrelin levels in cellular, 
animal and human models.

GHRELIN AND GLUCOSE HOMEOSTASIS
The influence of  ghrelin on the regulation of  glucose ho-
meostasis was first hypothesized following the observa-
tion of  a negative correlation between circulating ghrelin 
and insulin levels in humans[79]. Later, an association be-
tween ghrelin and the homeostasis model of  assessment, 
an index of  insulin resistance, in women with polycystic 
ovary syndrome (PCOS) further supported the involve-
ment of  ghrelin in the development of  insulin resistance 
and type 2 diabetes[80]. Subsequently, the association of  
ghrelin with insulin, glucose and insulin resistance index-
es was investigated in different populations with definite 
metabolic profiles. For instance, in obese and non-obese 

AMP-activated protein kinase (AMPK) plays an im-
portant role in the regulation of  energy metabolism. This 
kinase is activated following an increase in the AMP/ATP 
ratio within the cell, a condition linked to cellular energy 
depletion[60]. Once activated, AMPK phosphorylates 
acetyl-CoA carboxylase and switches on catabolic pro-
cesses to promote ATP production[60]. Current evidence 
indicates that ghrelin could be considered as a signal of  
energy deficiency since it activates AMPK in the CNS. 
Moreover, ghrelin-induced calcium entry is substantially 
suppressed by an AMPK inhibitor[61]. Consistent with 
these observations, GHS-R1a positively modulates hy-
pothalamic AMPK[61,62]. In turn, the pharmacological 
activation of  AMPK was also shown to stimulate food 
intake in the hypothalamus[62]. This reinforces the view 
that AMPK is critical in the control of  feeding. How-
ever, little is known regarding the potential mechanisms 
through which AMPK-activation would mediate ghrelin’s 
orexigenic effects. Recent data suggest that in response to 
fasting, increased ghrelin levels promote feeding through 
AMPK-mediated activation of  hypothalamic fatty acid 
metabolism in the ventromedial hypothalamus (VMH)[63]. 
Further studies are needed to identify the mechanisms 
underlying ghrelin’s activation of  AMPK and to charac-
terize the neuronal centers involved in the stimulation of  
appetite.

AMPK influences the insulin signaling pathway, sug-
gesting that ghrelin-induced activation of  AMPK could 
affect this pathway. In fact, the activation of  AMPK in-
hibits the mechanistic target of  rapamycin (mTOR) com-
plex 1 (mTORC1) activity, a key protein complex activated 
downstream of  the insulin receptor (IR). mTORC1 is a 
central regulator of  cell metabolism, growth, proliferation 
and survival and acts as a nutrient/hormone sensor[64,65]. 
In the CNS, mTORC1 activation reduces food intake at 
least by reducing the hypothalamic expression of  NPY 
and AgRP[66,67]. Recent data indicate that ghrelin requires 
an intact hypothalamic mTORC1 to stimulate food in-
take[68]. In this study, the authors suggest that orexigenic 
effect of  ghrelin is mediated by AMPK in the VMH, 
but through the mTORC1 in the ARC. These results are 
rather counterintuitive since the effects of  AMPK and 
mTORC1 usually antagonize each other. AMPK activa-
tion promotes food intake whereas mTORC1 does the 
opposite. Indeed, injection of  insulin in rodents inhibits 
AMPK activity in the hypothalamus, promotes mTORC1 
activation, and reduces food consumption[69]. Recently, is 
has been suggested that ghrelin plays a dual time-depen-
dent role in modulating hypothalamus, since it only tran-
siently affects AMPK, which might explain the conflicting 
results[70]. More studies are needed to better understand 
the signaling events mediating the effects of  ghrelin on 
the regulation of  food intake.

in the periphery
As indicated in Figure 1B, in contrast to its central ef-
fects, ghrelin decreases AMPK activity in the periphery, 
indicating that the hormone bilaterally controls AMPK 
in the brain and peripherally. Because of  this divergence 
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children and obese adults with or without insulin resis-
tance or type 2 diabetes, pre-meal total ghrelin levels were 
inversely associated to insulin levels and the severity of  
insulin resistance[81-83]. The recent development of  new 
and more sensitive immunoassays has allowed the charac-
terization of  distinct biological activity of  AG and UAG 
in healthy and pathological conditions. This led to the 
observation that AG, rather than UAG, reduces insulin 
secretion while promoting insulin resistance in individuals 
with or without metabolic dysfunctions[27,84]. 

Soon after its discovery, ghrelin was shown to be se-
creted in a pulsatile manner in response to the nutritional 
status[31]. In clinical studies, ghrelin levels were initially 
measured from a unique sample in participants submit-
ted to an overnight fast. However more elaborate study 
designs have been developed to allow the determination 
of  ghrelin levels at different time points in pre-meal and 
postprandial conditions. The first evidence suggesting 
the involvement of  ghrelin in the regulation of  insulin 
secretion was provided by the observation of  a positive 
association between suppression of  total ghrelin levels 
and insulin concentrations in the postprandial condition 
in participants with uncomplicated obesity[85]. In addition, 
total ghrelin levels were negatively correlated to insulin 
resistance in obese children and adolescents[83].

As previously reviewed[86,87], several research teams 
have reported a link between ghrelin and the regulation 
of  glucose homeostasis but this was often achieved us-
ing one single fasting sample of  total ghrelin. Although 
they provided key information, data generated from 
these studies were often not in line with results obtained 
using AG or UAG treatments in cell, animal and human 
models. Accordingly, the inverse correlations of  ghrelin 
with insulin levels and insulin resistance commonly de-
scribed in the literature seem rather counter-intuitive at 
first glance for an adipogenic hormone promoting food 
intake and decreased energy expenditure. Indeed, we 
would expect that ghrelin, which drives food intake and 
adiposity would be positively associated with impaired 
metabolic functions. It is therefore likely that under 
physiological conditions, ghrelin acts as a regulator of  
energy balance to stimulate appetite and the storage of  
energy substrates while reducing energy expenditure in 
periods of  limited food availability. However, when nutri-
ents are abundant, ghrelin levels decrease to prevent the 
excessive accumulation of  energy substrates. Some also 
suggest the existence of  a state of  ghrelin resistance since 
high-fat consumption blunts the effects of  intracerebro-
ventricular-administrated ghrelin on GH secretion, ARC 
neurons activation and NPY/AgRP expression[88]. From 
an evolutionary perspective, ghrelin could favor survival 
for individuals having limited access to nutrients. How-
ever, impairments in the regulation of  ghrelin secretion, 
caused by the ingestion of  specific nutrients or other ge-
netic/environmental factors, could promote the excessive 
accumulation of  lipids and ultimately the development 
of  metabolic dysfunctions such as insulin resistance and 
type 2 diabetes.

EFFECTS OF GHRELIN ON INSULIN 
SECRETION
It was initially reported that a population of  ghrelin- and 
insulin-producing cells would have common embryonic 
progenitors within the developing endocrine pancreas[89]. 
In the pancreas, ghrelin-positive ε-cells are found as 
single cells in islet periphery. Ghrelin is also co-expressed 
with glucagon-secreting cells in humans and rats[17,90-94]. 
The expression of  GHS-R1a was also detected in islets 
as well as in several pancreatic cell lines, suggesting that 
ghrelin and its receptor could influence pancreatic func-
tions in a paracrine manner[95].

As presented in Table 1, the first direct evidence sug-
gesting the influence of  ghrelin on the regulation of  in-
sulin secretion was provided by Broglio et al[21] in healthy 
volunteers. In fasting condition, AG administered at 1 
μg/kg intravenously (iv) significantly reduced circulating 
insulin levels while increasing glycemia. Using the same 
conditions, AG was shown to reduce insulin secretion 
in young and elderly participants[106]. Since AG has a 
relatively short half-life in circulation, continuous admin-
istrations of  the peptide were performed to confirm the 
results obtained using bolus injections. The continuous 
infusion of  AG (1 μg/kg per hour) decreased the first 
phase of  insulin secretion postprandially, while causing 
a significant rise in glycemia[96,107]. This increase in blood 
glucose was also associated to an enhanced second-
phase insulin response. Similarly, Vestergaard et al[101-105] 
observed that AG infusions (0.3 μg/kg per hour to 1.0 
μg/kg per hour) promote insulin resistance; however they 
did not detect any fluctuation in insulin secretion[100,101]. 
At lower concentrations (0.3 to 1.5 ng/kg per hour), 
AG infusions reduced insulin secretion and glucose lev-
els[108]. The same authors have also observed a decrease 
in insulin secretion in response to the administration of  
physiological concentrations of  AG (0.2 and 0.6 ng/kg 
per hour)[26,109]. Consequently, it is suggested that physi-
ological levels of  ghrelin directly impair β-cell functions 
but the mechanisms underlying these effects remain to be 
clarified[109]. One appealing hypothesis is that these inhibi-
tory effects of  AG on insulin release could be mediated 
through the stimulation of  somatostatin production[97]. In 
contrast, a single bolus of  AG (1 μg/kg) did not induce 
any alteration of  glucose or insulin levels in obese wom-
en[110]. In a clinical study, UAG was administered for 16 
h at 1.0 μg/kg per hour and the postprandial insulin re-
sponse was potentiated in healthy volunteers[111]. Follow-
ing a meal, the inhibitory effect of  AG on insulin release 
was abrogated by the co-administration with UAG[96]. 
Furthermore, Kiewiet et al[112] reported that the combined 
treatment with AG and UAG increased insulin sensitivity 
in morbidly obese patients. Altogether, these studies show 
that ghrelin has complex effects when administered to 
humans and that the impact of  this hormone on glucose 
homeostasis likely depends on the dose, the nutritional 
status and the metabolic profile of  the population stud-
ied. Furthermore, the biphasic insulin response observed 

332 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Chabot F et al . Relationship between ghrelin and insulin



after the administration of  AG indicates that the peptide 
could exert distinct effects on β-cells: an initial inhibition 
of  insulin release combined to a subsequent stimulation 
of  insulin synthesis[96,107]. Further studies are needed to 
clarify the causes of  the variability in insulin secretion 
and glucose homeostasis observed in response to ghrelin. 
To do so, it is critical to establish the concentrations at 
which ghrelin will be administered, and to design clinical 
protocols with well-established nutritional status and suf-
ficient blood samples to allow detecting positive/negative 
effects on insulin release under specific metabolic condi-
tions.

Similarly to the available data in humans, data derived 
from most rodent studies indicate that AG inhibits insu-
lin secretion. In wild type mice, iv administrations of  AG 
(5 nmol to 150 nmol) were shown to inhibit fasting and 
glucose-induced insulin secretion[113]. In contrast, insuli-
notropic effects have been reported in response to an iv 
injection of  AG (25 nmol/L) in rats[114]. In mice, the ad-
ministration of  AG (1 to 10 nmol/kg, iv) was also shown 
to induce biphasic responses[115]. In fact AG was shown 
to inhibit insulin release by blocking the effects of  a cho-
linergic antagonist on the activation of  phospholipase C 
(PLC) after 2 min but this effect was reversed 6 min after 
treatment[115]. During the early phase (2 min), ghrelin also 
promoted the stimulation of  insulin secretion by poten-
tiating the response of  the phosphodiesterase inhibitor 
IBMX, but this effect could no longer be observed at 6 
min. The same group also reported that the stimulatory 
effect of  ghrelin on insulin release was accompanied 
by increases in nitric oxide and that this outcome was 
mediated by the activation of  the neuronal constitutive 
nitric oxide synthase[116]. In mice, AG promptly inhibits 
insulin release but this effect is reversed over time. This 
suggests that AG could block the first-phase of  insu-
lin secretion and subsequently allow β-cells to release 
the hormone. Although these effects were modulated 
through PLC and phosphodiesterase, the mechanisms 
underlying these observations remain to be elucidated. 
Consequently, following the description of  this biphasic 

response, it is even possible to speculate that AG’s effects 
could be mediated through the activation of  more than 
one distinct receptor. For instance, these effects could 
potentially be regulated by the formation of  homo- and 
heterodimers between GHS-R1a and other receptors 
such as Gpr83 and DRD1/2[37,41]. Interestingly, the ex-
pression of  both GHS-R1 and DRD2 was previously re-
ported in β-cells[41,95]. Furthermore, DRD2 was shown to 
inhibit insulin secretion through the activation of  the β2-
adrenergic receptor[117]. This indicates that under distinct 
conditions, AG (and potentially UAG) could mediate the 
dimerization of  GHS-R1 and consequently exert differ-
ent effects on β-cell functions.

Genetic manipulations have also provided key data 
regarding ghrelin actions. Overexpression of  the ghrelin 
(Ghrl) gene was shown to decrease insulin levels in mice, 
while its inactivation was shown to enhance insulin secre-
tion and to prevent glucose intolerance[118-120]. In leptin-
deficient mice, the deletion of  the Ghrl gene potentiates 
insulin secretion and improves glucose homeostasis[121,122]. 
The pharmacological inhibition of  GHS-R1 was also 
shown to increase insulin secretion and improve glucose 
homeostasis[123]. In contrast, the ablation of  the Ghs-r1 
gene decreased glucose control and reduced insulin se-
cretion in leptin-deficient mice[124]. This impaired insulin 
response was associated with the upregulation of  Uncou-
pling protein-2 (Ucp-2), Sterol regulatory-element binding 
protein-1c (Srebp-1c), Carbohydrate-responsive element-
binding protein (Chrebp) and Macrophage migration in-
hibitory factor-1 (Mif-1) and with the downregulation of  
Hypoxia-inducible factor-1α (Hif-1α), fibroblast growth 
factor-21 (Fgf-21) and Pancreatic and duodenal homeo-
box-1 (Pdx-1) in whole pancreases[124]. These genes are 
known to decrease (Ucp-2, Srebp-1c, Chrebp and Mif-1) 
or improve (Hif-1α , Fgf-21 and Pdx-1) β-cell functions. 
Another group has also suggested that the effect of  AG 
could be mediated through an increased production of  
the β-cell autoantigen for type 1 diabetes (IA-2β)[125]. In 
perfused rat pancreases, the influence of  AG on insulin 
release was also investigated. AG (10 nmol/L) was shown 
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Table 1  Effects of ghrelin treatment in human participants

Model Treatment Dose Condition Endogenous insulin Insulin sensitivity

Healthy or hypopituitary 
humans

AG vs Ctrl (iv) AG + Arg vs Arg (iv) AG: 1 to 2.2 μg/kg
Arg: 0.5 g/kg

Fasting (overnight) Decreased Decreased[21,96-99]

Healthy or hypopituitary 
humans

AG + FFA vs FFA AG + UAG AG: 1 μg/kg
FFA: 25 g
UAG: 1 μg/kg

Fasting (overnight) Decreased No change[96,98]

Healthy humans AG + OGTT (iv) vs OGTT UAG 
vs Ctrl (iv) AG + UAG vs Ctrl (iv)

AG: 1 μg/kg
OGTT: 100g
UAG: 1 μg/kg

Fasting (overnight) No change No change[96,98]

Healthy humans AG vs Ctrl (iv) AG: 1 μg/kg Fasting (overnight) Increased Decreased[96]

Healthy humans AG vs Ctrl infusion 3h (iv) AG: 5 pmol/kg per minute Fasting (overnight) - Decreased[100]

Healthy, gastrectomized 
or hypopituitary humans

EHC: AG vs Ctrl 5 h (iv) pancreatic 
clamp + EHC:AG vs Ctrl 5 h (iv)

AG: 5 pmol/kg per minute Fasting (overnight) - Decreased[101-104]

Healthy humans EHC: AG 5 h (intramuscular) AG: non-specified 
supraphysiological dose

Fasting (overnight) - Increased[105]

AG: Acylated ghrelin; iv: Intravenous; Arg: Arginine; Ctrl: Control; UAG: Unacylated ghrelin; OGTT: Oral glucose tolerance test; EHC: Euglycemic/hyper-
insulinemic clamp.
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to promptly decrease insulin in situ secretion[126].
The effects of  ghrelin on the regulation of  insulin 

secretion were also investigated in vitro. In pancreatic tis-
sue fragments of  normal and diabetic rats, treatments 
with AG (1 pmol/L to 1 μmol/L) induced insulinotropic 
effects[127]. This effect was also observed in response to 
high doses of  AG (0.1 to 1 μmol/L) in cultured isolated 
mice islets[115]. In contrast, AG was shown to inhibit in-
sulin secretion in immortalized pancreatic β-cells (AG at 
0.1 μmol/L) and in cultured mouse islets (AG 1 to 100 
pmol/L)[115,128]. It is noteworthy that glucose levels and 
time of  incubation were critical elements mediating AG’s 
effects on insulin release. Accordingly, AG’s insulinotro-
pic effects were only detected at glucose concentrations 
above 8.3 mmol/L[94,115,127,128]. Data obtained in rodents 
indicate that ghrelin promptly mediates its effects on 
β-cell function[115]. In the circulation, AG must exert its 
activity quickly before being degraded. However, in vitro 
AG treatments were carried out for at least 30 min. It is 
therefore necessary to design experiments allowing the 
characterization of  ghrelin’s effects on insulin release in 
a time-resolved manner. This would allow determining 
whether ghrelin directly mediates insulin release and/or 
its synthesis within β-cells.

The effects of  AG and UAG on β-cells have been 
explored to clarify the effects of  both ghrelin forms on 
survival, proliferation and insulin release. It has been 
demonstrated that both AG and UAG stimulate insulin 
release in different β-cell lines[129,130]. Furthermore, in 
response to an intravenous glucose tolerance test, the 
administration of  UAG at 30 nmol/kg was shown to po-
tentiate insulin release in anesthetized rats[131]. Although 
these effects could not be detected in rat and mouse iso-
lated islets, the inhibitory effect of  AG on insulin release 
was reversed by the combined treatment with UAG[132]. 
Granata et al[130,133] also reported that both ghrelin forms 
promote cell survival and prevent apoptosis in different 
β-cell lines. This group also reported that UAG treatment 
(two subcutaneous administrations of  100 μg/kg for 7 
d) could prevent diabetes in newborn rats treated with 
streptozocin. Although UAG has been shown to influ-
ence the release of  insulin, important questions remain 
regarding the mechanisms underlying these effects in 
the pancreas. For instance, it will be critical to determine 
whether ghrelin influences the acute release of  insulin or 
its synthesis within β-cells.

The information contained in the above paragraphs 
suggests that AG inhibits while UAG restores insulin 
secretion. Although there are many discrepancies in the 
literature, evidence suggests that the influence of  ghrelin 
on β-cell function depends on the dose of  ghrelin used 
for the treatment as well as the glycemic state under 
which experiments are carried out. The available data also 
indicates the relevance of  establishing a time-frame dur-
ing which responses occur. In fact, different groups have 
described that ghrelin mediates a biphasic response with 
rapid inhibition and subsequent stimulation of  insulin re-
lease. Also, homo- and heterodimerization of  the GHS-
R1a receptor could explain the conflictual observations 

currently reported in the literature. It is therefore critical 
to fully determine the (1) optimal doses of  AG and UAG; 
(2) conditions; and (3) the time continuum under which 
ghrelin influences β-cell functions. Due to its adipogenic 
nature, it is also of  potential interest to investigate wheth-
er chronic hyperprolinemia could promote lipotoxicity 
within β-cells.

EFFECTS OF INSULIN ON CIRCULATING 
GHRELIN LEVELS
Early after the discovery of  ghrelin, an inverse relation-
ship was observed between the ghrelin and insulin levels 
in animal and human models. In the previous section, 
the effects of  AG and UAG on insulin were reviewed. 
However, the influence of  insulin on both ghrelin forms 
has also been investigated. It was initially observed that 
ghrelin levels decrease significantly in healthy participants 
in response to food intake[134,135]. Moreover, under fast-
ing conditions, ghrelin levels were shown to be inversely 
correlated with insulin values[79]. Taken together, these 
elements suggest that insulin could reduce circulating 
ghrelin levels.

Ghrelin levels have been measured following the 
intake of  different types of  meals. However, to isolate 
the effect of  insulin and eliminate potential confounding 
factors, specific models mimicking postprandial condi-
tions such as the oral glucose tolerance test (OGTT) or 
the euglycemic hyperinsulinemic clamp (EHC) have been 
used. It was first reported that total ghrelin levels are sig-
nificantly reduced in response to OGTT or mixed meals 
in healthy participants after approximately 35 min[136,137]. 
In these studies, circulating ghrelin levels were decreased 
in response to insulin but not following the combined 
parenteral administration of  insulin and glucose[136,137]. 
These results suggest that decreases in ghrelin levels are 
not directly mediated by insulin but rather through other 
mechanisms that require nutrients transiting in the gastro-
intestinal tract.

Clinical protocols were also designed to study the 
variations in total ghrelin levels under defined hyperin-
sulinemic conditions. For instance, in healthy and obese 
volunteers submitted to EHC or hypoglycemia, total 
ghrelin levels were significantly reduced[85,138]. Interest-
ingly, in slightly overweight individuals submitted to 
EHC, total ghrelin concentrations were reduced by 25% 
and these effects were still detectable 15 min after the 
insulin infusion ended[139]. Also, under the euglycemic/hy-
perinsulinemic condition, total ghrelin levels were further 
reduced by the co-administration with GH and an inhibi-
tor of  hormone-sensitive lipase activity in GH-deficient 
patients[140]. Similar results were observed in response to 
three-steps hypo-, eu- and hyperglycemic/hyperinsulin-
emic clamps[141]. Although total ghrelin concentrations 
were stable before the administration of  insulin, the lev-
els of  the hormone promptly decreased in response to 
hyperinsulinemia and remained stable during the hypo- 
and euglycemic states. However, the most important 
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reductions in ghrelin levels were noted during the hyper-
glycemic/hyperinsulinemic conditions. In another study, 
healthy participants were submitted to three different 
types of  clamps[142]. During the first clamp, hyperglycemia 
and the resulting elevation of  endogenous insulin did not 
alter ghrelin levels[142,143].

The impact of  EHC on ghrelin levels was also studied 
in different pathological conditions including Pradder-
Willi syndrome (PWS), PCOS, and hyper- and hypothy-
roidism. For instance, elevated total ghrelin levels were 
reported in children with PWS. The influence of  EHC 
on total ghrelin levels was therefore investigated in both 
patients with PWS and normal children[144]. Under these 
conditions, total ghrelin levels were decreased to a greater 
extent but still remained higher throughout the EHC in 
patients with PWS compared to controls. Total ghrelin 
levels were higher in PWS children and their response to 
EHC was proportional to the one of  control individuals. 
Glucose disposal was similar between normal children 
and PWS patients, suggesting that under hyperinsulin-
emic conditions ghrelin levels are reduced in function of  
the degree of  insulin resistance rather than being solely 
influenced by insulin and glucose levels. To confirm this, 
patients with type 2 diabetes and healthy individuals were 
also submitted to EHC. In these patients, fasting total 
ghrelin levels were lower than in healthy individuals. As 
expected, total ghrelin levels reduction was significantly 
less pronounced in patients with type 2 diabetes com-
pared to healthy individuals[145]. This suggests that im-
pairments in IR signaling could disturb the physiological 
regulation of  ghrelin levels. It is recognized that ghrelin 
levels and insulin sensitivity are lower in women with 
PCOS. To further study the effect of  insulin sensitivity 
on the regulation of  ghrelin levels, women with PCOS 
were submitted to EHC. Unexpectedly ghrelin levels 
were not differently modulated in PCOS than in normal 
women, indicating that the androgen levels could also in-
fluence the modulation of  ghrelin in this population[146].

Patients with hyperthyroidism also exhibit a nega-
tive association between total ghrelin levels and energy 
expenditure[147]. In these patients, ghrelin levels are also 
decreased. To investigate the effect of  hyperthyroidism 
normalization, ghrelin levels were measured during EHC 
before and after medical treatment with antithyroid hor-
mones. Similarly, increased ghrelin levels are observed be-
fore and after normalization in patients with hypothyroid-
ism[148]. Despite this difference, ghrelin profiles observed 
during EHC were not altered by antithyroid treatment or 
by L-thyroxine (T4) replacement[148,149]. These results in-
dicate that the reduction in ghrelin observed during EHC 
is independent of  thyroid status. The effect of  ghrelin on 
the hypothalamo-pituitary-thyroid axis was also investi-
gated in healthy participants. In contrast to the results ob-
tained in patients who underwent hyper- or hypothyroid 
normalization, the administration of  AG (50 μg) directly 
increased free T4 while reducing thyroid stimulating hor-
mone concentrations in the circulation[150]. This suggests 
that the thyroid status does not influence the inhibitory 
effect of  insulin on ghrelin secretion; however ghrelin 

treatment could directly regulate thyroid functions.
Total ghrelin levels are decreased to a greater extent 

during EHC in individuals with high insulin sensitivity. 
However the impact of  insulin on the circulating levels 
of  AG and UAG remained uncharacterized for many 
years. To further characterize the effects of  hyperinsu-
linemia on the different forms of  circulating ghrelin, we 
decided to measure AG and total ghrelin (and estimate 
UAG levels by subtracting total ghrelin-AG values) dur-
ing EHC in insulin-sensitive (ISO) and insulin-resistant 
(IRO) obese postmenopausal women[27]. Total ghrelin 
and UAG levels were significantly decreased by EHC in 
ISO and IRO women. However, during EHC, AG levels 
were significantly reduced only in ISO individuals and 
the maximal amplitude of  reduction was more impor-
tant than in ISO participants. Similarly, the AG/UAG 
ratio was significantly lower in ISO women in the fast-
ing condition and throughout EHC. Interestingly, in the 
total population (ISO + IRO), the maximal amplitude of  
reduction for total ghrelin and AG were both positively 
correlated with insulin sensitivity. It was later shown that 
fasting AG and UAG levels are decreased between the 
second and the third term of  pregnancy in women with 
diabetes[151]. This was also associated with less important 
decreases in UAG but not in AG during EHC.

The molecular mechanisms by which insulin regulates 
ghrelin levels were investigated only in a limited number 
of  studies. Similarly to the results obtained in humans, 
insulin was shown to reduce total ghrelin levels in rats[152]. 
Data presented in the signaling section also provided 
evidence that the gastric insulin signaling activation influ-
ences ghrelin mRNA, gastric preproghrelin and circulat-
ing ghrelin. Results from two different studies in rodents 
also indicate that a hyperinsulinemic state could enhance 
ghrelin mRNA expression but there is no information 
available on protein levels[31,114]. Although the effects of  
insulin on total ghrelin levels have been abundantly stud-
ied in the literature, it remains that AG and UAG profiles 
need to be further characterized. Therefore it is critical to 
decipher the mechanisms mediating the effects of  insulin 
and potential receptor signaling impairments on AG and 
UAG secretion both in animal and human models under 
normal and pathological conditions.

CONCLUSION
Although it was discovered more than ten years ago 
and was the object of  an impressive number of  publi-
cations, important questions still remain regarding the 
physiological control of  AG and UAG secretion and 
the distinct role of  both ghrelin forms in the regulation 
of  metabolic functions. The present work intends to 
highlight the interrelationships between ghrelin, insulin 
and glucose homeostasis. Available data indicate that 
ghrelin influences insulin secretion and vice versa. New 
evidence suggests the existence of  crosstalks between the 
signaling pathways induced by the activation of  the na-
tive ghrelin receptor, GHS-R1a and the insulin receptor. 
However, these interactions seem to oppose themselves 

335 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Chabot F et al . Relationship between ghrelin and insulin



as they are taking place in the central nervous system or 
in the periphery. This suggests that in different tissues 
and organs, the heterodimerization of  GHS-R1a with 
Gpr83, DRD1/2, MC3R and potentially other receptors 
could trigger the activation of  distinct signaling pathways. 
Other important issues were denoted in the literature 
regarding the insulinotropic effects of  ghrelin in cellular, 
animal and human models. This suggests the critical need 
to better determine doses under which AG and UAG op-
timally activate distinct metabolic functions. Taking into 
consideration the complexity of  ghrelin’s physiology it is 
also important to characterize the conditions under which 
altered responses to AG and UAG are observed. Overall, 
these clarifications should provide a better understanding 
of  the mechanisms underlying AG and UAG secretion as 
well as to allow the deciphering of  their role in the regu-
lation of  distinct metabolic functions.
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screening, targeting HbA1c < 7.0% for glucose control, 
the use of renin angiotensin system inhibitors to control 
blood pressure, the use of statins or fibrates to control 
dyslipidemia, and multifactorial treatment. Reducing 
microalbuminuria is therefore an important therapeutic 
goal, and the absence of microalbuminuria could be 
a pivotal biomarker of therapeutic success in diabetic 
patients. Other therapies, including vitamin D receptor 
activation, uric acid-lowering drugs, and incretin-related 
drugs, may also be promising for the prevention of 
DKD progression.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: We show the significance of targeting the 
remission/regression of microalbuminuria in type 2 
diabetic patients, leading to protection against the pro-
gression of diabetic kidney disease (DKD) and cardio-
vascular events. To achieve the remission/regression 
of microalbuminuria, the multifactorial intervention and 
the early detection of microalbuminuria with continuous 
screening is important, as management of DKD. Multi-
factorial intervention includes glucose, blood pressure 
and lipid control. Additionally, other therapies, including 
vitamin D receptor activation, uric acid-lowering medi-
cine and incretin-related medicines may be promising 
for preventing the progression of DKD. We review the 
current standard treatment for DKD and other prospec-
tive therapies for DKD.
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Abstract
Diabetic kidney disease (DKD) is the most common 
cause of chronic kidney disease, leading to end-stage 
renal disease and cardiovascular disease. The overall 
number of patients with DKD will continue to increase 
in parallel with the increasing global pandemic of type 
2 diabetes. Based on landmark clinical trials, DKD has 
become preventable by controlling conventional fac-
tors, including hyperglycemia and hypertension, with 
multifactorial therapy; however, the remaining risk of 
DKD progression is still high. In this review, we show 
the importance of targeting remission/regression of mi-
croalbuminuria in type 2 diabetic patients, which may 
protect against the progression of DKD and cardiovas-
cular events. To achieve remission/regression of mi-
croalbuminuria, several steps are important, including 
the early detection of microalbuminuria with continuous 
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INTRODUCTION
The prevalence of  diabetes mellitus is increasing. Ac-
cording to the International Diabetes Federation Atlas of  
2012, the estimated diabetes prevalence in 2012 was 371 
million, representing 8.3% of  the world’s adult popula-
tion; it was predicted that by 2030, the number of  people 
with diabetes in the world will have risen to 552 million[1]. 
Long-term diabetes results in vascular changes and dys-
function, and diabetic complications are the major causes 
of  morbidity and mortality in diabetic patients. Among 
diabetic vascular complications, diabetic kidney disease 
(DKD) is a common cause of  chronic kidney disease 
(CKD) and is a leading cause of  end-stage renal disease 
(ESRD)[2]. In addition, microalbuminuria/proteinuria 
and a decline in the glomerular filtration rate (GFR) are 
observed in CKD and are recognized as independent risk 
factors for the development of  ESRD and the onset of  
cardiovascular diseases, respectively. Therefore, it is im-
portant to establish therapeutic strategies for DKD.

The pathogenesis of  DKD is complex and has not 
yet been completely elucidated. Hyperglycemia is one 
major factor that is responsible for the pathogenesis of  
DKD[3]. Moreover, elevated systemic blood pressure and 
intra-glomerular pressure, which are associated with the 
renin-angiotensin system (RAS), several cytokines and 
growth factors induced by metabolic and hemodynamic 
factors, and abnormal lipid metabolism are involved 
in the pathogenesis of  DKD[4,5]. Current therapeutic 
strategies targeting these mechanisms, particularly the 
control of  blood glucose and blood pressure, have been 
established in many hallmark clinical trials. In addition, a 
reduction in microalbuminuria is more frequent than pro-
gression to overt proteinuria, and a multifactorial control 
approach is important for this reduction in microalbu-
minuria, leading to reductions in renal and cardiovascular 
risk. In this review, we discuss the current standard treat-
ment and other prospective therapies in DKD (especially 
early stage) that target a reduction of  albuminuria.

MECHANISMS OF ALBUMINURIA IN DKD
Albuminuria is a signature feature of  DKD. Albuminuria 
in DKD is predominantly due to impairment in the glo-
merular filtration barrier, consisting of  the glomerular 
endothelial cells, the glomerular basement membrane 
(GBM), and the podocytes[6]. Podocytes are the pre-
dominant component of  this barrier, and the reduced 
number of  podocytes due to increased apoptosis and 
detachment from the GBM is observed in the diabetic 
kidney, resulting in leakage of  albumin through areas 
of  denuded podocytes[7-12]. In addition to a decrease in 
podocyte number and density, the widening of  the foot 
processes, shortening of  the slit diaphragm/loss of  slit 
diaphragm proteins, changes in the actin cytoskeleton, 
and decreases in negative charge may cause albuminuria 
in DKD[13-15]. Furthermore, endothelial cell injuries in 
diabetic conditions leading to reduced nitric oxide pro-
duction[16,17], altered vascular endothelial growth factor 

(VEGF) signaling[18,19] and diminished glycocalyx[20]
 also 

play pivotal roles in albuminuria. Glomerular endothelial 
cells and podocytes crosstalk through several mediators, 
including VEGF-A[19], angiopoietin-1[21,22] and -2[23] and 
activated protein C[24]; therefore, the missing link between 
endothelial cells and podocytes in diabetic conditions 
contributes to dysfunction of  both cell types, resulting 
in increased albuminuria[25]. Glomerular hemodynamic 
changes, including hyperfiltration and hyperperfusion, are 
observed in diabetic conditions and hypertension. Elevat-
ed intraglomerular pressure creates a shear stress on the 
glomeruli and leads to an increase in albuminuria due to 
endothelial and podocyte dysfunction[26]. Vascular endo-
thelial dysfunction is closely related to the pathogenesis 
of  the initiation of  cardiovascular disease (CVD); albu-
minuria also reflects glomerular endothelial dysfunction. 
Therefore, albuminuria is a marker of  both glomerular 
and early systemic endothelial dysfunction[27,28].

Tubular cell injury may also contribute to albumin-
uria by impairing proximal tubular albumin and protein 
reabsorption. In diabetes, proximal tubular reuptake of  
albumin and protein may be impaired by high glucose[29], 
transforming growth factor (TGF)-β[30], or angiotensin Ⅱ
[31]. Tubulointerstitial injury is enhanced and the ability to 
reabsorb albumin and protein is further reduced, along 
with the development of  glomerular disease, and there is 
a direct correlation between the degree of  tubulointersti-
tial scarring and the extent of  albuminuria[32].

SCREENING METHODS AND DIAGNOSIS 
OF DIABETIC KIDNEY DISEASE
The early clinical sign of  DKD is elevated urinary albu-
min excretion, referred to as microalbuminuria, which 
progresses to overt proteinuria and leads to nephritic-
range proteinuria in some cases. Increasing albuminuria 
(proteinuria) leads to a decline in renal function, which is 
defined in terms of  the GFR[33] and generally progresses 
inexorably to ESRD 6-8 years after the detection of  
overt proteinuria[34]. Microalbuminuria is defined as a 
urinary albumin-creatinine ratio (ACR) of  30-299 mg/g 
creatinine (Cr), and macroalbuminuria is defined as an 
ACR > 300 mg/g Cr[35]. Elevated ACR should be con-
firmed in the absence of  urinary tract infection in two 
additional first-void specimens collected during the fol-
lowing 3 to 6 mo[35].

Microalbuminuria in diabetic patients has been rec-
ognized as a useful biomarker for diagnosing DKD and 
as a predictive factor for progression to ESRD. In most 
patients with diabetes, CKD should be attributed to dia-
betes if  any of  the following is true: macroalbuminuria 
is present, microalbuminuria is present in the presence 
of  diabetic retinopathy, or type 1 diabetes has occurred 
with a duration of  at least 10 years[35]. However, other 
causes of  CKD should be considered in the presence of  
any of  the following circumstances: diabetic retinopathy 
is absent, GFR is low or rapidly decreasing, proteinuria 
is increasing or there is evidence of  nephritic syndrome, 
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refractory hypertension is noted, active urinary sediments 
are present, signs or symptoms of  other systemic diseases 
are present, or a > 30% reduction in GFR has occurred 
within 2-3 mo after initiation of  treatment with an angio-
tensin converting enzyme (ACE) inhibitor or angiotensin 
Ⅱ receptor blocker (ARB)[35].

Additionally, microalbuminuria has been shown to be 
closely associated with an increased risk of  cardiovascu-
lar morbidity and mortality[36-38]. In a sub-analysis of  the 
United Kingdom Prospective Diabetes Study (UKPDS), 
the cardiovascular mortality of  type 2 diabetic patients 
with microalbuminuria was reported to be two times 
higher than that of  patients with normoalbuminuria[39]. 
Therefore, microalbuminuria is not only a biomarker for 
the diagnosis of  DKD but is also an important thera-
peutic target for improving the prognosis of  renal and 
cardiovascular risk in diabetic patients.

THERAPEUTIC STRATEGY FOR DIABETIC 
KIDNEY DISEASE
The current therapeutic strategy for DKD is shown in 
Figure 1. A multifactorial therapeutic approach, including 
glycemic control, blood pressure management, and lipid 
control, is recommended to prevent the progression of  
DKD. The remission and regression of  albuminuria as a 
result of  multifactorial therapy may be closely associated 
with reduced risk of  both the progression of  DKD and 
cardiovascular disease. In addition to these therapies, vita-
min D receptor activation, uric acid-lowering drugs, and 
incretin-related drugs are potential treatments for DKD.

BLOOD GLUCOSE CONTROL
Targeting HbA1c
Chronic hyperglycemia is the main causal factor underly-

ing diabetic vascular complications, including DKD. Mul-
tiple potential molecular mechanisms have been proposed 
to explain hyperglycemia-induced diabetic complications. 
Some of  the most-studied mechanisms include disrup-
tion of  the polyol pathway, activation of  the diacylglycer-
ol-protein kinase C pathway, increased oxidative stress, in-
creased formation and activity of  advanced glycation end 
products, and activation of  the hexosamine pathway[3]. 
Additionally, alterations in signal transduction pathways 
induced by hyperglycemia or toxic metabolites have been 
reported to cause multiple vascular dysfunctions, such as 
abnormal blood flow, and increased apoptosis, inflam-
mation, and accumulation of  extracellular matrix in the 
kidney by alteration of  gene expression or protein func-
tion[3]. Therefore, glycemic control is fundamentally nec-
essary to prevent the onset and progression of  DKD by 
influencing both hyperglycemia itself  and hyperglycemia-
induced metabolic abnormalities; this premise has been 
supported by several randomized controlled clinical trials 
in both type 1 and type 2 diabetes, as described below.

Type 1 diabetes: In the Diabetes Control and Compli-
cations Trial (DCCT), the average HbA1c levels were 
7% and 9% for the intensive and conventional therapy 
groups, respectively. Intensive glycemic control was as-
sociated with a risk reduction of  34% for the onset 
of  microalbuminuria and a risk reduction of  56% for 
progression to overt albuminuria[40]. Additionally, in the 
Epidemiology of  Diabetes Interventions and Complica-
tions study (the follow-up study to the DCCT), intensive 
glycemic control prevented the onset of  microalbumin-
uria (yielding a decrease in the odds ratio of  84% for the 
intensive therapy group) and the progression to overt 
albuminuria (yielding a decrease in the odds ratio of  59% 
for the intensive therapy group) at 7-8 years after the 
end of  the DCCT, although the differences in HbA1c 
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          Multifactorial therapy
Glycemic control without hypoglycemia
Blood pressure control using 
renin-angiotensin system inhibitors 
Lipid control using statins or fibrates

         Other prospective therapy
Vitamin D receptor activation
Uric acid lowering medicines
Incretin-related medicines
   (independent of glucose lowering?) 
   (GLP-1 receptor agonists and DPP-4 inhibitors)

Remission of albuminuria

Diabetic kidney disease

End stage renal disease Cardiovascular disease

+

Figure 1  Therapeutic strategy for diabetic kidney disease. Multifactorial therapy, consisting of glycemic, blood pressure, and lipid control, is recommended to pre-
vent the progression of diabetic kidney disease (DKD). The remission and regression of albuminuria by multifactorial therapy may be closely associated with reduced 
risk of progression of both DKD and cardiovascular disease. In addition to these therapies, vitamin D receptor activation, uric acid-lowering drugs, and incretin-related 
drugs should be considered in the prospective treatment of DKD.
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at the end of  the study were 6.4% and 7.5% for the in-
tensive and conventional therapy groups, respectively. 
Intensive glycemic control reduced the onset of  microal-
buminuria by 21% and the progression to macroalbumin-
uria by 32%[45] (Table 1). In the Action in Diabetes and 
Vascular disease: Preterax and Diamicron MR Controlled 
Evaluation (ADVANCE) study, the HbA1c levels at the 
end of  the study were 6.5% and 7.3% for the intensive 
and conventional therapy groups, respectively. Intensive 
glycemic control resulted in a 21% reduction in new 
onset or worsening nephropathy defined by new onset 
macroalbuminuria, doubling of  serum Cr, need for kid-
ney replacement therapy, or death due to kidney disease. 
Additionally, intensive glycemic control decreased the 
development of  new onset microalbuminuria by 9%, 
and development of  macroalbuminuria by 30%[46] (Table 
1). In the Veterans Affairs Diabetes Trial (VADT) study, 
the HbA1c levels at the end of  the study were 6.9% and 
8.4% for the intensive and conventional therapy groups, 
respectively. Intensive glycemic control resulted in a 32% 
reduction in the progression from normal albuminuria 
to microalbuminuria or macroalbuminuria, and a 37% 
reduction in the progression from normal albuminuria 
to microalbuminuria to macroalbuminuria, and a 34% 
reduction in any increase in albuminuria[47] (Table 1). The 
ACCORD, ADVANCE, and VADT studies showed the 
beneficial effects of  intensive glycemic control on the 
prevention of  microalbuminuria and reduced progression 
to macroalbuminuria; however, these studies showed no 
significant benefit of  more intensive glycemic control on 
Cr-based estimates of  GFR (eGFR).

Based on the results from these clinical trials, the 
Standards of  Medical Care in Diabetes 2014 of  the 
American Diabetes Association (ADA)[33], the Kidney 
Disease Improving Global Outcomes (KDIGO) 2012 
Clinical Practice Guidelines for the Evaluation and Man-
agement of  Chronic Kidney Disease and the National 
Kidney Foundation Kidney Disease Outcomes Quality 
Initiative (KDOQI) guidelines for the management of  di-
abetes with CKD[35]　recommend a target HbA1c < 7.0% 

between the intensive and conventional therapy groups 
had decreased over that time. Moreover, 24 cases exhib-
ited elevated serum Cr levels (≥ 2.0 mg/dL); of  these 24 
cases, 19 were in the conventional therapy group, and five 
were in the intensive therapy group[41]. In the follow-up 
study conducted 22 years after initiation of  the DCCT[42], 
a decrease in the GFR (< 60 mL/min per 1.73 m2) was 
observed in the intensive therapy group, with a risk re-
duction of  50% compared with the conventional therapy 
group. The decrease in GFR per year was significantly 
suppressed in the intensive therapy group compared with 
the conventional therapy group (intensive therapy: con-
ventional therapy, 1.27 mL/min per 1.73 m2/year: 1.56 
mL/min per 1.73 m2/year).

Type 2 diabetes: In the UKPDS33, the median HbA1c 
levels were 7.0% and 7.9% for the intensive and con-
ventional therapy groups, respectively. The development 
of  diabetic microvascular complications, including ne-
phropathy, in the intensive therapy group was reduced 
by 25% relative to the conventional therapy group[43]. In 
the follow-up study conducted 10 years after the end of  
the UKPDS, the development of  microvascular compli-
cations, including nephropathy, in the intensive therapy 
group was still reduced by 24% compared with the con-
ventional therapy group, although the differences in the 
HbA1c levels between the intensive and conventional 
therapy groups had diminished.

In the Kumamoto Study, the average HbA1c levels 
were 7.5% and 9.8% for the intensive and conventional 
therapy groups, respectively. The cumulative rates for 
the development and progression of  nephropathy after 
6 years were 7.7% for the intensive therapy group and 
28.0% for the conventional therapy group in the primary 
prevention cohort; these rates were 11.5% and 32.0%, 
respectively, in the secondary intervention cohort. In 
this study, an HbA1c < 6.9% was identified as the target 
for preventing the onset and progression of  diabetic 
nephropathy[44]. In the Action to Control Cardiovascular 
Risk in Diabetes (ACCORD) study, the HbA1c levels 
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Table 1  Effects of intensive glucose control on the onset and progression of diabetic kidney disease

Study  HbA1c Outcome of albuminuria or renal events

Intensive treatment Conventional treatment
ACCORD[45] 6.4% vs 7.6% 21% ↓ in onset of microalbuminuria

32% ↓ in progression to macroalbuminuria
ADVANCE[46] 6.5% vs 7.3% 9% ↓ in onset of microalbuminuria

30% ↓ in progression to macroalbuminuria
21% ↓ in renal events
   New onset macroalbuminuria
   Doubling of serum Cr
   Kidney replacement therapy
   Death due to kidney disease

VADT[47] 6.9% vs 8.4% 32% ↓ in progression from normal to microalbuminuria or macroalbuminuria
37% ↓ in progression from normal to microalbuminuria to macroalbuminuria
34% ↓ in any increase in albuminuria

ACCORD: Action to Control Cardiovascular Risk in Diabetes; ADVANCE: Action in Diabetes and Vascular disease: Preterax and Diamicron MR Controlled 
Evaluation; VADT: Veterans Affairs Diabetes Trial.

Kitada M et al . Therapeutic targets of diabetic kidney disease



to prevent or delay the progression of  DKD. However, 
clinical evidence that intensive glycemic control reduces 
DKD is limited to the prevention of  microalbuminuria 
and reduced progression to macroalbuminuria. Evidence 
of  intensive glucose control effecting renal outcomes, 
including reduced eGFR or the doubling of  plasma Cr 
levels, or on cardiovascular disease, is still ambiguous. 
Additionally, no reports have prospectively examined the 
effect of  intensive blood glucose control on overt ne-
phropathy with macroalbuminuria, and ESRD or CKD 
stage 4.

Risk of hypoglycemia
Recent clinical trials, including ADVANCE[46], AC-
CORD[48], and VADT[47], which reported HbA1c levels 
of  6.5%, 6.4%, and 6.9%, respectively, showed 1.5-3-fold 
increases in hypoglycemia in patients with type 2 diabetes 
who received intensive therapy to reach target glucose 
levels (with targeted HbA1c levels of  < 6.5%, < 6.0%, 
and < 6.0%, respectively). However, intensive therapy did 
not decrease the risk of  cardiovascular events. Moreover, 
in the ACCORD study[48], the mortality rates for patients 
treated with intensive therapy were significantly higher 
compared to conventional therapy patients. Although the 
source of  the relationship between hypoglycemia and 
increased mortality in this study was unclear[49], hypogly-
cemia should be avoided. Therefore, glycemic control 
without hypoglycemia is important, and the use of  glyce-
mic control to target HbA1c levels should be considered 
in light of  the risk factors pertinent to the individual pa-
tient, such as the presence of  diabetic vascular complica-
tions, history of  diabetes, and age. At the advanced stage 
of  overt nephropathy with a reduction in renal function-
ing, the risk of  hypoglycemia may be increased because 
of  decreased gluconeogenesis in the kidney, changes in 
pharmacokinetics resulting from reduced renal function, 
and reduced insulin metabolism in the kidney. Therefore, 
it is necessary to select anti-diabetic medicines while con-
sidering the individual patient’s renal functioning.

BLOOD PRESSURE CONTROL
Targeting blood pressure
Systolic blood pressure control is universally recom-

mended in patients with diabetes to reduce the incidence 
of  stroke, heart failure, diabetes-related death, and reti-
nal photocoagulation, as well as to reduce the risk of  
the onset of  microalbuminuria or progression to overt 
proteinuria. The early findings from the UKPDS sug-
gest that a 10 mmHg decrease in systolic blood pressure 
is associated with a reduction of  diabetic microvascular 
complications, including nephropathy, by 13%[50]. Ad-
ditionally, in the ADVANCE study, a reduction of  blood 
pressure from 140/73 mmHg (control group) to 136/73 
mmHg (indapamide-perindopril group) was shown to 
reduce the risk of  a major macro- or microvascular 
(mostly new microalbuminuria) event and mortality from 
any cause, including cardiovascular disease[51]. Therefore, 
the goal of  blood pressure < 130/80 mmHg appears 
to be appropriate in type 2 diabetes to fight against the 
development and progression of  DKD[52]. However, 
there are recent clinical guidelines for the management 
of  high blood pressure in patients with diabetes and 
CKD. The KDIGO 2012 Clinical Practice Guidelines 
for the Evaluation and Management of  Chronic Kidney 
Disease recommends targets for blood pressure in dia-
betes and CKD as follows. Blood pressure in diabetic 
adults with CKD and urine albumin excretion < 30 
mg/24 h (or ACR < 30 mg/g Cr) should be treated to 
≤ 140/90 mmHg, and blood pressure in diabetic adults 
with CKD and urine albumin excretion ≥ 30 mg/24 h 
(or ACR ≥ 30 mg/g Cr) should be treated to ≤ 130/80 
mmHg. Moreover, the Standards of  Medical Care in 
Diabetes 2014 of  the ADA[33] recommends that people 
with diabetes and hypertension should be treated to < 
140/80 mmHg, and lower systolic targets, such as < 130 
mmHg, may be appropriate for certain individuals, such 
as younger patients. However, the 2014 Evidence-Based 
Guidelines for the Management of  High Blood Pres-
sure in Adults from the Panel Members Appointed to 
the Eighth Joint National Committee (JNC8)[53] recom-
mend a blood pressure goal of  < 140/90 mmHg in the 
population aged ≥ 18 years with CKD or/and diabetes. 
Thus, recommendations for blood pressure targets differ 
between the guidelines (Table 2); however, blood control 
targets should be considered with the risk of  the indi-
vidual patient, such as the presence or absence of  other 
diabetic vascular complications, history of  CVD and age, 

346 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Table 2  Target of blood pressure in diabetic kidney disease (different of clinical guidelines)

Clinical guideline Target population Target of blood pressure

Standard of Medical Care in Diabetes-2014 (ADA) Diabetic patients < 140/80 mmHg (< 130 mmHg, younger patients 
if it can be achieved  without undue treatment 
burden)

KDIGO 2012 CKD guideline Diabetes + CKD
UAE < 30 mg/24 h or ACR < 30 mg/gCr ≤ 140/90 mmHg
UAE ≥ 30 mg/24 h or ACR ≥ 30 mg/gCr ≤ 130/80 mmHg

JNC8 Diabetic patients < 140/90 mmHg
CKD patients

CKD: Chronic kidney disease; UAE: Urinary albumin excretion; ACR: Albumin creatinine ratio; ADA: American Diabetes Association; KDIGO: The kidney 
Disease Improving Global Outcomes; JNC8: The Eighth Joint National Committee.
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as well as glucose control targets.

ACE Inhibitors and ARBs
RAS activation is implicated in the pathogenesis of  
DKD. In diabetic patients with microalbuminuria or 
overt proteinuria, RAS inhibitors play a pivotal role in the 
prevention and treatment of  DKD[54,55]. Landmark stud-
ies including type 1 and type 2 diabetic patients at various 
stages of  DKD have provided abundant clinical evidence 
that treatment with RAS inhibitors, including ACE in-
hibitors and ARBs, slow the progressive decline of  GFR, 
reduce micro- and macroalbuminuria, and reduce cardio-
vascular mortality and morbidity[54], as shown in Figure 
2. Therefore, the use of  RAS inhibitors for hypertension 
and albuminuria in diabetic patients is recommended as a 
first-line treatment[56-66].

Dual RAS blockade with an ACE inhibitor and 
ARB may be more effective in reducing proteinuria 
than monotherapy in patients with DKD. Based on the 
Ongoing Telmisartan Alone and in Combination with 
Ramipril Global Endpoint Trial, combination therapy 
with ramipril and telmisartan reduces proteinuria bet-
ter than monotherapy; however, it worsens major renal 
outcomes, including dialysis, the doubling of  serum Cr 
levels, and death[67,68]. Additionally, the Veterans Affairs 
Nephropathy in Diabetes Clinical Trials showed that 
combination therapy with an ARB (losartan) and an 
ACE inhibitor (lisinopril) in type 2 diabetic patients with 
macroalbuminuria significantly increased the risk of  hy-
perkalemia and acute kidney injury[69]. Thus, combined 
RAS blockade should not be used in diabetic patients, 
especially elderly type 2 diabetic patients with normo- 
or microalbuminuria. First, an ACE inhibitor or ARB 
should be used, and its dosage should be increased to 
obtain an optimal anti-albuminuric or proteinuric re-

sponse. Combination treatment with both an ACE in-
hibitor and an ARB should be prescribed by a nephrolo-
gist and given to patients with overt proteinuria or severe 
proteinuria, notwithstanding the use of  the maximum 
dosage of  the ACE inhibitor or ARBs. In such diabetic 
patients, monitoring of  renal function is necessary, and 
treatment should be halted in the event of  acute kidney 
injury, low blood pressure, or high potassium levels.

Mineralocorticoid receptor antagonists
Some clinical trials have demonstrated that treatment with 
spironolactone and eplerenone in addition to an ACE 
inhibitor or an ARB reduces proteinuria in patients with 
diabetes[70-75]. However, the long-term effect of  mineralo-
corticoid receptor antagonists on GFR is not clear, and 
serum potassium levels should be monitored carefully.

Aliskiren
Aliskiren, a direct renin inhibitor, has been promoted 
for the suppression of  DKD and cardiovascular disease. 
In the Evaluation of  Proteinuria in Diabetes study[62], 
patients with DKD with overt proteinuria were treated 
with 100 mg of  losartan, followed by the addition of  a 
placebo or aliskiren (300 mg). Treatment with 300 mg of  
aliskiren reduced the mean urinary ACR compared with 
placebo treatment. However, the Aliskiren Trial in Type 2 
Diabetes Using Cardio-Renal Endpoints study[76], which 
was performed to confirm the effectiveness of  combina-
tion treatment with either an ACE inhibitor or an ARB 
plus aliskiren on both renal and cardiovascular events, 
was terminated because of  adverse outcomes, including 
hyperkalemia and hypotension, and predicted futility in 
meeting the cardiovascular and renal endpoints.

Calcium channel blockers and diuretics
Because many hypertensive patients with DKD will re-
quire a combination therapy to adequately control blood 
pressure, commonly used combination therapies include 
an ACE inhibitor or an ARB plus a diuretic or a calcium 
channel blocker (CCB).

The Gauging Albuminuria Reduction With Lotrel 
in Diabetic Patients With Hypertension study tested the 
effect on albuminuria of  initial combination therapy of  
either a dihydropyridine calcium channel blocker or a 
thiazide diuretic combined with the same ACE inhibi-
tor in patients with type 2 diabetes and hypertension. 
In the study, both amlodipine and hydrochlorothiazide 
(HCTZ) combined with an initial treatment using benaz-
epril decreased the median percent change in ACR from 
baseline to the end of  the study; however, the benazepril 
plus HCTZ group had a greater reduction in albuminuria 
compared to the benazepril plus amlodipine group (me-
dian percent change in ACR: -72.1 vs 40.5, P < 0.0001)[77]. 
In contrast, the mean decrease in the eGFR during the 
observational period was less in the benazepril plus am-
lodipine group than in the benazepril plus HCTZ group 
(-2.03 ± 14.2 mL/min vs -13.64 ± 16.1 mL/min, P < 
0.0001)[77].
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Figure 2  Beneficial effects of renin-angiotensin system inhibitors. Numer-
ous landmark studies have shown the effectiveness of renin-angiotensin system 
inhibitors on diabetic kidney disease.
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The Avoiding Cardiovascular Events through Combi-
nation Therapy in Patients Living with Systolic Hyperten-
sion (ACCOMPLISH) trial was a randomized and dou-
ble-blind trial in which 11506 patients with hypertension 
(60% of  whom were diabetics) who were at high risk for 
cardiovascular events were assigned to receive treatment 
with either benazepril plus amlodipine or benazepril 
plus HCTZ. The benazepril-amlodipine combination 
had a relative risk reduction of  19.6% in cardiovascular 
events[78]. According to the sub-analysis of  the AC-
COMPLISH trial on renal outcomes, the events of  CKD 
progression defined as a doubling of  serum Cr concen-
tration or ESRD (eGFR < 15 mL/min per 1.73 m2 or 
need for dialysis) occurred at a frequency of  2.0% in the 
benazepril plus amlodipine group compared to 3.7% in 
the benazepril plus HCTZ group (HR = 0.52, 0.41-0.65, 
P < 0.0001). However, in the patients with CKD (more 
than half  of  patients have DKD), both the progression 
of  CKD and cardiovascular mortality did not differ be-
tween groups[79].

It is still unclear which additional anti-hypertensive 
drug (CCB or diuretic) is better for providing both reno- 
and cardioprotection in DKD. Therefore, the risk of  the 
individual patient, such as the history of  CVD and age, 
should be taken into consideration.

LIPID CONTROL
Dyslipidemia, statins, and fibrates
Dyslipidemia is a major risk factor for atherosclerotic 
cardiovascular disease, which is a cause of  mortality and 
morbidity in patients with diabetes and CKD[80,81]. In par-
ticular, low-density lipoprotein cholesterol (LDL-C) plays 
an important role in the development of  coronary artery 
disease. Several clinical trials using statin-based lipid-low-
ering therapies in patients with CKD and diabetes have 
shown reductions in the risk of  major atherosclerotic 
events. In addition to reducing the risk of  cardiovascular 
diseases in CKD patients, evidence suggests that statin 
therapy in patients with predialysis CKD may slow the 
progressive loss of  kidney function, measured as changes 
in urinary albumin/protein excretion or eGFR[82-89]. In 
the Collaborative Atorvastatin in Diabetes Study, atorvas-
tatin (10 mg/d) treatment was associated with increased 
GFR in comparison with a placebo, and a modest ben-
eficial effect was observed, particularly in patients with 
albuminuria. Moreover, atorvastatin was effective at 
decreasing cardiovascular disease (by 42%) in patients 
with a moderately decreased eGFR (30-60 mL/min per 
1.73 m2), and this treatment effect was similar to the 37% 
reduction in cardiovascular disease observed in patients 
without decreased eGFR[90]. Furthermore, a meta-analysis 
showed that statin therapy was associated with decreased 
albuminuria compared to a placebo[87].

The Fenofibrate Intervention and Event Lowering in 
Diabetes study demonstrated that fenofibrate (200 mg/d) 
reduced cardiovascular events, reduced albuminuria, and 
slowed eGFR loss over 5 years, although it initially and 

reversibly increased plasma Cr levels. In a meta-analysis, 
fibrates reduced the risk of  albuminuria progression in pa-
tients with diabetes and reduced the risk of  major cardio-
vascular events and cardiovascular death in patients with an 
eGFR of  30-59.9 mL/min per 1.73 m2[91,92].

Statins and fibrates can exert renoprotective effects 
pleiotropically, such as anti-oxidant, anti-inflammation, 
and anti-fibrotic effects, independent of  their lipid-lower-
ing effects, in experimental animal models[93,94].

KDOQI guidelines and the ADA recommend that 
the LDL-C target in patients with diabetes or/and CKD 
should be < 100 mg/dL, and a lower LDL-C goal of  
< 70 mg/dL is a therapeutic option in individuals with 
overt CVD, by treatment with statins. Triglyceride levels 
< 150 mg/dL and high-density lipoprotein cholesterol 
(HDL-C) > 40 mg/dL in males and > 50 mg/dL in fe-
males are desirable[33,35].

MULTIFACTORIAL INTENSIVE THERAPY
Effects on the progression of diabetic kidney disease
The Steno-2 study showed the effect of  multifactorial 
intensive therapy on the progression of  nephropathy in 
patients with type 2 diabetes[95]. In this study, 160 patients 
with type 2 diabetes and microalbuminuria (average age, 
55 years) were randomly divided, with 80 patients as-
signed to a standard therapy group and 80 patients as-
signed to an intensive therapy group. The progression 
of  nephropathy was evaluated as a secondary end point. 
During the 1993-1999 period, the targets for glycemic 
control, systolic blood pressure, diastolic blood pressure, 
total cholesterol levels, and triglyceride levels were < 6.5%, 
< 140 mmHg, < 85 mmHg, < 190 mg/dL, and < 150 
mg/dL, respectively, in the intensive therapy group. Pa-
tients were administered ARB or ACE inhibitors (regard-
less of  their blood pressure); patients with ischemic heart 
disease or peripheral vascular disease were given aspirin, 
and supplementation with vitamin C and E was also pro-
vided. Additionally, diet therapy (lipid restriction, < 30% 
of  energy intake per day and < 10% from saturated fatty 
acid intake) and exercise therapy (3-5 times/wk, moder-
ately intense activity) were prescribed. In the 2000-2001 
period, the targets for fasting total cholesterol levels, 
systolic blood pressure, and diastolic blood pressure 
were changed to < 175 mg/dL, < 130 mmHg, and < 80 
mmHg, respectively, because the treatment guidelines in 
Denmark changed. In the average observation period of  
7.8 years, HbA1c; systolic and diastolic blood pressure; 
total cholesterol, LDL-C, and triglyceride levels; and fat 
intake were significantly reduced in the intensive therapy 
group compared with the standard therapy group. More-
over, the use of  aspirin was significantly higher in the in-
tensive therapy group, and urinary albumin excretion was 
significantly decreased in the intensive therapy group (46 
mg/d) compared with the standard therapy group (126 
mg/d). Moreover, the risk of  onset and progression of  
nephropathy was reduced to a hazard ratio of  0.39 (CI: 
0.17-0.87).
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Furthermore, after the Steno-2 study, 63 patients in 
the standard therapy group underwent intensive therapy 
with 67 patients of  the intensive therapy group in the 
average follow-up period of  5.5 years[96]. In the follow-up 
study, the onset and progression of  nephropathy were as-
sessed as secondary endpoints. At the end of  the follow-
up period, glucose, blood pressure, and lipid control in 
the standard therapy group were improved to almost the 
same levels as in the intensive therapy group. However, 
for the total observation period of  13.3 years combined 
with an average follow-up period of  7.8 years, the onset 
and progression of  nephropathy were decreased in the 
intensive therapy group [HR = 0.44 (CI: 0.25-0.77)]. Six 
cases and one case progressed to ESRD in the standard 
and intensive therapy groups, respectively (P = 0.04).

Additionally, a cohort study with a 4-year follow-up 
of  1290 type 2 diabetic patients with normal albumin-
uria was performed using multifactorial intensive thera-
py[97]. In this cohort study, the targets of  blood glucose, 
blood pressure, LDL and triglyceride levels were as fol-
lows: HbA1c < 7.0%, < 130/80 mmHg, < 100 mg/dL, 
< 150 mg/dL, and HDL ≥ 40 mg/dL (male) per 50 
mg/mg per deciliter (female). New microalbuminuria 
appeared in 211 patients (16.4%) and HbA1c levels < 
7% (HR = 0.729, 95%CI: 0.553-0.906, P = 0.03), blood 
pressure < 130 mmHg [HR = 0.645 (CI: 0.491-0.848), 
HDL ≥ 40 mg/dL (male) per 50 mg/dL (female), HR 
= 0.715 (CI: 0.537-0.951)] were associated with the on-
set of  albuminuria.

Accordingly, multifactorial intensive therapy is recom-
mended for suppressing the onset and progression of  
early diabetic nephropathy; however, it should be noted 
that this recommendation is based on a small RCT. More-
over, the suppressive effect of  multifactorial intensive 
therapy on nephropathy is not clear in the advanced stage 
of  overt nephropathy.

Effects on the onset of cardiovascular events
In the Steno-2 study described above, the incidence of  
cardiovascular diseases, including cardiovascular death, 
non-fatal myocardial infarction, non-fatal stroke, revascu-
larization, and amputation, were evaluated as the primary 
endpoints over 7.8 years[95]. Thirty-three cardiovascular 
events (24%) in 19 cases were observed for the intensive 
therapy group; conversely, 35 cardiovascular events (40%) 
were observed in the standard therapy group. These 
results indicate that the risk of  cardiovascular disease in 
type 2 diabetic patients with microalbuminuria was signif-
icantly reduced after multifactorial intensive therapy com-
pared with standard therapy [HR = 0.47 (CI: 0.24-0.73)].

In the Steno-2 follow-up study, performed for an 
average of  5.5 years in addition to the original 7.8 years, 
the incidence of  lower limb amputation, nonfatal stroke, 
nonfatal myocardial infarction, coronary artery bypass 
grafting, and percutaneous transluminal coronary angio-
plasty were assessed as the primary endpoints[96]. At the 
end of  the follow-up period, glycemia, blood pressure, 
and lipid control for the standard therapy group had im-
proved to levels similar to those found in the intensive 

therapy group. However, for the total observation period 
of  13.3 years, the onset of  cardiovascular disease was 
decreased in the intensive therapy group. In addition, 
there were 48 cases and 158 cardiovascular events in the 
standard therapy group, in contrast to 28 cases and 51 
cardiovascular events in the intensive therapy group.

Remission and regression of albuminuria
Reduction of  microalbuminuria in diabetic patients oc-
curred more frequently than we expected. Araki et al[98] 
reported that microalbuminuria in type 2 diabetic patients 
could improve to normoalbuminuria (remission) or could 
decrease by more than 50% from the baseline (regres-
sion) based on the results of  a prospective observational 
follow-up study over a 6-year period. The 6-year cumula-
tive incidence of  progression from microalbuminuria to 
overt proteinuria was 28% (95%CI: 19%-37%), whereas 
the remission and regression rates were 51% (95%CI: 
42%-60%) and 54% (95%CI: 45%-63%), respectively 
(Figure 2). In a pooled logistic regression analysis, each 
modifiable factor was trisected according to the num-
ber of  patients and was applied as three categories in 
the analysis. The results showed that microalbuminuria 
of  short duration, the use of  RAS blockade, HbA1c < 
7.35%, and lower systolic blood pressure (< 130 mmHg) 
were identified as independent factors associated with 
remission/regression of  microalbuminuria.

ARBs have also been shown to induce remission and 
regression of  microalbuminuria in type 2 diabetic pa-
tients. In the Incipient to Overt: Angiotensin Ⅱ Blocker, 
Telmisartan, Investigation on Type 2 Diabetic Nephropa-
thy study, remission of  microalbuminuria at the final 
observation point occurred in 21.2% of  patients treated 
with 80 mg of  telmisartan, 12.8% of  patients treated 
with 40 mg of  telmisartan, and 1.2% of  patients given a 
placebo (both telmisartan doses vs placebo, P < 0.001)[58]. 
Additionally, patients receiving 80 or 40 mg of  telmis-
artan achieved superior renoprotection, as indicated by 
lower transition rates to overt nephropathy compared to 
the placebo patients. Taken together, these results strong-
ly indicate that RAS blockade using an ARB not only 
prevents the progression of  microalbuminuria to overt 
proteinuria but also induces remission and regression of  
microalbuminuria in type 2 diabetic patients.

The Steno-2 study also demonstrated that a high 
proportion of  patients with microalbuminuria returned 
to normoalbuminuria through the multifactorial interven-
tion. After a mean of  7.8 years of  follow-up, 46 (31%) 
patients returned to normoalbuminuria, 58 (38%) pa-
tients still had microalbuminuria, and 47 (31%) patients 
progressed to overt proteinuria[99]. Lower HbA1c levels, 
initiation of  antihypertensive therapy, and initiation of  
RAS inhibitors during the follow-up period were inde-
pendently associated with remission of  microalbuminuria. 
A recent analysis focusing particularly on the effect of  
lowering blood pressure clearly showed that more than 
half  of  all type 2 diabetic patients with microalbuminuria 
and macroalbuminuria returned to normoalbuminuria 
with receiving any blood pressure-lowering drugs in the 
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ADVANCE study[100]. However, more patients achieved 
remission to　normoalbuminuria in the perindopril-in-
dapamide treatment group than in the placebo treatment 
group.

Clinical impact of the remission and regression of 
albuminuria on cardiovascular events and kidney 
function
The clinical impact of  the remission and regression of  
microalbuminuria was demonstrated by the observed 
reduction in the risk of  renal and cardiovascular events 
during an expanded 2-year follow-up (beyond the initial 
6 years of  the study reported by Araki et al[101], described 
above). The primary outcome measure consisted of  
“combined incidence,” defined as cardiovascular death 
by and first hospitalization for renal and cardiovascular 
events. A secondary outcome was kidney function, as 
determined by the annual decline of  eGFR. During the 
total 8-year follow-up period, 47 patients experienced pri-
mary renal and cardiovascular events. Eleven first occur-
rences of  outcomes occurred in subgroups that achieved 
remission of  microalbuminuria; in contrast, 36 such 
events were observed for the non-remission group. The 
pooled logistic analysis, adjusted for sex, age, initial ACR 
levels, history of  cardiovascular disease, current smoking, 
HbA1c level, total cholesterol level, blood pressure, use 
of  RAS inhibitors, use of  lipid-lowering drugs, and body 
mass index, showed that the relative risk for outcomes 
in patients who achieved remission was 0.25 (95%CI: 
0.07-0.87) compared with those whose microalbumin-
uric status did not change during the follow-up period, 
whereas the relative risk for patients who progressed to 
overt proteinuria was 2.55 (95%CI: 1.04-6.30) (Figure 2). 
First occurrences of  these outcomes were classified into 
subgroups defined by achieving a reduction greater than 
50% in urinary albumin excretion in the course of  12 
events for the regression group and in 35 events in the 
non-regression group; these patients were labeled as hav-
ing failed to achieve remission.

Kaplan-Meier estimations showed that the cumulative 
incidence of  evaluated events was significantly lower in 
the regression group than in the non-regression group. 
The 8-year cumulative incidence of  these outcomes in 
the regression group showed a 59% decrease compared 
to the non-regression group. The adjusted risk for out-
comes in patients who achieved regression was 0.41 
(95%CI: 0.15-0.96) compared with those whose micro-
albuminuric status did not show regression during the 
follow-up. As anticipated, the annual decline of  eGFR 
for the progression group (median: 4.2 mL/min per 
year) was significantly faster than that for the non-change 
group (2.4 mL/min per year), whereas the annual decline 
of  eGFR for the remission group was significantly slower 
(1.1 mL/min per year) and was almost identical to the 
decline experienced through normal aging reported in 
healthy people[102].

The effect of  reducing microalbuminuria on kidney 
functioning was also shown in a secondary analysis of  the 
Steno-2 study[101]. The patients who reverted to normoal-

buminuria had an average eGFR decrease of  2.3 mL/min 
per year; however, those who still had microalbuminuria 
experienced an average eGFR decrease of  3.7 mL/min 
per year, and those who progressed to overt proteinuria 
showed the highest eGFR decline of  5.4 mL/min per 
year. These results show that remission of  microalbumin-
uria is closely related to the improved renal functioning 
over the long term.

OTHER PROSPECTIVE THERAPEUTIC 
STRATEGIES
Vitamin D receptor activation
Stimulation of  vitamin D receptors exerts protective ac-
tivity through multiple mechanisms, including inhibition 
of  the RAS, regulation of  proliferation and differentia-
tion, reduction of  proteinuria, anti-inflammation, and 
anti-fibrosis[103]. Growing evidence indicates that vitamin 
D exerts anti-proteinuric and renoprotective effects in 
DKD patients. The VITAL study demonstrated that 
treatment with paricalcitol, a selective vitamin D receptor 
activator, reduced urinary albumin excretion in type 2 dia-
betic patients treated with RAS inhibitors[104]. Addition-
ally, Kim et al[105] showed beneficial effects of  vitamin D 
(cholecalciferol) repletion on urinary albumin and trans-
forming growth factor-β1 excretion in type 2 diabetic pa-
tients with CKD undergoing established RAS inhibition 
therapy; similar effects were also observed in the VITAL 
study. Treatment with cholecalciferol led to significantly 
higher levels of  circulating 25(OH)D and 1,25(OH)2D3 
relative to baseline, and increased levels of  active forms 
of  vitamin D were correlated with a decrease in urinary 
ACR and TGF-β1 at the end of  a 4-mo intervention pe-
riod. These data indicate that vitamin D compounds may 
be useful tools for delaying the progression of  DKD 
beyond the effects expected from established RAS inhibi-
tion protocols.

Uric acid-lowering drugs
Multiple longitudinal cohort studies have shown that el-
evated serum uric acid levels are associated with a higher 
risk of  the onset and progression of  microalbuminuria 
in addition to sustained decline of  GFR among type 1 
diabetic patients[106-108]. In a cohort study of  263 newly 
diagnosed type 1 diabetic patients performed by the 
Steno Diabetes Center group[106], serum uric acid levels 
measured shortly after the onset of  type 1 diabetes were 
a significant independent predictor of  macroalbumin-
uria 18 years later (HR = 2.37, 95%CI: 1.04-5.37, P = 
0.04). Additionally, the Coronary Artery Calcification in 
Type 1 Diabetes study showed that serum uric acid levels 
predicted the transition from microalbuminuria to mac-
roalbuminuria[107]. In 324 type 1 diabetic patients, every 1 
mg/dL increase in uric acid levels at baseline was associ-
ated with an 80% increase in the predicted odds ratio of  
developing microalbuminuria or macroalbuminuria after 
6 years of  follow-up (OR = 1.8, 95%CI: 1.2-2.8, P = 
0.005). A 6-year follow-up of  a prospective cohort study 
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of  type 1 diabetic patients without proteinuria conducted 
by the Joslin Diabetes Center demonstrated a significant 
association (P < 0.0002) between serum uric acid and 
an early decrease in GFR, defined as a GFR cystatin de-
crease exceeding 3.3% per year[108]. When baseline uric 
acid concentrations were treated categorically (in mg/dL: 
< 3.0, 3.0-3.9, 4.0-4.9, 5.0-5.9, and ≥ 6), the risk of  early 
decrease in GFR increased linearly (9%, 13%, 20%, 29%, 
and 36%, respectively). This linear increase corresponds 
to an OR of  1.4 (95%CI: 1.1-1.8) per 1 mg/dL increase 
in uric acid levels.

Furthermore, a post-hoc analysis of  the Reduction of  
Endpoints in non-Insulin Dependent Diabetes Mellitus 
with the Angiotensin Ⅱ Antagonist Losartan trial showed 
that the decrease in serum uric acid levels induced by 
losartan accounted for 20% of  the renoprotective benefit 
provided by this medication[109]. However, it is not clear 
whether reducing uric acid levels could prevent or delay 
GFR decline in diabetic patients who are at high risk for 
the progression of  DKD; therefore, clinical trials are 
necessary to elucidate the beneficial effects of  uric acid-
lowering medicine on preventing DKD.

GLP-1 receptor agonists and DPP-4 inhibitors
Incretin-related therapies, including dipeptidyl peptidase 
(DPP)-4 inhibitors and glucagon-like peptide (GLP)-1 re-
ceptor agonists, have been developed as one of  the most 
promising treatments for type 2 diabetes because of  their 
effectiveness at reducing glucose levels with a low risk of  
hypoglycemia and no weight gain[110-112]. DPP-4 inhibi-
tors increase the concentration of  endogenous incretins, 
such as GLP-1 and glucose-dependent insulinotropic 
polypeptides, and GLP-1 analogues that are not degraded 
by DPP-4 may stimulate GLP-1 receptors in turn. Stimu-
lation of  GLP-1 receptors increases glucose-dependent 
insulin secretion from pancreatic β-cells and suppresses 
glucagon release from α-cells, leading to improved glu-
cose control[110]. In addition to its action on the pancreas, 
GLP-1 may have direct effects on other cells and tissues, 
including the kidney, heart, and blood vessels, via stimu-
lation of  the GLP-1 receptor[113,114], independent of  its 
glucose-lowering effects. 

The GLP-1 receptors in the kidney are expressed 
in the glomerular endothelial cells, mesangial cells, and 
proximal tubular cells[115-120], and previous reports have 
shown that the expression of  GLP-1 receptors decreases 
in the diabetic kidneys of  animal models[115]. The reno-
protective effect of  GLP-1 may be accomplished through 
anti-inflammation[116], anti-oxidants mediated through 
cyclic AMP-mediated protein kinase A activation[117,120], or 
blood pressure regulation via sodium handling in proxi-
mal tubular cells[121]. DPP-4 is expressed in renal tubular 
cells, especially in the brush-border and microvillus frac-
tions, podocytes, and endothelial cells[122,123]; however, the 
physiological role of  DPP-4 in the kidney has not been 
elucidated. Previous reports have shown that DPP-4 
expression is increased in the diabetic kidneys of  animal 
models[124]. DPP-4 is a serine exopeptidase that cleaves 

X-proline dipeptides from the N-terminus of  polypep-
tides. Therefore, DPP-4 cleaves not only incretins but 
also many substrates, such as cytokines, chemokines, hor-
mones, and neuropeptides[125]. Among these substrates, 
high-mobility group protein-B1, meprin β, and neuro-
peptide Y have been identified as candidate targets for 
GLP-1-independent effects of  DPP-4 inhibitors in the 
kidneys[114].

Several clinical studies have shown beneficial effects 
of  DPP-4 inhibitors[126,127] and GLP-1 analogues[128] on al-
buminuria in type 2 diabetic patients. Recent reports have 
demonstrated that linagliptin administration in addition 
to stable RAS inhibition leads to a significant reduction 
in type 2 diabetes with albuminuria and renal dysfunc-
tion, independent of  changes in glucose levels or systolic 
blood pressure[129]. Further studies, including randomized 
controlled clinical trials in large populations, are neces-
sary to confirm the long-term effects of  incretin-related 
medicines in DKD.

CONCLUSION
Reduced microalbuminuria may be frequent in diabetic 
patients. Physicians have to care for these diabetic pa-
tients with an aggressive multifactorial management plan 
as early as possible after the development of  microal-
buminuria. This multifactorial management regimen in-
cludes glycemic control without triggering hypoglycemia, 
blood pressure control using RAS inhibitors, and lipid 
control using statins or fibrates. In addition to these ther-
apies, vitamin D receptor activators, uric acid-lowering 
drugs, and incretin-related drugs for glycemic control 
are promising therapies for stopping the progression of  
DKD. However, in the future, the development of  novel 
therapies that not only function to prevent renal decline 
but also simultaneously attenuate CVD are necessary 
because the current multifactorial treatment is not still 
enough.

The remission or regression of  microalbuminuria 
results in reduced risk of  both renal and cardiovascular 
events; therefore, albuminuria is a useful biomarker for 
the diagnosis of  DKD and the assessment of  therapeutic 
effects for DKD. However, some patients with diabetes 
have advanced renal pathological changes and progressive 
kidney function decline even though urinary albumin lev-
els are in the normal range, indicating that albuminuria is 
not the perfect biomarker for early detection of  DKD[130]. 
Recent studies have provided some possible new markers 
for DKD in type 1[131,132] and type 2 diabetic patients[133]. 
Serum concentrations of  the soluble receptors 1 and 2 
for Tissue Necrosis Factor (sTNFR1 and sTNFR2) had 
a stronger correlation with decline in GFR than urinary 
ACR[131,132]. sTNFR1 was associated with the develop-
ment of  ESRD in type 2 patients during a 12 year follow-
up[133]. However, additional clinical data about such new 
biomarkers for the early diagnosis and prediction of  
DKD should be accumulated, and at the same time, it is 
necessary to determine whether the new biomarker is a 
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predictive marker for CVD.
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Core tip: This review summarizes recent laboratory and 
clinical studies on the influence of various adipokines, 
including adiponectin, resistin, adipocyte fatty acid 
binding protein, omentin-1, and chemerin, on the de-
velopment of atherosclerosis.

Yoo HJ, Choi KM. Adipokines as a novel link between obesity 
and atherosclerosis. World J Diabetes 2014; 5(3): 357-363  Avail-
able from: URL: http://www.wjgnet.com/1948-9358/full/v5/
i3/357.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.357

INTRODUCTION
Obesity is an important risk factor for atherosclerosis, but 
the underlying mechanism for this association is poorly 
understood. Adipose tissue was considered to be a store 
of  surplus energy, but is now recognized as an indepen-
dent and active endocrine organ. Various adipokines, such 
as leptin (a protein secreted by fat cells), tumor necrosis 
factor-α (TNF-α), resistin, and adiponectin significantly 
affect obesity-related metabolic diseases by controlling fat 
metabolism, energy homeostasis, and insulin sensitivity[1]. 
Independent of  their effects on glucose and fat metabo-
lism, some adipokines have been regarded recently as di-
rect links between obesity and atherosclerosis because of  
their influence on the function of  endothelial cells, arterial 
smooth muscle cells, and macrophages in vessel walls[2] 
(Figure 1). The identification of  a novel adipokine that 
regulates the atherosclerotic process might provide new 
opportunities for developing more effective approaches 
for preventing cardiovascular disease. This review will 
focus on adipokines that mediate obesity and atheroscle-
rosis, including adiponectin, resistin, adipocyte fatty acid 
binding protein (A-FABP), omentin-1, and chemerin.

ADIPONECTIN
Adiponectin was the first 30-kDa protein cloned from fat 
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Abstract
The traditional perception of adipose tissue as a stor-
age organ of fatty acids has been replaced by the no-
tion that adipose tissue is an active endocrine organ, 
releasing various adipokines that are involved in the 
pathogenesis of obesity-related metabolic disturbances. 
Obesity is a well-known risk factor for atherosclerosis, 
and accelerates atherosclerosis by many mechanisms 
such as increase in blood pressure and glucose level, 
abnormal lipid profiles, and systemic inflammation. 
Furthermore, growing evidence suggests that some adi-
pokines directly mediate the process of atherosclerosis 
by influencing the function of endothelial cells, arterial 
smooth muscle cells, and macrophages in vessel walls. 
In obese patients, the secretion and coordination of 
such adipokines is abnormal, and the secretion of spe-
cific adipokines increases or decreases. Accordingly, 
the discovery of new adipokines and elucidation of their 
functions might lead to a new treatment strategy for 
metabolic disorders related to obesity, including cardio-
vascular diseases.
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tissues[3]. Adiponectin is a metabolically active adipokine 
that is inversely associated with obesity, insulin resistance, 
and atherosclerosis[4,5]. Adiponectin promotes fatty acid 
oxidation through the phosphorylation of  5-AMP-acti-
vated protein kinase (AMPK), thereby stimulating acetyl-
CoA carboxylase. The adiponectin receptors AdipoR1 
and AdipoR2 are responsible for adiponectin signaling 
and biological function. Yamauchi et al[6] reported that in-
sulin resistance occurred in AdipoR1/R2 knockout mice, 
but when AdipoR1 or AdipoR2 were overexpressed in the 
liver by using adenovirus, glucose metabolism improved 
in terms of  increase in AMPK vitality and peroxisome 
proliferator-activated receptors α expression. Adiponectin 
is a metabolically active adipokine which has anti-inflam-
matory, antiatherogenic, and antidiabetic properties[7] and 
is therefore inversely associated with obesity, insulin resis-
tance, and atherosclerosis. Hypoadiponectinemia has been 
established as an independent risk factor for type 2 dia-
betes and cardiovascular disease (CVD)[8]. We previously 
showed that, after adjusting for age, sex, obesity, history 
of  impaired fasting glucose or impaired glucose tolerance, 
hypertension, and dyslipidemia, lower baseline serum 
adiponectin concentrations are associated significantly 
with the development of  type 2 diabetes and metabolic 
syndrome[9]. On the other side, the Health Professionals 
Follow-Up Study showed that high plasma adiponectin 
levels were associated with a lower risk of  myocardial in-
farction in men during 6 years of  follow-up studies[10].

Experimental studies have shown that adiponectin 
plays a protective role against the development of  inflam-
mation and atherosclerosis. Ouchi et al[11] demonstrated 
that adiponectin specifically suppressed TNF-α-induced 
nuclear factor κ light chain enhancer of  activated B 
cells (NF-κB) activation in human aortic endothelial 
cells (HAECs) through a cAMP-dependent pathway. 
Furthermore, adiponectin suppressed TNF-α-mediated 
induction of  adhesion molecule expression in HAECs. 
Recently, we reported that serum adiponectin levels had a 
significant negative correlation with vascular inflammation 

as indicated by the mean target to background ratio (TBR), 
suggesting a cardio-protective effect of  adiponectin[12].

RESISTIN
Resistin was originally discovered as an adipokine with 
a possible link between obesity and insulin resistance 
in rodents[13]. In contrast to rodents, human resistin is 
expressed primarily in inflammatory cells and has been 
shown to be involved in obesity-related subclinical in-
flammation, atherosclerosis, and CVD[14]. Reilly et al[15] 
showed that circulating resistin levels are correlated with 
inflammation markers and are predictive of  coronary ath-
erosclerosis, as measured by coronary artery calcification 
scores, independent of  C-reactive protein. Kawanami et 
al[16] found that resistin induces the expression of  adhe-
sion molecules, such as vascular cellular adhesion mol-
ecule-1 and intercellular adhesion molecule-1 and that 
adiponectin inhibit the effect of  resistin in vascular en-
dothelial cells. Lee et al[17] observed that resistin promotes 
foam cell formation via the dysregulation of  scavenger 
receptors macrophages. In men with acute myocardial 
infarction, a multivariate model revealed that obesity and 
C-reactive protein were independent variables associated 
with higher resistin levels[18]. In a cross-sectional study of  
3193 Chinese subjects, resistin was more significantly as-
sociated with fibrinolytic and inflammatory markers than 
with obesity or insulin resistance[19]. Moreover, Weikert 
et al[20] reported that individuals in the highest quartile of  
resistin levels had a significantly increased risk of  myocar-
dial infarction compared with those in the lowest quartile 
of  resistin levels after adjustment for cardiovascular risk 
factors, including C-reactive protein (RR = 2.09; 95%CI: 
1.01-4.31) in 26490 middle-aged subjects. Among 397 
South Korean patients with acute myocardial infarction, 
high resistin level was an significant predictor for all-
cause mortality, independent of  other confounding risk 
factors[21]. We also showed that serum resistin levels were 
positively correlated with vascular inflammation mea-
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sured using 18F-fluoro-deoxyglucose positron emission 
tomography[12]. These studies suggest that resistin may 
represent a novel linkage of  metabolic signals, inflamma-
tion, and atherosclerosis.

ADIPOCYTE FATTY ACID BINDING 
PROTEIN
A-FABP is a cytoplasmic protein that combines with 
saturated and unsaturated fatty acids to control the dis-
tribution of  fatty acids in various inflammatory response 
and metabolic pathways[22]. Since Xu et al[23] established 
that the serum concentration of  A-FABP, which is 
synthesized in cytoplasm and secreted into serum, is 
significantly correlated with components of  metabolic 
syndrome, the role of  A-FABP in metabolic syndrome 
has been studied with renewed interest. Uysal et al[24] 
proved through an oral glucose tolerance test that insulin 
sensitivity was increased in A-FABP knock out ob/ob 
mice compared with control mice. In prospective stud-
ies, circulating A-FABP has been shown to predict the 
development of  metabolic syndrome and type 2 diabetes 
independent of  adiposity and insulin resistance[25,26].

A-FABP has been shown to be a major mediator of  
vulnerable plaque formation in various animal and in vitro 
studies. The survival rates of  apoE-/- mice null for both 
A-FABP and mal1 were significantly higher than apoE-/- 
control mice, primarily because of  increased stability of  
atherosclerotic plaques[27]. In macrophage cell lines, ade-
novirus-mediated over-expression of  A-FABP directly in-
duced foam cell formation by increasing intracellular lipid 
accumulation, which is an essential step in the formation 
of  atherosclerotic plaques[28]. In contrast, A-FABP-/- mac-
rophages displayed significantly decreased intracellular 
cholesterol ester accumulation in vitro[29] and suppressed 
production of  inflammatory cytokines, such as TNF-α, 
monocyte chemoattractant protein-1, and interleukin 
(IL)-6, compared with wild-type controls[30]. Furthermore, 
Furuhashi et al[31] reported that an orally active small mol-
ecule inhibitor of  A-FABP was an effective therapeutic 
agent against severe atherosclerosis in mouse models. Re-
cently, a few clinical studies have shown that circulating 
A-FABP levels are closely related to the development of  
atherosclerosis in humans. In Korean subjects in whom 
coronary angiograms were performed for evaluation of  
chest pain, serum A-FABP levels increased as the number 
of  stenotic coronary arteries increased[32]. Serum A-FABP 
was shown to be independently associated with carotid 
intima-media thickness (IMT) in Chinese women after 
adjusting for other risk factors, including age, obesity, 
and blood pressure[33]. In patients with coronary artery 
disease recruited to undergo elective percutaneous coro-
nary intervention, Miyoshi et al[34] showed that increased 
serum A-FABP levels were significantly associated with a 
greater coronary plaque burden as quantified by intravas-
cular ultrasound. After adjusting for other cardiovascular 
risk factor in South Korean men without cardiovascular 
disease or diabetes, we reported that circulating A-FABP 

levels were independently associated with vascular inflam-
mation as measured by maximum TBR values[35], suggest-
ing A-FABP as a promising key link between different 
metabolic pathways of  adiposity and inflammation.

OMENTIN-1
Omentin is a visceral fat-specific adipokine discovered 
through expressed sequence tag analysis[36] that has para-
crine and autocrine roles in improving insulin sensitivity. 
Yang et al[37] demonstrated that the addition of  recom-
binant omentin stimulated glucose uptake in human 
adipocytes via the activation of  Akt phosphorylation. 
Recent studies showed that omentin increased insulin 
signal transduction and that it was significantly negatively 
correlated with metabolic risk factors, including obesity 
and hyperglycemia, thereby suggesting a beneficial role in 
energy homeostasis[38-40]. In human clinical studies, it has 
been suggested that serum omentin-1 levels were signifi-
cantly decreased in metabolically unhealthy states, such as 
metabolic syndrome, types 2 diabetes mellitus, and poly-
cystic ovarian syndrome[38-40].

Expression of  the omentin gene in interstitial and 
endothelial cells suggests multi-functionality[41,42]. Fain 
et al[43] were the first to demonstrate the predominant 
expression of  omentin mRNA in human epicardial fat, 
suggesting that omentin might influence coronary ath-
erogenesis like other periadventitial epicardial adipokines. 
Some researchers reported that omentin might modulate 
vascular function through direct action on endothelial 
cells[44,45]. The vasodilating effect of  omentin on isolated 
rat aorta, mediated by endothelium-derived nitric oxide, 
was first examined by Yamawaki et al[45]. Treatment of  
human endothelial cells with omentin prevented TNF-α-
induced cyclooxygenase-2 expression by inhibiting c-Jun 
N-terminal kinase signaling, suggesting an anti-inflamma-
tory function of  omentin on endothelial cells[44]. Recently, 
several in vivo studies that might explain the mechanism 
underlying the connection between circulating omentin-1 
and the atherosclerotic process have been published. In 
human endothelial cells, omentin significantly decreased 
C-reactive protein and TNF-α-induced NF-κB[46]. Xie et 
al[47] reported that adenovirus-mediated overexpression 
of  omentin-1 attenuated arterial calcification in OPG-/- 
mice, suggesting that increasing concentrations of  omen-
tin-1 might be beneficial by protecting arteries. In an in vi-
tro study, treatment of  calcifying vascular smooth muscle 
cells (CVSMs) with omentin inhibited osteoblastic differ-
entiation of  CVSMCs via the phosphatidylinositol 3-ki-
nase/Akt signaling pathway[48]. Very recently, Maruyama 
et al[49] reported that systemic delivery of  an adenoviral 
vector expressing omentin enhanced blood flow recovery 
and capillary density in ischemic limbs of  wild type mice. 
Taken together, these in vitro data suggest the possibility 
that lower omentin levels contribute to the development 
of  cardiovascular disease from initiating early endothelial 
dysfunction to arterial calcification.

There have been many clinical studies examining the 
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indicating that chemerin might mediate the metabolic al-
terations in obesity.

Although chemerin is a well-known secreted protein 
with an established role in immune function, recent ex-
perimental data indicate that chemerin might provide a 
link between obesity and chronic inflammation[61]. Re-
cently, Sell et al[62] reported that chemerin activated the 
NF-κB pathway and impaired glucose uptake in primary 
human skeletal muscle cells. Moreover, TNF-α treatment 
of  3T3-L1 adipocytes increased bioactive chemerin levels, 
suggesting that inflammatory cytokines contribute to the 
up-regulation of  chemerin in obesity[63]. Thus, adipocyte-
derived chemerin might be involved in the pathogenesis 
of  obesity-related inflammatory disorders, including ath-
erosclerosis. Although Becker et al[64] showed that the ex-
pression of  chemerin did not significantly alter the extent 
of  atherosclerosis in low-density lipoprotein cholesterol 
receptor knockout mice, they hypothesized that chemerin 
might affect early atherosclerotic plaque development 
and morphology rather than the extent of  the athero-
sclerotic lesion area. Hart et al[65] showed that chemerin 
rapidly stimulated the adhesion of  macrophages to the 
extracellular matrix protein, fibronectin, and to the adhe-
sion molecule, vascular cell adhesion molecule-1, sug-
gesting that chemerin might promote the progression of  
atherosclerosis. Furthermore, Kaur et al[66] demonstrated 
the novel presence of  a G-protein coupled chemerin re-
ceptor 1 in human endothelial cells and its significant up-
regulation by pro-inflammatory cytokines (TNF-α, IL-
1β, and IL-6). Thus, the altered expression of  chemerin 
and its receptors during an inflammatory process might 
cause dysregulated angiogenesis, leading to the develop-
ment of  cardiovascular disease.

However, there have been very few clinical studies 
that examined the influence of  circulating chemerin on 
the atherosclerotic process. Lehrke et al[67] showed that 
circulating chemerin was positively correlated with the 
atherosclerotic plaque burden, as assessed by multi-slice 
computed tomography angiography, but that the associa-
tion was lost after adjusting for established cardiovascular 
risk factors. Very recently, we showed that the circulating 
chemerin level was an independent risk factor for arte-
rial stiffness even after adjusting other cardiovascular risk 
factors[68].

CONCLUSION
Various adipokines have been reported to directly modu-
late the atherogenic environment of  the vessel wall by 
regulating the function of  endothelial, arterial smooth 
muscle, and macrophage cells. Therefore, the identifi-
cation of  a novel adipokine that regulates the athero-
sclerotic process might provide new opportunities for 
developing more effective approaches for preventing 
cardiovascular disease.
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Abstract
Adrenomedullin (ADM) is a peptide hormone widely 
expressed in different tissues, especially in the vascu-
lature. Apart from its vasodilatatory and hypotensive 
effect, it plays multiple roles in the regulation of hor-
monal secretion, glucose metabolism and inflamma-
tory response. ADM regulates insulin balance and may 
participate in the development of diabetes. The plasma 
level of ADM is increased in people with diabetes, while 
in healthy individuals the plasma ADM concentration re-
mains low. Plasma ADM levels are further increased in 
patients with diabetic complications. In type 1 diabetes, 
plasma ADM level is correlated with renal failure and 
retinopathy, while in type 2 diabetes its level is linked 
with a wider range of complications. The elevation of 
ADM level in diabetes may be due to hyperinsulinemia, 
oxidative stress and endothelial injury. At the same 
time, a rise in plasma ADM level can trigger the onset 
of diabetes. Strategies to reduce ADM level should be 
explored so as to reduce diabetic complications.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Adrenomedullin; Diabetes; Diabetic compli-
cations; Hyperglycemia; Therapeutics

Core tip: Adrenomedullin (ADM) is a peptide hormone 
with vasorelaxing and hypotensive properties. It also 
plays multiple roles in the regulation of hormonal secre-
tion, glucose metabolism and inflammatory response. A 
major observation is the elevation of plasma ADM level 
in diabetes, and is associated with diabetic complica-
tions in both type 1 and 2 diabetes. The increase could 
be resulted from oxidative stress, hyperinsulinemia and 
endothelial injury. This raises the potential application 
of ADM as a marker in diabetes, and strategies aimed 
at reducing ADM level could be explored so as to allevi-
ate diabetic complications.

Wong HK, Tang F, Cheung TT, Cheung BMY. Adrenomedullin 
and diabetes. World J Diabetes 2014; 5(3): 364-371  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i3/364.
htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.364

INTRODUCTION
Adrenomedullin (ADM) is a peptide recently discovered 
with multiple functions. Its characteristic actions include 
vasorelaxing effect and hypotensive properties. Given 
its widespread expression and production in different 
organs, ADM can also act as an autocrine, endocrine or 
paracrine mediator in various biological systems. The 
prospects of  ADM as a potential disease modulator 
comes from the observation of  increased levels in plasma 
in various disease states. For instance, increased plasma 
ADM levels were observed in cardiovascular diseases and 
diabetes[1-3]. However, different from the observations in 
cardiovascular diseases, the explanation and significance 
for such an increase is not clear. Since then, research 
progress has been made in the association between ADM 
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and diabetes. For instance, ADM plays a role in glucose 
metabolism and insulin balance[4]. These evidence may 
provide clue on the involvement of  ADM in diabetes.

In this review, we summarized the current knowl-
edge on ADM based on research progress in the recent 
decade and provided an account on the role of  ADM 
played in the context of  diabetes. This would help us 
understand better on the clinical application of  ADM in 
diabetic patients.

DISCOVERY OF ADRENOMEDULLIN AS A 
REGULATORY PEPTIDE
ADM was initially discovered by Kitamura in 1993, ex-
tracted from pheochromocytoma in humans by monitor-
ing the elevated 3’,5’ cyclic adenosine monophosphate 
(cAMP) production in human platelets[5]. It was later 
found that the peptide had a potent hypotensive and va-
sorelaxing effects. It forms a ring structure by 52 amino 
acid residues held by a disulfide bond. Since the peptide 
was abundantly found in the adrenal medulla, therefore 
this accounts for the name. The peptide is classified as a 
member of  the calcitonin gene-related peptide (CGRP) 
superfamily. Although high level of  ADM was identified 
in the adrenal medulla[6], circulating ADM was the most 
abundant in vascular wall[7].

BIOSYNTHESIS AND DISTRIBUTION
ADM has a very high tissue distribution. Its biosynthesis 
has been studied by applying radioimmunoassays, and 
by detecting tissue ADM mRNA[8]. Immunoreactive 
ADM is detected in cardiovascular, respiratory, renal, 
endocrine, reproductive, neurological, intestinal and im-
mune system[9,10]. Among these systems the highest ADM 
concentrations were detected at the adrenal glands. ADM 
mRNA is also detected in various peripheral tissues[11]. 
Such wide distributions indicate the multi-facet roles of  
ADM.

In the cardiovascular system, ADM is synthesized in 
both atria and ventricles in heart and blood vessels. With-
in the vasculature, ADM is actively manufactured and 
secreted by both the endothelial and the vascular smooth 
muscle cells[7,12]. It is also demonstrated that the vascula-
ture had much higher ADM mRNA expression than the 
adrenal glands. This was further supported by the finding 
of  a low ADM precursor ratio in the total ADM immu-
noreactivity in blood vessels[11].

Besides, ADM is synthesized in the lung[13], brain as 
well as in the pancreatic islets[14,15]. The widespread ADM 
expression suggests its diverse role in the regulations of  
cell functions. Since ADM is mainly produced by vascular 
endothelial and the smooth muscle cells, its regulatory 
function of  vascular tone has become a major target for 
investigation.

ADM production is controlled by various humoral 
factors and physical factors. Inflammatory cytokines such 
as tumor necrosis factor (TNF)-α, TNF-β, interleukin 

(IL)-1α and IL-1β all are known to stimulate ADM pro-
duction and secretion[16]. While mechanical factors like 
sheer stress and hypoxia are involved in the up-regulation 
of  vascular ADM mRNA expression[17].

In healthy individuals, circulating plasma ADM level 
is as low as in the picomolar range, similar to the atrial 
natriuretic peptide, and its level changes in order to com-
pensate for the vasoconstrictive effects. It is reported that 
in various pathological conditions, the increase in plasma 
ADM level correlates with severity of  disease states. For 
instance, elevated plasma ADM level has been associated 
with heart failure, hypertension, artherosclerosis and dia-
betes mellitus[18].

RECEPTOR SIGNALING
Specific binding sites for ADM were identified in many 
different places in rat and in human models[19,20]. In hu-
mans, the binding sites are most abundant in the micro-
vascular endothelium[20]. The biological actions of  ADM 
are exerted mainly through CGRP receptors and the spe-
cific ADM receptors, which share a common molecular 
component of  a G-protein coupled receptor called calci-
tonin receptor-like receptor (CRLR)[21]. The specificity of  
CRLR depends on different subtypes of  another associ-
ated proteins, namely the receptor-activity-modifying pro-
teins (RAMP1, 2 and 3)[22]. Co-expression of  CRLR with 
different subtypes of  RAMPs will form different ADM 
receptors. The specificity brought about by the RAMPs 
involves glycosylation and transport of  the receptor-
RAMP complex.

PHYSIOLOGICAL EFFECTS
ADM can act as both a hormone and a cytokine to 
regulate the regional blood flow, vascular tone, leukocyte 
migration and differentiation, electrolyte balance, cardiac 
function, glucose uptake and hormone secretion[18]. It 
plays an important role in cardiovascular system[23]. ADM 
imposes a potent vasodilatory effect in humans and in-
creases blood flow to various organs[24,25]. For instance, 
increased ADM expression could enhance hepatic and 
renal circulation[26]. In systemic circulation, vasodilation 
could be resulted from either endothelium-dependent[27], 
or endothelium-independent mechanisms[28], through 
ADM and CGRP receptors. In addition, the endotheli-
um-derived vasodilation could be mediated by cAMP and 
nitric oxide[29,30].

Previous studies have identified the role of  ADM in 
inflammation and immunity. ADM possesses anti-micro-
bial properties against bacteria[31]. In vitro and in vivo study 
has demonstrated that ADM secretion and expression are 
up-regulated upon pathogenic exposure[32]. ADM expres-
sion also increases during local inflammation and sepsis[33] 
In particular, ADM levels in lung, heart and vasculature[34], 
liver and kidney[26], all increase upon endotoxin adminis-
tration[35]. Macrophages could also augment ADM expres-
sion in inflammation[33].

The role of  ADM in the inflammatory process var-
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ies after the onset of  inflammation. ADM can activate 
and modulate cytokine production, while it can also in-
hibit overproduction of  pro-inflammatory cytokines[36]. 
It plays a crucial role in initiating inflammatory response 
by stimulating the release of  migratory inhibitory factor 
and IL-1β, while activate anti-inflammatory response by 
suppressing TNF-α production and up-regulating IL-6 
production, as the latter is anti-inflammatory and inhibit 
lipopolysaccharide-induced TNF-α production[37-39]. Such 
co-ordinated functions of  ADM suggest that it is associ-
ated with injury, infection and inflammation. Apart from 
inflammation, ADM expression in immune cells serves 
diverse functions. ADM can be detected in macrophages 
in the atherosclerotic plaques[40], where it may play a role 
in reducing inflammation and thereby exerting an anti-
atherosclerotic effect.

While circulating ADM in plasma contributes to a 
large part of  its physiological functions, ADM also serves 
as a local regulator of  cellular functions. The paracrine 
effect of  ADM can be demonstrated in the kidney, as it 
has been shown that ADM is histochemically localized 
in renal tubules, and recently mesangium was suggested 
to be one source of  ADM in the kidney[41]. The local 
ADM modulates mesangial proliferation and is regulated 
by different growth factors and cytokines. This suggests 
that regulation of  renal function by ADM may operate 
in an autocrine/paracrine manner. Another example of  
the localized effect of  ADM is in the vascular smooth 
muscle cells, where its biosynthesis is regulated through a 
feedback loop. In one study, stimulation of  ADM mRNA 
levels was observed together with a decrease in the im-
munoreactive ADM peptide secretion resulted from 
glycolytic inhibition[42]. As ADM could inhibit vascular 
smooth muscle cell migration and proliferation in re-
sponse to growth factors[43], a decreased ADM secretion 
might stimulate its migration and growth locally, and lead 
to remodeling upon vascular injuries.

ADRENOMEDULLIN AND 
PANCREATOLOGY
ADM is deeply involved in pancreatic endocrinology, 
mainly in insulin secretion[44]. It is known that ADM, 
CRLR and RAMPs are both expressed in the islets of  
the pancreas[45]. Previous findings demonstrated that ex-
ogenous ADM added to freshly isolated rat islets led to a 
dose-dependent inhibition of  insulin secretion by 78% at 
1 μmol/L ADM, and was accompanied by cAMP eleva-
tion[3]. Oral glucose tolerance tests have illustrated injec-
tion of  ADM lowered insulin levels in blood by 2 folds 
20 min after glucose administration, accompanied by an 
increase in circulating glucose[4]. This supports a role of  
ADM in insulin regulation in pancreas, and implies that 
ADM is associated with hyperglycemia[46].

Another function of  ADM is inhibiting amylase se-
cretion in pancreatic acini[47]. As ADM receptors were not 
identified in the acini, this suggest that such inhibition is 

mediated through other receptors[45].

ADRENOMEDULLIN AND DIABETES
As suggested above, ADM inhibits insulin release after 
an oral glucose load. Therefore, it can be expected that 
ADM contributes to diabetes and even leads to the devel-
opment of  diabetic complications[48].

Diabetes is characterized by hyperglycemia. It is 
resulted from dysregulation of  insulin secretion or pe-
ripherial resistance. Diabetes mellitus causes retinopathy, 
neuropathy, nephropathy, and atherosclerosis. These 
complications are the results of  prolonged hyperglyce-
mia, altered metabolic pathways and non-enzymatic gly-
cation of  proteins[49].

There have been advances in the understanding of  
the relationship between ADM and diabetes. Plasma 
ADM level is elevated in patients with poorly controlled 
diabetes than in normal subjects, which suggests a di-
rect effect of  glucose on ADM release[1]. The effect of  
hyperglycemia on ADM expression is mediated through 
protein kinase C in vascular smooth muscle cells[50]. The 
observation that ADM expression in aorta, but not in 
adrenal gland, was raised in diabetic rats (plasma glucose 
= 567 ± 167 mg/dL) compared to control (plasma glu-
cose = 94 ± 10 mg/dL), suggests that ADM expression 
in the vasculature could be the source of  plasma ADM 
in diabetic patients[50]. In the streptozotocin-diabetic rat, 
there were increases in ADM synthesis in the ventricles 
and possible ADM secretion in the ventricles, atria and 
the thoracic aorta[51]. On the other hand, ADM may re-
duce the levels of  inflammatory cytokines and endothelin 
in the adipose tissue and the skeletal muscle and hence 
increase glucose uptake[37].

However, another study examining the relationship 
between plasma ADM level and clinical parameters of  
diabetes demonstrated contradictory results. It showed 
no significant difference in plasma ADM level between 
diabetic patients without nephropathy and normal indi-
viduals, despite a significant higher level of  HbA1c and 
plasma glucose in patients with diabetes[52]. Therefore, 
patients with renal impairment should be excluded when 
examining the relationship between plasma ADM level 
and blood glucose level, since patients with renal impair-
ment might demonstrate an increase in the plasma ADM 
levels. Despite the direct effect of  circulating glucose 
on plasma ADM level has not been well established, a 
positive association between plasma ADM level and the 
mean blood pressure has been demonstrated in the same 
study. Given the high plasma ADM levels in various 
disorders[53], the elevated ADM levels in diabetes might 
suggest that it has a protective role. Earlier research also 
showed an elevated plasma ADM level in patients with 
hypertension and chronic renal failure, particularly a 3-fold 
elevation in plasma ADM level associated with more se-
vere renal failure. The elevation in ADM may help to pre-
vent blood pressure increase and body fluid retention[54], 
and represent a compensatory mechanism for diabetic 
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the endothelial cells[59], so plasma level of  ADM increases 
upon endothelial injury. A significant positive association 
between ADM and cAMP in diabetic patients further 
supported the hypothesis that ADM plays a counter-
regulatory role to prevent excessive vasoconstriction and 
vessel damage, and promotes natriuresis[54,60,61].

All these findings suggested an increase in plasma 
ADM level is the consequence rather than the cause of  
type 1 diabetes, since there are insufficient findings to 
demonstrate the direct link between ADM and the dis-
ease states. This can be further supported by the compar-
ison of  hypoglycemic- and hyperglycemic-patients in the 
same study in which no difference in the plasma ADM 
level was found.

ADM AND TYPE 2 DIABETES
Several studies have been carried out in an attempt to 
explain the rise in plasma ADM level and its implications 
in diabetic complications. One study showed that plasma 
ADM level was elevated in type 2 diabetes but did not 
correlate with glucose level in circulation[62]. Instead, in-
creased ADM level was correlated with various diabetic 
complications, and the severity of  diabetic nephropathy 
and retinopathy. Other parameters like serum creatinine 
level, systolic blood pressure, and urinary protein excre-
tion were found to be related to ADM levels as well. 
ADM levels might therefore be related to the develop-
ment of  microangiopathy.

Another study examined a group of  patients with a 
common feature of  hyperglycemia development. The 
group had recent onset of  diabetes induced by a drug 
treatment[63]. Results showed that the group can be char-
acterized by a subset of  patients with extremely high 

complications.

ADM AND TYPE 1 DIABETES
One characteristic of  type 1 diabetes is the destruction 
of  β-cells in the islets of  Langerhans which produces 
insulin. Previously there was a report investigating the as-
sociation of  ADM and type 1 diabetes. ADM and cAMP 
levels were compared between type 1 diabetes patients 
with various complications and healthy individuals[55]. 
According to the data, increased plasma ADM level was 
identified only in patients having renal insufficiency, while 
patients with other complications had normal ADM level. 
A significant inverse correlation was also found between 
ADM levels and the creatinine clearance by multiple re-
gression analysis. This suggested that when the kidney 
function was impaired, clearance of  ADM was possibly 
decreased and resulted in an increase in the plasma level. 
Such hypothesis deserves further confirmation because 
most of  the circulating ADM was shown to be cleared 
in the lungs instead of  the kidneys[56]. In the same analy-
sis, the relationship between the plasma ADM and the 
disease duration suggested the change in ADM level is 
resulted from the endothelial dysfunction.

Despite the uncertainty of  the origin of  plasma 
ADM, a recent study postulated that the selective dilation 
of  glomerular capillaries in type 1 diabetes was attributed 
to the up-regulation of  ADM and RAMP2 expression in 
the afferent arterioles and glomeruli, through the induced 
release of  nitric oxide[57]. This may provide a hint that lo-
cally produced ADM can elicit vasodilatation action by 
paracrine control, independent of  any changes in plasma 
ADM levels. ADM is also involved in the pathogenesis 
of  retinopathy[58]. Since ADM is produced in the vas-
culature, endothelial activation caused by vessel damage 
may explain the increase in plasma ADM level. Another 
possibility is that ADM acts as a factor for survival of  

367 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

AM
 c

on
ce

nt
ra

tio
n 

(f
m

ol
s/

m
L)

Diabetic patients                     Normal controls

70

60

50

40

30

20

10

  0

Figure 1  Adrenomedullin concentrations in blood serum from type 2 
diabetic patients (in squares) and normal controls (in triangles), shaded 
squares are outliers. Reprinted from [63].
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ADM levels (Figure 1). Even though the source of  such 
excessive ADM is unknown, the results suggested that 
hyperglycemic patients are characterized by higher circu-
lating ADM levels. In the same studies, the influence of  
ADM in blood glucose modulation was studied using an 
obese SHR rat model mimicking human type 2 diabetes. 
Synthetic ADM, blocking monoclonal antibody against 
ADM or saline were injected into the animals, and then 
glucose tolerance tests were carried out. In support to a 
previous study[4], ADM injection increased blood glucose 
level more significantly in diabetic rats, while application 
of  antibody effectively reduced blood glucose level to 
even lower than saline control and improved postprandial 
recovery in diabetic rats (Figure 2). All these data raise 
the possibility that ADM is a causative factor in type 2 
diabetes and has a negative impact on glycemic control.

To further explore the role of  ADM incausing type 2 
diabetes, the effect of  ADM on insulin secretion has to 
be considered. There are studies addressing the associa-
tion of  ADM with insulin balance. There is a positive 
association between insulin resistance and plasma midre-
gion pro-adrenomedullin levels[64]. The link between acute 
hyperinsulinemia and ADM has been proposed, in which 
plasma ADM levels increased in acute hyperinsulinemia[65]. 
There was a concomitant increase in plasma ADM levels 
with increasing insulin production, and a significant posi-
tive correlation between serum insulin levels and plasma 
ADM was seen in type 2 diabetic patients. The authors 
speculated that the increased insulin-stimulated ADM 
production from the pancreatic islets compensated for the 
diminished vasodilatory effect of  insulin, hence this pro-
tects against arterial hypertension.

In the recent decade the effect of  oxidative stress on 
ADM expression has been suggested. One study evaluat-
ed such relationship by measuring plasma levels of  8-epi-
prostaglandin F2α (8-epi-PGF2α, a marker of  oxidative 

stress) and ADM in normal and hypertensive subjects[66]. 
Both plasma levels were elevated in the hypertensive 
group (P < 0.05 for 8-epi-PGF2α and P < 0.02 for ADM 
respectively), and the data showed that 8-epi-PGF2α was 
associated with ADM in hypertensive patients with type 
2 diabetes (r = 0.696, P < 0.01). It is known that oxida-
tive stress could stimulate ADM mRNA expression and 
secretion from endothelial and vascular smooth muscle 
cells[67]. Sustained ADM deficiency increased oxidative 
stress and led to insulin resistance via impaired insulin 
signaling, which is supported by an angiotensin (Ang)-Ⅱ 
treated mouse model[68]. Ang-Ⅱ could induce oxidative 
stress and hypertensive conditions, and it was shown that 
Ang-Ⅱ reduced insulin sensitivity in ADM-knockout het-
erozygous mice more than wild type mice. This suggests 
that endogenous ADM may act against insulin resistance 
induced by oxidative stress and offer protection from or-
gan damage through its anti-oxidant action.

The interactions between ADM and diabetic com-
plications are dynamic and complex. While conflicting 
arguments have been put forward to the link between 
poor metabolic control and increased ADM levels[64], it is 
generally accepted that plasma ADM levels are positively 
linked to oxidative stress[66], acute hyperinsulinemia[65], 
and other risk factors causing endothelial injury (Figure 
3). This leaves much ground for further research about 
the causes and significance for the plasma ADM level 
increase.

CONCLUSION
There are two main questions that have to be answered 
in order to establish a link between ADM and diabetes: 
Firstly, what are the causes for the increase in plasma 
ADM levels in diabetic patients, and what are the 
sources for the elevated circulating ADM? What kind of  
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stress or stimulation are involved? Secondly, what is the 
implication for the elevated level? Would it further wors-
en the glycemic condition and result in various diabetic 
complications?

Based on the above questions, numerous studies have 
been commenced. Research has demonstrated the asso-
ciation between diabetic complications and the increase 
in plasma ADM level. Plasma ADM levels were mainly 
associated with renal failure and retinopathy in type 1 dia-
betes. However, the correlation with hyperglycemia is still 
not clear and requires further investigation.

On the other hand, plasma ADM levels in type 2 
diabetes patients are linked to a wider range of  compli-
cations. The rise may be attributed to acute hyperinsu-
linemia, oxidative stress and endothelial damage. These 
stimuli increases ADM production from pancreatic islets 
and vascular endothelium. Such a rise may represent a 
causative factor triggering the onset of  disease and insulin 
resistance. If  this assumption holds, a controlled reduc-
tion in ADM levels may improve hyperglycemia. To un-
derstand the casual role of  ADM in diabetes, genetic vari-
ants could be a potential variable to study using Mendalian 
randomization, since it is unlikely to be confounded by 
environmental factors. Our recent study has demonstrated 
a positive link between a single nucleotide polymorphism 
(SNP) of  ADM gene and development of  dysglycemia[69]. 
Our other studies also demonstrates that plasma ADM 
level is associated with one of  its SNP, IL-6 and adipo-
nectin SNPs[70-72]. In the future regulation of  ADM level 
could be a key in controlling glycemia in people with dia-
betes and this warrants further investigation.
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Abstract
Both diabetes mellitus and cancer are prevalent diseas-
es worldwide. It is evident that there is a substantial in-
crease in cancer incidence in diabetic patients. Epidemi-
ologic studies have indicated that diabetic patients are 
at significantly higher risk of common cancers including 
pancreatic, liver, breast, colorectal, urinary tract, gas-
tric and female reproductive cancers. Mortality due to 
cancer is moderately increased among patients with di-
abetes compared with those without. There is increas-
ing evidence that some cancers are associated with 
diabetes, but the underlying mechanisms of this poten-
tial association have not been fully elucidated. Insulin 
is a potent growth factor that promotes cell prolifera-
tion and carcinogenesis directly and/or through insulin-

like growth factor 1 (IGF-1). Hyperinsulinemia leads to 
an increase in the bioactivity of IGF-1 by inhibiting IGF 
binding protein-1. Hyperglycemia serves as a subordi-
nate plausible explanation of carcinogenesis. High glu-
cose may exert direct and indirect effects upon cancer 
cells to promote proliferation. Also chronic inflamma-
tion is considered as a hallmark of carcinogenesis. The 
multiple drugs involved in the treatment of diabetes 
seem to modify the risk of cancer. Screening to detect 
cancer at an early stage and appropriate treatment of 
diabetic patients with cancer are important to improve 
their prognosis. This paper summarizes the associations 
between diabetes and common cancers, interprets pos-
sible mechanisms involved, and addresses implications 
for medical practice.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes mellitus; Cancer; Association; 
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Core tip: The diabetes-cancer link is summarized and 
discussed in detail and it may potentially be attributed 
to hormonal disorders, chronic inflammation and meta-
bolic alterations. Besides, implications for medical prac-
tice are also addressed.
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INTRODUCTION
The prevalence of  diabetes mellitus (DM) is increasing 
worldwide. According to the estimates by the Interna-
tional Diabetes Federation, the global prevalence of  type 
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2 diabetes mellitus (T2DM) is 8.3%. The prevalence of  
T2DM varies by country and area. The highest rate is 
10.5% in North America, 8.7% in South-East Asia, 6.7% 
in Europe and 4.3% in Africa. It is predicted that 552 
million people worldwide will develop diabetes by 2030[1].

DM and cancer are frequently diagnosed in the same 
individual[2]. DM is reported to be associated with an 
increased risk of  different types of  cancer, including 
pancreatic, liver, breast, colorectal, urinary tract, gastric, 
and female reproductive cancers. The relative risk ranges 
from 2.0 to 2.5 for liver, pancreatic and endometrial can-
cers, and 1.2 to 1.5 for breast, colon and bladder cancers 
associated with DM[3]. It is worth noting that DM is a 
growing health problem worldwide. Even if  the increased 
risk in cancer incidence and mortality due to DM is small, 
the consequence would be significant at the population 
level[4].

The mechanism of  DM associated with cancer re-
mains uncovered and needs to be examined in further 
studies. The mechanism for the diabetes-cancer link has 
been hypothesized to be mainly related to hormonal 
[insulin and insulin-like growth factor (IGF)-1], inflam-
matory or metabolic (hyperglycemia) characteristics of  
the DM and even to certain treatments[5]. Anti-diabetic 
medications may have effects on the risk for cancer. In-
creasing evidence shows that insulin sensitizers such as 
metformin and thiazolidinediones (TZDs) are associated 
with prostate cancer[6] and HER2-positive breast cancer[7] 
among diabetic patients. The diabetic patients who are 
treated with insulin or insulin secretagogues are more 
likely to develop cancer than those with metformin[8-11].

In this paper, we summarize the associations between 
diabetes and cancer in epidemiologic studies, possible 
mechanisms and implications for medical practice.

POSSIBLE BIOLOGIC LINKS BETWEEN 
DIABETES AND CANCER RISK
Insulin resistance
Insulin resistance is very common in T2DM, in which 
circulating insulin level is frequently increased. The insu-
lin/IGF axis plays an important role in diabetes-associat-
ed increased risk and progression of  cancer. The cancer 
cells overexpress insulin and IGF-1 receptors[2].

Hyperinsulinemia is a hallmark of  insulin resistance. 
The mechanisms whereby hyperinsulinemia could link di-
abetes and cancer have been extensively investigated and 
discussed. Hyperinsulinemia may influence cancer devel-
opment through ligand by binding with the insulin recep-
tor (IR) and/or indirectly through increasing circulating 
IGF-1 levels[12]. Insulin signal transduction is mediated 
through two IR isoforms: IR-A and IR-B[13]. IR-A rec-
ognizes insulin and IGFs, with a higher affinity for IGF2 
than IGF1, and IR-B is insulin specific and is mainly 
involved in glucose homeostasis. Insulin binds with IR-A 
and exerts a direct pro-growth mitogenic effect. When 
elevated, insulin can increase the hepatic expression of  
IGF-1 and then activate the IGF-1 receptor, further 

stimulating cell growth through this mechanism[14,15]. 
IR-A and IGF-1 receptor are expressed primarily in fetal 
tissues and cancer cells[16].

The independent role of  the IR is confirmed by the 
observation that down-regulation of  IRs in LCC6 cells 
reduces xenograft tumor growth in athymic mice and in-
hibits lung metastasis[17]. Besides, blockade of  the IGF-1 
receptor has been associated with decreased growth of  
breast cancer cells[18,19]. Hyperinsulinemia also results in 
decreased levels of  IGF binding protein-1 and thus in-
creased levels of  bioactive IGF-1[20,21].

Multiple downstream signaling pathways are activated 
after IRs or IGF-1 receptors interact with their ligands. By 
phosphorylation of  adaptor proteins, two major pathways 
are involved: (1) the phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt)/mammalian target of  rapamycin 
(mTOR), PI3K/Akt/forkhead box O, and Ras/MAPK/
extracellular signal-related kinase 1/2 pathway which plays 
important roles in cancer cell growth and carcinogen-
esis[22,23] is activated; and (2) the inhibitor of  the oncogenic 
β-catenin signaling (glycogen synthase kinase 3β) is inacti-
vated, through the PI3K/Akt signaling pathway, resulting 
in β-catenin signaling activation that has been related to 
cancer stem cells and chemoresistance[24].

Hyperglycemia
Hyperglycemia has been classically considered as a subor-
dinate whereas hyperinsulinemia as a primary causal fac-
tor for cancer[25].

Several large cohort and case-control studies have 
found a positive relationship between hyperglycemia and 
the risk of  cancer[26-29]. In a tumor-prone animal model, 
it was found that the number and size of  liver tumors 
increased and apoptosis was reduced in insulin-deficient 
hyperglycemic mice compared with insulin-sufficient 
mice. This phenomenon was reversed by insulin thera-
py[30]. However, in vivo studies showed that T1DM, which 
is characterized by hyperglycemia, reduces the tumor 
growth. This finding does not support that hypergly-
cemia increases tumor growth, at least in the setting of  
insulin deficiency[31]. A recent research found that tumors 
continue to consume high amounts of  glucose, regard-
less of  plasma glucose levels[32]. A recent meta-analysis 
confirmed this finding that improved glycemic control 
does not reduce cancer risk in diabetic patients[33]. Hyper-
glycemia may be an independent risk factor for cancer. 
Further studies are needed to evaluate the relative roles 
of  insulin and glucose.

The possible mechanisms of  hyperglycemia increas-
ing cancer risk include “indirect effect” and “direct ef-
fect”[34]. The “indirect effect” is the action that takes place 
at other organs and will later on influence tumor cells by 
inducing production of  circulating growth factors (insu-
lin/IGF-1) and inflammatory cytokines. The “direct ef-
fect” is the effect that is exerted directly upon tumor cells 
by increasing proliferation, inducing mutations, augment-
ing invasion and migration and rewiring cancer-related 
signaling pathways. Recently, Wnt/β-catenin signaling has 
been suggested as a key cancer-associated pathway and 
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high glucose enhances this signaling pathway by allowing 
nuclear retention and accumulation of  transcriptionally 
active β-catenin independently of  hyperinsulinemia, adi-
pokines or inflammation[35,36].

Chronic inflammation
The deregulated metabolism in poorly controlled diabetes 
causes a long-term pro-inflammatory condition character-
ized by increased levels of  interleukin-6 (IL-6), tumor ne-
crosis factor-alpha (TNF-α), C-reactive protein, and other 
markers of  chronic inflammation. Emerging evidence 
suggests that persistent inflammation can promote genetic 
instability and chronic inflammation is associated with in-
creased cancer risk[37-40]. This finding is also supported by 
the classical evidence that non-steroidal anti-inflammatory 
drugs can reduce the risk of  certain cancers[41-44].

Tumor-promoting mechanism of  inflammation in dia-
betic patients is not much clear. Chronic inflammation and 
chronic oxidative stress go hand-in-hand. Oxidants affect 
almost all stages of  the inflammatory response process, 
including the release of  inflammatory cytokines, the sens-
ing by innate immune receptors from the families of  Toll-
like receptors and the nucleotide-binding oligomerization 
domain-like receptors, and the activation of  signaling 
initiating the adaptive cellular response to such signals[40]. 
Reactive oxygen species can cause damage to lipids, 
protein and DNA, and then initiate carcinogenesis[45-47]. 
Meanwhile, chronic inflammation is associated with high 
levels of  TNF-α, which would strongly activate nuclear 
factor-kappa B (NF-κB) and further induce downstream 
signaling transduction to promote the development and 
progression of  many tumors. NF-κB is involved in the 
proliferation and survival of  malignant cells, promotes an-
giogenesis and metastasis, subverts adaptive immunity, and 
mediates responses to hormones and/or chemotherapeu-
tic agents[48-50]. Therefore, continued exposure to chronic 
inflammation and oxidative stress puts susceptible cells at 
risk of  progression toward malignant transformation[31].

IMPACT OF DIABETES ON CANCER
Evidence from animal studies
DM is mainly characterized by insulin resistance, hyper-
insulinemia, hyperglycemia, and dyslipidemia. The inde-

pendent role of  diabetes and obesity in caner develop-
ment has been difficult to distinguish since obesity is also 
related to inflammation and hyperinsulinemia. Studies in 
transgenic diabetic mice might shed light on the relative 
contributions of  these factors. In a transgenic model of  
skin and mammary carcinogenesis, non-obese diabetic 
mice (A-ZIP/F-1) developed more tumors than wild-type 
controls[51]. In MKR mouse models of  mammary carci-
nogenesis, female mice with T2DM showed accelerated 
mammary gland development and breast cancer progres-
sion independent of  obesity and inflammation[52]. Hyper-
insulinemia promoted the growth of  primary mammary 
tumor and subsequent metastasis to the lung[53]. Tumor 
progression was abrogated with the decreased level of  
serum insulin after treatment with anti-insulin drugs[54]. 
Taken together, findings from animal studies support that 
diabetes plays interconnected roles in the development 
of  cancer.

Epidemiologic findings 
The findings from a meta-analysis of  12 cohort studies 
showed that diabetes increased the risk of  all-cancer inci-
dence for overall subjects, with a pooled adjusted RR of  
1.14 (1.06-1.23) for men, and 1.18 (1.08-1.28) for wom-
en[55]. Diabetes is reported to be associated with several 
types of  cancer, including pancreas, liver, breast, colorec-
tal, urinary tract, gastric, and female reproductive cancers. 
Meta-analyses on the associations between diabetes and 
site specific cancer are summarized in Table 1.

Liver cancer: In various studies examining the link be-
tween DM and cancer, the highest risk has been seen 
for liver cancer. A meta-analysis demonstrated that in-
dividuals with diabetes had a 2.0-fold increased risk of  
developing hepatocellular carcinomas (HCC), compared 
with non-diabetics. And this link was observed in both 
men and women[56]. The liver is exposed to high concen-
trations of  endogenously produced insulin transported 
via the portal vein. Hyperinsulinemia stimulates the 
production of  IGF-1, which further promotes cellular 
proliferation and then inhibits apoptosis in the liver. The 
important role of  hyperinsulinemia and IGF-1 in hepatic 
carcinogenesis has been demonstrated by in vitro, in vivo, 
and epidemiologic studies[57,58]. Liver steatosis, hepatitis, 
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Table 1  Combined relative risk and 95%CI in meta-analyses of cohort studies of cancer risk in different organs of diabetic patients

Cancer Ref. No. of cohort studies RR (95%CI) RR (95%CI) male RR (95%CI) female

Pancreas Ben et al[76], 2011 35 1.94 (1.66-2.27)  1.70 (1.55-1.87)1  1.60 (1.43-1.77)1

Liver Wang et al[56], 2012 18 2.01 (1.61-2.51)  1.96 (1.71-2.24)1  1.66 (1.14-2.41)1

Breast De Bruijn et al[66], 2013 20 1.23 (1.12-1.34) NA 1.23 (1.12-1.34)
Endometrium Zhang et al[67], 2013 15 1.81 (1.38-2.37) NA 1.81 (1.38-2.37)
Colon-rectum Jiang et al[62], 2011 30 1.27 (1.21-1.34)  1.25 (1.17-1.33)1  1.23 (1.13-1.33)1

Kidney Bao et al[70], 2013 11 1.39 (1.09-1.78) 1.28 (1.10-1.48) 1.47 (1.18-1.73)
Bladder Zhu et al[73], 2013 29 1.29 (1.08-1.54) 1.36 (1.05-1.77) 1.28 (0.75-2.19)
Prostate Zhang et al[78], 2012 25 0.92 (0.81-1.05) 0.92 (0.81-1.05) NA
Gastric Yoon et al[81], 2013 11 1.20 (1.08-1.34) 1.10 (0.97-1.24) 1.24 (1.01-1.52)
Non-Hodgkin’s lymphoma Castillo et al[85], 2012 11 1.21 (1.02-1.45) 1.13 (0.96-1.34) 1.24 (0.97-1.58)

1Based on the studies reported by gender. NA: Unavailable.
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in men [RR = 1.36 (1.05-1.77)][73]. In addition to general 
factors, the frequent infections of  the urinary tract in dia-
betic patients might also be involved[74].

Pancreatic cancer: In a 3-year follow-up study[75], sub-
jects with new-onset DM had a higher risk of  pancreatic 
cancer with a RR of  7.94 than the subjects without DM. 
A meta-analysis of  35 cohort studies showed that DM 
was associated with an increased risk of  pancreatic cancer 
in both men and women[76]. However, the question arises 
about whether diabetes is a risk factor or the conse-
quence of  the pancreatic cancer (so-called “reverse cau-
sality”). Pancreatic cancer might induce a diabetic status 
because of  impaired pancreatic beta cells. In vitro studies 
show that blockage of  insulin receptors and impaired in-
sulin action and glucose transport in a model of  pancre-
atic cancer led to insulin resistance[77]. However, the new 
onset of  pancreatic cancer induced DM depends on the 
peripheral insulin resistance rather than on the impaired 
pancreatic beta cells. On the other hand, in patients with 
T2DM exocrine pancreatic cells are exposed to very high 
insulin levels because of  their proximity to insulin secret-
ing islets. Insulin stimulates the growth of  cancer cells. 
Thus, hyperinsulinemia might account for the risk of  de-
veloping pancreatic cancer in T2DM.

Prostate cancer: Prostate cancer risk appears to de-
crease in patients with diabetes. An inverse association 
was observed between diabetes and risk of  prostate can-
cer in the studies from the United States but not in the 
studies from other countries, as shown by an updated 
meta-analysis[78]. The protective effect of  DM was also 
observed in different grades or stages of  prostate cancer 
in another meta-analysis[79]. One possible explanation is 
that low testosterone levels have been shown in diabetic 
men. The conversion of  testosterone to dihydrotestoster-
one promotes prostate cell growth[80].

Other cancers in diabetes: A 20% increased gastric can-
cer risk in diabetic patients was found in a meta-analysis. 
A positive association was observed in female diabetic pa-
tients, whereas it was not the case in diabetic men[81]. The 
IGF/IGF-IR axis interacts with the vascular endothelial 
growth factor/vascular endothelial growth factor receptor 
system in gastrointestinal malignancies[82,83]. It is also pos-
sible that reactive oxygen-dependent DNA damage fur-
ther enhances the effect of  Helicobacter pylori on epithelial 
cell proliferation[84]. A meta-analysis of  large prospective 
cohort studies has shown a moderate increase of  non-
Hodgkin’s lymphoma in diabetic patients, whereas strati-
fied analysis by gender shows no significance based on the 
studies with reported cancer incidence by gender[85]. The 
immune dysfunction related to impaired neutrophil activ-
ity and abnormalities in cellular and humoral immunity in 
diabetes may contribute to cancer development[86].

MORTALITY
A meta-analysis suggests that preexisting diabetes is as-

and cirrhosis are more frequent among diabetic patients 
and are well known risk factors for HCC. Insulin resis-
tance stimulates the release of  multiple pro-inflammatory 
cytokines and consequently promotes the development 
of  hepatic steatosis and inflammation and subsequent 
cancer in the liver[59]. A causal relationship was also re-
ported by Jee et al[60], who found that fasting glucose and 
liver cancer risk had a dose-responsive relationship. Be-
sides, T2DM-induced hyperglycemia induces the release 
of  TNF-α and IL-6 in patients with hepatic steatosis and 
enhances the pathogenesis of  cancer[61].

Colorectal cancer: A meta-analysis comprising 30 co-
hort studies showed that diabetes was associated with an 
increase in the risk of  colorectal cancer, with a combined 
RR of  1.27 (1.21-1.34). This association was consistent 
for both men and women[62]. Our previous retrospective 
cohort study showed that a significant association of  
diabetes was found with colon cancer and not with rectal 
cancer[63]. This finding indicated that there was a subsite 
specific association of  T2DM with colorectal cancer. 
General factors like hyperinsulinemia and IGF-1 have 
contributed to intramucosal adenocarcinomas. Diabetic 
patients have slower bowel peristalsis and more common 
constipation and thus increased exposure to bowel toxins 
(i.e., elevated concentrations of  fecal bile acids) and po-
tential carcinogens[64]. Animal models have demonstrated 
that increased concentrations of  fecal bile acids could 
induce colorectal carcinogenesis[64,65].

Breast and other female cancers: A meta-analysis in-
cluding 20 cohort studies found an association between 
diabetes and breast cancer with a summary RR of  1.23 
(1.12-1.34)[66]. A meta-analysis including 15 cohort studies 
reported an increased risk [RR = 1.81 (1.38-2.37)] of  en-
dometrial cancer in diabetic women[67]. Hyperinsulinemia 
could increase the levels of  bioactive estrogens by reduc-
ing the concentration of  circulating sex hormone binding 
protein in diabetic women. It is well known that bioactive 
estrogens are the risk factors for malignancies of  female 
reproductive organs[68,69]. Increased bioactive estrogen will 
stimulate the proliferation of  breast and endometrial cells 
and the inhibition of  apoptosis to increase cancer risk.

Kidney and bladder cancers: A meta-analysis including 
eleven cohort studies showed that diabetes was signifi-
cantly associated with an increased risk of  kidney cancer 
[RR = 1.39 (1.09-1.78)]. The association was slightly 
stronger in women [RR = 1.47 (1.18-1.83)] than in men 
[RR = 1.28 (1.10-1.48)][70]. Hypertension and late stage 
renal disease, two common comorbidities of  DM, con-
tribute to the increased incidence of  kidney cancer[71,72]. 
Impaired renal function results in higher circulating levels 
of  carcinogens and toxins and immune inhibition and 
thereby renders the kidney susceptible to carcinogens 
and tumor growth. Findings from a meta-analysis of  29 
cohort studies suggest that individuals with DM display 
an increase in the risk of  bladder cancer [RR = 1.29 
(1.08-1.54)]. The positive association is only observed 
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sociated with a higher risk of  all-cause long term cancer 
mortality compared with non-diabetic individuals HR 
= 1.41 (1.28-1.55)[87]. Mortality among diabetes was sig-
nificantly increased for liver, breast, and bladder cancers, 
with pooled RRs of  1.56 (1.30-1.87)[56], 1.38 (1.20-1.58)[66], 
and 1.33 (1.14-1.55)[73], respectively. Similar but mild re-
sults are also seen in gastric cancer[88] and colorectal can-
cer[62]; with 29% and 20% increased all-cause mortalities, 
respectively (Table 2). Non-significance is found for the 
cancers of  the pancreas[87], prostate[87], kidney[70], endome-
trium[67], and non-Hodgkin’s lymphoma[89] (Table 2).

Several possible explanations might elucidate the in-
creased risk of  cancer death in DM. Impaired immune 
function and pro-inflammatory condition in diabetes may 
make the cancer more aggressive, favor cancer growth by 
making host organism less resistant to cancer progres-
sion, and strengthen the metastatic potential of  cancer. 
Hyperglycemia may be an important risk factor. There is 
evidence that poor glycemic controls can lead to poorer 
outcomes. Survival rates in cancer are decreasing linearly 
with declining glycemic controls[90]. Diabetic patients may 
have a worse response to chemotherapy with a higher oc-
currence of  adverse effects compared with non-diabetic 
individuals.

Diabetes patients are more often poor candidates 
for surgery. Preexisting diabetes was associated with in-
creased odds of  postoperative mortality across all cancer 
types [OR = 1.51 (1.13-2.02)][91].

IMPLICATIONS FOR MEDICAL PRACTICE
Cancer screening is required for patients with 
preexisting diabetes
As shown by the above studies, patients with DM have 
a higher risk of  developing certain types of  cancer. A 
healthy diet, physical activity, and weight management 
could decrease the risk and improve outcomes of  DM 
and some types of  cancer. This was supported by a con-
sensus report of  the American Diabetes Association 
and the American Cancer Society[2]. In order to improve 
the prognosis, early screening of  DM-related cancers is 
important for T2DM patients. Cancer screening tests of  
proven benefit for malignancies (breast, colon, endome-
trial cancer, etc.) in at-risk individuals/populations should 

begin relatively earlier than the general population. Future 
cancer screenings should be based on current existing 
recommendations. However, specific DM-related cancer 
screening recommendations remain to be made.

The impact of anti-diabetic treatments on cancer risk
The major classes of  DM drugs function to replace cir-
culating insulin and reduce hyperglycemia by different 
mechanisms or to reduce the associated obesity[92]. Insulin 
sensitizers, including metformin and TZDs, are oral anti-
diabetic drugs that decrease insulin resistance by altering 
signaling through the AKT/mTOR pathway[93,94].

Metformin has been used with confidence in the 
treatment of  T2DM[95]. Emerging evidence from research 
on humans and from the preclinical setting suggests that 
metformin has an anti-cancer effect. A meta-analysis of  
17 randomized controlled trials showed a clinically signifi-
cant 39% decreased risk of  cancer with metformin use in 
patients with or at risk for diabetes, compared to no use 
of  metformin[96]. Metformin can decrease cell prolifera-
tion and induce apoptosis in certain cancer cell lines[97,98]. 
In a recent retrospective cohort study, metformin use is 
not associated with improved survival in subjects with ad-
vanced pancreatic cancer[99]. Whereas metformin use was 
also reported to be associated with a lower risk of  colon, 
liver, pancreas, or breast cancers, it was not associated 
with the risk of  prostate cancer[100,101]. In a meta-analysis 
by Colmers et al[102], TZD-based therapy has been associ-
ated with a potential cancer risk, primarily pioglitazone 
with bladder cancer, as well as a protective role in breast, 
lung, and colorectal cancers. In combination, the majority 
of  studies showed that metformin therapy decreases and 
insulin and insulin secretagogues slightly increase the risk 
of  certain cancers in T2DM. Nonetheless, it is premature 
to prescribe metformin and TZDs solely for those as yet 
unproven indications for cancers.

Managing diabetic patients with cancer
Managing diabetes can be a daunting task for patients 
with cancer. Diabetes may negatively impact both cancer 
risk and outcomes of  cancer treatment. It is clear that 
comorbidities may play a role in clinical outcomes in 
patients with cancer. Clinicians who treat cancer patients 
with T2DM should pay more attention to comorbidi-
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Table 2  Pooled HRs and 95%CI of all-cause mortality in cancer patients with and without preexisting diabetes mellitus

Cancer Ref. No. of cohort studies HR (95%CI) HR (95%CI) male HR (95%CI) female

Pancreas Barone et al[87], 2008   4 1.09 (0.70-1.69) NA NA
Liver Wang et al[56], 2012   3 1.56 (1.30-1.87) 1.84 (1.34-2.51) 1.31 (1.06-1.61)
Breast De Bruijn et al[66], 2013 20 1.38 (1.20-1.58) NA 1.38 (1.20-1.58)
Endometrium Zhang et al[67], 2013   6 1.23 (0.80-1.90) NA 1.23 (0.80-1.90)
Colon-rectum Jiang et al[62], 2011 11 1.20 (1.03-1.40) 1.26 (1.04-1.52) 1.18 (0.98-1.41)
Kidney Bao et al[70], 2013   8 1.12 (0.99-1.20) NA NA
Bladder Zhu et al[73], 2013 11 1.33 (1.14-1.55)  1.54 (1.30-1.82)1  1.50 (1.05-2.14)1

Prostate Barone et al[87], 2008   3 1.51 (0.94-2.43) 1.51 (0.94-2.43) NA
Gastric Tian et al[88], 2012 NA 1.29 (1.04-1.59) NA NA
Non-Hodgkin’s lymphoma Lin et al[89], 2007   1 1.33 (0.61-2.90) NA NA

1Based on the studies reported by gender. NA: Unavailable.
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ties. Thus, rigorous and multifactorial approaches should 
be adopted to control diabetes for patients undergoing 
treatment for malignancies. Poor glycemic control in-
creases morbidity and mortality in patients with cancer. 
Therefore, hyperglycemia management in patients with 
cancer is important. Monitoring symptoms of  both hy-
perglycemia and hypoglycemia is necessary. DM patients 
with cancer and their family members should monitor 
these symptoms and render suitable medical treatment 
once these symptoms occur. For hospitalized patients 
with acute concurrent complications, aggressive glycemic 
management should be taken to improve the prognosis.

CONCLUSION
Previous evidence provides strong support for an in-
crease of  both cancer risk and mortality in diabetic pa-
tients and more evidence for certain site-specific cancers. 
The molecular mechanisms for the association between 
diabetes and cancer development are still uncovered. 
As underlined in this review, mechanisms on hormonal 
(insulin and IGF-1), inflammatory and metabolic (hyper-
glycemia) characteristics have been proposed to elucidate 
this association. Guidelines specific for diabetic patients 
should include both treatment in medical practices and 
mass screening for specific cancers according to the risk 
factor profile of  each patient.
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Abstract
Obesity, sleep apnea, diabetes and cardiovascular 
diseases are some of the most common diseases en-
countered by the worldwide population, with high so-
cial and economic burdens. Significant emphasis has 
been placed on obtaining blood pressure, body mass 
index, and placing importance on screening for signs 
and symptoms pointing towards cardiovascular disease. 
Symptoms related to sleep, or screening for sleep ap-
nea has been overlooked by cardiac, diabetic, pulmo-
nary and general medicine clinics despite recommenda-
tions for screening by several societies. In recent years, 
there is mounting data where obesity and obstructive 
sleep apnea sit at the epicenter and its control can lead 
to improvement and prevention of diabetes and cardio-
vascular complications. This editorial raises questions 
as to why obstructive sleep apnea screening should be 
included as yet another vital sign during patient initial 
inpatient or outpatient visit.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Obstructive sleep apnea; Diabetes; Ob-
structive sleep apnea screening; Obstructive sleep ap-
nea; Cardiovascular complications

Core tip: Obesity, diabetes, cardiovascular disease and 
obstructive sleep apnea are one of the most common 
chronic diseases involving population globally. Efforts 
have been directed towards prevention and public edu-
cation about the disease process of each of this condi-
tion separately. Though these diseases are interlinked, 
but educational efforts are failing short to address them 
together.

Surani SR. Diabetes, sleep apnea, obesity and cardiovascular 
disease: Why not address them together? World J Diabetes 
2014; 5(3): 381-384  Available from: URL: http://www.wjgnet.
com/1948-9358/full/v5/i3/381.htm  DOI: http://dx.doi.org/10.4239/
wjd.v5.i3.381

OBSTRUCTIVE SLEEP APNEA
Should obstructive sleep apnea (OSA) screening be in-
cluded as yet another vital sign during the patient first 
visit? Obesity and metabolic syndromes are emerging as 
major public health issues. One point one billion adults 
population worldwide are overweight, and approximately 
312 million of  them are obese[1]. Obesity is highly preva-
lent in United States but the prevalence is increasing in 
China, Southeast Asia, Middle East and Pacific Island[2]. 
The increasing incidence of  childhood obesity and its as-
sociation with the cardiovascular disease is also becoming 
a major public health concern[3,4]. The number of  indi-
viduals inflicted with diabetes worldwide is approximately 
285 million, but is expected to increase to 439 million by 
2030[5]. 17 million deaths out of  57 million total world-
wide deaths are attributable to cardiovascular disease[6]. 
The prevalence of  OSA is between 4%-7% and increas-
ing[7].

Obesity and OSA seem to be an epicenter for most 
of  the chronic disease catastrophe. OSA is one of  the 
most common diseases, with a high incidence and preva-
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lence rate that parallels with increasing obesity globally. 
OSA can be seen in non-obese patients with craniofacial 
abnormality and children with enlarged tonsils and ad-
enoids too[8-10]. The growing prevalence of  obesity and 
the increasing population body mass index has created 
major public health challenges[11]. Obstructive sleep apnea 
has been independently linked with hypertension, atrial 
fibrillation, cardiac disease, worsening of  diabetes, insulin 
resistance, peri-operative and postoperative complications 
and coronary artery disease (CAD), to name the few[12-16]. 
In other words, the data links obstructive sleep apnea to 
a majority of  chronic illnesses. In addition to the illness, 
untreated OSA increases the health care utilization, im-
pairs work place efficiency, occupational injuries and in-
crease healthcare utilization leading to billions of  dollars 
in economic burden worldwide[17]. OSA if  recognized can 
be adequately treated by an armamentarium of  several 
different treatment modalities. Despite that 85% of  the 
patients with clinically significant and treatable OSA have 
never been diagnosed, in other word the data has not 
made to the bedside[18].

OSA involves partial or complete collapse of  the up-
per airway, despite respiratory efforts alternating with 
normal breathing. It affects 4%-7% of  the population[7] 
and its prevalence in patients with cardiovascular disease 
is very high. Apnea is defined as a decline in peak signal 
excursion by ≥ 90% of  their pre-event baseline for ≥ 10 
s. Hypopnea is defined as a drop in the signal excursion 
by ≥ 30% of  their pre-event baseline for ≥ 10% and 
≥ 3% arterial oxygen desaturation or accompanied by 
an arousal[19]. OSA severity is based on Apnea-hypopnea 
index/h (AHI/h) It can be divided into mild OSA (AHI 
5-15/h), Moderate OSA (AHI 15-30/h), and severe OSA 
(AHI > 30/h). The pathophysiology of  obesity and OSA 
is intimately linked together. Obesity is a major risk fac-
tor for OSA. In obese patients there is an enlargement 
of  soft tissue structures in the upper airway, leading to 
airway obstruction, especially during rapid eye movement 
sleep when there is atonia. In addition to obesity, there is 

an increase in fat deposition under the mandible, macro-
glossia, and palate, which can then lead to narrowing of  
airway and lead to apnea and hypopnea[20,21]. Obesity has 
been linked as the central and reversible cardiovascular 
risk factor that positively influences OSA, diabetes mel-
litus (DM), metabolic syndrome, hypertension, and lipid 
metabolism[17]. Children are not immune to the obesity, 
as the prevalence of  obesity among children aged 2-5 is 
10% and 6-19 years old is 15%[22].

OSA affects an estimated 15 million adult Americans, 
especially patients with hypertension, Atrial fibrillation 
(A-Fib), CAD, and congestive heart failure (CHF) where 
it is pervasive and levels are very high[23]. Additionally, 
OSA treatment has also been shown to improve atrial 
fibrillation incidence, coronary stent reclogging, and im-
provement of  CHF and improvement in blood glucose 
and insulin resistance[24-29]. Recent evidence directly links 
OSA and obesity to CAD, heart failure, cardiomyopathy, 
A-Fib and DM and they are interrelated too as shown 
in Figure 1. The rise of  obesity and DM has been an 
increased threat to the health of  the global population, 
which has been catalyzed and compounded by the in-
creased occurrence of  OSA. In a recent study by Sleep 
AHEAD Research Group, OSA (AHI ≥ 5) was found to 
be in 86% of  the population, whereas the pervasiveness 
of  all forms of  cardiovascular disease was 14%[30]. On the 
other hand, individuals who have DM and metabolic syn-
drome have an increased risk of  cardiovascular disease 
and stroke[31].

The screening for OSA for commercial drivers has 
been suggested by several societies as American College 
of  Chest Physician, American College of  Occupational 
and Environmental Medicine, and National Sleep Foun-
dation. The International Diabetes federation also rec-
ommends screening patients for possible OSA[32]. This 
screening among the commercial drivers has been suc-
cessfully implemented, on the other hand, peri-operative 
screening has been suggested but not implemented in 
majority of  the hospitals despite the availability of  simple 
screening tools as STOP-Bang Questionnaire[33], Berlin 
Questionnaire[34], neck size, airway, morbidity, Epworth 
Sleepiness Score, snoring (NAMES) criteria, all with the 
sensitivity ranging from 80% to 86%[35].

This data has been in literature now for several years, 
indicating the associations of  OSA with almost any 
disease as glaucoma, end stage renal disease, chronic ob-
structive pulmonary disease, polycystic ovarian syndrome, 
metabolic syndrome, cardiovascular disease, stroke, de-
pression, obesity and DM. Moreover, the treatment has 
led to improvements in the underlying condition[36-38]. 
The screening test carries high sensitivity, but also has 
a low specificity. This can result in a plethora of  false 
positive diagnosis and may increase the health care cost. 
There is high relationship between OSA, hypertension, 
cerebrovascular disease, CAD and A-Fib. Early diagno-
sis and treatment of  OSA will help in preventing the 
increase morbidity and mortality associated with those 
conditions. Studies have shown the improvement in ejec-
tion fraction, carotid intimal thickening and benefits in 

Surani SR. OSA, diabetes, CAD and obesity

382 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

CAD

HTN

CVA

DM

Obesity

M
etabolic

syndrom
e

Atrial 

fibrillation

OSA

Figure 1  Showing the relationship of obstructive sleep apnea to cardio-
vascular diseases, diabetes, metabolic syndrome and obesity. CAD: Coro-
nary artery disease; HTN: Hypertension; CVA: Cerebrovascular accident; DM: 
Diabetes mellitus; OSA: Obstructive sleep apnea.



coronary artery disease, maintenance of  sinus rhythm 
from A-Fib after cardioversion and improvement in insu-
lin resistance. Moreover untreated OSA is also associated 
with increased risk of  death[39-46]. The question arises, if  
it is the prime time to push for OSA screening for every 
patient walking in outpatient clinic or hospital? Or do we 
have to adjust the cutoff  of  points of  our screening test 
so we can compromise with a decrease in sensitivity to 
have better specificity to avoid excess healthcare cost as a 
result of  high false positive tests. It is the opinion of  the 
author that Stop-Bang questionnaire, Berlin or NAMES 
questionnaire can be utilized as the screening tool. In the 
presence of  symptoms, patient should undergo formal 
sleep study with home sleep study or overnight in lab 
polysomnography[33-35]. Regardless, one thing is clear: that 
every physician, nurse and midlevel provider needs to ed-
ucate patients on risk prevention and education regarding 
the causes, signs and symptoms of  diabetes, sleep apnea, 
obesity prevention and cardiovascular disease prevention. 
It is about time that health care providers take the re-
sponsibility of  preventative education of  such diseases as 
a package rather than fragmentation of  education of  dia-
betes in diabetic clinics, sleep apnea in sleep clinics, and 
cardiovascular disease in heart clinics, as these diseases 
are interrelated. I will leave the debate open as to if  it is 
about time to push for screening of  OSA as one of  the 
vital signs on every patient initial visit.
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Abstract
Protein kinase C-β (PKCβ), a member of the lipid-
activated serine/threonine PKC family, has been impli-
cated in a wide range of important cellular processes. 
Very recently, the novel role of PKCβ in the regulation 
of triglyceride homeostasis via  regulating mitochondrial 
function has been explored. In this review, I aim to 
provide an overview of PKCβ regarding regulation by 
lipids and recently gained knowledge on its role in en-
ergy homeostasis. Alterations in adipose PKCβ expres-
sion have been shown to be crucial for diet-induced 
obesity and related metabolic abnormalities. High-fat 
diet is shown to induce PKCβ expression in white adi-
pose tissue in an isoform- and tissue-specific manner. 
Genetically manipulated mice devoid of PKCβ are lean 
with increased oxygen consumption and are resistant 
to high-fat diet-induced obesity and hepatic steatosis 
with improved insulin sensitivity. Available data support 
the model in which PKCβ functions as a “diet-sensitive” 
metabolic sensor whose induction in adipose tissue by 
high-fat diet is among the initiating event disrupting mi-
tochondrial homeostasis via  intersecting with p66Shc sig-
naling to amplify adipose dysfunction and have systemic 
consequences. Alterations in PKCβ expression and/or 

function may have important implications in health and 
disease and warrants a detailed investigation into the 
downstream target genes and the underlying mecha-
nisms involved. Development of drugs that target the 
PKCβ pathway and identification of miRs specifically 
controlling PKCβ expression may lead to novel thera-
peutic options for treating age-related metabolic dis-
ease including fatty liver, obesity and type 2 diabetes.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: High-fat diet; Signal transduction; Obesity; 
Mitochondrial function; Insulin resistance

Core tip: Nutrition has important long-term conseque-
nces for health. It is one of the lifestyle factors that 
contribute to the development and progression of obe-
sity (increased fat accumulation), diabetes, and cardio-
vascular diseases. In fact, obesity rates are increasing 
dramatically worldwide and obesity amplifies the risk of 
developing various age-related chronic diseases, such 
as type 2 diabetes and cardiovascular disease. The pre-
vention or management of chronic diseases is a global 
priority since they constitute a serious strain on health 
care systems and account for more than half of the 
deaths worldwide. Although correct lifestyle remains 
the mainstream solution to this problem, pharmacologi-
cal strategies are also being actively seeked. Current 
antiobesity strategies have not controlled increasing 
epidemic of obesity and obesity-related disorders. We 
hope that a better knowledge of the molecular play-
ers and biochemical mechanism linking dietary fat to 
fat accumulation and development of glucose intoler-
ance are critically needed. This review examines a way 
of metabolizing dietary fat into heat instead of storing 
them as fat, and the possibility that the “browning” of 
white fat is regulated by a diet-inducible kinase Protein 
kinase C-β (PKCβ) may help us explore new transla-
tional approaches to combat obesity, improve insulin 
sensitivity and potentially increase longevity. Finally, 
attenuation of inflammation in fat by PKCβ inhibition 
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could have profound clinical consequences because of 
the large size of the fat organ and its central metabolic 
role.

Mehta KD. Emerging role of protein kinase C in energy homeo-
stasis: A brief overview. World J Diabetes 2014; 5(3): 385-392  
Available from: URL: http://www.wjgnet.com/1948-9358/full/
v5/i3/385.htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.385

INTRODUCTION
Protein kinase C (PKC) family is the largest serine/thre-
onine-specific kinase family known to comprise approxi-
mately 2% of  the human kinome[1]. PKCs are broadly 
conserved in eukaryotes, ranging in complexity from a 
single isoform in budding yeast (Saccharomyces cerevi-
siae) to 5 isoforms in Drosophila melanogaste and 12 in 
mammals[2,3]. Three distinct subfamilies can be identified 
according to their dependency on three combinations of  
activators: conventional (α, βⅠ, βⅡ, γ) require phospha-
tidylserine, diacylglycerol, and Ca2+; novel (δ, ε, η, θ) need 
phosphatidylserine (PS) and DAG but not Ca2+; atypical 
PKCs (λ/l, ζ) are insensitive to both DAG and Ca2+. PKC 
isoforms differ in primary structure, tissue distribution, 
subcellular localization, in vitro mode of  action, response 
to extracellular signals, and substrate specificity. The role 
of  individual PKC isoform is thought to be determined 
through sub isoform-specific activation processes or iso-
form-specific substrates in the region downstream of  the 
PKC pathway[4]. Specific role of  each isoform is begin-
ning to be understood using isoform-specific transgenic 
and knockout mouse models. PKCs have been extensively 
discussed in the literature, and the aim of  this review is to 
focus on the functions of  PKCβ in the context of  obesity 
and related metabolic syndromes.

REGULATION OF PKCβ ACTIVITY AND 
EXPRESSION BY LIPIDS
PKCβ is unique among all PKC isoforms in that a single 
gene locus encodes two proteins, PKCβⅠ and PKCβⅡ, 
which are generated by alternative splicing of  C-terminal 
exons and are shown to be physiologically relevant[5]. 
The difference between these two isoforms resides in the 
C-terminal V5 domains, which still exhibit a moderate 
homology (45%) at their amino acid sequences[6,7]. PKCβ 
is highly expressed in the brain and adipose tissue, and 
widely expressed at a lower level in multiple tissues in-
cluding liver, kidney, and skeletal muscle. Analysis of  the 
primary structure of  PKCβ reveals the presence of  four 
domains conserved across PKC isoforms (C1-C4) and 
five variable domains that are divergent (V1-V5). Two 
functional domains have been described: an amino ter-
minal regulatory domain and a carboxyl terminal catalytic 
domain. The regulatory domain (V1-V3) contains the so-
called pseudosubstrate site which is thought to interact 

with the catalytic domain to retain PKCβ in an inactive 
conformation. The regulatory domain also contains sites 
for the interaction of  PKC with PS, DAG/phorbol ester, 
and Ca2+. The Ca2+ dependency is mediated by the C2 
region, while phorbol-ester binding requires the presence 
of  two cysteine-rich zinc finger regions within the C1 
domain. The catalytic domain contains two conserved 
regions, C3 and C4, which are essential for the kinase 
activity and the binding of  adenosine-5’-triphosphate 
(ATP)/substrate (Figure 1).

In addition to the above specific inputs, other regu-
latory processes influence the function of  PKCβ, in-
cluding phosphorylation and interaction with specific 
binding partners. PKCβ is processed by three distinct 
phosphorylation events before it is competent to re-
spond to the coactivators and is phosphorylated at three 
conserved serine/threonine residues in the C-terminal 
domain[8]. Phosphorylation at the activation loop (Thr500) 
is generally proposed to be first and to be followed by 
two ordered phosphorylations at the C-terminal tail, the 
turn motif  (Thr641 in PKCβⅡ) and then the hydropho-
bic motif  (Ser660 in PKCβⅡ). The phosphorylation of  
the turn motif  depends on the mTORC2 complex; this 
phosphorylation triggers autophosphorylation of  the hy-
drophobic motif[9,10]. The fully-phosphorylated “mature” 
PKCβ is in a closed conformation in which the pseu-
dosubstrate occupies the substrate-binding cavity, thus 
autoinhibiting the kinase. Signals that cause hydrolysis 
of  phosphatidylinositol-4,5-bisphosphate result in trans-
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Figure 1  Domain composition of protein kinase C-β and its regulation at 
the transcriptional and posttranscriptional levels. A: Membrane-targeting 
modules (C1 and C2), pleckstrin homology domain, the pseudosubstrate re-
gion, the kinase core and the C-terminal tail; B: Schematic representation of 
promoter structure of protein kinase C-β gene. Approximate locations of known 
regulatory regions are indicated. ATP: Adenosine-5’-triphosphate; PHLPP: PH 
domain and leucine rich repeat protein phosphatases; PDK-1: 3-phosphoinosit-
ide-dependent protein kinase 1.



location of  PKCβ to the membrane by a low-affinity 
interaction where it binds DAG via the C1 domain. En-
gaging both the C1 and C2 domains on the membrane 
results in a high-affinity membrane interaction that 
results in release of  the pseudosubstrate, allowing down-
stream signaling. The membrane-bound conformation 
is highly phosphatase-sensitive, so that prolonged mem-
brane binding results in dephosphorylation of  PKCβ 
by pleckstrin homology domain Leucine-rich repeat 
protein phosphatase and PP2A, and subsequent degra-
dation[11]. Binding of  Hsp70 to the dephosphorylated 
turn motif  on the C-terminus stabilizes PKCβ, allowing 
it to become rephosphorylated and reenter the pool of  
signaling-competent PKC. PKCβ that is not rescued by 
hsp70 is ubiquitinated by E3 ligases such as the recently 
discovered RINCK and degraded[12].

PKCβ is also responsive to oxidative stress[13-15]. Why 
is PKCβ sensitive to oxidative stress? In the PKCβ struc-
ture, two pairs of  zinc fingers are found within the regu-
latory domain. They are sites of  DAG and phorbol ester 
binding. Each zinc finger is formed by a structure that is 
composed of  six cysteine residues and two zinc atoms. 
The high level of  cysteine residues renders the regulatory 
domain susceptible to redox regulation[16,17]. The oxidant 
destroys the zinc finger conformation, and the autoinhi-
bition is relieved, resulting in a PKCβ form that is cata-
lytically active in the absence of  Ca2+ or phospholipids[18].

Besides the lipid activation at the post-transcriptional 
level, PKCβ expression also fluctuates in response to 
high-fat diet intake. It is shown that feeding high-fat diet 
(HFD) for 12 wk induces adipose PKCβ expression in 
an isoform and tissue-specific manner[19]. The molecular 
mechanism(s) underlying transcription induction have 
yet to be elucidated but previous studies have cloned and 
sequenced PKCβ promoter[20-22]. A putative 5’-promoter 
region for PKCβ is identified and suggested that there is 
heterogeneity in the active promoter region dependent 
upon the cellular context. Analysis of  the 5’-promoter 
of  PRKCB revealed that a region between -110 bp and 
-48 bp contains two Sp1 binding sites which are im-
portant for basal expression of  PKCβ gene. In addition 
two PROX1 sites are also present 3’ to Sp1 sites and are 
involved in inhibiting Sp1-mediated basal transcription 
of  PKCβ promoter[23]. In fact, an inverse relationship be-
tween PROX1 and PKCβ levels exist in colon cancer cell 
lines. It was also found that treatment with a demethylat-
ing agent, 5-aza-2’-deoxycytidine, restored PKCβ mRNA 
expression in PROX1-expressing cells, suggesting that 
the 5’-promoter of  PKCβ is methylated in these cells[23]. 
Actually, a CpG island in this region, in particular a CpG 
site within the distal Sp1 site is identified in this study, 
leading to downregulation of  PKCβ transcription. Hy-
permethylation of  PROX1 sites inhibits direct Sp1 bind-
ing to this region in PROX1 overexpressing cells. Finally, 
previous studies have also identified a repressor region 
located upstream of  -110 bp in the PKCβ promoter and 
the identity of  the nuclear factor(s) binding to this region 
has not been characterized.

NOVEL ROLE OF PKCβ IN LIPID 
HOMEOSTASIS
A significant conceptual advance in our understanding of  
the importance of  PKCβ signaling in obesity has come 
from realization that mice deficient in PKCβ express 
higher levels of  genes that regulate fatty acid oxidation 
and proteins involved in energy dissipation, highlighting 
its role as a corepressor and in controlling the balance 
between energy consumption and energy expenditure[24]. 
On the contrary, genes involved in FA synthesis and glu-
coneogenesis seem to be downregulated in the absence 
of  PKCβ[25,26]. As a consequence, PKCβ mice are lean, 
with a significant reduction of  body fat and body weight 
compared to WT mice and are resistant to HFD-induced 
obesity and hepatic steatosis so that these mice maintain 
their insulin sensitivity[19]. Moreover, PKCβ levels are 
shown to be elevated in adipose tissue of  leptin-deficient 
(ob/ob) mice and deletion of  PKCβ in ob/ob mice at-
tenuates obesity syndrome of  these mice[26]. An impor-
tant mechanistic insight is the revelation that in PKCβ-
deficient mice white adipose tissue (WAT) express genes 
characteristic of  BAT including peroxisome proliferator-
activated receptor-gamma coactivator-1alpha (PGC-1α), 
fatty acid transporter carnitine palmitoyltransferase, and 
uncoupling protein-1 (UCP-1). Targeted disruption in 
mice of  several genes directly involved in energy metabo-
lism and fat accumulation also leads to lean phenotype 
with a marked increase in UCP-1 expression in adipo-
cytes, particularly in white fat depots[27-29]. Thus total en-
ergy consumption is increased significantly in PKCβ-null 
mice, presumably as a consequence of  energy dissipation 
in WAT resulting from the expression of  UCP-1 and 
increased mitochondrial activity. The ability of  white and 
brown adipocytes in each depot to reversibly switch into 
one another has been reported, but the extent to which 
this occurs and the precise mechanisms involved are not 
fully understood. The search for regulators that could 
mediate conversion of  white adipocytes (energy storing) 
into brown adipocytes (energy consuming) has led to the 
identification of  PGC-1α, FOXC2 and positive regula-
tory domain-containing 16 as transcriptional regulators 
that have been found to promote a brown fat genetic 
program, while retinoblastoma protein and RIP140 have 
been described to favor a white adipose phenotype[27-30]. 
Another important aspect of  these studies relates to 
possible connection between PKCβ and β-adrenergic 
receptor levels in WAT. Results presented argue strongly 
in favor of  an inverse relationship between PKCβ and 
β3-adrenergic receptor expression[26]. The proposed re-
lationship is consistent with earlier reports showing that 
sustained PKC activation suppressed β-ARs expression 
at the transcriptional level[31-33]. The net consequence of  
PKCβ-mediated adipose dysfunction could have pro-
found clinical consequences because of  the large size of  
the fat organ and its central metabolic role. Interestingly, 
in agreement with the above animal studies, adipose 
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diabetes and cardiovascular diseases[47]. Moreover, oxida-
tive stress induced by ROS stimulates fat tissue develop-
ment both in vitro and in vivo. H2O2-induced oxidative 
stress is shown to facilitate the differentiation of  preadi-
pocytes into adipocytes by accelerating mitotic clonal ex-
pansion[48]. Antioxidants such as flavonoids and N-acetyl-
cysteine inhibit both adipogenic transcription factors 
C/EBP-β and PPAR-γ expression, as well as adipogenic 
differentiation in 3T3-L1 preadipocytes[49,50]. N-acetyl cys-
teine (NAC) was also shown to reduce ROS levels and fat 
accumulation in a concentration-dependent manner[50]. 
Moreover, animals on a HFD with the antioxidant NAC 
exhibited lower visceral fat and body weight[51]. Finally, 
ROS scavenging is associated with fat reduction in obese 
Zucker rats[52].

Recent studies have highlighted a novel, unexpected 
signaling pathway bridging the oxidative challenge of  
a cell to the activation of  PKCβ/p66Shc-controlled mi-
tochondrial lifespan[53,54]. PKCβ activated by oxidative 
stress is shown to be required for phosphorylation of  
the Ser36 of  p66Shc and the effect of  PKCβ overexpres-
sion on mitochondrial Ca2+ signaling was not observed 
in p66Shc-/- cells. Importantly, the mitochondrial conse-
quences of  hydrogen peroxide are blocked by hispidine, 
a specific PKCβ inhibitor. The pathway emerging from 
these studies is the following: during oxidative stress 
PKCβ is activated and induces p66Shc phosphorylation, 
thus allowing p66Shc to be recognized by Pin1, isomer-
ised and imported into mitochondria after dephosphory-
lation by type 2 protein serine/threonine phosphatase. 
The p66Shc protein translocated into the appropriate cell 
domain, can exert the oxidoreductase activity, generating 
H2O2 and inducing the opening of  MPTP. This event in 
turn perturbs mitochondria structure and function. Iden-
tification of  a novel signaling mechanism, which is op-
erative in the pathophysiological condition of  oxidative 
stress, may open new possibilities for pharmacologically 
addressing the process of  organ deterioration during 
aging. The above studies are among the first to dissect 
the downstream target genes and regulatory properties 
of  the PKCβ protein, and therefore make an important 
contribution to our understanding of  the molecular 
basis to the lean phenotype exhibited by PKCβ-/- mice. 
Based on a very recent demonstration that PKCβ/p66Shc 
mitochondrial axis inhibits autophagy[55] and the evolv-
ing role of  autophagy in energy homeostasis[56-61], it is 
possible that a combination of  adipose PKCβ activation, 
mitochondrial dysfunction and insufficient autophagy 
may contribute to the development of  diet-induced 
obesity. In addition to mitochondrial effects, PKCβ is 
an upstream regulator of  NOX but this signaling axis 
actively produces superoxide across the membranes of  
neutrophils and phagosomes[62-65]. Accumulating data so 
far implicates mitochondria as the main source for regu-
lation of  autophagy by ROS production in adipocytes[66], 
whereas NOX contributes to activation of  selective, bac-
terial autophagy[67] (Figure 2).

Although biological function of  PKCβ in energy 

PKCβ activation is subsequently linked to obese side ef-
fects of  antipsychotic drugs in humans[34]. Moreover, in 
agreement with its role in energy homeostasis, PKCβ 
is shown to be required for adipocyte differentiation[35], 
PKCβ inhibition promotes insulin signaling in adipo-
cytes[36,37], and PKCβ promoter polymorphism is associ-
ated with insulin resistance in humans[38].

The role of  PKCβ in obesity is further supported by 
its potential involvement in angiogenesis. To ensure a suf-
ficient supply of  nutrients and oxygen and to transport 
fatty acids and adipokines, an extended microvasculature 
is mandatory for adipose tissue. Adipogenesis and angio-
genesis are two closely related processes during adipose 
tissue enlargement, as shown in animal studies and in 
vitro models[39,40]. As adipocyte hypertrophy endures, local 
adipose tissue hypoxia may occur due to hypoperfusion 
since the diameter of  fat cells overgrows the diffusion 
limit of  oxygen. As a result, hypoxia-inducible transcrip-
tion factors are expressed triggering the expression of  
angiogenic factors [vasuclar endothelial growth factor 
(VEGF), hepatocyte growth factor, plasminogen activa-
tor inhibitor-1]. In view of  role of  PKCβ/HuR in regu-
lating VEGF expression at the post-transcriptional level, 
simultaneous induction of  PKCβ is expected to promote 
VEGF expression[41,42].

Finally, specific overexpression of  a constitutively 
active PKCβⅡ mutant in mouse skeletal muscle demon-
strated that this splice variant of  PKCβ not only induces 
insulin resistance, but also affects the levels of  several 
genes involved in lipid metabolism[43]. Thus impairment 
in the expression of  PGC-1α, acyl CoA oxidase and 
hormone-sensitive lipase, but enhanced expression of  the 
lipogenic transcription factor sterol response element-
binding protein 1c in skeletal muscle, were associated 
with decreased lipid oxidation and increased intra-myo-
cellular lipid deposition. In addition to these direct effects 
in muscle, these animals showed defects in insulin action 
in the liver and brain, as well as hepatic lipid accumula-
tion similar to that seen in fat-fed animals.

POTENTIAL ROLE OF PKCβ IN 
MITOCHONDRIAL FUNCTION
Several studies have emphasized the association between 
enhanced mitochondria-derived H2O2 and insulin resis-
tance, particularly in the context of  excessive nutrient 
intake that results in metabolic imbalance[44-47]. Oxidative 
stress has also been described clinically, as well as in WAT 
of  many additional mouse models of  obesity, such as the 
KKAy and db/db mice. Systemic markers of  oxidative 
stress increase with adiposity, consistent with the role of  
reactive oxygen species (ROS) in the development of  
obesity-induced insulin resistance. Available data suggest 
that an increase in ROS significantly affects WAT biol-
ogy and leads to deregulated expression of  inflammatory 
cytokines such as tumor necrosis factor-α, interleukin-6, 
and macrophage chemoattractant protein-1, and insulin 
resistance, which could contribute to obesity-associated 
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homeostasis appears to be mostly linked with events 
occurring at the mitochondria, however, increasing 
evidence has implied a role for this kinase in nuclear 
functions, suggesting this may be a pathway to com-
municate signals generated at the plasma membrane to 
the nucleus. For example, Goss et al[68] first showed that 
PKCβ translocates to the nucleus at G2/M, concomitant 
with the phosphorylation of  lamin B1. Subsequently, 
a considerable number of  nuclear proteins have been 
identified which are in vivo and/or in vitro substrates 
for PKCβ. These proteins include: histone H3, DNA 
topoisomerase Ⅰ and Ⅱa, DNA polymerase α and β, cy-
clic AMP-response element-binding protein, retinoblasto-
ma protein, and vitamin D receptor[69-73]. It has even been 
shown that PKCβⅠ co-localizes with androgen receptor 
and lysine-specific demethylase 1 on target gene promot-
ers and phosphorylation of  histone H3 at threonine 6 
by PKCβⅠ is the key event that prevents lysine-specific 
demethylase 1 from demethylating histone H3 lysine 4[69]. 
Finally, activated PKCβ indirectly can affect other signal-
ing cascades, including PI3-kinase/Akt pathway, extracel-
lular signal-regulated kinase, and p38 pathway which can 
impact nuclear events[74-79]. It is thus clear that character-
ization of  PKCβ downstream signaling in the nucleus 
and its relevance to energy homeostasis is another facets 
that requires in-depth investigation.

The above findings are applicable to the pathogenesis 
of  obesity and type 2 diabetes since mitochondrial loss 
in WAT correlates with the development of  obesity and 
type 2 diabetes[80,81]. Indeed, mitochondrial DNA copy 
number, mitochondrial mass, and mitochondrial activity 
are all decreased in the white adipose tissue of  mouse 
models of  obesity, such as ob/ob and db/db mice[82,83]. 
Similarly in patients with insulin resistance, type 2 diabe-
tes, and severe obesity, the abundance of  mitochondria 
and the expression of  key genes pertinent to mitochon-
drial function are significantly reduced in white adipose 
tissue, in concert with decreased adipocyte oxygen con-
sumption rates and ATP production[84,85]. The mitochon-
drial dysfunction, which could impair substrate oxidation 

in adipose tissue, is thought to participate in metabolic 
impairment capacity, thereby accentuating the develop-
ment of  obesity and associated pathologies, such as type 
2 diabete. As a result, WAT mitochondria are emerging as 
highly attractive organelles for therapeutic interventions 
with the potential to impact upon systemic metabolism. 
Interestingly, the insulin-sensitizing effects of  thiazoli-
dinediones are closely matched by robust increases in 
adipose tissue mitochondrial biogenesis[86].

CONCLUSION
We have reviewed recent advances pertaining to the po-
tential role of  PKCβ in regulating energy homeostasis 
and contribution to the development of  metabolic syn-
drome. Evidence gathered recently point to an essential 
role for PKCβ in diet-induced obesity. As a signaling 
pathway, PKCβ is highly sensitive to changes in environ-
ment and fluctuations in lipid supply activate adipose 
PKCβ, which in turn appears to promote fat accumu-
lation via modulating mitochondrial function. A posi-
tive loop between oxidative stress and PKCβ/p66Shc is 
promising and may be the major mechanism underlying 
contribution of  PKCβ activation in generating oxidative 
stress observed in the obese state. The main gap in our 
understanding today lies in the specific, molecular and 
chemical mechanisms of  PKCβ-mediated energy homeo-
stasis. What are the mitochondrial and nuclear targets of  
PKCβ physiologically relevant to energy homeostasis? 
How is the dietary lipid signals transmitted to the PKCβ 
promoter? Is PKCβ regulatory signaling network dysreg-
ulated in metabolic disease states? Can PKCβ inhibition 
be adopted to prevent human obesity? These important 
questions should be the target of  future studies. The 
manipulation of  PKCβ levels, activity, or signaling might 
represent a therapeutic approach to combat obesity and 
associated metabolic disorders.
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Abstract
Diabetic nephropathy (DN) is the leading cause of 
end-stage renal failure worldwide. Besides, diabetic 
nephropathy is associated with cardiovascular disease, 
and increases mortality of diabetic patients. Several fac-
tors are involved in the pathophysiology of DN, includ-
ing metabolic and hemodynamic alterations, oxidative 
stress, and activation of the renin-angiotensin system. 
In recent years, new pathways involved in the develop-
ment and progression of diabetic kidney disease have 
been elucidated; accumulated data have emphasized 
the critical role of inflammation in the pathogenesis 
of diabetic nephropathy. Expression of cell adhesion 
molecules, growth factors, chemokines and pro-in-
flammatory cytokines are increased in the renal tissues 
of diabetic patients, and serum and urinary levels of 
cytokines and cell adhesion molecules, correlated with 
albuminuria. In this paper we review the role of inflam-
mation in the development of diabetic nephropathy, 
discussing some of the major inflammatory cytokines 
involved in the pathogenesis of diabetic nephropathy, 
including the role of adipokines, and take part in other 
mediators of inflammation, as adhesion molecules.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetic Nephropathy; Inflammation; Albu-
minuria; Adhesion molecules; Cytokines

Core tip: In recent years, new pathways involved in 
the development and progression of diabetic kidney 
disease have been elucidated; accumulated data have 
emphasized the critical role of inflammation in its 
pathogenesis. Expression of cell adhesion molecules, 
growth factors, chemokines and pro-inflammatory cyto-
kines increased in renal tissues of diabetic patients, and 
serum and urinary levels of cytokines and cell adhesion 
molecules, correlated with albuminuria. We review the 
role of inflammation in the development of diabetic ne-
phropathy, discussing some of the major inflammatory 
cytokines involved in its pathogenesis, including the 
role of adipokines, and other mediators of inflamma-
tion, as adhesion molecules.

Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and 
inflammation. World J Diabetes 2014; 5(3): 393-398  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i3/393.
htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.393

INTRODUCTION
Diabetes mellitus (DM) is the leading cause of  chronic 
renal failure in development countries and is increasing as 
a cause of  morbility and mortality worldwide. Both type 
1 and 2 diabetes, but principally the last one, plays an im-
portant role in this problem because of  the impact of  its 
complications[1-4].

Among all these complications, diabetic nephropathy 
(DN) has become the principal cause of  end-stage renal 
failure and cardiovascular mortality, this condition ap-
pears after many years of  diabetes beginning[3,5].

It is well understood that type-2 DM is not an im-
mune disease but at this time we could consider that 
there is evidence that the combine of  immunologic and 
inflammatory mechanisms play a pivotal role in its pre-
sentation, development and finally its progression.
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The DN take place nearby one-third of  patient with 
type 1 DM and 25% approximately of  patients with type 
2[4,6].

In México, it is described that the main cause of  
chronic renal failure is type 2 DM, nevertheless we know 
that not all diabetic patients develop DN, moreover glu-
cose control is not a warranty of  a life free of  microan-
giopathic complications[7].

It has been found that despite all pharmacologic ther-
apies available for DN treatment, some patients develop 
kidney damage, that is why the need of  complete under-
standing of  molecular, metabolic and environmental fac-
tors that lead to DN and their interaction between them.

Among diverse factors that could interact actively in 
pathogenesis and progression of  DN have been studied 
the age, gender, smoking, hypertension and hyperurice-
mia, all of  them with suggestive results of  correlation 
with renal disease[2].

In this paper we review the inflammatory factors that 
lead to the development and progression of  DN.

PHYSIOPATHOLOGY
DN is characterized by glomerular hypertrophy, thickness 
of  basement, tubular and glomerular membranes and ac-
cumulation of  extracellular matrix in these membranes 
that finally cause tubulointerstitial and glomerular fibrosis 
and sclerosis[2,6,8]. As we can see several kidney structures 
are susceptible to hyperglycemia, and this metabolic 
change cause organ damage due to several cellular via 
including genetic activation and expression, advanced 
glycation end products generation, polyol pathway activa-
tion, abnormal protein kinase activation (PKC), raise of  
oxidative stress and the molecules that act as growth fac-
tors, transcription factors and others[4,8].

There is a response for hyperglycemia from the sys-
tem, the transcription factors regulate the gene encod-
ing some cytokines like transforming growth factor β 
(TGF-β), chemokine C-C motif  ligand 2, fibronectin, 
osteopontin, decorin, thrombospondin, aldose reductase 
and plasminogen activator inhibitor 1, all these molecules 
involved in inflammation, extracellular matrix synthesis 
and its degradation are increased in type-2 DM[4].

Some other factors in relation to DN, it is known 
that some metabolic via activated by hyperglycemia are 
not enough to cause the kidney complication. The family 
predisposition to disease, race and other environmental 
factors interact with hemodynamic changes producing, as 
a result, advanced glycation end products, glucose reduc-
tion and sorbitol accumulation into the cell, overproduc-
tion of  reactive oxygen species and activation of  signal-
ing via as PKC and mitogen-activated protein kinase[2].

Diabetic patients then could have albuminuria since 
early phases or stages of  organ damage, it is also consid-
ered as a very sensible marker of  kidney disease progres-
sion. As a result there are many glomerular abnormalities 
including podocyte structure alteration, reduction of  
nephrin expression and increase of  filtration rate, a hall-
mark of  DN[9].

Many mechanisms were investigated in this process, 
for a better understanding these are divided in mecha-
nisms of  immune cell infiltration of  kidney, molecules in-
volved in progression and intracellular pathways activated 
in DN.

Role of inflammation
Now we know that activation of  the immune system 
and chronic inflammation are both involved in patho-
genesis of  DM and as a result DN. Some studies have 
demonstrated that cytokines, chemokines, growth factors, 
adhesion molecules, nuclear factors as well as immune 
cells as monocytes, lymphocytes and macrophages are all 
involved in DM pathogenesis and of  course play an im-
portant role in DM complications[1,5].

IMMUNE CELLS
Macrophages
Macrophages are recognized as the principal inflamma-
tory cell involved in kidney damage, their accumulation 
relates with severity of  DN in experimental models[3].

These cells are responsible of  the calling “renal re-
modeling”, so therapeutics proposed to inhibit their ac-
cumulation may help to stop progression.

Two subtypes are mainly involved in DN, M1 macro-
phages activated by Th1 cells, that are able to increase in-
flammatory response by cytokines expression [interleukins, 
tumor necrosis factor (TNF) and interferon γ]; and M2 
macrophages activated by Th2 cells that promote tissue 
repairmen, remodeling and neovascularization by antiin-
flammatory cytokines expression[3]. Is in this way that in-
vestigations are working, it is known that the macrophage 
subtype levels related with recruitment of  circulating 
monocytes from vascular space to glomerular tissue.

Meanwhile M1 macrophages enhance inflammatory 
response by upper production of  reactive oxygen species 
(ROS), this point will be reviewed later.

As to activated M2 macrophages, they help in inflam-
mation ending with the participation of  interleukin 10 
(IL-10), TGF-β1, both with anti-inflammatory functions. 
Besides they produce proinflammatory factors as chemo-
kines, cytokines and superoxide anions[3].

Many investigations are directed to show that statins 
are capable to block M1 macrophage actions but at the 
same time improve M2 functions. It will be helpful as one 
of  the strategies used in the treatment of  DN directed to 
this point.

T lymphocytes
T lymphocytes play a determinant role in early kidney 
damage in DN, they have cytotoxic effects besides mac-
rophages tissue activation[3].

The first contribution of  the studies was about the 
increase in local accumulating T cells in diabetic experi-
mental models. Xiao et al[10] and Moon et al[11] showed an 
increase in CD4 and CD8 lymphocytes in diabetic mouse, 
these changes were observed in glomeruli and interstice.

In type 1 DM there is an increase of  T lymphocytes 
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in juxtaglomerular tissue that results in a disturbance in 
albumin glomerular excretion and a decrease of  renal fil-
tration. Many other studies have shown at this time that 
T lymphocytes systemic, specifically circulating CD8, cor-
related with albuminuria[6].

Lei et al[6] demonstrated with a multiple regression 
analysis a positive association between lymphocytes CD8 
and albuminuria in type 2 DM patients and the cell acti-
vation could be a systemic response.

Several metabolic and genetic via, may activate sys-
temic T lymphocytes. In type 2 DM those cells may be 
activated by hemodynamic, environmental and metabolic 
changes. The most important activation seen due to 
hyperglycemia, that activates nuclear factor κB and this 
results in an over stimulation of  lymphocytes by specific 
cytokines as IL-12 produced by macrophages, and then, 
production of  interferon further lymphocyte activation[6].

CHEMOKINES
These molecules are active components of  inflammatory 
cells recruitment in kidney and are present in every phase 
of  kidney damage[8].

Many chemokines are involved in the inflammatory 
response in DN, monocyte chemoattractant protein 
(MCP-1) was first described in its role in early phases of  
atherosclerosis[12].

MCP-1
MCP-1 can promote transformation of  monocytes in 
macrophages, the last ones produce diverse cytokines as 
IL-6 and TNF-α, both induce atherosclerosis changes in 
vascular walls that results in illness progression. Because 
of  its expression is as high in the atherosclerotic plaques 
than in impaired plaques, systemic MCP-1 was measured 
in many studies in order to show an association between 
this chemokine and DN markers. Takebayashi et al[12] 
found that patients with urinary albumin excretion pre-
sented higher circulating levels of  MCP-1 than patients 
without this alteration.

All these findings could suggest that MCP-1 plays an 
important role in pathogenesis of  DN as the protein pro-
duced not only in vascular wall, atherosclerotic plaques 
but also in tubular epithelial cells.

CYTOKINES
Cytokines are molecules with a wide spectrum of  physi-
ological actions, many of  them due to their pleiotropic 
actions. They have capacity to combine actions in order 
to amplify their effects and then induce synthesis or ex-
pression of  other cytokines if  needed.

In 1991 it was suggested for the first time the par-
ticipation of  cytokines with inflammatory actions in the 
development of  DN, by demonstration of  high produc-
tion of  these molecules from macrophages in glomerular 
membranes from diabetic rats, but not from non-diabetic 
rats[5].

At this time we now that inflammatory cytokines 

play an important role in DN, but cytokines have been 
involved in the development of  other microangiopathic 
complications of  DM[1].

Interleukins
Interleukins are a group of  cytokines produced by many 
cells in different tissues. According to their physiologic 
actions, they are classified as antiinflammatory and proin-
flammatory molecules[3].

IL-1
Many studies have shown that IL-1 promotes an in-
crease of  adhesion molecules in glomerular endothelium 
as well as expression of  these molecules in other kidney 
structures[1].

Mesangial cells and renal tubular epithelium overex-
press intercellular adhesion molecule-1 (ICAM-1) and 
E-selectin, additionally, IL-1 induces prostaglandin E2 
synthesis in mesangial cells, this fact cause alterations in 
the glomerular hemodynamics[1].

Moreover, IL-1 stimulates hyaluronan synthesis, lead-
ing to cell proliferation in DM patients, this facts contrib-
utes to development of  DN. It is known that this proin-
flammatory cytokin is increased in experimental models 
with albuminuria and at the same time with macrophages 
accumulation[1]. According to these pathological changes, 
IL-1 modifies vascular permeability and increase expres-
sion of  chemokines that as a result leads proliferation 
and synthesis of  extracellular matrix in mesangium[3].

IL-6
IL-6 is another molecule that has been studied in DN 
due to its pleiotropic effects. Many authors showed that 
IL-6 concentration is increased in DN. IL-6 has a direct 
effect in glomerular and infiltrating cells, this effect modi-
fied extracellular matrix dynamics affecting membrane 
thickening in renal glomeruli[1,3].

IL-6 is a cytokine that can enhance proliferation, 
overexpression of  extracellular matrix and affect vascular 
permeability; these actions lead to DN progress[1].

It has been shown that serum IL-6 is increased in pa-
tients with type 2 DM with nephropathy[3].

IL-18
The principal actions of  this inflammatory cytokine are; 
to enhance the production of  other inflammatory cyto-
kines by mesangial cells, and upregulation of  ICAM-1. Its 
serum concentration is increased in DN as well as other 
interleukins and has a determinant role in endothelium 
apoptosis[1].

IL-18 has several sources in the diabetic kidney as 
infiltrating, T-lymphocytes, macrophages, monocytes as 
well as proximal tubule cells. There is a direct correlation 
between IL-18, albuminuria and albumin excretion rate, so 
it’s relationship with nephropathy has been identified[13].

TNF-α
This is an inflammatory cytokine with many determinant 
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fibroblasts; this process is responsible of  renal fibrosis, a 
result of  persistent inflammation.

TGF-β1 is considered too as a cytokine which prin-
cipal function in inflammation is to inhibit this process. 
Letterio et al[14] discovered that experimental models with 
impairment in TGF-β1 gene are highly susceptible to sev-
eral inflammation resulting in autoimmune diseases and 
even death[15,16].

El Mesallamy et al[8] correlated TGF-β1 concentra-
tions with Connective tissue growth factor level; their 
findings showed that between these two molecules there 
is a closed interaction in DN. So as we can see, TGF-β1 
is a molecule that can regulate not only its own release 
and its actions but also it has the ability to modulate oth-
er molecular releases and their interactions in signaling 
pathways.

It seems like TGF-β1 has a complex role in renal in-
flammation, we know that this protein is present as active 
and as a latent forms, the first one is related to mediator 
of  renal fibrosis that can progress according to many 
other factors. The second form is a protective factor for 
the development of  renal damage. Some mechanisms for 
these findings are not well understood yet[17].

TF
Proteins known as TF bind themselves to some gene 
specific regions to activate or inhibit nuclear transcription 
process[4].

TF were classified according to its main action, they 
can be constitutively active or regulatory factors and they 
can be activated by several metabolic and environmental 
stimuli in many cellular sites. Due to this last point we 
can subclassify TF in nuclear factors, cytoplasmic factors 
and steroid receptor superfamily[4].

Several TF are involved in DN development, here we 
have the most relevant.

Upstream stimulatory factors 1 (USF1) and USF2 are 
a part of  Myc family and encoded by two different genes.

USF1 and USF2 are involved in some glucose genes 
responses in many types of  cells including kidney cells. It 
has been shown that overexpression or increase in con-
centration of  these TF are related with albuminuria devel-
opment and even more the upregulation of  many other 
molecules with proved actions in DN pathogenesis[4].

Smads
Smads conform a transcription factor family that regulates 
the expression of  certain genes. Three classes are known: 
the receptor-regulated Smads (R-SMAD) which include 
SMAD1, SMAD2, SMAD3, SMAD5 and SMAD8/9; the 
common-mediator Smad (co-SMAD) which includes only 
SMAD4, which interacts with R-SMADs to take part in 
signaling and the antagonistic or inhibitory Smads which 
include SMAD6 and SMAD7, they block the activation of  
R-SMADs and co-SMADs[17].

As mentioned before this family is closely involved 
with TGF-β1, which phosphorylate Smad 2 and Smad 3 
to form a complex with Smad 4, all this process leads to 
regulate gene in cell nuclei[17].

actions in inflammatory response by several tissues and 
pleiotropic effects. TNF-α is produced by infiltrating 
cells, as monocytes, macrophages and T lymphocytes, as 
well as kidney cells. Previous reports shown that TNF-α 
can be stored as a proactive form[1].

Its actions are widely known as systemic and in many 
cases direct cytotoxic effect in kidney cells principally. 
Nevertheless actions as activation of  second messengers, 
transcription factors (TF), growth factors, cell adhesion 
molecules, express or synthesis of  cytokines and others 
are recognized as variable biological effects of  this mol-
ecule, of  course all of  them playing a determinant role in 
DN pathogenesis[1].

When TNF-α binds to the receptors, several signaling 
pathways are activated and a cascade of  molecules begin 
their expression in renal cells, many of  this actions results 
in apoptosis and necrosis[5].

The negative effects have been described in experi-
mental models and in humans[1]. Those effects were 
manifested as DM nephropathy, hypertension, nephritis 
and glomerulonephritis, this fact could be demonstrated 
with the correlation found by Navarro-González et al[5]. 
in 2005 between renal TNF-α and albumin excretion in 
diabetic mice. This observation demonstrated that this 
inflammatory molecule is directly involved in pathogen-
esis of  DN by leading cell and tissue damage; moreover 
albuminuria has been related to a enhanced stimuli for 
overexpression of  TNF-α[3].

TNF-α alters glomerular hemodynamics and pro-
motes increased vascular endothelium permeability. 
Infiltration by inflammatory cells, neo-formation of  
extracellular matrix, production of  ROS and blood flow 
disturb are others recognized effects of  TNF-α in renal 
structures[1].

TGF-β1
TGF-β1 is a cytokine member of  TGF-β1 superfamily 
considered also as a transcription factor related to de-
velopment of  renal damage by promoting renal fibrosis. 
Its activity is recognized as inflammatory and fibrogenic, 
with two isoforms, TGF-β2 and TGF-β3, all produced 
by kidney cells, the union between this cytokine and its 
receptor phosphorylate the Smads. Smads are intracel-
lular proteins that transduce extracellular signals from 
TGF-β ligands to the cellular nucleus and activate down-
stream gene transcription. This family is considered to be 
involved in development of  inflammation and fibrosis in 
the kidney[4,8,13].

That is why TGF-β1 is recognized as one of  the 
principal mediators of  structural changes seen in DN, its 
concentration is higher in DM patients with urinary albu-
min excretion than in normal individuals[8].

The upregulation of  TGF-β1 promotes extracel-
lular matrix proliferation and at the same time inhibits 
the degradation, so that is why actually overexpression 
of  this factor is directly associated with severe forms 
of  glomeruloesclerosis and glomerulonephritis[8]. Some 
other changes are favored by TGF-β1, for example the 
induction of  transforming epithelial cells of  tubules into 
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Smad 4 is the most related with inflammation, if  there 
is an abnormality of  this protein, the inflammatory re-
sponse is more intense and leads a higher concentration 
of  diverse cytokines and adhesion molecules.

There is another relationship that leads the process 
to be functional for kidney, this happens when TGF-β1 
regulates Smad 7 transcription by Smad 3 and Smad 4 
binding, so, when Smad 4 is impaired we can see and ex-
aggerated inflammatory response for reduction of  Smad 
7 expression, activation of  Nuclear Factor κB and fibro-
sis inhibition[17].

Smad 4 seems to be a key point in regulation of  TGF- 
β1 and its different functions media the conjunction with 
Smad 7 and Smad 3 expression in kidney.

The case of  Smad 7 is quiet interesting, it acts in an 
inhibitory way and regulates the active function of  Smad 
2 and Smad 3 but by a negative feedback.

The Smad 7 expression is enhanced by TGF-β1 that 
in normal condition has a negative feedback inhibit the 
action of  Smad and at the same time degrade this tran-
scription factors. When Smad 7 gets degraded then kidney 
fibrosis begins. If  Smad 7 decline renal inflammation per-
sists and as a result begins fibrosis via TGF-β and Smad 3.

In as much as the pivotal role of  Smad 7 some inves-
tigators decided to study therapeutic effects of  this factor 
in experimental models. When Smad 7 was transferred to 
kidney they found that if  there is an overexpression of  
Smad 7, inflammation and fibrosis decrease.

Adhesion molecules
ICAM-1 and vascular adhesion molecule-1 (VCAM-1) are 
involved in the attachment of  leukocytes to the vascular 
wall and penetration into the intima, once there, leuko-
cytes can produce proteolytic enzymes that lead to tissue 
and organ damage, or differentiate into foam cells that 
lead to the atherosclerotic process[15].

Several animal models have shown that mice deficient 
in ICAM-1 are resistant to nephropathy in experimental 
models of  diabetes, while treatment with anti-ICAM-1 
monoclonal Ab prevents mononuclear cell infiltration 
into diabetic glomeruli[3].

Our group has shown that the levels of  VCAM-1 cor-
relate with the severity of  albuminuria in diabetic hyper-
tensive patients[15]. In addition, Seron et al[16] reported that 
VCAM-1 expression is increased in kidney biopsies from 
patients with DN, they also found a correlation between 
levels of  VCAM-1 and numbers of  infiltrating immune 
cells[18].

ADIPOKINES
Adiponectin and resistin were first described as adipo-
cyte-secreted hormones (adipocytokines) that modulate 
insulin action. Both; hypoadiponectinemia and hyperre-
sistinemia are associated with inflammation[19].

Hypoadiponectinemia has been reported as a risk fac-
tor for the development of  albuminuria in mice[19], where-
as in humans, resistin is mainly a monocyte-macrophage 
product. In humans hyperresistinemia promotes the ex-

pression of  adhesion molecules[20], and is involved in the 
pathways that lead to albuminuria and renal damage[21].

WHICH INFLAMMATORY MOLECULE?
Certainly, inflammation is an important player in the 
pathogenesis of  DN, However, because of  multiple path-
ways that joint inflammation with diabetic complications, 
it looks unlikely that one single molecule be sufficient for 
the development of  DN. It is also true that the blockade 
of  the principal mediators could be useful in the preven-
tion of  this complication; several studies have been de-
signed in order to indentify therapeutic targets.

The evidence suggest that TNF-α, MCP-1 and adhe-
sion molecules have a prominent role in the development 
of  DN, and all these mediators may be considered thera-
peutic targets for the prevention and treatment of  DN, 
as we will discuss in the next section.

PERSPECTIVES
Microinflammation is the most important mechanism for 
development and progression of  DN. Our knowledge 
related to signaling pathways involved in its pathogenesis 
has not been elucidated at all.

There are several pivotal mediators of  inflammation, 
and their interactions are determinant in the process.

We have reviewed not only biological actions of  these 
mediators, but also their possible therapeutic effects in 
experimental models.

The Smad family plays a very important role in in-
flammation and fibrosis in renal disease, its different ac-
tions among all molecular mediators leads to open several 
optional researches in DN.

A very interesting advanced is that if  levels of  Smad 
7 could be restored in sick kidneys we could balance in-
flammatory responses in patients with renal diseases.

But not only Smad family could be a therapeutic op-
tion for DN patients, at this time it is very important take 
into a count that gene polymorphisms encoding several 
molecules in this patients have to be modified. Is in this 
way that investigations are aimed, looking to stop the 
progression of  the disease, and not just for uncontrolled 
DM but also for other diseases involving the kidney.

Many options for interfering in transcription factors 
activation have been proposed, first blocking TF bind-
ing and second blocking TF pathways for activation. For 
these conditions there were used by both TF and experi-
mental molecules.

Several studies are needed for interfering with signal-
ing pathways not just for treatment of  an abnormal con-
dition as DN but also to prevent it.

Experimental studies have shown that inhibition of  
TNF-α (with the use of  soluble TNF-α receptor fusion 
proteins, monoclonal antibodies or pentoxifylline) might 
be an efficacious treatment for renal disease secondary to 
diabetes mellitus, being pentoxifylline equivalent in effica-
cy and safety to captopril, and the addition of  than drug 
to inhibitors of  the renin-angiotensin system increases 
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their antiproteinuric effect[1,5].
Our group found that the reduction of  urinary albu-

min excretion with the use of  the fixed dose combination 
trandolapril-verapamil, depends not only from its anti-
hypertensive effect, but also from its action on VCAM-1 
adhesion molecules levels[22].

CONCLUSION
Inflammation plays an essential role in the development 
of  DN, this participation involves increased chemokine 
production, infiltration of  inflammatory cells to the kid-
ney, pro-inflammatory cytokine production and tissue 
damage.

Several components of  the diabetic milieu, as hyper-
glycemia, renin-angiotensin system and oxidative stress 
can activate the inflammatory process in the kidneys, 
which results in the infiltration of  the organ by mono-
cytes and lymphocytes, which secrete injurious molecules, 
such as proinflammatory cytokines and reactive oxygen 
species.

This leukocyte activity amplifies the inflammatory 
response and promotes cell injury and the development 
of  fibrosis. Better understanding of  the inflammatory 
response in diabetic kidneys is expected to identify novel 
anti-inflammatory strategies for the potential treatment 
of  human DN.
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Abstract
Canagliflozin (CFZ) is a member of new class of glucose 
lowering agents, sodium-glucose co-transporter (SGLT) 
inhibitors, which got approval by food and drug admin-
istration. It has insulin independent action by blocking 
the transporter protein SGLT2 in the kidneys, resulting 
in urinary glucose excretion and reduction in blood glu-
cose levels. In clinical trials, CFZ significantly decreased 
HbA1c level when administered either as monotherapy 
or as combined therapy with other anti-diabetic drugs. 
Intriguingly, it showed additional benefits like weight 
reduction and lowering of blood pressure. The com-
monly observed side effects were urinary and genital 
infections. It has exhibited favorable pharmacokinetic 
and pharmacodynamic profiles even in patients with re-
nal and hepatic damage. Hence, this review purports to 
outline CFZ as a newer beneficial drug for type 2 diabe-
tes mellitus.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes mellitus; Sodium-glucose 
co-transporter 2; Canagliflozin; Clinical trial; Safety 
profile

Core tip: This review article focuses upon the current 
pharmacokinetic, pharmacodynamic and clinical trial 
data on the newly introduced sodium-glucose co-trans-
porter 2 inhibitor, canagliflozin, for the treatment of 
type 2 diabetes mellitus. It also discusses briefly about 
the safety profile and future prospective of canagliflozin.

Bhatia J, Gamad N, Bharti S, Arya DS. Canagliflozin-current sta-
tus in the treatment of type 2 diabetes mellitus with focus on clin-
ical trial data. World J Diabetes 2014; 5(3): 399-406  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v5/i3/399.
htm  DOI: http://dx.doi.org/10.4239/wjd.v5.i3.399

INTRODUCTION
Diabetes mellitus (DM) is a metabolic disorder character-
ized by insulin resistance, hyperglycemia and progressive 
pancreatic β-cell dysfunction. Poorly controlled hypergly-
cemia leads to irreversible microvascular and macrovas-
cular complications like visual impairment and blindness, 
kidney failure, peripheral neuropathy, myocardial infarc-
tion, stroke and lower limb amputation. In 2012, world-
wide > 371 million people suffered from diabetes. Out 
of  which 4.8 million people died due to its complications. 
This global burden is estimated to increase to 552 million 
by 2030[1]. This implies that the available drugs for DM 
are not able to maintain or achieve good glycemic control. 
Potential adverse events like gastrointestinal disturbances 
(with biguanides like metformin, α-glucosidase inhibitors 
like acarbose, glucagon-like peptide-1 agonists like exena-
tide, amylin agonists like pramlintide), hypoglycemia (with 
insulin, secretagogues like sulfonylureas and meglitinides), 
weight gain (with insulin, secretagogues like sulfonylureas 
and meglitinides, thiazolidinediones like pioglitazone) and 
risk of  cardiovascular disease (with thiazolidinediones like 
pioglitazone) limit their dosage; and ensuing β-cell failure 
limits their effectiveness. Current guidelines recommend 
a target HbA1c value of  < 7.0%, with patient-centered 
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approach allowing some flexibility in terms of  the actual 
target, and treatment with lifestyle changes and drugs for 
better glycemic control in diabetics. But the target HbA1c 
is rarely achieved with a single anti-diabetic agent and 
in only about half  of  adult patients with diabetes taking 
combination therapy[2,3]. Hence, there is ongoing hunt for 
newer efficacious and safer treatment strategies.

Kidney plays a pivotal role in maintaining glucose 
homeostasis through specialized transporters-sodium-
glucose co-transporter (SGLT)1 and SGLT2-present in 
the proximal convoluted tubule (PCT). Together, they 
absorb almost all of  the glucose filtered in the glomeru-
lus. SGLT1 is a low capacity, high affinity transporter 
present mostly in small intestine, some in S3 segment of  
PCT in kidney, and in heart. It is responsible for approxi-
mately 10% of  glucose reabsorption in the kidney. While 
SGLT2 is a high capacity, low affinity transporter present 
almost exclusively in S1 segment of  PCT, responsible 
for approximately 90% of  glucose reabsorption[4,5]. But 
kidney was never the target for treatment of  diabetes 
until phlorizin was discovered. Phlorizin was isolated 
from the apple trees in 1835 and was initially tested for 
fever, infectious diseases and malaria. It was noticed that 
high doses caused glycosuria and chronic administration 
in dogs caused polydipsia and polyuria with normoglyce-
mia. Subsequent detection of  SGLT1 and SGLT2 in kid-
ney, their role in glucose reabsorption and confirmation 
of  inhibitory action of  phlorizin on these transporters 
in animal studies paved way to consider phlorizin in the 
treatment of  type 2 diabetes mellitus (T2DM). However, 
phlorizin was not clinically developed due to its poor 
pharmacokinetics and side effects attributed to SGLT1 
inhibition such as glucose-galactose malabsorption, de-
hydration and diarrhea[6,7]. Later on T-1095 was discov-
ered, a derivative of  phlorizin which had comparatively 
better pharmacokinetic profile. Nevertheless, it was 
discontinued in the Phase-Ⅱ clinical trial[8]. Meanwhile, 
it was observed that there was upregulation of  SGLT2 
and increase in maximum tubular transport of  glucose in 
diabetic patients[9]. The underline defect in patients with 
familial renal glycosuria is also attributable to SGLT2 
gene mutation. The patients with gene defect excrete 
increased amount of  glucose in urine and are clinically 
asymptomatic[10]. These two observations with SGLT2 
transporter, i.e., the upregulation of  SGLT2 in diabetes 
and its role in familial renal glycosuria, triggered research 
that ultimately led to the discovery of  specific SGLT2 
inhibitors viz. sergliflozin and remogliflozin. Unfortu-
nately, these drugs too exhibited unfavorable pharmaco-
kinetic profile, efficacy and side effect and hence did not 
progress in clinical trials[11].

Dapagliflozin is the first SGLT2 inhibitor that came to 
the European market in 2012. Food and drug administra-
tion (FDA) approved dapagliflozin on 8th January, 2014[12]. 
It was initially rejected by FDA due to serious concerns 
about bladder and breast cancer[13]. Canagliflozin was the 
first of  its kind to get approval from FDA on March 29, 
2013. Currently it is in phase-Ⅱ trial for the treatment of  

obesity in the United States and Europe[14]. Ipragliflozin, 
empagliflozin and many other SGLT2 inhibitors are un-
der different phases of  clinical trials.

This article reviews the available data on the pharma-
cokinetics, the pharmacodynamics and the therapeutic 
potential and safety of  canagliflozin (CFZ).

SEARCH METHODOLOGY
PubMed, ClinicalTrials.gov and Google scholar databases 
were used for mining the data. Following Medical sub-
ject headings words were used in the above mentioned 
databases: canagliflozin, canagliflozin and SGLT2, cana-
gliflozin and diabetes, canagliflozin and pharmacokinetics, 
canagliflozin and pharmacodynamics and canagliflozin 
and adverse events. Up to date information was included 
till 31st March 2014.

PHARMACOKINETIC PROPERTIES
When CFZ is taken orally it gets rapidly absorbed from 
gastrointestinal tract in a dose dependent manner with 
the dose range of  50-300 mg and mean oral bioavail-
ability of  approximately 65%. Median t1/2 is 1-2 h and 
steady state concentration is achieved after 4 to 5 d of  
daily intake of  100 mg and 300 mg. Maximum plasma 
concentration is not altered in renal injury. It accumulates 
in the plasma up to 36% following multiple doses of  100 
and 300 mg. The plasma protein binding is 99%, which 
is constant irrespective of  its plasma concentrations or 
hepatic or renal damage[15,16]. It is metabolized into two 
inactive O-glucuronide metabolites (M5 and M7). Major 
O-glucuronidation is by UDP glucuronosyltransferase 
(UGT)1A9 and UGT2B4, while CYP3A4 mediated 
oxidative metabolism accounts for only 7%. Single oral 
radioactive [14C] CFZ to healthy subjects demonstrated 
41.5%, 7.0% and 3.2% of  administered radioactive 
dose in feces as CFZ, a hydroxylated metabolite and an 
O-glucuronide metabolite, respectively. The amount of  
CFZ excreted in urine in unchanged form is less than 1%, 
whereas the urine excretion of  its metabolites namely M7 
is 21%-32% and M5 is 7%-10%. Studies conducted so 
far have shown no clinically significant effect of  age, sex, 
BMI/weight and race on pharmacokinetics of  CFZ[15,16].

PHARMACODYNAMIC PROPERTIES
CFZ primarily inhibits SGLT2 in kidney and is respon-
sible for increased urinary glucose excretion and reduc-
tion in blood glucose levels. It also inhibits SGLT1 in 
intestine and its potency on SGLT1 is 160 times lesser as 
compared to SGLT2[15,16]. It reduces glucose absorption 
by 31% in first hour and 20% by next hour of  food in-
take. So, when given before meal, it reduces postprandial 
glucose excursions[15,17]. This insulin independent action is 
unique and differentiates CFZ from other available anti-
diabetic agents. Moreover, there is dose dependent reduc-
tion in the renal threshold for glucose excretion (RTG) 
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with maximal suppression of  RTG from 240 mg/dL to 
approximately 70-90 mg/dL at the dose of  300 mg. Un-
like other oral hypoglycemic drugs, CFZ is tolerated well 
in mild to moderate hepatic and renal failure patients. 
However, it is contraindicated in patients with estimated 
GFR (eGFR) < 30 mL/min per 1.73 m2, end stage kid-
ney disease and patients on dialysis[15].

DOSAGE AND ADMINISTRATION
The recommended starting dose of  CFZ is 100 mg once 
daily to be taken before the first meal of  the day. If  pa-
tients with eGFR of  ≥ 60 mL/min per 1.73 m2 tolerate 
CFZ 100 mg once daily and require additional glycemic 
control, then dose can be increased to 300 mg once daily. 
Volume depletion has to be corrected in patients prior 
to the initiation of  CFZ to compensate for CFZ induced 
increased urination[15].

DRUG INTERACTIONS
UGT inducers (e.g., rifampin, phenytoin, phenobarbital, 
ritonavir) increase the metabolism of  CFZ, thereby re-
ducing active CFZ levels in the blood. Thus, the dose of  
CFZ may be increased from 100 to 300 mg in such pa-
tients. On the other hand, CFZ increases Area Under the 
Curve for digoxin and hence patients on digoxin treat-
ment should be monitored[15].

THERAPEUTIC POTENTIAL
CFZ has shown promising results in many preclinical and 
clinical studies of  T2DM. A study in Zucker fatty rats 
and Zucker diabetic fatty rats with CFZ (3-30 mg/kg) 
decreased renal threshold for glucose and increased uri-
nary glucose excretion (UGE). This resulted in decreased 
blood glucose, HbA1c, weight gain, dose dependent 
increased fatty acid metabolism, de novo lipogenesis and 
improved insulin sensitivity in these animals[18].

Table 1 lists the published clinical trials on CFZ use as 
monotherapy and combined therapy. The CANagliflozin 
Treatment And Trial Analysis (CANTATA Trials) evalu-
ated CFZ as monotherapy or as an add-on therapy to 
metformin, metformin and sulphonylurea and metformin 
and pioglitazone. These trials were randomized; double 
blind, placebo-or active-controlled with primary endpoint 
of  finding the change in HbA1c at the end of  26 or 52 
wk from baseline. In a trial using CFZ as monotherapy, 
both the doses 100 mg and 300 mg produced a statisti-
cally significant decrease in HbA1c (P < 0.001), body 
weight (-2.8% by 100 mg and -3.9% by 300 mg vs pla-
cebo, P < 0.001) as well as systolic blood pressure (-3.7 
mmHg by 100 mg and -5.4 mmHg by 300 mg vs placebo, 
P < 0.001)[19]. Similar significant results were obtained in 
combined therapy trials viz. CANTATA-D (Dual therapy 
trial-CFZ compared with Sitagliptin)[20] and CANTATA-
MP (CFZ compared with metformin and pioglitazone)[21].

The CANTATA-SU (CFZ compared with Sulpho-

nylurea) trial established reductions in HbA1c in the 
glimepiride and CFZ 100 mg groups but greater reduc-
tions occurred in CFZ 300 mg group. CFZ 100 mg was 
reviewed as non-inferior where as CFZ 300 mg group 
was considered as superior to glimepiride arm. There 
was greater reduction in body weight, blood pressure 
(BP) and greater rise in high density lipoprotein (HDL) 
levels in CFZ group[23]. CANTATA-MSU (CFZ com-
pared with metformin and sulphonylurea) results also 
demonstrated statistically significant reductions (P < 
0.001) in HbA1c, fasting blood glucose (FBG) and body 
weight[24]. In another CANTATA-D2 (Triple therapy 
trial-CFZ compared with Sitagliptin) trial, at the end of  
52 wk, it was showed that CFZ 300 mg was superior 
to sitagliptin 100 mg when added to sulphonylurea and 
metformin, in reducing HbA1c, FBG, body weight and 
systolic blood pressure. There was also significant in-
crease in HDL (P < 0.001) in CFZ groups as compared 
to sitagliptin 100 mg[25].

CANTATA trials have unveiled various interesting 
clinical observations of  CFZ use in the management of  
T2DM patients. CFZ improved glycemic control without 
a concomitant increase in the occurrence of  hypoglyce-
mia. It lowered RTG but lowering of  RTG remained above 
the hypoglycemic threshold (60-70 mg/dL) and since 
UGE occurs below the RTG, the incidence as well as risk 
of  hypoglycemia with CFZ was minimal[19,26]. Further, 
the amplified UGE of  80-120 g/d accounted for net loss 
of  calories (approximately 400 kcal/d) that contributed 
to the weight loss, which was maintained over the trial 
period of  52 wk[24,26]. This weight loss was predominantly 
from loss of  fat mass rather than lean body mass[22]. The 
reversal of  glucotoxicity and weight loss together helped 
to improve beta cell function as indicated in improvement 
in Homeostasis Model Assessment estimating steady state 
beta cell function in percentage[19,21,24,26]. The mechanism 
for increased low-density lipoprotein-C with CFZ is not 
known, however, improvement in HDL-C and triglycer-
ides was likely to be due to improved glycemic control 
and weight loss associated with CFZ[19,21,22]. Mild reduc-
tion in BP was also observed in the trial participants. This 
was due to the mild osmotic diuretic response to UGE 
and natriuretic effect of  CFZ[24]. Thus, in nutshell, CFZ 
can reduce blood glucose levels and has the least risk 
of  producing hypoglycemia as compared to other anti-
diabetic agents. In addition, it can also modify the insulin 
resistance, reduce weight and BP and increase HDL-C. 
These diverse effects are specific to CFZ and would ex-
plain the better outcome with CFZ treated patients as 
compared to other anti-diabetic agent treatment groups. 
The CANTATA trials have concluded that CFZ could 
be taken as an initial drug for T2DM patients whose gly-
cemic control is not achieved with diet and exercise; and 
also as an effective alternative to sulphonylurea, sitagliptin 
or pioglitazone in dual therapy with metformin.

CFZ was also studied as an add-on to insulin therapy 
in a 28-d trial. Participants were T2DM patients not opti-
mally controlled with insulin and receiving up to one oral 
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sorbed by SGLT1 in kidney. In addition to the reported 
side effects of  CFZ like UTI, genital mycotic infections, 
volume depletion and hypotension, the high cost of  CFZ 
may prove to be a limiting factor in its wide spread use. 
However, for the time being CFZ has been proven to 
be safe and well tolerated and it is for the further long 
term studies to establish it more firmly as a major break-
through in the clinical armamentarium for patients with 
diabetes.
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Abstract
AIM: To assess the effectiveness of the Chronic Dis-
ease Self-Management Program (CDSMP) on glycated 
hemoglobin A1c (HbA1c) and selected self-reported 
measures.

METHODS: We compared patients who received a 
diabetes self-care behavioral intervention, the CDSMP 
developed at the Stanford University, with controls who 

received usual care on their HbA1c and selected self-re-
ported measures, including diabetes self-care activities, 
health-related quality of life (HRQOL), pain and fatigue. 
The subjects were a subset of participants enrolled in a 
randomized controlled trial that took place at seven re-
gional clinics of a university-affiliated integrated health-
care system of a multi-specialty group practice between 
January 2009 and June 2011. The primary outcome 
was change in HbA1c from randomization to 12 mo. 
Data were analyzed using multilevel statistical models 
and linear mixed models to provide unbiased estimates 
of intervention effects.

RESULTS: Demographic and baseline clinical charac-
teristics were generally comparable between the two 
groups. The average baseline HbA1c values in the 
CDSMP and control groups were 9.4% and 9.2%, re-
spectively. Significant reductions in HbA1c were seen 
at 12 mo for the two groups, with adjusted changes 
around 0.6% (P  < 0.0001), but the reductions did not 
differ significantly between the two groups (P  = 0.885). 
Few significant differences were observed in partici-
pants’ diabetes self-care activities. No significant differ-
ences were observed in the participants’ HRQOL, pain, 
or fatigue measures.

CONCLUSION: The CDSMP intervention may not low-
er HbA1c any better than good routine care in an inte-
grated healthcare system. More research is needed to 
understand the benefits of self-management programs 
in primary care in different settings and populations.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Type 2 diabetes; Self-management; Chronic 
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Core tip: Diabetes is a serious chronic disease. One of 
the most studied evidence-based behavioral or self-care 
programs targeting chronic conditions including diabe-
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tes is the Stanford Chronic Disease Self-Management 
Program (CDSMP). Although the CDSMP has been stud-
ied extensively, its impact on glycemic control has not 
been thoroughly evaluated in a randomized controlled 
trial to date. To the best of our knowledge, this is the 
first study to evaluate the effectiveness of the CDSMP 
in a randomized controlled trial. Our finding that the 
CDSMP intervention may not lower hemoglobin A1c any 
better than good routine care in an integrated health-
care system calls for further research.

Forjuoh SN, Ory MG, Jiang L, Vuong AM, Bolin JN. Impact of 
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INTRODUCTION
Diabetes is a serious chronic condition affecting mil-
lions of  people worldwide. According to estimates by the 
World Health Organization, about 350 million people 
have diabetes globally[1]. Diabetes has a severe and signifi-
cant health and economic impact on all nations. It is the 
6th leading cause of  death in Canada and the 7th leading 
cause of  death in the United States, costing an estimated 
$174 billion[2,3]. The bulk of  this cost is attributable to the 
serious long-term complications associated with the con-
dition including limb amputations, blindness, coronary 
health disease, stroke, and kidney disease[3]. Type 2 dia-
betes accounts for 90%-95% of  all diabetes[3]. Although 
type 2 diabetes is more prevalent among people aged 40 
years or older, the prevalence among younger populations 
is increasing dramatically because of  the rise in obesity 
and physical inactivity in children and the youth[4].

Supportive programs to enhance patient self-care 
have been touted as a pre-requisite to diabetes manage-
ment in spite of  differences in individual needs to cope 
with this debilitating condition[5]. The traditional didactic 
models of  care that involved teaching patients to improve 
the knowledge of  their health condition are giving way to 
the current models that focus on behavioral or self-care 
approaches aimed at providing patients with the skills and 
strategies to promote and change their behavior[6]. In fact, 
several national organizations including the American 
Diabetes Association and the American Association of  
Diabetes Educators consider self-care an essential com-
ponent of  effective diabetes management[7-9].

One of  the most studied evidence-based behavioral 
or self-care programs targeting chronic conditions is the 
Chronic Disease Self-Management Program (CDSMP). 
Developed at the Stanford University, the program of-
fers the potential to improve overall health of  individuals 
with chronic conditions, while preventing further decline 
in their general health status[10-12]. Designed as a 6-wk, 
community-based self-care education program, CDSMP 
focuses on assisting participants to gain confidence or 

self-efficacy and acquire skills to better manage their 
chronic conditions. It is taught by trained leaders using a 
structured protocol.

The CDSMP has been found to be highly effective 
in improving general health and lowering hospitalization 
rates[10]. It has therefore been implemented worldwide 
for several chronic conditions such as heart disease, 
lung disease, arthritis, and diabetes as well as evaluated 
in various settings including the United States, Canada, 
United Kingdom, Australia, New Zealand, Bangladesh, 
China, Hong Kong, and The Netherlands[13-20]. While the 
original CDSMP validation study found improvements 
in general health status, health behaviors, and healthcare 
utilization[10], the findings of  more recent studies from a 
variety of  self-management programs have been incon-
sistent[5,21-27]. A recent literature review of  randomized 
controlled trials comparing self-management support 
interventions for general chronic diseases vs usual care re-
vealed mixed results. While positive findings were found 
regarding self-efficacy, less positive ones were found for 
quality-of-life measures[5]. Also although the CDSMP has 
been studied extensively, its impact on glycemic control 
has not been thoroughly assessed. In particular, its effec-
tiveness on glycemic control has not been evaluated in a 
randomized controlled trial in the United States to date. 
A recent study concluded that the CDSMP is a useful and 
appropriate program for lowering glycated hemoglobin 
A1c (HbA1c) among those out of  control[28]. However, 
this was a longitudinal study with no comparison group. 
Another related study found the CDSMP to improve life-
style behaviors among patients with type 2 diabetes[23,29]. 
But again this was a single-group design.

The aim of  this study was to assess the effectiveness 
of  the CDSMP on glycemic control and selected self-
reported measures among patients with type 2 diabetes in 
a large integrated healthcare organization in central Texas 
that serves large racially/ethnically diverse populations.

MATERIALS AND METHODS
Design
This study was a comparison of  one intervention arm, 
the CDSMP, and the control arm from an open-label, 
4-arm randomized controlled trial that was designed to 
evaluate the effectiveness of  two different type 2 diabetes 
mellitus (T2DM) self-care interventions (implemented 
singly and in combination) on glycemic control. Designed 
with the acknowledgment that both patients and re-
searchers would be aware of  the random assignment, the 
study protocol consisted of  screening potential subjects 
for eligibility, randomizing them to one of  four study 
arms, and following them over a 24-mo period. However, 
the primary end-point was change in HbA1c from ran-
domization/baseline to 12 mo of  follow-up. The current 
study reported here focuses on participants in two of  the 
four original study arms.

The study protocol was approved by the Institutional 
Review Boards (IRB) of  Scott and White Healthcare Sys-
tem and Texas A and M Health Science Center. All quali-
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fied participants accepted the conditions of  the study and 
gave informed written consent at enrollment/orientation. 
Enrollment occurred between January 2009 and June 
2011 and data collection was completed in July 2012. We 
adhered to the CONSORT protocol[30] and registered the 
trial with clinicaltrials.gov (NCT01221090).

Setting, participants, and recruitment
Participants represent a subset of  subjects that were 
recruited from seven participating clinics of  a large in-
tegrated healthcare system, a university-affiliated, multi-
specialty group practice associated with a 250000-mem-
ber Health Maintenance Organization in central Texas. 
Potential participants were identified through electronic 
medical records if  they: (1) had a diagnosis of  T2DM; (2) 
were ≥ 18 years; (3) had a lab assessed HbA1c value ≥ 
7.5% (≥ 58 mmol/mol) within the last six months; and 
(4) were able to communicate in English. Subjects were 
excluded if  they: (1) had documented reports of  alco-
holism or drug abuse; (2) were pregnant or planning to 
become pregnant within 12 mo; or (3) were unwilling to 
sign an informed consent. Recruitment was solicited by 
physicians within the seven clinics who agreed to invite 
their patients to participate in the study.

Physicians were provided with IRB approved invi-
tation-to-participate letters and a list of  their T2DM 
patients meeting the threshold HbA1c level at their last 
visit. Contact was initiated with potential subjects through 
physician-sent letters, describing the study and requesting 
a completed screening enrollment card if  interested. Sub-
jects who returned a screening enrollment card were con-
tacted by project coordinators, who provided additional 
information and screened them to determine eligibility. 
To verify the inclusion and exclusion criteria, subject 
permission was obtained to review their medical records. 
Other recruitment strategies included oral referrals by 
physicians and patient educators and posting messages in 
waiting areas of  study clinics.

Lab assessments were continuously monitored at each 
phase of  the study recruitment to ensure that enrolled 
participants had HbA1c values ≥ 7.5% (≥ 58 mmol/
mol) within the last six months since individuals who 
previously met this criterion may no longer fulfill that re-
quirement at orientation. A follow-up telephone interview 
was conducted to determine participation interest. Lab 
results were screened to ensure that the participant met 
qualifying HbA1c and if  needed, tests were scheduled.

Intervention
Participants randomized to the CDSMP arm were invited 
to attend a 6-wk, classroom-based program for diabetes 
self-management. The effectiveness of  the CDSMP has 
been described elsewhere[10]. With the goal of  increas-
ing self-efficacy to ultimately decrease chronic disease 
related symptoms and avoidable healthcare utilization, 
the CDSMP teaches participants techniques to facilitate 
enhanced decision making, action planning, and effec-
tive communication. CDSMP workshops were hosted 

in clinical environments and community-based settings. 
While fidelity to the individual classes was not monitored, 
CDSMP license requires that lay leaders use pre-scripted 
materials and that experienced master trainers/lay leaders 
(who attend a required four-day training program) lead 
the workshops.

Participants randomized to the control arm did not 
receive any treatment other than their usual clinical diabe-
tes care, along with some publicly available Texas Diabe-
tes Council patient education materials.

Data collection
Study measures were obtained at orientation/baseline, 6 
mo, and 12 mo of  follow-up. Participants received mon-
etary compensation in the form of  a gift card for travel 
expenses and time, consisting of  $20 at orientation and at 
the 12-mo follow-up visit.

At orientation, a questionnaire was administered to 
obtain several pieces of  information including: (1) de-
mographics such as age, gender, and race/ethnicity; (2) 
diabetes self-care activity monitoring (number of  days, 
0-7, that any specific self-care activity was performed in 
the past week) as measured by the Summary of  Diabetes 
Self-Care Activities instrument; (3) self-reported health-
related quality of  life (HRQOL) measures (e.g., number 
of  days physical/mental health was not good); and (4) 
pain and fatigue measures (on a scale of  1-10, 1 indicat-
ing none and 10 severe). Questionnaires were adminis-
tered every 6 mo. However, as our primary end point was 
12 mo, analyses were only conducted for this time period.

Anthropometric data were obtained at orientation and 
at subsequent follow-up visits. Height in inches was mea-
sured without shoes. Weight was measured in pounds on 
a balance beam scale or an electronic scale without shoes. 
Body mass index (BMI) was computed from height and 
weight measurements. Blood pressures were recorded with 
either a mercury sphygmomanometer or a validated au-
tomated device. Participants who were unable to come in 
for their follow-up appointments had their height, weight, 
and blood pressure data abstracted from electronic health 
records (EHRs). Measures recorded fell within the range 
of  10 d prior to and 45 d after participants’ scheduled 
follow-up dates. This was done to obtain participant visits 
as close to their target dates as possible, but also allow 
for enough time after the target date to accommodate for 
scheduling errors (i.e., missed appointments, rescheduling).

Measures of  HbA1c were collected from EHRs dat-
ing back 6 mo prior to orientation to the last day of  study 
participation (45 d after the 12-mo follow-up period). If  a 
participant did not have any HbA1c value within the EHR 
for any particular follow-up visit, a lab test was scheduled 
to obtain a measure. Of  the HbA1c collected 6 mo prior 
to orientation, the value measured closest to the orienta-
tion date was considered as the baseline HbA1c value. 
HbA1c values that were measured on dates preceding the 
baseline HbA1c were not included; i.e., HbA1c values in-
cluded in the analysis were those collected since the base-
line HbA1c and until the last day of  study participation.

409 June 15, 2014|Volume 5|Issue 3|WJD|www.wjgnet.com

Forjuoh SN et al . Impact of chronic disease self-management programs



Demographic data and baseline comparison of study 
population
Demographic and baseline clinical characteristics were 
generally comparable between the two groups (Table 
1). The mean age of  participants was 57.6 ± 10.9 years. 
Slightly more than a third (36.4%) was of  minority status, 
self-reporting as either African American or Hispanic. 
The majority of  participants had received post-secondary 
education; 40% had attended some college or vocational 
school, 20% were college graduates, and 13% had com-
pleted higher forms of  education. Approximately one-
third reported annual incomes greater than $50000, while 
almost 40% reported annual incomes between $25000 
and $49999.

An overwhelming majority (92.9%) of  the partici-
pants were either overweight or obese, with a mean BMI 
of  34.3 ± 7.4 kg/m2. While measures of  systolic blood 
pressure were comparable between study arms, with 
a mean of  134.8 ± 19.3 mmHg, measures of  diastolic 
blood pressure were significantly different (P < 0.002). 
The mean baseline HbA1c for participants was 9.3% ± 
1.6% and did not differ significantly between the two 
groups.

Table 2 summarizes participants’ diabetes self-care 
activity (DSCA) monitoring, HRQOL measures, and 
pain and fatigue measures at baseline. Participants in the 
control arm reported checking their feet more frequently 
than those in the CDSMP arm (P = 0.04). Although 
participants in the control group reported inspecting the 
inside of  their shoes more frequently and also tended to 
report fewer unhealthy physical days and experience less 
limited days due to physical and mental health, these did 
not reach statistical significance (P ≥ 0.05).

Changes in HbA1c from baseline to 12 mo
There were modest but statistically significant reductions 
in HbA1c from baseline to 12 mo of  follow-up. The 
results of  the linear mixed model are presented in Table 
3. The adjusted reductions in HbA1c over the 12 mo 
of  follow-up for the CDSMP and control groups were 
0.559% and 0.576%, respectively (P < 0.0001). However, 
the interaction term of  the treatment group and time 
was not statistically significant (P = 0.885), implying no 
significant difference in HbA1c reductions by treatment 
assignment.

Changes in DSCA monitoring, HRQOL measures, and 
pain and fatigue measures
The mean difference in the number of  days (within the 
last 7 d), from baseline to 12 mo of  follow-up, that par-
ticipants reported using specific diabetes self-care activity 
features were compared between the CDSMP and con-
trol arms (table not shown). While there were no differ-
ences on 12 of  the 14 self-care indicators, participants in 
the control arm had a higher rate of  change in checking 
their feet than those in the CDSMP arm (increase of  0.28 
d/mo vs 0.20 d/mo; P = 0.02). Similarly, participants in 
the control arm reported an increase of  0.15 d/mo eat-

Definition of a completed follow-up participation
A participant was considered to have completed a follow-
up if  there was an available HbA1c within the designated 
follow-up period, i.e., within the cut-off  dates, defined 
as within 45 d after the scheduled follow-up dates. For 
the 6-mo follow-up measure, if  at least one HbA1c was 
available after baseline and before the 6-mo cut-off, the 
participant was considered to have completed a follow-
up. For the 12-mo follow-up measure, the designated 
range was between the 6-mo cut-off  date and the 12-mo 
cut-off  date. Participants who were unable to complete 
an assessment at one time period were not excluded from 
future assessments. For instance, if  a participant did not 
have any HbA1c measured within the specified time pe-
riod for their 6-mo follow-up but had one available for 
their 12-mo follow-up, he/she was considered to have 
completed the 12-mo follow-up, but not the 6-mo.

Outcome measures
The primary study outcome measure was change in HbA1c 
from randomization to 12 mo of  follow-up. Secondary 
outcome measures included BMI and blood pressure, 
along with several self-management behavioral measures 
(e.g., foot care) from randomization to 12 mo of  follow-up.

Statistical analysis
Analysis was based on intent-to-treat. Descriptive sta-
tistics were used to describe baseline demographic, an-
thropometric, and clinical characteristics by study arm. 
Analysis of  variance as used to compare average changes 
in self-management behaviors between study arms. To 
determine whether the treatment had an effect on the 
rate of  change in HbA1c level over time, we used linear 
mixed models that included time as a continuous variable. 
A spatial power covariance structure with time as the dis-
tance measure accounted for the time-series correlation 
among repeated measurements on each subject. Forward 
selection was utilized, in which powers of  time were add-
ed one at a time to the base model including treatment 
group effects only. Time and treatment effects were then 
added gradually and evaluated with likelihood ratio tests 
to assess any effect modification. The final mixed model 
included time, time squared, treatment group, and the 
interaction between time and treatment group as fixed 
effects. HbA1c values included in the analysis were those 
falling within the time frame of  6 mo prior to orientation 
until the 12-mo follow-up cut-off  point.

RESULTS
Subject enrollment, participation and retention
The flow diagram of  participant enrollment and disposi-
tion in the trial has been described elsewhere[31]. Of  the 
subjects randomized, 101 entered the CDSMP arm and 
95 entered the control arm. Of  the participants assigned 
to the CDSMP, 75.6% attended 4 of  6 sessions required 
for successful completion.
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ing 5 or more servings of  fruits and vegetables compared 
to an increase of  0.01 d/mo reported by those in the 
CDSMP arm (P = 0.02).

DISCUSSION
In this study, we sought to assess the effectiveness of  the 
CDSMP on HbA1c and selected self-reported measures 
among patients with type 2 diabetes who were out of  
control. We found no significant differences between the 
CDSMP intervention and usual care in this integrated 
healthcare system. To the best of  our knowledge, this 
is the first study to evaluate the effectiveness of  the 
CDSMP in a randomized controlled trial in the United 
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Table 1  Characteristics of study participants (n  = 196)

Controls (n  = 95) CDSMP (n  = 101) P -value

No. % No. %
Age group (yr) 0.32
   30-44 15 15.8 12 11.9
   45-64 55 57.9 69 68.3
   ≥ 65 25 26.3 20 19.8
Gender 0.74
   Female 53 55.8 54 53.5
   Male 42 44.2 47 46.5
Hispanic 0.46
   Yes 15 15.8 20 19.8
   No 80 84.2 81 80.2
Minority1 0.32
   Yes 32 33.7 41 40.6
   No 63 66.3 60 59.4
Race/Ethnicity 0.60
   African American 17 17.9 21 20.8
   Hispanic 15 15.8 20 19.8
   Neither Hispanic or African-American 63 66.3 60 59.4
Income 0.40
   < $15000   9 10.5 12 13.6
   $15000-$24999 16 18.6 11 12.5
   $25000-$49999 30 34.9 41 46.6
   $50000-$75000 17 19.8 12 13.6
   > $75000 14 16.3 12 13.6
Education 0.48
   High school graduate or less 25 26.3 26 25.7
   Some college/vocation school 36 37.9 46 45.5
   College graduate or higher 34 35.8 29 28.7
HbA1c (%), mean ± SD      9.2   1.6      9.4   1.7 0.48
SBP (mm/Hg), mean ± SD  132.9 21.7  131.9 14.1 0.73
DBP (mm/Hg), mean ± SD    75.8 13.6    79.4   9.8 0.05
BMI (kg/m2), mean ± SD    33.9   7.7    33.5   8.0 0.70

1African American or Hispanic. CDSMP: Chronic Disease Self-Management Program; HbA1c: Hemoglobin A1c; SBP: Systolic blood pressure; DBP: Dia-
stolic blood pressure; BMI: Body mass index.

Table 2  Baseline diabetes self-care activities monitoring, 
health-related quality of life, pain and fatigue measures

Measure Controls CDSMP P

Diabetes self-care activity monitoring (d/wk)
   30 min of any physical activity? 3.01 3.50 0.17
   Daily exercise session? 2.23 2.53 0.40
   Test your blood sugar? 4.22 4.38 0.70
   Test sugar times provider recommends? 3.58 3.29 0.50
   Check your feet? 5.20 4.41 0.04
   Wash your feet? 6.58 6.36 0.29
   Soak your feet? 1.73 1.21 0.14
   Dry between your toes? 5.21 5.37 0.68
   Inspect inside of shoes? 3.25 2.43 0.06
   Follow a healthful eating plan? 3.80 3.92 0.71
   Space carbohydrates evenly? 3.25 3.12 0.74
   Eat ≥ 5 fruit/vegetable servings? 3.80 3.44 0.30
   Eat high-fat products (red meat, full-fat diary)? 3.63 3.63 0.98
   Eat packaged or bakery goods? 2.05 2.16 0.71
Health related quality of life (d/mo)
   Physical health not good 3.98 5.96 0.07
   Mental health not good 4.09 4.72 0.56
   Physical/mental health hindered 
   usual activities

1.82 3.65 0.05

Pain and fatigue measures (scale 1-10)
   Average daily pain in the past 2 wk 3.74 3.74 1.00
   Average daily fatigue in the past 2 wk 4.41 4.54 0.72

CDSMP: Chronic Disease Self-Management Program.

Table 3  Results from the linear mixed models

Controls CDSMP Difference between
(n  = 95) (n  = 101) the two groups

Mean ± SE1 Mean ± SE1 Mean ± SE1

Baseline 9.018 ± 0.153 9.175 ± 0.149 0.157 ± 0.213
12 mo 8.442 ± 0.160 8.615 ± 0.156 0.173 ± 0.218
12 mo-Baseline -0.576 ± 0.093a -0.559 ± 0.091a 0.016 ± 0.112

1Adjusted means from linear mixed models. aP < 0.0001 for test vs H0: 
mean equals to 0.
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States. It is also one of  the first studies to evaluate and 
compare these interventions in a racially/ethnically di-
verse population in a practice setting outside of  testing 
done by the original program developers. It therefore 
provides important exploratory data, shaping our knowl-
edge and understanding of  factors which may be im-
portant to minority and ethnic populations in adopting 
diabetes self-management techniques.

Our results corroborate the findings of  others that 
participation in the CDSMP may be associated with bet-
ter glycemic control[28]. However, a comparison with the 
control group indicates that usual care might do equally 
well. Therefore, our study findings need to be tempered 
due to the possibility of  methodological confounds such 
as unaccounted group demographic and health differ-
ences at baseline, relatively small sample sizes, and better 
awareness among those in a clinical trial or high quality 
routine diabetes care that emphasizes the importance of  
glycemic control. For example, participants in this study 
were, on average, younger than those studied in other 
recent CDSMP studies[23,29]. Additionally, the controls in 
this study appeared slightly healthier and better educated 
than their counterparts in the CDSMP intervention 
which might have made them more receptive to both 
clinical and community-based diabetes self-management 
and obesity prevention messages. It should be noted that 
Scott and White Health System employs diabetes educa-
tors for their patients with diabetes. Scott and White also 
employs dedicated endocrinologists and their usual care 
for diabetes exceeds the recommendations set by the 
Texas Diabetes Association.

Other study limitations need to be noted. First, our 
subjects were selected from a randomized controlled trial 
with three interventions, restricting the numbers available 
in any one group. Second, post-hoc analysis showed that 
we were somewhat under-powered: we only had 60% 
power to detect a difference of  0.5% HbA1c reduction 
between the two groups at the current sample size. Other 
future analyses should focus on randomizing a larger 
number of  participants in the treatment arm being inves-
tigated. Third, there were notable differences between the 
intervention and control groups, with the control group 
appearing to be healthier at baseline. Fourth, there was 
attrition in terms of  treatment completion for the inter-
vention group (75.6% attended 4 of  6 sessions required 
for successful completion) as well as differential research 
attrition between the two groups (14.9% or 15% par-
ticipants in the treatment group and 23.2% or 22% par-
ticipants in the control group did not have 12 mo data). 
Finally, this study was conducted in only one integrated 
health care system, limiting generalizability to other set-
tings and populations.

There is also a debate in the self-management field 
regarding whether generic vs disease-specific self-man-
agement is more beneficial[24,32]. While our view was that 
a generic program would be valuable for patients expe-
riencing several comorbidities including diabetes, more 
positive results might have been observed if  the diabetes 
specific CDSMP was utilized (which was not evidence-

based at the time of  initial program selection for English 
speaking patients)[33].

In conclusion, we found in this study that although 
a behavioral intervention such as the CDSMP can result 
in some modest improvements in glycemic control, the 
same improvements may be found among participants 
that receive usual care. The reduction in HbA1c levels 
found in our control group that received usual care sug-
gests that good routine care in an integrated healthcare 
system can also lead to better glycemic control. More 
research is needed to understand the benefits of  self-
management programs both independently and in 
conjunction with primary care. For example, are there 
settings where self-management programs might be espe-
cially needed, e.g., in medically underserved areas? What 
kinds of  participants might improve most with self-
management programs? Such knowledge is important for 
providing better tailoring diabetes care to patients.
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