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pancreatic cancer) is a highly lethal and aggressive 
malignancy with a disease-related mortality almost 
equaling its incidence, and one of the most challenging 
cancers to treat. The notorious resistance of pancreatic 
cancer not only to conventional cytotoxic therapies 
but also to almost all targeted agents developed to 
date, continues to puzzle the oncological community 
and represents one of the biggest hurdles to reducing 
the death toll from this ominous disease. This editorial 
highlights the most important recent advances in 
preclinical and clinical research, with regards to targeted 
therapeutics for pancreatic cancer, outlines current 
challenges and provides an overview of potential future 
perspectives in this rapidly evolving field. 

Key words: Clinical; Cytotoxic chemotherapy; Pancreatic 
cancer; Preclinical; Targeted agents

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Expansion of our knowledge regarding the 
molecular basis of pancreatic cancer has facilitated 
the development of a significant number of innovative 
targeted therapies for this lethal disease. Almost all 
these agents have, nevertheless, failed to produce 
statistically significant survival benefits when tested 
in clinical trial settings; therefore, successful clinical 
translation of preclinical advancements in pancreatic 
cancer research has yet to be materialized. Future 
treatment options might include multi-targeted and 
individualized molecular therapies, ideally guided by 
patient-specific genomic data, in combination with 
conventional cytotoxic or other regimens. 

Grapsa D, Saif MW, Syrigos K. Targeted therapies for pancreatic 
adenocarcinoma: Where do we stand, how far can we go? World 
J Gastrointest Oncol 2015; 7(10): 172-177  Available from: URL: 
http://www.wjgnet.com/1948-5204/full/v7/i10/172.htm  DOI: 
http://dx.doi.org/10.4251/wjgo.v7.i10.172

Targeted therapies for pancreatic adenocarcinoma: Where 
do we stand, how far can we go? 

Dimitra Grapsa, Muhammad Wasif Saif, Konstantinos Syrigos

Dimitra Grapsa, Konstantinos Syrigos, Oncology Unit, 3rd 
Department of Medicine, “Sotiria” General Hospital, Athens 
University School of Medicine, 11527 Athens, Greece

Muhammad Wasif Saif, Tufts Cancer Center, Tufts University 
School of Medicine, Boston, MA 02111, United States

Author contributions: Grapsa D drafted the manuscript; Saif 
MW and Syrigos K revised the manuscript for intellectual 
content. 

Conflict-of-interest statement: The authors declare that they 
have no relevant conflicts of interest.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Correspondence to: Konstantinos Syrigos, MD, PhD, 
Professor, Head, Oncology Unit, 3rd Department of Medicine, 
“Sotiria” General Hospital, Athens University School of 
Medicine, Mesogion 152, 11527 Athens, 
Greece. knsyrigos@usa.net
Telephone: +30-210-7475034
Fax: +30-210-7781035

Received: May 26, 2015
Peer-review started: May 28, 2015
First decision: June 18, 2015
Revised: July 10, 2015
Accepted: August 30, 2015
Article in press: August 31, 2015
Published online: October 15, 2015

Abstract
Pancreatic adenocarcinoma (usually referred to as 

EDITORIAL

October 15, 2015|Volume 7|Issue 10|WJGO|www.wjgnet.com

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4251/wjgo.v7.i10.172

World J Gastrointest Oncol  2015 October 15; 7(10): 172-177
ISSN 1948-5204 (online)

© 2015 Baishideng Publishing Group Inc. All rights reserved.

172



INTRODUCTION
Despite recent advances in our understanding of the 
molecular mechanisms involved in the development 
and progression of pancreatic adenocarcinoma and an 
abundance of preclinical data suggesting the potential 
value of several targeted agents in treatment of this 
lethal disease, pancreatic cancer statistics remain grim 
and nearly the same as they were almost 30 years 
ago[1-3]. Pancreatic adenocarcinoma - usually referred 
to as “pancreatic cancer” - currently ranks as the fourth 
most frequent cause of cancer-related death among 
males and the fifth among females in the Western 
world, and is sadly expected to rise to the second 
leading position within the next decade[3,4]. Median 
survival is 4 to 6 mo following diagnosis while long 
term (5-year) survival rates do not exceed 4%-5%, for 
all stages combined[5]. The only treatment option with 
a curative potential is surgery, but less than 20% of 
patients are eligible for this approach, while the survival 
rates are poor (25%-30%) even among those with 
localized node-negative disease undergoing complete 
surgical resection and adjuvant chemotherapy[6]. 

This dismal clinical record inevitably leads to the 
following questions: Why have we failed thus far to 
reduce the death toll from this lethal disease? And, 
most importantly, what can we do to widen the range 
of available treatment options and improve their clinical 
effectiveness? 

PRECLINICAL AND CLINICAL DATA: 
DISCREPANCY PREVAILS 
In the preclinical arena of pancreatic cancer research 
the picture is much rosier; a significant and rather 
rapidly expanding number of different targeted agents 
have shown considerable efficacy in controlling growth 
of human pancreatic cancer cells, both in vitro and 
in vivo, and prolonging survival of pancreatic cancer 
models, as summarized in recent reviews on this 
topic[5-11]. This rather extensive armamentarium 
includes, among others, inhibitors of epidermal growth 
factor receptor (EGFR)[12,13], human epidermal growth 
factor receptor 2 (HER2)[14,15], vascular endothelial 
growth factor (VEGF) and VEGF receptors[16], insulin-like 
growth factor receptor[17-19], KRAS and its downstream 
effectors (mainly mitogen-activated protein kinase)[20,21], 
the developmental Wnt, Hedgehog and Notch signaling 
pathways[22-24], as well as reagents targeting the tumor 
extracellular matrix/stromal microenvironment or 
molecules overexpressed in the surface of pancreatic 
cancer cells (i.e., mesothelin, carcinoembryonic 
antigen, epithelial cell adhesion molecule, MUC1)[25-29]. 
Dual-agent and multi-kinase molecular targeting 
represent additional exciting therapeutic possibilities 
and are gaining increasing research attention and 
popularity[30-34]. Alternative approaches, such as 
targeting the cellular process of autophagy - which 
plays a key role in the development and progression 

of malignancy or combined targeting of oncogene-
driven signaling pathways and critical energy sources 
(such as mitochondrial respiration) of the subpopulation 
of dormant tumor cells surviving oncogene ablation, 
have also been studied as potential treatment options 
in pancreatic cancer, but are still in their infancy[7,35,36]. 
Interestingly, in accordance with increasing data 
suggesting potential preventive and therapeutic 
effects of aspirin and non-steroidal inflammatory 
drugs in gastrointestinal cancers, particularly colorectal 
cancer[37,38], aspirin is being explored as a targeted 
therapeutic agent for pancreatic cancer as well[39,40]. As 
shown in recent preclinical studies, aspirin, either alone 
or in combination with the antidiabetic drug metformin, 
may inhibit pancreatic cancer cell growth, counteract 
desmoplasia and cancer stem cell features and enhance 
the therapeutic efficacy of cytotoxic agents-such 
as gemcitabine- in pancreatic cancer by sensitizing 
pancreatic cancer cells to chemotherapy-mediated 
cytotoxicity[41-43]. 

Modified cytotoxic agents, mainly including nab-
paclitaxel (paclitaxel conjugated with albumin nano
particles) or other nanovector-based anticancer drugs, 
such as cationic liposome encapsulated paclitaxel 
(EndoTAGTM-1) or liposomal doxorubicin, cisplatin 
and irinotecan, have been recently developed using 
sophisticated nanotechnology and tested in preclinical 
studies of pancreatic cancer, with some encouraging 
results[7,44-49]. These selective drug formulations offer the 
advantage of improved drug delivery to the tumor tissue 
and selective targeting via binding to tumor-associated 
receptors or macromolecules, thus positively modulating 
the pharmacokinetics and therapeutic index of cytotoxic 
chemotherapy[44]. Nab-paclitaxel, in particular, can bind 
to SPARC (secreted protein acid and rich in cysteine), 
an extracellular matrix protein which is frequently 
overexpressed in pancreatic adenocarcinomas[10,50,51], 
and, presumably, result in depletion of desmoplastic 
tumor stroma and an increase in vascularization, thus 
enhancing transvascular transport and delivery of 
cytotoxic agents to tumor cells[52]. 

The overwhelming majority of the abovementioned 
targeted therapies have, nevertheless, failed to demon
strate any statistically significant efficacy in clinical 
trials of pancreatic cancer patients; the EGFR and VEGF 
monoclonal antibodies cetuximab and bevacizumab, 
respectively, and the multikinase inhibitor sorafenib are 
representative examples of once-promising targeted 
agents who failed to produce a statistically significant 
improvement of survival when used in combination 
with gemcitabine vs gemcitabine alone in phase III 
randomized trials[53-55]. Hence, successful translation 
of our otherwise encouraging preclinical achievements 
into tangible clinical benefit remains an elusive goal. 
Two notable exceptions, though, leave some room for 
optimism. Erlotinib, an EGFR tyrosine kinase inhibitor 
which was United States Food  and Drug Administration 
(FDA)-approved in 2007 for the treatment of advanced 
pancreatic cancer, is the first targeted agent which 
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succeeded in producing a significant-albeit modest-
survival benefit when administered as an adjunct to 
gemcitabine, especially among patients experiencing 
erlotinib-induced skin rash[7,56]; still, given the marginal 
effect of erlotinib on survival and its unclear therapeutic 
value in localized, resectable disease this drug has yet 
to be widely adopted as standard of care in routine 
clinical practice[8,10]. Based on the results of the recent 
phase III Metastatic Pancreatic Adenocarcinoma Clinical 
Trial[57] of nab-paclitaxel and gemcitabine combination 
vs gemcitabine alone in 861 patients with metastatic 
pancreatic cancer, showing a statistically significant 
survival benefit (as regards overall, progression-free 
and 1-year survival) in the combinatorial arm, nab-
paclitaxel was also approved by the FDA in 2013 to be 
administered in combination with gemcitabine as first-
line therapy for metastatic pancreatic cancer. 

CONCLUSION
Considering all available evidence, as summarized 
above, we should first acknowledge that, although 
some revolutionary progress has indeed been achieved 
on the theoretical front, preclinical enthusiasm has 
been severely tempered by clinical disappointment. 
The reasons behind this discrepancy remain largely 
unknown and can only be speculated upon at this point. 
Resistance of pancreatic cancer to anticancer drugs, 
including both standard cytotoxic and novel targeted 
agents, is often attributed to the abundant, dense, 
fibroinflammatory stroma surrounding pancreatic 
tumor tissue, which is believed to function as a barrier 
to efficient delivery of drug formulations to their target 
tumor cells by restricting blood supply and limiting 
diffusion of large molecules[10,58,59]. The high genetic 
heterogeneity and complexity of pancreatic cancer 
may also explain why targeting a specific mutation in a 
tumor containing 63 genetic alterations on average -as 
shown by previous genomic studies[22,60] - or “randomly 
combining drugs in the hope of achieving a better 
outcome in an unselected patient population”[10], may 
be doomed to fail. 

Hopefully, the results of ongoing clinical trials on 
current and emerging targeted therapeutics, including, 
among others, the anti-EGFR and anti-HER2/neu 
monoclonal antibodies nimotuzumab (NCT02395016) 
and trastuzumab (NCT01204372), respectively, the 
hedgehog inhibitors vismodegib (NCT01195415) 
and LDE225 (NCT01485744) and agents targeting 
the Notch pathway, such as the gamma-secretase 
inhibitor MK-0752 (NCT01098344), may help bridge 
the gap between preclinical and clinical outcomes. 
The increasing advances in structural and functional 
genomics are also expected to further elucidate the key 
molecular events underlying pancreatic tumorigenesis 
and identify additional targets for novel agents. Based 
on data derived from global genomic analyses of 
pancreatic tumors, previous authors have suggested 

that agents broadly targeting downstream mediators of 
critical physiologic functions (such as neo-angiogenesis 
or cell cycle alterations) may be preferable to agents 
targeting specific mutated genes[60]. Most importantly, 
personalized genomic medicine, utilizing patient-specific 
genomic data for guidance of treatment selection in 
each individual patient, may not only significantly 
enhance the clinical efficacy of molecular targeted 
therapy but also reduce the burden of unnecessary - 
and potentially harmful-drugs. 

As previously commented by Kleger et al[7], in a 
recent review article critically discussing current and 
future targeted therapies for pancreatic cancer, “smart 
drugs need smart applications”. Indeed, most experts 
concur that the latter applications should include multi-
targeted and, ideally, individualized molecular therapies, 
in combination with conventional cytotoxic agents or 
other regimens (such as immunotherapy)[61], guided by 
reliable biomarkers of treatment response. Increased 
toxicity resulting from these combinatorial approaches 
as well as their cost-effectiveness and socioeconomic 
implications should, nevertheless, be carefully consi
dered and may represent major limiting factors for 
their widespread use. In a disease as aggressive and 
lethal as pancreatic cancer, maintaining the highest 
possible quality of life for as long as possible is the most 
important target, and expectations should always be 
based on realistic goals. 
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Abstract
The early detection of colorectal cancer with effective 
screening is essential for reduction of cancer-specific 
mortality. The addition of fecal DNA testing in the 
armamentarium of screening methods already in clinical 
use launches a new era in the noninvasive part of 
colorectal cancer screening and emanates from a large 
number of previous and ongoing clinical investigations 
and technological advancements. In this review, we 
discuss the molecular rational and most important 
genetic alterations hallmarking the early colorectal 
carcinogenesis process. Also, representative DNA 
targets-markers and key aspects of their testing at 
the clinical level in comparison or/and association with 
other screening methods are described. Finally, a critical 
view of the strengths and limitations of fecal DNA 
tests is provided, along with anticipated barriers and 
suggestions for further exploitation of their use.

Key words: Colorectal cancer; Screening; Fecal DNA; 
Cologuard®; Adenoma
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Core tip: The molecular DNA targets from genetic 
and epigenetic alterations hallmarking colorectal 
carcinogenesis are reviewed here in the context of 
fecal testing. Also, comparison with other screening 
methods in terms of limitations, advantages and future 
perspectives of fecal DNA tests are discussed.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common 
cancer in men and women and accounts for 8% of all 
cancer-related deaths[1]. The incidence of CRC varies 
within different geographic locations and racial/ethnic 
groups. These differences may be related with different 
dietary and environmental exposures in association with 
a different genotype-driven susceptibility[2]. Screening 
for CRC plays a key role in reduction of CRC-related 
mortality, and the observed decline in the incidence 
of CRC since the mid-1980s is a striking proof of this 
effect, along with changes in risk factors[1].

CRC screening may be divided into two main 
categories: (1) biological sample-based tests, including 
fecal, blood and urine tests, as well as (2) colon 
structure-based and image-based tests, including flexible 
sigmoidoscopy, total colonoscopy, CT colonography and 
double-contrast barium enema[3,4]. Stool-based tests, 
including guaiac-based fecal occult blood test (g-FOBT), 
and the newer ones, fecal immunochemical test (FIT) 
and stool DNA test are already included in the American 
Cancer Society recommendations for CRC screening[4]. 

MOLECULAR RATIONAL FOR FECAL 
DNA TESTING
The detection of altered DNA from cancerous and pre-
cancerous lesions of the colonic mucosa is based on the 
natural exfoliation of these cells and is further facilitated 
by their high degree of “integrity” compared to DNA 
from stools of healthy patients. Accumulating data on 
key mutations occurring during the early stages of colon 
carcinogenesis including K-Ras, adenoma polyposis coli 
(APC), and p53, as well as epigenetic changes such as 
microsatellite instability (MSI), has guided the targeted 
development of clinically relevant detection tests[5].

The genetic heterogeneity of CRC is essentially the 
reason underlying the concept of targeting multiple 
DNA markers. K-Ras encodes a RAS family protein 
which is a GTPase involved in many downstream sig
nal transduction pathways[6]. The mutation is found 
in 13%-95% of CRC patients and is one of the initial 
mutations in colon carcinogenesis[6]. APC is an impor
tant tumor suppressor gene product involved in the 
Wnt/β-catenin signaling pathway, which in turn is a 
transcription regulator of several growth-controlling 
genes, including the oncogene MYC[7]. Thus it is not 
surprising that mutation or inactivation of the APC 
protein is a driver of inherited (familial adenomatous 
polyposis) and sporadic forms of CRC, occuring in the 
early stages of transition from adenoma to carcinoma[7]. 
Another tumor suppressor gene, p53 is found deleted 
or mutated in 30%-60% of CRC tumors[8]. Given its 

critical role in cell cycle control, apoptosis, and DNA 
damage response, p53 aberrations ultimately promote 
the development of increased genomic instability which 
facilitates transformation of colorectal adenomas to 
cancer[7].

MSI is a condition of genetic hypermutability within 
tandem repeats of short nucleotide sequences, the 
microsatellites, that results from impaired DNA mismatch 
repair (MMR) and is a frequent event in cancers, inclu
ding 15% of all CRC[9]. The most common cause of 
sporadic MSI is epigenetic silencing of MMR genes, 
such as MLH1 due to promoter hypermethylation[7] 
and there are several MSI markers (BAT25, BAT26, 
D2S123, D5S346, and D17S2720) for detection of MSI 
with polymerase chain reaction. The clinical relevance 
of MSI lies in the fact that patients with MSI positive 
tumors have better prognosis and longer overall survival 
compared with non-MSI tumors[9].

Epigenetic methylation of gene promoters is a 
central mechanism that can promote carcinogenesis in 
the appropriate context and several preclinical studies 
have identified hypermethylated genes in stool samples 
from CRC patients, which are strikingly un-methylated 
in normal epithelial cells[9]. Characteristic examples 
include the genes secreted frizzled-related protein 
(SFRP), vimentin, MGMT, FBN1, and p16[7]. In addition, 
the panel of methylated genes varies depending on the 
different stages of carcinogenesis, involving (1) SLC5A8, 
SFRP1, SFRP2, CDH13, CRBP1, RUNX3, MINT1 and 
MINT31 from normal colon mucosa to aberrant crypt 
focus formation; (2) p14, HLTF, ITGA4, p16, CDH1, and 
ESR1 from aberrant crypt focus to adenoma formation; 
and (3) TIMP3, CXCL12, ID4, and IRF8 from adenoma 
to carcinoma formation and metastatic progression of 
CRC[7].

CLINICAL STUDIES OF FECAL DNA 
TESTS 
An important limiting factor for developing a screening 
stool test with high sensitivity is the fact that only 0.01% 
of total fecal DNA is human and the tumor DNA is only 
a small percentage of the former[10]. 

K-RAS was the first gene tested for mutations in feces 
from CRC patients[11-13]. A comparative study assessed 
gFOBT and a fecal DNA test analyzing a panel of 21 
gene mutations[14]. Imperiale et al[14] concluded that 
the multitarget fecal DNA test detected more invasive 
cancers plus adenomas with high-grade dysplasia than 
did gFOBT (40.8% vs 14.1%) without compromising 
specificity (94.4% vs 95.2%). In a blinded, multicenter, 
case-control study, with cases including CRC, advanced 
adenoma (AA), or sessile serrated adenoma ≥ 1 cm 
(SSA), an automated multitarget stool DNA assay 
was able to detect AA with high-grade dysplasia with 
83% sensitivity[15]. Another blinded, multicenter, case-
control study assessing a similar panel of DNA markers 
identified 85% of patients with CRC and 54% with AA, 
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without sensitivity differences based on location, but 
with tumor size affecting detection rates[16].

More recently, Imperiale et al[17] reported their 
results from comparison of fecal DNA to FIT in a huge 
patient population who had a complete screening 
colonoscopy (n = 9989). The sensitivity of fecal DNA 
test including evaluation of KRAS mutations, aberrant 
NDRG4 and BMP3 methylation, B-actin and a hemo
globin assay was superior to that of FIT (92.3% vs 
73.8%). However, in addition to a lower specificity of 
fecal DNA and the lack of comparison with repeated FIT 
applications over time, a far higher number of patients 
(n = 689) were excluded due to problematic fecal DNA 
testing, compared to those who underwent FIT (n = 
34)[18]. 

A systematic review of the literature for studies 
of biomarkers for early detection of colorectal cancer 
and polyps since 2007, disclosed overall sensitivities 
for colorectal cancer detection by fecal DNA markers 
ranging from 53% to 87%, with varying specificities 
above 76%[19]. The diversity and combinations of 
various fecal DNA markers with the corresponding 
sensitivities and specificities per study[12-17,20-28] are 
summarized in Table 1. 

EVOLUTION OF FECAL DNA TESTING 
METHODOLOGY AND TECHNIQUES
Initially, the first fecal DNA tests were performed without 

stabilizing buffers, resulting in low sensitivities[13,14]. 
Upon incorporation of stabilizing buffers and introdu
ction of more sensitive detection techniques such as 
the digital melt curve method and beads, emulsion, 
amplification, and magnetics (BEAMing), the initial 
detection threshold of 1% of mutated copies was 
decreased to less than 0.1%[10,12]. 

Furthermore, implementation of the allele-specific 
quantitative real-time target and signal amplification 
(QuARTS) technique led to detection of less frequent 
mutations, thus improving the sensitivity for AA[12]. 
Another technique termed fluorescent long DNA (FL-
DNA), allows for identification of tumor DNA fragments 
longer than 150-200 base pairs, given that cancer cells 
evade apoptosis and subsequent DNA degradation. FL-
DNA detects CRC with a sensitivity of 80%[29]. Other 
advances that have been introduced in different studies 
include neutralization of bacterial enzymes with EDTA[30], 
enrichment of the panel of DNA markers (e.g., vimentin 
gene), and inclusion of hemoglobin detection in the 
same panel[16,31].

STRENGTHS AND LIMITATIONS OF 
FECAL DNA TESTS
A major advantage of fecal DNA tests as compared to 
either FOBT or colonoscopy is the fact that they are not 
affected by proximal location of tumors[32,33]. Another 
advantage is the lack of need for purging or dietary 
changes.

However, the sensitivity of fecal DNA tests appears 
to be lower for adenomas when compared to CRC 
detection (Table 1). In addition, although there is 
evidence of reductions in CRC incidence and mortality 
from randomized controlled trials of fecal occult blood 
test (FOBT) screening[34], similar data are lacking for 
fecal DNA tests. 

Other technical difficulties may involve the burden 
of large volume stool collection and shipping for the 
patients undergoing screening[31]. In addition, the fact 
that in the latest study of Imperiale et al[17] the DNA 
tests had over twice as many abnormal results as 
FIT, with a higher rate of false-positive results implies 
that more colonoscopies would be needed to further 
evaluate for CRC in the former arm. Thus, the inevitably 
higher number of diagnostic testing would increase 
the costs and risks of screening. Only with the current 
screening method of gFOBT, 690011 colonoscopies 
for false positive screening tests result in an additional 
estimated annual cost of £800000000[19]. 

Cost-effectiveness per se seems to be a major 
disadvantage of fecal DNA tests as both older and 
newer studies, particularly based on a Markov model, 
have concluded that fecal DNA is cost-effective only 
when compared with no screening, but is essentially 
dominated by most of the other available screening 
options, including FOBT and colonoscopy[36,37]. This may 
necessitate the limitation of number of DNA markers to 
render their clinical use more reasonable[38].
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  Ref. Marker Sensitivity Specificity
CRC Adenoma 

> 1 cm

  [12] Meth BMP3, hDNA, KRAS, 
APC

  67 (91)    21 (78) 85 (85)

  [13] APC, KRAS, p53, long DNA     3 (25) 47 (8) 2246 (96)
  [14] APC, KRAS, p53, long DNA   16 (52)   84 (12) 1344 (94)
  [15] β-actin, KRAS, meth 

BMP3 and NDRG4, fecal 
hemoglobin

  91 (98)   48 (57) 139 (90)

  [16] KRAS, a actina Meth NDRG4, 
BMP3, vimentin, TFPI2

214 (85)   72 (54) 264 (90)

  [17] KRAS, NDRG4, BMP3, 
β-actin, fecal hemoglobin

  60 (92) 321 (42) 4457 (90)

  [20] Meth vimentin     9 (41)     9 (45)   63 (95)
  [21] Meth SFRP2   60 (87)   21 (62)   28 (93)
  [22] Meth TFPI2, long DNA   52 (87)     4 (44)   25 (83)
  [23] Meth SFRP2, HPPI, MGMT   50 (96)    15 (71)   23 (96)
  [24] Meth APC, ATM, hMLH1, 

sFRP2, HLTF, MGMT, and 
GSTP1

  15 (75)    17 (68)   27 (90)

  [25] Meth vimentin, long DNA   68 (83)     6 (86) 298 (82)
  [26] Meth RASSF2 or SFRP2   63 (75)    25 (44) 101 (89)
  [27] Meth vimentin, MLH1, 

MGMT
  45 (75)    31 (60)   32 (87)

  [28] Meth RARB2, p16INK4a, 
MGMT, APC

  16 (62)     8 (40)     20 (100)

Table 1  Fecal DNA markers for advanced adenoma and 
colorectal cancer  n  (%)

Adapted from Ref.[38]. Copyright 2014 by Baishideng Publishing Group 
Inc. Adapted with permission. CRC: Colorectal cancer.
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bowel preparation and invasive endoscopy[40].
In an expanding view, fecal DNA testing could 

be implemented as a screening in CRC predisposing 
conditions, such as inflammatory bowel disease, play
ing a role complementary to colonoscopy for early 
dysplasia detection and surveillance[40,43]. A relevant 
multicenter validation study has recently been initiated 
(Government-registered Trial: NCT01819766) and its 
results are eagerly awaited.

Finally, technological advancements in detection 
assays of small fragment DNA from stool may render 
the identification of altered DNA shed from upper GI 
pre-cancerous and malignant lesions feasible[44-46].

Discussion of screening tests involving non-DNA 
(e.g., mRNA, miRNA) or non-fecal origin (e.g., blood, 
urine) biomarkers was beyond the scope of this review. 
However, it is reasonable to assume that fecal shedding 
of tumor DNA is an earlier event compared to inner 
tissue and bloodstream invasion, and is also directly 
related to the natural, constant process of luminal 
colonic mucosa exfoliation; thus rendering fecal testing 
more timely sensitive for the purpose of screening. 

Collectively, the accumulation of experience from 
clinical use of Cologuard® and the numerous ongoing 
studies on a plethora of biomarkers, as well as further 
technological advancement of colonoscopy with the 
full-spectrum endoscopy[47] are expected to further 
elucidate and expand the landscape of CRC screening 
research in the coming years, with the hope of further 
reducing CRC-specific mortality through earlier and 
accurate detection of pre-cancerous lesions.
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Abstract
Vitamin A and its derivatives, retinoids, have been 
widely studied for their use as cancer chemotherapeutic 
agents. With respect to colorectal cancer (CRC), several 
critical mutations dysregulate pathways implicated in 
progression and metastasis, resulting in aberrant Wnt/
β-catenin signaling, gain-of-function mutations in K-ras 
and phosphatidylinositol-3-kinase/Akt, cyclooxygenase-2 
over-expression, reduction of peroxisome proliferator-
activated receptor γ activation, and loss of p53 function. 
Dysregulation leads to increased cellular proliferation 
and invasion and decreased cell-cell interaction and 
differentiation. Retinoids affect these pathways by 
various mechanisms, many involving retinoic acid 
receptors (RAR). RAR bind to all -trans -retinoic acid 
(ATRA) to induce the transcription of genes responsible 
for cellular differentiation. Although most research 
concerning the chemotherapeutic efficacy of retinoids 
focuses on the ability of ATRA to decrease cancer 
cell proliferation, increase differentiation, or promote 
apoptosis; as CRC progresses, RAR expression is often 
lost, rendering treatment of CRCs with ATRA ineffective. 
Our laboratory focuses on the ability of dietary vitamin 
A to decrease CRC cell proliferation and invasion via  
RAR-independent pathways. This review discusses our 
research and others concerning the ability of retinoids 
to ameliorate the defective signaling pathways listed 
above and decrease tumor cell proliferation and invasion 
through both RAR-dependent and RAR-independent 
mechanisms.

Key words: Colorectal cancer; Retinoid; Vitamin A; 
β-catenin; Phosphatidylinositol-3-kinase; K-ras; Cyclooxy
genase-2; Peroxisome proliferator-activated receptor 
γ; P53; Phosphatase and tensin homolog deleted on 
chromosome 10
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Core tip: Vitamin A and its derivatives, the retinoids, 
have been widely studied in many types of cancer for 
their ability to increase cell differentiation and decrease 
cell proliferation. This review focuses on the ability 
of retinoids to affect signaling pathways commonly 
disrupted in colorectal cancer. We discuss vitamin A 
metabolism and signaling, how this process becomes 
aberrant as colorectal cancer progresses, and how 
treatment with both dietary vitamin A and exogenous 
retinoids can alter these dysregulated signaling 
pathways to decrease colorectal cancer cell proliferation 
and invasion. 

Applegate CC, Lane MA. Role of retinoids in the prevention 
and treatment of colorectal cancer. World J Gastrointest Oncol 
2015; 7(10): 184-203  Available from: URL: http://www.
wjgnet.com/1948-5204/full/v7/i10/184.htm  DOI: http://dx.doi.
org/10.4251/wjgo.v7.i10.184

INTRODUCTION
Colorectal cancer (CRC) is the third most commonly 
diagnosed cancer in men and the second most com­
monly diagnosed cancer in women worldwide[1,2]. An 
estimated 1.2 million cases occurred worldwide in 2008, 
with the highest incidence rates occurring in developed 
countries including North America, Australia, New 
Zealand, Japan and Europe[1]. Global trends reflect an 
overall increase in the incidence of CRC, with the highest 
increases observed throughout Asia and Europe[1]. 
About 608700 deaths occurred as a result of CRC in 
2008, accounting for 8% of all cancer-related deaths 
worldwide[1]. Approximately 50% of those patients 
diagnosed with CRC will experience metastasis to the 
liver, which is the primary site of CRC metastasis[3]. Risk 
factors for CRC are both genetic and environmental. 
A personal or family history of CRC and a personal 
history of chronic inflammatory bowel disease increase 
the risk for CRC[4]. Physical inactivity, obesity, smoking, 
and dietary patterns such as high red and processed 
meat consumption as well as moderate-to-heavy 
alcohol use also increase the risk for CRC[4]. Retinoids 
have long been studied for their effects on organismal 
development and cellular differentiation, particularly 
with respect to cancer. Retinoids are currently used 
as chemotherapies against cancers of epithelial 
origin, including basal and squamous cell carcinomas. 
Furthermore, retinoids (whose metabolism is shown 
in Figure 1) are known to affect signaling pathways 
frequently altered which result in the development and 
progression of CRC (Figure 2 and Table 1). CRC is highly 
influenced by diet, therefore it stands to reason that 
direct contact with retinoids from supplemented diets or 
exogenous retinoids administered as medication may 
have chemotherapeutic effects on CRC tumors. 

VITAMIN A METABOLISM
Vitamin A (retinol) and its derivatives, the retinoids, are 
a group of fat-soluble compounds composed of a similar 
structure in which a hydrophobic β-ionone ring is joined 
to a hydrophilic polar moiety by a conjugated tetraene 
linear chain[5]. Retinol is also able to be synthesized 
from some types of fat-soluble, antioxidant carotenoids 
found in fruits and vegetables. While there are several 
different carotenoid molecules found in plants, only 
β-carotene, α-carotene, and β-cryptoxanthin have 
provitamin A activity[6,7]. In the diet, these carotenoids 
are consumed primarily through carrots, cantaloupes, 
sweet potatoes, and spinach[6]. Theoretically, cleaving 
the β-carotene molecule would yield two retinal 
molecules, each with a β-ionone ring, which can then 
be converted to two retinol molecules for cellular use[6]. 
However, this conversion occurs at a much lower rate 
in vivo, with the retinol activity equivalent of β-carotene 
being much lower than a 1:2 ratio of β-carotene:
retinol[6]. Both α-carotene and β-cryptoxanthin only 
contain one β-ionone ring each and thus have about 
50% of the provitamin A activity of β-carotene[6]. 

Retinol is derived from retinyl esters found in 
animal sources such as butter, eggs, and meats[8,9]. 
During digestion in the intestinal lumen, the long-
chain fatty acids are cleaved from the retinyl esters via 
hydrolysis, yielding free retinol[10]. The free retinol is 
then absorbed into the mucosal cells where it is bound 
by cellular retinol binding protein-II (CRBP-II), which 
facilitates the re-esterification of retinol by lethicin 
retinol acyltransferase (LRAT)[10]. Once re-esterified with 
long-chain fatty acids such as palmitate, the resulting 
retinyl esters are incorporated into chylomicrons and 
secreted into the lymphatic circulation[10]. After draining 
into the general circulation and transferring their lipid 
contents into peripheral cells, the remaining chylomicron 
remnants containing the retinyl esters are taken up 
by hepatocytes[5]. Depending on bodily needs, the 
liver either stores the retinyl esters in stellate cells 
or hydrolyzes the retinyl esters to once again yield 
free retinol, which binds to retinol binding protein 
(RBP)[5]. The resulting RBP-retinol complex is released 
into circulation, where it binds to a small protein, 
transthyretin (TTR), which prevents the retinol from 
being excreted by the kidneys[5]. This RBP-retinol-
TTR complex circulates in the plasma, until retinol 
dissociates from the protein complex to enter target 
cells[11]. The transport of retinol into the cell and its 
intracellular fate is shown in Figure 1. Because retinol 
is lipophilic, the molecule can freely diffuse through 
the plasma membrane of cells[11]. In some cells or 
during vitamin A deficiency, retinol may be taken up 
by cells through the RBP receptor, STRA6 (stimulated 
by retinoic acid 6’)[5,11,12]. Cellular uptake of retinol via 
STRA6 is highly preserved in ocular cells, in which the 
loss of STRA6 leads to visual impairments[13]. However, 
in STRA6-null mice, retinoid homeostasis was only 
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moderately affected, with physiological functions that 
critically depend on all-trans-retinoic acid (ATRA) in 
both the adult and embryo remaining intact[14]. This 
indicates that while the receptor functions to assist cells 
in taking up retinol, STRA6 is not necessary to sustain 
normal function in cells other than those in the eyes. 
After diffusion into cells, the internalized free retinol 
is bound to CRBP or is oxidized to retinal by retinol 
dehydrogenases (RDH) or alcohol dehydrogenases 
(ADH) and then to ATRA by retinaldehyde dehydro­
genases (RALDH)[5]. ATRA then binds to cellular retinoic 
acid binding proteins (CRABPs)[5]. CRABP-II shuttles 
ATRA to the nucleus of the cell, where ATRA serves as a 
ligand for retinoic acid receptors (RAR).

The RAR and retinoid X receptors (RXR) belong 
to the nuclear hormone receptor superfamily and are 
ligand-dependent transcription factors[15]. Each receptor 
occurs in three subtypes: RARα, -β, and -γ; and RXRα, 
-β, and -γ. Further, seven different splice variants of 
RARα (RARα1-7), four different splice variants of RARβ 
(RARβ1-4), and seven different splice variants of RARγ 
(RARγ1-7) have been identified[16]. Two different splice 
variants of each RXR subtype have also been identified 

that RXRα1 and 2, RXRβ1 and 2, and RXRγ1 and 2[17]. 
ATRA binds to and activates all subtypes of RAR with a 
high affinity[15,17]. While the only known retinoid ligand 
for RXR is 9-cis-RA, there has been a general inability to 
detect this retinoid isomer in vivo[18,19]. Recently, 9-cis-
RA was detected in pancreatic tissue, but the ability 
of 9-cis-RA to act as a ligand for RXR in cells other 
than pancreatic cells remains controversial[20]. In the 
absence of ATRA, the RAR/RXR heterodimer binds to RA 
response elements (RARE) present on DNA promoter 
regions of ATRA-target genes[21]. The RAR/RXR complex 
recruits co-repressor proteins, which in turn recruit 
histone deacetylases (HDAC) to the DNA region[21]. 
HDAC remove acetyl groups from histone proteins, 
changing the chromatin structure and negatively regula­
ting gene transcription[21]. By the binding of ATRA, RAR 
undergoes a conformational change to release inhibitory 
co-repressor proteins and recruit co-activator proteins, 
such as histone acetyl transferases, to enhance trans­
criptional activity[22]. The vast majority of research 
regarding the ability of retinoids to prevent cancer 
progression has focused on ATRA and RAR-mediated 
phenomena. However, as discussed below, cells become 
resistant to the effects of ATRA on cellular proliferation 
and differentiation as tumors progress[8,15]. To this end, 
our laboratory has shown that retinol has non-genomic 
effects, exclusive of ATRA, such as interference with 
pathways involving phosphatidylinositol 3-kinase (PI3K) 
and β-catenin, which play key roles in the progression 
of cancer[23-29].

ABBERANT VITAMIN A SIGNALING AND 
METABOLISM IN COLORECTAL CANCER
The luminal side of the colon is an epithelial layer 
of tissue which is composed of a single sheet of 
columnar epithelial cells which are folded into finger-
like invaginations that are supported by the lamina propria 
to form a functional unit called a Lieberkuhn’s crypt[30]. 
Different types of epithelial cells line the crypt, including 
epithelial colonocytes, goblet cells, and endocrine 
cells[31]. The cells at the bottom of the crypt are stem 
cells that differentiate into the various epithelial cell 
types as they move upward to the top of the crypt in a 
process known as “upward migration”[31]. As the cells 
migrate upwards, they become terminally differentiated 
and stop proliferating[31]. Once the cells reach the top 
of the crypt, they undergo apoptosis and are sloughed 
off into the lumen[31]. When these cells mutate to 
retain their proliferative capacity and avoid apoptosis 
once they reach the top of the crypt, they have the 
potential to form an adenomatous polyp[31]. These 
abnormalities may result as a process of inherited 
genetic mutations, replicative mistakes, or epigenetic 
changes. If undetected, these polyps may progress into 
a cancerous lesion[31].

The growth and differentiation of epithelial cells is 
strongly controlled by retinoid-activated genes. Genes 
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re-establishment of RARβ2 expression, indicating a 
potential role for the combined chemotherapeutic 
action of DNA methylation inhibitors and retinoids[39]. In 
contrast, Lee et al[32] demonstrated that treatment of 
RA-sensitive and RA-resistant human colon cancer cell 
lines with ATRA induced the expression of RARα in all 
cell lines while only increasing the expression of RARβ in 
colon cancer cell lines sensitive to RA. Over-expression 
of RARβ in the RA-resistant colon cancer cell line, 
DLD-1, resulted in the re-acquisition of RA-sensitivity, 
inducing growth inhibition and apoptosis in this cell line 
with ATRA treatment[32]. Over-expression of RARβ in 
LoVo cells, another RA-resistant human colon cancer 
cell line, showed similar results in which treatment with 
ATRA resulted in retinoid-mediated growth inhibition[40].

In addition to the loss of RAR expression and the 
consequential ATRA resistance, as CRC progresses, 
colorectal tumor cells appear to lose the ability to 
produce ATRA[26,41,42] while, at the same time, increasing 
ATRA degradation via the cytochrome P450 enzyme, 
CYP26A1[43]. Recently, Kropotova et al[41] found that all 
genes involved in ATRA synthesis were decreased in 
CRC tumors and colorectal cell lines. The researchers 
also found that ADH IB and IC, the most abundant 
retinol oxidizing enzymes, exhibited decreased gene 

involved in transcription, cell signaling, and tumor 
suppression contain RAREs in their promoter regions, 
indicating the importance of ATRA in gene expression[18]. 
In many epithelial-derived adenomas and carcinomas, 
the expression of one or more RAR is lost and the cell 
loses its ability to regulate normal growth[17,32]. This 
phenomenon is termed “ATRA-resistance”. The RARs 
themselves contain RAREs in their regulatory regions 
and are thus RA-inducible genes[21,33]. Treatment of 
patients with premalignant oral lesions with 13-cis-RA, 
a synthetic retinoid, increased the expression of RARβ, 
which correlated with clinical response, signifying the 
beneficial effects of retinoid treatment in increasing 
anti-tumor gene activity in cancers[33,34]. However, the 
loss of tumor-suppressive RARβ is common in premalig­
nant and malignant tissues and cells, as reviewed in 
Xu[33]. Loss of RAR has been shown to be partly due 
to epigenetic changes such as histone modification 
and DNA methylation becoming aberrant during 
carcinogenesis, silencing RAR gene expression[33,35-38]. 
The loss of RARβ2 in the HCT-116 colon cancer cell 
line has been suggested to originate as a result of 
hypermethylation and the ensuing loss of RARα, which 
is an upstream regulator of RARβ2[39]. Restoration of 
RARα by a DNA methylation inhibitor resulted in the 
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expression when adenomas were compared to more 
advanced carcinomas. Similarly, mRNA levels for RDH-5 
and L were decreased in colon tumors and CRC cell 
lines when compared to normal colon cells[42]. As a 
result, the CRC cell lines produced only small amounts 
of ATRA from retinol, a phenomenon our group also 
observed with the ATRA-resistant CRC cell lines 
HCT-116, SW620 and WiDR[26]. Loss of adenomatous 
polyposis coli (APC) function, as seen in the SW620 
cell line[44], inhibits RDH expression, the enzyme which 
converts retinol to retinaldehyde[42]. Interestingly, 
transfection of APC into an APC-deficient cell line 
increased the expression of RDH-L and the formation 
of ATRA, indicating crosstalk between Wnt/β-catenin 
signaling and retinoid metabolism[42]. To elaborate, APC 
mediates the proteosomal degradation of C-terminal 
binding protein 1 (CtBP1). Loss of APC increases the 
levels of CtBP1. Increased CtBP1, in turn, decreases 
RDH levels, inhibiting the production of ATRA[45]. Loss of 
ATRA ultimately leads to less colonocyte differentiation, 

as ATRA is necessary for epithelial cell differentiation[46]. 
In fact, homozygous loss of APC causes failed intestinal 
cell differentiation independent of catenin-mediated 
gene transcription but dependent upon CtBP1, leading 
to the hypothetical two-step model of colon adenoma 
initiation and progression[47]. In this model, APC loss 
and the resulting increase in CtBP1 leads to adenoma 
initiation, successive K-ras activation, and the nuclear 
translocation of β-catenin causing progression to a 
carcinoma. An incongruity with this model is that 
administration of ATRA to ApcMin mice, which are heter­
ozygous for a dysfunctional APC mutation, did not 
prevent tumor formation[48]. Shelton et al[43] found 
that CYP26A1 was increased in tumors from APCMin 
mice, spontaneous human CRC, and in tumors from 
patients with familial adenomatous polyposis coli 
(FAP). These researchers also showed that CYP26A1 
expression was dependent upon β-catenin-induced 
gene expression[43]. Finally, retinoid storage may be 
altered in cancer. Lecithin retinol acyltransferase (LRAT) 
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  Protein Mutation rate Result of gene mutation Response to retinoid treatment

  APC 80%[57,65] Loss of β-catenin degradation[58]; constitutive 
activation of the Wnt/β-catenin pathway[59]; 

decreased RDH levels inhibiting formation of 
ATRA[42]

Not determined

  β-Catenin 5%[56] Loss of β-catenin degradation[56]; constitutive 
activation of the Wnt/β-catenin pathway[56]; 

increased CYP26A1 levels resulting in increased 
degradation of ATRA

Increased degradation of β-catenin via RXR-mediated pathway[23,24]

  PI3K 30%-50%[77,78] Activation of Akt and loss of GSK3β function[80,82]; 
increased cancer metastasis[88], partially through NF-

κB activation and increased expression of MMP-2 
and -9[87,89,90]; positive cell cycle progression through 

cyclin D1[105]; loss of cell-cell adhesion by Snail 
accumulation to repress E-cadherin[106]

Decrease MMP-2 and MMP-9 activity[28]; increase TIMP-1 
expression[28]; decrease the phosphorylation of GSK3β, decrease 

cellular proliferation, and increase the expression of pro-apoptotic 
proteins in human leiomyoma and myometrial cells[115]; CRBP-I 

inhibits PI3K/Akt activation in breast cancer cells[116]; inhibit PI3K 
activity to decrease CRC cell invasion in vitro and metastasis in 

vivo[25]

  PTEN 20%-40%[80] Loss of PI3K/Akt inhibition[80]; correlation with 
tumor aggressiveness and invasiveness[109-111]

Suppression of cellular proliferation and enhanced apoptosis by 
increasing PTEN expression in smooth muscle cells, neuroblastoma 
and glioblastoma cells, promyelocytes, leukemia cells, fibroblasts, 
and breast, endometrial, and hepatocellular carcinoma cells[119-128] 

  COX-2 80%-90%[134-136] Increased PGE2 signaling[133,137,138], ERK activation[140], 
PI3K/Akt signaling through increased EGFR[133,140,141], 
β-catenin stabilization[142,143], and MMP-2 and MMP-9 

expression to promote cellular proliferation[144,145] 

Decrease COX-2 expression[146], PGE2, β-catenin levels, and 
MMP-9[135,144]; inhibition of cell growth[151]; increased apoptosis and 

RARβ expression[152]

  PPARγ 8%[161] Loss of inhibitory action of gene transcription of pro-
survival and growth amplification genes[155,162-165]; 

increased expression of COX-2[154]

Suppress COX-2 and MMP-7 expression and induction of cell cycle 
arrest and apoptosis[171]; induce expression of RARβ mRNA in breast 
cancer cells[175]; increase apoptosis in glioblastoma cells[176]; stimulate 

PTEN expression in leukemia cells and fibroblasts[121,128]

p53 50%[177,178] Loss of anti-growth and apoptotic activity; loss of 
p53/Siah-1-mediated β-catenin degradation[187] 

Increase retinyl ester storage through transcription of retSDR1[54]; 
enhance p53-mediated cell cycle inhibition and apoptosis through 
activation of AP-2α and p21 in breast cancer cells[192], caspases in 

keratinocytes[188], Btg2 and CRABP-II in breast cancer cells[191]; STRA6 
induction in ovarian cancer cells, fibroblasts, and CRC cells[193]

Table 1  Summary of pathways dsyregulated in colorectal cancer and the effect of retinoids on these pathways in both colorectal 
cancer and other tumor types

APC: Adenomatous polyposis coli; RDH: Retinol dehydrogenase; ATRA: All-trans-retinoic acid; CYP26A1: Cytochrome P450 26A1; RXR: Retinoid X 
receptor; PI3K: Phosphatidylinositol-3-kinase; GSK3b: Glycogen synthase kinase 3b; NF-kB: Nuclear factor-kappa B; MMP: Matrix metalloproteinase; 
TIMP-1: Tissue inhibitor of matrix metalloproteinase 1; CRBP: Cellular retinol binding protein; CRC: Colorectal cancer; PTEN: Phosphatase and tensin 
homolog deleted on chromosome 10; COX2: Cyclooxygenase 2; PGE2: Prostaglandin E2; ERK: Extracellular signal-regulated kinase; EGFR: Epidermal 
growth factor receptor; RARb: Retinoic acid receptor b; PPARg: Peroxisome proliferator-activated receptor g; AP-2a: Activator protein 2a; Btg2: Beta cell 
translocation gene 2; CRABP-II: Cellular retinoic acid binding protein II; STRA6: Stimulated by retinoic acid 6. 
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esterifies retinol to retinyl esters, the storage form of 
vitamin A while retSDR1 converts retinal to retinol. 
The promoter of the LRAT gene is hypermethylated in 
CRC cell lines and tumors when compared to normal 
tissue[49]. This hypermethylation would decrease LRAT 
gene expression, potentially decreasing the availability 
of intracellular retinoids; however, the role of LRAT in 
cancer progression is controversial with some studies 
in non-CRC models showing that decreased LRAT levels 
are protective against carcinogens and correlate with 
better patient outcomes[50-52]. Proteins in the p53 family 
have also been shown to affect retinoid metabolism 
by modulating the expression of retinal short-chain 
dehydrogenase/reductase (retSDR1). The retSDR1 
enzyme is important in regulating retinoid metabolism 
and storage in many different cell types[53]. Treatment 
of neuroblastoma cells with physiological concentrations 
of retinol leads to the accumulation and storage of 
retinyl esters through the induction of retSDR1 enzyme 
levels[53]. The overexpression of p53 in the colorectal 
adenocarcinoma cell line DLD-1 and the CRC cell line 
HCT-116 yielded a strong induction of both retSDR1 
mRNA expression and protein level, even in cells 
with truncated reporters[54]. The binding of p53 to the 
retSDR1 promoter was further increased following 
DNA damage to the cells[54,55]. Importantly, retSDR1 
mRNA was shown to be elevated in CRC tumor tissues 
when compared with healthy samples from the same 
individuals[54]. These results signify that one mechanism 
by which p53 acts as a tumor suppressor is by inducing 
retSDR1 expression in carcinomas to work against 
tumor progression by supporting retinoid metabolism in 
these cells[54].

In summary, colorectal tumors often (1) lack RAR, 
the receptors for ATRA; (2) lose the ability to synthesize 
ATRA, the RAR ligand, from vitamin A; (3) exhibit 
increased degradation of ATRA via CYP26A1 to 4-oxo-
retinoic acid (4-oxo-RA) and (4) may have altered 
retinoid storage. The regulation of retinoid metabolism 
is controlled by proteins such as APC, β-catenin, 
and p53 that play crucial roles in the promotion and 
progression of CRC as we elaborate below.

THE WNT/b-CATENIN SIGNALING 
PATHWAY
The Wnt/β-catenin signaling pathway is an important 
process that regulates the proliferation, differentiation, 
and motility of cells in normal intestinal epithelium[3,56]. 
This pathway, and others affecting CRC progression, are 
shown in Figure 2. During normal intestinal functioning, 
the APC protein forms a cytoplasmic complex with Axin, 
another protein present in the cytosol. Both proteins 
contain binding sites for other members of their 
functional complex[57]. Together, the APC-Axin complex 
recruits other functional members, the serine and 
threonine kinases glycogen synthase kinase 3β (GSK3β) 
and casein kinase 1 (CK-1)[57]. Together, these proteins 

form what is known as the β-catenin “destruction 
complex”[57]. β-catenin, when present in the cytosol, 
is sequentially bound and phosphorylated by these 
kinases and thus earmarked for degradation through an 
ubiquitin-proteasome-mediated pathway[57]. 

β-catenin performs a dual function in the cell, where 
it acts as both a transcription factor in the nucleus 
and as a cell adhesion stabilizer at the cell membrane. 
When in the cytosol, β-catenin binds to E-cadherin, a 
transmembrane protein responsible for the formation 
and maintenance of intercellular adherens junctions 
formed when epithelial cells come into contact[58]. 
E-cadherin binds to catenin p120 and β-catenin, 
which then binds to α-catenin and γ-catenin to anchor 
E-cadherin to the actin cytoskeleton[58,59]. Together, 
these proteins form a functional unit termed the 
E-caderhin-catenin unit (ECCU), in which β-catenin 
plays the role of an intermediary protein connecting 
E-cadherin to the α- and γ-catenin proteins that bind 
to the actin cytoskeleton[58]. The loss of E-cadherin 
function is thought to occur late in carcinogenesis and 
leads to the destruction of the ECCU, which causes a 
loss of the adherens junction and subsequent increase 
in cell motility and migration[58]. While the function of 
APC results in the degradation of β-catenin and β-catenin 
is necessary to form the ECCU, APC and E-cadherin 
compete for binding of β-catenin and work together to 
maintain the equilibrium of β-catenin concentration in 
the cell[58]. Loss of APC function results in E-cadherin 
saturation and the consequent accumulation of cytosolic 
β-catenin, which then translocates to the nucleus to 
enhance the transcription of genes important in cell 
growth and motility[58,59]. Thus, loss of APC function 
leads to a disruption in the equilibrium of β-catenin 
concentration and increased Wnt signaling[58,59]. Similarly, 
truncation of APC may result in β-catenin binding but not 
degradation, making β-catenin unavailable for E-cadherin 
binding[58]. While the over-expression of β-catenin is 
an important step in early tumorigenesis, later stages 
of carcinogenesis and loss of tumor differentiation 
may lead to loss of both β-catenin and E-cadherin 
expression, leading to the loss of ECCU formation and 
increased ability to metastasize[58].

Because β-catenin is both degraded and sequestered 
to the cell membrane during normal APC and E-cadherin 
function, it is unable to accumulate in the cytosol and 
translocate to the nucleus, where it binds to proteins 
of the T-cell factor/lymphoid enhancer factor (TCF/
LEF) families[56,57]. If allowed to form a complex with 
TCF/LEF proteins, β-catenin acts as a transcription 
co-factor to allow TCF/LEF transcription factors to 
bind to the regulatory regions of genes regulating 
cell differentiation, proliferation, and migration such 
as c-Myc, matrix metalloproteinase-7 (MMP-7), and 
cyclin D1[3,57,60,61]. Ligand-bound RARs have been 
shown to compete with TCF in breast cancer cells to 
decrease β-catenin-mediated gene transcription[62]. 
In contrast, others have shown that overexpression 
of RARγ in cholangiocarcinoma cells increases the 
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nuclear translocation of β-catenin[63], indicating that 
the effect of RARs on β-catenin varies with tumor type. 
In phosphorylating β-catenin and thus marking it for 
ubiquitin-mediated proteasomal degradation, APC 
and its protein complex constituents act as negative 
regulators of the Wnt/β-catenin signaling pathway and 
maintain the homeostasis of intestinal crypt cells and 
stem cells[3,57,60,64].

Due to its importance in negatively regulating the 
Wnt/β-catenin signaling pathway, mutations resulting 
in the loss of APC function are generally thought to be 
the earliest step in CRC tumorigenesis[56,57]. As a result, 
APC mutations are found in approximately 80% of 
human CRCs while mutations involving β-catenin are 
found in about 5% of all human CRCs[56,57,65]. This APC 
mutation can be due to an inherited mutation, as in 
the case of FAP, or due to environmentally-regulated 
hypermethylation or dysregulation of the APC gene[61,66]. 
In loss-of-function APC mutations, the ability to degrade 
β-catenin is lost, allowing the Wnt/β-catenin signaling 
pathway to become constitutively active and upregulate 
the transcription of oncogenes important in tumor cell 
proliferation and metastasis[56]. The mutation of the 
APC gene leads to the inability of the APC protein to be 
exported from the nucleus into the cytoplasm, where 
APC normally forms a complex with the other proteins 
involved in the β-catenin destruction complex[61]. The 
loss of APC results in the increased ability of Wnt 
proteins to bind to membrane-bound receptors in the 
Frizzled (FZD) and low density lipoprotein receptor-
related families to activate kinases that phosphorylate 
GSK3β[60,61]. The phosphorylation of GSK3β causes the 
cytosolic β-catenin destruction complex to become de-
stabilized, allowing for the accumulation of β-catenin 
in the cytosol and its subsequent translocation to the 
nucleus[60]. When Wnt[66] receptors are not engaged, 
CK-1 and GSK3β are available to phosphorylate β-catenin 
to mark it for degradation. 

K-RAS MUTATIONS AND CROSSTALK 
WITH OTHER PATHWAYS 
While the APC mutation is found in most colon tumors 
and is generally regarded to be the earliest step in 
carcinogenesis, doubt has been placed on its ability 
to single-handedly cause neoplastic formation. In 
30%-50% of CRC tumors, mutation of the K-ras gene 
has also been found, implicating its co-involvement 
in tumorigenesis[3,60,65,67]. K-ras is responsible for the 
transduction of mitogenic signals from growth factor 
receptors on the cell surface to the nucleus[65]. K-ras 
acts as a molecular switch to regulate the extracellular 
signal-regulated kinase (ERK) and PI3K/Akt signaling 
pathways[3]. During K-ras activation, the binding of 
growth factors to receptor tyrosine kinases causes the 
recruitment of the growth factor receptor-bound protein 
2/son of sevenless (GRB2/SOS) protein complex to the 
inner cell membrane[60]. This protein complex activates 

the G-protein Ras (rat sarcoma), resulting in the 
phosphorylated ERK translocation to the nucleus[60]. In 
the nucleus, ERK interacts with transcription factors to 
induce the transcription of target genes such as c-FOS 
and c-JUN, which regulate proliferation, differentiation, 
and apoptosis[60]. 

Additionally, K-ras activation results in the increased 
transcription of β-catenin, resulting in the increased 
accumulation of β-catenin in the cytosol[60]. Mutations of 
K-ras destroy the GTPase activity of K-ras and fix K-ras 
in its GTP-bound active forms to permanently activate 
K-ras and increase ERK signaling[3,60,65,67]. The K-ras 
mutation interacts with the Wnt/β-catenin signaling 
pathway by causing the phosphorylation of GSK3β 
through activation of PI3K[60]. As previously discussed, 
inactivation of GSK3β leads to de-stabilization of the 
destruction complex and the resultant stabilization and 
mobilization of cytosolic β-catenin to the nucleus[60]. 
Normal activity of GSK3β contributes to negative 
regulation of both the K-ras and Wnt/β-catenin signaling 
pathways by phosphorylating K-ras, contributing to 
its degradation[64]. Thus, GSK3β plays an important 
role in regulation of both the K-ras and Wnt/β-catenin 
signaling pathways by degrading key intermediates of 
each pathway and preventing the transcription of genes 
important in tumor promotion[64]. 

K-ras mutations develop after APC loss during pro­
gression and metastasis of CRCs, enhancing neoplastic 
growth[3]. This enhancement of neoplastic growth is 
achieved by enhanced activation of Wnt/β-catenin 
signaling[3]. In many cancers, simultaneous activation 
of K-ras- and β-catenin-dependent pathways are often 
seen[60]. In human CRC cells and CRC mouse models, 
gain-of-function K-ras mutations coupled with loss-of-
function APC mutations were associated with increased 
nuclear β-catenin levels and increased size, number, 
and incidence of tumors when compared to cells or 
mice with K-ras or APC mutations alone[3]. The resulting 
tumors displayed an increased migration rate and 
invasive capability through the increased activity of 
cyclin D1, which promotes cell cycle progression[3,60]. 
This evidence results in the theory that carcinogenesis 
in colon cells requires APC loss with an additional K-ras 
mutation[3]. Administration of ATRA to mice treated with 
the carcinogen deoxycholic acid (DCA) decreased colon 
tumor incidence, but ATRA did not affect the rate of 
K-ras mutation due to DCA administration[68]. Although 
we are not aware of any additional research regarding 
the ability of retinoids to affect K-ras expression or 
function in CRC, our laboratory and others have shown 
that retinoids can decrease β-catenin levels and thereby 
β-catenin-dependent gene transcription as described 
below.

Table 1 summarizes the effect of retinoids on 
proteins that affect CRC progression. Although retinoids 
do not appear to directly alter APC or K-ras activity, 
they do directly affect β-catenin levels. β-catenin 
degradation has been shown to be mediated by 
the activity of three pathways: (1) the APC/GSK3β 
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pathway; (2) the p53/Siah-1 pathway; and (3) 
an RXRα-dependent pathway. The RXR-mediated 
pathway was discovered when Xiao et al[69] showed 
that RXR agonists caused the degradation of RXRα 
and reduced β-catenin-mediated activation of gene 
transcription and cell proliferation. Additional work 
has shown that there is a direct interaction between 
RXRα and β-catenin[70]. Specifically, in the RXRα-
dependent pathway, RXRα binds to nuclear β-catenin 
and facilitates the transport of β-catenin back into the 
cytosol where β-catenin is ubiquitinated and degraded 
by the proteosome. Interestingly, RXRα expression is 
decreased in advanced CRC when compared to normal 
adjacent tissue and this decrease is associated with 
aberrant β-catenin expression[71]. Retinoids increase 
β-catenin degradation in a variety of tumor types. For 
example, N-(4 hydroxyphenyl)retinamide (fenretinide) 
induced the degradation of β-catenin in prostate cancer 
cells[72] and ATRA decreased β-catenin levels in head 
and neck cancer stem cells[73]. With respect to CRC, our 
laboratory has shown that retinol treatment increased 
β-catenin degradation in ATRA resistant CRC cell lines 
via a RXR-mediated pathway[23,24]. 

PHOSPHATIDYLINOSITOL 3-KINASE/AKT 
SIGNALING
The PI3K/protein kinase B (Akt) signaling pathway 
is another important pathway, the activation of 
which induces cellular transformation, proliferation, 
migration, and survival, all of which work together to 
promote tumor progression[74-76]. Mutations resulting 
in aberrant activation of this pathway have been 
implicated in 30%-50% of all human CRCs[77,78]. 
This dysregulation occurs via three mechanisms: (1) 
activating mutations in exons 9 and 20 on the PIK3CA 
gene; (2) overexpression of Akt itself or activating 
mutations in the Akt PH domain to increase signaling; 
and (3) loss of function or expression of the negative 
regulator phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN)[79-81]. PI3K belongs to a family 
of lipid kinases, and is characterized by its ability to 
phosphorylate the inositol rings of phospholipids on 
the inner cell membrane[82]. PI3K is present on the 
cell membrane as a heterodimer, consisting of one of 
four catalytic p110 subunits and one of two regulatory 
subunits[80,82]. P110α (PIK3CA) and p110β (PIK3CB) are 
ubiquitously expressed, with PIK3CA commonly being 
the more abundant catalytic subunit[82]. PIK3CA and 
PIK3CB bind to one of two regulatory subunits: p85α or 
p85β[82]. Class I PI3K enzymes bind Akt via pleckstrin 
homology (PH) domain-containing proteins and are 
activated mainly by receptor tyrosine kinases, such as 
those belonging to the epidermal growth factor receptor 
(EGFR) family, which accept a variety of extracellular 
signals necessary to stimulate cellular proliferation[80,82]. 
Once activated, PI3K catalyzes the phosphorylation of 
membrane-bound phosphatidylinositol-4,5-bisphosphate 

(PIP2) to generate the second messenger phospha­
tidylinositol-3,4,5-triphosphate (PIP3)[82]. The generation 
of PIP3 allows for the recruitment of PH domain-
containing proteins to the inner plasma membrane[80]. 
Most notably, the PH domains of 3-phosphoinositide-
dependent protein kinase 1 (PDK1) and Akt are drawn 
together, and PDK1 mediates the phosphorylation of Akt 
at the threonine 308 site[80,83]. 

Activating mutations in the Akt1 gene are rare, 
occurring in less than 2% of all CRCs[80]. Activating 
mutations in PDK1 are even rarer, occurring in less 
than 1% of all CRCs[80]; however, because these 
proteins are immediately downstream of PI3K, over-
activation of PI3K due either to activating mutations 
of the PI3K gene or due to mutations of PTEN, the 
PI3K inhibitor, ultimately results in the over-activation 
of Akt. Akt occurs in three isoforms: Akt1, 2, and 
3, with Akt1 being most broadly expressed[82]. Akt 
contains two phosphorylation sites, both of which are 
required to be phosphorylated for full Akt activation[84]. 
Phosphorylation of Akt at the threonine 308 site by 
PDK1 partially activates Akt, whereas full activation 
requires conjunctive phosphorylation of the serine 473 
site by other kinases, such as the mammalian target 
of rapamycin (mTOR) complex 2 (mTORC2)[83,85]. Full 
activation of Akt enables Akt to modulate the activity 
of pathways and expression of genes involved in the 
regulation of cell survival and proliferation as well as 
metastasis[86]. As reviewed in Fresno Vara et al[82] and 
Danielsen et al[77], Akt prevents the anti-proliferative 
activities of tumor suppressor genes p21, p27, and p53. 
Akt also blocks apoptosis in cancer cells by inactivating 
signals produced by Bcl-2 associated-death promoter 
(Bad) and caspase-9 proteins, and activates nuclear 
factor-kappa B (NF-κB), a transcription factor involved 
in the transcription of genes important in maintaining 
cell survival and increasing cell invasion[77,82,87]. The 
mechanism by which Akt activation promotes meta­
stasis is incompletely understood, but elevated Akt 
phosphorylation has been shown to be correlated with 
the invasiveness of cancer in human CRC tissues[88]. 
Specifically, increased levels of phosphorylated Akt 
are associated with venous invasion of colorectal 
carcinomas, tumor depth, and the presence of lymph 
node metastases[88].

One possible mechanism linking Akt activity to 
cell invasion relies on the activation of NF-κB. NF-
κB upregulates the transcription of matrix metallo
proteinases (MMPs), which are a class of zinc-depen­
dent enzymes responsible for the degradation of 
the extracellular matrix[87,89,90]. Specifically, MMP-2 
(gelatinase A) and MMP-9 (gelatinase B) belong to a 
family of gelatinase enzymes that degrade the collagen 
component of the extracellular matrix[90,91]. Both MMP-2 
and MMP-9 are overexpressed in many colon carcinomas 
when compared with non-cancerous tissue and are 
associated with increased invasiveness of cancers, 
advanced tumor stage, and poor survival[87,89,91,92]. 
Relevant to this review, MMP-9 and MMP-2 have been 
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shown to be overexpressed in colorectal carcinomas, 
but not adenomas, indicating their importance in 
tumor promotion and progression[93]. MMP-2 and -9 
are present in the cytosol in inactive pro forms, and 
cleavage of MMP-2 and -9 by membrane-type matrix 
metalloproteinases (MT-MMP), such as MT1-MMP, 
convert inactive pro-MMP-2 and -9 to active MMP-2 and 
-9[94,95]. This cleavage is inhibited by tissue inhibitors 
of metalloproteinases (TIMPs), specifically TIMP-1 
and -2, which interact with the intermediate (inactive) 
MMP-9 and -2, respectively, before the proteases are 
fully activated[94,96]. TIMP-1 expression is regulated 
by activator protein-1 (AP-1), a transcription factor 
regulated by the activation of the mitogen-activated 
protein kinase (MAPK) pathway[90]. Thus, it has been 
suggested that both PI3K/Akt and MAPK signaling 
activation must occur simultaneously to regulate MMP-2 
and -9 activity and thereby cell invasion[90]. ATRA has 
been shown to decrease MMP-2 and -9 activity as well 
as protein and mRNA levels and increase TIMP-1 in 
a variety of cancers[97-101]. With respect to CRC, our 
laboratory has shown that treatment of the ATRA-
resistant human CRC cancer cell lines HCT-116 and 
SW620 with retinol resulted in decreased MMP-9 
mRNA levels[28]. MMP-2 mRNA levels were decreased in 
SW620 cells but not in HCT-116 cells[28]. Importantly, 
the reduction of MMP-2 and MMP-9 mRNA was matched 
by a reduction in MMP activity[28]. Retinol treatment of 
HCT-116 and SW620 cells also increased the expression 
of TIMP-1, potentiating the inhibition of MMP-9 activity 
in these cells[28]. 

While TIMP-1 and MMP-2 and 9 expression are 
regulated by AP-1 and AP-1 activity is in turn repressed 
by retinoids, this is not thought to be the mechanism 
by which retinoids affect TIMP-1 and MMP-2 and 9 
expression. AP-1 is composed of the proto-oncogenes 
c-JUN and c-FOS and its activity is associated with 
cellular proliferation and invasion[102]. Suppression of 
AP-1 by 9-cis-RA led to the inhibition of cyclin D1 and 
MMP-2 and 9 in breast cancer cells, however this effect 
was not matched in SW480 CRC cells, which have low 
AP-1 activity[102]. Instead, the trans-repressive effects 
of the cyclin D1 promoter, which contains AP-1 and TCF 
sites, was independent of the AP-1 site in these CRC 
cells and required the involvement of a TCF binding 
element[103]. This data shows that while AP-1 activity is 
involved in cellular proliferation and invasion, retinoids 
appear to exert their repressive effects on MMP levels 
through their interaction with pathways that decrease 
β-catenin, as β-catenin forms a transactivation complex 
with TCF/LEF transcription factors. However, promising 
research involving novel synthetic retinoid derivatives 
may better target AP-1 for tumor suppression. Um 
et al[104] developed the synthetic retinoid 4-amino-2-
(butyrylamino)phenyl-(2E,4E,6E,8E)-3,7-dimethyl-
9-(2,6,6-trimethyl-1-cyclohexenyl)-2,4,6,8-nonate­
traenoate (ABPN), which greatly inhibited AP-1 activity 
in HCT-116 cells. ABPN suppressed c-JUN activity, which 
led to a decrease in MMP-2 expression, by directly 

affecting AP-1[104]. 
It is widely accepted that cross-talk between 

the PI3K/Akt pathway and the Wnt/β-catenin signa­
ling pathway occurs with GSK3β. Activated Akt 
phosphorylates GSK3β, inactivating GSK3β and causing 
a loss of function[82]. Without GSK3β to phosphorylate 
cytosolic β-catenin and mark it for degradation, stabilized 
β-catenin can accumulate in the cytosol and eventually 
translocate to the nucleus to act as a co-factor for gene 
transcription, as discussed previously[82,86]. Additionally, 
it has been shown that GSK3β phosphorylation of cyclin 
D1 stimulates cyclin D1 degradation[105]. Therefore, 
in tumor cells with increased Akt signaling and loss of 
GSK3β activation, cyclin D1 remains stable and able 
to positively regulate cell cycle progression[105]. The 
loss of GSK3β functioning also results in the increased 
accumulation of Snail, a zinc-finger transcriptional 
repressor of E-cadherin[106]. Active, unphosphorylated 
GSK3β binds to Snail and activates its degradation[107]. 
Loss of GSK3β function by Akt hyperactivation permits 
Snail to act as a transcription factor to repress E-cadherin 
transcription, decreasing cell-cell adhesion through 
E-cadherin loss[106,107]. As discussed, Akt activation 
also increases NF-κB transcriptional activity, which in 
turn increases Snail expression in epithelial cells[106]. 
Alternatively, it has also been proposed that 3%-5% 
of total cellular GSK3β is stably bound to Axin to form 
a complex reserved specifically for Wnt signaling[108]. 
One study conducted in prostate and breast cancer 
cell lines and C. elegans has shown that inhibition 
of PI3K by the PI3K inhibitor, wortmannin, does not 
affect GSK3β phosphorylation[108]. Thus, Wnt signaling 
by PI3K inhibition remains unchanged, refuting the 
common theory that there is cross-talk between the 
two pathways[108]. Instead, this evidence suggests 
that CRC presents with activating mutations in both 
the Wnt/β-catenin pathway and the PI3K/Akt pathway 
simultaneously, creating the notion that cross-talk 
between the two pathways occurs with a common 
GSK3β protein[108].

PTEN functions as a negative regulator of PI3K 
signaling by dephosphorylating the second messenger 
PIP3 to convert PIP3 back to PIP2[109,110]. PTEN exists 
in the cell as a cytoplasmic protein in an inactive, pho­
sphorylated state[110]. Phosphorylation of PTEN serine 
and threonine residues stabilizes the protein in a closed 
state[110]. Upon activation, dephosphorylated PTEN 
contains an active phosphatase domain[110]. However, 
this active site leaves PTEN in an unstable conformation 
susceptible to proteasomal degradation[110]. In this way, 
the normal negative feedback loop of PI3K signaling 
and PTEN inhibition can proceed[110]. When active, PTEN 
is recruited to the plasma membrane where it binds 
to PIP3 and dephosphorylates the second messenger, 
inhibiting the downstream Akt signaling[110]. The loss 
of PTEN expression results in the accumulation of 
PIP3 at the plasma membrane, resulting in increased 
recruitment of Akt to the plasma membrane and 
increased Akt activation[80]. Because of this negative 
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regulation of PI3K/Akt signaling, PTEN is associated 
with inhibition of cell cycle progression, induction of 
cell death, modulation of cell cycle arrest signals, and 
stimulation of angiogenesis[110]. 

PTEN mutations and loss of PTEN expression 
have been shown to occur in a high number of CRCs, 
with this loss correlating with tumor aggressiveness 
and invasiveness[109-111]. This correlation might be 
explained by the involvement of PTEN with maintaining 
normal cell polarity[109]. Loss of PTEN results in a loss 
of cell polarity, leading to increased epidermal-to-
mesenchymal transition (EMT) of cancer cells and loss 
of tight junctions[109]. Similarly, reduced expression of 
PTEN and loss of PTEN are shown to indicate more 
advanced stages and metastasis of CRC[111]. Loss of 
PTEN occurs due to loss of chromosomal heterozygosity 
in CRC tumors with chromosomal instability and is 
estimated to occur in about 20%-40% of CRCs, while 
PTEN mutations in tumors without chromosomal 
instability occur much less frequently, in less than 5% of 
cases[80,81,110,111]. PTEN expression itself is regulated by 
peroxisome proliferator activated receptor γ (PPARγ) and 
p53 activity, both of which are implicated in CRC and 
will be discussed in further detail later in this review[110]. 

Due to PTEN interaction with the PI3K/Akt sig­
naling pathway, it has been proposed that loss of PTEN 
expression and mutations in PIK3CA may work syner­
gistically to increase the activity of both PI3K/Akt and 
Wnt/β-catenin signaling[79]. However, data obtained 
from the European Prospective Investigation of Cancer 
Norfolk Study showed that loss of PTEN expression 
and PIK3CA mutations occurred independently of 
one another in CRCs[81]. Further mechanistic studies 
involving CRC tumors supported these results and 
showed activating PIK3CA mutations to occur in about 
30% of tumors, independent of PTEN loss[80]. 

As mentioned previously, there is cross-talk between 
the PI3K/Akt pathway and the Wnt/β-catenin pathway. 
Investigation into PIK3CA mutations in CRC revealed 
that in human CRC cells carrying APC mutations and 
showing constitutive Wnt pathway activation, PI3K 
inhibition led to no change in the subcellular localization 
of β-catenin[79]. Interestingly, although the nuclear 
localization of β-catenin was unaffected by PI3K 
inhibition, the concentration of β-catenin phosphorylated 
at the putative Akt serine 552 phosphorylation site was 
lower in cells in which PI3K activity was inhibited[79]. 
β-catenin/LEF/TCF-mediated gene transcription was also 
lower in the PI3K-inhibited cells, resulting in decreased 
expression of Wnt target genes c-Myc, cyclin D1, and 
LEF-1[79]. As a component of the β-catenin transcriptional 
complex, the decrease in LEF-1 expression indicates 
a further decrease in the transcriptional activity of 
β-catenin[79]. Taken together, these results demonstrate 
that the nuclear localization of β-catenin and its 
transcriptional activity are independent processes, but 
are linked by PI3K[79].

Interestingly, retinoid treatment in some cancer cell 
lines has been shown to upregulate the activity of the 

PI3K/Akt signaling pathway, increasing cell proliferation 
and invasion to promote tumor growth[112-114]. However, 
in other cancer cell lines, treatment with retinoids has 
been shown to inhibit PI3K/Akt signaling[115-118]. These 
retinoid effects have mostly been shown to be mediated 
through RAR-mediated pathways involving ATRA binding 
to receptors[115,116]. Specifically, ATRA has been shown 
to decrease the phosphorylation of GSK3β, decrease 
cellular proliferation, and increase the expression of pro-
apoptotic proteins in human leiomyoma and myometrial 
cells[115]. In addition, CRBP-I inhibits PI3K/Akt activation 
in breast cancer cells through a RAR-mediated pathway 
by decreasing the heterodimerization of p85 and 
p110[116]. To our knowledge, our laboratory is the only 
laboratory to investigate retinoid inhibition of the PI3K/
Akt signaling pathway in CRC. Furthermore, because 
retinoid receptor activity is often down-regulated in CRC, 
our laboratory studied the effects of retinol, the dietary 
form of vitamin A, on the PI3K/Akt signaling pathway 
in human CRC cells exhibiting ATRA-resistance[29]. We 
have shown that PI3K activity is inhibited by retinol in a 
dose-dependent manner independent of RAR signaling 
or inhibition of p85/p110 heterodimerization[29]. We 
recently showed that it is the ability of retinol to inhibit 
PI3K activity that confers the ability of vitamin A to 
decrease CRC cell invasion in vitro and metastasis in 
vivo[25]. Specifically, by comparing the effects of retinol 
treatment on parental HCT-116 cells, expressing one 
allele of constitutively active PI3K (caPI3K), to mutant 
HCT-116 cells expressing two alleles of caPI3K, we 
showed that retinol treatment decreased in vitro cell 
invasion in parental HCT-116 cells, but not in mutant 
HCT-116 cells[25]. Retinol treatment also decreased total 
MMP-9 protein levels and active MMP-9 levels in parental 
HCT-116 cells, while these levels remained unchanged 
in HCT-116 cells expressing two alleles of caPI3K[25]. 
Finally, dietary vitamin A supplementation tended to 
result in a lower incidence of hepatic metastases in mice 
intrasplenically injected with parental HCT-116 cells 
but not in mice intrasplenically injected with mutant 
HCT-116 cells. 

More research is needed to determine the mech­
anism by which vitamin A inhibits PI3K activity in CRC, 
but one possible mechanism is by the up-regulation of 
PTEN. Although the effect of retinoids on PTEN activity 
has not been examined in CRC to our knowledge, 
retinoids have been shown to alter PTEN activity in 
smooth muscle cells, neuroblastoma and glioblastoma 
cells, promyelocytes, leukemia cells, fibroblasts, and 
breast, endometrial, and hepatocellular carcinoma 
cells[119-128]. In particular, ATRA treatment of breast 
cancer cells reduced the methylation of the PTEN gene 
promoter to activate PTEN transcription[122]. Suppression 
of growth factors by ATRA in hepatocellular carcinoma 
cells increases PTEN levels and synchronously decreases 
the presence of phosphorylated Akt[123]. Increases of 
PTEN and consequent decreases of Akt occur with 
retinoid treatment of neuroblastoma and glioblastoma 
cells and of smooth muscle cells as well[119,126,127]. By 
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increasing PTEN, cellular proliferation is suppressed 
and apoptosis is induced, perhaps partially through 
the inhibition of NF-κB transcriptional activity[126,127]. 
Concurrent activation of PPARγ with retinoid treatment 
may also be helpful in synergistically reducing carcino­
genesis, which will be discussed further in the following 
section.

CYCLOOXYGENASE-2 AND peroxisome 
proliferator activated receptor-g
The use of non-steroidal anti-inflammatory drugs 
(NSAIDs) such as aspirin reduces the incidence of 
CRC and other cancers of the gastrointestinal (GI) 
tract[129,130]. Chronic NSAID use has been shown to 
reduce the risk of CRC by as much as 40%-50%, as 
well as decrease the multiplicity and size of tumors 
presenting with APC loss[131,132]. These drugs mediate 
their effects through inhibition of cyclooxygenase (COX) 
enzymes. COX-2 is an inducible enzyme expressed 
in the presence of inflammatory cytokines, growth 
factors, and tumor promoters[133]. In the presence of 
these factors, COX-2 converts free arachidonic acid 
to prostaglandin H2 (PGH2), which is the precursor 
to other prostaglandins, specifically prostaglandin E2 
(PGE2)[133,134]. COX-2 over-expression is associated with 
more aggressive tumors of the GI tract and increased 
levels of COX-2 mRNA are present in 80%-90% of 
CRCs[134-136]. This over-expression of COX-2 results in 
the increased levels of PGE2. Elevated PGE2 is present 
in high levels in cancer tissues and increases the car­
cinogenic process by stimulating cell proliferation, 
suppressing apoptosis, increasing cell motility, and 
promoting angiogenesis[133,137,138]. The biological effects 
of PGE2 are mediated by E-prostanoid (EP) G-protein 
coupled receptor subtypes 1-4 which are present in 
high levels in CRCs[133,139]. The loss of these EP receptors 
is associated with decreased PGE2 signaling and 
decreased cancer malignancy[139]. It should be noted 
that carcinoma cells that do not display increased 
COX-2 expression may still receive paracrine signals 
by PGE2 through EP receptors and thus still exhibit the 
growth stimulatory effects of PGE2 as well as increased 
cell motility and activation of ERK signaling[140]. 
PGE2 binding to EP receptors results in increased 
phosphorylation of EGFR and the downstream mediator 
ERK, which induces the expression of c-FOS, a gene 
involved in promoting cell proliferation[133,140,141].

While activation of EGFR contributes to increased 
PI3K/Akt signaling, COX-2 over-expression also results in 
the dissociation of GSK3β from the β-catenin destruction 
complex, leading to the stabilization of β-catenin for 
translocation to the nucleus[142,143]. PGE2 treatment 
in human CRC cells led to rapid phosphorylation of 
GSK3β on its serine 9 residue by Akt, inhibiting the 
kinase activity of GSK3β[143]. This action was, however, 
dependent on the loss of APC function in CRC because 
β-catenin stabilization by PGE2 occurs downstream of 

APC loss[143]. Inhibition of PGE2 in zebrafish embryos 
and human CRC cells demonstrating APC loss increased 
the degradation of β-catenin, with COX-2 knockdown 
reducing the levels of β-catenin[144]. ATRA treatment 
of zebrafish embryos and human CRC cells decreased 
the levels of β-catenin by a mechanism that requires 
the attenuation of COX-2 expression and subsequent 
decrease in PGE2 accumulation[144]. β-catenin reduction 
as a result of ATRA treatment also led to the decreased 
expression of MMP-9[144]. Furthermore, PGE2 led to 
the increased expression of TCF-4, a component 
of the β-catenin transactivation complex, resulting 
in increased transcription of genes downstream of 
β-catenin[142]. PGE2 thus leads to the expression of 
cyclin D1 and vascular endothelial growth factor (VEGF) 
in vitro and in vivo, which contribute to the increased 
formation of intestinal polyps[142]. This effect by PGE2 is 
synergistically perpetuated by mutated β-catenin[142]. 

COX-2 over-expression in CRC is also correlated with 
an increased expression of MMP-2 and MMP-9, both of 
which contribute to CRC motility and metastasis[145]. 
Suppression of COX-2 by selective inhibitors in mouse 
CRC cells decreased proliferation associated with cyclin 
D1 and inhibited cell migration and motility with an 
associated decrease in both MMP-2 and MMP-9[135]. 
This suppression of COX-2 also decreased tumor 
growth both in vitro and in vivo, while also slowing 
liver metastasis[135]. This process may be particularly 
important when considering metastasis of CRC, as 
COX-2 expression has been shown to be even higher 
in metastatic liver tumors[135]. Broad spectrum MMP 
inhibitors decreased the number of adenomas in 
mice lacking APC function by decreasing proliferation, 
inhibiting angiogenesis, and stimulating apoptosis, with 
a synergistic effect seen when combined with COX-2 
inhibitors[145]. 

Moreover, the lack of a functional APC protein is 
correlated with the elevated expression of COX-2[146]. 
APC controls ATRA biosynthesis through the activity 
of RDH enzymes in human CRC, with this loss of RDH 
correlating with the increased expression of COX-2[146]. 
In zebrafish embryos and human CRC cells presenting 
with a functional loss of APC, this over-expression of 
COX-2 was attenuated by treatment with ATRA[146]. 
This attenuation of COX-2 expression was the result 
of a mechanism involving ATRA inhibition of the levels 
of CCAAT/enhancer-binding protein (C/EBP) cis-acting 
elements, which are present in the promoter region 
of the COX-2 gene[146]. ATRA treatment decreased the 
expression of C/EBP-β, which leads to the decreased 
expression of COX-2[146].

The suppression of COX-2 by retinoids has been 
demonstrated in a variety of human epithelial carcino­
mas[147-150]. This suppression has been shown to be 
mediated by a multitude of factors, some of which have 
been described above, and which also includes a RARα-
dependent pathway to limit the amount of CREB-binding 
protein (CBP)/p300 histone acetyltransferase activity 
available for AP-1 induction of COX-2[148]. In human CRC 
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cells, treatment with the retinoid analogue fenretinide 
decreased COX-2 mRNA and inhibited PGE2 expression, 
resulting in inhibition of cell growth[151]. Therapy with 
the selective COX-2 inhibitor celecoxib enhanced 
the growth inhibitory effects of ATRA in both COX-2-
high-expressing HT-29 human CRC cells and COX-2-
low-expressing SW480 human CRC cells, resulting in 
increased apoptosis and elevated RARβ expression 
through COX-2-independent mechanisms[152]. RARβ2 
methylation was inversely associated with COX-2 
expression, with increased methylation of RARβ2 in CRC 
tumors also presenting with high COX-2 expression[153]. 
These tumors correlated with a worse patient prognosis, 
proposing the importance of both COX-2 and RARβ2 
expression in colorectal carcinogenesis[153]. Overall, 
COX-2 is over-expressed in CRC tumors, leading 
to elevated PGE2 and β-catenin and the resulting 
cellular proliferation and tumor metastasis. Treatment 
with retinoids inhibits this over-expression of COX-2, 
suppressing the tumor growth-inducing effects of 
COX-2.

COX-2 expression is regulated in part by PPARγ. 
Specifically, the activation of PPARγ decreases COX-2 
expression by up to 90% and induces caspase-3-
dependent apoptosis in human CRC cells[154]. The COX-2 
gene contains a peroxisome proliferator response 
element (PPRE) in its promoter, which allows the 
binding of PPARγ-RXRα heterodimers to inhibit COX-2 
gene transcription[155,156]. PPARγ belongs to the nuclear 
hormone receptor superfamily of ligand-dependent 
transcription factors[157]. Ligands existing for PPARγ 
include prostaglandins, polyunsaturated fatty acids 
(PUFAs), NSAIDs, and thiazolidinediones (TZDs)[158]. 
TZDs are a class of PPARγ agonist medications, used 
in diabetic patients to regulate lipid and glucose 
metabolism via PPARγ activation[158,159]. Upon ligand 
binding, PPARγ changes conformation to release 
corepressor proteins and recruit coactivator proteins, 
such as PPARγ-coactivator-1 (PGC-1)[160]. PPARγ then 
forms an obligate heterodimer with RXRα, and the 
resulting heterodimer binds to PPREs in the promoter 
regions of target genes to regulate expression[156]. In 
CRC, mutations of PPARγ occur in about 8% of cases, 
indicating its potential role as a tumor suppressor[161]. 
Many studies in CRC cell lines and animal models have 
demonstrated this effect, with PPARγ activation resulting 
in growth inhibition, apoptotic cell death, and decreased 
cell invasion[155,162-165]. However, the opposite effect has 
been observed in mice lacking APC function, with PPARγ 
activation resulting in tumor promotion[166,167]. In rats 
fed a high-fat diet, PPARγ and RARβ mRNA expression 
was suppressed, concomitant with an increase in COX-2 
and β-catenin levels and in the number of aberrant crypt 
foci (ACF)[168]. Supplementing diets with retinyl esters or 
ATRA attenuated the increases in COX-2 and β-catenin 
expression and inhibited the formation of ACF[168]. This 
data indicates that dietary factors, such as lipids and 
retinoids, are strongly influential in protein expression 
and tumor formation.

The mechanisms by which PPARγ act on tumor 
formation are still unknown, yet the evidence presented 
thus far suggests the importance of PPARγ in tumor 
growth inhibition. PPRE-independent mechanisms may 
also be involved, as PPARγ activation has also been 
shown to interfere with NF-κB and AP-1 to inhibit the 
transcription of pro-survival and growth amplification 
genes[157,158,169]. As mentioned, the activation of PPARγ 
by ligand binding results in the suppression of COX-2 
expression in human CRC cells with an ensuing decrease 
in PGE2 accumulation[156,170]. Additionally, PPARγ 
agonists lead to a decrease in both MMP-2 and MMP-9 
and an increase in TIMP-1 and TIMP-2[156,159]. Treatment 
with ATRA and synthetic RXR ligands synergistically 
enhanced this effect, which ultimately led to a decrease 
in cell proliferation, invasion, and an increase in 
apoptosis[156,171]. Treatment of HCT-15 cells with ATRA 
and the TZD rosiglitazone synergistically suppressed 
COX-2 and MMP-7 expression and induced cell cycle 
arrest and apoptosis[171]. The growth suppressing 
effects of PPARγ in CRC have been shown to occur by 
modulating the transcription of genes regulating cell 
cycle progression. Treatment of human CRC cells with 
PPARγ agonists induced apoptosis in cells by halting 
cell cycling progression and inhibiting the expression 
of genes such as cyclin D1 and c-Myc[157,158,172]. Adding 
synthetic RXR ligands to treatment with PPARγ agonists 
can augment cell growth inhibition and induce terminal 
differentiation by increasing the interaction of PPARγ 
and RXRα and their ability to form a heterodimer[169]. 
However, treatment of human CRC cells with RXR 
ligands alone does not cause PPARγ-RXRα heterodimer 
formation in the absence of PPARγ activation[156,172]. 
Therefore, dual treatment with synthetic rexinoid RXR 
ligands and PPARγ agonists may work together to 
inhibit the growth and metastasis of colonic tumors. 
As synthetic RXR ligands, rexinoids are not true 
retinoids. True retinoids bind RAR and are the focus of 
this review. Research regarding PPARγ and retinoids 
in CRC is lacking, as PPARγ only heterodimerizes with 
RXRα and not RAR. Yet, expression of RARβ mRNA can 
be induced by PPARγ activation in other cancers such 
as lung, breast, liver, and brain cancers[173-176]. ATRA 
alone and a combination of PPARγ and RXR ligands 
induced RARβ expression in ATRA-resistant breast 
cancer cells in the presence of HDAC inhibitors[175]. 
This induction of RARβ expression was reduced in 
the presence of a PPARγ antagonist, indicating the 
involvement of PPARγ/RXR heterodimer activity in 
RARβ transcription[175]. Treatment of breast and lung 
cancer cells with PPARγ and RXR ligands also induced 
apoptosis in these cells[175]. Apoptotic glioblastoma cells 
showed an increased level of RARβ expression when 
undergoing apoptosis, and PPARγ agonists induced 
RARβ mRNA in glioblastoma cells, suggesting that 
PPARγ activation may mediate apoptosis through RARβ 
activity[176]. Furthermore, treatment of leukemia cells 
with a combination of ATRA and the PPARγ agonist, 
ciglitazone, synergistically increased PTEN levels and 
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inhibited the growth and proliferation of these cells by 
inducing cell cycle arrest[121]. Both 9-cis-RA and PPARγ 
activation in fibroblasts stimulated PTEN expression, 
which led to a decrease in Akt phosphorylation[128]. 
Because PTEN expression is regulated in part by PPARγ 
activation, PPARγ ligands have been shown to decrease 
proliferation of endometrial cancer cells via PTEN 
induction and the inhibition of VEGF secretion[120]. Taken 
together, this research proposes that retinoid treatment 
in conjunction with PPARγ activation may be helpful in 
overcoming ATRA-resistance, inhibiting tumor growth, 
and promoting cancer cell death in CRC. 

P53/Siah-1 Signaling
Mutations of the tumor suppressor gene p53 are the 
most common mutations found in human cancers, 
with p53 absence or mutations present in 50% of 
CRC cases[177,178]. As a tumor suppressor gene, p53 is 
activated in response to genotoxic stimuli in healthy 
cells, to which p53 responds by arresting cell cycle 
progression and inducing apoptosis[179]. In healthy cells, 
p53 suppression is necessary for normal growth and 
is thus present at low concentrations, its expression 
is regulated through ubiquitin-dependent degradation 
most notably by the ubiquitin ligase, MDM2[179]. MDM2 is 
phosphorylated by kinases such as Akt, after which the 
activated MDM2 localizes to the nucleus and ubiquinates 
p53[179]. The ubiquitinated p53 is then exported from 
the nucleus, where it is degraded in the cytosol to 
maintain cell proliferative activity[179]. Up-regulation of 
MDM2 activity and transcription also occurs downstream 
of other oncogenic pathways to inhibit p53 activity, 
such as ERK and K-ras signaling[179]. Similarly, MDM2 is 
a p53 target gene, creating a negative feedback loop 
to control p53 expression and activity[179]. In response 
to genotoxic damage, p53 is activated by kinases, 
which phosphorylate p53 in its MDM2 binding region, 
stabilizing p53 and allowing it to accumulate and bind 
to DNA to induce the transcription of genes such as 
cyclin kinase-dependent cell cycle inhibitor p21 and 
pro-apoptotic Bcl-2 associated x protein (BAX)[178-181]. 
P53 also directly inhibits anti-apoptotic proteins such as 
B-cell CLL/lymphoma-2 (Bcl-2) and Bcl-2 like isoform 
1 (Bcl-xL), which inhibit the release of cytochrome c 
from the mitochondria to prevent the cell from initiating 
apoptosis[180]. Silencing of Bcl-2 in CRC cells leads to 
major p53-mediated apoptosis, demonstrating that 
Bcl-2 inhibits apoptosis in cells by also inhibiting p53 
activity[180]. In CRC cells with mutant p53, transfection 
with wild-type p53 induces apoptosis and inhibits 
colony formation in vitro and inhibits tumor formation in 
vivo[182]. 

Missense mutations occur in 80% of all p53 muta­
tions, resulting in a stable protein that accumulates 
inside the nucleus of tumor cells but lacks its specific 
DNA-binding activity and, therefore, lacks transcriptional 
activity[183]. As a result, an accumulation of p53 in the 
cell is generally thought to be mutagenic, although it is 

important to distinguish this mutant p53 accumulation 
in tumor cells from wild-type p53 expression[183]. The 
accumulation of mutant p53 in CRC patients is strongly 
correlated with increased metastasis and poor prognosis, 
further implicating the importance of p53 involvement 
in cell cycle regulation and stimulation of apoptosis in 
tumor cells[177]. Most p53 mutations occur in the later 
stages of adenoma-to-carcinoma progression, after 
which time many other pathways such as K-ras and 
the Wnt/β-catenin signaling pathway may already be 
dysregulated[184]. This point is particularly interesting to 
consider when looking at p53 involvement in β-catenin 
degradation. Siah-1 is a p53-inducible protein that binds 
ubiquitin-conjugating enzymes and targets proteins for 
degradation to ultimately result in tumor suppression[185]. 
Specifically, Siah-1 binds to the carboxyl terminus of 
APC and decreases β-catenin via a degradation pathway 
independent of GSK3β phosphorylation[185]. While 
Siah-1 does not affect APC levels, Siah-1 influence on 
β-catenin levels are dependent upon Siah-1 binding 
to APC[185]. In CRC cells with truncated APC, Siah-1 is 
unable to decrease β-catenin levels, making this process 
ineffective in cells expressing APC mutations[186]. Siah-
1-mediated degradation of both mutant and wild-type 
β-catenin in CRC cells was supported by a decrease in 
TCF/LEF reporter activity and the consequent reduction 
of β-catenin target genes cyclin D1 and c-Myc to result 
in cell cycle arrest[185-187]. Increased p53 expression in 
CRC cells resulted in increased degradation of β-catenin 
and a decrease in TCF/LEF activity only in the presence 
of Siah-1, indicating that p53 degradation of β-catenin 
is dependent on Siah-1 activity[185,187]. Because Siah-1 
expression is regulated by p53, the loss of p53 tran­
scriptional activity inhibits Siah-1 expression and 
activity, preventing the p53/Siah-1 pathway activity to 
cause β-catenin degradation[187].

In addition to affecting retinoid metabolism and 
storage, retinoid treatment in many different cell types 
induces p53 mRNA and protein expression to inhibit 
cell cycle progression and promote apoptosis[188-193]. 
ATRA treatment of keratinocytes led to an increase 
in p53 mRNA and protein levels and a corresponding 
increase in caspase-3, 6, 7, and 9 enzyme levels, which 
are responsible for mediating apoptosis[188]. Apoptosis 
and growth inhibition of mammary carcinoma cells 
is controlled by RA-induced p53 activity increase, 
which in turn upregulates the expression of the anti-
proliferative B-cell translocation gene, member 2 
(Btg2)[191]. Btg2 inhibits cell cycle progression by down-
regulating the expression of cyclin D1, and this effect is 
further augmented by the over-expression of CRABP-
II, which transports RA to nuclear RAR, to induce the 
transcription of RA-responsive genes[191]. In murine 
embryonic stem cells, ATRA caused neural differentiation 
and apoptosis through increasing p53 mRNA and 
protein levels to instigate cell cycle arrest[189]. The up-
regulation of p21 protein concentration is an important 
effect of p53 activation as shown in human mammary 
epithelial cells, of which treatment with 9-cis-RA, ATRA, 
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and fenretinide increases p21 expression and thus, cell 
growth, in a p53-dependent manner[190]. Furthermore, 
p21 expression in breast cancer cells and HCT-116 CRC 
cells is increased by p53 interaction with the tumor 
suppressor activating enhancer-binding protein-2 α (AP-
2α), a RA-inducible gene that regulates apoptosis, cell 
growth, and differentiation[192]. AP-2α interaction with 
p53 resulted in enhanced binding to the promoter of 
p21, which led to cell cycle arrest in these cells[192]. The 
induction of STRA6, the RBP receptor, by p53 has also 
been shown to mediate apoptosis in ovarian cancer 
cells, normal human fibroblasts, and HCT-116 cells 
expressing wild type p53[193]. Transfection of these with 
STRA6 increased apoptosis, and inhibition of STRA6 
severely compromised p53-induced apoptosis[193]. While 
the effects of retinoids on p53 expression and activity 
have not been widely studied with regard to CRC, the 
known results are summarized in Table 1. In general, 
retinoid treatment of CRC cells appears to enhance the 
expression and activity of p53 to further increase tumor 
suppressor p21 levels, ultimately leading to cell cycle 
arrest and the initiation of apoptosis. 

CONCLUSION
Retinoids decrease signaling via the major pathways 
that promote CRC progression. Ultimately, each 
pathway is followed to its conclusion, retinoids decrease 
levels of MMPs, cyclin D1, and other factors that induce 
cellular invasion or proliferation. Often, β-catenin is an 
intermediate in these pathways, reflecting the central 
role of β-catenin in CRC progression. Overall pathway 
interactions are illustrated in Figure 2, and effects 
of mutations on CRC progression and the effects of 
retinoids on these mutated proteins are summarized 
in Table 1. Because retinoids inhibit critical pathways 
to decrease CRC progression, dietary vitamin A 
supplementation or retinoid chemotherapy, alone or 
in combination with other medications, may prove 
beneficial for the prevention of the progression and 
metastasis of CRC.
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mately 60% of colorectal cancer patients are older 
than 70, with this incidence likely increasing in the near 
future. Elderly patients (> 70-75 years of age) are a 
very heterogeneous group, ranging from the very fit to 
the very frail. Traditionally, these patients have often 
been under-treated and recruited less frequently to 
clinical trials than younger patients, and thus are under-
represented in publications about cancer treatment. 
Recent studies suggest that fit elderly patients can be 
treated in the same way as their younger counterparts, 
but the treatment of frail patients with comorbidities 
is still a matter of controversy. Many factors should 
be taken into account, including fitness for treatment, 
the wishes of the patient and family, and quality of 
life. This review will focus on the existing evidence for 
surgical, oncologic, and palliative treatment in patients 
over 70 years old with colorectal cancer. Careful patient 
assessment is necessary in order to individualize 
treatment approach, and this should rely on a multidi
sciplinary process. More well-designed controlled trials 
are needed in this patient population. 
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Radiotherapy; Elderly; Palliative care
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Core tip: With the rise in the incidence of colorectal 
cancer and in the population > 70 years of age, 
the need to decide what type of treatment is most 
appropriate for patients > 70 with colorectal cancer 
will become more frequent. Age in itself should not be 
an exclusion criterion for radical treatment, but there 
will be many elderly patients that will not tolerate or 
respond well to standard therapies. These patients need 
to be properly assessed before proposing treatment, 
and a tailored, individualized approach should be offered 
in a multidisciplinary setting.
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INTRODUCTION
Colorectal cancer (CRC) is one of the most common 
cancers worldwide, and its incidence is increasing[1]. 
The choice of treatment is based on several factors, 
including stage at presentation, location, and the 
conditions of the patient. Current treatment in general 
for CRC includes surgery for CRC stage I or II; surgery 
followed by adjuvant chemotherapy for stage III colon 
cancer; and in cases of metastatic CRC (mCRC), 
systemic chemotherapy alone or in combination with 
targeted biologics. mCRC requires multidisciplinary 
management, where surgical resection of metastatic 
disease is considered wherever possible. The treatment 
of rectal cancer includes surgery alone in stage I or 
short-course radiotherapy or chemoradiotherapy with 
surgical resection followed by adjuvant chemotherapy in 
selected stage II and III patients[2].

Approximately 60% of CRC patients are > 70 years 
of age at the time of diagnosis, and 43% are > 75[1]. 
These proportions will likely continue to increase in 
the near future. Many of these older patients will have 
problems of frailty and comorbidity that demand careful 
patient assessment, and, if necessary, individualized 
treatment approaches[3].

Aging may be defined as a progressive decline in 
the functional reserve of multiple organ systems. This 
process is highly individualized, and poorly reflected in 
chronological age. The treatment of cancer should be 
based on the assessment of the physiological age, the 
patient’s life expectancy, and tolerance to treatment[4]. 
Older patients risk being undertreated, and, therefore, 
presenting a worse oncologic outcome. If they are over 
treated, however, there is an increased risk of morbidity 
and mortality[5].

The challenge in this group of patients comes from 
the physiological heterogeneity of the older patient 
population, with frequent discrepancies between 
physiological and chronological age, coupled with the 
additional complications of coexisting medical conditions 
and potential psychological and social care issues[6].

The treatment of those at the upper extreme of 
life often presents significant clinical dilemmas. A 
critical appraisal is needed of the costs and benefits of 
treatment, and a better selection of patients who can 
benefit from available therapies is warranted. There 
is a paucity of controlled trials including this group of 
patients, and, therefore, evidence-based decision-
making is difficult. Many elderly patients will benefit from 
radical treatment approaches, but others will not, and 
in some cases, non-operative “palliative” management 
should be offered, even though the cancer is “curable”. 
This review aims to focus on the existing evidence to aid 
in the decision-making process for treatment of CRC in 

elderly patients.

GERIATRIC ASSESSMENT
The patient’s biological age should ideally be established 
through a comprehensive geriatric assessment in order 
to aid therapeutic decisions. 

There is a paucity of clinical trial data in these 
patients who, in many cases, have poor functional 
reserves, major comorbidities, and frailty. In older 
patients, functional levels vary widely- from robust and 
able to tolerate cancer treatments to frail and unable to 
tolerate even minor interventions without life-threatening 
consequences. At either end of this spectrum, treatment 
decisions are clear, but the identification of individuals at 
risk for functional decline and frailty, where interventions 
or treatment modifications are needed, is where geria­
trics could have the biggest impact on oncology[7].

By distinguishing the fit from the vulnerable older 
patients, treatment can be adjusted to maximize its 
effectiveness, avoid complications, and better meet 
the individual requirements of the older patient. When 
choosing between various treatment options, quality of 
life and function may be at least as important for the 
elderly as the cancer-specific or surgical outcome[6]. 

The main difficulty for individualizing treatment in 
elderly patients is the capacity to evaluate vulnerability 
to treatment. Several aspects should be taken into 
account[8], which include: (1) an estimation of life-
expectancy based on functional evaluation and co-
morbidities; (2) an estimation of the risk of cancer-
related morbidity: a: Tumor stage at diagnosis; b: Risk 
of recurrence and tumor progression; and c: Tumor 
aggressiveness; (3) an evaluation of the conditions that 
could interfere in the cancer treatment and tolerance; 
a Comprehensive Geriatric Assessment[7] (CGA), which 
includes: a: undernutrition (recent loss of > 5% weight/
body mass index < 19); b: polypharmacy (more than 
10 medications); c: social isolation; d: depression; 
e: cognitive disorder; f: risk of falls; g: side effects of 
neoplasia: sensory deterioration, urinary incontinence, 
sexual dysfunction; h: comorbidities (number and 
severity of co-existing illnesses); and (4) an evaluation 
of the goals of the patient (what the patient expects 
from treatment). An important aspect of this evaluation 
is quality of life (subjective evaluation of life as a 
whole). The instruments that can be used to measure 
quality of life include, at least three of the following 
10 aspects[9,10]: Pain and other somatic symptoms, 
functional capacity, social and family well-being, 
emotional well-being, spirituality, satisfaction with care, 
future hopes and wishes, sexuality, body image, and 
social and work-related function. 

Elements of the CGA, especially comorbidity, 
functional status, cognitive dysfunction, and frailty, 
are consistently associated with adverse treatment 
outcomes in relation to both toxicity and mortality[11-13]. 

A complete CGA is time-consuming. For now, it 
might be beneficial for all elderly patients with cancer 
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to receive a complete geriatric assessment[14], although 
recent publications show promise in the use of frailty 
screening methods to select which patients will benefit 
from a complete CGA or further assessment: (1) test 
Timed Up and Go: Patients who require more than 10 
s to perform the exercise, need to use their arms to 
get up, or perform an erroneous trajectory will need 
a full CGA[15,16]; (2) seven-item physical performance: 
this test takes 10 min to perform. If the total result is 
less than 20, a CGA would be beneficial. It has been 
demonstrated to be more sensitive than the Karnofsky 
Performance Status in recognising patients with a higher 
risk of functional decline[16]; and (3) the Vulnerable 
Elderly Survey 13 (VES-13)[17]: when the scores are 
equal or above 3 it indicates a higher risk of functional 
deterioration, and a 4-fold increased probability of death 
in the next 2 years, and, therefore, a complete CGA is 
indicated[18-21]. 

In 2012[22], an algorithm was proposed to evaluate 
an elderly cancer patient that uses the frailty criteria, 
the VES-13 scale and the CGA. All patients diagnosed 
with cancer would be tested using VES-13. If the score 
is < 3 the patient can receive the standard treatment 
recommended for adult patients according to tumor 
stage. If the score is > 3, a full CGA is recommended, 
and further recommendations can be made according 
to the possibilities of treatment of the patient’s comor
bidities or functional dependence; palliative or standard 
treatment could be recommended. 

The concept of frailty is still under construction 
and has many common aspects with the definition of 
aging. Fried et al[23] criteria include an assessment of 
weight loss, physical exhaustion, physical activity level, 
grip strength, and walking speed. Any degree of frailty 
measured by the Hopkins Frailty Score[24] has been 
linked to a worse postoperative outcome after surgery 
for CRC. Core features of frailty include impairments in 
multiple, interrelated systems, resulting in a reduced 
ability to tolerate stressors. This is associated with an 
increase in vulnerability to severe complications with 
cancer treatment, which translates into an increase in 
global mortality[25,26].

The CGA should include the following determina
tions[27]: (1) functional status: Evaluation of dependency 
in daily activities using scales such as Barthel and 
Lawron, the TITAN scale, and Karnofsky index. 
Functional decline in elderly patients is a predictor of 
short- and medium-term mortality, independent of the 
disease process[28]; (2) coexisting illness (Comorbiditiy): 
The Charlson comorbidity index[29] predicts 1-year 
mortality in patients with comorbidities. Sarcopenia 
(skeletal muscle depletion) in older patients is related 
to infection, requirements for rehabilitation following 
surgery, and length of hospital stay[30]; (3) socio-
economic evaluation: the elderly population is at a 
greater risk of social deprivation[28]. The social situation 
of the elderly patient should always be evaluated, 
and the detection of social isolation should lead to 
the application of the necessary social resources; (4) 

nutritional status: Mini Nutritional Assessment[31]. An 
albumin < 2.5 g/dl + CT < 156 mg/dl + weight loss 
of 10% indicates terminal illness; (5) cognitive status: 
Mental Status Questionnaire-Pfeiffer and Mini Mental 
State Examination. The impact of depression and 
dementia on oncologic treatment is not well known[32,33], 
but it has been identified as one of the determinant 
factors in receiving inadequate treatment[34,35]; (6) 
geriatric syndromes: sleep disturbances, incontinence, 
risk of falls, etc. The presence of geriatric syndromes is 
an indicator of frailty. An assessment of the cognitive 
and emotional state is especially important in older 
cancer patients. Polypharmacy is common in older 
patients, and the possibility of drug interactions and the 
delicate clinical situation in a geriatric cancer patient 
should be considered; (7) surgical risk: The American 
Society of Anesthesiologists (ASA) classification 
continues to be one of the most reliable predictors of 
postoperative morbidity and mortality[34,35]. Multiple 
studies have shown that the presence of comorbidities 
increases the risk of postoperative complications, and 
this is more evident in patients over 70 years of age[35]; 
and (8) An evaluation of the patient’s views on the goals 
of treatment (what does the patient expect and want?). 
Optimal treatment of the older adult patient who has 
cancer starts with a careful delineation of goals through 
conversation. There is a general tendency to think that 
geriatric patients do not want to be informed about 
the diagnosis and prognosis of their disease; however, 
several studies refute this hypothesis[36,37]. In reality, 
there does not seem to be any difference with respect 
to age regarding the wish of cancer patients to receive 
information[38]. 

Multidisciplinary cooperation involving oncologists, 
gastroenterologists, radiotherapists, anesthetists, 
radiologists, pathologists, and surgeons has become 
essential in elderly patients. Geriatricians are not 
typically members of MDTs, but there is clear evidence 
that older CRC patients should be treated in centers 
where the expertise is available to provide the most 
favorable surgical and oncologic treatment and care[21,39].

Balducci[40] studied the role of CGA in the selection 
of oncologic treatment and divided patients into three 
groups depending on the severity of frailty symptoms 
and signs: Type I: Functionally independent patient 
without important comorbidities: these patients would 
be candidates to receive onco-specific treatment in 
standard conditions; Type II: Functionally dependent 
patient with two or less comorbidities: these patients 
could benefit from a modified onco-specific treatment 
with standard intention; and Type III: Partially depen
dent patient with three or more comorbidities or the 
presence of a geriatric syndrome: these patients would 
be candidates for symptom treatment exclusively 
(palliative care). 

SURGERY
There is no consensus about the optimal surgical 
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a postoperative 30 d mortality rate of 28% in emergent 
surgery compared to only 5% in elective surgery. Morse 
et al[56] found similar outcomes in 39 patients older than 
80 in open colectomy for colon cancer. In the same way, 
Louis et al[57] observed the close correlation between 
advanced age, advanced ASA grade, and emergent 
surgery, and other authors found that no patients 
with an ASA grade of 3 or more survived more than 
6 mo[58]. Modini et al[59] reported a 6 fold higher 30 d 
postoperative mortality in elderly patients > 80 years 
of age with respect to others. They noted that although 
morbidity and mortality rates in elderly patients could 
be similar to that of younger patients, it would rise 
up to 9 fold higher in cases of emergent surgery[60,61]. 
Patients over 70 years of age after emergency surgery 
have been shown to have a higher rate of postoperative 
myocardial infarction, and this complication is associ
ated with a 6 times higher rate of mortality in the 
postoperative period[62]. Other common complications 
are pulmonary failure, acute renal failure, and sepsis; 
anastomotic leakage also occurred more frequently in 
elderly patients after emergency colorectal surgery and 
presented a significant association with postoperative 
mortality[63].

A feasible alternative management to emergency 
surgery for colonic obstruction could be the endoscopic 
placement of stents, especially in acute left-sided 
colonic obstruction. Use of these self-expanding metallic 
stents would provide “extra time” to better study 
the patient’s clinical situation and the tumor-stage, 
improve the nutritional status, optimize comorbidities, 
and, in some cases, allow a subsequent elective 
surgery. Consequently, it is an appealing option either 
for palliation or as a “bridge” to definitive surgery in 
the management of left-sided colonic obstruction for 
elderly patients. Nevertheless, the current data are 
controversial and the advantages in terms of early 
morbidity and mortality compared to emergency 
surgery are not as clear as originally described[64].

Laparoscopic surgery has been shown to reduce 
postoperative pain, allowing a decreased use of narcotics 
and opioids, reduced postoperative ileus, and a reduced 
hospital stay[65]. Furthermore, elderly patients benefit 
from laparoscopic surgery because it reduces the risk of 
cardiovascular and pulmonary complications, reduces 
intraoperative blood loss, and seems to accelerate 
gastrointestinal recovery. Stocchi et al[66] found that 
the preoperative functional status of patients was more 
frequently maintained at the time of discharge in elderly 
patients operated on by laparoscopy. In a randomized 
trial including 553 patients, Frasson et al[65] similarly 
concluded that laparoscopy should be the first choice 
in elderly patients operated on for CRC because it 
increases preservation of functional status, allowing a 
higher rate of independence during the postoperative 
period and discharge and a faster postoperative reco
very.

However, most trial protocols of laparoscopic 
surgery for CRC have been biased to exclude or under-

management of elderly people, who are a hetero
geneous group of patients, ranging from very fit to 
very frail individuals. This population is undertreated 
compared with younger patients, with a lower percen
tage of patients operated on; a lower rate of curative 
surgery, and more emergency surgery. Elderly patients 
are generally recruited to clinical trials less often 
than younger patients and are under-represented in 
publications about cancer treatment[41].

A comprehensive geriatric assessment is a major 
consideration when assessing operative risk, treatment 
decision making, and adapting perioperative care, if 
surgery is undertaken.

Surgical risk stratification remains one of the most 
important aspects of management in elderly patients[42]. 
Age is associated with increased mortality following 
elective colorectal resection, up to 15.6% in patients 
> 80 years of age. Elderly patients with higher levels 
of comorbidity might be expected to have significantly 
higher rates of complications, longer hospital stays, and 
higher mortality[43].

Elderly patients deemed to be optimized for 
surgery through traditional clinical and biochemical 
markers may still have poor outcomes. The concept 
of frailty can be used to identify a group of patients 
for further investigation before surgery[23]. Patients 
who were positive for frailty had 4 times higher risk 
of developing major complications (OR = 4.083; 
95%CI: 1.433-11.638)[43]. Decreased survival in older 
(> 75 years) patients post-surgery has mainly been 
attributed to differences in early mortality[44-48]. The rate 
of cardiovascular complications increases significantly 
with age. Pulmonary complications are also twice as 
common. Postoperative complications are more severe 
in elderly patients[49-52]. The occurrence of a complication 
was associated with a significantly increased risk of 
6 mo mortality. Overall, 6 mo mortality was 4 times 
higher in elderly patients than in younger patients (14% 
vs 3.3%; p <  0.0001) as was the 1-year mortality rate 
(20.1% vs 5.1%)[53]. Progressive loss of stress tolerance 
with aging exacerbates the consequences in case of 
postoperative complications[54]. However, older patients 
with CRC who survived the first year after surgery had 
the same overall cancer-related survival as younger 
patients[53]. 

Therefore, the focus should be on survival and 
minimizing postoperative complications during the first 
postoperative year. Pre-habilitation programs could 
be of great importance in elderly patients: Correction 
of malnutrition, optimization of cardiovascular and 
pulmonary comorbidities, and medication use have 
been shown to reduce complications after elective 
surgery in elderly patients and are a promising area of 
future research[54].

Emergency surgery should be avoided if possible. 
The presence of obstruction or perforation increases the 
perioperative mortality rate in older patients. Several 
studies show the correlation between advanced age, 
mortality, and emergent surgery. Kurian et al[55] reported 
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represent the elderly. Decision-making for such patients 
is, therefore, still based on inadequate evidence[67-69]. 
Clinical trials on laparoscopic surgery in the older 
population are lacking: 44% of trial protocols excluded 
elderly patients. Nevertheless, since a higher systemic 
inflammatory response to the surgical aggression and 
lower physiological reserve appear to be the origin 
of the high postoperative mortality in the elderly 
patient[70-73], laparoscopic surgery could be beneficial 
due to its decrease in inflammatory response and lower 
surgical stress[74-79].

The literature suggests that elderly patients benefit 
from multimodal rehabilitation programs or enhanced 
recovery programs after surgery (ERAS) in the same 
way as younger patients[80]. Initial studies by Senagore 
et al[75] and more recent studies by Keller et al[81] and 
Wang et al[82] showed better results in terms of length 
of stay, readmission rate, and reoperation rates for 
elderly people using ERAS programs. Elderly patients 
benefit from the avoidance of bowel preparation, opioid 
restriction, and early mobilization. There does not 
seem to be an increased risk of aspiration pneumonitis 
in elderly patients following early resumption of oral 
feeding, although overall complications are higher in 
elderly patients[80]. 

Delays in discharge of elderly patients can be 
attributable to inadequate levels of social support or 
resources in the community, even when the posto
perative course has been uneventful. Liaison with elderly 
care physicians may minimize avoidable hospital stay by 
optimizing the management of geriatric syndromes and 
by pre-emptively addressing the psychosocial needs of 
older patients. Specialized, organized, and coordinated 
geriatric care in the hospital setting improves outcomes, 
such as survival and in their own home up to 1 year 
after surgery[83-85].

In spite of all of the above, the fact still remains that 
some elderly patients will do very well after curative 
surgery, and others will not[86,87]. It is quite clear from 
the literature that the risks and benefits of surgery for 
CRC in the elderly have not been clearly reviewed[86]. 
There is, therefore, still no common consensus on how 
actively we should treat the elderly and when not to 
push them into unnecessary surgery, which could lead 
to severe functional impairment and diminished quality 
of life. Over 74% of patients interviewed in a recent 
study stated that they would refuse, or be reluctant, 
to receive treatment leading to severe functional 
impairment[87]. Life-expectancy, higher rates of 60 d 
mortality, higher likelihood of impairment of physical and 
mental function, and the possibility of never returning 
home and needing permanent residential care, should 
ideally be considered and discussed with the patient and 
family before deciding on surgical treatment[88].

RECTAL CANCER
Older patients with rectal cancer undergoing surgery 
should receive the same treatment as their younger 

counterparts, but with an adjustment of treatment 
strategy in the case of comorbidity, limited physiologic 
reserves, and emergency situations. Complete meso
rectal excision is considered the “gold-standard” surgical 
treatment for rectal cancer, but we continue to look for 
alternatives to avoid the high rates of postoperative 
morbidity[89]. Elderly patients are less frequently treated 
with neoadjuvant radiotherapy or chemotherapy, and 
non-restorative procedures are more frequently used. 
Anterior resection is performed less often in elderly 
patients, although tumor location and stage does not 
differ[90-92].

Population-based studies clearly show that older 
patients with rectal cancer are treated less often with 
RT[90-92]. Fewer older patients are likely to receive 
preoperative RT with proportionately more receiving 
palliative RT as an alternative[93]. Older patients with 
stage II or III rectal cancer who are fit enough for 
surgery are generally fit enough for preoperative 
neoadjuvant radiation therapy. Tolerability and response 
rates are similar to those seen in younger patients. 
However, Stockholm I and II Trials have shown the 
distinct negative effects of neoadjuvant radiotherapy 
in older patients (> 80 years). The incidence of venous 
thromboembolism, femoral neck and pelvic fractures, 
intestinal obstruction, and postoperative fistulas was 
significantly increased after preoperative radiotherapy in 
this group of patients[90,94].

The aim of rectal cancer surgery in older patients 
should be not only to avoid local recurrence but also to 
maintain health and function with a view to optimizing 
their chances of coping with their treatment. Older 
patients are keen to avoid a permanent stoma and 
may accept a higher risk of local recurrence to achieve 
this. The impact of cancer surgery on quality of life is 
very important in elderly people. Sphincter function, 
assessed clinically and if necessary after manometry, 
is an essential element to consider in the preoperative 
assessment and the decision-making procedure. The 
delay of surgery following short-course radiotherapy has 
also been associated with a decrease in postoperative 
morbidity. 

Rather than age itself, the frailty of patients and 
preoperative sphincter function determine the opera
tive indication and type of surgery[94,95]. Sphincter 
preservation in the elderly could give poor functional 
results with a higher risk of anal incontinence, and the 
potential effect of a permanent stoma on quality of life 
should be considered. Age was found as a significant 
risk factor associated with a decreased likelihood of 
stoma reversal[95].

Proctectomy in nursing-home residents has been 
associated with a 1 year postoperative mortality of 51% 
in patients with a permanent colostomy. Substantial 
postoperative mortality occurred in the first 6 mo after 
proctectomy and was significantly higher in elderly 
populations[96,97].

It has been observed that with neoadjuvant treat
ment there is a percentage of patients who present a 
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complete pathological response (pCR), up to 44%[98,99]. 
There is an increasing interest in a more conservative 
treatment for these patients. Several authors have 
proposed a “watch and wait” policy for patients when 
no residual tumor can be found. In a study published 
in 2010[100], the authors proposed an analytical decision 
model comparing the results between empirical 
radical surgery and observation alone in patients with 
pCR, and concluded that observation is better than 
surgery in cases where the ability to detect patients 
with pCR is higher than 58%, when patients will not 
have a good quality of life after surgery, or when the 
risk of recurrence was less than 43% when compared 
to observation. This study only included patients < 
65 years of age, and excluded elderly patients with 
comorbidity[100]. 

Following the same working model, Smith et al[101] 
published a study in 2015 evaluating the differences 
between radical surgery and observation after neo
adjuvant treatment in cases of pCR and divided patients 
into three groups: Healthy 60-year-old patients, healthy 
80-year-old patients, and 80-year-old patients with 
associated comorbidity. The study concluded that 
elderly patients, because of their higher surgical risk, 
obtained the greatest benefit from the “watch and wait” 
policy and showed an improved survival at 1 year after 
treatment. 

The groups of patients that present a significant 
tumor regression with neoadjuvant chemoradiation, 
and especially those with lymph node regression 
(ypN0), could be candidates for alternative treatments 
for rectal cancer without needing total mesorectal 
excision (TME). Transanal endoscopic surgery could be 
an interesting option in these patients[102,103]. Recent 
studies have attempted to detect the subgroups of 
patients with a good response to neoadjuvant treatment 
where transanal endoscopic surgery could reduce the 
recurrence rate[104-106]. Habr-Gama et al[107] pioneered 
the decision not to operate on patients with rectal 
cancer who presented a complete clinical response after 
chemoradiation. This same group has published a series 
of “watch and wait” in 70 patients with cT2-4cN1-2 
treated with chemoradiation, and of the 47 patients with 
a complete clinical response, eight (17%) presented 
an early recurrence and four a late recurrence. All had 
subsequent radical R0 surgery and were disease-free 
56 mo later. This could be an option for patients who 
are not considered fit for surgery; the difference would 
be that it does not have to be considered a palliative 
treatment but a possible standard treatment with a 
50% probability of cure in frail elderly patients. 

No prospective randomized trials comparing the 
results of neoadjuvant chemoradiation and local exci
sion include elderly patients, but the results in the 
general population can be taken into consideration in 
these patients. A study by Bhangu et al[108] analyzed the 
results of local excision in elderly patients and concluded 
that local excision achieved the same results as radical 
surgery in patients with pT1 tumors, the same as in the 

general population, but decreased survival in pT2. The 
difference with the general population could be due to 
the amount of comorbidities present in this group of 
patients; they would not be candidates for the same 
type of chemoradiation treatment, and, therefore, the 
results would not be comparable with those published 
up to the present time.

However, transanal endoscopic surgery can also 
be considered as a palliative treatment in patients 
with comorbidities who are not fit for radical surgery 
or who refuse a stoma, after carefully considering all 
options[109]. 

BIOLOGICAL FEATURES OF CRC IN THE 
ELDERLY
CRC is related to age, but there are few available 
data on the genetic differences and alterations in the 
carcinogenesis process between younger and older 
patients.

In many studies, younger patients are more likely 
to have mucinous, poorly differentiated and signet 
ring tumors, but there are mixed results in terms of 
prognosis. Several studies have suggested that younger 
age was a poor prognostic factor[110-112], but others 
suggested the opposite when adjusting for confounding 
variables, such as tumor, treatment, and patient 
factors[113-118].

The most frequently observed somatic mutations in 
CRC were found in the APC, TP53, KRAS, and PIK3CA 
genes. 

A model has been proposed for the carcinogenic 
process in sporadic CRC, in which normal colonic 
mucosa would transform into invasive carcinoma. This 
model, named chromosomal instability pathway (CIN), 
implicates somatic mutations in a multi-step process, 
with alterations in different genes in chronological order 
[APC, Kirsten rat sarcoma (KRAS), Smad2/4, and tumor 
protein 53 (TP53)]. In a minority of cases of sporadic 
CRC, approximately 15%, the pathway responsible for 
the transformation of the colon epithelium is through 
an inappropriate mismatch repair system (MMR). 
The system cannot repair the mismatches, resulting 
in a length variability of DNA microsatellites, called 
microsatellite instability (MSI). Another proposed 
pathway responsible for the carcinogenic process is DNA 
hypermethylation [CpG island methylator phenotype 
(CIMP)][119,120].

Patients with the same stage of disease have a 
different natural history and a different prognosis, as 
a result of the heterogeneity of the process. Some 
conditions give a more favorable prognosis (MSI, BRAF 
not mutated) or a worse prognosis (hypermethylation 
and not MSI). Currently, the only marker applicable to 
clinical practice is the RAS mutation.

In an analysis of 181 patients with CRC, patients 
were divided into different groups: Those under 50 
years of age, from 51 to 70, and over 70. In the 
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group of patients over 70 years of age, the MSI and 
BRAF mutations were correlated, but there was no 
correlation in the group under 50. Mutations in the 
KRAS and BRAF genes were more common with age, 
but no phosphatidylinositol-4,5-bisphosphate 3-kinase, 
catalytic subunit alpha (PIK3CA) mutations were 
found. TP53 mutations were more common in older 
patients. There were no differences in the frequency 
of phosphatase and tensin (PTEN) gene mutations. 
The conclusions were that older patients had a greater 
index of genetic mutations, and the incidence of BRAF 
mutations was higher. CIMP tumors are more common 
in the older population, who also have a higher rate 
of KRAS and BRAF mutations. These mutations have 
treatment implications[120]. TP53 mutation is associated 
with more advanced stages and vascular and lymphatic 
involvement[121]. KRAS gene mutation is a predictor 
of resistance to treatment with monoclonal antibody 
receptor endothelial growth factor (EGFR)[122-124]. BRAF 
V600E mutation confers worse prognosis[125,126]. A 
deficiency of the MMR system appears to be a favorable 
prognostic factor associated with adjuvant treatment in 
stage II CRC[127,128].

CHEMOTHERAPY
The aging process involves an organic functional 
impairment, with decreased liver and kidney function, 
decreased bone marrow reserve, increased risk of 
cardiovascular events, cognitive impairment, other 
comorbidities, or use of polypharmacy. These conditions 
favor a greater toxicity with chemotherapy, which 
results in a diminished quality of life and adherence to 
treatment. The most commonly used scales to evaluate 
functional status, such as the Karnofsky performance 
status or the Eastern Cooperative Oncology Group 
(ECOG), should be used in the context of a compre
hensive geriatric assessment in order to classify the 
elderly as fit or frail, the latter being more exposed to 
higher toxicity with chemotherapy, hospitalization, and 
death.

There is a consensus that frail patients with ECOG 
PS 3 or 4 or IK less than 60 are not eligible for chemo
therapy due to poor benefits and high toxicity; the 
consensus seems also clear about being more aggre
ssive in fit patients. The challenge is to decide the best 
treatment for those who are neither fit nor frail[129,130].

Adjuvant treatment
The benefit of adjuvant chemotherapy for stage III 
(node positive) CRC is well established, representing 
approximately a 30% reduction in the risk of recurrence 
and a 22%-32% reduction in the risk of death com
pared with observation alone. Elderly patients are 
referred to the oncologist less frequently than younger 
patients, especially those with comorbidities, and 
when referred they are less likely to be treated with 
chemotherapy. An update of SEER - Medicare analysis 
data and three population-based data sets conducted 

by Sanoff et al[131] showed that only 44% of the 5941 
patients evaluated received adjuvant chemotherapy 
within 3 mo of surgical resection for stage III CRC.

Since 2001, intravenous 5-fluorouracil modulated 
with leucovorin (FU/LV) in the adjuvant setting has 
shown better outcomes than observation, even in 
elderly patients. A pooled analysis of 3351 patients from 
seven randomized phase III adjuvant chemotherapy 
trials comparing chemotherapy vs surgery alone for 
stage II or III colon cancer showed a 29% reduction 
in the risk of death at 5 years[132]. The benefit was 
independent of age, and no differences in toxicity 
were seen with respect to younger patients. Only one 
study showed a greater proportion of grade 3 or 4 
neutropenia (8% vs 4%) without increased neurological 
toxicity, diarrhea, infection, nausea, or vomiting.

Capecitabine (an oral fluoropyrimidine) also proved 
to be as effective as FU/LV in adjuvant treatment in a 
subgroup analysis of patients equal to or greater than 
70 years of age, with no differences in toxicity by age, 
although it was more toxic than FU/LV[133,134].

These results are supported by other studies with 
patients of 80 years of age or more, where there was 
a higher incidence of grade 3 or 4 toxicity, especially 
diarrhea (31% vs 13%) and hand-foot syndrome[135]. 
With the MOSAIC trial, oxaliplatin was established as a 
new adjuvant standard in combination with 5FU/LV plus 
infusional 5FU short-term and leucovorin (FOLFOX) as 
compared with 5FU and leucovorin alone in resected 
stage III colon cancer, with a 20% reduction in the risk 
of recurrence and a 16% reduction in risk of death at 
6 years. But the analysis of 315 patients over 70-75 
years of age revealed that although there was a 
survival benefit with fluoropyrimidines, there was no 
benefit in disease-free survival (DFS), overall survival 
(OS), or time to recurrence (TTR) by adding oxaliplatin 
[OS hazard ratio (HR) 1.10, 95%CI: 0.73-1.65] or in 
patients with stage II tumours[136]. 

The National Surgical Adjuvant Breast and Bowel 
Project (NSABP) C-07 trial analyzed 2409 patients 
in stage II or III treated with weekly bolus of FU and 
leucovorin with or without oxaliplatin. The results 
showed that the addition of oxaliplatin to 5FU/LV gave 
no survival benefit in patients equal to or greater than 
70 years of age in stage II or III colon cancer (n = 
396), but a higher grade 4 toxicity (20% vs 13%) was 
found. The benefit in OS was only observed in patients 
under 70 years of age[137]. In contrast, the N016968 
trial, which randomized capecitabine vs bolus 5FU and 
oxaliplatin in stage III exclusively, showed an increase in 
DFS in both populations under or over 65 years of age 
with an HR 0.8[138]. 

The Adjuvant CC End Points (ACCENT) database 
(including seven randomized trials such as MOSAIC, 
NSABP C-07, and N016968) included 14528 patients 
in stage II or III treated with a 5FU combination with 
oxaliplatin or irinotecan vs 5FU alone. The results 
of the 2575 patients greater than or equal to 70 
years of age did not show a benefit in DFS or OS by 
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adding oxaliplatin to adjuvant treatment (DFS: HR = 
0.94; 95%CI: 0.78-1.13; OS: HR = 1.04; 95%CI: 
0.85-1.27). They did not consider death from other 
causes or change in efficacy due to reductions or 
delays of doses[139]. In contrast to these data, the 
analysis of Sanoff et al[131] with 4060 patients in stage 
III CRC including five cohorts, the largest cohort of 
the SEER-Medicare database, saw a marginal benefit 
with no statistically significant difference when adding 
oxaliplatin. Also, there were more adverse events with 
oxaliplatin compared with fluoropyrimidine. Among 
patients older than 75 years of age, more neutropenia 
(OR = 17.3, 95%CI: 9.8-30.42) and nausea or vomiting 
were found (OR = 2.14, 95%CI: 1.73-2.65) without 
differences in diarrhea or hydration[140]. In summary, 
it seems that the benefit and toxicity of 5FU/LV in the 
adjuvant setting is similar between young and elderly 
patients.

Although adjuvant treatment is offered to patients in 
stage II CRC with risk factors (T4, perforation, lympho
vascular or perineural invasion, poorly differentiated 
histology), the benefit of adjuvant chemotherapy for 
stage II is more controversial, and there are no data to 
ensure which patients are most likely to benefit from 
adjuvant treatment. 

In an attempt to identify the subgroup of patients 
with stage II CRC who may benefit from adjuvant 
therapy, there have been efforts to find prognostic 
biomarkers. The deficiency of the MMR system or MSI 
seems a promising marker. Several studies have found 
an association between high microsatellite instability 
(MSI-H) and better prognosis but resistance to treat
ment with fluorouracil[141].

It seems reasonable to analyze the MMR deficiency 
in patients with T3 stage II to select those who could 
benefit from treatment with 5FU. Its application has not 
been validated in clinical practice, and, therefore, clinical 
decisions to administer chemotherapy should not be 
based on this analysis. It is not a common occurrence in 
the metastatic context and does not seem to play a role 
in the prognostic stratification.

Data from the SEER-Medicare database indicate that 
adjuvant treatment does not increase the OS in patients 
over 65 years of age with stage II CRC with or without 
risk factors[142]. In stage II patients with risk factors, 
the chemotherapy options are FU/LV or capecitabine 
if the patient is capable of adhering to the medication, 
although no differences were found in the Quasar study. 
This study showed a marginal benefit in OS of 3.6% in 
patients greater than or equal to 70 years of age with 
stage II CRC[143]. The lack of benefit in stage II does 
not justify the use of oxaliplatin. The benefit of adding 
oxaliplatin in patients > 70 years of age in stage III 
CRC is doubtful and is not supported by data from the 
results of clinical trials, such as MOSAIC and NSABP, 
even though the elderly population included was very 
small. It is difficult to establish whether 70 years old 
is a reasonable cut-off age to safely extrapolate these 
results or if the decision should depend on the physical 

and functional status of the patient, not only on the 
chronological age. In fit elderly patients with stage 
III CRC with a life expectancy of at least 5 years, the 
benefit of adding oxaliplatin must be discussed. The 
modified FOLFOX 6 scheme (due to less hematologic 
toxicity, without bolus if necessary), or XELOX with 
capecitabine at 1000 mg/m2, should be considered. If 
the patient has no serious comorbidity, the full dose 
should be given. In patients neither fit nor frail with 
some comorbidity, dose reduction should be considered.

Frail patients with Eastern Cooperative Oncology 
Group Performance Status 3 or 4 are not candidates for 
chemotherapy treatment. Therapy with targeted agents 
is not indicated in adjuvant treatment because of lack of 
benefit[144].

Treatment in metastatic patients
The goal of palliative chemotherapy in the elderly should 
be the same as in young patients but with special atten
tion to treatment toxicity. It has been demonstrated in 
several studies and a meta-analysis that chemotherapy 
improves the overall survival and time to progression 
compared to observation. An analysis by Folprecht et 
al[145] of 22 trials showed benefits in OS, progression free 
survival (PFS), and TTR similar to younger patients (in 
629 patients over 70 years of age).

Exposure to the drugs currently available is able 
to increase the OS, time to response , and the rate of 
metastatic resection with an average of approximately 
24 mo of OS. Even with this data and probably due 
to toxicity concerns, elderly patients are less likely 
to be treated with these agents. A population-based 
study by Ho et al[146] reported that less than 50% of 
elderly patients with mCRC received palliative systemic 
chemotherapy.

Fluoropyrimidines are the mainstay of treatment 
and can also benefit elderly patients. Depending on 
the administration schedule, the toxicity profile is 
different; diarrhea and leukopenia are more frequent 
when administered in bolus (24% vs 14% and 24% 
vs 10% respectively)[147]. Treatment with capecitabine, 
because it is administered orally, is perceived to be 
innocuous, but although it is well tolerated in fit elderly 
patients, it is still more toxic than 5FU in combination 
therapy[148-154]. The MRC Focus 2 trial of elderly and frail 
patients confirmed the higher rate of gastrointestinal 
toxicity, such as diarrhea, vomiting, and anorexia, with 
no differences in efficacy[155].

The question is whether a more aggressive regimen 
is better. There are conflicting data: three phase III 
studies did not observe a survival benefit with com
bination chemotherapy vs 5 FU/LV alone[155-157]. The 
MRC FOCUS 2 trial included 459 patients who were 
deemed not fit or too frail for full doses. They were 
randomized to 5 FU/LV with or without oxaliplatin, or 
capecitabine with or without oxaliplatin. Approximately 
43% were older than 75 years of age, 13% older than 
80%, and 29% with a Performance Status of 2. The 
addition of oxaliplatin improved response rate but not 
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DFS or OS, and the rate of grade 3 or 4 toxicity was 
not increased in the oxaliplatin arm, perhaps due to a 
lower administered dose. Capecitabine and 5FU were 
equivalent in terms of benefit on PFS (HR = 0.99, 
95%CI: 0.82-1.2, p = 0.93) or OS (HR = 0.96, 95%CI: 
0.79-1.17, p = 0.71); however, higher toxicity was 
observed with capecitabine and, as a consequence, also 
a lower quality of life.

The combination of irinotecan and 5FU provides 
the same benefits in the elderly as it does in younger 
patients, as seen in phase II and III trials, albeit at 
the expense of an increased gastrointestinal and 
hematologic toxicity[158,159]. The tri-weekly administration 
of irinotecan requires dose reduction in patients over 
70 years of age because of an increase in the rates of 
neutropenia and diarrhea[160].

A phase III French study FFCD 2001-02 randomized 
282 patients older than 75 with mCRC treated by a first 
line of palliative chemotherapy with 5FU with or without 
irinotecan. A geriatric assessment was obtained in 123 
(44%). Greater toxicity grades 3-4 (61% vs 39%) were 
observed in the combination arm, and these patients 
required more hospitalizations or dose reduction. 
There is no OS data available to justify the increase 
in toxicity. The study was not designed with sufficient 
statistical power, so more studies are still needed. IADL 
dependence and cognitive impairment were established 
as predictors of greater toxicity[154]. The combination 
of oxaliplatin and capecitabine (denominated Xelox) is 
well tolerated, although more toxic as seen in the MRC 
FOCUS 2 trial[152]. The combination of capecitabine with 
irinotecan (XELIRI) is more toxic with a high rate of 
dehydration and asthenia, and it is infrequently used in 
elderly patients[154-158].

The benefit of the new molecular targets has also 
been reported in the elderly population[159]. Specifically, 
bevacizumab (the vascular endothelial growth factor 
VEGF) increases both PFS and OS, as was observed in 
a retrospective subgroup analysis and pooled analysis 
of randomized trials, along with observational cohort 
studies. A pooled analysis of two randomized trials by 
Kabbinavar et al[160] with 439 patients older than 65 and 
276 > 70 years of age, showed an improvement with 
bevacizumab in PFS of 9.2 mo vs 6.2 mo; HR = 0.52: 
p < 0.0001, and OS of 19.3 mo vs 14.3 mo, which is 
statistically significant (HR = 0.7). Another analysis by 
Cassidy et al[161], which included two more phase III 
trials with 712 patients equal to or > 70 years of age 
and 1142 > 65, confirmed the benefit in OS and PFS 
with bevacizumab, even though an increased incidence 
of thrombotic events in patients over 65 years of age 
was seen (5.7% vs 2.5% patients > 65 years, and 6.7% 
vs 3.2% in those > 70 years of age).

The BRITE observational study, which included 896 
patients > 65 years of age, also showed better PFS, 
despite a greater toxicity profile with regard to the 
incidence of thromboembolic events, that increased 
with age[162].

The AVEX study, designed to assess the efficacy 

and tolerability of capecitabine plus bevacizumab vs 
capecitabine alone, included 280 frail patients equal to 
or greater than 70 years of age. The results showed 
an increase in PFS (9.1 mo vs 5.1 mo) and relative risk 
(RR) (19.3% vs 10%) with no statistically significant 
difference in OS (21 ms vs 17 ms) but more toxic 
events in the bevacizumab arm (40% vs 22%) at 
the expense of hypertension, hand-foot syndrome, 
bleeding, and thromboembolic events[163].

In elderly patients, the combination of capecitabine 
and bevacizumab is effective, but the risk vs benefit 
must be discussed, especially in patients with vascular 
disease, myocardial infarction, thrombotic events, or 
severe uncontrolled hypertension in the 6-12 mo prior 
to the start of treatment.

Aflibercept, another angiogenesis-targeting agent, 
has demonstrated efficacy in treating mCRC in a recent 
randomized Phase III trial (VELOUR). As a result, it 
has been approved in combination with FOLFIRI in the 
second line treatment for metastatic mCRC, supported 
by an improvement in OS of 13.5 mo vs 12.1 mo. The 
efficacy was similar in the elderly population studied. 
However, there is no more data available in this popu
lation[164]. The most frequently reported adverse events 
with aflibercept compared with the placebo arm were 
hemorrhage (2.9% vs 1.7%), arterial and venous 
thromboembolic events (9.7% vs 6.8%), grade 3 
hypertension (19.1% vs 1.5%), and grade 3 or 4 
proteinuria (7.9% vs 1.2%). Other adverse effects 
associated with chemotherapy were higher in the 
aflibercept arm: diarrhea, asthenia, stomatitis, infections 
(12.3% vs 6.9%), palmar-plantar erythrodysesthesia 
(2.8% vs 0.5%), neutropenia (36.7% vs 29.5%), and 
thrombocytopenia (3.3% vs 1.7%).

The data on the anti-EGFRs cetuximab and panitu
mumab in the elderly population are limited. They have 
been investigated in several trials either in combination 
or monotherapy in mCRC, with a manageable toxicity 
profile. Patients with mutations in codon 12 or 13 of 
the KRAS gene should not be treated with anti-EGFR 
antibody due to lack of benefit. The main adverse effect 
of these drugs is skin toxicity. The correlation between 
development and severity of rash with treatment 
response is unclear. An analysis of EGFR polymorphisms 
observed that carriers of D994D polymorphism have 
lower dermatological toxicity than other genotypes, with 
no difference in PFS or OS and age[165-169]. Mutations in 
RAS, BRAF, and PIK3CA have also been shown to be 
associated with resistance to anti-EGFR[170].

Several prospective and retrospective studies have 
shown no differences in toxicity compared to younger 
patients and the same clinical benefit. Therefore, these 
agents should be considered in fit elderly patients[163-169].

The latest drug approved for the treatment of 
mCRC, the multikinase inhibitor regorafenib, adds a 
modest increase in PFS without increasing OS. Median 
overall survival was 6.4 mo with regorafenib vs 5.0 
mo with placebo (HR = 0.77; 95%CI: 0.64-0.94; one-
sided p = 0.0052). Adverse events due to treatment 
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occurred in 465 (93%) patients with regorafenib 
and in 154 (61%) of those assigned to placebo. The 
most common adverse events of grade 3 or higher 
related to regorafenib were hand-foot skin reaction 
(17%), fatigue (10%), diarrhea (7%), hypertension 
(7%), and rash or desquamation (6%). There were 
no differences in toxicity between patients older or 
younger than 65 years of age in the subgroup analyzed, 
but there are no available data on efficacy or toxicity 
in the elderly or frail population[168]. Ramucirumab is 
a human IgG-1 monoclonal antibody that targets the 
extracellular domain of VEGF receptor 2. Ramucirumab 
in combination with FOLFIRI has recently been 
approved as a second line treatment, after progression 
with bevacizumab, oxaliplatin, and a fluoropyrimidine. 
Median overall survival was 13.3 mo for patients in 
the ramucirumab group vs 11.7 mo for the placebo 
with FOLFIRI group (HR = 0.844, p = 0.0219). The 
most frequently observed adverse effects grade 3 or 
worse were neutropenia (38% vs 23%), hypertension 
(11% vs 3%), diarrhea (11% vs 10%), and fatigue 
(12% vs 8%). The median patient age was 62, and, 
therefore, there is still not enough data in the elderly or 
frail population. One of the latest drugs, pending Food 
and Drug Administration approval, for the treatment 
of CRC is TAS-102. TAS-102 is an antitumor agent 
composed of a combination of trifluorothymidine (FTD), 
a nucleoside that incorporates into DNA and inhibits a 
variety of genetic functions required for the proliferation 
of cancer cells, and tipiracil hydrochloride, an inhibitor 
of thymidine phosphorylase (which degrades FTD) 
that maintains an effective blood concentration of FTD. 
Tipiracil protects trifluridine from being broken down 
when taken orally.

In a Phase 3 study, 800 patients with advanced 
CRC in refractory to oxaliplatin, irinotecan, fluorouracil, 
bevacizumab, regorafenib, and anti-EGFR (RAS wild 
type) were randomized to TAS-102 vs placebo. An 
increase of median overall survival was observed, from 
5.3 mo with placebo to 7.1 mo with TAS-102 (HR of 
death 0.68, P < 0.001). The main grade 3 or higher 
toxicity was neutropenia (38%) and patients in the 
TAS-102 group were also more likely than those in the 
placebo group to have nausea of grade 3 or higher (2% 
vs 1%), vomiting (2% vs < 1%), and diarrhea (3% vs 
< 1%). The median patient age was 63. The benefit 
was seen in patients younger than and older than 65, 
but data are lacking in elderly or frail patients[171]. 

In summary, an elderly fit patient may be treated 
with FOLFIRI and FOLFOX (or XELOX) with or without 
antibodies, given the high response rate, especially 
if the treatment is given with neoadjuvant intention 
prior to surgery for metastases (M1), with certain 
precautions due to different toxicity profiles. Age by 
itself should not be a contraindication for M1 surgery. 
There are more data available for hepatic resections 
than pulmonary resections[172-176]. Surgical series that 
include all patients have a median OS of 40% at 5 
years after liver resection, with a general perioperative 

mortality lower than 5%. Fit elderly patients with little 
comorbidity should be offered chemotherapy with the 
newer agents that increase the response rate and 
therefore resectability before surgery.

Two retrospective series of neoadjuvant chemo
therapy prior to surgery based on oxaliplatin showed 
higher response rates as expected. Those who were 
operated had better recurrence-free survival[176,177].

For those patients unfit or with low IK or PS 2, the 
treatment may be of benefit if deterioration is related 
to the oncologic disease, although the benefit is lower 
and the toxicity higher. The risks or benefit should be 
evaluated and discussed individually in these patients. 
Fluoropyrimidine monotherapy or supportive care is 
probably the best choice in frail patients.

PALLIATIVE CARE
The “frail elderly” may be good candidates for palliative 
treatment, which can provide a better quality of remain
ing life. When to begin palliative care is a troublesome 
question for patients, but when frailty is severe, delivery 
of palliative care focused on relief of discomfort and 
enhancement of quality of life is highly appropriate. 
In addition to symptom management, preservation of 
functional independence is a major goal of treatment in 
the elderly. The application of multidisciplinary, team-
based palliative approaches is beneficial for treating 
these patients because of the complexity of their 
coexisting social, psychological, and medical needs. 
Although death occurs far more commonly in older 
people than in any other age group, the evidence base 
for palliative care in older adults is scarce[178].

CONCLUSION
Older patients with colon or rectal cancer are less 
likely to receive guideline-recommended therapies. 
Decisions about cancer treatment in the elderly may 
be influenced by a number of factors, including pre-
existing health problems (comorbidities) and other 
conditions that might cause the potential risks of 
surgery, chemotherapy, and radiotherapy to outweigh 
the benefits of treatment. Risk stratification based on 
comorbidities and biochemical and physiological markers 
could help to decide whether to perform surgery, what 
type of surgery, and the timing of surgery. Physiological 
rather than chronological age should determine the 
management of cancer in each individual[5].

Optimal treatment of the older adult patient who 
has cancer starts with a careful delineation of goals 
through conversation. Most elderly patients with 
cancer will have priorities besides simply prolonging 
their lives. Surveys have found that their top concerns 
include avoiding suffering, strengthening relationships 
with family and friends, being mentally aware, not 
being a burden on others, and achieving a sense that 
their life is complete[179]. The treatment plan should be 
comprehensive: cancer-specific treatment, symptom-
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specific treatment, supportive treatment modalities, and 
end-of-life care[180].

The careful assessment of the patient, taking into 
consideration their functional status, level of frailty, life-
expectancy, and wishes, should become an essential 
and central issue in their management, and choosing 
the appropriate therapy for each patient within a 
multidisciplinary process should be the future in the 
treatment of elderly patients with CRC.
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cancer associated fibroblasts and macrophages, as well 
as between macrophages and T cells, and demonstrate 
how each population may support or prevent tumour 
growth in a different immune environment. 

Key words: Colorectal cancer neoplasms; Fibroblasts; 
Immune system processes; Macrophages; T lympho­
cytes

© The Author(s) 2015. Published by Baishideng Publishing 
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Core tip: The outcome of patients with colorectal cancer 
is influenced by the complex local immune system. 
Understanding how multiple relationships between 
immune cells may affect tumour growth or elimination 
will be key in designing new therapies to treat this 
disease. 
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PERSPECTIVE
Colorectal cancer (CRC) is the second and third most 
common cancer in women and men, respectively, 
worldwide[1]. In most cases, the disease occurs 
sporadically, but can also be caused by genetic pre­
disposition or prior intestinal inflammation. While 
resection is often curative, approximately 45% of 
patients still die from the disease.

The recent introduction of successful immuno­
therapies against cancer, specifically checkpoint 
blockade antibodies, has increased attention on the 
immune response to tumours. These new treatments 
have provided opportunities for the development of new 
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Abstract
The immune response to colorectal cancer has proven 
to be a reliable measure of patient outcome in several 
studies. However, the complexity of the immune 
response in this disease is not well understood, par­
ticularly the interactions between tumour-associated 
cells and cells of the innate and adaptive immune 
system. This review will discuss the relationship between 
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immune-based therapies for less responsive tumours, 
such as CRC.

The complexity of the anti-tumour immune response 
is vast - not only are there multiple cells, these cells 
interact with each other, and are plastic so can change 
phenotype and function in response to inflammatory 
or suppressive signals from the tumour and tumour 
associated cells[2]. Understanding the relationships 
between cancer cells and immune cells is critical to 
understanding and, ultimately, manipulating the tumour 
immune microenvironment.

The importance of local immunity is particularly true 
in CRC where the immune response in the gut has been 
“trained” to ignore commensal microflora, and yet retain 
the ability to induce an attack against a pathogen. The 
ability of the gut to do this relies on a series of signals 
and interactions between bacteria, epithelial cells, and 
innate cells such as dendritic cells, monocytes and gut 
resident macrophages. In CRC, there are local adaptive 
immune cells such as effector T cells likely to have an 
antitumor effect, and regulatory or inflammatory T cells 
predicted to have a pro-tumour effect[3].

Recent study of the immune response in CRC has 
resulted in the development of the Immunoscore, a 
means of measuring T cell infiltrate into CRCs[4]. The 
Immunoscore thus far has shown to be predictive of 
outcome and also superior to other methods for staging 
patients. Innate immune responses, particularly those 
involving tumour associated macrophages (TAMs), have 
been studied and data show that the frequency of these 
cells infiltrating the tumour can be associated with poor 
patient outcome, although this is controversial[5]. 

Immune responses against colorectal tumours can 
be detected in early stage cancers, indicating that the 
immune system is capable of recognizing a tumour[6]. 
However, the tumour produces molecules that inhibit 
immune cell infiltration, that reduce activity of immune 
cells, or that change the phenotype of immune cells to 
a less effective anti-tumour function, ultimately allowing 
tumour outgrowth[7]. 

The inflammatory immune environment underlying 
tumour initiation and progression in CRC has been 
reviewed extensively[8], although much of the supporting 
data relies on animal models of colitis-induced cancer[9]. 
However, colitis-associated cancer accounts for only a 
small percentage (1%-4%) of CRC cases in humans[10]. 
The influence of inflammation mediated by immune 
cells in established familial or sporadic human CRC 
has been much less studied. In addition, new data 
demonstrate an impressive complexity of innate 
and adaptive immune cells[11], suggesting that some 
associations with cancer progression may have been 
too simplistic in their interpretation.

This review will concentrate on the networks 
of innate and adaptive immune cells, and tumour-
associated immune cells in established CRC, and how 
these interactions can influence subsequent patient 
outcome (Figure 1). Despite recent interest in the 
immunology of CRC, there are limited experimental 

data studying the complexity of the immune response 
and the interactions between cancer cells and 
immune cells, particularly in humans. We will discuss 
(1) the interplay between the tumour stromal cells 
[particularly cancer-associated fibroblasts (CAFs)] and 
the macrophages infiltrating the tumour; and (2) the 
interactions between macrophages and T cells and 
how T cell populations may influence each other. We 
will attempt to describe the complexity and plasticity of 
these immune populations and discuss how they can 
be used to better understand the disease and to predict 
patient outcomes.

Cancer Associated Fibroblasts 
and Tumour Associated 
Macrophages - Innate Cells and 
Tumour Promotion
CAFs in CRC
Fibroblasts are a key component of the connective 
tissue and are found embedded in the extracellular 
matrix (ECM). Fibroblasts have important roles in tissue 
homeostasis and remodelling. They produce multiple 
cytokines and can therefore modulate the immune 
microenvironment. Fibroblasts found in tumour stroma 
are referred to as CAFs.

The exact origin of CAFs is not clear. It has been 
proposed that they are cancer cells that have undergone 
an epithelial-mesenchymal transition[12]. Other research 
suggests that fibroblasts mature from fibrocytes that, 
in turn, have differentiated from monocytes[13] and thus 
have a similar haematopoietic lineage to macrophages. 
It is then not surprising that there is significant pheno­
typic overlap between CAFs and macrophages. 
CAFs do not express the immune cell marker CD45, 
however they can express CD68, a marker commonly 
used to differentiate macrophages[14]. Madar et al[15] 
hypothesised that CAFs were the result of convergent 
differentiation from any one of multiple pathways 
within the tumour microenvironment, and that CAF is 
a description of a functional state rather than a defined 
lineage.

CAFS may have a direct role in promoting CRC cell 
growth. Primary CAFs cultured from human colorectal 
tumours developed into distinct populations, some 
inducing a pro-migratory effect on CRC cells[16]. These 
pro-tumour CAFS had a distinct genetic signature with 
significant prognostic value. In addition, CAFs have 
been shown to promote metastases in CRC[17].

CAF interactions promoting tumour growth 
Because of their role in in tissue homeostasis, CAFs are 
able to promote tumour growth via similar pathways, 
including via inflammatory mediators consistent with 
the wound healing process. These pathways were 
reviewed recently[12], so we will discuss the role of CAFs 
briefly, and focus on their influence on innate immune 
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cells. CAF-derived inflammatory mediators can both 
promote tumour growth and tumour invasion (Figure 1). 
An important inflammatory cytokine produced by CAFs 
in the regulation of wound healing, interleukin (IL)-6, is 
also associated with disease progression in CRC. 

IL-6 in patient serum has been associated with 
poor patient prognosis in many cancers, including 
CRC[18]. IL-6 promotes cell survival and supports 
the production of vascular endothelial growth factor 
(VEGF) from both tumour and immune cells. VEGF 
was associated with enhanced tumour progression 
and poor patient prognosis in CRC[19], likely through its 
role in angiogenesis[20]. CAFs produced more IL-6 than 
cancer cells, and CAF-derived IL-6 was increased in the 
presence of CRC cell lines[21]. In response to greater 
IL-6 production, CAFs up-regulated production of VEGF, 
leading to the proposal that the indirect effect of IL-6 on 
tumour growth via CAFs was more important that the 
direct effect of IL-6 on tumour cells[21]. 

Other inflammatory mediators produced by CAFs 
also increase IL-6 production, including IL-1β and 
TNFα[21]. In patients, high plasma levels of the TNFα 
receptor, TNFR-2, were associated with an increased 

relative risk of CRC[22]. Expression of both VEGF[23] and 
FSTL-1[24] (which enhances inflammatory cytokine and 
chemokine expression) was increased in CRC-associated 
CAFs. Chemotherapy, known to cause inflammation as 
cancer cells are killed[25], resulted in increased numbers 
of active CAFs in a cohort of CRC patients[26], and en­
hanced tumour growth in in vitro assays.

CAF recruitment of inflammatory cells
Fibroblasts both recruit, and are recruited by, mono­
cytes/macrophages[12]. CAFs have been shown to 
recruit monocytes to the tumour microenvironment 
and thus may directly affect the local macrophage 
compartment. Indeed, Schellerer et al[27] showed 
there were more Intracellular Adhesion Molecule-1+ 
fibroblasts in tumour tissue than healthy bowel tissue 
from CRC patients, implying that cancer-associated 
cells have a higher affinity for monocytic cells. In an in 
vitro human breast cancer model, CAFs produced high 
levels of the chemokines CCL2 and CCL5 that attracted 
monocytes[28,29]. The production of these chemokines 
required IL-6, in a suggested IL-6-CCL2 auto-regulatory 
cycle[29]. CCL2 and CCL5 were also produced by tumour 
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Figure 1  Immune cell interplay in established colorectal cancer. CAFs and macrophages play an important role in promoting tumour progression in the stroma, 
mediated by IL-6 (“Bad”). Conversely, immune responses at the invasive margin, including macrophage and T cell compartments inhibit tumour growth (“Good”). 
(1): Unknown factors from colorectal tumours promote IL-6 production from CAFs; (2) IL-6 promotes further IL-6 production from CAFs as well as initiation of VEGF 
production; (3) IL-6, IL-17, VEGF and ECM modulators produced by CAFs promote growth, angiogenesis and invasion of colorectal tumours; (4) IL-6 produced by 
CAFs or stromal macrophages promotes T cell differentiation towards an inflammatory IL-17 producing phenotype; (5) IL-17 producing T cells promote colorectal 
tumour progression and are associated with poorer patient prognosis; (6) Tregs suppress the inflammatory IL-17 response; (7) Macrophages at the invasive margin 
are associated with improved prognosis; (8) IL-6 produced in the stroma enhances the anti-tumour phenotype; (9) Invasive margin macrophages are primed to induce 
good effector T cell responses; (10) IFN-γ+ effector T cells are associated with improved prognosis in CRC; (11) Tregs can inhibit effector anti-tumour T cell responses. 
CAFs: Cancer-associated fibroblasts; IL: Interleukin; VEGF: Vascular endothelial growth factor; ECM: Extracellular matrix. 
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lack of detailed phenotype[33].

Gut resident macrophages and CRC 
Regular interaction between immune cells and microbes 
in the gut creates an immune environment that 
must be tightly regulated. Gut resident macrophages 
provide an important role in regulating this commensal 
barrier. These particular macrophages have an anergic 
phenotype; they destroy any bacteria that breach the 
epithelial barrier but do not initiate an immune reaction 
against them under homeostatic conditions[37,38]. 

Unlike most tissue resident macrophage populations, 
gut resident macrophages are bone marrow derived[32,37]. 
Newly recruited monocytes undergo a conditioning 
process, mediated by the gut epithelia, that matures 
them into the resident anergic phenotype. However, 
upon acute inflammatory insult, such as that seen 
in inflammatory bowel disorders, this conditioning 
process becomes dysregulated, resulting in a mature 
macrophage population that acquires and maintains 
migratory and inflammatory characteristics[37,39].

In the context of CRC, monocyte conditioning is 
unlikely to be modulated only by inflammation, but also 
factors actively produced by the tumour[40], hypoxic 
conditions[41] and glucose starvation[28]. As a result, 
unique macrophage populations will exist depending 
strongly on the context of the local microenvironment. 
Hence, describing a homogeneous macrophage popu­
lation in CRC can be misleading. 

TAMs promote an inflammatory pro-tumour environment
It is well documented that TAMs can promote tumour 
growth, both directly on tumour cells, and indirectly 
via cells in the tumour microenvironment (reviewed 
in[42]). The human monocytic cell line, THP-1, produced 
IL-6 in the presence of a colorectal cell line[43], and 
macrophage-derived IL-6 induced expression of IL-6 by 
the HT29 CRC cell line[44]. TAMs also upregulated the 
expression of metalloproteinase (MMP)-2 and MMP-9 
on cancer cells, molecules associated with lymph node 
metastasis[42,45]. TAM-derived IL-6 promoted STAT-3 
mediated IL-10 production in CRC cells, a cytokine that 
has also been associated with poor patient prognosis[46]. 
In fact, p-STAT3 overexpression in the tumours of CRC 
patients is significantly correlated with tumour specific 
mortality[47]. Together, these studies demonstrate that 
TAMs and CAFs promote an environment to support 
tumour progression in CRC. 

Macrophages have been shown to preferentially 
migrate to hypoxic regions of tumours[48]. In a mouse 
model of colitis-associated CRC, repression of hypoxia 
inducible factor 1 led to decreased macrophage 
infiltration in tumours[49]. Interestingly, under hypoxic 
conditions, macrophages can acquire a phenotype similar 
to that seen in macrophages involved in wound-healing 
role - a phenotype likely to promote tumour growth. 
More specifically, human macrophages in hypoxic 
conditions (0.5% oxygen) up-regulated expression of 
both VEGF and glucose transporter (GLUT)-1 compared 

cells as well as the recruited monocyte/macrophages, 
creating a positive feedback loop and generating an 
inflammatory tumour microenvironment[28]. 

TAMs in CRC
The prognostic significance of TAMs is controversial, 
particularly in CRC[30]. Macrophages are myeloid 
derived cells of the innate immune system. They are 
potent phagocytes and are involved in clearance of 
pathogens and cellular debris. They also initiate the 
adaptive response by functioning as antigen presenting 
cells (APCs). Macrophages reside in all tissues where 
they also maintain tissue integrity (reviewed in[31]). 
The phenotype and ontogeny of tissue resident 
macrophages varies between tissues. Some are freshly 
recruited bone marrow-monocyte derived macrophages, 
whereas others derive from the embryonic yolk sac 
(reviewed in[32]). In most adult tissue, however, resident 
macrophages are fetal liver derived. Both the ontogeny 
and microenvironment of resident macrophages influ­
ence their phenotype. As such, resident macrophage 
populations are often heterogeneous.

The phenotypic diversity of macrophages makes 
analysis of subpopulations challenging. A great deal 
of work has been undertaken assessing macrophage 
subsets using only one or two surface markers to 
determine function. However, a recent opinion suggests 
this approach to be misleading, due to the many causes 
of diversity[33]. Instead, multiple markers must be used 
to estimate the function of macrophage populations, 
or, where possible, primary functional data. It has 
been proposed that minimum reporting standards be 
introduced to allow better meta-analysis of macrophage 
data between research groups. This type of approach is 
paramount when assessing highly plastic macrophages, 
for example, human macrophages were shown to 
switch from anti-inflammatory to pro-inflammatory 
cytokine production within 24 h in response to IFNγ, 
Granulocyte-Monocyte Colony Stimulating Factor and 
lipopolysaccharide in vitro[34].

The link between macrophage infiltration and 
prognosis in CRC is still poorly understood. While some 
studies have shown a positive correlation between 
macrophage infiltration and patient prognosis, others 
have shown the opposite[30]. For example, Forssell et 
al[35] demonstrated that a dense macrophage infiltration 
at the tumour invasive margin was associated with 
improved patient prognosis, and that macrophage 
inhibition of tumour spread and growth required direct 
cell-to-cell contact in an in vitro CRC model. In contrast, 
Kang et al[36] demonstrated that intra-tumoural TAM 
count correlated with parameters of worse disease 
progression (depth of invasion, lymph node metastasis 
and stage). Using an in vitro co-culture macrophage 
and CRC cell lines these researchers also demonstrated 
that macrophages increased cancer cell invasiveness 
and migration. It may be that the conflicting data 
relating to the role of macrophages in CRC prognosis is 
due to inaccuracies of reporting culture conditions or a 
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to normoxia[50]. GLUT-1 is the primary rate limiting 
glucose transporter in inflammatory macrophages[51]. 
Using transgenic RAW264.7 macrophages that stably 
overexpressed GLUT-1, it was shown that high glucose 
trafficking via GLUT-1 promoted a pro-inflammatory 
macrophage phenotype[51]. It is then possible to hypo­
thesise that under hypoxic conditions such as those 
in a tumour, macrophages up-regulate GLUT-1 in an 
attempt to scavenge more glucose in a low glucose 
environment. 

Beyond the production of inflammatory modulators, 
colorectal tumours also cause barrier defects, which 
allow for contact between immune cells and microbial 
products. Myeloid cells showed an increase in production 
of the inflammatory cytokine IL-23 under inflammatory 
conditions compared with homeostatic conditions in 
the APCmin mouse model of CRC[52]. IL-23 stimulates 
and maintains IL-17 production from both tumour cells 
and T cells. In a mouse model of colitis associated CRC, 
IL-23- and IL-17-mediated inflammation disrupted 
the commensal microflora, and created a population 
of microbes that promoted tumour progression[53]. 
Furthermore, confocal microscopy of human CRC patient 
samples revealed that IL-17 production was not limited 
to T cells, but was also co-expressed with the myeloid 
cell marker, CD68[54]. These findings indicate that 
myeloid cells such as macrophages may be capable of 
producing IL-17 in CRC in vivo.

Location of TAMs and influence on CRC prognosis
A high infiltrate of macrophages at the invasive margin 
of colorectal tumours has been associated with improved 
patient prognosis[35], and macrophages at the invasive 
margin of patients with CRC displayed characteristics 
of an anti-tumour phenotype[55]. These cells expressed 
the co-stimulatory molecules CD80 and CD86, and 
apoptotic signalling molecule FasL at greater levels 
than stromal macrophages. Moreover, macrophages 
have been closely associated with apoptotic cancer cells 
along the invasive margin[56] and, using cell lines, CRC 
TAMs have been observed to be highly phagocytic[57]. 
In an in vitro model of macrophage differentiation, 
with either human peripheral blood mononuclear cells  
or murine bone marrow derived macrophages, IL-6 
promoted maintenance of the established macrophage 
phenotype, even when the original cytokine stimuli 
were removed[58]. Because macrophages themselves 
also produce IL-6, as well as respond to CAF-produced 
IL-6, they are especially sensitive to the conditioning 
signals in their immediate environment. For example, 
macrophages pre-exposed to IL-4/13, acquired a 
phenotype characterised by increased IL-10 production 
in response to IL-6. However, macrophages pre-
exposed to IFNγ, acquired a phenotype characterised 
by production of IL-1β and TNFα in the presence of 
IL-6. We propose that, in CRC, IL-6 both promotes and 
inhibits tumour growth via uniquely located macrophage 
populations (Figure 1).

T cells and the anti-tumour immune response
While considerable evidence on the role of T cells in 
preventing tumour growth in animal models has been 
acquired over decades, it was not until 2005 that a 
definitive role for T cells in CRC outcome was shown 
in patients[59]. Galon et al[60] demonstrated, in 2006, 
that a high infiltrate of CD3+ CD8+ CD45RO+ T cells at 
the invasive margin and the centre of the tumour was 
predictive of improved Overall Survival and Disease-
Free Survival in a large cohort of people with CRC. Since 
then, these data have been confirmed by other groups, 
and have led to the introduction of the Immunoscore to 
quantify infiltrating T cells in clinical practice[61].

The Immunoscore uses immunohistochemistry tech­
niques to quantify the CD3+ CD8+ T cell infiltrate cell 
analysis at the centre of the tumour and at the invasive 
margin in people with CRC[4]. To date, the Immunoscore 
has proven to provide an accurate staging diagnosis 
as well as to predict patient outcome[62]. Although the 
Immunoscore is an improvement on the current staging 
methods for CRC, its efficacy may be hindered by the 
interference of T cell subsets that are not associated 
with good prognosis.

Although it remains clear that the infiltrate of 
CD3+ CD8+ CD45RO+ T cells is associated with good 
patient prognosis in CRC, some T cell subsets have 
been associated with poor prognosis. Specifically, 
inflammatory CD4+ T cells (Th17 cells), usually 
measured via production of the cytokine IL-17; and 
regulatory CD4+ T cells (Tregs), often quantified by 
expression of the transcription factor, FoxP3; have 
been associated with both good and bad outcomes 
(reviewed in[63]). In addition, a low ratio of CD4+ to 
CD8+ T cells is associated with improved outcome[64]. 
Interestingly, Väyrynen et al[65] measured infiltrates of 
innate cells and adaptive cells in 117 CRC patients and 
found three parameters associated with Disease Free 
Survival at 24 mo: High infiltration of CD3+ cells at the 
invasive margin and high infiltration of FoxP3+ cells at 
the invasive margin and at the tumour stroma. Taken 
together, these findings indicate that that CD8+ T cells 
may be more effective than CD4+ T cells in an anti-
tumour immune response, or that beneficial CD4+ T cell 
subsets are masked by subsets associated with poor 
outcome[64]. The phenotype of T cells resident in the 
tumour is controlled by the local cytokine environment, 
particularly APCs such as macrophages. The efficacy 
of the T cell response against the tumour is therefore 
dependent on interactions with other cells (Figure 1). 

Effective anti-tumour T cell responses
T cells respond to specific antigens expressed by 
pathogens or tumours. These antigens are presented 
by a subset of immune cells, APCs, including dendritic 
cells and macrophages, but also non-immune cells such 
as epithelial cells or tumour cells. The T cell infiltrate in 
CRC is likely to be maximally effective if those cells are 
specific for tumour antigens.
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Nagorsen et al[66] used HLA tetramer analysis to 
show that tumour specific CD8+ T cells in the blood 
were not correlated with improved clinical outcome in 
people with CRC or breast cancer, highlighting the need 
to study the tumour microenvironment. In a separate 
study, tumour-associated-antigen specific T cells were 
detected in 30%-40% of patients with CRC[67]. This 
study also showed that only a small subpopulation of 
infiltrating T cells could respond to tumour-associated 
antigens, indicating that not all infiltrating T cells were 
tumour-specific. Recently, Reissfelder et al[68] proposed 
that a subpopulation of tumour antigen-specific T 
cells infiltrating the tumours of people with CRC was 
responsible for the prognostic impact of T cells shown 
by other studies. 

Multiple studies in animals have shown that cytotoxic 
T cells, via IFNγ, perforin and granzymes, can destroy 
established tumours. Gene cluster analysis of a large 
cohort of 602 patients with early stage CRC revealed 
that those patients with high CD8+ and CD45RO+ T cell 
infiltrates into the tumour also had increased expression 
of genes associated with anti-tumour responses com­
pared with those patients with low CD8+ and CD45RO+ 
T cell infiltrates into the tumour[69]. The up-regulated 
anti-tumour gene signature included genes encoding for 
granzymes and perforin, as well as effector molecules 
such as IFNγ and the related transcription factor T-bet. 
The expression of Granzyme B protein in tumours 
from CRC patients was also associated with improved 
survival[70]. These, and many other data, support a 
role for CD8+ T cells and T cells producing the effector 
molecules IFNγ and granzymes in eliminating CRC.

Effective T cells must become activated by intera­
ctions with APCs presenting antigen in the context of 
an appropriate cytokine milieu. TAMs were shown to 
express higher levels of the co-stimulatory molecule, 
CD80, than tumour stromal cells, indicating that 
these cells could activate T cells within the tumour[55]. 
In addition, using a multi-cellular tumour spheroid 
model, Ong et al[71] showed that TAMs up-regulated 
the expression of CD25 and IFNγ in T cells better than 
in vitro macrophages did. They also showed that the 
frequency of TAMs in human CRC tumours correlated 
with the frequency of infiltrating IFNγ-producing T cells 
in vivo. These data indicate that TAMs may be able to 
promote effector T cell responses within the tumour 
microenvironment (Figure 1). We propose that effective 
anti-tumour immunity is determined by TAM-T cell 
interactions occurring at the invasive margin in CRC.

Th17 cells, inflammation and cancer
Inflammatory T cells [defined here as IL-17-producing 
(or Th17) cells] are important in antimicrobial responses 
in the gut (reviewed in[72]). The acquisition of an IL-
17-producing phenotype occurs when naïve T cells are 
activated in the presence of IL-6, IL-1β, TGFβ and IL-23; 
the maintenance of the phenotype is regulated by these 
same cytokines. Inflammatory IL-17 responses involve 
production of cytokines (especially IL-17) that recruit 

monocytes and neutrophils to sites of inflammation[73]. 
These innate cells in turn produce the same cytokines 
to promote ongoing Th17 responses[74].

IL-17 production in CRC has been associated with 
low Disease-Free Survival and Overall Survival[75] but 
the exact role of Th17 cells in CRC is not understood. 
Liu et al[54] showed that Th17 induced production of 
VEGF in CRC cell lines in vitro, which decreased T cell 
production of IFNγ and Granzyme B. This study also 
showed that in human CRC tumours, high expression 
of IL-17 correlated with high VEGF expression. VEGF 
expression has been inversely correlated with CD8+ 
CD45RO+ T cell infiltrate in tumours of CRC patients[69].

Th17 cells indirectly affect tumour growth via CAFs
CAFs may be activated via microbial products that cross 
the compromised epithelial barrier and promote IL-23 
secretion[52], further supporting Th17 responses. Using 
a mouse model of CRC, Numasaki et al[76] showed 
that tumour cells engineered to express IL-17 led to 
increased production of angiogenic factors, including 
VEGF, not only by tumour cells, but also by CAFs. Th17 
responses may therefore directly aid in the inflam­
matory responses of innate cells in CRC. 

Th17 cells directly promote tumour growth
Liu et al[54] showed that IL-17 was increased in tumour 
tissue compared to healthy bowel tissue in a cohort of 
CRC patients, and that it was strongly correlated with 
overall survival. IL-17 added to human CRC cells ex vivo 
stimulated glucose metabolism by the tumour cells[77]. 
IL-17 promoted tumour growth through a STAT3-
mediated pathway in CRC patients[78]; this result has 
also been shown in other models of cancer[79]. Together, 
these data indicate that the presence of intra-tumoural 
IL-17 may support tumour angiogenesis via VEGF and 
IL-6, and directly promote tumour cell proliferation 
(Figure 1).

Tregs and IL-10 controlling immunity 
Regulatory T cells (Tregs) suppress inflammatory 
responses in the healthy gut and regulate normal 
immune responses by inhibiting proliferation and 
activity of effector T cells. Induced Tregs acquire a 
suppressive phenotype in the presence of cytokines 
such as TGFβ; the regulatory phenotype is characterised 
by up-regulation of the transcription factor FoxP3 
and the production of IL-10, amongst other cytokines 
(reviewed in[80]). Dysregulated immune responses of 
the gut, for example inflammatory bowel diseases, 
are often typified by a high infiltrate of Tregs. In the 
presence of excess inflammatory cytokines from innate 
and adaptive immune cells, particularly IL-6, Tregs can 
convert into IL-17 inflammatory cells, or maintain their 
regulatory function while co-producing IL-17 (reviewed 
in[81]). Conversely, Treg differentiation can also inhibit 
the generation of Th17 cells.

In many human cancers an accumulation of Tregs 
is associated with poor patient outcome, presumably 
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by suppressing effector T cell responses against the 
tumour[63]. Controversially, in CRC, Tregs have been 
associated with both good and poor outcomes for 
patients[82]. It is possible that because Tregs suppress 
other T cells, they could impair the function of anti-
tumour effector cells as well as pro-tumour inflammatory 
Th17 cells. 

Using a complex library of tumour associated 
antigen-polypeptides, tumour-antigen specific Tregs 
were identified in the blood of CRC patients[83] providing 
evidence that these cells have the potential to inhibit 
specific anti-tumour immune responses. Therefore, the 
nature of the tumour immune microenvironment may 
influence the action of infiltrating Tregs.

Tregs suppress anti-tumour immune responses
Tumour-specific Tregs isolated from ovarian tumours 
suppressed effector CD8+ T cell production of IFNγ in 
vitro after stimulation with tumour antigen[84]. The 
infiltrate of Tregs correlated with poor patient prognosis. 
In CRC patients with recurrent disease, specific T cell 
responses to the tumour antigens CEA and 5T4 were 
also suppressed[85]. In the same study, tumour specific 
Tregs and effector T cells were required to have the 
same specificity in order for Tregs to suppress the T 
cell response. Indeed, in an independent study, while 
tumour-antigen specific Tregs were identified in the 
tumours of CRC patients, the specificity of the majority 
of these cells was distinct from that of the effector and 
memory T cells in the same patients[83]. By depleting 
Tregs ex vivo in culture, only the effector anti-tumour 
T cells with the same specificity as the Tregs were 
increased. 

The mechanism of Treg mediated suppression in 
tumour environments is not clear. In a mouse model of 
transplantable CRC using CMT93 cells, TAMs were able 
to recruit CCR6+ Tregs to the tumour via production 
of the chemokine CCL20[86]. The infiltrate of Treg cells 
was associated with tumour development. Similarly, 
in breast cancer patients, the infiltrate of CCR6+ Tregs 
into the tumour was inversely correlated with IFNg 
production from tumour infiltrating CD8+ T cells[87]. 
Using flow cytometry, the authors showed that CCR6+ 
Tregs, but not CCR6- Tregs were associated with poor 
survival in breast cancer patients. This leads us to 
hypothesise that, in CRC, tumour-antigen specific Treg 
populations are actively recruited to the tumour by 
TAMs and inhibit the anti-tumour immune response, 
leading to poor prognosis of patients.

Tregs suppress pro-tumour T cells
Tregs recovered from blood of CRC patients were shown 
to inhibit the proliferation of Th17 cells sorted from 
blood and to suppress IL-17 production[88]. It is possible, 
therefore, that an accumulation of Tregs in the tumour 
of some CRC patients suppresses the inflammatory 
Th17 cell response rather than the anti-tumour effector 
response, leading to improved patient outcome. 

role for IL-10 in regulating tumour immune responses
Tregs are characterised by production of IL-10, a 
multifunctional cytokine generally believed to support 
anti-inflammatory immune responses. CRC patients had 
elevated levels of serum IL-10, and IL-10 remained high 
in those patients who had recurrent disease following 
tumour resection[89]. However, it has become clear that 
treatment of cancer with IL-10 could lead to improved 
anti-tumour responses (reviewed in[90]). In human 
CRC, the amount of IL-17 was inversely correlated with 
the amount of IL-10 produced[91]. Interestingly, it has 
been shown that IL-10 mediated suppression of IL-17 
responses was dependent on type-I IFN signalling[92]. 
Further, Mumm et al[93] showed that IL-10 production 
induced the production of IFNg and granzymes from 
human effector CD8+ T cells in vitro. Together these 
data suggest that IL-10 production from Tregs may, in 
fact, inhibit pro-tumour inflammatory responses as well 
as promote anti-tumour immune responses. Phase 1 
clinical trials have now begun in advanced solid tumours 
using recombinant human IL-10 as a therapy (https://
clinicaltrials.gov/show/NCT02009449).

CLINICAL RELEVANCE
Experimental limitations
Studying the immune response to CRC is difficult 
because of the complexity of both the gut immune 
response and the tumour microenvironment. As with 
most human studies, much of what has been studied 
has been observational and compounded by individual 
patient variation and individual tumour variation. The 
vast majority of CRC cases in humans are sporadic 
and the mutations that lead to tumour initiation and 
progression, and therefore immune responses, differ 
from person to person. Further, while animal models 
of CRC have provided useful information, their ability 
to truly mimic human disease is limited (reviewed 
in[94]). The two most commonly used models represent 
colitis-associated CRC (1%-4% of human CRC) or 
APCmin mice representing familial CRC (about 20% of 
human CRC)[95]. We (and others[96,97]) have developed 
orthotopic surgical murine models of CRC that result 
in a tumour immune microenvironment more similar 
to that seen in sporadic human CRC than other mouse 
models. It is possible these models may be used to test 
new immune-based interventions.

Checkpoint blockade in CRC
Two new immune-based drugs have recently been 
introduced in the treatment of cancer - anti-CTLA-4 
(ipilimumab) and anti-PD-L1/anti-PD-1 (nivolumab or 
pembrolizumab). Both types of drugs act to prevent 
the tumour-mediated suppression of effector T cell 
responses, and have been successful in melanoma 
(reviewed in[98]). However, both checkpoint blockade 
drugs have shown much less success in CRC[99-102]. 
The reasons behind this are unclear but it has been 

227WJGO|www.wjgnet.com October 15, 2015|Volume 7|Issue 10|

Norton SE et al . Immune cells and colorectal cancer



shown that many colorectal tumours do not express 
PD-L1, the ligand for PD-1. Therefore, if the suppressive 
effect of PD-L1 on anti-tumour T cells is absent, then 
therapy targeting the PD-1 pathway is unlikely to be 
successful[101]. However, it has recently been shown that 
microsatellite instability (MSI) high CRC tumours (15% 
of CRC tumours that have mutations in mismatch repair 
genes and are more immunogenic) expressed more 
PDL1 than MSI low tumours, indicating that checkpoint 
blockade may be more successful in the MSI high 
subset of CRC patients[103]. Clinical trials using anti-PD1 
therapy in such a subset of patients are now underway 
to exploit this possibility. 

Adoptive T cell therapy in CRC
Adoptive cell therapy (ACT) has been trialled in CRC 
to some success. Karlsson et al[104] used ex vivo T 
cells (recovered from tumour-draining lymph nodes) 
of CRC patients as a therapy. No side effects were 
observed and complete responses were seen in 4 out 
of 9 patients with metastatic disease. A Phase II trial 
is currently being undertaken to further test ACT in 
patients with metastatic CRC (https://clinicaltrials.
gov/ct2/show/NCT01174121). The use of genetically 
engineered tumour-antigen specific T cells has been 
less successful in CRC. T cells genetically engineered to 
target carcinogenic embryonic antigen (CEA) caused a 
measurable decrease in serum CEA levels in 4/4 CRC 
patients treated but also induced severe colitis in all 
patients[105], consistent with studies in other cancers. 
Targeting neo-antigens in tumours and individualising 
therapy may be the way forward in ACT of CRC. 

CONCLUSION
Recent technological breakthroughs have allowed the 
analysis of single cells, providing enormous amounts 
of data on the immune system (reviewed in[11]). These 
data provide novel insights into the function and 
complex connectivity of immune cells. This new network 
approach to studying immunology is likely to transform 
our understanding of the immune microenvironment 
of individuals with CRC. The immune response to 
CRC in humans is complex and involves a panoply 
of cells interacting with each other and the tumour. 
Patient outcome is unlikely to be accurately predicted 
by measuring one immune parameter independently. 
Moreover, any new immune-based therapies will need 
to take into account the pro- as well as anti-tumour 
activities of specific innate and adaptive immune cells. 
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and vast microbial community with up to 1011-1012 
microorganisms colonizing the colon. The gut microbiota 
has a serious effect on homeostasis and pathogenesis 
through a number of mechanisms. In recent years, 
the relationship between the intestinal microbiota and 
sporadic colorectal cancer has attracted much scientific 
interest. Mechanisms underlying colonic carcinogenesis 
include the conversion of procarcinogenic diet-related 
factors to carcinogens and the stimulation of procarcino
genic signaling pathways in luminal epithelial cells. 
Understanding each of these mechanisms will facilitate 
future studies, leading to the development of novel 
strategies for the diagnosis, treatment, and prevention 
of colorectal cancer. In this review, we discuss the 
relationship between colorectal cancer and the intestinal 
microbiota.

Key words: Sporadic; Colorectal; Cancer; Intestinal; 
Microbiota
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worldwide and causes 600000 deaths every year[1]. 
Because colorectal cancer patients are frequently 
asymptomatic in the early phase of the disease, 
diagnosis at this stage presents a significant clinical 
challenge. Detection of early stage cancers (stages 1-2) 
allows curative surgery with a 5-year survival rate of 
80%. However, survival rates decrease to approximately 
10% for metastatic and late stage tumors[2]. Although 
there are currently methods for the early diagnosis 
methods, including computed tomography, colonoscopy, 
and blood tests, it is expected that evaluation of the 
intestinal microbiota will prove to be a valuable method 
allowing earlier diagnosis of colorectal cancer. 

In humans, a relationship between cancer and 
microorganisms has been demonstrated in a number 
of organs, with the most well-known example being 
the relationship between Helicobacter pylori and 
gastric cancer and mucosa-associated lymphoid tissue 
lymphoma[3].

In adults, while the bacterial population in the 
stomach and small intestine is smaller (103-104 CFU/g 
contents), increased concentrations of microorganisms 
are found in the colon (1011-1012 CFU/g contents) 
compared with the upper gastrointestinal tract. The 
majority of these microorganisms exist in a favorable 
symbiotic relationship with humans[3,4]. The intestinal 
microbiota develops specific to individual variation and 
environmental conditions beginning at birth[5].

Recently, etiology of colorectal cancer has been 
shown to be related to genetic mutations, diet, infla
mmatory processes, lifestyle, and the gut micro
biota, with up to 95% of colorectal cancer thought 
to sporadically develop in individuals with no genetic 
predisposition[6].

The colonic microbiota is thought to contribute to 
the development of colorectal cancer by controlling 
the epithelial cell proliferation and differentiation, 
synthesizing essential nutrients and bioactive products, 
preventing the reproduction of pathogenic organisms, 
and stimulating the immune system[7]. In this review, 
studies investigating the role of the intestinal microbiota 
in the development of colorectal cancer development 
are discussed.

MICROBIOTA OF THE HUMAN INTESTINE
There are 100 billion bacteria in the human intestine 
with an approximate weight equivalent to 1.5-2 kg. 
Bacteroidetes and Firmicutes are the major species 
of the adult intestinal microbiota with the next most 
frequent species being Actinobacteria, Proteobacteria, 
and Verrucomicrobia[8].

Normally, colonic bacteria exist in a mutually 
beneficial symbiotic relationship with humans without 
adverse effects on the host cells. In situations where 
this balance is deregulated because of a number of 
possible causes, the numbers and species of harmful 
bacteria increase, providing a basis for the development 
of inflammatory and chronic disease. Changes in the 

intestinal microbiota have been shown to be associated 
with obesity, fatty liver, type 1 and 2 diabetes, kidney 
disease, arthritis, inflammatory bowel disease, and 
colorectal cancer[9-13]. However, the precise relationship 
between changes in the microbiota and colorectal 
cancer has yet to be fully elucidated.

FACTORS INFLUENCING 
GASTROINTESTINAL MICROBIOTA
The intestinal microbiota is affected by a number of 
factors, such as antibiotics, diet, and inflammation[4-18]. 
A number of studies have reported a high degree of 
similarity in the intestinal microbiota between members 
of the same family but a low degree of similarity 
between heterozygous mice despite being housed in the 
same cage[9,14,19].

The intestinal microbiota of mice fed standard low-
in-fat nutrients has been shown to change within a few 
weeks with particularly great changes in the composition 
of Bacteroidetes and Firmicutes species. After mice 
returned to a low-fat diet, a particularly significant 
reduction in Mollicutes, a species of Firmicutes, was 
observed[9,20]. Similar changes have observed with diets 
high in fat, particularly in obese people, genetically 
obese mice, and obesity-resistant mice[9,14,21]. Transfer 
of colon microbiota from mice fed a high-fat diet to 
mice fed a low-in-fat diet has been shown to accelerate 
tumor growth suggesting diet-induced changes in the 
colon microbiota may have a synergistic effect with 
genetic factors on tumor development[22]. Diet-related 
changes in intestinal microbiota have also been shown 
to be associated with colorectal cancer[23].

MICROBIAL INFLUENCE ON 
COLORECTAL CANCER
The relationship between the intestinal microbiota and 
disease has drawn increased attention in recent years. 
In particular, recent studies have demonstrated strong 
associations between the development of colorectal 
cancer and intestinal bacteria. In these studies, DNA 
damage caused by superoxide radicals, genotoxin 
formation, increased T-cell proliferation, and activation 
of procarcinogenic pathways through a number of 
receptors have all been shown to contribute to cancer 
development[24-27].

The enzymatic activation or detoxification of 
carcinogens, and therefore modulation of their tumori
genic activity, has been shown to be influenced by 
the intestinal microbiota[24,28-35]. In the 1960s, it was 
observed that germ-free rats exposed to the glycoside, 
cyasin, did not develop intestinal tumors. Conversely, 
germ-free rats directly exposed to methylazoximethanol, 
a sub-active metabolite of cyasin, did develop intestinal 
tumors[36]. As the formation of methylazoximethanol 
depends on bacterial β-glucosidase enzyme activity[36], 
this study was a potent demonstration of the effect 
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of the intestinal microbiota on bioactive carcinogenic 
compounds. Subsequent research has revealed that 
the intestinal microbiota converts latent carcinogens to 
bioactive forms through a number of enzymes, including 
β-glucuronidase, β-glucosidase, azoreductase, and 
nitroreductase[37]. Azoxymethane (AOM) is the most 
frequently used experimental colon carcinogen. AOM is 
first hydrolyzed in the liver to methylazoximethanol and 
conjugated to glucuronic acid before bilious excretion into 
the intestine where it is converted into a highly reactive 
methyl carbon ion by bacterial β-glucuronidase[34,37,38]. 
Interestingly, it has been reported that inhibition of 
β-glucuronidase activity significantly decreases the 
tumor-inducing potential of AOM in rats[39]. Furthermore, 
probiotic bacteria, such as Lactobacillus and Bifidobac­
terium species, have been shown to have anti-
carcinogenic effects through the inactivation of microbial 
enzymes involved in procarcinogenic activation[40]. 
For example, Lactobacillales, such as L. Casei and L. 
Acidophilus suppress β-glucuronidase, azoreductase, 
and nitroreductase activity[41,42]. This balance between 
the activation and detoxification of potential carcinogens 
underlies the activation of host oncogenes and tumor 
suppressors (Figure 1).

In the study by Boleij et al[43] investigating the 
expression of the Bacteroides fragilis gene (BFT) in 
colonoscopic samples from 49 healthy individuals and 
49 colorectal cancer patients, BFT gene expression was 
detected more frequently in samples from colorectal 
cancer patients. When comparing early and late 
stage cancer patients, BFT gene expression was more 
frequently detected in late stage cancer patients.

DNA damage and chromosomal instability are early 
genetic events in the development of colorectal cancer. 
As with aneuploidy, chromosomal instability is associated 
with long-term inflammatory bowel disease (IBD) 
and frequently a precedent event in the subsequent 
development of colorectal cancer[44-46]. Enterococcus 
faecalis (E. faecalis), an intestinal bacteria, has been 
repeatedly found to induce aneuploidy in colonic epithe
lial cells in monoassociated interleukin (IL)-10 -/- rats 
and cause aggressive colitis[47,48]. Inhibitors of reactive 
oxygen and nitrogen species can prevent aneuploidy 
induced by E. faecalis[49]. These findings demonstrate 

that intestinal microbiota (particularly specific species) 
can induce RONS and lead to carcinogenesis.

In intestinal hemostasis, the protective role of 
the microbiota is thought to be through an effect on 
epithelial cell proliferation and apoptosis. The main 
mechanism underlying this effect has been proposed 
as the conversion of dietary fiber into short chain 
fatty acids (SCFA), such as acetate, propionate, and 
butyrate, through microbial fermentation. These SCFAs, 
particularly butyrate, are readily absorbed easily by 
the colon and are used as a primary energy source. In 
addition to significant anti-inflammatory effects[50,51], 
SCFAs stimulate cell proliferation and differentiation 
in non-neoplastic normal colon, promote intestinal 
hemostasis, and the resolution of intestinal injury[51,52]. 
In addition, SCFAs demonstrate a trans-effect on 
cancer cells. In particular, butyrate induces apoptosis 
in colorectal cancer cell lines through a number of 
mechanisms but predominantly via inhibition of histone 
deacetylase and activation of intrinsic/mitochondrial 
apoptosis[53-57].

However, SLC5A and GPR109A, the two major 
receptors of butyrate, provide protection in the early 
phases of tumorigenesis as they are frequently inacti
vated in human cancers[58-60]. It is believed that 
regulation of microbiota species responsible for the 
production of butyrate will have efficacy in the treatment 
of gastrointestinal diseases[61,62]. Therefore, probiotics 
and in-absorbable food are thought to alter the intestinal 
microbiota leading to a beneficial increase in the 
production of short chain fatty acids[63].

Although the development of colorectal cancer has 
not been attributed to any specific microorganism, 
a number of cancer-promoting bacteria have been 
identified (Table 1).

In rats, Helicobacter hepaticus increases the 
development of colorectal cancer related to experi
mental colitis and spontaneous colorectal cancer[65,67]. 
Bacteroides fragilis is a widespread intestinal bacteria 
and a potential cause of spontaneous colon tumori
genesis in rats as an enterotoxigenic variant[26].

Exclusion of opportunist pathogens by colonic bac
teria may represent a natural defense against colorectal 
cancer. Similarly, food containing species of Lactobacillus 
and Bifidobacteria, used as probiotics, provide a 
number of protective benefits against inflammatory 
bowel diseases[93-95]. Upon colonizing the host and on 
the condition of the formation of an additional biofilm, 
probiotic bacteria have been shown to prevent the 
adhesion and invasion of pathogen types, maintain host 
tight junction protein structure, decrease host cytokine 
production, modulate inflammation and immunity, and 
neutralize carcinogens and toxins[96-100].

Intestinal microbiota have been shown to cause 
the release of host antibacterial lectins, stimulate 
antimicrobial host epithelial responses, and deplete 
subsets of potentially pathogenic bacteria providing a 
protective role against abnormal immune responses.

In a study by Sobhani et al[81] of 179 individuals 
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Figure 1  The factors releated to intestinal microbiota promotes neoplasia 
in the gastrointestinal tract.
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was no significant difference in the Proteobacteria 
types between the two groups; however, Prevotella, 
Lactobacillus, and Treponema were more frequently 
detected in healthy rats. Furthermore, while Fusobac
terium was not observed in healthy rats, it could be 
identified specifically in cancer rats[90]. In a study of 
feces samples from healthy individuals and colorectal 
cancer patients, Akkermansia muciniphila was identified 
4 times as often in colorectal cancer patients than 
healthy individuals[92].

As emphasized in many studies discussed above, 
intestinal microbiota have a substantial impact on 
intestinal health through controlling the immune 
and inflammatory response to individual species of 
intestinal microbiota, the activation or detoxification 
of carcinogens, the stimulation of DNA damage and 
chromosomal instability, dysregulation of the balance 
between proliferation and apoptosis, and prevention of 
invasion by pathogens.

CONCLUSION
Although colorectal cancer development is a complex 
process, recent studies have shown that the microbiota 
is actively involved.

Recently, we have developed a greater under

undergoing colonoscopy (60 colorectal cancer, 119 
normal), significantly greater levels of Bacteroides/
Prevotella bacterial DNA were found in patients with 
colorectal cancer. Further, it was shown that a greater 
proportion of IL-17 immunomodulatory cells were 
isolated from patients with colorectal cancer.

In a study by Gao et al[88] in 2015 examining colon 
samples from 30 healthy and 31 cancer patients, 
distal and proximal colon microbiota from both healthy 
individuals and cancer patients were evaluated using 
the 16S RNA V3 sequence. No significant difference 
was observed between proximal and distal colon 
microbiota; however, in patients with colorectal cancer, 
Firmicutes and Fusobacteria were over-represented 
and Proteobacteria were under-represented. Further, 
Lactococcus and Fusobacterium were identified more 
often, and Pseudomonas and Escherichia–Shigella less 
often, in tissues from patients with colorectal cancer 
compared to those without cancer[88]. 

In a study by Zhu et al[90] using the 1,2-dime
thylhydrazine cancer model, V3 sequences of 16S 
ribosomal RNA isolated from intestinal microbiota 
samples from rats with cancer and healthy rats were 
determined. While Firmucutesin was more frequently 
observed in rats with colorectal cancer, Bacteroidetes 
and Spirochetes were less commonly observed. There 
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  Bacteria Subject 
of study 

Evidence Ref.

  Helicobacter 
  hepaticus

Animal Augments azoxymethane induced, and spontaneous colorectal cancer in mice [64-69]

  H. hepaticus + H.bilis Animal Dual infection induces colorectal cancer in mice [70,71]
  H. typhlonius + H. rodentium Animal Dual infection in neonates induces colorectal cancer in mice [72,73]
  Streptococcus bovis Human S.bovis bacteremia and endocarditis associated with human colorectal cancer [74-77]

Animal Augments azoxymethane induced colorectal cancer in rats [78]
Human Increased humoral immune response to S.bovis antigenRpL7/L12, sassociated with increased risk for 

colorectal cancer
[79]

  Bacteroides fragilis Animal Enterotoxigenic B.fragilis augments spontaneous colorectal cancer in mice [26]
Human Increased prevalence of enterotoxigenic B.fragilis in human colorectal cancer [80]
Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis [81]
Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis [43]

  B. vulgatus Animal Induces azoxymethane induced, colorectal cancer in mice [82]
  Escherichia coli Human Increased mucosa-associated Escherichia coli in human colorectal cancer [83]
  Citrobacter rodentium and C. freundii Animal Etiologic agent of transmissible murine colonic hyperplasia [84]

Animal Augments spontaneous and 1,2 dimethylhydrazine induced colorectal cancer in mice [85,86]
  Fusobacterium nucleatum Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis [87]

Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis and 16S ribosomal 
RNA 

Gene V3 pyrosequencing analysis

[88]

Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis [89]
Animal 16S ribosomal RNA

Gene V3 pyrosequencing analysis
[90]

  Enterococcus faecalis Human Increased in the feces of colorectal cancer patients by quantative PCR analysis [91]

  Furmicutes Animal 16S ribosomal RNA
Gene V3 pyrosequencing analysis

[90]

  Akkermansia muciniphila Human 16S ribosomal RNA
Gene V4 pyrosequencing analysis and Gas Chromatography-Mass Spectrometry

[92]

  Methanobrevibacterium Human Increased prevalence in tumor vs normal colonic tissue by quantative PCR analysis and 16S ribosomal RNA
Gene V3 pyrosequencing analysis in fecal samples

[89]

Table 1  The relationship between bacterial types and colorectal cancer

PCR: Polymerase chain reaction; RNA: Ribonucleic acid; H. Hepaticıus: Helicobacter hepaticus; H. bilis: Helicobacter bilis; H. typhlonius: Helicobacter typhlonius; H. 
Rodentium: Helicobacter rodentium; B. vulgatus: Bacteroides vulgatus; C. freundii: Citrobacter freundii.
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standing of the effect of the microbiota on bowel health 
and diseases, including esophagitis/Barrett’s esophagus, 
stomach cancer, IBD, and colorectal cancer. However, 
while a strong relationship between gastrointestinal 
diseases and the microbiota content is evident, many 
questions remain unanswered. One of the most clinically 
challenging issues is to understand how a change in 
intestinal microbiota will likely impact on the course of 
disease. Knowledge obtained from dysbiotic microbiota 
research in germ-free animals and clinical studies 
involving a variety of intestinal diseases will help provide 
answers to these important questions. Further, there is 
currently a lack of data regarding which microorganisms 
in the microbiota cause disease and are protective.

Continuous improvements in the development of 
increasingly cost-effective research methods, gene 
sequencing technology, and high productivity techniques 
are expected to provide substantial information regarding 
the healthy and dysbiotic microbiota composition. This 
information will facilitate functional experiments utilizing 
cause and effect animal models.

Understanding the relationship between pathology 
and the microbiota is important; however, the role 
of microbiota in pathogenesis has yet to be fully 
elucidated. Therapeutic microbial transplantation has 
been trialed in metabolic syndrome and also has utility 
in the treatment of colorectal cancer; however, this 
technique has many limitations including infection and 
the promotion of autoimmune disease. Despite this, 
there is hope that treatments targeting the human 
microbiota may provide therapies for the prevention 
and treatment of colorectal cancer in the future.

In summary, the microbiota plays an active role 
in intestinal homeostasis. Both the composition of 
microbiota and its metabolic activity have an impact 
on the host susceptibility to disease and can directly 
contribute to a number of varied pathologies, including 
colorectal cancer.
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presentation. The definition of borderline resectable 
pancreatic cancer is not uniform but generally denotes 
to regional vessel involvement that makes it unlikely to 
have negative surgical margins. The accurate staging 
of pancreatic cancer requires triple phase computed 
tomography or magnetic resonance imaging of the 
pancreas. Management of patients with borderline 
resectable pancreatic cancer remains unclear. The data 
for treatment of these patients is primarily derived 
from retrospective single institution experience. The 
prospective trials have been plagued by small numbers 
and poor accrual. Neoadjuvant therapy is recommended 
and typically consists of chemotherapy and radiation 
therapy. The chemotherapeutic regimens continue to 
evolve along with type and dose of radiation therapy. 
Gemcitabine or 5-fluorouracil based chemotherapeutic 
combinations are administered. The type and dose 
of radiation vary among different institutions. With 
neoadjuvant treatment, approximately 50% of the 
patients are able to undergo surgical resections with 
negative margins obtained in greater than 80% of the 
patients. Newer trials are attempting to standardize the 
definition of borderline resectable pancreatic cancer 
and treatment regimens. In this review, we outline the 
definition, imaging requirements and management of 
patients with borderline resectable pancreatic cancer.  

Key words: Pancreatic cancer; Surgery; Chemotherapy; 
Radiation; Borderline
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Core tip: The diagnosis and treatment of borderline 
resectable pancreatic cancer (BRPC) remains unclear. 
The definition of BRPC is not uniform and generally 
refers to regional blood vessel involvement by the 
tumor. Recent attempts have been made to standardize 
the definition of BRPC. Neoadjuvant therapy is recom­
mended in the hopes of obtaining negative surgical 
margins and consists of chemotherapy and radiation 
therapy. Data for therapeutic approaches is primarily 
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Abstract
Pancreatic cancer is the fourth most common cause 
of cancer death in the United States. Surgery remains 
the only curative option; however only 20% of the 
patients have resectable disease at the time of initial 
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derived from single institution retrospective series. In 
this article, we review the definition, imaging modalities 
for diagnosis and treatment of patients with BRPC.  

Mahipal A, Frakes J, Hoffe S, Kim R. Management of borderline 
resectable pancreatic cancer. World J Gastrointest Oncol 2015; 
7(10): 241-249  Available from: URL: http://www.wjgnet.
com/1948-5204/full/v7/i10/241.htm  DOI: http://dx.doi.
org/10.4251/wjgo.v7.i10.241

INTRODUCTION
Pancreatic cancer is the fourth most common cause of 
cancer death in the United States with 48960 incident 
cases and 40560 deaths estimated in 2015[1]. Despite 
the recent advances in therapeutic interventions, the 
5-year relative survival rate remains approximately 
6%. At initial presentation, approximately 50%-55% 
of the patients are found to have metastatic disease, 
20%-25% have locally advanced disease and only 
20% have resectable disease[2]. Surgery provides the 
only curative option with long term survivors. Modern 
advances in surgical techniques have substantially 
decreased post-operative mortality and morbidity, 
especially in high volume centers[3]. Improvement in 
imaging modalities has led to better delineation of 
resectable disease and spares patients from unnecessary 
surgery[4]. Yet, of those patients who undergo potentially 
curative resections, the 5-year survival remains abysmal 
at 20%[1]. 

Despite the fact that the progress has been slow, 
there has been improvement in systemic therapies 
for the treatment of pancreatic cancer. Gemcitabine 
remained the standard of care option for unresectable 
pancreatic cancer for a long time. Recently, two 
randomized clinical trials have demonstrated superior 
efficacy over single agent gemcitabine in the setting of 
metastatic and locally advanced disease. Conroy et al[5] 
reported a phase III trial comparing the combination 
of 5-fluorouracil, folinic acid, oxaliplatin and irinotecan 
(FOLFIRINOX) to gemcitabine. The median survival 
was significantly better with FOLFIRINOX at 11.1 mo 
compared to 6.8 mo with single agent gemcitabine. The 
response rates were higher in the combination group as 
well (31.6% vs 9.4%). However, increased grade 3 or 4 
toxicities with FOLFIRINOX limits this therapy to highly 
selected patients. The addition of nab-paclitaxel to 
gemcitabine has demonstrated improvement in median 
survival (8.5 mo vs 6.7 mo), progression free-survival 
(5.5 mo vs 3.7 mo) and response rates (23% vs 7%)[6]. 
The higher response rates observed with this regimen 
makes them very appealing for downstaging tumors. 
Further, since the objective of systemic treatment for 
borderline resectable pancreatic cancer is the possibility 
of margin negative surgery and potentially cure, higher 
toxicities may be acceptable in this group of patients. 
This is in contrast to patients with metastatic disease 

where the primary aim is to improve survival by a few 
months while maintaining a good quality of life.

Involvement of blood vessels by tumor frequently 
renders the possibility of resection with negative mar
gins problematic in patients with non-metastatic 
pancreatic cancer. Patients with negative margins have 
significantly improved survival compared to patients 
who have gross disease at the resection margin[7]. 
The term “borderline resectable pancreatic cancer” 
has no universal definition but, in general, denotes 
patients with pancreatic cancer that abuts regional 
blood vessels such that there is a high risk for margin-
positive resection[8]. Tumor abutment refers to solid 
tumor contact of ≤ 180 degrees of circumference of 
blood vessel and encasement refers to greater than 180 
degree of contact. Unfortunately, the current pancreatic 
staging system by the American Joint Committee on 
Cancer (AJCC) does not differentiate this subgroup 
of patients with those tumors encasing blood vessels 
termed locally advanced disease. In this staging system, 
patients with portal vein, superior mesenteric vein or 
superior mesenteric artery involvement are considered 
unresectable. All patients with vascular involvement 
and no metastatic disease are grouped under stage III 
disease. 

Staging work up
Pre-operatively, diagnostic imaging is utilized for 
differentiating pancreatic cancer into resectable, 
borderline resectable or unresectable disease. The 
National Comprehensive Cancer Network (NCCN) 
recommends multidetector computerized tomography 
(CT) angiography, acquiring thin, preferably sub-
millimeter sections using a pancreatic protocol. The 
images are to be obtained in the non-contrast, arterial, 
pancreatic parenchymal and portal venous phase 
contrast enhancement. The multiphasic protocol helps in 
assessment of vascular invasion of tumors by selective 
visualization of arterial (superior mesenteric artery, 
celiac axis, gastroduodenal artery) and venous (superior 
mesenteric vein, portal vein, splenic vein) structures. 
Pancreatic protocol CT has an excellent sensitivity 
(89%-97%) and negative predictive value[9]. However, 
CT is not very accurate for predicting resectability 
(45%-79%) as it is not very sensitive to detect small 
hepatic and peritoneal metastases[9]. Pancreatic magnetic 
resonance imaging (MRI) can also be used as an adjunct 
for staging, especially for patients with a contrast allergy. 
MRI is similar to CT in respect to providing details of 
tumor anatomy for resectability status but is less widely 
utilized. The role of positron emission tomography (PET) 
scan for patients with borderline resectable disease 
remains unclear. PET scans may help, however, in 
detecting metastatic disease in addition to CT scans and 
spare patients from unnecessary surgery[10,11]. Thus, PET 
scans may be used as adjuncts to CT scans especially in 
patients with a high risk of advanced disease. 

Endoscopic ultrasound (EUS) is a complementary 
modality to CT scan and is utilized in many centers. 
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It is particularly useful for assessment of vascular 
invasion, especially of the portal vein. EUS is not a good 
modality for involvement of the superior mesenteric 
artery. EUS is routinely performed for patients with 
borderline pancreaticcancer for pathologic diagnosis. 
Tissue confirmation is not necessary for patients 
undergoing upfront surgery but should be obtained 
prior to initiation of neoadjuvant therapy. EUS-guided 
fine needle aspiration or biopsy is safe and is associated 
with a low complication rate[12-14]. Further, there is 
decreased potential for peritoneal seeding compared to 
percutaneous biopsy.

Staging laparoscopy is performed routinely at selected 
centers to detect occult metastatic disease, especially 
peritoneal involvement. It can thus be performed 
prior to surgery or prior to initiation of neoadjuvant 
therapy to avoid non-curative surgery and potentially 
prevent unnecessary complications associated with 
laparotomy[15]. At some institutions laparoscopy is 
reserved for patients with a higher chance of metastatic 
disease, including markedly elevated tumor markers 
or symptomatic patients. Despite the fact that staging 
laparoscopy can detect occult disease even in patients 
who had undergone good quality imaging studies, this 
procedure is not routinely utilized. 

Classification
The definition of borderline resectable pancreatic cancer 
(BRPC) is not uniform. Some series have included 
patients based on anatomic imaging criteria for BRPC 
alone while others include patients with clinical factors. 
Recently, attempts have been made to clearly define 
borderline resectable disease and differentiate it from 
clearly resectable or unresectable disease. Table 1 lists 
the different classification systems utilized for defining 
borderline resectable pancreatic cancer including those 
proposed by the National Comprehensive Cancer 
Network (NCCN), MD Anderson, Americas Hepato-
Pancreato-Biliary Association/Society of Surgical 
Oncology/Society for Surgery of the Alimentary Tract 
(AHPBA/SSO/SSAT) and the Intergroup[16-18]. Due to 
complexities involved in making these distinctions, 
it is very important that all cases of non-metastatic 

pancreatic cancer are discussed by a multidisciplinary 
team in high volume centers.

The NCCN panel has recently updated the guidelines 
and the definition of borderline resectable pancreatic 
cancer is included in the Table 1. 

Vascular involvement
One of the key concepts for defining borderline resec
table pancreatic cancer is the possibility of benefit of 
surgery in patients with vessel involvement. Vascular 
reconstruction is frequently the limiting factor during 
pancreatectomy in these patients. Siriwardana et al[19] 
in 2006 reported outcomes on 1646 patients from 52 
studies with portal vein or superior mesenteric vein 
resections. Median postoperative morbidity was 42% 
with mortality of 5.9%. Median survival was only 13 
mo with 5-year survival of only 7%. This study con
cluded that pancreatic surgery requiring resection of 
the portal vein did not improve outcomes. However, 
this study was limited by relatively older studies from 
1996-2005 and heterogeneity of the studies included 
in the review. Since then, multiple single institution 
studies from high volume centers have demonstrated 
similar morbidity, mortality and survival for patients 
who underwent pancreatic surgery with or without 
venous involvement[20-24]. Zhou et al[25] in 2012 published 
a meta-analysis of 19 nonrandomized studies com
prising 2247 patients. There was no difference in 
perioperative morbidity, mortality or 5-year survival 
among patients who underwent pancreatic surgery with 
or without venous resection. These studies suggest 
that venous resection with pancreatectomy is safe and 
feasible and can lead to improvement in long term 
outcomes. However, the results should be interpreted 
with caution as there may be publication bias as well 
as underreporting of morbidity data. Further, studies 
using National Surgery Quality Improvement Program 
database and National Inpatient Sample database 
demonstrated increases in morbidity and mortality 
with the addition of venous resection to pancreatic 
resection[26,27]. However, the limitations of these studies 
include the use of an administrative database, no distin
ction between venous or arterial resection and the 
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NCCN AHPBA/
SSAT/SSO

MD Anderson Intergroup (Alliance)

  Celiac artery No abutment for pancreatic head cancer. For 
body/tail, ≤ 180° contact

No abutment 
or encasement

Abutment Tumor-vessel interface < 180° of vessel 
wall circumference

  CHA Solid tumor contact ≤ 180° allowing for 
reconstruction

Abutment or 
short segment 

encasement

Abutment or short-segment 
encasement

Reconstructable short-segment interface of 
any degree

  SMA Solid tumor contact ≤ 180° Abutment Abutment Tumor-vessel wall interface < 180° of 
vessel wall circumference

  SMV/PV Solid tumor contact > 180° or contact of ≤ 180° 
with contour irregularity or thrombosis allowing 

for safe reconstruction 

Occlusion Occlusion Tumor-vessel interface ≥ 180° of vessel 
wall circumference and/or reconstructible 

occlusion

Table 1  Criteria for resectability

CHA: Common hepatic artery; SMA: Superior mesenteric artery; SMV: Superior mesenteric vein; PV: Portal vein; NCCN: National Comprehensive Cancer 
Network; AHPBA/SSAT/SSO: Americas Hepato-Pancreato-Biliary Association/Society for Surgery of the Alimentary Tract/Society of Surgical Oncology.
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who underwent pancreatic resection after neoadjuvant 
therapy, suggesting that RECIST criteria is a poor 
determinant of benefit in these patients[37]. There is 
the possibility that the tumor near the vessel can be 
replaced by fibrous tissue which may not be easily 
discernible on CT scan[38]. 

There have been four small prospective trials 
reported in the literature that have evaluated neoad
juvant therapy for patients with borderline resectable 
cancer (Table 2). Landry et al[39] reported the multi-
institutional randomized phase II trial comparing 
two neoadjuvant regimens. Patients in arm A (n = 
10), received concurrent gemcitabine and radiation 
while patients in arm B (n = 11) received induction 
chemotherapy with gemcitabine, cisplatin and 
5-fluorouracil followed by 5-flourouracil based radiation. 
Three patients in arm A and two patients in arm B 
underwent resection. The median survival of resected 
patients was 26.3 mo. These outcomes were consistent 
with previous retrospective studies[40,41]. The trial was 
terminated early due to poor accrual. Another phase 
II trial evaluated the role of neoadjuvant therapy in 
patients with resectable or borderline resectable pan
creatic cancer[42]. Thirty nine patients with borderline 
resectable disease were identified using NCCN criteria 
and were treated with gemcitabine and oxaliplatin for 
two cycles. Radiation was administered with the first 
cycle of chemotherapy to a total dose of 30 Gy in 15 
fractions. Pancreatic resection was performed in 63% of 
patients and 84% of those patients had R0 resection. 
The median survival of resected patients was 25.4 mo. 
Similar results were observed with other small clinical 
trials[43,44]. 

The data on clinical outcomes after neoadjuvant 
therapy for borderline pancreatic cancer is primarily 
derived from retrospective single institution experience. 
One of the first restrospective studies from MD Anderson 
included 160 patients with pancreatic cancer who 
received pre-operative therapy, including 84 patients 
who met radiologic criteria for borderline resectable 
disease[40]. Patients were treated with a variety of 
neoadjuvant regimens including chemotherapy or 
chemoradiotherapy with a gemcitabine based regimen 
being most common. Resection was performed in 38% 
of the patients with negative margins in 97% of the 
subjects. The median survival for resected patients was 
40 mo and for all patients was 21 mo. In the follow 
up report, 115 patients who met AHPBA/SSO/SSAT 
criteria for borderline resectable pancreatic cancer 
were included[37]. Despite the fact that partial response 
by RECIST criteria was observed in only 12% of the 
patients, 70% of the patients underwent resection and 
only 5% of the patients had positive margins.

Stokes et al[41] evaluated capecitabine based chemo
radiation in 40 patients with borderline resectable 
pancreatic cancer. Patients received external bean 
radiation in conventional fractionation (50.4 Gy in 28 
fractions) or in an accelerated protocol (50 Gy in 20 
fractions). Radiation was targeted at the gross tumor as 

inability to differentiate between planned and unplanned 
vascular resections. 

There is even limited data for arterial resection 
during pancreatectomy for pancreatic cancer. Some 
studies have demonstrated similar morbidity and 
mortality with the addition of arterial resection to 
pancreatic surgery[28,29]. However, a meta-analysis 
including 366 patients from 26 studies demonstrated 
significantly greater peri-operative morbidity and 
mortality with arterial resection[30]. This study also 
found that despite increased complications, patients 
undergoing pancreatic and arterial resection had 
improved survival compared to those patients who 
did not undergo resection. Similar results have been 
reported in other studies from high volume centers[31,32]. 
Thus, arterial resection should be limited to highly 
selected patients. 

Treatment
Patients with borderline resectable pancreatic cancer 
are preferentially treated with neoadjuvant therapy 
to enhance the potential to facilitate margin negative, 
or R0, resection. Some patients with micrometastatic 
disease initially may have progressive disease on 
subsequent restaging scans after neoadjuvant therapy 
and thus are spared from unnecessary surgery. These 
patients would have been unlikely to benefit from 
pancreatic resection. It is generally acceptable that 
multimodality treatment is required for this patient 
population, although some centers have pursued a 
strategy of neoadjuvant chemotherapy alone[33]. In 
the adjuvant setting, up to 25% of patients are unable 
to receive treatment secondary to post-operative 
complications[34,35]. For these reasons, at some centers, 
neoadjuvant therapy is recommended even for resec
table pancreatic cancer but is not the standard of care 
at this time[36]. 

There is no standard of care for the type of neoad
juvant therapy in this patient population. Treatment 
typically consists of a combination of radiation therapy 
and chemotherapy. The treatment regimens are usually 
reported from a single institution experience and are 
largely retrospective in nature. The chemotherapy 
regimen, dose and duration of radiation and type of 
radiation are different in these reports making cross-
comparison very difficult. Moreover, the definitions of 
resectability have not been uniform in these studies. The 
most commonly cited resectability criteria are similar 
to the NCCN and MD Anderson anatomic imaging 
criteria while some studies have classified patients as 
borderline if they have a marginal performance status 
for surgery or have findings on imaging indeterminate 
for metastases.

After neoadjuvant therapy, depending on the case 
series, approximately 50% of the patients are able 
to undergo resection. After treatment, the change in 
tumor size by the Response Evaluation Criteria In Solid 
Tumors (RECIST) is low, around 10%-20%. RECIST 
response did not correlate with survival among patients 
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well as draining lymphatics with a margin ranging from 
0.5-2 cm (excluding the para-aortic and porta-hepatis 
location) utilizing intensity modulated radiation therapy 
(IMRT) and image guided radiation therapy. Pancreatic 
resection was performed in 46% of the patients 
with R0 resection in 87.5% of patients. Accelerated 
fraction radiation wasn’t associated with increased 
severe toxicities. A report from Moffitt Cancer Center 
included 110 patients with BRPC treated with induction 
chemotherapy followed by stereotactic body radiation 
therapy (SBRT)[45]. The majority of the patients received 
combination of gemcitabine, docetaxel and capecitabine 
for 3 cycles. Surgical resection of the tumor was 
performed in 51% of the patients with R0 resection rate 
of 96%. Interestingly, 4 (7%) patients had complete 
pathologic response and a total of 28 (50%) patients 
had College of American Pathology Tumor Regression 
Grade 0-1. The median survival for all BRPC was 19 mo. 

Radiation type
The neoadjuvant radiation strategies presented above 
for borderline pancreatic cancer vary greatly from 
center to center with respect to dose and technique. 
This ranges from a conventionally fractionated approach 
all the way to a SBRT approach and everywhere in 
between. Moreover, some series report the integration 
of radiosensitizing chemotherapy, consisting largely of 
continuous infusion 5-flurouracil (5-FU) or gemcitabine.

Standard fractionation has been used in upfront 
resectable patients with good outcomes and has 
been adopted at many centers as a strategy for 
borderline resectable patients[41,46-48]. With standard 
fractionation, > 90% pathologic response was achieved 
in 16%-37% and resection rates are around 50%[41,46]. 
In the report by Stokes et al[41], there was a trend 

for increased survival and a statistically significant 
increase in > 90% pathologic response in patients 
that received accelerated fractionation. Takeda 
et al[49] report their results of a phase I and II trial 
looking at accelerated hyperfractionation in borderline 
pancreatic cancer patients. A total of 35 patients were 
treated with concurrent gemcitabine and accelerated 
hyperfractionated radiation 1.5 Gy given twice daily 
to a total dose of 30 Gy (phase I) or 36 Gy (phase II) 
targeting the tumor and regional metastatic lymph 
nodes with a > 1 cm margin utilizing a 4-field techni
que. No acute grade ≥ 3 non-hematologic toxicity 
was observed. Three fourth of the patients underwent 
surgical resection with all being R0 resections. Greater 
than 90% pathologic response to neoadjuvant 
treatment was observed in 23% of patients. Median 
survival was 41.2 mo in the patients that underwent 
surgical resection. This, along with the report by Stokes 
et al[41], suggests a benefit in response rates with 
accelerated fractionation concurrent with chemotherapy.

The radiation dose and volume treated depends 
on many factors including technique as well as chemo
therapy used. Patients treated with the radiation 
sensitizing chemotherapy agent 5-FU can be treated 
to a higher dose and a larger volume, targeting the 
gross tumor as well as draining lymphatics[41]. When 
concurrent full dose gemcitabine is utilized, caution on 
the total dose of radiation as well as the volume being 
treated is indicated. In the prospective trial, only the 
gross tumor with a 1 cm margin and a total dose of 30 
Gy in standard fractionation was used[42]. 

IMRT and/or SBRT can be used to increase the 
biologically effective dose and data suggests there may 
be potential for improved outcomes in the setting of 
pancreatic cancer not amenable to upfront resection. 
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  Ref. Study type n Regimen Resection R0 resection Median OS
(resected 
patients)

Median OS
(all patients)

Definition

  Katz et al[40] Retrospective   84 5-FU, paclitaxel, gemcitabine 
or capecitabine + RT; 
Gemcitabine based 

chemotherapy

  38% 97% 40 mo 21 MDA

  Turrini et al[70] Retrospective   49 5-FU/cis + RT
45 Gy for 5 wk

  18% 100% 24 mo 14 mo MDA

  Chun et al[71] Retrospective   74 5-FU or gem + RT 100%   59% 23 23 Other
  Stokes et al[41] Retrospective   40 Capecitabine + RT   46%   75% 23 12 MDA
  Katz et al[37] Retrospective 115 Gem followed by gem or 5-FU 

or capecitabine + RT; Gem or 
5-FU or capecitabine + RT

  70%   95% 33 22 NCCN

  Mellon et al[45] Retrospective 110 GTX X 3 cycles followed by 
SBRT

  51%   96% 19 34 NCCN

  Landry et al[39] Randomized 
phase II

  21 Gem + RT; Gem/cis/5-FU 
followed by 5-FU/RT

  24% 100% 26 19.4 mo; 
13.4 mo

Other

  Lee et al[44] Prospective trial   18 Gem/capecitabine X 3-6 cycles   61%   82% 23 16 NCCN
  Kim et al[42] Phase II study   39 Gem/Ox + RT   63%   84% 25 18 NCCN
  Motoi et al[43] Phase II study   16 Gem/S1 X 2 cycles NA   87% NA 18 MDA
  Takahashi et al[46] Prospective   80 Gem + RT followed by Gem   54%   98% NA NA Other

Table 2  Selected neoadjuvant studies for borderline resectable pancreatic cancer 

NCCN: National Comprehensive Cancer Network; MDA: MD Anderson; 5-FU: 5-flurouracil; NA: Not available; RT: Radiation therapy.
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The University of Michigan data reporting dose esca
lation with IMRT (recommended dose of 55 Gy in 25 
fractions) in the locally advanced setting with full dose 
gemcitabine shows promising results as far as toxicity 
and R0 resection rates[50]. The most recent Radiation 
Therapy Oncology Group 1201 trial is a phase II trial 
looking at local vs systemic treatment escalation 
stratified by SMAD4 expression[51]. SMAD4 has been 
identified and shown to correlate with patterns of failure, 
either locally destructive failure vs metastatic disease in 
a rapid autopsy study done at John Hopkins[52]. These 
results will add to the knowledge of dose escalation with 
IMRT. SBRT along with chemotherapy prior to or after 
was initially established in locally advanced pancreatic 
cancer and was shown to be an effective treatment 
strategy with low rates of toxicity[53-57]. More recently, 
results from a phase II trial reported by Herman et 
al[58], showed that in locally advanced pancreatic cancer 
patients treated with SBRT (33 Gy in 5 fractions) there 
were minimal acute and late toxicity (2% and 11%, 
respectively). The results published by group at Moffitt 
Cancer Center incorporating SBRT demonstrated that 
51% of the BRPC patients underwent surgical resection 
with 96% being R0 resections[59]. The median dose 
was 30 Gy (range 28-30) to the gross disease and 
40 Gy (25-50 Gy) to the area of vessel abutment. No 
prophylactic draining lymphatics were in the treatment 
volume. There were few acute and late grade ≥ 3 
toxicity (7%). With 14 mo of follow up, there were no 
recurrences in this subset of patients and there was 
a rate of pathologic complete response of 7%. SBRT 
allows for escalating and personalizing the dose to each 
patient based on specific tumor location, vasculature 
abutment, and proximity to critical normal tissues with 
no increase in toxicity or peri-operative mortality and 
allows for the time course from systemic therapy to 
potential resection to be shorter since the duration of 
therapy is only one week. No prospective data is yet 
available in the BRPC setting incorporating SBRT but the 
available evidence merits further investigation of this 
novel approach. 

Lastly, interest has been generated on the potential 
of proton therapy to improve outcomes for pancreatic 
cancer patients. Proton therapy over five days has been 
successfully integrated with capecitabine for upfront 
resectable patients on a phase I/II study with low rates 
of toxicity[60]. MD Anderson has compared 3-dimentional 
conformal radiation (3DCRT), IMRT, and passive-
scattering proton therapy dose escalation (72 Gy) plans 
for pancreatic tumors[61]. Overall they found 3DCRT 
to be inadequate for coverage and IMRT to be more 
conformal in high gradient dose regions which would 
be beneficial for dose escalation in patients with organs 
at risk in close proximity, as seen in pancreatic cancer. 
Proton therapy had the advantage of a low integral dose 
but this would not affect dose escalation. Thompson 
et al[62] reported their dosimetric comparison of IMRT, 
double scattering and pencil beam scanning proton 
therapy. They found again that proton beam therapy 

would unlikely result in dose escalation over IMRT. 
Proton therapy resulted in decreased dose in the low-
intermediate dose range but increased dose in the mid 
to high dose region, with unclear clinical significance. 

The optimal technique and dose of radiation therapy 
is unclear; however, dose escalation with IMRT and/or 
SBRT show promising results in increasing R0 resection 
rates with low toxicity. 

DISCUSSION
The margin status is very important to the clinical 
outcomes after pancreatic resection. The goal of the 
resection is to obtain R0 resection as patients with gross 
disease at the margins (R2 resection) do not benefit 
from surgical resection and have similar outcomes as 
patients without surgery[63-65]. Microscopic disease at 
the margin (R1 resection) is associated with a poor 
prognosis but is not consistent across all studies[63,66,67]. 
The definition of R1 resection has not been uniform 
in the past which makes interpretation of data from 
various studies problematic. AJCC criteria define positive 
resection margins when tumor cells are present at the 
edge of resected specimen whereas European criteria 
defines positive margins if tumor cells are present 
within ≤ 1 mm of resected margins[68]. The location of 
margins has prognostic impact as well. In one study, 
R1 status at the anterior or posterior margins was not 
relevant for outcomes[69]. 

Recently, there has been improvement in systemic 
therapies for metastatic pancreatic cancers that has 
improved response rates over single agent gemcitabine. 
The FOLFIRINOX regimen and gemcitabine/nab-
paclitaxel combination is associated with response rates 
of 31% and 23% compared to less than 10% with 
single agent gemcitabine. These regimens may increase 
the probability of margin negative resection and the 
ability to obtain an R0 resection. There are additional 
toxicities associated with these combination regimens, 
especially FOLFIRINOX, including neutropenic fever. 
The Intergroup trial (ALLIANCE A021101) is evaluating 
neoadjuvant FOLFIRINOX followed by capecitabine 
based chemoradiotherapy. The dose of 5-FU has 
been modified to make it more tolerable. Patients 
who undergo resection will also receive adjuvant 
gemcitabine. The criteria for resection have been clearly 
defined through consensus and may become the new 
standard for resectability.

CONCLUSION
Management of borderline resectable pancreatic 
cancer continues to evolve. Prior studies have been 
complicated by low accruing trials, largely retrospective 
single institution experiences, and different classification 
criteria, chemotherapy regimens and radiotherapy 
type and schedule. There is an urgent need to apply 
uniform criteria for defining borderline pancreatic cancer. 
The patients should be classified and treated with a 
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multidisciplinary approach at high volume centers. 
Patients should undergo a pancreas protocol CT scan 
and EUS to determine the resectability status. Ideally, 
these patients should be treated on a clinical trial 
protocol. The ability to obtain negative margins is of 
the utmost importance for improving the outcomes 
of these patients. Newer aggressive chemotherapy 
regimens may help improve the resectability rate. 
These regimens followed by SBRT or IMRT may have a 
role in treatment. Induction chemotherapy followed by 
chemoradiation is the most commonly utilized approach 
but is not uniform. Newer trial designs incorporating 
uniform classification and treatment strategy will help 
standardize treatment for patients with borderline 
resectable pancreatic cancer. 
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Abstract
Pancreatic cancer is a highly lethal cancer type, for 
which there are few viable therapeutic options. But, 
with the advance of sequencing technologies for global 
genomic analysis, the landscape of genomic alterations 
in pancreatic cancer is becoming increasingly well 
understood. In this review, we summarize current 
knowledge of genomic alterations in 12 core signaling 
pathways or cellular processes in pancreatic ductal 
adenocarcinoma, which is the most common type of 
malignancy in the pancreas, including four commonly 
mutated genes and many other genes that are 
mutated at low frequencies. We also describe the 
potential implications of these genomic alterations for 
development of novel therapeutic approaches in the 
context of personalized medicine. 
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Core tip: With the advance of sequencing technologies 
for global genomic analysis, the landscape of genomic 
alterations in pancreatic cancer is becoming increasingly 
well understood. In this review, we summarize the 
latest knowledge of genomic alterations in pancreatic 
ductal adenocarcinoma including commonly mutated 
genes and many other genes that are mutated at low 
frequencies. We also describe the potential implications 
of these genomic alterations for development of novel 
therapeutic approaches in the context of personalized 
medicine.
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INTRODUCTION
Pancreatic cancer was the seventh leading cause of 
death in the world in 2012, and is responsible for 
about 331000 deaths per year[1]. The 5-year survival 
of pancreatic cancer patients is approximately 5%, and 
this figure has remained constant in recent decades. 
Because of the absence of effective methods for early 
detection and the aggressive nature of this disease, 
the majority of patients present with locally advanced 
or metastatic cancer which is not eligible for surgical 
resection. Chemotherapeutic options for treatment 
of advanced pancreatic cancer are still limited, and 
gemcitabine has been the standard chemotherapeutic 
drug for patients with advanced disease for many 
years, even though this drug alone provides only a 
modest survival advantage[2-4]. Since the approval of 
gemcitabine in United States, many randomized clinical 
trials have been performed to evaluate combinations 
of gemcitabine with other drugs, such as 5-fluorouracil 
(5-FU), cisplatin, oxaliplatin and irinotecan[5], but few of 
them show a significant survival advantage compared 
with gemcitabine alone. The combination of gemcitabine 
with the epidermal growth factor receptor (EGFR) 
inhibitor, erlotinib, does confer a survival advantage 
over gemcitabine monotherapy, but the overall survival 
of patients with advanced disease was extended by only 
10 d on average[6]. The combination of gemcitabine with 
nab-paclitaxel (albumin-bound paclitaxel) was recently 
shown to be superior to gemcitabine alone, probably 
because of depletion of tumor stroma, which leads to 
improved delivery of gemcitabine to tumor cells[7]. Other 
than gemcitabine-based chemotherapies, 5-FU-based 
chemotherapeutic regimens have also been evaluated. 
FOLFIRINOX (folinic acid, fluorouracil, irinotecan and 
oxaliplatin) improved the median overall survival from 
6.8 to 11.1 mo compared with gemcitabine, although 
significant toxicities associated with this regimen limit 
its utility in a wide range of patients[8]. It seems that 
a deeper understanding of the molecular biology of 
pancreatic cancer is needed to develop novel thera
peutic approaches.

In recent years, advances in sequencing technologies 
have enabled us to perform genome-wide analysis to 
establish the genetic alterations underlying pancreatic 
carcinogenesis and progression. In this review, we 
summarize current knowledge of genomic alterations in 
pancreatic ductal adenocarcinoma (PDAC), which is the 
most common type of malignancy in the pancreas, and 
we discuss their implications for development of novel 

therapeutic strategies.

GENOMIC ALTERATIONS OF 
PANCREATIC CANCER
Jones et al[9] have shown that PDAC harbors an average 
of 63 genome alterations, of which the majority are 
point mutations. Four key genes are frequently altered 
in PDAC: KRAS, CDKN2A, TP53 and SMAD4. The most 
common gene alteration is in KRAS (v-ki-ras2 Kirsten 
rat sarcoma viral oncogene homolog), where mutations 
occur in codons 12, 13 and 61[9,10]. More than 90% of 
PDAC contains KRAS mutation, and such mutations 
are also present in about 45% of low-grade pancreatic 
intraepithelial neoplasia (PanIN) lesions[11,12]. KRAS 
encodes a GTPase that activates various downstream 
signaling pathways, including the mitogen-activated 
protein kinase (MAPK) cascades[13]. Mutations in 
KRAS result in constitutive activation. Ras proteins 
are involved in a variety of cellular functions, including 
proliferation, differentiation and survival[14,15]. P16, 
cyclin-dependent kinase inhibitor 2A gene (CDKN2A) is 
also inactivated in up to 90% of PDAC, due to intragenic 
mutation in association with allelic loss, homozygous 
deletion, or hypermethylation of the gene promoter[16-18]. 
CDKN2A encodes a cyclin-dependent kinase inhibitor 
that controls G1-S transition in the cell cycle. Mutations 
in CDKN2A are thought to be subsequent to those 
of KRAS, because of the higher prevalence of KRAS 
mutations in early-stage precursor lesions and the fact 
that most PanIN lesions containing CDKN2A inactivation 
also harbor KRAS mutation[19]. TP53 is one of the most 
frequently mutated genes in many types of cancer[20-22], 
and is inactivated in about 75% of PDAC, mainly due 
to point mutations or small deletions[21,22]. p53 is a 
transcription factor that determines cell fate by inducing 
expression of a variety of genes related to cell cycle 
arrest and apoptosis, and plays an important role as a 
master regulator of cellular stress responses. SMAD4 
(DPC4, SMAD family member 4 gene) is inactivated 
in up to 55% of PDAC by homozygous deletion or 
intragenic mutation in association with allelic loss[23]. 
SMAD4 encodes a transcription factor that mediates 
signaling of the transforming growth factor-β (TGF-β) 
superfamily. TP53 and SMAD4 genes are mutated in 
late-stage precursor lesions, typically in high-grade 
PanIN[24,25].

In addition to these four frequently altered genes, 
various other genes are mutated at relatively low 
frequencies in pancreatic cancer. Jones et al[9] reported 
alterations in genes related to chromatin remodeling 
(ARID1A, MLL3). Furthermore, they proposed that core 
signaling pathways exist in pancreatic cancer (Figure 
1), and noted that the pathway components altered 
in individual tumors may vary widely[9]. Whole-exome 
sequencing analysis of 99 pancreatic cancers found 
many significantly mutated genes, including genes 
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related to chromatin remodeling (EPC1, ARID2) and 
DNA damage repair (ATM)[26]. In addition to the core 
signaling pathways mentioned above[9], they identified 
significant alterations in genes related to the axon 
guidance pathway, including ROBO1/2 and SLIT2[26]. 
More recently, whole-genome analysis of 100 PDACs 
provided a comprehensive picture of the genomic 
alterations in this disease[27]. In addition to genes known 
to be important in PDAC (TP53, SMAD4, CDKN2A, 
ARID1A and ROBO2), chromosomal rearrangements 
affecting KDM6A and PREX2 were identified. KDM6A 
is related to chromatin remodeling, and is mutated in 
renal cell carcinoma and medulloblastoma[28,29]. The 
RAC1 guanine nucleotide exchange factor, PREX2, is 
mutated in melanoma[30]. Copy number analysis also 
uncovered a number of amplifications in genomic 
regions including KRAS and GATA6[27], in accordance 
with a previous report[31]. Most importantly, they demon
strated that a small fraction of patients (1%-2%) 
harbor focal amplifications in druggable genes, including 
ERBB2, MET, FGFR1, CDK6, PIK3CA and PIK3R3[27].

Some germline mutations are known to be associ
ated with familial clusters of pancreatic cancer. For 
example, inactivation of BRCA2, which encodes a 
protein involved in DNA damage repair, is related to 
familial pancreatic cancer. Indeed, BRCA2 mutation 
is associated with a 3.5- to 10-fold increased risk of 
pancreatic cancer, as well as increased risk of breast 
cancer and ovarian cancer[32,33]. Germline mutations 
in the Fanconi anemia genes, such as FANCC, FANCG 
and PALB2 (also known as FANCN), are also implicated 
in familial pancreatic cancer[34-37]. In addition, germline 
mutation of ATM has recently been identified in subsets 

of familial pancreatic cancer[38].

IMPLICATIONS OF GENOMIC 
ALTERATIONS FOR TREATMENT OF 
PANCREATIC CANCER
The development of powerful sequencing technologies 
has led to a detailed knowledge of the human cancer 
genome, and it has become evident that some types of 
cancer can be effectively treated by targeted therapies 
based on their specific gene alterations. Here we 
discuss potential approaches for gene alteration-based 
treatment of pancreatic cancer.

The most prevalent oncogenic alteration, in KRAS, 
seems an obvious target for cancer therapy, because 
mutant KRAS protein has been experimentally de
monstrated to play a pivotal role in maintenance of 
PDAC[39,40]. Activating mutations at KRAS codons 12, 
13 and occasionally 61 are currently the most common 
gene alterations in pancreatic cancer. A therapeutic effect 
of blocking G12D mutant KRAS has been demonstrated 
by using siRNA and a novel siRNA delivery system, 
both in vitro and in vivo[41]. Although great efforts 
have been made to develop small-molecular inhibitors 
of mutant KRAS, no clinically effective antagonist 
has yet been identified[42]. Instead, some indirect 
approaches, such as targeting post-transcriptional 
processes, have been tried. Farnesylation of KRAS 
allows the protein to associate with the membrane 
and interact with Ras activating proteins, including 
Ras-GEFs. Farnesyltransferase is the key enzyme 
involved in addition of a 15-carbon isoprenoid chain to 
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Figure 1  Core signaling pathways of pancreatic cancer. 
Twelve signaling pathways and cellular processes that are 
important in pancreatic cancer have been identified based on 
whole-exome sequencing analysis[9]. Various component genes 
associated with each pathway are mutated in most pancreatic 
cancers. Targeting one or more of these pathways, rather than 
specific gene alterations that occur within a pathway, would be 
a new strategy for treatment of pancreatic cancer. KRAS: V-ki-
ras2 Kirsten rat sarcoma viral oncogene homolog; JNK: C-jun 
N-terminal kinase; TGF-β: Transforming growth factor-β.
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have been examined for various types of cancer, none 
has yet been implemented for treatment of pancreatic 
cancer.

Focusing on signaling pathways in pancreatic cancer 
may be a better strategy than targeting particular gene 
alterations for treatment of pancreatic cancer. The 
core signaling pathways of pancreatic cancer[9] include 
several druggable pathways. For example, the Wnt/
Notch pathway is important, and inhibition of the Notch 
pathway by inhibiting γ-secretase has been suggested 
as a potential treatment strategy[65]. The combination 
of γ-secretase inhibitor MRK003 with gemcitabine has 
been shown to provide a survival benefit in vivo[66]. It 
has also been reported that pancreatic cancer cells that 
harbor inactivating mutations of RNF43 are sensitive to 
LGK974, a Wnt pathway inhibitor currently in a phase 1 
clinical trial[67]. Inhibition of the Hedgehog pathway with 
a natural hedgehog antagonist, cyclopamine, decreases 
growth of various types of tumor, including PDAC[68,69]. 
Clinical use of cyclopamine, however, is problematic 
because of its side effects and suboptimal pharma
cokinetics. A novel, orally bioavailable, small-molecular 
Hedgehog inhibitor, IPI-269609, has been shown to 
inhibit tumor initiation and metastasis of pancreatic 
cancer[70]. Interestingly, blockade of the Hedgehog 
pathway has also been proposed as a means to target 
the tumor stroma and improve delivery of gemcitabine 
in vivo[71]. Small-molecular inhibitor Saridegib (IPI-926) 
was tested in combination with gemcitabine in patients 
with pancreatic cancer. However, the Phase I/IIb trial 
was stopped because patients receiving the combination 
had higher rates of progressive disease and lower 
overall survival in 2012[72].

Although the frequencies are low, mutations of 
several familial pancreatic cancer-related genes are 
associated with drug sensitivity. Inactivation of BRCA2 
is found in about 7% of western PDAC patients[32,73]. 
BRCA2 plays a crucial role in homologous recom
bination-based DNA damage repair processes[74]. Poly 
ADP-ribose polymerase (PARP) is an important enzyme 
in the DNA repair mechanism mediated by BRCA2, and 
PARP inhibitors induce extreme genome instability and 
death of BRCA-mutated cancer cells[75]. As well as PARP 
inhibitors, DNA-crosslinking agents such as mitomycin C, 
cisplatin and carboplatin are also effective for treatment 
of BRCA-inactivated pancreatic cancer[76]. As PALB2 
encodes a protein that interacts with BRCA2, PALB2 
mutations are expected to disrupt BRCA2-mediated 
repair of DNA double strand breaks. PALB2 mutations 
in PDAC patients confer sensitivity to DNA-damaging 
agents[77]. Tumors with mutations in ATM, another fami
lial pancreatic cancer-related gene, might also be sensi
tive to PARP inhibitors[78].

Overall, pancreatic cancer is characterized by 
substantial genomic heterogeneity with numerous 
infrequently mutated genes[9,26,27]. Although the common 
mutations in pancreatic cancer, KRAS, TP53, CDKN2A 
and SMAD4, are currently not druggable, stratified 
therapeutic strategies based on genomic alterations 

KRAS protein. However, despite in vitro and xenograft 
studies[43], farnesyltransferase inhibitors, such as 
tipifarnib, have proven unsuccessful in combination 
with gemcitabine[44,45]. This can be attributed to 
the existence of an alternative post-transcriptional 
mechanism, geranyl-geranylation, that compensates 
for inhibition of farnesyltransferase[46]. A dual inhibitor 
of farnesyltransferase and geranylgeranyltransferase 
(L-778,123) was tested in a Phase I clinical trial in 
combination with radiotherapy for locally advanced 
PDAC, and showed acceptable toxicity[47]. Some 
groups have recently investigated strategies targeting 
localization of KRAS to the membrane. Deltarasin is a 
small molecule that binds to the farnesyl-binding pocket 
of the delta subunit of phosphodiesterase (PDEδ) and 
inhibits translocation of KRAS to the membrane by 
blocking the interaction between PDEδ and farnesylated 
KRAS[48,49]. On the other hand, Salirasib blocks KRAS 
activation by dislodging the farnesylated protein from 
the membrane[50]. The results of preclinical and clinical 
trials suggest that salirasib may be effective[51].

Targeting downstream effectors of KRAS may be 
an alternative approach to block the KRAS signaling 
pathway. The MEK/MAPK and PI3K/Akt/mTOR pathways 
are the principal downstream pathways of KRAS. But, 
although several MEK inhibitors, such as CI-1040 and 
PD0325901, have been investigated in clinical trials, 
they failed to deliver meaningful therapeutic benefit[52,53]. 
In addition, trametinib, another MEK1/2 inhibitor, was 
recently tested in combination with gemcitabine for 
patients with metastatic pancreatic cancer, but failed 
to improve the clinical outcome[54]. Activation of the 
PI3K/Akt/mTOR pathway also plays an important role 
in maintenance of pancreatic cancer[55-57]. An inhibitor 
of PI3K, LY294002, was reported to induce apoptosis in 
vitro and to inhibit tumor growth in vivo[58]. In addition, 
everolimus, a mammalian target of rapamycin (mTOR) 
inhibitor, has been reported to inhibit tumor growth in 
vivo[59]. However, everolimus had minimal activity in 
patients with gemcitabine-resistant PDAC in a phase 
II study[60,61]. It was recently found that tumors with 
activated KRAS and mutant TP53 did not respond to 
mTOR inhibition, whereas tumors with KRAS activation 
and PTEN loss are responsive to mTOR inhibition[62]. 

Since the MEK/MAPK and PI3K/Akt/mTOR pathways 
are both downstream of KRAS, it is possible that 
inhibition of one pathway induces compensatory acti
vation of the other pathway. Therefore, inhibition of 
both pathways may have a synergistic effect in treat
ment of pancreatic cancer[63,64]; thus, simultaneous 
blockade of MEK/MAPK and PI3K/Akt/mTOR seems to 
warrant further investigation as a candidate therapy for 
pancreatic cancer.

In addition to KRAS, CDKN2A, TP53 and SMAD4 are 
also commonly altered in pancreatic cancer. However, 
therapeutic approaches targeting these proteins are 
considered to be difficult for various reasons, including 
cellular location and multifunctionality. Although a 
number of therapeutic strategies targeting these genes 
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that occur at low frequency might be beneficial for 
treatment of pancreatic cancer. Recently, Jones et al[79] 
identified somatic alteration in potentially druggable 
genes in approximately 20% of PDAC patients. In 
Australia, the Individualized Molecular Pancreatic Cancer 
Therapy (IMPaCT) trial screens patients for actionable 
molecular phenotypes, with the aim of developing 
personalized therapies for pancreatic cancer[80]. IMPaCT 
is a randomized phase II clinical trial designed to assess 
standard therapy (gemcitabine) vs genotype-guided 
target therapies in patients with recurrent or metastatic 
pancreatic cancer. Initially, three subgroups with pre-
defined actionable mutations, i.e., HER2-amplified 
(gemcitabine + trastuzumab), DNA damage response-
defective (gemcitabine + PARP inhibitor) and anti-
EGFR-responsive (gemcitabine + erlotinib), are being 
tested. This clinical trial was designed so that other 
arms could be added as novel subgroups or agents are 
identified. This approach could facilitate development of 
personalized therapies for pancreatic cancer.

CONCLUSION
Comprehensive genomic studies have provided exten
sive information on the pancreatic cancer genome, 
including its heterogeneity and core signaling pathways. 
These findings should be useful for the development 
of novel therapeutic strategies. For example, it might 
be helpful for early detection of pancreatic cancer to 
identify individuals with a genetic predisposition for the 
disease, including familial pancreatic cancer-related 
genes, so that periodic follow-up screening can be 
performed. Analysis of clonal evolution of pancreatic 
cancer indicates that it takes more than 10 years 
from occurrence of the initiating genomic alteration to 
formation of the parental clone[81]. Thus, there appears 
to be a substantial time window for early detection. 
Current sensitive sequencing technologies allow us to 
detect tumor DNA of various types of cancer in plasma 
(circulating tumor DNA, ctDNA)[82], and indeed, ctDNA 
has been detected in plasma from patients with early-
stage breast and lung cancers[83,84]. Such an approach 
could also be applicable to patients with pancreatic 
cancer. More comprehensive genomic analysis may 
also be useful for identifying actionable mutations. 
Furthermore, ctDNA is thought to reflect the genetic 
heterogeneity of cancer, since it may contain tumor DNA 
derived from various regions, including metastases. 
Novel strategies based on genomic information seem 
likely to revolutionize pancreatic cancer therapy over 
the next few years, and may ultimately lead to fully 
personalized medicine.
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Abstract
Paraneoplastic leukemoid reaction is a rare syndrome 
defined by a leukocyte count exceeding 50 Giga/Liter 
(G/L), mostly described with progressive lung or renal 
carcinoma. We report a case of a 68-year-old man with 
recurrent pancreatic carcinoma presenting a leukemoid 
reaction with a white blood cell count of 63.87 G/L 
without identified infectious, iatrogenic or hematologic 
causes. His overall condition quickly degraded and he 
died three weeks after the discovery of the leukemoid 
reaction. This is the first case in French literature 
of leukemoid reaction in a patient with pancreatic 
carcinoma with poor prognostic value.

Key words: Leukemoid reaction; Pancreatic neoplasms; 
Paraneoplastic syndrome; Prognosis

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Paraneoplastic leukemoid reaction is a rare 
syndrome which seems to be associated with aggressive 
tumors, rapid clinical deterioration, and short survival. 
We report a rare presentation of pancreatic cancer with 
leukemoid reaction in a 68-year-old man who died three 
weeks after its discovery. This paper may contribute 
to clinical practice when encountering such a patient 
because of its poor prognostic value.

Dos Santos M, Bouhier K, Dao MT. Paraneoplastic leukemoid 
reaction in pancreatic cancer: A case report. World J Gastrointest 
Oncol 2015; 7(10): 259-262  Available from: URL: http://www.
wjgnet.com/1948-5204/full/v7/i10/259.htm  DOI: http://dx.doi.
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INTRODUCTION
Carcinoma is the most common (90%) and gravest 
type of pancreatic tumor with 5-year global survival 

Paraneoplastic leukemoid reaction in pancreatic cancer: A 
case report

Mélanie Dos Santos, Karine Bouhier, Manh-Thong Dao 

Mélanie Dos Santos, Karine Bouhier, Manh-Thong Dao, 
Department of Gastroenterology, CHU de Caen, 14000 Caen,  
France

Author contributions: Dos Santos M performed the research 
and wrote the paper; all authors contributed to revision of this 
manuscript.

Supported by The University Caen Basse Normandie, 14000 
Caen, France.

Institutional review board statement: This case report 
was exempt from the Institutional Review Board: Comité de 
protection des personnes Nord Ouest III at CHU Caen.

Informed consent statement: The patient involved in this 
study died before the manuscript was written. However data are 
anonymized not to cause harm to the patient or their families, and 
risk of identification is low.

Conflict-of-interest statement: No conflict of interest to declare.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Correspondence to: Manh-Thong Dao, Professor, Doctor of 
Hepato-Gastroenterology, Department of Gastroenterology, CHU 
Caen, Avenue Côte de Nacre, 14000 Caen, 
France. dao-t@chu-caen.fr
Telephone: +33-23-1064544
Fax: +33-23-1064545

Received: April 3, 2015
Peer-review started: April 3, 2015
First decision: July 10, 2015
Revised: July 20, 2015
Accepted: August 4, 2015
Article in press: August 7, 2015
Published online: October 15, 2015

CASE REPORT

October 15, 2015|Volume 7|Issue 10|WJGO|www.wjgnet.com

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4251/wjgo.v7.i10.259

World J Gastrointest Oncol  2015 October 15; 7(10): 259-262
ISSN 1948-5204 (online)

© 2015 Baishideng Publishing Group Inc. All rights reserved.

259



rates around 5%. In France, it is the fifth cause of cancer-
related deaths and its incidence is increasing fast with 
approximately 8000 annual new cases. Paraneoplastic 
syndromes can occur in a minority of cancer cases 
(less than 10%) and are not directly related to the 
physical effects of the tumor. Those most frequently 
associated with pancreatic carcinoma are Trousseau’s 
syndrome, Cushing’s syndrome, and the unexplained 
prolonged fever. They can reveal the disease or arise 
during progression. They can decline under treatment, 
even disappear with the cure and reappear in case of 
relapse. Paraneoplastic leukemoid reaction is defined 
as leukocytosis exceeding 50 Giga/Liter (G/L). Its 
diagnosis rests essentially on the exclusion of infectious, 
hematologic or iatrogenic causes such as growth factor 
or corticosteroid therapy[1]. This syndrome is most 
frequently associated with carcinomas, in particular lung 
and renal[2,3], and is rarely described in cancers of the 
digestive tract, including pancreatic cancers.

CASE REPORT
We report the case of a 68-year-old man with pancreatic 
carcinoma, who was diagnosed with paraneoplas
tic leukemoid reaction in the absence of plausible 

differential diagnoses.
Our patient was diagnosed with pT2N0M0 carcinoma 

of the head of the pancreas, discovered by jaundice, 
and operated by cephalic duodenopancreatectomy. He 
then received adjuvant chemotherapy with 6 cycles of 
gemzar. One year later, tumor markers (carbohydrate 
antigen 19-9 and carcinoembryonic antigen) increased 
and a positron emission tomography scan detected 
a local recurrence. Radiological stabilization and a 
decrease of markers were obtained after 4 cycles of 
folfox. Therefore, 6 additional cycles were administered.

Follow-up imaging revealed local evolution and 
hepatic metastases. Tumor marker levels were increa
sed. A new line of chemotherapy was begun with 
folfiri. After 4 cycles, hepatic (Figure 1) and pulmonary 
evolution were observed associated with a progressive 
generalized weakness. Nevertheless, due to the patient’s 
strong insistence on treatment and a relatively stable 
overall condition, a third line of 5-fluorouracil (5-FU)/
cisplatin was considered. During the first cycle, a white 
blood cell count showed extreme leukocytosis of 63.87 
G/L (Figure 2), with neutrophil predominance of 92.7%, 
associated with a myelaemia of 1%, without abnormal 
eosinophilia, basophilia or anomaly of the other cell lines 
(hemoglobin 10.5 g/dL and platelets 207 G/L).

The patient had not received granulocyte colony-
stimulating factors (G-CSF) or corticosteroids. Standard 
infectious investigations found no obvious sign of 
infection: C-reactive protein was slightly elevated at 
138 mg/L, central and peripheral blood cultures as well 
as urine culture were negative, and a chest radiograph 
was normal. Moreover, a skeletal scintigraphy was 
performed and found no evidence of bone metastases. 
A cytological bone marrow examination showed a 
massively increased granulopoiesis with predominant 
neutrophils, complete maturation, without excess of 
blast cells or other anomalies that might suggest the 
existence of an acute leukaemia (Figure 3).

Molecular genetic analysis did not find a BCR-ABL 
fusion gene or a V617F mutation in the JAK2 gene. 
The serum level of G-CSF was within normal range (< 
40 pg/mL) and interleukin-6 (IL-6) was at 10 pg/mL 
(reference range: 0-10 pg/mL).

Only one cure of chemotherapy by 5-FU/cisplatin was 
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Figure 1  Computer tomography before (A) and after (B) leukemoid reaction. Pancreatic and hepatic evolution.
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Figure 2  Evolution of white blood cell counts associated with leukemoid 
reaction. Leukocytosis rapid increase.



administered, because of the patient’s rapid deterioration. 
He died three weeks after the development of the 
leukemoid reaction. During this period, leukocyte count 
remained above 50 G/L.

DISCUSSION
Paraneoplastic leukemoid reaction has rarely been 
described in cancers of the digestive tract, in particular 
pancreatic carcinoma, with only four cases found in 
the literature[4-7]. This seems to be the first case of 
leukemoid reaction in a patient with pancreatic cancer 
reported in the French literature.

Making this diagnosis requires eliminating an infec
tion, a treatment with corticoids or G-CSF, and the 
existence of hematologic neoplasia. This paraneoplas
tic syndrome has a poor prognostic value without a 
fast effective anti-tumor treatment, as illustrated by 
other reviews of the literature. Indeed, it is associated 
with aggressive tumors, rapid clinical deterioration, 
and short survival. The mechanism of this reaction 
is still not formally identified. Some data, concerning 
essentially lung cancers, suggest a secretion by tumor 
cells of hematopoietic growth factors such as G-CSF 
or granulocyte-macrophage colony-stimulating factor 
(GM-CSF) inducing extreme leucocytosis[8,9]. Other 
mechanisms could also be involved in this reaction, in 
particular the production of pro-inflammatory cytokines 
in response to tumor progression or necrosis[10,11].

In our case, there was no elevation of G-CSF or IL-6, 
although serum levels were tested only once because 
of the fast change in the patient’s overall condition. No 
elevations of these levels were found in other reports, 
implying the existence of other factors.

Paraneoplastic leukemoid reaction is rarely associ
ated with pancreatic cancer.

The mechanisms, prognosis, and management of 
this syndrome are poorly understood. More data are 
needed to conclude.

Leukemoid reaction appears at an advanced stage 
and may be a prognostic indicator in patients with 
pancreatic cancer. It is advisable to quickly diagnose the 

condition, after elimination of other plausible causes, 
because of its poor prognostic value.

COMMENTS
Case characteristics 
A 68-year-old man with pancreatic carcinoma presented a paraneoplastic 
leukemoid reaction.

Clinical diagnosis 
Rapid clinical deterioration with generalized weakness.

Differential diagnosis 
Infection, treatment with corticoids or granulocyte colony-stimulating factors and 
hematologic neoplasia.

Laboratory diagnosis 
White blood cell count showed extreme leukocytosis of 63.87 G/L.

Imaging diagnosis 
Computer tomography scans revealed progression of local, liver and lung 
disease.

Pathological diagnosis 
Carcinoma of the pancreas.

Treatment
The tumor was treated by cephalic duodenopancreatectomy associated 
with adjuvant chemotherapy, and three additional lines of chemotherapy for 
metastatic disease.

Related reports 
Poor prognostic value is also illustrated by other reviews of the literature with 
short survival. The mechanism of this reaction is still not formally identified, but 
some data suggest a secretion by tumor cells of hematopoietic growth factors 
or pro-inflammatory cytokines.

Term explanation 
Paraneoplastic leukemoid reaction is defined as leukocytosis exceeding 50 G/L.

Experiences and lessons 
Paraneoplastic leukemoid reaction is a rare syndrome, infrequently described with 
pancreatic cancer, which seems to be associated with poor prognostic value.

Peer-review
A very rare complication of pancreatic cancer with very rare occurence in 
gastrointestinal cancers and pancreatic cancer in peculiar, worth publishing to 
inform physicians. It is a step forward on the way of clarifying the pathogeny of 
this syndrome.
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