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Abstract
The World Journal of Hepatology (WJH) was launched in October 2009. It mainly 
publishes articles reporting research findings in the field of hepatology, covering a 
wide range of topics, including viral hepatitis B and C, non-alcoholic fatty liver 
disease, alcoholic liver disease, autoimmune and chronic cholestatic liver disease, 
drug-induced liver injury, cirrhosis, liver failure, hepatocellular carcinoma, 
coronavirus disease 2019-related liver conditions, etc. As of December 31, 2020, the 
WJH has published 1349 articles, among which, the total cites is 18995 and the 
average cites per article is 14. In celebrating the New Year, we are pleased to share 
with you special a New Year’s greeting from the WJH Editors-in-Chief, along with 
a detailed overview of the journal’s submission, peer review and publishing 
metrics from 2020. In all, we are appreciative for the substantive support and 
submissions from authors worldwide, and the dedicated efforts and expertise 
provided by our invited reviewers and editorial board members.

Key Words: World Journal of Hepatology; New Year’s greeting message; Editors-in-
Chief; Editorial Board; Highly influential scientists; Baishideng Publishing Group Inc
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Core Tip: The World Journal of Hepatology (WJH) mainly publishes articles reporting research results 
obtained in the field of hepatology and covering a wide range of topics, including a variety of different 
liver diseases, cirrhosis, hepatocellular carcinoma, and more recently coronavirus disease 2019-related 
liver conditions and management, and so on. Since its launch in October 2009, the WJH has published 
1349 articles. As of December 31, 2020, the total cites among these articles is 18995 and the average cites 
per article is 14. The enthusiastic and excellent support and submissions from authors worldwide, comple-
mented by the dedicated efforts and expertise of our invited reviewers, Editorial Board members, and 
Editorial Office staff, have been invaluable.

Citation: Hu KQ, Kang KJ, Pyrsopoulos N, Li X. New Year’s greeting and overview of World Journal of 
Hepatology in 2021. World J Hepatol 2021; 13(1): 1-5
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/1.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.1

INTRODUCTION
The World Journal of Hepatology (WJH, ISSN 1948-5182, https://www.wjgnet.com/1948-5182/index.htm) 
is a high-quality, monthly, online, open-access, single-blind peer-reviewed journal published by the 
Baishideng Publishing Group Inc (BPG). The primary aim of WJH is to provide scholars and readers 
from various fields of hepatology with a platform to publish high-quality basic and clinical research 
articles and communicate their research findings online. The WJH is abstracted and indexed in PubMed, 
PubMed Central, Emerging Sources Citation Index (Web of Science), and Scopus.

Since its launch in October 2009, the WJH has published 1349 articles[1]. As of December 31, 2020, the 
total cites among these articles is 18995 and the average cites per article is 14.

A NEW YEAR’S GREETING FROM THE WJH EDITORS-IN-CHIEF 
For all of us, 2020 was a very tough year due to coronavirus disease 2019 (COVID-19). As Editors-in-
Chief of WJH, it is now our great pleasure to take this opportunity to wish all our authors, readers, 
Editorial Board members, independent expert referees, and staff of the Editorial Office a very Happy 
New Year. On behalf of the Editorial team, we would like to express our gratitude to all authors who 
contributed their valuable manuscripts, as well as all independent referees and readers for their 
continuous support, dedication, and encouragement. Together with an excellent team effort by our 
Editorial Board members and staff of the Editorial Office and BPG, WJH was able to advance in 2020 
despite the ongoing COVID-19 pandemic.

As the chief editors, we strive to work with the journal’s Editorial Office and BPG staff to make the 
manuscript submission process as simple as possible and ensure an efficient communication with the 
authors to provide our support and answer their questions. We are also open to any suggestions that 
could improve WJH ’s operation and publication. Please feel free to contact us at (
editorialoffice@wjgnet.com) with any question on your submission or suggestions for the journal in 
general.

OVERVIEW OF THE WJH IN 2020
In celebrating WJH’s 12-year anniversary and the 2021 New Year, we are very proud to share with you 
that we completed the following endeavors in submission, peer review and publishing in 2020.

Submission and acceptance
From 2013 to 2020, the WJH has received 2302 manuscripts, including invited manuscripts and 
unsolicited manuscripts, and the average submissions per year is 288. The submissions of unsolicited 
manuscripts are stable in recent years (Figure 1).

In 2020, we received 204 submissions from authors around the world and published 112 articles in 12 
issues. Among those 112 articles, 57 (50.9%) were original articles, 31 (27.7%) were review articles, 1 was 
an editorial (0.9%), 15 (13.4%) were case reports and 8 (7.1%) were articles of ‘other’ types (Figure 2). The 
authors hailed from 32 countries, including 32 (28.6%) from the United States, 10 (8.9%) from Brazil, 6 
(5.4%) each from Italy, Japan and Spain, and 5 (4.5%) each from the United Kingdom and France; the 
remaining 26 (23.2%) were from various individual countries (Figure 3).

https://www.wjgnet.com/1948-5182/full/v13/i1/1.htm
https://dx.doi.org/10.4254/wjh.v13.i1.1
https://www.wjgnet.com/1948-5182/index.htm
https://www.wjgnet.com/1948-5182/index.htm
mailto:editorialoffice@wjgnet.com
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Figure 1  Annual submissions of World Journal of Hepatology from 2013 to 2020.

Figure 2  Article types among the 112 manuscripts published by World Journal of Hepatology in 2020.

Invitation for 2021
In November and December, invitations to contribute high-quality articles to WJH were sent out to 
distinguished scientists in the field of hepatology. As of December 31, 2020, WJH has accepted a total of 
327 proposed titles for those invited manuscripts; these articles, to be submitted for publication in 2021, 
include 85 (26.0%) original articles, 215 (65.7%) review articles, 15 (4.6%) editorials, and 12 (3.7%) ‘other’ 
types (Figure 4). We are currently inviting highly influential scientists to submit Topic Highlight articles, 
commenting on and discussing hot topics in the field of hepatology. As of December 31, 2020, we have 
already received 14 submissions online.

Conducting peer review statistics
As of December 31, 2020, WJH had sent out 6120 invitations to peer reviewers and Editorial Board 
members to conduct peer review of manuscripts. Among the peer reviewers and Editorial Board 
members who accepted the invitation, 428 (35.0%) submitted the peer review report on time, 425 (34.7%) 
failed to submit the peer review report on time, and 370 (30.3%) have not submitted the peer review 
report yet.

Editorial Board members of WJH
The 2020 Editorial Board of WJH was composed of 195 members[2]. Among them, 3 were Editors-in-
Chief (Professor Ke-Qin Hu, Professor Koo Jeong Kang, and Professor Nikolaos Pyrsopoulos), 5 were 
Associate Editors, and 187 were Editorial Board Members. The members were based in 45 countries and 
areas, including 23 (11.8%) in China, 22 (11.3%) in Italy, 19 (9.7%) in the United States, 18 (9.2%) in 
Turkey, 11 (5.6%) in Egypt, and 102 (52.3%) in various other countries (Figure 5). A total of 86 (44.1%) of 
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Figure 3  Top 16 countries by number of World Journal of Hepatology published manuscripts in 2020.

Figure 4  Article types of World Journal of Hepatology invited manuscripts for 2021.

Figure 5  Countries of World Journal of Hepatology Editorial Board Members in 2020. Top 11 countries by the number of editorial members, where 
no less than five members are located in each country.

the Editorial Board Members served as peer reviewers in 2020.
We are pleased to have received 71 applications for Editorial Board membership (up to December 

2020), which are currently under evaluation.

Journal metrics
According to data from the Web of Science (up to January 4, 2021), WJH published 258 articles between 
2017 and 2018. These articles were cited 830 times in 2019, with a mean citation of 3.217 for each. On 
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behalf of WJH, BPG will submit an application to Clarivate Analytics for abstracting and indexing in 
Science Citation Index Expanded (SCIE), in the near future. WJH’s Scopus CiteScore for 2019 is 5.8, 
ranking 22/61 in the category of Hepatology.

Accurately pushing WJH articles and authors ahead
To enable more peers to read, share, and cite WJH authors’ published research results and to help 
enhance their global academic influence and reputations, thereby also promoting the overall 
development of the field of hepatology, BPG sends WJH’s published articles to 1000-10000 highly 
influential experts in a topically-accurate manner. After completing this outreach activity, BPG formally 
notifies the paper’s authors of the number of experts to whom their manuscript was sent via email. As of 
December 31, 2020, WJH articles included in the push email campaign were sent to 19905 in October, 
5308 in November, and 11023 in December.

Challenges facing WJH in 2021
The development and growth of WJH rely on a large amount of high-quality manuscripts. We 
appreciate and encourage all authors to submit their topically-relevant manuscripts to WJH, to enjoy the 
benefits of this great platform and sharing resource in disseminating their medical research results. Our 
Editorial Board members are encouraged to continue their support by actively serving as peer 
reviewers, authors contributing articles, and journal representatives inviting high-quality articles from 
others. WJH Editorial Board members are also encouraged to communicate with the Editors-in-Chief 
actively, provide suggestions and analyze discipline hotspots to promote their academic influence 
through the WJH.

CONCLUSION
In 2021, WJH will publish more high-quality original and review articles, consistently improving its 
academic influence and moving closer towards its next goal of inclusion in the SCIE as soon as possible, 
which will ultimately promote the overall development of the field of hepatology. WJH’s Editors-in-
Chief and Editorial Office staff expect to be more productive and have committed to working diligently 
with all of you to raise the academic rank of WJH in 2021. In order to achieve these goals, we recognize 
the importance of substantive support and submissions from authors like you in tandem with the 
dedicated efforts and expertise of our invited reviewers, many of whom also serve on our Editorial 
Board. Please feel free to contact our Editorial Office (editorialoffice@wjgnet.com) if you have further 
questions, need support, or wish to share your suggestions.

FOOTNOTES
Author contributions: Hu KQ and Li X drafted the editorial; Kang KJ and Pyrsopoulos N reviewed and revised the 
editorial.
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Abstract
Autophagy is the liver cell energy recycling system regulating a variety of 
homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded 
in the lysosomes and their elements are re-used by the cell. Investigations on 
autophagy have led to the award of two Nobel Prizes and a health of important 
reports. In this review we describe the fundamental functions of autophagy in the 
liver including new data on the regulation of autophagy. Moreover we emphasize 
the fact that autophagy acts like a two edge sword in many occasions with the 
most prominent paradigm being its involvement in the initiation and progress of 
hepatocellular carcinoma. We also focused to the implication of autophagy and its 
specialized forms of lipophagy and mitophagy in the pathogenesis of various 
liver diseases. We analyzed autophagy not only in well studied diseases, like 
alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, 
biliary diseases, autoimmune hepatitis and rare diseases including inherited 
metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the 
different consequences that activation or impairment of autophagy may have in 
hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic 
stellate cells. Finally, we analyzed the limited clinical data compared to the 
extensive experimental evidence and the possible future therapeutic interventions 
based on autophagy manipulation.

Key Words: Autophagy; Lipophagy; Mitophagy; Fatty liver disease; Fibrosis; Liver 
sinusoidal cells
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Core Tip: Extensive investigation of autophagy is mostly based on experimental data. However there is 
now enough evidence to support the notion that autophagy is not only the waste recycling mechanism of 
the hepatocyte, but is strongly involved in the pathogenesis of almost all liver diseases. It can be either a 
defensive mechanism against various insults or a detrimental machinery aggravating the underlying 
disease. Modulation of autophagy has different consequences in the hepatocyte than in the liver 
macrophages, the sinusoidal endothelium or the hepatic stellate cells. There is also an opportunity for 
future treatment applications of autophagy manipulation.

Citation: Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J 
Hepatol 2021; 13(1): 6-65
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/6.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.6

INTRODUCTION
Autophagy in the liver
Autophagy (from the Greek self-eating) is a process crucial for cell survival[1,2]. Autophagy is a 
lysosomal degradation pathway that controls the disposition of intracellular waste including damaged 
organelles or invading pathogens. It can be characterized as the recycling energy system of the cell.

Under basal conditions autophagy degrades 1.5% of total hepatic protein per hour but in starvation, 
protein degradation increases to 4.5% of liver protein per hour[3]. When rodents are starved for 48 h, 
autophagy degrades up to 40% of liver protein[4].

Although It is accepted that the term “autophagy” was introduced in 1963 by the Belgian researcher 
Christian René de Duve, in fact the term autophagy was used almost a century earlier by Anselmier in a 
French journal[5].

However the modern era of autophagy started with the pioneer work of de Duve and Novicoff in the 
1950s when acid phosphatase positive lysosomes were described in the rat liver[6-9] and the term 
lysosome was used for the first time[10].Later de Duve introduced the term autophagosome and Arstila 
and Trump proved that the autophagosomes originate from the endoplasmic reticulum (ER)[11]. The 
next important progress came when Takeshige et al[12] identified approximately fifteen Autophagy 
related genes (Atgs) involved in Saccharomyces cerevisiae autophagy[12-14]. Today, more than 40 Atgs 
in various animal and human cells have been identified and unified[15-17]. The importance of 
autophagy was recognized by the award of two Nobel Prizes for Physiology or Medicine, the first to 
Cristian De Duve in 1974 and the second to Yoshinori Ohsumi in 2016[18,19]. Landmarks of autophagy 
were recently described[20]. During the period 2008-2018 more than 33000 papers related to autophagy 
were published[21,22].

Autophagy has certain discrete stages including induction, phagophore formation, autophagosome 
formation, autolysosome formation and degradation[23-25]. Atg molecules are involved in various 
complexes essential for autophagy induction and autophagosome formation[26]. Initiation starts with 
activation of the unc-51-like kinase 1 complex (ULK1, Atg1 in yeast) followed by beclin 1 (Atg6 in yeast) 
and a subsequent cascade of Atg proteins leading to autophagosome formation where LC3 (Atg8 in 
yeast) is implicated[27]. LC3 is further processed to form initially LC3-I and then LC3-II[28]. Once the 
autophagosome is formed, a blockage of autophagic flux at late steps will downregulate the clearance of 
autophagosomes. A blockage of autophagic flux finally results in autophagy dependent cell death[29]. 
Detailed descriptions of the complex molecular steps of each stage of autophagy were recently 
published[20,28,30].

A commonly used marker for estimating autophagosome formation is the fusion protein green 
fluorescent protein-LC3 (GFP-LC3)[31]. Of the three members LC3A, LC3B, and LC3C of the human 
LC3 gene family, LC3B and LC3-II are mostly used for autophagy assays[32-34]. Autophagic flux into 
the lysosomes is estimated by measuring p62/SQSTM1 degradation. p62/SQSTM1 is a protein complex 
that binds to LC3 and is efficiently degraded by autophagy[35]. The total cellular level of p62/SQSTM1 
inversely correlates with autophagic activity. Thus in autophagy-deficient cells, p62/SQSTM1 levels are 
increased after starvation in contrast to cells with normal autophagy[36].

It should be stressed that he level of LC3 is related to the induction of autophagy but might not reflect 
the final stages of autophagy and should not be used as a general marker of autophagy[34-36]. Further 
progress of autophagy is detected by a low level of p62 since p62 degradation depends on the function 
of the autophagosome-lysosome fusion[37]. Therefore an increase of both LC3 and p62 indicates 
formation of autophagosomes without lysosomal degradation[38].

As mentioned before, a major breakthrough in autophagy was the identification of Atgs. Evidence for 
the importance of autophagy in liver homeostasis was provided by the generation of of Atgs-knockout 
mice models[39]. Livers of mice with deletion of the autophagy gene Atg7 were markedly enlarged, up 

https://www.wjgnet.com/1948-5182/full/v13/i1/6.htm
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to 30% of the body weight of the animal and hepatocytes were characterized by structural alterations of 
mitochondria and peroxisomes and aggregation of ubiquitinated proteins. These aggregates 
disappeared when the ATg7- knockout mouse was bred to a mouse null for SQSTM1/p62indicating that 
SQSTM1 is important to direct damaged cytosolic proteins into the autophagic pathway[40,41].

To date, three major types of autophagy, namely, macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA), have been described[22,42,43].

Macroautophagy is the classical pathway that engulfs the cytosolic components targeted for 
lysosomal degradation. Initiation of autophagy is controlled by two metabolic sensors the mammalian 
target of rapamycin complex 1 (mTORC1) and the AMP-activated protein kinase (AMPK). mTORC1 
negatively regulates autophagy by direct phosphorylation of ULK1 thus inhibiting ULK1. AMPK 
suppresses mTORC1 activity by phosphorylation of tuberous sclerosis 2 and raptor, two essential 
regulators of mTORC1[44,45]. Recently it was reported that the final step in this activation process of 
mTOR is dependent on Rheb, a small GTPase that binds to mTOR and allosterically activates its kinase 
activity[46]. The long-term regulation of autophagy is carried out by transcription factor EB (TFEB)[47], 
the main regulator of lysosomal biogenesis and autophagy. Under nutrient-rich conditions, mTORC1 
phosphorylates TFEB and retains TFEB in the cytosol[48-50]. Nutrient deprivation on the other hand 
leads to mTORC1 inhibition, dephosphorylation of TFEB and its translocation to the nucleus to initiate 
the rapid transcription of autophagy genes[51,52]. All subsequent series of complex events leading to 
the final degradation in lysosomes have elegantly been described[2,24,53].

A simplified scheme of macroautophagy is presented in Figure 1.
Microautophagy is the least studied type of autophagy where compounds or membranous vesicles 

are directly taken up by lysosomes[54]. Microautophagy is important during amino acid starvation[55,
56] and possibly three different types can be recognized[57].

Chaperone Mediated Autophagy (CMA) is a selective engulfment process of substrates containing 
the pentapeptide “Lys-Phe-Glu-Arg-Gln” (KFERQ) motifs. They are recognized by, the cytosolic 
chaperone heat-shock cognate protein of 70 kDa (HSC70), and transported into the lysosomes through 
the lysosomal membrane protein 2A (LAMP2A)[58,59]. CMA is induced by DNA damage, hypoxia and 
oxidative stress, among others[60-65].

Today macroautophagy is also divided into non selective autophagy and selective macroautophagy 
targeting special organelles or specific compounds for degradation[43,66,67]. Thus new names have 
appeared according to the coumpounds involved: Ribophagy (ribosomes)[68], pexophagy 
(peroxisomes)[69], ferritinophagy (iron-based compounds)[70] and most importantly reticulophagy (ER)
[71] lipophagy (lipids)[72] and mitophagy (mitochondria)[73]. The last two are practically involved in 
every form of fatty liver.

Reticulophagy: Multiple receptors directly interact with LC3 and form autophagosomesduring reticu-
lophagy, a very important form of macroautophagy thatpreserves the size and function of the ER in 
different conditions like starvation, non-alcoholic fatty liver disease (NAFLD), viral infections and 
fibrosis[74-79].

Lipophagy: Lipophagy is implicated in lipid homeostasis and metabolism in liver diseases. It is usually 
down-regulated in steatosis of either alcoholic or non-alcoholic liver disease[80-84], but it is up-
regulated when fibrosis, cirrhosis or hepatocellular carcinoma are evolving[85-87]. Comprehensive 
reviews of lipophagy in liver disease were recently presented[88-91].

Mitophagy: The first step of mitophagy in mammals requires the induction of canonic Atg-dependen-
tautophagy with either mTOR suppression induced by mitochondrial generated reactive oxygen species 
(ROS), or AMPK activation induced by adenosine triphosphate (ATP) depletion. The second step is the 
priming of the mitochondria involving molecular modifications leading to their recognition by the 
autophagosomes[92,93]. Even in the healthy liver, worn out mitochondria with a half-life of 10 to 25 d 
are removed by mitophagy[94,95]. Elimination of aged or damaged mitochondria protect cells from 
release of pro-apoptotic proteins, generation of toxic ROS and non proper hydrolysis of ATP[96-99]. 
When oxidative stress appears, autophagy rapidly acts to remove oxidized proteins or damaged 
mitochondria that generate more ROS. Recent data show that in autophagy deficiency there is acummu-
lation of ROS and p62 probably mediated by the loss ofFOXO1/3. It has been reported that the p62-
FOXO1/3 axis is the molecular basis for the reduction of antioxidant defense in autophagy deficiency
[100]. Three different types of mitophagy have been described based in the different molecular 
pathways involved[101,102]. An extensive review of molecular mechanisms of mitophagy in liver 
diseases has been recently published[103].

New players in liver autophagy: It is clear today that apart from the known pathways regulating liver 
autophagy, there are additional mechanisms involved. The most important are the long non-coding 
RNAs (lncRNAs), microRNAs (miRNAs) and exosomes. Many recent studies have presented strong 
evidence that ncRNAs influence autophagy by regulating various autophagy pathways[104-110]. 
Equally, miRNAs regulate autophagy influencing the core autophagy pathways[111].

Evidence from experimental animals with liver specific deletions of Atgs has demonstrated the role of 
High mobility group box 1 (HMGB1)[112] and Yes-associated protein (YAP)[113] in the pathological 
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Figure 1 A simplified scheme of the macroautophagy pathways in the liver. Initiation starts with activation of the unc-51-like kinase 1 complex (ULK1, 
Atg1 in yeast) followed by beclin 1(Atg6 in yeast) and a subsequent cascade of Atg proteins leading to autophagosome formation where LC3 (Atg8 in yeast) is 
implicated. LC3 is further processed to form initially LC3-I and then LC3-II. Fusion of the autophagosomes with lysosomes form the autolysosome where acid 
proteases (among which cathepsins are important) and lipases degrade proteins and lipids. Initiation of autophagy is controlled by two metabolic sensors the 
mammalian target of rapamycin complex 1 (mTORC1) and the AMP-activated protein kinase (AMPK). mTORC1 negatively regulates autophagy inhibiting ULK1. 
AMPK suppresses mTORC1 activity. The long-term regulation of autophagy is carried out by transcription factor EB (TFEB), the main regulator of lysosomal 
biogenesis and autophagy. Under nutrient-rich conditions, mTORC1 phosphorylates TFEB and retains TFEB in the cytosol. Orange arrows: Inhibition. Green arrows: 
Positive regulation. For details see Ref.[21,29,31]. mTORC1: Mammalian target of rapamycin complex 1; TFEB: Transcription factor EB; ULK1: Unc-51-like kinase 1 
complex.

changes induced by autophagy. Nuclear receptors were also reported to control autophagy. Activation 
of the farnesoid X receptor (FXR), occurs during feeding and suppresses Atgs expression. On the other 
hand during starvation, fasting-activated nuclear receptors, the peroxisome proliferator-activated 
receptor alpha (PPAR), and the cAMP response element-binding protein (CREB), induce expression of 
Atgs and therefore increase autophagy[114-116].

An association of autophagy with the formation and function of exosomes has also been described. 
Exosomes are extracellular vesicles originating from late endosomes, which do not fuse with lysosomes 
but are released extracellularly by exocytosis. Exosomes can either activate autophagy pathways or 
transfer extracellular vesicles to the lysosomes[117].The interplay between autophagy and exosome 
biogenesis has been recently described[118].

Most researchers have studied either the early or the late stages of autophagy. However equally 
important is the final stage, namely the lysosome reformation (ALR), leading to regeneration of 
functional lysosomes from autolysosomes. A series of proteins including clathrin, the motor protein 
KIF5B, and dynamin 2 are sequentially involved up to the maturation of functional lysosomes. Early 
lysosomes are pH-neutral but eventually they gain acidity and luminal proteins[119-122]. Accumulating 
evidence suggests that most, if not all, components of the molecular machinery for autophagy also 
mediate autophagy-independent functions. Autophagy is involved in various cell functions like 
endocytosis, phagocytosis, DNA repair, centrosome function, cell proliferation, cell death and immuno-
logical response including memory. Details were recently reported[123].

Autophagy and immunity: The implication of autophagy with the immune system has been invest-
igated in the last few years[124-131]. Non-canonical forms of macroautophagy were described, resulting 
in the formation of autophagosomes that fuse with the lysosomes[132]. Only a subset of the Atgs 
machinery is used. Among these, LC3-associated phagocytosis (LAP) has been extensively studied 
because of its implication in immune regulation. LAP recruits LC3-II to the phagosomal membrane[133-
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135] and is taken up by macrophages through innate immune receptors such as Toll-like receptors. In 
contrast to autophagy the LAPasome is a single membrane vacuole. In contrast to autophagy, ULK1 is 
not required for LAP[133]. Chaperone-mediated autophagy has also attracted attention because of its 
central role in antigen presentation and aging[136,137]. Autophagy is also implicated in the function of 
innate immunity interfering with macrophage autophagy. There is interplay between autophagy and 
innate immunity as interferon (IFN)-γpromotes autophagy in macrophages[138]. Mice fed with high fat 
diet had impaired autophagy in bone marrow-derived macrophages and peritoneal macrophages[139]. 
Mice with Atg5 deficient macrophages, developed hepatic inflammation when stimulated with 
lipopolysaccharide (LPS) after a high fat diet feeding. Acquired immunity is primarily a defense 
function against specific pathogens and is brought about by the different subsets of T cells and B cells. 
Interestingly there is evidence that high autophagic activity maintains the differentiation and function of 
important T-cell subsets such as regulatory T (Treg)-cells[140] and γ δ T-cells[141].

Autophagy and cell death: It has been proven that autophagy can be either a protective mechanism or a 
contributor to cellular death in certain instances[142-144]. Autophagy is involved in cellular death 
mostly by its effects on apoptosis. Autophagy is connected to apoptosis and these two cellular 
destructive phenomena are affecting each other[145-148]. This is particularly important in hepatic cell 
death[149].

Generally autophagy blocks the induction of caspase-dependent apoptosis, and apoptosis-associated 
caspase activation stops the autophagic process. Yet, in special cases, autophagy may induce apoptosis 
or necrosis, and autophagy has been shown to degrade the cytoplasm, leading to ‘autophagic cell death’
[150-152].

Autophagy is also implicated in caspase-independent cell death, leading to necrosis and necroptosis
[153]. Induction of apoptosis eliminates cells damaged through the action of the tumor suppressor gene 
p53[154]. Apoptosis is counteracted, among others, by the mTOR/AKT pathway also involved in 
autophagy. The balance between p53 and AKT/mTOR is crucial for the fate of injured cells[155,156]. In 
addition, autophagy induces a particular mechanism of cell death named ferroptosis. It was initially 
reported as a specific iron-dependent form of malignant cell death. It soon became clear that ferroptosis 
is a more general form of cell death[157,158]. Many proteins implicated in autophagy (like Atgs and 
BECN1) were also involved in ferroptosis. Moreover activators of ferroptosis, like erastin, induced 
autophagosome accumulation and activation of autophagy led to ferroptotic cell death possibly by the 
turnover of ferritin through ferritinophagy[159-161].

A recent study has shown that ferroptosis is also interconnected with lipophagy. Lipids released 
during lipophagy and subsequent peroxidized increase ferroptosis. Therefore it might be that 
ferroptosis is a mechanism of cellular death in NAFLD[162].

Autophagy and inflammation: Autophagy is also closely associated with the inflammatory response in 
the liver. Inflammasome and autophagy regulate each other by the same inhibitory mechanisms which 
however are controlled by different input pathways. The NLRP3 inflammasome activation, usually 
through the stimulation by pathogen- and/or danger-associated molecular patterns[163,164], induces 
procaspase-1 activation which promotes interleukin interleukin (IL)-1β and IL-18 production leading to 
pyroptotic cell death. These events are counteracted by caspase-1-mediated activation of autophagy. In 
addition autophagy reduces inflammasome activation degrading the inflammasomes in the autopha-
gosomes but also eliminating damaged cytoplasmic organelles that otherwise would produce DAMPS 
increasing activation of inflammasomes[165,166].

On the other hand, the negative correlation between inflammasomes and autophagy[167-169] leads to 
an increased production of the pro-inflammatory IL-1β[170] when autophagy is decreased[128].
However, the relationship between NLRP3 and autophagy has not been fully clarified, and recent 
studies have reported that nuclear factor-κappa beta (NF-κB) activation can modulate the NLRP3 and 
autophagy towards the same direction[171].

In view of the above is not surprising that many reviews on autophagy use the term “double-edged 
sword” stressing the fact that autophagy may have opposite effects on the same biological phenomenon
[172]. Prominent general paradigms are cancer[173,174] and viral infections[175].

Another characterization pertinent to the liver is that autophagy behaves like Jekyll and Hyde 
depending on the cells involved. In hepatocytes, macroautophagy [in NAFLD and alcoholic liver 
disease (ALD)] and CMA (in NAFLD) is protective. It reduces fat accumulation and oxidative stress, it 
removes damaged mitochondria and favors regeneration. In macrophages, macroautophagy inhibits 
liver inflammation and fibrosis but it enhances fibrosis activated stellate cells. It is protective in early 
phases of hepatocellular carcinoma, but may be detrimental in late phases[176,177].

Autophagy in hepatocytes but also in the non-parenchymal sinusoidal cells of the liver is a key for 
liver physiology[178,179] and defects of autophagy are implicated in the pathophysiology of most liver 
diseases[180]. Both common diseases like alcoholic and non-alcoholic fatty liver or viral hepatitis and 
rare entities like Wilson’s disease and a1 antitrypsin deficiency are related to autophagy defects[30,41,
57,181-184]. Defective autophagy also leads to accumulation of detrimental hepatocyte byproducts due 
to the fact that hepatocytes have a long half life of 6-12 mo [143]. Moreover, the liver is responsible for 
handling of a large number of xenobiotics and autophagy is a cytoprotective mechanism[99,185] 
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(Figure 2).

OBESITY, STEATOSIS AND NAFLD
NAFLD is the commonest liver disease worldwide. Recently it was suggested that it should be renamed 
as metabolic dysfunction-associated fatty liver disease (MAFLD)[186,187]. Pathological lesions in the 
liver vary from simple steatosis to non-alcoholic steatohepatitis (NASH) and cirrhosis. Current 
pathogenesis of NASH is mainly focused on the effects of insulin resistance and lipotoxicity in 
hepatocytes[188]. The abnormalities reported in Kupffer cells, stellate cells and endothelial cells are 
regarded as secondary events[189,190].

Obesity and insulin resistance are well documented risk factors for NAFLD development. Defects in 
liver autophagy have been established as fundamental abnormalities in both conditions.

Hepatic autophagy in obesity and insulin resistance
In the hepatocyte, lipids are catabolized by two major pathways. The first involves cytoplasmic neutral 
lipases and the second is lipophagy and acid lipases and hydrolases of the lysosomes. The end result is 
the production of free fatty acids that are further broken down by βI-oxidase in the mitochondria[191].

Lipid droplets have a core of lipids enwrapped in a phospholipid layer characterized by proteins 
called perilipins directing them to the autophagosome[72]. A crucial protein mediating lipolysis and 
autophagy is the adipose triglyceride lipase (ATGL). Cytoplasmic lipolysis and lipophagy are intercon-
nected. The degradation of perilipins by autophagy facilitates actions of ATGL which in turn induces 
autophagy via sirtuin1 deacetylation of certain Atgs and activation of the transcription factors FoxO1 
and FoxO3 thus promoting autophagy[192-194].

Lipophagy can prevent lipid accumulation in hepatocytes, while the inhibition of lipophagy 
promotes lipid droplets (LDs) accumulation, resulting in hepatocellular steatosis[195].

Characteristic changes of the metabolic syndrome like obesity, hyperglycemia, and dyslipidemia have 
been shown to exert a negative effect on autophagy because the regulatory control of forkhead box O1 
(FoxO1) on the expression of Atg genes is lost leading to autophagy malfunction[196]. Macroautophagy 
and CMA are also down-regulated by increased intracellulal lipids due to either interference with the 
lysosomal stability of the CMA receptor or to the reduction of the ability of autophagosomes to fuse 
with lysosomes leading to the reduction of macroautophagic flux[196-198].

The severity of steatosis is related to the expression of three proteins, the damage regulated 
autophagy modulator (DRAM), BAX and p53. In mice livers, p53 expression increased in mild and 
severe steatosis. A DRAM expression increase was observed in mild hepatosteatosis, whereas high BAX 
expression was identified in severe hepatosteatosis[199].

A clinical study has confirmed the link between induction of autophagy and liver steatosis[200]. 
Autophagy-related genes (Atg5, LC3A, and LC3B) were overexpressed in obese patients compared with 
non obese patients.

Experimental evidence also suggests that defective autophagy is crucial in the development of 
obesity, oxidative stress, and the metabolic syndrome[201-203].

Insulin is intimately involved in autophagy regulation as the mTOR inhibitor of the FoxO and TFEB 
controllers of the transcription of autophagic genes is insulin-inducible[204]. Overactivation of mTOR in 
turn leads to insulin resistance[205,206]. Several mechanisms might explain this defect in obesity. 
Obesity increases calpain-2 by a still unknown signal pathway. Calpain is a protease that degrades Atg7 
and modulates autophagy[201]. Autophagosome-lysosome fusion is also defective in livers of obese 
mice due to alterations of the lipids in cellular membranes induced by the high-fat diet[198]. A defective 
liver autophagy and the associated decrease of lysosomal degradation contribute to an additional 
increase in the ER stress which leads to insulin resistance and a vicious circle is completed[201,207,208]. 
Hyper-insulinemia decreases liver autophagy and reduced hepatic autophagy aggravates ER stress and 
insulin resistance.

An additional mechanism is a defect in acidification of lysosomes. Impaired substrate degradation in 
autolysosomes has also been reported for obese ob/ob mice. Activities of lysomal cathepsins were 
implicated in obesity. Cathepsin L was decreased in obese adipose tissue, while Cathepsin B was 
significantly elevated. Interestingly in obese adipose tissue inflammasomes were activated and further 
upregulation of cathepsin B resulted in additional activation of inflammasomes[209-212].

A study of the expression of 322 lysosomal/autophagic genes was recently reported in adipose tissue 
of lean and obese patients. Among 35 significantly expressed genes, 34 were upregulated. In isolated 
murine cells, tumor necrosis factor alpha (TNFα) stimulation resulted in upregulation of 
lysosomal/autophagic genes accompanied by upregulation of the autophagy associated SQSTM1/p62 
receptor leading to increased degradation of perilipin 1. It seems that local inflammatory cytokines may 
impair lipid storage via autophagy induction[213].

An extensive review of lysosomal enzyme abnormalities in both adipose and liver tissue was recently 
published[214]. A recent report suggests an additional mechanism contributing to obesity-associated 
abnormalities. Obesity increases lysosomal iNOS and NO production leading to exacerbation of 
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Figure 2 Implications of autophagy in critical cellular functions in the liver. For details see text.

lysosomal nitrosative stress, impairment of lysosomal function, defective autophagy and insulin 
resistance[215].

There is also evidence that mitophagy is negatively regulated by liver insulin resistance. Mitophagy 
can promote mitochondrial fatty acid oxidation to inhibit hepatic fatty acid accumulation and improve 
hepatic insulin resistance. Fundc1 is a recently characterized mitophagy receptor and mice lacking this 
receptor develop severe obesity and insulin resistance when maintained in a high-fat diet[216,217].

However, when autophagy is defective an alternative mechanism protects the liver from steatosis. An 
induction of fibroblast growth factor 21 (FGF21) was reported in mice with subsequent amelioration of 
insulin resistance and decreased diet-induced obesity[218,219]. This has been corroborated in a clinical 
study of overweight NAFLD patients, where increased FGF21 levels were correlated with steatosis 
grade, fibrosis and lobular inflammation. NASH patients had the highest levels[220]. An analogue of 
FGF21 has been tested in experimental animals and obese diabetic patients with promising results[221-
223]. Nevertheless, the control of adipose tissue biology is very complex and is elegantly described in a 
recent publication[224].

NAFLD-NASH
Not surprisingly autophagy is strongly associated with NAFLD pathogenesis[179]. Diet-induced 
NAFLD in mice blocks hepatic autophagy and leads to oxidative stress and mitochondrial dysfunction
[225], also reducing thyroid hormone-induced mitophagy[226]. The potential molecular pathways and 
possible therapeutic implications of thyroid hormones in NAFLD have been recently reviewed[227].

Mitophagy abnormalities are strongly implicated in NAFLD[228-230]. In particular an impairment of 
mitophagy seems to activate the NLRP3 inflammasome favoring the progression of NAFLD to NASH
[38]. Accordingly, recent evidence indicates that restoration of mitophagy may improve NAFLD[231-
234].

In addition to mitophagy, reticulophagy is also implicated in NAFLD. An extensive reticulophagic 
response is evident in hepatocytes after induction of NAFLD by oleic acid[228,235]. It is suggested that 
reticulophagy and mitophagy are independent, events involved in NAFLD progression[228].

Impaired lipophagy and lipotoxicity are also strongly involved in NAFLD[72,192,236,237]. Lipid 
accumulation in hepatocytes blocks autophagic flux and impaired autophagic flux favors the progress of 
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NAFLD[30].
This impaired flux and the subsequent ER stress can be improved by inhibition of the sterol 

regulatory element-binding protein 2 (SREBP-2) whose activation promotes accumulation of cholesterol 
in NAFLD. This improvement is associated with upregulation of autophagy genes[238].

Intracellular lipid trafficking is also regulated by store operated calcium entry and enhanced 
lipophagy is observed in cells defective in this system[239]. Moreover, the detrimental effects of diets 
rich in saturated FFA were increased bysirtuin-3, which enhanced lipotoxicity, reducing the autophagic 
flux[240]. The effect of lipophagy in liver steatosis is further supported by experimental evidence that 
various chemicals are involved in steatosis by interfering with autophagy. Caffeine reduces lipid 
content and stimulates beta-oxidation in hepatocytes through autophagy in mammalian liver cells in 
NAFLD[17]. In essence caffeine protects against fatty liver through the co-ordination of the induced 
lipophagy and mitochondrial β-oxidation[241,242]. Epidemiologic studies demonstrated that coffee 
consumption reduced the development of fatty liver, fibrosis, and hepatocellular carcinoma in NAFLD 
patients[243,244] supporting thus the experimental evidence.

Methionine is a well known inactivator of autophagy and lipophagy. The correlation between 
lipophagy and methionine in the liver from patients with liver steatosis has been studied. Increased 
levels of methionine inhibit autophagic catabolism of lipids and contribute to liver steatosis in NAFLD
[83]. Mice fed with a methionine/choline deficient diet developed steatosis, inflammation, fibrosis and 
ER stress associated with mitochondrial dysfunction. The administration of the autophagy enhancer 
rapamycin ameliorated these lesions while chloroquine, a well established autophagy inhibitor, 
aggravated the liver injury[245]. Resveratrol, another autophagy activator, also attenuated liver lesions 
induced by a similar diet[246,247]. Consistent with these findings is a recent report that a traditional 
Chinese herb increased autophagy and considerably improved steatohepatitis induced by 
methionine/choline deficient diet in rats[248].

Other diet-supplied molecules affect autophagy and are possibly beneficial in NAFLD including the 
purple sweet potato color[249]. Likewise, the caffeic acid of vegetables has been reported to ameliorate 
hepatic steatosis[250] while curcumin, an antioxidant polyphenol of Curcuma longa, has been shown to 
inhibit apoptosis and induce autophagy with a potential protective effect on hepatocellular carcinoma
[251].

A finding that might be useful in future treatment of NAFLD was recently reported. Celecoxib, a 
COX-2 inhibitor, attenuated steatosis and restored autophagic flux in cells treated with palmitate and 
rats fed a high fat diet[252].

Other lipids like the sphingolipid ceramide may be implicated in NAFLD as it is increased in Atg7 
knockout mouse liver in parallel with the impaired autophagy[253]. Autophagy increased when 
sphingolipid de novo synthesis was upregulated, indicating that lipid degradation was activated to 
prevent excessive sphingolipid accumulation.

Interestingly, autophagic activity seems to be upregulated when the renin angiotensin system is 
overexpressed. The underlying mechanisms and its role in NAFLD have yet to be clarified as there are 
many controversial issues to be solved[254]. Overall there is extensive evidence that inhibition of 
lipophagy is detrimental for the liver in NAFLD[198,222,238,255].

Summarizing the above studies, a therapeutic approach against NAFLD would be the activation of 
lipophagy[90]. However, it is noteworthy that there is one study indicating the opposite, as suppression 
of autophagy through inhibition of c-Jun N-terminal Kinase (JNK) ameliorates insulin resistance in a rat 
NAFLD model[256].

Extensive reviews on the mechanisms of autophagy deregulation in NAFLD were recently published
[183,257,258]. Not only impaired macroautophagy but also reduced liver chaperon mediated autophagy 
(CMA) favors steatosis due to failure in the timely removal of perilipins[259,260] and therefore an 
increase in lipogenic enzymes. When oxidative stress is increased in the liver, an upregulation of CMA 
occurs to selectively remove damaged proteins[62]. Loss of CMA leads to impairment of proteostasis 
and accumulation of oxidized protein aggregates perpetuating thus chronic oxidative stress[261].

Autophagy and NASH
Involvement of autophagy in the progression of NAFLD to NASH has not yet been clarified and 
molecular mechanisms are not fully understood.

One of the histological characteristics of NASH used in diagnosis and scoring systems is the 
formation of Mallory-Denk bodies (MDB)[262-264]. There is experimental evidence that inhibition of 
autophagy and accumulation of p62 is related to their formation while autophagy activation with 
rapamycin leads to their resolution[265]. Further support of the involvement of autophagy in NAFLD 
evolution to NASH was reported in a clinical and experimental study where a decrease of autophagic 
flux in parallel with an increase in ER stress was demonstrated both in the livers from NAFLD patients 
and mice models of NAFLD, and in lipid-overloaded human hepatocytes[266]. However tests for 
measurements of autophagic flux used in this paper are not full-proof as they can be influenced by 
autophagy independent factors. Therefore these findings should be corroborated in a different set up.

Patients with NASH and murine models of steatotic inflammation had reduced expression of Atg7 
and TFEB while the autophagy inhibitor rubicon was increased[139,177,255].
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In contrast, steatosis and liver injury were improved in parallel with restoration of autophagy and 
reduction of ER stress in mice with a deletion of the Rubicon or adenoviral delivery of Atg7[202,251]. 
Recent evidence also indicates that impaired mitophagy may contribute to liver injury during 
progression of NAFLD and formation of megamitochondria[229].

Transition of NAFLD to NASH also implicates Kupffer cells. These cells, constitute 80%-90% of tissue 
macrophages in the body and are critical cells in liver inflammation[20]. They are the main site of 
NLRP3 inflammasome activation and production of the pro-inflammatory cytokines compared to 
hepatocytes and stellate cells[267,268]. Activation of the NLRP3 inflammasome plays an important role 
in the transition from NAFLD to NASH[269].

An earlier report demonstrated that cathepsin B, a lysosomalcysteine protease, is released in the 
cytosol in response to FFAs and that this redistribution of cathepsin B is present in the liver of patients 
with NAFLD related to disease severity. Importantly in a dietary mouse model of NAFLD, inhibition of 
Cath B significantly decreased steatosis, liver inflammation and insulin resistance[270].

These findings were recently elaborated in more detail as it was reported that cathepsin B and 
activation of the NLRP3 inflammasome are interconnected in a murine model of NASH but also in 
isolated Kupffer cells stimulated with palmitate. Expression of cathepsin B and activation of NLRP3 
inflammasome were increase in NASH animals. Moreover, an inhibition of Cathepsin B decreased liver 
inflammation, ballooning, and the pro-inflammatory cytokines IL-1β and IL-18. In vitro stimulation of 
Kupffer cells showed identical results in inflammasome activation, expression of Cath.B and cytokine 
production before and after Cath.B inhibition. These results indicate that NASH pathogenesis probably 
depends in part to inflammasome activation which in turn is regulated by the activity of aprotease 
tightly connected to autophagy[271].

Additional supporting evidence for the role of autophagy in NASH pathogenesis is the fact that 
impaired autophagy in obese mice is critical for macrophage polarization. M2 macrophage polarization 
relies on energy provided by FFA oxidation, suggesting a potential implication of autophagy in this 
process. Macrophages change to a pro-inflammatory phenotype due to both increased M1 and 
decreased M2 polarization[132] with a resultant upregulation of liver inflammation, a prominent feature 
of NASH.

The situation is controversial when adipose tissue macrophages from obese mice are concerned. 
Increased rather than decreased autophagy of macrophages has been demonstrated in adipose tissue
[272,273]. Another cathepsin mostly found in Kupffer cells seems to be implicated in NASH. Lysosomal 
cholesterol accumulation inside murine Kupffer cells leads to increased liver Cathepsin D activity which 
is related to liver inflammation[274]. Kupffer cell cathepsin D may therefore be an additional key player 
in hepatic inflammation of NASH[275]. The impairment of macrophage autophagy with aging may 
explain in part the increased prevalence of the metabolic syndrome and steatohepatitis of older age in 
humans[276,277].

The oxidative stress is also involved in the progression to NASH. Hepatocytes exposed to palmitate 
concentrations similar to those found in patients with the metabolic syndrome and NAFLD showed 
mitochondrial membrane permeabilization and production of ROS. Similarly, an inhibition of Cathepsin 
B ameliorated mitochondrial dysfunction and oxidative stress, indicating an additional mechanism of 
NASH progression[229,278].

Under normal conditions, damaged mitochondria are removed through mitophagy. In certain cases 
of NAFLD however mitophagy is defective and the oxidation of biomolecules by mitochondrial ROS 
starts a vicious cycle of increasing mitochondrial dysfunction and aggravation of hepatocellular 
oxidative damage. This ultimately leads to hepatic inflammation and liver failure[279,280], since 
impaired mitophagy triggers liver NLRP3 inflammasome activation in vivo and in vitro in isolated 
murine hepatocytes[38].

Impairment of autophagy in other liver sinusoidal cells may also participate in the progression of 
NAFLD to NASH. Decreased autophagy has been observed in the liver endothelial cells of patients with 
NASH or in mice with endothelial deletion of Atg5 and features of inflammation[180,190,281]. A very 
recent study has convincingly shown that impaired autophagy of liver endothelial cells (LSECs) occurs 
in NASH patients but not in simple steatosis. Deficiency in autophagy in LSECs induces endothelial 
inflammation ultimately leading to liver inflammation and fibrosis. This defective autophagy, in part 
due to inflammatory mediators of the portal blood, might well be one of the missing links of the 
progression of simple steatosis to NASH and cirrhosis[282].

A further mechanisms leading to NASH involves multivesicular bodies (MVBs), a form of 
endosomes, whose contents are transported into lysosomes[283]. The MVB-lysosomal pathway was 
shown to participate in the development of steatohepatitis through lysosomal degradation of Toll-like 
receptor 4 reported to be critical for the progression of NASH[284].

Finally a role of the chemokine CXCL10 in the development of steatohepatitis has been proposed. 
Upregulation of CXCL10 impairs autophagic flux decreasing thus autolysosome formation. Autophagic 
protein degradation is inhibited followed by the accumulation of ubiquitinated proteins with ultimate 
development of steatohepatitis[285].



Kouroumalis E et al. Autophagy and liver

WJH https://www.wjgnet.com 15 January 27, 2021 Volume 13 Issue 1

ALD
The liver is the organ mostly responsible for ethanol metabolism. Oxidation of ethanol happens through 
three pathways namely alcohol dehydrogenase in the cytosol, cytochrome P450 (CYP2E1) in the ER and 
microsomes and the enzyme catalase in peroxisomes[286]. Ethanol oxidation also produces ROS, 
including superoxide anion, and hydroxyl radicals that may damage hepatocytes[287].

Ethanol induces autophagosome formation in the liver. Reduction of autophagy results in the 
accumulation of lipid droplets and apoptosis of hepatocytes[288]. On the other hand activation of 
autophagy by rapamycin attenuates steatosis and injury induced by a combination of ethanol and 
lipopolysaccharide[289].

Induction of autophagy by acute ethanol exposure is mediated through many mechanisms Ethanol-
induced autophagy requires ethanol oxidation to acetaldehyde and ROS generation[290,291]. ROS 
activates autophagy by suppressing mTOR and proteasome activity[292,293] and inactivation of Atg4
[294].

Oxidants differentially influence the activities of the proteasome (the other major pathway of protein 
degradation.) Proteasomes are reduced when autophagosomes are increased[295]. Proteasome 
inhibition further triggers ER stress activates autophagy through JNK activation. Ethanol may also 
suppress Akt and mTOR through the upregulation of PTEN[296,297]. Metals, like zinc, are also 
implicated in autophagy alterations after ethanol treatment[298].

A caution should be exercised on CYP2E1 ethanol oxidation as oxidative products resulting from the 
expression of CYP2E1 may in fact impair autophagy leading to lipid accumulation in the liver. In cells 
expressing CYP2E1, hepatocyte lipids and generation of ROS were increased by an inhibitor of 
autophagy and decreased when a stimulator of autophagy was used[299]. Similar results were found 
after acute alcohol in CYP2E1 knockout mice[291]. These findings also support the idea that autophagy 
protects against ethanol/CYP2E1-dependent hepatic injury.

It has also been shown that hepatic autophagy depends on the level of acetaldehyde produced during 
ethanol metabolism. Mice expressing the ALDH2 isoenzyme, clear acetaldehyde more rapidly and have 
increased autophagy and lower levels of hepatic triglycerides[300]. Cannabinoid receptor 2 can also 
induce macrophage autophagy to protect from alcoholic liver damage[301].

It should be stresses however that acute and chronic ethanol exposure may have different effects in 
liver autophagy[302]. Increased autophagosome formation and autophagy flux were shown in cultured 
hepatocytes after short term incubation with ethanol or in livers of mice after acute alcohol adminis-
tration[288,302]. Enhanced autophagy parallel a higher hepatocyte nuclear content of TFEB, the main 
transcriptional regulator of genes involved in lysosome biogenesis[49,50].

Alcohol also has an effect on the transcription factor forkhead box O3a (FoxO3a) that modulates liver 
autophagy[303]. The activity of FoxO3a is largely controlled by multiple post-transcriptional modific-
ations, including phosphorylation and acetylation[304]. Acute ethanol exposure increases nuclear 
translocation of FoxO3a inducing its dephosphorylation and acetylation.

However, results are not uniform for the chronic ethanol effect. Chronic ethanol administration 
(Lieber-DeCarli model) for 4 wk or 10 wk increased autophagosome numbers in murine livers, 
suggesting the induction of autophagy[305]. In another similar murine model, mice were given 
gradually increasing ethanol ethanol concentrations for 10 d and autophagic flux was reduced[302].

The discrepancy seems to be solved by the report that autophagy response was dependent on the 
alcohol concentration used. In a murine model on Lieber-DeCarli diet with different levels of alcohol for 
4 wk, autophagy is increased by a lower dose of alcohol (29% of the caloric need), but decreased by a 
higher dose (36% of the caloric need). Liver injury was aggravated by further reduction of autophagy 
and attenuated by autophagy activation[306].

Earlier studies have also demonstrated that chronic alcohol exposure disrupts lysosome function
[307]. Overall results have demonstrated that autophagy is suppressed in chronic alcohol consumption 
due to either the defect of lysosomal function and biogenesis from TFEB suppression[302,308] or to a 
reduction in AMPK activity and inhibition of autophagosome formation[309,310].

After ethanol-induced reduction of autophagy, there is accumulation of aggregated proteins and 
SQSTM1/p62, leading to activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and damage to 
the mitochondria and cell death[309,311].

How the other autophagy-related transcriptional factors, such as TFEB and farnesoid X receptor 
(FXR) are interconnected with FoxO3a in the expression of autophagy genes is unknown. Moreover, 
how ROS generation in acute or chronic alcoholic condition systematically affects the mTORC1 
activation or TFEB translocation is unclear.

Autophagy is also protective against CYP2E1-dependent liver lesions in a chronically ethanol-fed 
murine model[312]. Autophagy in ALD can be further affected by additional factors identified in 
various experimental models. Augmenter of liver regeneration (ALR) is a factor that can promote liver 
growth. It was reported to protect mice from ethanol-induced liver injury through inhibition of mTOR 
and therefore activation of autophagy[313]. Moreover an interesting recent study used many genetic 
models of autophagy impairment, with different functional levels and different alcohol regimens. 
Deficiencies of either Atg7 or Atg5 demonstrated variable responses to ethanol feeding according to the 
timing of autophagy dysfunction, the gene being affected, and the alcohol scheme used[314].
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It should be stressed that in acute alcohol administration, ethanol-induced autophagy may protect the 
liver by three basic mechanisms namely mitophagy[80,102,315,316], lipophagy[72,293,317] and clearance 
of Mallory-Denk bodies by proteophagy[265,318,319].

However, chronic alcohol exposure impairs autophagy and lipophagy[308,320] most likely due to the 
activation of mTOR signaling and a decrease in lysosomal biogenesis. Administration of the mTOR 
inhibitor Torin- 1 restores lysosomal biogenesis and attenuates liver lesions[308]. An additional pathway 
through which chronic alcohol exposure could reduce liver autophagy is the inactivation of the 
guanosine triphosphateRab7 and reduction of dynamin 2 activity leading to depletion of lysosomes and 
inhibition of hepatocyte lipophagy[320,321].

Ethanol Induced steatosis activates mitophagy by elevating PINK1 expression on mitochondria[305]. 
PINK1-dependent mitophagy was correlated with the mitochondrial expression of Parkin and the level 
of an indicator of oxidative mtDNA damage[322-325]. Mitophagy has a dominant role in protection of 
the hepatocyte from alcohol-induced hepatic injury as evidenced by a report that enhancement of 
mitophagy by quercetin, a natural flavonoid, attenuated ethanol-induced mitochondrial damage[326].

Regulation of mitophagy is related to three receptors namelyFUN14 domain containing 1 (FUNDC1), 
BCL2 interacting protein 3 (Bnip3), and Parkin[327].

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a newly described housekeeper of 
liver mitochondrial fission. DNA-PKcs is overexpressed in murine livers after exposure to ethanol and 
was positively correlated with steatosis, mitochondrial damage andfibrosis. On the other hand this over 
expression repressed FUNDC1-required mitophagy[328].

An additional significant point is the effect that ethanol might have on the different sinusoidal cell 
subpopulations. There is strong evidence that autophagy in macrophages is crucial to protect the liver 
from ethanol-induced damage. Investigations were mostly performed in macrophage specific deletions 
of either Atg7 or Atg5. The cannabinoid CB2 receptors of macrophages were found to have a protective 
rolein ALD, which was abrogated by Atg5-deletion in macrophages[301]. Increased mortality in Atg5 
deleted mice was also demonstrated after chronic ethanol feeding plus LPS challenge[329]. Similar 
findings were reported after Atg7 deletion[330]. Both studies demonstrated an activation of the inflam-
masome and an augmented IL-1 production.

In contrast to hepatocytes and macrophages the effect of autophagy in hepatic stellate cells after 
ethanol exposure has not been clarified. A recent study in immortalized rat stellate cells demonstrated 
that autophagy could contribute to ethanol-induced stellate cell activation[331]. Induction of fibrosis by 
alcohol in current murine models is not feasible unless accompanied by steatosis induced by a high-fat 
diet[332].

Most autophagy studies in ALD are focused on the involvement of macroautophagy. Recent evidence 
however indicates that CMA is also important in alcoholic liver disease through the CMA negative 
regulator sorting nexin 10 (snx10). Snx10 knockout mice fed with Lieber-DeCarli diet were resistant to 
alcohol-induced liver injury associated with an increase of lysosome-associated membrane protein 2A 
(LAMP2A) and CMA activation through inhibition of the enzyme Cathepsin A which is responsible for 
LAMP2A degradation[333]. Deficiency therefore of a CMA negative regulator, protects animals from 
ALD. Deficiency of another CMA negative regulator, Lipocaline-2 (LCN2), also maintains hepatic CMA 
activity in murine livers after chronic alcohol administration[334] verifying the idea that impaired CMA 
may be responsible at least in part in alcohol-induced liver injury.

Involvement of miRNAs is an additional factor in the regulation of autophagy in ALD that has 
emerged from recent evidence. Several miRNAs were reported to alter autophagy and alcoholic 
steatosis[335]. miR-26a ameliorates alcohol-induced acute liver injury by two MAPKs inhibitors thus 
inducing Beclin-1 expression and autophagy[335]. Another report provided evidence that miR-155 is a 
mediator of alcohol-related exosome production and autophagy impairment in both hepatocytes and 
macrophages[336]. Deletion of miR-155 protected mice from alcoholic steatosis and inflammation. 
Interestingly in this study serum levels of exosomes were increased in ALD patients and alcohol 
exposed mice, whereas miR-155 deficient mice had significantly reduced exosome release from both 
hepatocytes and Kupffer cells. It was suggested therefore that autophagy is an atypical promoter of 
exosome release in ALD.

Clinically important observations indicate that withdrawal of ethanol from ethanol-fed rats resolves 
steatosis[337] suggesting that removal of ethanol oxidation and restoration of lipophagy may be the 
mechanism of steatosis resolution observed in humans after ethanol abstinence[338,339]. Informative 
reviews of autophagy in ALD were recently published[90,181,182,340-342].

In view of the fundamental role of lipophagy in the pathogenesis of ALD, it is not surprising that 
pharmacological inducers of lipophagy like carvamazepine, rapamycin, resveratrol and simvastatin 
were tested in alcohol-fed animals with a resultant attenuation of liver lesions. By contrast chloroquine 
exacerbated hepatic steatosis[312,343,344]. Recently plant-derived agents were also used to activate 
lipophagy. Thus, corosolic acid[345], quercetin[346] and Salvianolic acid A[347] all had a favorable 
result on alcohol-induced liver lesions activating lipophagy through different pathways.

Summarizing, it is evident that whether ethanol causes an increase or decrease of autophagy depends 
on the duration of ethanol consumption/exposure, the amount of alcohol given, and the manner in 
which it is administered[290,302]. Moreover, lipophagy and mitophagy cannot act as defensive 
mechanisms in the long term as they do in acute ethanol consumption as they are inhibited by chronic 
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alcohol exposure[102,348].

VIRAL HEPATITIS
In the past decade, hepatic autophagy has been implicated in viral infection with either hepatitis B 
(HBV) or hepatitis C (HCV).

HBV
Recent studies have shown that autophagy is involved in the life cycle of Hepatitis B. Inhibition of 
autophagosome formation could reduce HBV production, while stimulation of autophagy could 
significantly contribute to HBV production[349,350].

However, the mechanism by which HBV activates autophagy is not clear. Previous reports have 
implicated either the HBx[351,352] the large HBsAg protein[353] or a mutant with a deletion in the 
preS2 region[354,355] as inducers of ER stress which in turn increases autophagy.

In contrast it was shown that HBx does not play a significant role in the induction of autophagy 
compared to the small HBsAg protein also increasing autophagy via the induction of ER stress. An HBV 
genome unable to express small HBsAg does not activate autophagy[356]. To reconcile the discrepancy, 
it has been suggested that autophagy can be stimulated both by HBx and the small surface HBsAg 
protein through upregulation of beclin-1 expression[357,358]. In addition HBx induces autophagy 
through its effect on the cytoplasmic high-mobility group box 1 (HMGB1), identified as a a positive 
regulator of autophagy. HBx binds to HMGB1 and triggers autophagy in hepatocytes[359]. This 
observation may be clinically relevant. Spontaneous and induced autophagy of peripheral Treg cells 
from 98 patients with chronic hepatitis B were assessed[360]. No difference of spontaneous autophagy 
was found between patients and normal controls but induced autophagy was significantly higher in 
patients. It was also related to HMGB1 as it was significantly decreased when HMGB1 was blocked with 
a neutralizing antibody.

HBx further impairs lysosomal acidification with a final result the accumulation of immature 
lysosomes. Moreover immature lysosomal hydrolase cathepsin D was shown in human liver tissues 
with chronic HBV infection suggesting that a repressive effect of HBx on lysosomes may be responsible 
for the inhibition of autophagic degradation[350]. Interestingly, although HBV could impair lysosomal 
acidification it was unable to induce autophagic protein degradation, due to the inability of HBV to 
increase the sequestration of proteins destined for degradation by autophagy[350]. Therefore, it is 
usually stated that HBV induces incomplete autophagy. In addition, it was clearly shown that HBV 
specifically targets damaged mitochondria and mitophagy. Either the whole HBV genome or HBx alone 
were able to induce Parkin-mediated mitophagy[361,362]. In addition, HBx-induced autophagy 
inhibited mitochondrial apoptosis increasing the survival of HBV DNA-transfected cells[349]. Another 
clinically important observation is that different HBV genotypes have a variant effect on autophagy. 
HBV genotype C was a more potent inducer of autophagy than HBV genotype B. HBV-C is associated 
with more severe disease than HBV-B but however attractive such an association between autophagy 
and severity of liver disease may be, it has to be verified[363,364].

It is important to realize that many viruses, including HBV, have developed strategies to hijack 
autophagy to benefit their replication and dissemination[356,365,366]. So far, HBV is the only DNA 
virus known to exploit autophagy for its own replication as it is RNA, but not DNA viruses, that 
commonly use autophagic function to promote replication[367].

HBV infection induced the early-stage formation of autophagic vacuoles increasing the PI(3)K 
enzyme activity to promote HBV DNA replication. HBx can directly bind and activate the PI3KC3 
complex[368,369]. Ablation of Atg5 has been shown to inhibit autophagy and impair nuclear 
localization of the HBV core protein. HBV DNA level in sera was decreased by more than 90% 
accompanied by practically undetectable levels of the HBV DNA replicative intermediate in the liver
[370].

Autophagy was responsible for the degradation of an oncogenic microRNA-224 in the liver of HBV 
patients with hepatocellular carcinoma (HCC) and HBx-transgenic mice. In HCC patients, the 
combination of low-Atg5 expression and high miR-224, was significantly correlated with a poor overall 
survival rate[371]. The list of the mechanisms used by HBV to subvert autophagy and the detrimental 
consequences in the liver is by no means complete as new factors are constantly reported including 
release of pro-inflammatory cytokines and chemokines and inhibition of neutrophil extracellular trap
[372-375].

Further evidence of autophagy subversion by HBV was recently reported. In HBV-replicating 
hepatocyte cultures, the silencing of Atg5, Atg12, and Atg16L1, interfered with viral core/nucleocapsid 
(NC) formation/stability and significantly reduced virus yields. It was further demonstrated that a 
covalent conjugation of Atg12 to Atg5 was essential for HBV replication. In addition the virus required 
Atg10 and Atg3 which are necessary for Atg5-12 conjugation. Deletion of Atg10 and Atg3 decreased 
HBV yields, while Atg3 overexpression increased virus production. HBV was associated with the Atg5-
12/16L1 via interaction of HBV core protein with the Atg12 unit of the complex. Subsequent autopha-
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gosome maturation events were not necessary for HBV replication. These data indicate that HBV 
subverts early, non degradative autophagy components avoiding thus autophagosomal destruction[178,
376,377].

Death receptors of TNFSF10 (tumor necrosis factor superfamily member 10) participate in the 
immune defense against several viruses by promoting apoptosis. HBx impairs TNFSF10 receptor 
signaling through autophagy mediated lysosomal and not proteasomal degradation. Importantly a 
significant reduction of the protein TNFRSF10B was demonstrated not only in cell lines but also in the 
liver of chronic HBV patients[378].

It was very recently reported that the hepatitis D virus also utilizes autophagy to assist its life cycle as 
it increases autophagosome accumulation and impairs autophagic flux. Both the small HDAg and large 
HDAg proteins are capable to disturb the autophagy machinery, in particular the proteins Atg7, Atg5, 
and LC3 involved in the early elongation stage of autophagy. Unexpectedly, deletion of Atg5 and Atg7 
reduced the intracellular HDV RNA level in hepatocyte cell lines without an effect on HDV secretion
[379]. Reviews of autophagy in HBV have recently been published[366,380].

HCV
Reported data have shown that HCV could induce autophagy to support its own replication[381,382]. 
Several mechanisms for HCV induction of autophagy have been investigated using hepatocyte cell lines
[383,384]. HCV infection initiates the formation of phagophores after induction of the localization of 
Atg5 to the ER. Phagophores fuse to form autophagosomes. HCV-induced autophagosomes were 
further reported to be required for viral RNA replication as the autophagosomal membrane provided a 
platform containing HCV NS5A, NS5B, and viral RNA for replication[385-387] but subsequently HCV 
blocks the fusion of autophagosomes and lysosomes through Rubicon overexpression. As a result 
autophagosomes accumulate and HCV RNA replication and assembly of infectious virions[385,388,389,
390,391] are supported.

However, several studies have contradicted the need for co-localization of viral proteins in the 
autophagosomal membrane suggesting that this is not a necessity for viral replication[392-395].

Autophagy favors HCV replication with an additional mechanism. The entire autophagic process 
may be manipulated leading to the suppression of the HCV associated innate antiviral response[393,
396]. After silencing different Atgs, HCV viral infectivity was suppressed in parallel with an upregu-
lation of interferon-stimulated gene expression[390]. Moreover, HCV seems to activate autophagy to 
degrade the tumor necrosis factor receptor -associated factor 6 (TRAF6), thus subverting innate host 
immunity[389,397-399]. HCV induced unfolded protein response strongly activates autophagy to 
sustain viral replication through inhibition of cellular apoptosis[396]. Different HCV genotypes may 
have variable influence on autophagy[391,400].

HCV was also found to selectively activate lipophagy to counteract the HCV induced lipid 
abnormalities. This may be clinically important as the levels of autophagy in the liver of chronic HCV 
patients were inversely correlated to steatosis[401]. Inhibition of autophagic degradation of lipophagy 
may account for the characteristic occurrence of hepatic steatosis in chronic HCV infection. Mitophagy 
is also selectively activated via the PINK1–Parkin axis in infected cells, thereby promoting HCV viral 
RNA replication[361,402]. Virus-activated mitophagy further attenuates apoptosis and favors persistent 
viral infection[403]. In agreement with this finding, the viral non-structural protein 5A (NS5A) was 
shown to disrupt mitochondrial dynamics, thus increasing ROS production and mitophagy[404].

On the other hand, the viral core protein interacts with Parkin inhibiting its translocation to 
mitochondria. Mitophagy is suppressed and mitochondrial injury of infected hepatocytes is sustained 
and viral persistence is maintained[405].

Syntaxin 17 is an autophagosomal protein required for the fusion of autophagosomes with lysosomes 
and also the release of HCV. The amount of syntaxin 17 was reduced in HCV-replicating cells indicating 
that HCV impairs the late stages of autophagy affecting the equilibrium between the release and the 
lysososomal degradation of viral particles[406].

Recently CMA was also demonstrated to be activated by HCV leading to degradation of IFN-alpha 
receptor-1[407]. Moreover the HCV NS5A was found to interact with Hsc70, recruiting Hsc70 to 
hepatocyte nuclear factor 1 alpha thus targeting HNF-1α for CMA degradation[408]. Taken together 
these studies indicate that HCV induced CMA also facilitate HCV replication.

However, an opposite less permissive effect of the manipulation of autophagy by HCV has been 
suggested as a result of recent studies. Atg10 is critical for autophagy as it promotes the Atg5-Atg12 
complex formation. Two isoforms of the Atg10 protein were described, namely Atg10 (a longer one) and 
Atg10S. They have a similar amino acid sequence except for an absence of a 36-amino acid fragment in 
Atg10S. Yet they differ in their effects on HCV genome replication. Atg10 with deleted or mutated two 
cysteins, (Cys44 and Cys135) could trigger the expression of anti-HCV immunological genes combating the 
HCV replication[409,410].

Taken together these results indicate that autophagy is required for initiation of the HCV replicative 
phase but not for further replication[393]. However this might not be entirely true, as chloroquine an 
inhibitor of lysosomal acidification inhibits HCV replication offering an additional evidence for the 
permissive role of autophagy in HCV infectivity in the late phase[411].
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Autophagy may additionaly be involved in HCV replication through the regulation of the exosomal 
pathway[390] and apolipoprotein transport[412], both critical steps in the egress of the HCV virion. The 
virion is associated to apolipoprotein E (ApoE) and its infectivity is enhanced. Autophagy has a central 
role in the trafficking of ApoE in HCV-infected cells leading to partial autophagic degradation of ApoE, 
but also to the interaction between ApoE and the viral protein E2 to increase the production of 
infectious viral particles[412].Molecular details of how HCV is using autophagy to its own advantage 
were recently published[380,413].

In summary, the life cycles of HBV and HCV in liver cells can be subdivided into 7 steps: 
Endocytosis, uncoating, genome replication, translation, envelopment, assembly and release. Both HBV 
and HCV drive autophagy largely by the ER stress response resulting from uncontrolled translation of 
viral proteins[414-416]. In addition HBx modulates autophagy for the benefit of HBV replication[357], 
while multiple HCV proteins including p7, NS3/4A and NS4B, modulate autophagy by direct or 
indirect association with moieties of the early autophagy machinery in favor of its replication[417-419]. 
Pharmacological or genetic manipulation of autophagy may limit the viral yield[183,369,420], making 
autophagy a feasible target for HBV and HCV treatment.

FIBROSIS-CIRRHOSIS
The liver responds to practically any insult with only a limited number of pathological lesions: Hepatitis 
(hepatocyte death), cholestasis, fibrosis-cirrhosis or a combination of the three. Autophagy participates 
in all liver pathological responses.

Liver fibrosis is a complex and dynamic cellular process implicated in the evolution of the majority of 
chronic liver disease towards cirrhosis. Most review articles have broadly concentrated on the role of 
autophagy in liver diseases, with restricted information on cell types implicated in liver fibrosis. Not 
unexpectedly, most research has focused on hepatic stellate cells (HSCs) and myofibroblasts, because 
they are the central elements in extracellular matrix production[421]. However, other liver cells, 
including hepatocytes, macrophages, sinusoidal endothelial cells (LSECs), infiltrating immune cells and 
the so-called ductular reaction (DR) are also important[422,423]. DR significantly correlates with the 
degree of fibrosis and involves cholangiocyte-like cells that dominate an interplay of extracellular 
matrix and inflammatory infiltrate[424-427].

HSC and autophagy
The fundamental event in fibrosis is the transformation of hepatic stellate cells into myofibroblasts and 
this is closely related to autophagy. Typical autophagosomes that contained LDs were found in cultured 
HSCs indicating a connection of liver fibrosis and lipid autophagy[428]. Increasing evidence supports 
the notion that inhibition of lipophagy in hepatocytes reduces HSC activation and fibrosis progression
[429,430]. Inhibition of the activation of HSCs and the formation of autophagosomes have been reported 
and these seem to be connected with the downregulation of transforming growth factor beta 1/Smads 
pathway as an increase in TGFb/Smad3 Leads the transcription of Beclin-1, which is a critical player in 
the autophagy process[431-433].

In rat-derived HSCs, cytoplasmic LDs are degraded followed by fibrogenic genes expression. 
Moreover induced lipid accumulation by an alkaloid, was associated with quiescent HSCs due to 
autophagy blockade[434]. Inhibition of autophagy by chloroquine improved CCl4-induced liver fibrosis 
affecting the activation of hepatic stellate cells as expected[435]. On the other hand, dihydroceramide an 
inhibitor of autophagy promoted the progression of liver steatosis to fibrosis[436]. Similarly, inhibition 
of YAP degradation also led to liver fibrosis[113].

In addition, it has been suggested that the IL-17A/STAT3 signaling pathway is important in the 
evolution of liver fibrosis through suppression of hepatocellular autophagy since neutralization of IL-
17A promotes the resolution of experimental fibrosis[437].

Based therefore on current evidence, it has been stated that autophagy at least in murine hepatocytes 
is a selective survival mechanism through clearance of excessive fat leading to attenuation of lipotoxicity
[438]. This is certainly not the case for HSCs autophagy where lipid droplets are digested to supply 
energy for the activation of HSCs, promoting thus liver fibrosis. Non specific inhibition of stellate cell 
autophagy or specific inhibition of Atg5 or Atg7, blocked HSCs activation[439-441]. Lipophagy in HSCs 
is induced by ER stress[442] and is mediated through Rab25 in a ROS dependent manner as antiox-
idants were effective in stopping autophagy[87]. In agreement with experimental data, clinical research 
found that cirrhotic patients had significantly increased levels of several autophagy- related genes 
compared with non cirrhotics accompanied by increased maturation of lysosomal cathepsin D[85]. 
Furthermore, serum lipids were evaluated in patients with cirrhosis of viral etiology and compared to 
non cirrhotics. Low serum lipids were found in HCV and HBV cirrhosis which were negatively 
correlated with lipophagy[443].

Micro-RNAs interfere with the activation of stellate cells. miR-16 inhibits the expression of guanine 
nucleotide-binding -subunit 12 (G12) which is overexpressed during fibrogenesis and facilitates Atg12-5 
formation, thus activating stellate cells[444]. Also miR-181-5p transferred to mouse HSCs via exosomes 
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from engineered adipose derived stem cells led to inhibition of fibrosis[445].
Several signals can induce autophagy in HSCs[180], including hypoxia-inducible factor-1alpha[446], 

transforming growth factor 1[447], as well as the danger-associated pattern molecule high-mobility 
group box-1 (HMGB-1)[448]. Additional signals like ROS-JNK1/2 and the XBP1 arm of the Unfolded 
Protein Response have also been identified as necessary requirements of HSCs activation through 
autophagy[449,450]. TGF-β1 has also been reported to mediate autophagy[440]. Similarly, HSCs in cell 
culture with depleted Atg2A fail to spontaneously trans-differentiate[451]. Quercetin attenuated hepatic 
fibrosis in mice through inhibition of hepatic HSC activation and autophagy[452].

Selective activation of mitophagy in HSCs also favors fibrosis. PM2.5 is an air pollutant that activates 
HSCs and initiates liver fibrosis. This is due to increased ROS production and induction of mitophagy 
through activation of the Pink1/Parkin pathway[453]. In contrast, inhibition of mitophagy was shown 
to promote inflammation[454] due to dissemination of inflammatory signals from HSCs production of 
inflammatory cytokines[455]. However very recently it was reported that selective inhibition of 
mitophagy in macrophages attenuates fibrosis. Mice Kupffer cells from CCL4-induced acute injury 
showed increased ROS production, activated mitophagy and increased TGF-β1 secretion. T-cell 
immunoglobulin domain and mucin domain-4 (TIM-4) interference in Kupffer cells inhibited Akt1-
mediated ROS production and decreased mitophagy and TGF-β1 secretion through suppression of 
PINK1/Parkin, to ameliorate CCl4-induced hepatic fibrosis[456]. Seemingly in disagreement with this 
notion, is the finding that the autophagic proteinp62/SQSTM1, a negative controller of HSC activation 
is downregulated in trans-differentiating HSCs associated with hepatocellular carcinoma. P62 ablation 
increases fibrogenesis but this is not related to autophagy but rather to the reduction of p62-dependent 
activation of the vitamin D receptor (VDR) and the resultant loss of repression of HSC by VDR agonists
[457,458].

Even in HSCs the characterization of autophagy as a double-edged sword has been justified. A novel 
molecular mechanism of selective autophagy in HSCs indicates that autophagy may also protect from 
liver fibrosis. The RNA-binding protein ELAVL1/HuR plays a crucial role in regulating ferroptosis in 
liver fibrosis. ELAV1 enhances ferritinophagy leading to ferroptosis of HSCs and attenuation of liver 
fibrosis[459]. Despite this report, most existing evidence indicate that activation of HSCs autophagy is 
pro-fibrogenic, therefore a selective block of autophagy in fibrogenic cells might be an attractive future 
anti-fibrotic therapy[90].

The opposite seems to happen in hepatic macrophages[55] where activation of autophagy is anti-
fibrogenic[460]. Mice macrophages with specific deletion of atg5, secreted increased levels of ROS-
induced IL-1A and IL-1B. In addition, liver myofibroblasts incubated with the conditioned medium of 
Atg5(-/-) macrophages expressed increased pro-fibrogenic genes. Attenuation of fibrosis was achieved 
after IL-1 neutralization indicating that IL1A/B are critical mediators of the profibrotic effects of 
autophagy inhibition in macrophages[461-463]. Autophagy in Kupffer cells is counteracted by the 
enzyme monoacylglycerol lipase catalyzing the production of arachidonic acid leading to inflammatory 
macrophage activation and fibrosis[464].

On the other hand deletion of Atg7 in sinusoidal endothelial cells (LSECs) demonstrated that the 
selective loss of their autophagy led to cellular dysfunction and decreased intrahepatic nitric oxide. 
Impairment of autophagy after CCL4-induced acute liver injury in rats, also impaired handling of 
oxidative stress by LSECs and amplified liver fibrosis[465].

Similarly, autophagy defective sinusoidal endothelial cells (LSECs) as demonstrated in patients with 
NASH favor advancement of fibrosis[282]. At the same time, even excessive autophagy activation may 
lead to caveolin-1 degradation, thus worsening the LSECs defenestration and ultimately promoting 
fibrosis[466]. Therefore, any dysregulation of autophagy in LSECs may aggravate liver fibrosis[467].

An elegant immunofluorescence study of cirrhotic livers linked autophagy with an additional 
population of fibrogenic cells other than HSCs, the reactive ductular cells (RDC) which were charac-
terized as cholangiocyte-like epithelial cells positive for cytokeratin 19[85]. They are responsible for 
ductular reaction (DR), a common response to various insults of the liver implicated in the pathogenesis 
of cirrhosis[432]. Administration of chloroquine, reduced the expression of CK19 positive RDC and 
blunted liver fibrosis[86]. DR parallels HSC activation in many liver diseases[430]. Reactive ductular 
cells secrete soluble pro-fibrogenic factors targeting HSCs and myofibroblasts[468]. Recently it was 
demonstrated that in cirrhotic human livers, RDCs with activated autophagy also had upregulated 
expression of TGF and fibroblast specific protein-1[469] making autophagy a necessary requirement 
during the DR process. The role of autophagy in liver fibrosis is therefore complex and the end result 
depends on the cell population involved. In general, HSCs and RDCs have a pro-fibrogenic effect. On 
the contrary, autophagy counteracts fibrogenesis acting in hepatocytes, macrophages and LSECs[470].

HCC
The role of autophagy in tumor cell biology has not been fully elucidated. Autophagy has both pro-and 
anti-tumorigenic roles. For example, it can either inhibit inflammation acting as an anti-oncogen or 
protect tumor cells from ROS damage acting as a pro-oncogen[471,472].
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Opposing effects have been reported. Activated Ras requires autophagy to maintain oxidative 
metabolism and tumorigenesis[473]. On the other hand, Ras-induced expression of two proteins Noxa 
and Beclin-1 promotes autophagic cell death, limiting thus the oncogenic potential of deregulated Ras 
signals[474]. Drugs like ursodexocycholic acid can efficiently eliminate resistant to other drugs cancer 
cells through induction of autophagic death[475].

HCC is one of the most common types of liver cancer[476]. Most of the HCC cases are accompanied 
by cirrhosis that results from long-standing chronic inflammation due to viral hepatitis or non-viral 
etiologies including heavy alcohol intake, NAFLD, autoimmune hepatitis, primary biliary cholangitis, 
and hemochromatosis[477].

Mice with impaired autophagy are unable to develop HCC even after of strong challenge. This was 
related to the induction of tumor suppressors like p53[478]. However, after initiation of HCC, the 
presence of autophagy is required to degrade tumor suppressors promoting thus the development of 
HCC[86]. Both macroautophagy and CMA are implicated as a double edge sword in liver tumorigenesis
[479].

Autophagy has a dual role in hepatocellular carcinoma (HCC). It is an anti-cancer mechanism in the 
dysplastic stage of HCC initiation, while it favors HCC development and confers resistance to treatment
[480,481]. This is possibly due to the maintenance of mitochondrial integrity and protection of cells 
against oxidative stress during HCC initiation, followed by the downregulation of tumor suppressors to 
promote the development of HCC[86,482].

In a study of 156 HCC patients increased levels of the autophagy marker LC3B are associated with a 
dismal prognosis[483]. Higher levels of LC3-II were associated with lymph nodes metastasis, higher 
vascular invasion and reduced 5-year survival[484].

Macroautophagy may also have an anti-oncogenic function, as reduction of either Atg5 or Atg7 
Levels lead to appearance of multiple liver tumors[485]. Similarly, low levels of autophagic proteins and 
activity are associated with bad prognosis of human HCC[486,487]. Beclin-1 Levels are lower in HCC 
tissue samples compared to normal tissue from the same patient. Beclin-1 expression was studied in 300 
HCC patients. A correlation with disease-free survival and overall survival was found only in the Bcl-
xL+ve patients. It was suggested therefore that a synergy of defective autophagy and altered apoptotic 
activity lead to tumor progression and reduced survival[488].

Inhibition of autophagy leads to the accumulation of SQTSM1/p62. Accumulation of p62 on the one 
hand may protect from HCC initiation as it blocks the antioxidant functions of nuclear factor erythroid-
2- related factor 2 (Nrf2)[489-492]. On the other hand, accumulation of p62 also contributes to carcino-
genesis through persistent activation of Nrf2[493]. Nrf2 expression promotes the development of HCC
[493]. Deletion of p62 in autophagy defective livers counteracts tumorigenesis. Therefore an accumu-
lation of p62 is partly responsible for the increase in hepatic tumors, via the activation of Nrf2[492-494]. 
The activation of Nrf2 turns glucose and glutamine into anabolic pathways supporting tumor cell prolif-
eration[176,495]. In addition, autophagy inhibits malignant transformation in the liver through Yes 
associated protein 1 (YAP1) degradation, a protein with a crucial role in hepatic oncogenesis[113,496].

Aberrant activation of the Wnt/β-catenin signaling is another critical pathway in the onset and 
development of HCC. A recent study reported that the Wnt/β-catenin inhibitors exert anti-tumor effects 
on HCC cells by regulating autophagy[497]. However this is in disagreement with a previous report 
where interfering with Wnt secretion in HCC cell lines does not affect autophagy or the level of β-
catenin signaling despite cell growth suppression indicating that other mechanisms might underlie the 
growth-suppressive effect[498].

Furthermore, the activation of autophagy was shown to mediate inhibition of proliferation and 
induction of apoptosis of hepatoma cell through several mechanisms[499-506]. The induction of 
autophagy by concanavalin A or different chemotherapeutic drugs in murine livers inhibit hepatoma 
cell growth and prolongs survival[507-519]. On the other hand suppression of autophagy was reported 
to enhance the susceptibility of hepatocellular cancer cells towards a variety of chemotherapeutic agents
[108,520-529].

Several microRNAs (mirRNAs) have been implicated in HCC tumorigenesis. miR-204 reduces tumor 
autophagy in HCC[530]. Moreover autophagy degradation of miRNA-224 suppressed the growth of 
HBV-related HCC[371], while miR-375 which is downregulated in HCC was reported to inhibit 
autophagy by decreasing the expression of Atg7 and autophagic flux. Up-regulation of miR-375 inhibits 
mitophagy of HCC cells, reduces the elimination of damaged mitochondria, and decreases cell viability
[99]. miR-26 could inhibit autophagy and enhance chemosensitivity of HCC cells[531].

LncRNAs are another set of ncRNAs with a length exceeding 200 nucleotides without translation into 
proteins[109]. Several lncRNAs, like Hnf1a-as1, Hotair and Hulc promote autophagy and function as 
oncogenes in HCC[106-109].

The role of mitophagy and lipophagy is also important in HCC growth acting as a double edge 
sword. Increased mitophagy by concanavalin A, adriamycin or curcumin was shown to suppress 
hepatoma cell growth[507,510,517,530] while melatonin increased the sensitivity of human hepatoma 
cells to sorafenib by triggering mitophagy[532]. A recent study also demonstrated that inhibition of 
inflammasome activation and induction of mitophagy suppressed HCC growth[533]. On the other hand 
it has been demonstrated that increased mitophagy may facilitate HCC cell survival either through ROS 
production or attenuation of p53 activity[534,535].
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Lipophagy can also act both ways. On the one hand, it can allow tumor cells to have access to a 
supply of energy critical to their growth[536] and on the other hand, lysosomal acid lipase, the lipase 
that facilitates lipophagy, exhibits tumor suppressor activity[537]. Lipophagy was also reported to 
induce apoptosis in vitro, via induction of ER and mitochondrial stress[538]. CCAAT enhancer binding 
protein a, a protein that is upregulated in HCC patients, increases resistance to energy starvation and 
favors carcinogenesis through lipophagy[539].

In addition to the general characteristics of autophagy implication in HCC, there are certain points to 
be mentioned in specific liver disease associated HCC. As mentioned before, autophagy is activated by 
the HBx protein[357,369] and this may be related to HBV carcinogenesis. Increased autophagosome 
formation by HBx was accompanied by decreased degradation of LC3 and SQSTM1/p62 and greatly 
impaired lysosomal acidification and accumulation of immature Cathepsin D. These data may indicate 
that repression of lysosomal function by HBx could be important for the initiation and progress of HBV-
associated HCC[350].

CMA and cancer metabolism are also interconnected. Once malignant transformation occurs, CMA 
activity is significantly increased in cancer cells so that the new metabolic requirements are maintained
[64]. Blockade of CMA which is upregulated in several cancers reduces progression and metastatic 
potential of solid tumors because the characteristic increased rates of aerobic glycolysis are reduced in a 
p53-dependent manner[540]. Macroautophagy and CMA seems to be interconnected and often 
substitute for one another as in the case of HCC. Under physiological conditions there is no expression 
of p62 in normal livers pointing to macroautophagy as the main mechanism facilitating cell survival. 
However in a recent study of 46 cirrhotic livers it was shown that p62 was increased indicating an 
impairment of macroautophagy, but LAMP-2A and heat shock protein 70 were uniformly increased 
indicating that an upregulated CMA was trying to compensate for the reduced macroautophagy and 
therefore promote HCC survival. Moreover, hydroxychloroquine inhibition of lysosomal degradation 
led to induction of the tumor suppressor p53 and promotion of apoptosis[541]. HCV is also an inducer 
of HCC. During HCV infection, increased cellular stress has been reported. Severe stress promotes Nrf2 
transcription which in turn is responsible for CMA activation resulting in the suppression of hepatic 
innate immunity and possible degradation of tumor suppressors. The subsequent oncogenic cell 
programming initiated by a cytoplasmic virus like HCV, has been recently described in detail[542].

Defective autophagy is linked to MAFLD-related HCC, because the accumulated p62/SQSTM1, 
induces the oncogenic NF-κB activity while retained damaged mitochondria and produced ROS to 
damage cellular DNA[543]. A novel mechanism was recently reported in ethanol induced liver disease 
and HCC. Tumor necrosis factor-α-induced protein 8 (TNFAIP8) has been associated with tumor 
progression in several cancer types including the initiation of HCC. TNFAIP8 induced autophagy in 
liver cancer cells through blocking of AKT/mTOR signaling and direct interaction with ATtg3-Atg7 
proteins. This mechanism is operative in alcohol related liver disease in mice and humans but not in 
high-fat-fed obese mice or patients with MAFLD[544]. Details of the molecular mechanisms of 
autophagy in both protection and promotion of HCC were recently published[545-547].

An additional aspect of HCC biology where autophagy plays an important role is the involvement of 
tumor-associated macrophages and tumor microenvironment. They are polarized after implication of 
sensing factors from tumor environment and autophagy[130,548]. Deficiency of TLR2 decreased the 
liver production of TNFα, IFN gamma and IL1a/b accompanied by reduction of autophagy flux and 
increase in oxidative stress and p62 aggregates in liver tissue. These changes were associated with 
increased carcinogenesis and progression of HCC[549]. Enhancement of autophagy in tumor-associated 
macrophages leads to M1 polarization which reduces tumor progression while M2 polarization is 
permissive for tumorigenesis[550]. The mTOR-TSC2 pathway, a key negative regulator of autophagy, is 
crucial for macrophage polarization since its activation leads to M2 phenotype. It was recently shown 
that the coagulants tissue factor (TF) and factor VII (FVII) produced in tumor microenvironment, are 
implicated in HCC growth promotion by suppression of autophagy mediated through mTOR activation 
and Atg7[551].

In view of the variable functions of autophagy, there should be an individualized approach of 
autophagy manipulations for HCC treatment. Thus, various lysosomal inhibitors including chloroquine 
and hydroxychloroquine have been used as treatment either as sole agents or in combinations with 
other treatment modalities in a variety of murine HCC models[523,552,553]. Interference with 
autophagy may be a sound therapeutic option for the treatment of HCC[554,555]. Based on the fact that 
autophagy is upregulated in metastatic HCC[556] use of autophagy inhibitors like chloroquine and 
hydrochloroquine in combination with other drugs may be a better option for treating metastatic HCC 
in humans. A combination of a number of drugs with autophagy inducers have been used to target 
cancer cells. A combination of percutaneous transarterial chemoembolization with chloroquine, was 
associated with increased tumor cell necrosis and apoptosis[557] and might counteract the presence of 
residual hepatocellular carcinoma cells[558,559]. Sorafenib, a multikinase inhibitor approved for HCC 
treatment, induces autophagy[560] and data show that a combination with autophagy inhibitors 
increase tumor response[537,561].
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Cholangiocarcinoma
Xenografts in nude mice are widely used models of cholangiocarcinoma (CCA). Activated autophagy 
has been reported in tumor cells from such a model and in specimens from CCA patients[562]. LC3B, 
Beclin 1, and p62/SQSTM1 expressions were additionally found to be increased at the initial stage of the 
multistep cholangiocarcinogenesis[563]. However, a lower Beclin 1 expression was associated with 
metastatic lymph node disease and poor survival of patients with intrahepatic CCA[564,565]. Apoptosis 
was induced in cholangiocellular cell lines and tumor development was suppressed in a mice xenograft 
model after interference with autophagy[562]. Similarly, suppression of autophagy by chloroquine 
increased the chemosensitivity of cisplatin-treated CCA cells[566] and increased apoptosis of CCA cells 
through ER stress[567]. Chloroquine blockade of autophagy inhibited the tumor growth in Kras/p53 
intrahepatic CCA[568,569]. CCA is extremely resistant to chemotherapy. 5-fluorouracil (5-FU) induced 
autophagy in CCA cells[570] while autophagy inhibition by capsaicin was followed by repression of 
malignant cell growth[570], indicating that autophagy may be implicated in the multidrug resistance of 
this tumor. Autophagy was also induced after incubation of CCA cells with the sphingosine kinase 2 
inhibitor, ABC294640. Inhibition of autophagy by chloroquine potentiated ABC294640-induced 
apoptosis[571]. Modulation of autophagy therefore may be helpful in CCA treatment.

INHERITED METABOLIC DISEASES
A1 antitrypsin deficiency and fibrinogen storage disease
Autophagy is also implicated in other types of liver injury like the inherited metabolic diseases. Alpha 
1-antitrypsin deficiency is the most extensively studied. Alpha 1-AT is a glycoprotein inhibitor of 
destructive neutrophil proteases[572,573]. Several naturally occurring mutants of alpha1-AT, have been 
shown to participate in the pathogenesis of human diseases, such as chronic liver-associated diseases
[574-576]. The Z mutation resulting from a single G->A transition in codon 342, generates a mutant 
protein that forms aggregates in the hepatocytes[577]. Liver injury is caused by the retention of this 
polymerized mutant alpha1-ATZ molecule in the ER of hepatocytes followed by an induction of 
autophagic response. Removal of the insoluble alpha-1 anti-trypsin by the autophagosome is the 
mechanism by which the activation of autophagy protects the liver in alpha1-antitrypsin deficiency[578-
581]. In earlier studies, liver injury was associated with mitophagy indicating that the ER retention of 
alpha(1)-ATZ led to involvement of the mitochondria, with specific patterns of mitochondrial 
dysfunction and mitochondrial injury[582,583].

Genetic studies in mice have shown that deletion of Atg5 led to an increased retention of alpha 1-ATZ
[584] and that deficiency of Atg6 and Atg14 in yeasts inhibited alpha1-ATZ degradation[585]. Similarly, 
the induction of autophagy in mice by rapamycin reduced liver alpha1-ATZ aggregation and liver 
injury[582,586-589]. These findings have been repeated and verified when enhancement of autophagy
[590] with either carbamazepine[591], gene transfer of the autophagy regulator TFEB[592] or an analog 
of glibenclamide[593] reduced the toxic protein. Recent preclinical studies have also demonstrated that 
an exogenous bile acid like norursodeoxycholicacid may be clinically useful in this condition[594,595].

Fibrinogen storage disease is a very rare autosomal-dominant ER storage disease presented with 
hypofibrinogenemia, elevated transaminases, accumulation of fibrinogen aggregates in the ER of 
hepatocytes and several fold increase of autophagocytic vacuoles. Some patients progress to cirrhosis 
similar to alpha-1-AT deficiency. A clinical study of eight patients has showed that administration of 
carbamazepine at low anticonvulsive dosage led to rapid normalization of alanine-aminotransferase 
indicating a critical role of autophagy in this disease[596].

Wilson’s disease
Wilson disease is an inherited disease of copper metabolism linked to hundreds of mutations in the 
ATP7B gene[597]. Recent evidence based on studies from hepatocytes of patients and ATP7b deleted 
mice has shown the presence of an increased number of autophagosomes, indicating the activation of an 
autophagic response to prevent copper associated cell death[598]. Moreover, inhibition of autophagy 
accelerated hepatocyte death whereas increased autophagy by either starvation or TFEB overexpression 
had a cytoprotective effects[598]. Autophagy therefore seems to be a major protective mechanism for 
hepatocytes in copper accumulation. These findings may lead to the use of autophagy inducers like 
carbamazepine as a future potential treatment of Wilson’s disease.

Glycogen storage disease
Glycogen storage disease type 1a (GSD1a) is an inherited hepatic disease associated with decreased 
autophagic flux as a consequence of defects in the glucose-6-phosphatase a, that converts glucose-6-
phosphate into glucose. These abnormalities lead to glycogen and lipid accumulation in hepatocytes
[599]. GSD1a is associated with the down regulation of several components of the autophagy machinery
[600].
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GSD1a has also been associated with defective sirtuin 1 (SIRT1) signaling leading to impairment of 
TFEB activity. As in other storage diseases, pharmacological or genetic activation of autophagy reduces 
the accumulation of glycogen and lipids in cellular and animal models[601].

VARIOUS DISEASES
Autophagy in the liver is implicated in other diseases as well. An important point that should always be 
remembered is that the liver is the site of almost 80% of body macrophages and therefore innate 
immunity can be deeply involved in liver and other organ abnormalities through impaired autophagy 
of Kupffer cells. Sepsis is the main paradigm of this notion.

Sepsis and liver autophagy
Infection can lead to a systemic multi-organ inflammatory response. Macrophages, play a critical role as 
they are the most important cells of the innate immunity. Autophagy induction is protective in sepsis 
through regulation of macrophage polarization. Negative regulation of macrophage activation inhibits 
inflammasome activation[602]. Autophagy also interferes with macrophage apoptosis. Uncontrolled 
autophagy however may lead to autophagy death of macrophages with additional aggravation of 
inflammation and the so called cytokine storm[603].A current example is possibly the SARS-Cov-2 
pandemic[604]. Interestingly, autophagy-deficient macrophages after LPS stimulation over-secrete 
macrophage migration inhibitory factor and aggravate inflammation[605]. Other mechanisms are also 
involved including signaling pathways such as NF-κB, mTOR, and PI3K/AKT[603].

Mitophagy and mitochondrial dysfunction seem to be also a fundamental factor in multiple organ 
failure caused by sepsis[606]. It has been shown that mtDNA liberated from damaged mitochondria, 
induces a cascade of inflammatory responses[607-609]. Mitophagy therefore is of great importance for 
the protection against oxidative stress during sepsis. It should be noted however that mitophagy defects 
in the liver, are not the only cause of organ or cell damage during sepsis[610]. Nonetheless, the liver is 
the main organ responsible for sepsis-induced damage[611]. Autophagy is an important protective 
mechanism in septic liver injury. Increased autophagy can play a protective role in liver function in 
septic conditions where the activation of autophagy is mediated through activating transcription factor 
4 (ATF4). ATF4 is inhibited 48 h after LPS-induced acute liver injury and reversed after obeticholic acid 
treatment[612]. Autophagy inhibitors or AMPK inhibitors administration reduced the protective 
mitochondrial function in LPS-induced human hepatocyte injury[613,614]. Mitophagy is also involved 
in apoptosis of CD4+ve T cells which is the main mechanism of immune inhibition during sepsis. 
Mitofusin 2 (Mfn2) is a mitochondrial outer membrane protein and a negative regulator of autophagy 
which is increased in sepsis leading to inhibition of autophagy and increase in apoptosis of CD4ve+ T 
cells[615]. Autophagy defects can affect antigen presentation by T cells leading to immunosuppression 
as in the case of Atg5 deficiency[616]. The role of autophagy in sepsis has been recently reviewed[617].

Acetaminophen liver damage
Autophagy is also implicated in acetaminophen induced liver disease. There is evidence that increased 
autophagy is protective against acetaminophen (APAP)-induced liver damage[618,619]. Pathogenet-
ically, APAP was reported to form APAP-protein adducts in hepatocytes of mice and humans[620]. 
Adducts localized in mitochondria contribute to APAP-induced mitochondrial dysfunction and 
subsequent oxidant stress[621,622]. Therefore, it is plausible that removal of APAP-adducts will help to 
ameliorate APAP-induced mitochondrial damage and maintain hepatocyte integrity[41,623,624]. Experi-
mental evidence indicates that autophagy is mostly responsible for the removal of APAP-adducts[625]. 
Moreover administration of adiponectin was found to attenuate APAP-induced injury activating AMPK 
mediated autophagy[626]. Activation of autophagy by rapamycin also attenuates APAP-induced liver 
injury, whereas inhibition of autophagy by chloroquine or deletion of Atg7 in hepatocytes deteriorates 
liver damage[153,627]. There is also evidence that autophagy is activated after APAP overdose in 
specific liver zones[53].

Somewhat different results were recently presented. Unc-51-like autophagy activating kinase 1 and 2 
(Ulk1/2) are important autophagy initiation regulators. Unexpectedly, Ulk1/2 double knockout mice 
have normal autophagic activity after fasting, but are exceptionally resistant to APAP-induced liver 
injury possibly indicating that autophagy-dependent and independent ULK1/2 pathways have 
opposing effects in APAP-induced liver injury[628].

Reduction of ROS and repression of apoptosis by autophagy is also essential for hepatic regeneration 
after APAP-induced acute liver failure[520,627]. A very recent report confirmed that increased 
autophagy by rapamycin protects mice against APAP hepatotoxicity while chloroquine enhanced liver 
injury. Importantly it was demonstrated that APAP overdose activated PINK1/Parkin-mediated 
mitophagy and increased the expression of NF-kB and NLRP3 inflammasome signaling. These findings 
were reversed by rapamycin and augmented by chloroquine indicating the critical role of mitophagy in 
APAP hepatotoxicity[629].
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Interestingly it was reported that infusion of human amniotic mesenchymal stromal cells ameliorated 
the APAP liver injury through promotion of Kupffer cell M2 polarization and reduction of Kupffer cell 
autophagy. These results suggest that Kupffer cell autophagy has an opposite effect on APAP hepato-
toxicity compared to hepatocytes. This last observation may be useful for future therapeutic exploitation
[630].

Acute liver failure
Acute liver failure (ALF) is a serious syndrome of different etiologies with high mortality[631]. HSCs 
implication is significant in ALF. Temporarily increased fibrosis in ALF is probably beneficial serving as 
scaffolding that maintains regenerating hepatocytes and hepatic integrity[437,632,633]. Data from a 
murine APAP induced ALF model have demonstrated that mortality was significantly increased in 
HSCs depleted animals[633]. HSCs cannot usually regenerate during ALF due to the submassive 
necrosis. Autophagy seems to be implicated[634]. The significance of HSCs survival has been verified in 
a study of patients with HBV induced acute liver failure. ALF was accompanied by fibrosis and HSCs 
activation and autophagy induction. It was shown for the first time that the High Mobility Group Box 1 
(HMGB1) protein is a powerful inducer of autophagy responsible for HSCs survival[635].

As mentioned before, autophagy is crucial for HSCs activation which in turn maintains the liver 
architecture thus preventing the liver scaffold collapse during ALF.

Nitric oxide induces HSCs apoptosis through generation of ROS[636]. There is evidence however that 
nitric oxide is also involved in the regulation of autophagy in ALF. Observations in human liver tissue 
showed an inhibition of autophagy in HSCs while further in vitro experiments demonstrated that nitric 
oxide inhibited autophagy and increased apoptosis of HSCs. These findings were reproduced by 
chloroquine and reversed by the autophagy inducer rapamycin. Therefore, nitric oxide impairment of 
HSCs survival may be a decisive factor for the devastating effects of ALF[637].

An additional clinical and experimental study verified the significance of intact mitophagy in ALF. 
One of the measurements of oxidative stress is the level of superoxide dismutase (SOD). The serum 
superoxide dismutase was significantly increased in ALF patients, correlating with the MELD-Na score. 
SOD levels returned to normal in the remission stage of ALF. In liver tissue from ALF patients and mice 
models, manganese-dependent SOD was overexpressed and mitophagy in HSCs was inhibited by ROS. 
Inhibition of mitophagy promoted inflammation in HSCs which was reversed by a mitophagy inducer
[454].

Acute liver damage
Autophagy also protects hepatocytes from acute liver injury, a characteristic of viral hepatitis and acute 
alcoholic and non-alcoholic steatohepatitis. Mechanisms and cells involved are different as both direct 
and indirect effects on hepatocytes and macrophages are implicated. Direct effects include autophagy 
dependent inhibition of caspase 8 in hepatocytes[638], while indirect effects on macrophages involve 
limitation of NF-kB-mediated inflammation and inflammasome-dependent IL-1b production through 
p62-dependent mitophagy[462,639]. Reduced macrophage autophagy can induce pro-inflammatory 
macrophage polarization and increase the immune mediated acute damage in obese mice[131]. The 
TAM family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, has been reported 
to alleviate inflammation. AXL is the only member of the TAM family that induces autophagy in 
macrophages and ameliorates hepatic inflammatory responses inhibiting the NLRP3 inflammasome 
activation in murine macrophages[640].

The role of Kupffer cells (Kcs) is significant in the pathogenesis of acute liver injury. In a murine 
model of thioacetamide induced acute liver injury it was shown that hyperglycemia aggravated the liver 
lesions activating the NLRP3 inflammasome of Kupffer cells via inhibition of AMPK/mTOR-mediated 
autophagy. Interestingly, AMPK activation or mTOR signaling deletion restored autophagy and 
subsequently inhibited inflammasome activation in Kupffer cells[641]. Spermine is an anti-oxidative 
polyamine with autophagy induction properties. In a model of acute liver injury, spermine pre-
treatment ameliorated liver injury and intrahepatic inflammation by promoting M2 polarization of 
Kupffer cells.

Furthermore, spermine increased autophagy in KCs. Deletion of Atg5 in spermine treated KCs 
greatly increased pro-inflammatory cytokines and reduced the anti-inflammatory cytokine IL-10[642].

LSECs are also involved in acute liver injury. Selective impairment of autophagy in liver endothelial 
cells increases oxidative stress, thus leading to fibrosis in acute injury[465].

Ischemia/reperfusion injury
The central role of autophagy in ischemia/reperfusion injury (I/R) injury has been verified by the fact 
that pharmacological or genetic stimulation of autophagy ameliorate the liver reperfusion injury[643-
645].

I/R impairs hepatocellular autophagy[646] through I/R-induced ATP depletion leading to energy 
shortage and malfunction of the autophagic machinery. Moreover Ca2+ overloading during I/R results 
in calpain overproduction and ultimate loss of key autophagy proteins like Atg7. Interestingly the 
autophagy suppressor chloroquine attenuated liver injury when administered in early phases of I/R but 
aggravated the lesions, as expected, when given in late phases[647].
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Hepatic encephalopathy
Ammonia is an important mediator of hepatic encephalopathy. Increased ammonia levels rapidly 
induce an autophagic response that preferentially targets mitophagy[648-650]. Ammonia induced 
autophagy may in fact be a protective mechanism against encephalopathy as suggested by a recent 
report. Deletion of Atg7 or loss of functional TFEB deteriorated ammonia detoxification in mice. By 
contrast activation of liver autophagy either by rapamycin administration or genetic TFEB expression 
reduced ammonia levels in acquired hyperammonaemia[651].

Autoimmune hepatitis
The role of autophagy in autoimmune hepatitis (AIH) has not been adequately studied. It is suggested 
that autophagy is implicated in AIH through its involvement in antigen processing and presentation to 
T cells[652] and its well proven role in liver fibrosis[653], but the exact pathways have not been 
delineated.

Concanavalin A-induced hepatitis is an extensively used model for immune-mediated liver injury. 
Comparative proteomic results in this model have shown that the activation of immune system resulted 
in hepatitis with deregulation of autophagy as indicated by an increase in p62 and LC3B. Arctigenin is a 
biologically active lignan with antioxidant and anti-inflammatory properties. Pretreatment with 
arctigenin alleviated autophagy as well as apoptosis verifying that immunity and autophagy are 
interconnected in AIH pathogenesis[654].

A group of researchers recently used the same model of concanavalin (conA) induced experimental 
hepatitis to clarify the role of autophagy in AIH. Methyl prednisolone (MP) treatment significantly 
decreased inflammation in the liver and activated the Akt/mTOR pathway to inhibit hepatocyte 
apoptosis and autophagy. Reduced numbers of autophagosomes were present in the MP treated group 
compared to the conA group. It was further shown that MP attenuated the mitochondria-mediated 
autophagy and apoptosis[655]. In a second report on the same experimental model, accumulation of 
mature conventional dendritic cells (cDCs) was observed in the liver. In vitro, ConA treatment induced 
the expression of autophagy proteins and the formation of autophagosomes in dendritic cells. A further 
blockade of autophagy flux inhibited the maturation of DCs and the proliferation and differentiation of 
CD4+ T cells when ConA-induced DCs were co-cultured with CD4+ T cells. Taken together these 
studies elegantly showed that autophagy is critically implicated in AIH and aberrant autophagy and 
defective maturation of cDCs are involved in AIH immunopathogenesis[656].

A recent clinical study using immunohistochemistry in liver biopsy samples from chronic HCV and 
AIH patients confirmed the central role of autophagy in AIH. Activated but impaired autophagy and 
less efficient elimination of damaged mitochondria were demonstrated in AIH as compared with HCV. 
Increased p62 levels significantly correlated with necroinflammation in AIH[657].

Biliary disease
The mechanisms of liver damage in cholestasis are incompletely understood. Autophagy and protein 
degradation were shown to be impaired in cholestasis induced in bile duct ligated mice[658-660]. 
Moreover, defective autophagy after chloroquine inhibition or deletion of Atg7 and Atg5 led to 
increased cholestatic liver injury[661,662].

Accumulated toxic bile acids lead to ER stress, mitochondrial dysfunction with increased oxidative 
stress, inflammasome activation and apoptosis leading to liver fibrosis[663]. These events should in fact 
activate autophagy in cholestasis but instead, at least in mice, it appears that autophagy is inhibited in 
cholestasis[664,665]. Bile acids can inhibit autophagy in mice either via the farnesoid X receptor (FXR) 
during the feeding-fasting cycle[114,115] or independently of FXR[666]. How autophagy is affected in 
human cholestasis is under investigation.

In human disease autophagy was initially associated with the pathogenesis of primary biliary 
cholangitis (PBC)[667-669]. As mentioned before autophagy is also involved in the processing and 
presentation of various antigens. It is only logical therefore that an interesting hypothesis implicating 
deregulated cholangiocyte autophagy connected to cholangiocyte senescence has been proposed to 
explain not only the pathogenesis of PBC but of the other fibrosing cholangiopathies including primary 
sclerosing cholangitis (PSC) and biliary atresia as well[670].

An upregulation of autophagy was reported along with senescence in PBC[668,671]. LC3B and p62 
proteins were accumulated in damaged bile ductular cells in association with senescence markers[68,
125] suggesting that autophagy could induce and facilitate cholangiocyte senescence[664,665,671-674]. 
Mitophagy may be specifically involved in PBC as granular expression of the mitochondrial protein 
PDC-E2 was co-localized with LC3[667].

Autophagy has also been implicated in the treatment of PBC. Ursodeoxycholic acid (UDCA) is still 
the first line treatment of PBC while obeticholic acid (OCA) is a second-line treatment[675-677]. 
Hydrophobic bile acids, such as glycochenodeoxycholic acid impair autophagy in vitro and induce 
abnormal expression of mitochondrial antigens and cellular senescence in cholangiocytes, possibly 
through induction of ER stress. Pretreatment with UDCA reduced ER stress and partially restored 
deregulated autophagy and cellular senescence[678]. It is not clear how UDCA stimulates autophagy. 
UDCA has been reported to be an FXR antagonist[679] but this may not be the explanation[680]. On the 
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contrary, OCA is a semi-synthetic FXR agonist with anti-cholestatic functions including the suppression 
of endogenous bile acid synthesis and interference with hepatocellular bile acid transporter systems
[681]. OCA impairs autophagic flux in vitro and also in vivo. A favorable effect of treatment with OCA in 
a cholestatic disease like PBC would be incompatible with data, indicating that cholestasis progresses 
when autophagy is blocked[661,662]. However, the other potent, anti-cholestatic properties of OCA can 
overcome the negative effects of reduced autophagy.

A recent paper offers an interesting explanation. Autophagy seems to be also impaired in human 
cholestatic conditions where accumulated bile acids induce Rubicon in an FXR-dependent fashion. 
Rubicon induction suppresses autophagosome-lysosome fusion and inhibits proper autophagolytic 
breakdown. Rubicon was also induced after treatment with the FXR agonist OCA. Genetic inhibition of 
Rubicon reversed the impairment of autophagic flux. In contrast, UDCA reduced Rubicon levels, 
enhanced autophagic flux and autophagolysosome formation independently of FXR[680].

An overview of autophagy abnormalities is presented in Table 1.

CONCLUSION
Autophagy is an important process through which intracellular parts are degraded in the lysosomes. It 
is a fine example of effective cellular recycling mechanism, connecting cellular quality control with 
energy saves. There are three types of autophagy with various pathways of delivery to the lysosomes: 
Macroautophagy (which is further divided into non selective autophagy and selective macroautophagy 
targeting special organelles or specific compounds for degradation), microautophagy and chaperon-
mediated autophagy. Autophagy is related to major physiologic processes as cell death, inflammation 
and immunity. It is increasingly recognized that it is implicated in almost every aspect of liver diseases, 
and this can be the basis for future pathophysiologically based and targeted management.
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Table 1 Overview of autophagy abnormalities in liver disease

Disease Abnormalities of autophagy Results Ref.

Obesity ↓Autophagy; Hepatocytes: ↓Mitophagy, ↓Lipophagy; HSCs: ↓Autophagy ↑ER stress, →↑Lipids, ↑Insuline resistance, → Anti-fibrotic Liu et al[203], Lavallard et al[204], Gual et al[205], 
Tremblay et al[206]

NAFLD ↓Lipophagy; ↓CMA Lipotoxicity, ↑Lipogenic enzymes Madrigal-Matute et al[30], Zhou et al[234], Niso-
Santano et al[235], Singh et al[236]

NASH Hepatocytes: ↓Autophagy, ↓Mitophagy; Kupffer cells: ↓Autophagy; LSECs: ↓
Autophagy

↑Mallory-Denk bodies, ↑Inflammasome activation; ↑Cathepsins B,D, ↑
M1 polarization, ↓M2 polarization; ↑Inflammation, fibrosis

Xu et al[272], Noureddin et al[277], Zhang et al
[285], Dey et al[287]

Alcoholic liver disease Acute ETOH administration: ↑Autophagy, ↑Mitophagy, ↑Lipophagy, ↑Proteophagy; 
Chronic ETOH administration: ↑ Autophagy (low dose), ↓Autophagy (high dose); 
Kupffer cells: ↓Autophagy, ↑Autophagy; HSCs: ↓Autophagy, ↑Autophagy

Protection, protection, protection, →Clearance of Mallory-Denk 
bodies; →Protection, →Mitochondrial damage, Cell death; Liver 
damage, protection; Reduced fibrosis, increased fibrosis

Chao et al[308], Komatsu et al[311], Yan et al[314], 
Harada et al[318]

HBV ↑Autophagy, ↓Lysosomal acidification, ↑Mitophagy ↑Virus replication, ↓HBV degradation Li et al[356], Tang et al[357], Luo et al[372], Wang 
et al[383]

HCV ↑Autophagy, ↓Lipophagy, ↑Mitophagy; ↑CMA ↑Virus replication, steatosis, ↑Virus replication, ↓Apoptosis, persitent 
infection, ↑Virus replication

Ferraris et al[387], Paul et al[395], Jassey et al[404], 
Ren et al[406]

Fibrosis-Cirrhosis Hepatocytes: ↓Autophagy, ↓Lipophagy; Kupffer cells: ↓Mitophagy, or, ↑↑
Mitophagy; HSCs: ↓Mitophagy, ↓Lipophagy, or, ↑Lipophagy, ↑Mitophagy; LSECs: ↑
↓Autophagy; Ductular reaction: ↑Autophagy

↑Fibrosis, ↑Lipotoxicity, ↓TGFb, ↓Fibrosis; ↑TGFb, ↑Fibrosis; Pro-
inflammatory anti-fibrotic: →Pro-fibrotic, →Pro-fibrotic, ↑Fibrosis, ↑
Fibrosis

Zhang et al[437], Singh et al[438], Li et al[448], Sun 
et al[463]

HCC, “Double edge 
sword” 

Induction stage: ↑CMA, ↑Autophagy; Late stages: ↑Autophagy, or, ↓Autophagy, ↑
Mitophagy, ↑Lipophagy

Anti-oncogenic: ↓YAP1, ↓proliferation, ↑Apoptosis→Anti-oncogenic, ↓
Tumor suppressors; ↑Tumor progression, ↓↑Progression↑↓Progression

Wang et al[558], Zhao et al[559], Prieto-Domí
nguez et al[560]; Niture et al[544], Yang et al[547]; 
Lin et al[549], Chen et al[550], Chen et al[551]

Cholangiocarcinoma ↑Autophagy ↑Tumor progression Marciniak et al[580], Teckman et al[581]

A1 antitrypsin deficiency ↓Autophagy Yamamura et al[590], Pastore et al[592]

Fibrinogen storage disease ↓Autophagy Hu et al[609]

Wilson’S disease ↓Autophagy Oami et al[611]

Glycogen storage disease ↓Autophagy Xing et al[613]

Sepsis Kupffer cells: ↑Autophagy, ↑↑Autophagy, ↓Mitophagy M2 polarization, ↓Inflammasome activation; Kupffer cell 
apoptosis→Cytokine storm, ↓Apoptosis of CD4+ve T cells

Ying et al[615], Neumann et al[616], Sun et al
[628], Shan et al[629]

Acetaminophene liver 
damage

↓Autophagy, ↓Mitophagy, ↑Kupffer cell autophagy ↑APAP-Protein adducts Sydor et al[618], Kim et al[643], Biel et al[644]

Acute liver failure ↑Autophagy, ↓Autophagy, ↓HSCs Mitophagy HMGB1→HSCs activation (protective); ↑NO,ROS→↓
HSCs→Devastation

Cheong et al[649], Sridhar et al[652]

Ischemia/reperfusion 
injury 

↓Autophagy Kwak et al[658], Huang et al[659]

Hepatic encephalopathy ↑Autophagy (NH4) Protection Woolbright et al[663], Manley et al[666]
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Autoimmune hepatitis ↑Autophagy, ↓ Mitophagy Defective maturation of dendritic cells Sasaki et al[671], Sasaki et al[672], Young et al[673]

Biliary disease (experi-
mental)

↓Autophagy Possibly through increased bile acids Sasaki et al[665], European Association for the 
Study of the Liver[675], Lindor et al[676], Panzitt 
et al[680]

Primary biliay cholangitis Deregulated autophagy Cholangiocyte senescence Van de Graaf et al[669], Sasaki et al[665], Sasaki et 
al[674]

Note the double edge sword behaviour of autophagy, particularly evident in hepatocellular carcinoma. Autophagy refers to macroautophagy. HSCs: Hepatic stellate cells; LSECs: Liver sinusoidal endothelial cells; CMA: Chaperone 
mediated autophagy; ER: Enoplamic reticulum; ASH: Acute alcoholic hepatitis.
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Abstract
Liver transplantation is the current standard of care for end-stage liver disease 
and an accepted therapeutic option for acute liver failure and primary liver 
tumors. Despite the remarkable advances in the surgical techniques and 
immunosuppressive therapy, the postoperative morbidity and mortality still 
remain high and the leading causes are biliary complications, which affect up to 
one quarter of recipients. The most common biliary complications are anastomotic 
and non-anastomotic biliary strictures, leaks, bile duct stones, sludge and casts. 
Despite the absence of a recommended treatment algorithm many options are 
available, such as surgery, percutaneous techniques and interventional 
endoscopy. In the last few years, endoscopic techniques have widely replaced the 
more aggressive percutaneous and surgical approaches. Endoscopic retrograde 
cholangiography is the preferred technique when duct-to-duct anastomosis has 
been performed. Recently, new devices and techniques have been developed and 
this has led to a remarkable increase in the success rate of minimally invasive 
procedures. Understanding the mechanisms of biliary complications helps in their 
early recognition which is the prerequisite for successful treatment. Aggressive 
endoscopic therapy is essential for the reduction of morbidity and mortality in 
these cases. This article focuses on the common post-transplant biliary complic-
ations and the available interventional treatment modalities.

Key Words:  Post-transplant biliary complications; Endoscopic retrograde 
cholangiopancreatography; Cholangioscopy; Percutaneous biliary interventions; Liver 
transplantation; Living-donor liver transplantation
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Core Tip: Liver transplantation is the current standard of care for end-stage liver disease. Biliary complic-
ations are the leading cause of morbidity and mortality among recipients and despite the advances in 
surgical techniques they are seen in up to 25% of cases. Surgery, interventional endoscopy and 
percutaneous approaches are the available therapeutic options. Endoscopic retrograde cholangiography 
when possible is the most recommended therapeutic modality, replacing more aggressive surgical 
interventions. New techniques such as cholangioscopy overcome many of the limitations of conventional 
endoscopy. This article discusses the most common post-transplant biliary complications and the advances 
in treatment modalities.

Citation: Boeva I, Karagyozov PI, Tishkov I. Post-liver transplant biliary complications: Current knowledge and 
therapeutic advances. World J Hepatol 2021; 13(1): 66-79
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/66.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.66

INTRODUCTION
Liver transplantation (LT) is the widely endorsed method for treatment of end- stage liver disease, acute 
liver failure and primary liver cancer. The advances in surgical techniques, postoperative care, 
immunosuppression, and antiviral therapy have led to remarkable progress in survival of these 
patients. The currently reported 5-year survival rate is 70%-75%[1,2].

Biliary complications are a significant source of morbidity in the early and long-term period after LT 
(Table 1). Their overall incidence ranges between 15% and 25%. With associated mortality of 10%, they 
remain a major problem in post-transplant patients. Timely identification and treatment play a 
significant role in preserving the graft and improving the overall survival rate of patients[3,4].

The most common current treatment is focused on interventional endoscopic (ERC) and percutaneous 
(PTC) procedures[4-6].

ERC provides minimal invasion with great long-term results and is a preferred method when surgical 
reconstruction allows this. ERC has been proven to be safe and highly effective in dealing with most of 
the early as well as late post-LT biliary complications. Procedural-related adverse events in post-LT 
cases are comparable with those among the general population[6].

The complication rate in patients after living donor liver transplantation (LDLT) in particular is about 
10%, which is 2-fold higher than the standard[7,8].

PTC is an effective alternative in patients with altered anatomy which impedes endoscopy access. 
There is growing evidence that cholangioscopy could be a beneficial tool in the diagnostics and therapy 
of selected cases[9].

Surgery is available for cases when endoscopic and PCT methods have failed.

Biliary reconstruction techniques
The two major options for biliary reconstruction are bilio-enteric (hepatico-jejunostomy or choledocho-
jejunostomy) and duct-to-duct anastomosis. Duct-to-duct anastomosis is the method of choice for biliary 
reconstruction in any type of transplantation: Cadaveric liver transplantation (DDLT), split transplant-
ations, LDLT (left lobe or right lobe) transplantations[10,11].

Hepatico-jejunostomy is currently used only for selected cases such as those with primary sclerosing 
cholangitis, prior bilio-digestive surgery, significant ductal size mismatch, and insufficient length of 
recipient bile ducts[12].

Many benefits motivate the preference for direct duct-to-duct suturing: Preserved sphincter-of-Oddi 
function, lower risk of cholangitis, and reduction in the number of anastomoses. Besides, the preserved 
intestinal continuity ensures an endoscopic access to the biliary tree in case of potential complications
[13,14].

T-tube placement has been widely abandoned over the last decades[15]. It has been proven that its 
usage increases the rate of biliary complications. A single-center retrospective review of 1041 transplant-
ations reported that cholestatic liver disease, Roux-en-Y anastomosis, donor risk index > 2, and T-tubes 
were independent predictors of post-LT complications[16].

LDLT and DDLT
The rising number of LTs augments the need for liver grafts. This has led to the widespread tendency of 
LDLT. Multiple factors related to LDLT techniques contribute to the increased incidence of biliary 
complications[11].

Hepatic resection of the donor liver in LDLT requires dissection of the hilum, which could cause bile 
duct devascularization or subsequent bile leak from the cut surface of the liver. Excessive use of 
coagulation diathermy is another risk factor for the occurrence of bile leak. On the other hand, the need 
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Table 1 Risk factors for the most common biliary complications

Anastomotic Non-anastomotic

Strictures Advanced recipient age; Female donor; Failure to flush the donor 
duct; Preceding bile leakage; Acute rejection; Chronic rejection; 
Hepaticojejunostomy reconstruction

HAT; Chronic ductopenic rejection; Blood type ABO incompat-
ibility; PSC, autoimmune hepatitis prolonged warm and cold 
ischemia times prolonged donor exposure to vasopressors

Leaks Active bleeding at the bile duct end excessive dissection of 
periductal tissue tension on ductal anastomosis

T-tube tract, excessive use of electrocautery incorrect suture of the 
cystic duct stump

Stones and 
clots

Ischemia, stricture, infection

Biliary cast 
syndrome

Acute cellular rejection, bile stasis, ischemia, infection, sepsis, HAT

Haemobilia Alcoholic liver disease, high body mass index of recipient; Iatrogenic: PTC, liver biopsy

PSC: Primary sclerosing cholangitis; PTC: Percutaneous; HAT: Hepatic artery thrombosis.

for dissection of the recipient’s left or right hepatic duct could prolong the ischemic time. Bringing the 
recipient’s hepatic duct to the graft’s hilum to ensure tension-free anastomosis could cause additional 
disturbance of the blood supply. In general, the reported biliary complication rate is 2-3-fold higher in 
LTLD than in DDLT. Furthermore, the treatment is usually more complicated due to the smaller size of 
the ducts or the presence of multiple anastomoses. Therefore, the success rate of treatment for complic-
ations is lower in LDLT[14,17-19].

Classification
The most common complications are strictures, leaks, and biliary stones. According to the timeframe of 
their occurrence, post-LT complications can be divided into early (occurring within the first 4 wk after 
transplantation) and late. Biliary leaks are the most common complication in the early postoperative 
period, while biliary strictures are the predominant complication as a whole. According to the lesion 
location, strictures and leaks are divided into anastomotic and non-anastomotic[20-22].

It is appropriate to make a distinction between biliary stricture and biliary obstruction. While the 
obstruction can be caused by external compression (biloma, haematoma), luminal cast, stones or tube 
remnants, the stricture is narrowing of the duct lumen, causing bile outflow disturbance.

Multiple factors can play a role in the occurrence of biliary complications. Anastomotic lesions are 
mostly due to technical issues, while non-anastomotic lesions are the result of ischemia or immune 
reactions[23].

With respect to the etiology, some authors divide the complications into five groups[21]: (1) Hepatic 
artery thrombosis-related; (2) Technical biliary complications; (3) Ischemic-type biliary lesions; (4) 
Infectious biliary complications; and (5) Uncommon: Sphincter of Oddi dysfunction (SOD), bile cast 
syndrome, haemobilia, lymphoproliferative disease, and other neoplasms.

Biliary strictures
Up to 50% of post-LT biliary complications consist of biliary strictures[24]. They are divided into two 
major morphological types: Anastomotic (AS) and non-anastomotic (NAS).

Most frequently, the strictures are anastomotic. AS appear more often in LDLT than in DDLT. They 
are short, single narrowings, located at the anastomotic site. The incidence ranges between 5%-15% in 
DDLT and 13%-36% in LDLT[21-26]. They occur mostly during the first year after transplantation 
within a mean time of 5-8 wk[23,27].

The most common factors associated with AS are surgical issues over the first months and ischemia 
leading to fibrous healing at the later stages. Additionally, ABO incompatibility, advanced recipient age, 
small bile duct caliber, prolonged warm and cold ischemia time, and cytomegalovirus infection are 
reported to be significant risk factors[25,28-30].

Endoscopic retrograde cholangiography (ERCP) is the standard of care for AS treatment, whenever 
anatomy allows it. The overall reported success rate ranges between 70%-100%[31-33].

For patients with hepatico-jejunostomy, different scopes such as single or double balloon enteroscope, 
spiral enteroscope or pediatric colonoscope are used. These techniques are time-consuming and 
complex; they require additional expertise and are related to higher risk and higher cost[32,34-37].

For all these reasons, PTC is a widely accepted approach in cases of altered anatomy[38]. Surgical 
therapy is now used as salvage therapy and is required in about 1% of cases[39].

AS treatment aims to normalize bile outflow through the anastomosis. The endpoint of ERC is lack of 
narrowing during occlusive cholangiography or free contrast outflow during fluoroscopy (Figure 1). 
Clinical and laboratory resolution of cholestasis are the most reliable measures of successful treatment.
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Figure 1 Endoscopic treatment of anastomotic stricture after living donor liver transplantation. A: Two plastic stents; and B: Occlusive 
cholangiogram after treatment.

The standard treatment includes guidewire insertion across the stricture, followed by balloon dilation 
and stent insertion. Most commonly 10Fr or 7Fr plastic stents are used. These stents can be easily 
removed or replaced. Balloon dilation in itself is effective as a non-invasive technique, which has shown 
less than promising long-term results with a 30%-40% success rate[34,40] (Figure 2).

Numerous large studies have proven that the combination of balloon dilation plus stent placement is 
more effective than dilation or stenting alone[41].

Several endoscopic strategies are applied in the management of anastomotic strictures. The most 
frequently used technique is balloon dilation with placement of a maximum number of 10Fr plastic 
stents with subsequent stent exchange until full resolution of the stricture on fluoroscopy (Table 2).

The initial dilation requires 4-10 mm balloons. In rare cases of tight strictures a Soehendra catheter 
can be used to overcome the stricture. The progressive increase in the number of stents with every 
subsequent procedure has ensured more sustained resolution of the stricture[42,43].

Different time intervals between stent exchanges were investigated. In a study from 2008, a short-
term stent exchange of every 2 wk was investigated. The reported resolution rate was 87%, achieved for 
a mean period of 107 d and a mean number of stents inserted of 2.5. More often stents are replaced 
every three months to prevent occlusion and cholangitis. The reported success rate in many large 
studies is 80%-95%[39,41-43]. In a review of 440 post-LT patients with AS, the success rate of stent 
therapy was 84%. The resolution rate was established to be dependent on therapy duration and was 
highest (94%-100%) when therapy lasted 12 mo or more[44].

The time it takes for the structure to evolve has also been proved to be a predictive factor for healing. 
Strictures manifested within the first 6 mo after LT have better prognosis for sustained resolution[25,31,
45].

Due to elevated rupture risk, it is preferable for ERC to be postponed at least one month after the 
transplantation. When necessary, a 7-8.5 Fr stent is applied without balloon dilation. In tight strictures, a 
4 mm angioplasty balloon may be considered[46].

Some new dilation balloons have been tested in order to improve bile stricture resolution. There are 
few published data on the usage of peripheral cutting balloons[47].

Paclitaxel-eluting balloons have been investigated, due to the fact that paclitaxel can suppress fibrotic 
proliferation[48]. The latter two are not in common use.

An available alternative to the standard multiple-plastic-stent therapy is the placement of fully 
covered self-expanding metal stents (fSEMS). Their major benefits are a reduction in the number of 
procedures and cost-effectiveness[49-52].

In a substantive study with 200 cases, the reported success was 80%-95%[51]. Eight and 10 mm SEMS 
are available according to the stricture size. FSEMS are not considered suitable for AS smaller than 5 
mm[24].

Stent migration is the major limitation of this technique. The main strategies to prevent migration 
include skipping dilation of the stricture, using stents with flaps, and leaving the stent in the duodenum 
for a long period[49-51].

A large systematic review, published in 2013, reported a migration rate of fSEMS of 16%; the authors 
also mentioned a low risk of stent ingrowth and stent impaction. The comparison analysis in that study 
showed that neither technique was  superior[49,53].

Management in LDLT is more challenging due to the frequent presence of multiple anastomoses with 
a smaller size (Figure 3). According to Coté et al[24], significant risk factors for treatment failure in LDLT 
are higher LT recipient age, longer operation duration, and a pouched morphology of the AS.

Non-anastomotic strictures consist of one or more duct narrowings proximal to the anastomosis. They 
are longer, complex, and usually multiple, and can affect intra- and extrahepatic ducts. NAS are more 
rarely observed: 5%-10% of biliary complications[54]. Ischemia and immunological reactions are the 
main aetiological mechanisms. The most common risk factors reported in the literature are hepatic 
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Table 2 Studies on the effectiveness of maximal stent therapy in post-operative biliary strictures

Ref. Patients Treatment duration Mean number of stents Number of ERCPs Success rate

Costamagna et al[41], 2001 45 12.1 mo (range 2-24 mo) 3.2 (range 1-6) 4.1 (range 2-8) 89% (40/45)

Hsieh et at[23], 2012 41 5.3 (range 3.8-8.9) 7.0 (range 4-10) 4.0 (range 3.0-5.3) 100% (41/41)

Morelli et al[43], 2008 38 107 d (range 20-198 d) 2.5 (range 1-6) 3.4 (range 2-6) 87% (33/38)

Pasha et al[90],  2004 25 3.3 mo (range, 2.2-7 mo) 2.0 (range 1-4) 3.5 (range 1-9) 88% (22 of 25)

Tabibian et al[42], 2010 69 15 mo (range 12-60 mo) 3.0 (range 2-7) 2.5 (range 2-5) 94% (65/69)

ERCP: Endoscopic retrograde cholangiography.

Figure 2 Anastomotic stricture. A: Cholangiogram; B: Balloon dilation; and C: Multiple stent treatment.

Figure 3 Anastomotic stricture after living donor liver transplantation (right lobe). A: Guidewire insertion; B: Balloon dilation; C: Second guidewire 
insertion; and D: Stent placement (7Fr + 5Fr).

artery thrombosis, prolonged cold and warm ischemia, prolonged exposure to vasopressors of the 
donor, ABO incompatibility, chronic ductopenic rejection, PSC or autoimmune hepatitis in the recipient
[55,56]. In the case of acute hepatic artery thrombosis, early revascularization therapy is required to 
prevent multiple stricture formation.

Cases with NAS could benefit from mini-invasive (endoscopic and percutaneous) treatment, but the 
estimated results are significantly worse than in cases with AS. In cases with dominant strictures and 
extrahepatic localization ERC is the first treatment option. Endoscopic access to NAS is much more 
challenging due to the small caliber and relatively proximal location[53]. Cases with angulated, complex 
strictures, not suitable for ERC passage benefit from percutaneous approaches, followed by hybrid 
procedures such as the rendezvous technique. When intrahepatic strictures are present, PTC with direct 
radiology-guided percutaneous stent insertion could be in order[57,58].

Stricture recurrence and continued stricture formation are possible even after successful endoscopic 
therapy. Long-term observation (MRCP and laboratory) of these patients is required to evaluate the 
disease course and the response to treatment. Cases resistant to stent treatment, or those with diffuse 
bile duct injury, must be listed for re-transplantation. Percutaneous drainage could be a bridging 
therapy to the operation[54,58].

The reported success rate of stenting therapy in the literature is 50% to 75% for DDLT and 33%-50% 
for LDLT[26,50]. In most NAS cases, the treatment process also takes longer than with AS[11,59]. 
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Passing a guidewire through the stricture is considered the most critical moment. Occlusion balloons 
and swing-tip catheters for selective cannulation are used for this purpose[54]. The rendezvous 
technique could also be used to deal with this issue[59,60].

After successful cannulation, the standard technique of balloon dilation followed by plastic stent 
insertion is performed. For this type of stricture, 4-6 mm balloons with a subsequent increase in caliber 
are used. Even when cannulated, the width, angulation and proximal location of the strictures often 
limit the stent insertion. The stents used are usually 7 or 8.5Fr and carry a high migration risk due to 
rigidity of the plastic[58,59].

A working group from Minnesota reported their treatment for NAS with long (12-20 cm), 10Fr 
flexible stents with side fenestration. They provide better bile drainage through the stent and through 
the side holes and could be inserted higher due to their flexibility[61].

Cholangioscopy provides direct visualisation of the biliary tree. This allows visual assessment of the 
biliary epithelium at the stricture and tissue sampling if needed. In cases of strictures, not suitable for 
standard cannulation, cholangioscopy enables guidewire insertion under visual control (Figure 4). This 
facilitates guidewire placement in tight, angulated strictures. Cholangioscopy has been proven to 
increase the stricture cannulation rate and the success rate of endoscopy treatment as a whole (Figure 5). 
The implementation of cholangioscopy in stricture therapy could spare the need for percutaneous 
drainage and surgical interventions[62,63].

Bile leaks
Bile leaks are the second most frequent biliary complication after LT. Bile leaks are also divided into 
anastomotic and non-anastomotic. Most of them are anastomotic and occur early - within the first 4 wk 
after LT[8,10,64].

The reported incidence in the literature ranges from 2% to 25%[13,22].
Their occurrence is slightly higher in patients with bilio-enteric reconstruction than with cases of 

duct-to-duct anastomosis. A systematic review, including data from 61 studies, reported the incidence 
of bile leaks to be 9.5% in LDLT and 7.8% in DDLT[64]. The presence of a bile leak is an independent 
risk factor for further development of a stricture[65].

Early bile leaks are usually caused by technical issues related to surgery, such as tension of the 
anastomosis, incomplete cystic stump suture, excessive use of diathermy, bleeding from the cut ends of 
ducts, premature T-tube extraction, and the cut surface of the graft. Ischemic injury is the other major 
cause of bile leaks[8,18,19,52]. Large studies have shown double and triple hepatico-jejunostomy and 
warm ischemia time as independent risk factors for the occurrence of bile leaks[17,18].

Bile diversion is the key to bile leak healing. Therapeutic options include ERC followed by stenting or 
nasobiliary drainage, percutaneous drainage, and surgical revision. Sphincterotomy with endoscopic 
stenting leads to reduction in the transpapillary pressure, usually followed by fast lesion closure. Stent 
placement leads to successful treatment in over 90% of cases with early leaks (Figure 6)[13,66]. Simple 
defects like T-tube exit, cystic duct remnant or small anastomotic leaks usually close in 2-5 wk. The 
biliary stent is usually extracted after no less than 3 mo due to potentially delayed tissue healing on 
account of immunosuppression. Some centers prefer the placement of nasobiliary drainage for early 
small defects. This allows close fluoroscopic follow-up of the defect closure and avoids the need for a 
second stent extraction procedure. Given the low patient tolerance, displacement risk, and prolonged 
hospital stay, this practice is currently of limited use[19,66].

In cases with defects, refractory to plastic stent treatment, fcSEMS usage could be considered. Small 
studies have reported good closure success rate[67-69].

According to a study including 35 cases treated with 8 mm and 10 mm fcSEMS, the achieved leak 
resolution was 94%[68].

In some studies, a high incidence of stricture was observed after stent removal[70].
In cases with bilio-enteric anastomosis, percutaneous access to the biliary tree is used for bile 

diversion. An internal-external drainage placement for 3-6 mo is an effective alternative to the 
endoscopic approach. A technique with EUS-guided gastrostomy, used for ERCP access, is also reported 
in a small study from 2011[33].

In cases with a T-tube, drainage unclamping is sufficient. When bile juice is diverted outside the body 
(nasobiliary, percutaneous, T-tube drainage), the level of immunosuppression medication, in particular 
cyclosporine, should be closely monitored. If a significant collection is formed, the latter must be 
drained to prevent infection, sepsis, and late adhesion. Large or complex leaks often require surgical 
revision due to a high probability of intra-abdominal abscess formation[54,55].

Bile stones and sludge
Formation of sludge, clots, casts and stones can cause bile obstruction. The reported incidence after LT 
ranges widely between 4%-10%[71,72].

Cyclosporine therapy, mucosal damage due to ischemia or infection and cholesterol supersaturation 
(often seen post-LT) could predispose to lithogenesis. In many cases, there is an underlying stricture. 
Usually, an ERC and sludge/stone extraction procedure is sufficient for definitive treatment with a 
success rate over 90%[72-76].
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Figure 4 Complex anastomotic stricture. A: Impossible insertion of guidewire through a stricture; B: Guidewire insertion under direct visual control; and C: 
Guidewire inserted above anastomosis.

Figure 5  Digital cholangioscopy image of an anastomotic stricture.

Figure 6 Anastomotic leak. A: Guidewire insertion; and B: Stent placement (10Fr).

According to Alazmi et al[45], there is a 17% incidence rate of recurrence within the first 6 mo after the 
procedure.

Well-known techniques, such as large balloon dilation and mechanical lithotripsy, are used in cases of 
large stones. In cases of difficult lithiasis such as multiple, large or intrahepatic stones, as well as stones 
over the stricture, extracorporeal lithotripsy could be applied. A study in 2015 reported six cases of 
difficult lithiasis that could not be treated with standard ERCP. Five of the six cases were managed with 
ECSL with no reported adverse events[77].

The limitations of endoscopic therapy can be overcome by means of digital cholangioscopy. Cholan-
gioscopy provides an opportunity for visually controlled fragmentation of large biliary stones with little 
risk of biliary injury. Advanced intraductal techniques such as Holmium laser or Electrohydraulic 
lithotripsy achieve outstanding results in difficult cases, not suitable for ERC treatment (Figure 7)[62,78,
79].

A research team from South Korea (Nam et al[79]) reported a case series of 15 patients (intrahepatic 
lithiasis n = 10, biliary cast syndrome n = 3, stones over the stricture n = 2) treated with percutaneous 
intrahepatic cholangioscopy. Eleven patients were successfully managed and no procedure-related 
adverse events were observed[79].
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Figure 7 Multiple intrahepatic stones above anastomotic stricture. A: Fluoroscopic image; B: Digital cholangioscopic image; C: Electrohydraulic 
lithotripsy performance; and D: Fluoroscopic image after treatment.

Biliary cast syndrome
This disorder represents multiple filling defects in intra- and extrahepatic bile ducts, caused by casts 
adherent to the biliary epithelium. The reported incidence varies between 2.5% and 18%[80,81].

The pathogenetic mechanism is considered to be cell injury as a result of ischemia, acute cellular 
rejection, chronic rejection, infection, or bile stasis. The desquamated epithelial cells combined with bile 
components may form hard casts[82].

ERC with bile tree flushing and cast extraction will suffice in many cases. Balloon extractors and 
Dormia baskets are used for this purpose[81]. In cases of extended intrahepatic involvement or altered 
anatomy, a percutaneous procedure could be needed. In a study of 10 patients with biliary cast 
syndrome, mini-invasive (endoscopic/percutaneous) treatment was successful in 60% of cases[83].

Several studies noted good outcomes following cholangioscopy-guided therapy of bile cast syndrome 
(Figure 8). Nam et al[79] reported three cases, treated by percutaneous cholangioscopy.

Ursodeoxycholic acid is considered to have a role in the prophylaxis of bile cast syndrome. In cases 
refractory to mini-invasive therapy, surgery is required.

Sphincter of Oddi dysfunction
Chronic injury, denervation of the recipient’s common bile duct (CBD), or fibrotic tissue formation 
could cause impaired ampullary relaxation and hypertension of the papilla of Vater. The role of biliary 
manometry in the diagnosis of SOD after transplantation is uncertain. Sphincterotomy is usually 
sufficient to resolve the obstruction[27,29].  In cases of firm fibrosis, stent placement could be in order[8,
21].

Mucocele
In rare cases, the donor’s cystic duct could be incorporated in the suture line of the anastomosis. As a 
consequence, a blind mucosa-lined sac is formed. Due to accumulation of mucin, this sac can increase in 
size and cause bile obstruction due to external compression. Endoscopy could not provide sustainable 
resolution in such cases. Percutaneous drainage or surgical resection are effective treatment options. The 
differential diagnosis of mucocele is made with any type of fluid collection such as biloma, abscess, 
hemorrhage, and aneurysm[8,84,85].

Redundant CBD
The excessive length of the donor’s common hepatic duct could lead to a sigmoid-shaped deflection of 
the CBD. This could entail bile outflow deterioration. The reported incidence is 1.6% in all LT. ERC with 
long plastic stent placement usually resolves cholestasis. In very rare cases, surgery with a new biliod-
igestive anastomosis is needed[86].

Haemobilia
Spontaneous haemorrhage in the biliary tree after LT occurs rarely with a reported frequency of 1.2%. 
There are reported cases of haemobilia associated with large biliary stones over the stricture. More 
often, haemobilia is iatrogenic, i.e. subsequent to percutaneous biliary drainage or liver biopsy. Rupture 
of a hepatic artery pseudoaneurysm can cause severe biliary haemorrhage. Recipient high BMI and 
alcoholic liver disease were significant risk factors for spontaneous haemobilia reported in a study 
including 2701 post-LT patients[87].

ERC with clot extraction and nasobiliary drainage placement is the first-choice therapy. Nasobiliary 
drainage ensures an opportunity for biliary lavage, which prevents the development of cholangitis and 
indicates the presence of recurrent bleeding. In most cases, the combination of endoscopic 
desobstruction therapy, coagulation correction, and supportive medication yields good results. In cases 
of severe haemorrhage, selective embolization techniques are reported to be successful. Plastic biliary 
stents or fSEMS were reported to be effective haemostatic tools in studies of non-transplant patients 
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Figure 8 Biliary cast syndrome. A: Fluoroscopic image; B: Magnetic resonance cholangiopancreatography; and C: Digital cholangioscopic image.

with significant haemobilia[88-90].
Due to low incidence, there are not enough data regarding post-transplant patients with severe 

haemobilia.

Foreign bodies
Suture materials or T-tube remnants could form a nidus for bile sediment and stones. ERC and PTC are 
effective methods for detection and clearance of bile duct remnants[59].

CONCLUSION
Known as the Achilles' heel of liver transplantation, biliary complications are observed in one quarter of 
all patients. Their prevalence has increased due to the worldwide increase in liver transplantation. 
Living donor liver transplantations have a higher complication rate and presuppose more complicated 
treatment scenarios with lower success rates. Endoscopic stent insertion is the key treatment for most 
biliary complications. Percutaneous or EUS-guided puncture and cholangioscopy are feasible options 
for biliary access when standard fluoroscopic cannulation fails. A wide variety of accessories have been 
developed to overcome the complexity of living donor liver transplantation complications, but the 
treatment success rate remains unsatisfactory. Early recognition and aggressive management are 
essential for the reduction of morbidity and mortality in patients with biliary complications.
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Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a significant public health 
burden affecting not only obese individuals but also people with normal weight. 
As opposed to previous beliefs, this particular subset of patients has an increased 
risk of all-cause mortality and worse outcomes than their obese counterparts. The 
development of NAFLD in lean subjects seems to be interconnected with 
metabolic phenotype, precisely visceral fat tissue, sarcopenia, and insulin 
resistance. Here, we summarize available data focusing on the co-dependent 
relationship between metabolic phenotype, insulin resistance, and development of 
NAFLD in lean individuals, suggesting more appropriate tools for measuring 
body fat distribution for the screening of patients at risk.
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Core Tip: The prevalence of non-alcoholic fatty liver disease among non-obese (overweight or lean) 
individuals seems to be much higher than previously reported, affecting almost 20% of the non-obese 
population. Non-alcoholic fatty liver disease is no longer considered solely an obesity-related disorder 
since non-obese individuals participate significantly in this entity. The metabolic phenotype is the key 
role-player in the development of non-alcoholic fatty liver disease in lean individuals. The detection of 
lean patients with non-alcoholic fatty liver disease is particularly challenging since the body-mass index is 
not a good indicator of metabolic health.

Citation: Bilic-Curcic I, Cigrovski Berkovic M, Virovic-Jukic L, Mrzljak A. Shifting perspectives – interplay 
between non-alcoholic fatty liver disease and insulin resistance in lean individuals. World J Hepatol 2021; 13(1): 
80-93
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/80.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.80

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD), recently known as metabolic-associated fatty liver disease
[1], is one of the most common causes of chronic liver disease. NAFLD was traditionally associated with 
metabolic syndrome encompassing obesity, insulin resistance, hypertension, and atherogenic dyslip-
idemia[2]. Recently, a new clinical entity, including NAFLD in non-obese/lean individuals has 
emerged. It soon became apparent that the existence of NAFLD in non-obese subjects should not be 
neglected since its prevalence has significantly increased. According to a recently published meta-
analysis, up to 40% of NAFLD patients are non-obese, with the highest prevalence in western countries 
as opposed to previous findings dominantly allocating this entity in Asian regions[3]. The clinical 
consequences of NAFLD can be detrimental; for instance, progression to significant fibrosis remains 
uncertain as well as long-term cardiometabolic complications and mortality[4-7]. However, prevalence 
data and terminology are quite variable since definitions used to determine lean and obese patients 
differ among various studies, depending on Asian or Caucasian cutoff values. In addition, a body mass 
index (BMI) cutoff value of 25 kg/m2 is frequently used to differ between lean and obese individuals, 
thus excluding the overweight population (Table 1). Here, we decided to use terms “non-obese” or 
“lean NAFLD” depending on the study in question and definitions used.

The recognition of NAFLD in lean individuals is associated with a concept known as the metabolic 
phenotype. There are separate subgroups of individuals divided according to their phenotype and 
metabolic profile to metabolically unhealthy normal weight (MUHNW) and metabolically healthy obese 
(MHO), the latter being disputable due to higher incidence of cardiovascular disease (CVD) in long-
term studies[8]. Distinguishing between those phenotypes is based on BMI, an inadequate surrogate 
marker for determining the quantity of skeletal muscle mass and adipose tissue, especially in the 
visceral area[9]. As a consequence, a MUHNW individual could be a person with sarcopenia and a high 
proportion of fat tissue, with a high probability of developing insulin resistance and/or metabolic 
syndrome (MetS), subsequently leading to the development of NAFLD[10]. In addition, other factors 
could be involved in the pathogenesis of NAFLD in lean subjects such as genetics [e.g., patatin-like 
phospholipase domain-containing 3 (PNPLA3) variant (rs738409 C/G)][11], environmental factors 
including dietary habits[12,13] and physical activity[14], changes in gut microbiota[15], and secondary 
causes such as hypothyroidism or polycystic ovary syndrome.

Lean NAFLD patients were traditionally considered to have milder metabolic disturbances, thus 
carrying a lower risk for the development of CVD and progression to non-alcoholic steatohepatitis 
(NASH) and fibrosis[6,16,17]. However, recent data suggest that progression to diabetes as well as 
NASH and fibrosis is higher in lean NAFLD individuals, undoubtedly linking visceral fat tissue with 
undesirable consequences of MUHNW phenotype[5,10,18,19]. Still, a contribution of specific 
components of MetS to fibrosis remains unclear, although insulin resistance seems the most probable 
culprit[20-22], Table 1.

In this critical review, we summarized available data and addressed practical issues of whether it is 
time to shift perspectives away from the scale and how to screen for non-obese patients with a metabol-
ically unhealthy profile.

METABOLIC PHENOTYPE – THE KEY ROLE PLAYER IN THE DEVELOPMENT OF NAFLD 
IN LEAN INDIVIDUALS
Obesity is generally associated with severe health consequences, mainly related to increased 

https://www.wjgnet.com/1948-5182/full/v13/i1/80.htm
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Table 1 Prevalence, characteristics, and outcomes in lean/non-obese individuals with non-alcoholic fatty liver disease

Author, year Population, study 
design, sample size Prevalence of NAFLD in lean subjects Main findings

Zou et al[4], 
2020 

Mixed population, 
1999-2016 NHANES 
databases

32.3% overall NAFLD prevalence; 22.7% obese and 9.6% 
non-obese; Amongst NAFLD patients, 29.7% were non-
obese (Caucasian BMI 25-30 kg/m2, Asian BMI 23-27 
kg/m2), of which 13.6% had lean NAFLD (Caucasian 
BMI < 25 kg/m2, Asian BMI < 23 kg/m2)

Non-obese NAFLD individuals had higher 15-year 
cumulative all-cause mortality (51.7%) than obese 
NAFLD (27.2%) and non-NAFLD (20.7%) 

Huang et al
[20], 2020

2483 Asian 
participants, 
community based 
study

44.5% NAFLD and 15.8%, MetS prevalence; Among 
NAFLD subjects, 48.8%were obese (BMI ≥ 24 kg/m2)

IR is predictive of NAFLD irrespective of BMI; CV 
risk calculated by Framingham Risk Score may exist 
in lean NAFLD subjects

Tobari et al
[18], 2020

Asian, biopsy-proven 
762 NAFLD patients, 
cross sectional study

Over 25% men and almost 40% women were non-obese, 
but most of them had visceral fat obesity and/or IR; 
BMI cutoff 25 kg/m2

NAFLD was not milder in non-obese patients; 
Histological steatosis was associated with BMI; 
Advanced fibrosis was not associated with BMI and 
showed a significant sex difference

Kim et al[10], 
2020

664 Asian subjects with 
biopsy-proven NAFLD 
and controls, cross 
sectional study

542 subjects with biopsy-proven NAFLD132 non-obese 
NAFLD (BMI < 25 kg/m2) ; 410 obese NAFLD (BMI > 
25 kg/m2) ; 122 controls

Non-obese subjects with NAFLD displayed a similar 
severity of histological liver damage; Sagittal 
abdominal diameter was independently associated 
with significant fibrosis among subjects with non-
obese NAFLD

Alferink et al
[71], 2019

4609 elderly European, 
population based study

1623 had NAFLD (n = 161 normal-weight and n = 1462 
overweight, BMI cutoff 25 kg/m2)

Both high fat mass and low SMI were associated with 
normal-weight NAFLD; Fat distribution (assessed by 
AGR) could best predict NAFLD prevalence

Denkmayr et 
al[19], 2018

European, 466 patients 
diagnosed with 
NAFLD, cross sectional 
study

Lean (BMI ≤ 25.0 kg/m², n = 74) ; Overweight (BMI > 
25.0 ≤ 30.0 kg/m², n = 242) ; Obese (BMI > 30.0 kg/m², n 
= 150)

Lean NAFLD patients had a histological picture 
similar to obese patients but more severe compared to 
overweight patients. 

Gonzalez-
Cantero et al
[21], 2018

European, cross-
sectional study 113 
non-obese, non-
diabetic individuals 

55 patients diagnosed with NAFLD; NAFLD defined as 
hepatic triglyceride content > 5.56% (quantified by 3T 
H1-MRS) ; BMI cutoff 25 kg/m2

Lean-with-NAFLD group had significantly higher 
HOMA-IR and lower serum adiponectin than the 
overweight-without-NAFLD group; IR was 
independently associated with NAFLD but not with 
waist circumference or BMI

Hagström et 
al[5], 2017

European, prospective 
cohort study of 646 
patients with biopsy-
proven NAFLD

19% lean NAFLD; 52% overweight NAFLD; 29% obese 
NAFLD; BMI cutoff 25 and 30 kg/m2

Lean NAFLD had lower stages of fibrosis and higher 
risk for severe liver disease development compared to 
patients with NAFLD and a higher BMI, independent 
of available confounders (follow-up 19.9 years)

Leung et al
[6], 2017

Asian, prospective, 307 
NAFLD patients

23.5% were non-obese; BMI cutoff 25 kg/m2 Non-obese NAFLD patients have less-severe disease 
and may have a better prognosis than obese patients; 
Hypertriglyceridemia and higher creatinine are the 
key factors associated with advanced liver disease in 
non-obese patients

Fracanzani et 
al[11], 2017

European, 
retrospective cohort 
study of 669 patients 
with biopsy-proven 
NAFLD 

143 patients had BMI < 25 kg/m2 and NAFLD 20% of patients with lean NAFLD have NASH, 
fibrosis scores of 2 or higher, and carotid athero-
sclerosis

Feldman et al
[22], 2017

Caucasian, cross 
sectional, 187 subjects 
with hepatic steatosis 
on ultrasound

Lean healthy (BMI ≤ 25 kg/m2, no steatosis, n = 71) ; 
Lean NAFLD (BMI ≤ 25 kg/m2, steatosis, n = 55) ; obese 
NAFLD (BMI ≥ 30 kg/m2, steatosis; n = 61)

Lean NAFLD have impaired glucose tolerance, low 
adiponectin concentrations and an increased rate of 
PNPLA3 risk allele carriage

Feng et al[7], 
2014

Asian, population 
based, 1779 
participants

The prevalence of NAFLD was 18.33% in the lean group 
and 72.90% in the overweight-obese groupBMI cutoff 24 
kg/m2

Lean-NAFLD was more strongly associated with 
diabetes, hypertension, and MetS than overweight-
obese-NAFLD; NAFLD patients were more likely to 
have central obesity especially in lean groups

Younossi et al
[17], 2012

Mixed population, 
1988-1994 NHANES 
databases

2185 (18.77% ± 0.76%) of subjects had NAFLD; 7.39% ± 
0.65% had lean NAFLD; 27.75% ± 1.00% had 
overweight/obese NAFLDBMI cutoff 25 kg/m2

Lean NAFLD was independently associated with 
younger age, female sex, and a decreased likelihood of 
having IR and hypercholesterolemia

Margariti et al
[16], 2012

European, cross 
sectional, 162 NAFLD 
patients

Normal BMI was present in 12% of patients; BMI cutoff 
25 kg/m2

Lean NAFLD patients do not have IR-associated 
metabolic disorders, but they have higher levels of 
ALT/AST than the overweight or obese NAFLD 
patients

3T H1-MRS: 3Tesla H1-magnetic resonance spectroscopy; ALT: Alanine aminotransferase; AGR: Android gynoid ratio; AST: Aspartate aminotransferase; 
BMI: Body mass index; CV: Cardiovascular; IR: Insulin resistance; MetS: Metabolic syndrome; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-
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alcoholic steatohepatitis; SMI: Skeletal muscle index.

cardiovascular risk[8]. However, a subset of obese patients will never develop cardiovascular disease 
and is therefore considered an MHO. Conversely, metabolically unhealthy patients exist even in the 
group of normal-weight people, the category known as the MUHNW. People with this phenotype seem 
to have 1.5 to 3-times higher risk for cardiometabolic complications than metabolically healthy normal-
weight people and even higher risk than MHO[23,24], but unfortunately often go under the radar for 
cardiovascular screening and primary outcome prevention.

Generally, the assessment of cardiovascular risk, regardless of the patient’s BMI, was historically 
mainly based on the presence of the MetS. However, according to data from prospective studies, only a 
smaller proportion of individuals in the normal-weight category with cardiovascular events have MetS 
compared to patients with cardiovascular events who were overweight or obese (20% compared to 52% 
and 76%, respectively)[25]. Although MetS as such might not be an accurate predictor of CV risk in 
normal-weight individuals, its components, especially, lipids and glucose level, as well as waist circum-
ference and waist-to-hip ratio might be useful for risk stratification[9,26,27]. On the other hand, up to 
30% of normal-weight individuals can be classified as metabolically obese normal weight having an 
increased cardiometabolic risk.

It seems that the distribution and health of fatty tissue, rather than its amount, is likely the major 
determinant of disease risk. For example, higher amounts of visceral fat compared to peripheral and 
subcutaneous fat comprise a higher metabolic risk and are directly linked to both liver inflammation 
and fibrosis, independently of insulin resistance and hepatic steatosis[24,28-30].

Some previously published studies have failed to show an association of insulin resistance and 
NAFLD in lean individuals[16,17]. However, more recently published studies have demonstrated the 
opposite, linking insulin resistance with the development of NAFLD, irrespective of BMI[10,20-22].

In a study published by Kim et al[10] comparing non-obese with Mets and obese without MetS, the 
ratio of visceral adipose tissue area-to-subcutaneous adipose tissue area (VAT/SAT) was independently 
linked with NASH or fibrosis in a dose-dependent manner, confirming that metabolic phenotype is 
crucial in the progression of liver disease, irrespective of the presence of obesity. Lean with MetS were 
non-obese, had insulin resistance, and an increased VAT area[10]. Another community-based study in 
the Asian population demonstrated that insulin resistance was a significant predictive factor for NAFLD 
in both obese and lean subjects[20].

Obviously, metabolic disturbances are responsible for disease progression, with insulin resistance 
being a key role player (Figure 1). The mechanisms involved seem to be similar as in obese individuals
[22]. Higher levels of free fatty acids, enhanced adipose tissue lipolysis, and decreased fat storage 
capacity of subcutaneous fat tissue overcome fatty acid oxidation and triglyceride secretion leading to 
the accumulation of triglycerides in hepatocytes[23,31]. An increase in lipotoxicity causes pronounced 
oxidative stress[32], whereas chronic inflammation is continuously being fueled by changed adipokine 
secretion from visceral adipocytes, primarily decreased adiponectin secretion together with 
mitochondrial dysfunction leading to further liver injury[23,31].

Some of the major game-changers determining the nature of metabolic profiles are dietary intake and 
physical activity. To date, published data indicate a correlation between weight gain in non-obese 
individuals with the development of NAFLD[12,13], suggesting that calorie intake and modest weight 
gain in non-obese individuals have deleterious effects on metabolic disturbances primarily through an 
increase in visceral adipose tissue. Conversely, waist circumference and body weight reduction 
achieved through lifestyle intervention were independent predictors of NAFLD resolution in lean 
subjects[33]. Furthermore, sarcopenia is positively correlated to insulin resistance in obese patients and 
is considered one of the major factors responsible for the obesity paradox[14]. The potential mechanisms 
involved are the accumulation of intramyocellular lipid and intermuscular adipocytes, chronic inflam-
mation, and loss of insulin sensitivity to protein synthesis preceding insulin resistance to glucose 
metabolism[34]. Thus, we could hypothesize that the unfavorable ratio of skeletal muscle mass and 
visceral adipose tissue in non-obese individuals is one of the main determinants of insulin resistance. 
Indeed, it has been shown that physical activity increases skeletal muscle mass, thus improving 
sarcopenia and lean/fat tissue mass ratio advancing metabolic health in non-obese individuals through 
the reduction of insulin resistance[18,35].

OTHER RISK FACTORS INVOLVED IN THE DEVELOPMENT OF NAFLD IN LEAN 
INDIVIDUALS
Compared to obese and overweight NAFLD patients, some clinical, biochemical, and histological 
distinctions have been observed in lean NAFLD subjects, going far beyond the simple differences in the 
BMI. Specifically, low adiponectin levels and high concentrations of proinflammatory cytokines suggest 
a pronounced degree of adipose tissue dysfunction and distinct metabolic and gut microbiota profiles
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Figure 1 Pathophysiological mechanisms and outcomes of non-alcoholic fatty liver disease in non-obese individuals. NAFLD: Non-alcoholic 
fatty liver disease.

[11,19,36-38]. Additionally, impaired glucose metabolism and carriage of the PNPLA3 minor allele was 
seen in lean Caucasian NAFLD patients[22].

Genetic factors
Several genes and single-nucleotide polymorphisms (SNPs) associated with NAFLD have been 
identified, of which transmembrane 6 superfamily member 2 (TM6SF2)[39-41] and the patatin like 
PNPLA3[42-44] are the most investigated ones.

The rs58542926 genetic variant of TM6SF2 gene, which encodes the E167K aminoacidic substitution 
and determines neutral fat accumulation in the liver, has been implicated in NAFLD development. 
Previous studies suggested a significant association between the TM6SF2 polymorphism and disease 
severity and/or progression[39,41].

The rs738409 genetic variant of the PNPLA3 gene, which takes part in lipid transformation, is now 
recognized as the major genetic determinant of NAFLD. A meta-analysis based on 23 case-control 
studies involving 6071 NAFLD patients and 10366 controls showed that PNPLA3 rs738409 
polymorphism is associated with disease severity and progression and that these changes were not 
influenced by the ethnicities or age of subjects[45]. In addition, Shen and al. demonstrated that the G 
allele in PNPLA3 rs738409 increases the risk of NAFLD, especially in subjects without MetS, 
independent of dietary pattern and metabolic factors[46].

Genetic background for developing NAFLD in the absence of obesity has also been investigated in 
different populations. Initial reports on NAFLD in lean individuals originated mostly from an Asian 
background[7,47,48], and implicated Asian ethnic preponderance. However, “non-obese” NAFLD 
makes just over 40% of the NAFLD population and is common in both eastern and western countries[3].

Earlier studies in Asian populations found that the G allele at the PNPLA3 rs738409 mutation has 
been more common in lean than obese NAFLD patients (78.4% vs 59.8%; P = 0.001)[49]. However, a 
study investigating the prevalence of metabolic co-morbidities and PNPLA3 risk alleles (GG) in the 
Japanese population did not confirm the difference among the non-obese, obese, and severely obese 
groups of both sexes[18]. Similarly, a recently published study in the Chinese population found no 
difference in the SNPs of several genes (SIRT1, APOC3, PNPLA3, AGTR1, and PPARGC1A) between 
lean subjects with and without NAFLD[50].

In the Caucasian population, Feldman et al[11] showed a high rate of PNPLA3 risk alleles (CG/GG) in 
the lean NAFLD group compared with lean controls (odds ratio [OR] 2.676, P = 0.007), but at a 
comparable rate to obese NAFLD subjects (OR 0.759, P = 0.464)[22]. Another study investigating gene 
polymorphisms in the Caucasian population demonstrated that in lean NAFLD subjects, the only 
independent variable associated with NASH and significant fibrosis (≥ 2) was the GG PNPLA3 
polymorphism[11]. In addition, in lean NAFLD patients, a significantly higher prevalence of TM6SF2 
E167K variant carriers was associated with more severe steatosis, inflammation, and NASH.

Gut microbiota
The human gut microbiota (GM) forms a complex ecosystem involving different microorganisms 
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(bacteria; dominated by four bacterial phyla: Bacteroidetes, Firmicutes, Proteobacteria, and 
Actinobacteria[51], viruses, uni/pluricellular eukaryotes) that have been implicated in various 
physiological processes[52]. The impact of diet on GM composition and function is well established, and 
alterations in the microbiome composition have been associated with the development of obesity, 
diabetes, MetS and NAFLD[15,53,54]. Previous studies have identified that NAFLD patients have 
altered microbiome with fewer proportions of Bacteroidetes and higher proportions of Porphyromas 
and Prevotella than healthy individuals[55,56]. Moreover, an increase in Lactobacillus, Escherichia, 
Streptococcus abundance, decrease in Ruminococcaceae, and Faecalibacterium prausnitzii, have also been 
identified in NAFLD patients[57-59].

In addition, substantial differences in fecal and blood microbiota profiles between obese and lean 
individuals with NAFLD have been identified in the Asian population[18]. Similarly, a Brazilian study 
confirmed a specific gut microbiota composition in lean NASH patients, showing a lower abundance of 
Faecalibacterium and Ruminococcus, and a deficiency in Lactobacillus compared with overweight and 
obese NASH patients[60]. These differences in microbiota composition between lean and obese NAFLD 
patients may serve as biomarkers for identifying the specific metabolic NAFLD phenotype.

AVOIDING PITFALLS IN THE DIAGNOSIS OF LEAN NAFLD 
After publishing a meta-analysis on metabolic health, which suggested the highest CV risk among 
individuals of normal weight who are metabolically unhealthy (response rate [RR] 3.14, 95% confidence 
interval [CI] 2.36-3.93)[61], Kramer et al[61] raised the need to phenotype metabolically unhealthy 
individuals.

Currently, definitions of metabolic health are not unique (Table 2). Sometimes they include either the 
absence of insulin resistance[62,63], or the absence of insulin resistance and low C-reactive protein 
(CRP) levels as a surrogate marker for inflammation, in combination with up to any two parameters of 
MetS[64,65]. In clinical practice, only the latter are used[66,67].

The study by Stefan et al[23] (2017) was the first head-to-head comparison of cardiometabolic risk 
phenotypes suggesting that metabolically unhealthy lean people mainly have insulin secretion failure, 
insulin resistance, and increased carotid intima-media thickness. Among the aforementioned, insulin 
resistance is the most widely used cardiovascular risk marker. Metabolically unhealthy normal-weight 
subjects (defined by a BMI < 25 kg/m2 and presence of insulin resistance), compared to their healthy 
counterparts, in addition to elevated CV risk, have an elevated risk of colorectal cancer (OR = 1.59, 
95%CI: 1.10-2.28)[68].

As already mentioned, BMI is an inadequate surrogate marker of metabolic health, especially in 
determining the ratio of visceral and subcutaneous fat tissue, the most important risk factors of 
NAFLD's insulin resistance and progression in lean individuals[10]. In addition, data on muscle mass 
are missing, thus providing no information on sarcopenia[69], which is clinically relevant in the 
development of NAFLD in lean patients. Thus waist circumference and/or waist-to-hip ratio might be a 
better tool. However, waist circumference is mostly dependent on BMI, meaning that normal-weight 
patients could have waist circumference in the normal range, but still have higher visceral fat tissue and 
increased cardiometabolic risk[9]. This issue could be avoided by using waist circumference adjusted for 
BMI, which has shown a strong linear increase in risk for cardiovascular mortality[70], but no data are 
available on the association of adjusted waist circumference and NAFLD in lean individuals.

Additionally, in an elderly population-based study, both high-fat mass and low skeletal muscle index 
were associated with normal-weight NAFLD, although fat distribution assessed by the android gynoid 
ratio was the best predictor of NAFLD prevalence[71].

CLINICAL AND THERAPEUTIC IMPLICATIONS OF NAFLD IN LEAN INDIVIDUALS 
ASSOCIATED WITH INSULIN RESISTANCE
The liver-related and general outcomes of patients with NAFLD depend on a number of factors 
including the presence of metabolic risk factors, especially type 2 diabetes mellitus and hypertension, 
severity of fibrosis, genetic predisposition, age, diet and other environmental factors.

Metabolic consequences 
Regarding metabolic health and clinical outcomes, cardiometabolic complications take the most 
prominent place in driving the mortality. It seems that metabolically unhealthy, regardless of BMI, 
including individuals within the normal range of BMI category, have the highest risk of cardiometabolic 
consequences[72]. Moreover, in a recently published study, normal-weight patients with central 
adiposity and coronary artery disease had a worse survival rate than normal, overweight, or obese 
subjects without central obesity[73]. However, long term studies in lean NAFLD patients and 
cardiovascular health are lacking. In a retrospective study of lean Caucasian patients with biopsy-
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Table 2 Definitions of metabolic health in non-obese

Definitions of metabolic health in non-obese individuals: 

Absence of insulin resistance Meigs et al[62]; Stefan et al
[63]

Absence of insulin resistance and low CRP levels as a surrogate marker for inflammation, in combination with up to any two 
parameters of metabolic syndrome 

Wildman et al[64]; Karelis et 
al[65]

Combination with up to any two parameters of metabolic syndrome Stefan et al[66]; Phillips[67]

Definition of metabolically unhealthy non-obese individuals:

BMI < 25 kg/m2 and presence of insulin resistance Stefan et al[23]

Waist circumference adjusted for BMI and/or android gynoid ratio and presence of insulin resistance Suggested by authors

BMI: Body mass index; CRP: C-reactive protein.

proven NAFLD vs obese or overweight individuals, 20% of patients who were lean developed NASH, 
significant fibrosis, and carotid atherosclerosis[11].

A study by Feng and coauthors addressed the question of metabolic consequences and laboratory 
discrepancies in lean subjects with NAFLD. Compared to obese and overweight NAFLD counterparts, 
lean Chinese NAFLD individuals had a higher risk of developing diabetes (OR = 2.47, 95%CI: 1.14-5.35), 
hypertension (OR = 1.72, 95%CI: 1.00-2.96) and MetS (OR = 3.19, 95%CI: 1.17-4.05), making them prone 
to the development of cardiovascular disease[7].

In terms of mortality, the higher fat mass could be associated with better nutritional state associated 
with higher survival rates (also known as obesity paradox); thus, lean individuals with the more severe 
and advanced liver disease could have a poor prognosis, especially if sarcopenia is present[74]. This was 
confirmed in a recently published meta-analysis, encompassing 93 studies including lean NAFLD 
individuals, demonstrating that all-cause mortality, liver-related mortality, and cardiovascular-related 
mortality in non-obese individuals with NAFLD was higher than that of obese individuals with NAFLD 
(12.1 vs 7.5 per 1000 person-years; 4.1 vs 2.4 per 1000 person-years; 4.0 vs 2.4 per 1000 person-years 
respectively)[3].

In addition, NHANES based study demonstrated that non-obese NAFLD individuals had increased 
15-year cumulative all-cause mortality (51.7%) compared to obese NAFLD (27.2%) and non-NAFLD 
(20.7%) patients[4].

Therefore it seems that NAFLD in lean individuals has serious cardiometabolic complications leading 
to an increase in mortality, even higher than in their obese counterparts.

Liver consequences - fibrosis, cirrhosis and cancer
Non-alcoholic fatty liver disease encompasses a spectrum of histological changes with different 
evolution and outcomes, ranging from simple steatosis to NASH with varying degree of fibrosis. The 
later entity is characterized by lobular inflammation and hepatocyte ballooning degeneration 
accompanied by various stages of fibrosis that more often progresses to cirrhosis. However, fibrosis can 
be found in liver biopsy specimens in the absence of significant inflammation; in a recent multicenter 
study from Italy and Finland, 34% of patients with significant fibrosis did not have NASH and 10.0% 
had no inflammation[75].

Currently there are no published data on the specific inflammatory pathways or hepatic stellate cells 
activation pathways that would be unique to the development of NASH in lean patients as opposed to 
obese NASH patients. It is therefore believed that progression of NASH in lean individuals follows 
pathways similar to those demonstrated in obese patients with NASH, and that rate of progression 
probably depends on the similar risk factors as in their obese counterparts[76].

In general, NAFLD is a slowly progressive disease, but more rapid progression occurs in 20% of 
patients[77]. In a meta-analysis of over 400 patients with paired liver biopsy, 34% of NAFLD patients 
had fibrosis progression, 43% had stable fibrosis, and 22% showed an improvement in the fibrosis stage 
during follow-up[77]. The rate of progression was doubled in the presence of arterial hypertension[77]. 
The data on the natural history and prognosis of lean patients with NAFLD remains conflicting. 
Although better or similar metabolic and histological profiles than in obese NAFLD patients are mainly 
suggested, long term liver related outcomes remain an open question[5,6,19].

In a retrospective cohort study from Italy, significantly lower proportions of lean NAFLD patients 
had NASH (17% vs 40% of obese or overweight patients), and significant fibrosis of F2 or more (17% vs 
42% for obese/overweight NAFLD patients)[11]. However, lean patients with high waist circumference 
had increased risk of significant fibrosis of F2 or more, compared to overweight/obese subjects with the 
same waist circumference[11]. A study from two university centers from Sweden with a median follow-
up of 20 years reported that 50% of lean patients had NASH compared to 65% and 80% of overweight 
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and obese subjects[5]. Yet, lean patients with NAFLD had slightly more events of severe liver disease 
(defined as decompensated liver disease, liver failure, hepatocellular carcinoma, or cirrhosis) compared 
to overweight patients (16% vs 9%), but similar to obese patients (14%)[5]. The main finding of the study 
was that although lean patients had a better prognostic profile at baseline with less advanced fibrosis 
and NASH, an increased risk for the development of severe liver disease was found compared to 
patients with a higher BMI[5].

In a study from Hong Kong, non-obese patients had lower NAFLD activity score and lower fibrosis 
stages compared to obese patients[6]. In a recently published meta-analysis, 39% of non-obese or lean 
NAFLD patients had NASH (compared to 53% of obese individuals), 25% had significant lobular 
inflammation (compared to 36% of obese), 29% had significant fibrosis of F2 or more (compared to 38% 
of obese individuals), and 3% had cirrhosis in one study[3]. However liver related mortality was higher 
in non-obese NAFLD subjects compared to obese equivalents (4·1 per 1000 person-years vs 2·4 per 1000 
person-years)[3].

Additionally, in a study published by Kim et al[10] progression to NASH and fibrosis was equally 
present in non-obese patients with MetS and obese patients without MetS (55%-60%) linking metabolic 
phenotype with the liver disease progression.

Cirrhosis of any etiology is a well-known risk factor for the development of hepatocellular carcinoma 
(HCC); the same is true for NAFLD-induced cirrhosis. The reported incidence of HCC development in 
patients with NAFLD varies significantly depending on the study population, ranging from 0.25% to 
11% after 5 years[78,79]. Furthermore, in a significant proportion of patients, ranging from 23% to 46%, 
HCC has been reported to develop in the earlier stages of the disease, before the development of 
cirrhosis[80,81]. Except for the study of Hagström et al[5] where the incidence of hepatocellular 
carcinoma was collectively reported with other liver-related outcomes, no data on the incidence and risk 
of HCC development in the subgroup of lean patients with NAFLD has been published. Until new data 
becomes available, no conclusions can be drawn on the risk for HCC development in lean individuals 
with NAFLD.

MANAGEMENT 
As 3%-25% of lean/non-obese and non-diabetic individuals are diagnosed with NAFLD, with potential 
for progression to NASH and subsequently liver fibrosis with metabolic dysfunction, it is of interest to 
find pharmacological modalities and lifestyle interventions to treat this specific phenotype[82-84]. 
Animal studies on obese rats and mice showed significant reductions in hepatic steatosis and oxidative 
stress when glucagon-like peptide-1 receptor agonists (GLP-1RAs) were used to treat liver steatosis with 
no or mild fibrosis[85,86]. Moreover, randomized control trial investigating the role of liraglutide (daily 
GLP-1RA) reported on histological resolution of NASH after 48 wk of treating obese and overweight 
NASH patients[87]. Data on lean NAFLD/NASH counterparts are lacking, but recently published 
animal study gave promising results. Ipsen and colleagues reported on liraglutide effects in reducing 
both inflammation and hepatocyte ballooning in advanced NAFLD in an animal model. The treatment 
was more effective than dietary intervention, and when the two were combined, they led to rapid 
weight loss[88].

Still, available data on the treatment and management of lean subjects with NAFLD are practically 
non-existent, and further studies are needed to evaluate the effects of lifestyle changes and pharmaco-
therapy in this vulnerable population.

CONCLUSION
NAFLD in lean individuals presents a severe global burden with detrimental clinical consequences. 
Determining metabolic phenotype is crucial for detecting normal-weight patients at risk of developing 
NAFLD and preventing possible long-term complications, such as the cardiometabolic, liver, and all-
cause mortality, which may be even more pronounced than in the obese individuals. The main charac-
teristic of MUHNW seems to be insulin resistance associated with visceral adiposity; thus, waist circum-
ference or the android gynoid ratio along with HOMA IR could be better predictors of NAFLD in lean 
subjects than traditionally used BMI and other components of metabolic syndrome. Insulin resistance is 
undoubtedly associated with the development of NAFLD in lean individuals irrespective of BMI and 
the presence of MetS; however, is it causality or correlation remains an open question.
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Abstract
BACKGROUND 
The broader use of high-throughput technologies has led to improved molecular 
characterization of hepatocellular carcinoma (HCC).

AIM 
To comprehensively analyze and characterize all publicly available genomic, gene 
expression, methylation, miRNA and proteomic data in HCC, covering 85 studies 
and 3355 patient sample profiles, to identify the key dysregulated genes and 
pathways they affect.

METHODS 
We collected and curated all well-annotated and publicly available high-
throughput datasets from PubMed and Gene Expression Omnibus derived from 
human HCC tissue. Comprehensive pathway enrichment analysis was performed 
using pathDIP for each data type (genomic, gene expression, methylation, miRNA 
and proteomic), and the overlap of pathways was assessed to elucidate pathway 
dependencies in HCC.

RESULTS 
We identified a total of 8733 abstracts retrieved by the search on PubMed on HCC 
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for the different layers of data on human HCC samples, published until December 2016. The 
common key dysregulated pathways in HCC tissue across different layers of data included 
epidermal growth factor (EGFR) and β1-integrin pathways. Genes along these pathways were 
significantly and consistently dysregulated across the different types of high-throughput data and 
had prognostic value with respect to overall survival. Using CTD database, estradiol would best 
modulate and revert these genes appropriately.

CONCLUSION 
By analyzing and integrating all available high-throughput genomic, transcriptomic, miRNA, 
methylation and proteomic data from human HCC tissue, we identified EGFR, β1-integrin and 
axon guidance as pathway dependencies in HCC. These are master regulators of key pathways in 
HCC, such as the mTOR, Ras/Raf/MAPK and p53 pathways. The genes implicated in these 
pathways had prognostic value in HCC, with Netrin and Slit3 being novel proteins of prognostic 
importance to HCC. Based on this integrative analysis, EGFR, and β1-integrin are master 
regulators that could serve as potential therapeutic targets in HCC.

Key Words: Hepatocellular carcinoma; Gene expression; miRNA; Methylation; Proteomics; High throughput 
data

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Analyzing all available high-throughput genomic, transcriptomic, miRNA, methylation and 
proteomic data from human hepatocellular carcinoma tissue, we identified master regulators of key 
pathways in hepatocellular carcinoma, such as the mTOR, Ras/Raf/MAPK and p53 pathways.
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INTRODUCTION
The molecular basis of hepatocellular carcinoma (HCC) has been elusive, given the significant hetero-
geneity of this tumor that arises in the context of various chronic liver diseases[1]. HCC remains a high-
fatality cancer, despite large-scale efforts to better characterize and therapeutically target this 
malignancy. Since prevalence of cirrhosis due to hepatitis C and fatty liver disease is increasing in North 
America, HCC continues to rise[2]. Five-year survival remains poor at 18% due to late diagnosis and 
inability to tolerate chemotherapy in patients with cirrhosis[2]. Consequently, there is an urgent need to 
better understand the molecular basis of this highly fatal cancer.

Clinical management of HCC is optimized based on disease stage[3]. Curative treatment with 
resection, radiofrequency ablation or transplantation is possible in early stage disease[4]. When HCC is 
diagnosed at a later stage, sorafenib is the first-line chemotherapy, which is directed against the 
Ras/Raf/MAPK pathway[4]. This is associated with a very modest improvement in overall survival of 3 
additional months as compared to placebo (10.7 mo vs 7.9 mo)[5].

The cancer genome atlas (TCGA) is a large-scale project that has enabled improved characterization 
of cancers with several layers of data. The TCGA multi-platform analysis of 196 HCC tumors described 
this cancer as highly heterogeneous and difficult to characterize, although certain key pathways did 
emerge including the Ras/Raf/MAPK, mTOR, Wnt/B-catenin, and Sonic Hedgehog pathways[1,6]. 
Integration of various types of data has previously been performed to map interaction networks. By 
integrating genomic, transcriptomic and proteomic data, one can understand potential interactions that 
contribute to a disease condition or process[7,8]. These interactions may otherwise not be uncovered, on 
the basis of a single type of data. This systems biology approach has been especially important in cancer, 
given that alterations in one gene can have a ripple effect on proteins in the rest of a protein-protein 
interaction network. Therefore, elucidating the layers of data in a disease can provide additional 
insights into the pathways that drive cancer[9].

In the current study, we aim to characterize the landscape of high-throughput data profiling in HCC 
and determine the patterns in key dysregulated genes and pathways across these different layers of 
data. The patterns that emerge could help in better understanding the pathways that drive HCC and 
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could be considered as therapeutic targets.

MATERIALS AND METHODS
Data collection, analysis and database compiling
We downloaded all available high-throughput genomic, transcriptomic, microRNA, methylation, and 
proteomic datasets related to human HCC samples from published datasets (PubMed, 
h t t p : / / w w w . n c b i . n l m . n i h . g o v / P u b M e d  a n d  G e n e  E x p r e s s i o n  O m n i b u s  ( G E O ) ,  
https://www.ncbi.nlm.nih.gov/geo).

Using PubMed, the following search was performed for whole exome sequencing data on HCC: 
("carcinoma, hepatocellular" [MeSH Terms] OR ("carcinoma" [All Fields] AND "hepatocellular" [All 
Fields]) OR "hepatocellular carcinoma" [All Fields] OR ("hepatocellular" [All Fields] AND "carcinoma" 
[All Fields])) AND (whole [All Fields] AND ("exome" [MeSH Terms] OR "exome" [All Fields]) AND 
sequencing [All Fields]). The following MeSH terms were used to identify gene expression papers: 
("carcinoma, hepatocellular" [MeSH Terms] OR ("carcinoma" [All Fields] AND "hepatocellular" [All 
Fields]) OR "hepatocellular carcinoma" [All Fields] OR ("hepatocellular" [All Fields] AND "carcinoma" 
[All Fields])) AND ("gene expression" [MeSH Terms] OR ("gene" [All Fields] AND "expression" [All 
Fields]) OR "gene expression" [All Fields]) AND ("humans" [MeSH Terms] OR "humans" [All Fields]) 
AND English [All Fields] NOT ("review" [Publication Type] OR "review literature as topic" [MeSH 
Terms] OR "reviews" [All Fields]). To identify suitable papers regarding methylation in HCC, we used 
the following terms: ("methylation" [MeSH Terms] OR "methylation"[All Fields]) AND ("carcinoma, 
hepatocellular" [MeSH Terms] OR ("carcinoma" [All Fields] AND "hepatocellular" [All Fields]) OR 
"hepatocellular carcinoma" [All Fields] OR ("hepatocellular" [All Fields] AND "carcinoma" [All Fields]) 
AND ("humans" [MeSH Terms] AND English [lang]). Proteomics papers were retrieved using the 
following search: [("proteomics" [MeSH Terms] OR "proteomics" [All Fields]) AND high [All Fields] 
AND throughput [All Fields]] AND ("carcinoma, hepatocellular" [MeSH Terms]) OR ("carcinoma" [All 
Fields] AND "hepatocellular" [All Fields]) OR "hepatocellular carcinoma" [All Fields] OR ("hepato-
cellular"[All Fields] AND "carcinoma"[All Fields]). MicroRNAs reported in HCC were identified using 
these MeSH terms: ("micrornas" [MeSH Terms] OR "micrornas"[All Fields] OR "mirna" [All Fields]) 
AND profile [All Fields] AND ("carcinoma, hepatocellular" [MeSH Terms] OR ("carcinoma" [All Fields] 
AND "hepatocellular" [All Fields]) OR "hepatocellular carcinoma" [All Fields] OR ("hepatocellular" [All 
Fields] AND "carcinoma" [All Fields]).

We considered for inclusion all datasets available in PubMed.
The datasets publicly available on the GEO, a public functional genomics data repository of high-

throughput array data (https://www.ncbi.nlm.nih.gov/geo) were retrieved and analyzed using GEO2R 
(https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html), a web tool available on the portal, identifying 
genes differentially expressed between samples of HCC and the non-tumoral liver portion. GEO2R 
compares original submitter-supplied processed data tables using the GEOquery and limma R packages 
f r o m  t h e  B i o c o n d u c t o r  p r o j e c t .  F o l l o w i n g  i n s t r u c t i o n s  a v a i l a b l e  o n l i n e  a t  (
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html), we retrieved all dysregulated genes. Only those 
with an adjusted P value < 0.05, and expression fold change value below ≤ 0.5 or above ≥ 1.5 were 
considered for further analysis (Table 1, Supplementary Table 1). The genes included in our list from 
WES papers were reported as affected by nonsynonymous mutations, and synonymous mutations were 
not considered. Putative microRNA gene targets were identified using an online database, mirDIP 4.1
[10], (http://ophid.utoronto.ca/mirDIP). The most stringent predictive search option (top 1%) was used 
to obtain the list of putative targets of all differentially expressed miRNAs.

From the selected 11 methylation datasets, raw data from eight studies were available on the GEO 
website (https://www.ncbi.nlm.nih.gov/geo/). We selected the CpG sites or genes reported to be 
hyper-or hypo- methylated in these publications. The genomic region was considered differentially 
methylated between HCC tissue and the adjacent non-tumoral sample, if the FDR corrected P value < 
0.01. Furthermore, we filtered out everything that did not satisfy the criteria: ∆β ≥ 0.20 or ∆β ≤ -0.20, 
where ∆β = βHCC - βadjacent was the difference in methylation between above specified groups. When 
the CpG sites were considered, the Illumina HumanMethylation450K and 27K platforms were used for 
mapping to the genes. When multiple sites or genes were found to have the same sense of differential 
methylation, the mean value of ∆β was calculated. Only the CpGs in the 5’UTR, 1st Exon, TSS200, 
TSS1500 or in CpG islands were considered in our analysis. Proteomic results were retrieved and 
included only if protein abundance was reported as different in HCC liver samples compared to control 
samples.

Figure 1 outlines our study workflow. Papers were excluded from each specific search for the 
following reasons: Data from cell lines, or animal models, studying efficacy or drugs, or the presence of 
long non-coding RNA, mechanistic studies not performing high-throughput or evaluating the role of 
one molecule, papers focused on liver diseases but not HCC or liver tissue, not original data such as 
review articles, or those studies using already selected datasets, not reporting the modulation of the 
molecules, and papers without data available.

http://www.ncbi.nlm.nih.gov/PubMed
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
http://f6publishing.blob.core.windows.net/70723f8d-2a5c-4e23-97f2-715f3c8e9864/WJH-13-94-supplementary-material.pdf
http://ophid.utoronto.ca/mirDIP
https://www.ncbi.nlm.nih.gov/geo/
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Table 1 List of the final 85 selected publications for each layer of data. For each publication the number of hepatocellular carcinoma 
samples and controls and the platform used for the analysis are reported

Gene expression

No. year PMID HCC (n) Controls (n) GEO dataset

1 2004 17393520 35 13 GSE6764

2 2008 18504433 11 2 GSE6222

3 2008 18923165 80 82 GSE10143

4 2009 19098997 47 58 GSE14323

5 2009 19861515 16 47 GSE17967

6 2011 21320499 34 34 GSE20140 (GSE10141, 
GSE10140)

7 2011 21712445 40 40 GSE28248

8 2013 23691139 15 15 GSE17548

9 2013 23800896 GSE36376_276; 
GSE25097_211

GSE36376_247; 
GSE25097_283

GSE36376, GSE25097

10 2014 24498002 46 46 GSE47595

11 2014 24564407 45 45 GSE45114

12 2014 25093504 39 40 GSE57958

13 2014 25141867 11 11 GSE55092

14 2014 25376302 18 18 GSE60502

15 2014 25536056 72 72 GSE39791

16 2015 25666192 132 132 GSE54236

17 2015 25645722 228 168 GSE63898

18 2016 27499918 60 60 GSE64041

19 2016 25964079 26 20 GSE54238

Proteomics

No. year PMID HCC (n) Controls (n)

1 2004 14726492 8 8

2 2008 19003864 12 12

3 2005 15759316 10 10

4 2005 16097030 14 14

5 2007 17627933 12 12

6 2014 23621634 3 3

7 2009 19562805 3 3

8 2016 26709725 24 12

9 2013 23589362 20 20

10 2012 22813877 10 10

11 2012 22082227 11 11

12 2011 21631109 69 123

13 2010 20230046 5 5

14 2010 19956837 20 20

15 2009 19715608 18 18

16 2009 19535095 3 3

17 2009 19161326 80 80
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18 2004 15221772 20 20

19 2003 14673798 21 21

20 2003 14654528 21 21

21 2002 12481271 11 11

22 2013 23462207 7 7

23 2005 16335951 8 8

24 2006 16342242 10 10

25 2011 22034872 3 3

26 2005 15852300 7 7

27 2011 21913717 3 3

28 2007 17203974 25 28

29 2007 17586277 10 10

Whole exome sequencing

No. year PMID HCC (n) Controls (n) GEO dataset

1 2013 23912677 3 3 N/A

2 2014 24055508 4 7 N/A

3 2017 28323123 5 5 N/A

4 2014 24798001 231 231 GSE54504

5 2012 22561517 24 24 N/A

Epigenetic_miRNAs

No. year PMID HCC (n) Controls (n) GEO dataset

1 2015 26190160 9 7 N/A

2 2014 24789420 10 9 GSE31383

3 2014 24564407 45 45 GSE10694

4 2011 21298008 73 73 GSE21362

5 2008 18649363 78 10 N/A

6 2012 22135159 20 20 N/A

7 2011 21319996 94 94 N/A

8 2009 19473441 20 20 N/A

9 2009 19173277 35 N/A

10 2007 18171346 10 10 N/A

11 2006 16331254 25 25 N/A

12 2015 26062888 30 30 N/A

13 2015 26046780 327 43 N/A

14 2015 25861255 66 66 GSE54751

15 2015 25500075 6 6 GSE54537

16 2014 24875649 24 24

17 2013 23812667 166 166 GSE31384

18 2013 23390000 9 17 GSE40744

19 2012 23082062 18 18 N/A

20 2014 24586785 29 29 N/A

21 2013 24417970 78 78 N/A

Epigenetic methylation
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No. year PMID HCC (n) Controls (n) GEO dataset

1 2011 21500188 13 12 N/A

2 2014 24306662 45 45 N/A

3 2014 25376292 22 22 N/A

4 2015 25945129 8 8 GSE59260

5 2011 21747116 12 12 GSE29720

6 2010 20165882 20 20 GSE18081

7 2012 22234943 62 62 GSE37988

8 2013 24012984 20 8 GSE44970

9 2013 23208076 66 66 GSE54503

10 2014 25093504 59 59 GSE57956

11 2014 25294808 27 27 GSE60753

HCC: Hepatocellular carcinoma; GEO: Gene Expression Omnibus; N/A: Not applicable.

Available patient data, including etiology of liver disease (hepatitis C, hepatitis B, alcohol, fatty liver 
disease) on the basis of which the HCC tumors developed, presence of cirrhosis, the Model for End-
stage Liver Disease score (MELD score, an assessment of the severity of liver dysfunction), tumor 
histology, stage of cancer, alpha-fetoprotein level, overall and recurrence-free survival following 
treatment were also documented (Supplementary Table 2).

Pathway enrichment analysis
The key dysregulated genes from each type of data (genomic, miRNA, methylation, transcriptomic, and 
proteomic) were fed into the Integrated Interactions Database[11] (IID, http://ophid.utoronto.ca/iid), to 
obtain a list of the protein-protein interactions. For the miRNA dataset, we determined the target genes 
of the differentially expressed miRNAs in tumors using the miRNA Data Integration Portal mirDIP v4.1
[10]. The individual lists derived from each type of data were then fed into the pathway Data 
Integration Portal, pathDIP v3.0 (http://ophid.utoronto.ca/pathDIP)[12], in order to determine the 
significantly dysregulated pathways in HCC. pathDIP integrates data from 20 major pathway 
databases, and computationally predicts gene association to curated pathways using protein-protein 
interactions from IID significance of their connectivity[12]. We used this comprehensive pathway 
enrichment analysis portal to obtain a list of significantly enriched pathways using literature curated 
(core) pathway memberships P value (FDR: BH-method) less than 0.05.

The lists of pathways from each type of data were then assessed for overlap using Venny 2.1, an 
online tool for Venn diagram design (http://bioinfogp.cnb. csic.es/tools/venny/index.html).

Retrospective validation on independent dataset
In order to determine whether key differentially expressed genes along the overlapping pathways had 
prognostic value, we used KMplotter, a web-based tool that enables survival analysis across multiple 
cancers and datasets[13]. Patient samples were split into two groups per autoselection of the best cutoff 
for each gene, in order to assess its prognostic value. We ran multivariate overall survival analysis based 
on the high vs low expression of each gene in HCC tumors. The two groups were compared by 
a Kaplan-Meier survival plot, and the hazard ratio with 95% confidence intervals and log-rank P value 
were calculated.

Drug identification by CTD
The identification of putative therapeutic agents able to revert the modulation of genes of interest based 
on their modulation associated with a worse prognosis was obtained using the online Comparative 
Toxicogenomics Database http://ctdbase.org[14]. This database provides manually curated information 
about chemical–gene/protein interactions, chemical–disease and gene–disease relationships.

RESULTS
We identified a total of 8733 abstracts retrieved by the search on PubMed on HCC for the different 
layers of data on human HCC samples, published until December 2016. The flow chart outlining the 
selection process is detailed in Figure 1.

http://f6publishing.blob.core.windows.net/70723f8d-2a5c-4e23-97f2-715f3c8e9864/WJH-13-94-supplementary-material.pdf
http://ophid.utoronto.ca/iid),
http://ophid.utoronto.ca/pathDIP
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://ctdbase.org
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Figure 1  Flow chart showing the paper selection process and exclusion criteria for each data type: Gene expression, proteomics, whole 
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exome sequencing, microRNAs and methylation.

The number of samples included in our analysis are as follows: (1) Whole exome sequencing: 267 
HCC and 270 control samples; (2) Gene expression: 870 HCC and 814 control samples; (3) miRNA: 1172 
HCC and 771 control samples; (4) Methylation: 354 HCC and 341 control samples; and (5) Proteomics: 
421 HCC and 473 control samples. The methodologies and platforms used to obtain these high-
throughput data are reported by type of data (genomic, transcriptomic, miRNA, methylation and 
proteomic) in Table 1. Clinical data, regarding etiology of liver disease (hepatitis C, hepatitis B, alcohol, 
fatty liver disease) were frequently reported, on the other side serum levels of liver enzymes, AST and 
ALT, frequently used to assess liver functions were not available. Pathological details relative to differ-
entiation or stage were frequently absent as well as other crucial variables in the clinic setting, such as 
Child Pugh/MELD score (Supplementary Table 2).

Integrative analysis reveals most important pathways in HCC
There were 188 overlapping dysregulated genes/proteins across the different types of data. 
Independently for each type of data, we obtained a list of pathways using pathDIP. We merged the list 
of dysregulated pathways in miRNA and methylation, given that these epigenetically regulate gene 
expression, in order to assess for overlapping pathways across the datasets.

This resulted in a list of 3 common, overlapping pathways among the different types of data: EGFR, β
1-integrin, and axon guidance pathways, as depicted in Figure 2. From the previous list of 188 common 
dysregulated elements in all different layers of data (Figure 3), we were able to identify 35/188 genes 
that were involved in these 3 shared pathways across the layers of data (Supplementary Table 1).

Prognostic value of pathways in HCC
We then examined the prognostic value of the deregulated genes associated to pathways of interest in 
HCC using TCGA RNA seq dataset, as listed in Table 2. Median survival of 364 patients in the TCGA, 
which was used for validation purposes regarding the prognostic value is reported. KMplotter HR 
results from TCGA RNA seq data reflected the altered modulation identified for these 9 genes in the 19 
HCC papers relative to the gene expression data (Table 2). Among the five upregulated genes associated 
with positive HR values, CDK5, was reported with the highest HR value (1.85, P = 0.0035) and involved 
in cell cycle (Table 3). The other 4/9 genes reported as upregulated, COL2A1, LAMC1, RPS6KA3 and 
ITGB1 were identified with positive HR value by KM plotter analysis and involved in cellular migration 
(Table 2 and Table 3).

Four out of 9 genes were reported as downmodulated in the 19 HCC gene expression papers. Among 
these four, two genes, FGA and FGG, were identified as the top statistically significantly (P = 0.0009) 
associated with a protective role in HCC (HR values 0.52 and 0.59, respectively). FGA and FGG were 
consistently reported as downmodulated in about 45% of our 19 selected gene expression papers 
(Table 3). The other two downmodulated genes, EPHB1 and EFGR with negative HR values (Table 2) 
are reported to be affected by missense mutation leading to a loss of their protective role against cell 
migration.

Estradiol is a therapeutic agent that appropriately targets HCC genes
Using CTD, we found that estradiol was able to appropriately down- or upmodulate 4 out of 9 cancer-
related genes (Table 2). Particularly, CTD reported estradiol capabilities to upregulated FGA, FGG and 
EGFR reported downmodulated in HCC (Table 2) and counteracting the upregulation of RPS6KA3 in 
HCC, suggesting a possible role for this hormone in HCC treatment.

DISCUSSION
In this study, we evaluate the molecular pathogenesis of HCC using a unique approach, that of 
combining all publicly available high-throughput data from patient HCC tumors. This encompasses all 
miRNA, methylation, genomic, transcriptomic and proteomic profiling data present in the literature, 
and represents the first effort to derive a consensus molecular model of HCC through analysis of these 
different types of data. Although these datasets originated from different patient cohorts, presented 
integrative analysis offers the opportunity to explore common key pathway dependencies of HCC. 
Starting with the initial generation of genomics and whole exome sequencing data, previous high-
throughput studies have brought forth different lists of dysregulated genes, depending on the type of 
data evaluated. Dysregulated genes may affect different parts of a pathway. Therefore, a pathway-based 
approach when evaluating different types of high-throughput data offers the ability to assess the 
pathways most commonly affected in a given cancer. Additionally, the integrative analysis in our study 
encompasses a large number of patient samples.

http://f6publishing.blob.core.windows.net/70723f8d-2a5c-4e23-97f2-715f3c8e9864/WJH-13-94-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/70723f8d-2a5c-4e23-97f2-715f3c8e9864/WJH-13-94-supplementary-material.pdf
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Table 2 Prognostic value of the 9 dysregulated genes associated with the 3 common dysregulated pathways (EGFR, epidermal growth 
factor, β1-integrin and axon guidance) among the 4 types of data in obtained with KMplotter

Gene Modulation in the 19 
HCC papers Probe-ID HR CI Log-Rank P 

value
Median survival 
low (mo)

Median survival 
high (mo)

Estradiol gene 
modulation predicted by 
CTD

COL2A1 Up 1280 1.49 1.05-2.11 0.0229 61.7 54.1 N/A

FGA Down 2243 0.52 0.35-0.77 0.0009 49.7 70.5 +

FGG Down 2266 0.56 0.39-0.79 0.0009 38.3 70.5 +

LAMC1 Up 3915 1.43 0.98-2.09 0.06 56.5 38.3 N/A

CDK5 Up 1020 1.85 1.22-2.81 0.0035 81.9 6.2 N/A

EPHB1 Down 2047 0.72 0.048-
1.08

0.1135 54.1 70.5 N/A

RPS6KA3 Up 6197 1.2 0.8-1.78 0.3743 54.1 56.5 -

EGFR Down 1956 0.61 0.43-0.89 0.0085 31 70.5 +

ITGB1 Up 3688 1.37 0.95-1.97 0.0924 82.9 49.7 N/A

CTD based prediction identified Estradiol to efficiently affect the expression of the 4/9 genes based on their hazard ratios values. HR: Hazard ratios; HCC: 
Hepatocellular carcinoma; CI: Confidence interval; N/A: Not applicable.

Figure 2  Venn diagram shows the three common pathways (EGFR, epidermal growth factor, β1-integrin, and axon guidance pathways) 
across the four different types of data.

Using this integrative approach, we confirm the importance of EGFR, β1-integrin and axon guidance 
as pathways critical in hepatocarcinogenesis. EGFR activates the signaling cascades of the 
Ras/Raf/MAPK and mTOR pathways, two pathways that were identified as key to HCC pathogenesis 
in the TCGA study[6]. The identification of β1-integrin as being commonly dysregulated in HCC is 
novel, and its significance is confirmed through its consistent dysregulation across types of data. β1-
integrin is a cell surface receptor that senses the extracellular matrix, thereby modulating the hallmarks 
of cancer such as proliferative signaling with continuous activated cell replication, evasion of growth 
suppressors, resistance to angiogenesis as well as cancer cell invasion and metastasis[14].
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Table 3 Modulation of the 9 dysregulated genes associated with the 3 common dysregulated pathways (EGFR, epidermal growth 
factor, β1-integrin and axon guidance) identified in the 19 hepatocellular carcinoma gene expression papers. Their genetic alteration in 
hepatocellular carcinoma and their mechanism in cancer are reported

Gene
Modulation in 
the 19 HCC 
papers

PMID Mutation in HCC 
(PMID) Role in cancer (PMID)

COL2A1 Up (2/19) 23800896/25666192 (rs3917) polymorphism is 
associated with higher 
risk of HCC (21665180)

COL2A1 promotes migration in 
HCC (29858962)

FGA Down (9/19) 21320499/23800896/25093504/25536056/25141867/ 
25376302/25666192/25645722/25666192

Deleted in HCC patients 
(27511114)

FGA is a positive predictor of 
survival in gastric cancer 
patients (15756001)

FGG Down 8/19 21320499/23800896/25093504/25536056/25141867/ 
25376302/25645722/24498002

Allelic loss (16980951) FGG is involved in amino acid 
and redox metabolism pathway 
in HCC (28089356)

LAMC1 Up (4/19) 23800896/25536056/25141867/25645722 Not identified LAMC1 promotes tumor cell 
invasion and migration in HCC 
(28928891)

CDK5 Up (2/19) 25141867/25376302 Not identified CDK5 promotes proliferation in 
HCC (29312535)

EPHB1 Down (2/19) 23800896/25141867 Missense mutation 
(19469653)

EPHB1 inhibits cell 
migration(22242939)

RPS6KA3 Up 1/19 25141867 Somatic mutation and 
copy number variations 
(22561517)

RPS6KA3 increases cell prolif-
eration (15833840)

EGFR Down (2/19) 19098997/25141867 Missense mutation 
(26436086)

EGFR promotes cell adhesion 
(31465839)

ITGB1 Up (1/19) 25141867 Somatic number 
variations (24512821)

ITGB1 promotes migration 
(30664185)

HCC: Hepatocellular carcinoma.

 Ras/Raf/MAPK and mTOR are established pathways in hepatocarcinogenesis, and are integrin-
dependent signaling pathways[15]. Additionally, β1-integrin is known to crosstalk with EGFR. In fact, 
the downregulation of β1-integrin was found to decrease phosphorylation of EGFR and c-Met in 
hepatocytes during liver regeneration[16]. A synergistic relationship between integrins and EGFR has 
also been demonstrated in tumor progression[17]. The finding of axon guidance pathway-related 
proteins as being dysregulated across types of data, thereby establishing consistent dysregulation of this 
pathway in HCC, is also novel. Netrin-1 is the best studied protein in the axon guidance pathway, and is 
known to be overexpressed in various cancers[13]. It is responsible for regulation of apoptosis, with 
increased presence of netrin-1 leading to inhibition of apoptosis. The tumor suppressor p53, frequently 
mutated in the TCGA HCC study, regulates the cell cycle through netrin-1. The axon guidance pathway 
has previously been identified as a pathway that is significantly mutated in HCC based on integration of 
all genomic data in HCC[18]. This analysis revealed mutations along the axon guidance pathway as 
being prognostic of a higher rate of HCC metastasis. We were able to additionally validate the 
prognostic importance of dysregulated proteins in these pathways proteins using TCGA data.

HCC is a cancer that develops in the context of various chronic liver diseases, which may influence 
the molecular characteristics of HCC. Additionally, the underlying cirrhosis and liver dysfunction that 
are often concurrent may influence HCC development and behavior[2]. Patients are often diagnosed at 
an advanced stage of disease, when it is too late for curative treatment. A unique consideration in HCC 
is the inability to tolerate hepatotoxic chemotherapy in patients with liver dysfunction, as it is often 
patients with cirrhosis who develop HCC[19,20]. Therefore, liver function must be considered prior to, 
during, and after any form of treatment for HCC.

Thus, especially for HCC, it has been suggested that a multi-pronged approach to HCC therapy 
jointly targeting different pathways be adopted.

Omics technologies are essential in the progress towards elucidating the molecular basis of HCC. The 
current study represents the largest integration of all publicly available genomic, gene expression, 
methylation, miRNA and proteomic data in HCC, covering 85 studies and 3355 patient sample profiles. 
We identified consistently deregulated pathways associated with hepatocarcinogenesis across different 
types of data using integrative analysis tools, thereby confirming the importance of these genes in HCC 
pathogenesis. EGFR (activator of Ras/Raf/MAPK and mTOR) and β1-integrin (also modulator of the 
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Figure 3 From the previous list of 188 common dysregulated elements in all different layers of data. A: Number of genes/proteins identified in 
each data type; B: Venn diagram showing the 188 genes identified as commonly deregulated across the 4 different type of data.

aforementioned pathways) were clearly identified as pivotal to HCC[5,21-23]. This is in keeping with 
the efficacy of the Ras/Raf/MAPK inhibitors sorafenib and regorafenib in HCC[24].

Even beyond this, we found these consistently deregulated genes across pathways to be 
appropriately modulated by estradiol. HCC is less common in women, and there have been clinical 
studies demonstrating that hormone therapy and female sex are protective against HCC as described 
earlier in this thesis.

Other integrative multi-omics studies have been recently performed for other tumors with high 
mortality such as breast and ovarian cancer[6,25]. Several breast cancer studies emphasizing how data 
integration of genomic/transcriptomic and proteomic has improved the molecular characterization of 
subtypes of breast cancer and elucidate its heterogeneity and its interaction with the microenvironment 
and aggressiveness[26,27]. A single source of data was used in the ovarian cancer multi-omics mathem-
atical integration performed by Bhardwaj et al[25]. Copy number variation gene expression and 
methylation data from TCGA data portal were integrated using mathematical algorithm and identified 
32 co-expressed genes and 6 pathways associated with survival.

The main limitation of our study is the different patient samples represented by the various types of 
data. Nonetheless, there is a large amount of high-throughput data, which allowed us to detect pathway 
dependency patterns that are compatible with the current HCC literature. Additionally, HCC tumors 
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arise in the setting of various chronic liver diseases. We could not assess for etiology-specific genes and 
pathways in this study, given that the clinical and genetic data to evaluate these differences were not 
fully available for all the studies. Therefore, we could only evaluate gene differences over whole 
datasets, rather than individual patients, due not complete individual annotation of the samples 
available on GEO for each specific dataset. The HCC samples in this integrative analysis all came from 
patients who had undergone hepatectomy. There were no specimens from patients who were 
candidates for ablation therapy (early stage), those who were undergoing liver transplantation, or those 
with advanced HCC. One might anticipate that the molecular features of such tumors differ, given the 
different stages of HCC captured, but there is unfortunately scarcity of data in this regard.

CONCLUSION
In conclusion, our study represents the largest integrative analysis of all publicly available data in HCC, 
spanning different types of high-throughput data. Pathway enrichment analysis elucidated EGFR, β1-
integrin and axon guidance as pathway dependencies in HCC. These are proteins known to serve as 
master regulators of key pathways in HCC such as Ras/Raf/MAPK, Wnt/β-catenin and mTOR[28], and 
may serve as potential overarching therapeutic targets in HCC. The axon guidance pathway was 
identified as being of potential importance to HCC for the first time, with prognostic value suggested in 
patient sample validation with TCGA. Estradiol affects a large number of deregulated genes across data 
with appropriate modulation and may be a therapeutic agent that helps in HCC. A combined 
therapeutic approach conjointly targeting different pathways may be more optimal in the treatment of 
HCC, especially when underlying hepatic dysfunction compromises the ability to tolerate optimal 
chemotherapeutic doses.

ARTICLE HIGHLIGHTS
Research background
Hepatocellular carcinoma (HCC) is highly heterogeneous, difficult to characterize and the molecular 
basis of HCC has been elusive.

Research motivation
The Cancer Genome Atlas is a large-scale project that has enabled improved characterization of cancers 
with several layers of data. Elucidating the layers of data in a disease can provide additional insights 
into the pathways that drive cancer.

Research objectives
A novel integrative approach of all publicly available high-throughput data from patient HCC 
tumors was used to delineate critical pathway dependencies in HCC.

Research methods
A comprehensive analysis and characterization of all publicly available genomic, gene expression, 
methylation, miRNA and proteomic data in HCC covered 85 studies and 3355 patient sample profiles 
and identified the key overlapping dysregulated genes and pathways affected.

Research results
We identified the prognostic value of these genes in HCC genes, specifically with Netrin and Slit3 being 
novel proteins of prognostic importance to HCC.

Research conclusions
Our large integrative analysis of all publicly available data in HCC and our pathway enrichment 
analysis has elucidated epidermal growth factor, β1-integrin, and axon guidance as pathway depend-
encies in HCC.

Research perspectives
Based on our integrative analysis, epidermal growth factor, and β1-integrin are master regulators that 
could be considered as potential therapeutic targets in HCC.
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Abstract
BACKGROUND 
Hepatitis C virus (HCV) infection is a public health concern worldwide. Several 
factors, including genetic polymorphisms, may be evolved in the progression of 
HCV infection to liver diseases. Interferon lambdas (IFNLs) modulate the immune 
response during viral infections. IFNLs induce antiviral activity, interfering in the 
viral replication by promoting the expression of several genes that regulate 
immunological functions. The interferon lambda-4 (IFNL4) rs12979860 
polymorphism, which is characterized by a C to T transition in intron 1, is 
associated with spontaneous and treatment-induced clearance of HCV infection 
and may play a role in the development of HCV-associated liver diseases, 
including hepatocellular carcinoma (HCC).

AIM 
To investigate the association of IFNL4 rs12979860 polymorphism with fibrosis, 
cirrhosis, and HCC in patients with chronic HCV infection.

METHODS 
This study was comprised of 305 chronic HCV-infected patients (53 fibrosis, 154 
cirrhosis, and 98 HCC cases). The control group was comprised of 260 HCV-
negative healthy individuals. The IFNL4 rs12979860 polymorphism was 
genotyped using the TaqMan assay. Fibrosis was diagnosed based on liver biopsy 
findings, while cirrhosis was diagnosed through clinical, laboratory, anatomo-
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pathological, and/or imaging data. HCC was diagnosed through imaging tests, tumor, and/or 
anatomopathological markers.

RESULTS 
The T allele was observed in the three groups of patients (fibrosis, cirrhosis, and HCC) at a 
significantly higher frequency when compared with the control group (P = 0.047, P < 0.001, and P 
= 0.01, respectively). Also, genotype frequencies presented significant differences between the 
control group and cirrhosis patients (P < 0.001) as well as HCC patients (P = 0.002). The risk 
analysis was performed using the codominant and dominant T allele models. In the codominant 
model, it was observed that the CT genotype showed an increased risk of developing cirrhosis in 
comparison with the CC genotype [odds ratio (OR) = 2.53; 95% confidence interval (CI): 1.55-4.15; 
P < 0.001] as well as with HCC (OR = 2.54; 95%CI: 1.44-4.56; P = 0.001). A similar result was 
observed in the comparison of the TT vs CC genotype between the control group and cirrhosis 
group (OR = 2.88; 95%CI: 1.44-5.77; P = 0.001) but not for HCC patients. In the dominant T allele 
model, the CT + TT genotypes were associated with an increased risk for progression to cirrhosis 
(OR = 2.60; 95%CI: 1.63-4.19; P < 0.001) and HCC (OR = 2.45; 95%CI: 1.42-4.31; P = 0.001).

CONCLUSION 
These findings suggest that the T allele of IFNL4 rs12979860 polymorphism is associated with the 
development of cirrhosis and HCC in chronic HCV-infected patients.

Key Words: Hepatitis C; Hepatitis C virus; Cirrhosis; Hepatocellular carcinoma; Genetic polymorphism; 
Interferon-lambda

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Hepatitis C virus (HCV) infection is a major public health problem worldwide as the infection 
progresses to severe chronic liver diseases in many patients. Interferon lambdas modulate the immune 
responses against infections, including the antiviral activity by promoting the expression of several genes 
related to immunological functions. The interferon lambda-4 rs12979860 (C/T) polymorphism, which is 
associated with spontaneous and treatment-induced clearance of HCV, plays a pivotal role in the host 
response to HCV-associated liver diseases. In this case-control study, the rs12979860 T allele was found 
to be associated with the development of cirrhosis and hepatocellular carcinoma in chronic HCV-infected 
patients.

Citation: de Bitencorte JT, Rech TF, Lunge VR, dos Santos DC, Álvares-da-Silva MR, Simon D. Association of 
interferon lambda-4 rs12979860 polymorphism with hepatocellular carcinoma in patients with chronic hepatitis C 
infection. World J Hepatol 2021; 13(1): 109-119
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/109.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.109

INTRODUCTION
Hepatitis C virus (HCV) infection is a public health concern worldwide as it is associated with increased 
morbidity and mortality[1,2]. HCV, a hepatotrophic virus, is the etiological factor for chronic hepatitis 
C. Patients with HCV infection can develop cirrhosis and hepatocellular carcinoma (HCC) and may 
need liver transplantation[2-4]. According to the World Health Organization report on viral hepatitis, 71 
million people were infected with hepatitis C in 2015[2].

Generally, acute HCV infections are clinically silent infections. Among the patients with HCV 
infection, 15%-45% can eliminate the virus spontaneously, with the highest recovery rates observed in 
children and young women[5]. However, a vast majority of infected patients develop chronic hepatitis 
C, which is characterized by the persistence of HCV in the serum for more than 6 mo. Chronic HCV 
infection is associated with slow progression, and the patients may remain asymptomatic for several 
decades. Thus, the persistence of HCV in the organism can cause continuous damage to the liver and 
can progress to fibrosis, cirrhosis, and HCC[5,6].

HCC, which accounts for 80% of all primary liver cancers, is associated with high mortality rates. 
Globally, HCC is the third leading cause of cancer-related deaths. HCC is a complex disease with a 
variety of etiologies and may be associated with different risk factors, such as chronic hepatitis B virus 
(HBV) and HCV infections, alcoholic liver disease, and nonalcoholic steatohepatitis[7,8]. HCV infection, 
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which is the second most common risk factor for HCC, accounts for 10%-25% of all HCC cases. 
Additionally, 80%-90% of HCC cases are reported in patients with cirrhosis[9,10].

The pathogenesis of HCV infection and its progression to chronic liver disease vary among 
individuals. Several factors, including viral, environmental, and host characteristics, such as age, sex, 
ethnicity, and genetic factors, contribute to the pathogenesis of HCV[11]. The immune system-related 
genes, such as interferon lambdas (IFN-λs), are directly related to modulate viral infections with the 
ability to induce antiviral activity in target cells and interfere with HCV replication within the host cells. 
The binding of IFN-λ to its receptor activates the signal transducer and activator of transcription 
phosphorylation-dependent signaling cascade, inducing hundreds of IFN-stimulated genes and 
consequently regulating various immune functions[12-14].

The interferon lambda-3 gene (IFNL3), which is located on chromosome 19q13.13, encodes IFN-λ3 
protein, a cytokine with antiviral properties. Genome-wide association studies have demonstrated the 
association of single nucleotide polymorphisms, such as rs12979860 and rs8099917, near the IFNL3 gene 
(formerly known as interleukin-28B gene; IL28B), both with spontaneous virus elimination after acute 
infection and with sustained virological response in patients with chronic hepatitis C treated with 
pegylated interferon plus ribavirin combination therapy[15-18].

Prokunina-Olsson et al[19] demonstrated that the rs12979860 polymorphism, commonly referred as 
an IL28B or IFNL3 variant, is in an independent loci and should be called an interferon lambda-4 (IFNL4
) variant. The IFNL4 gene is controlled by rs368234815 ∆G-TT polymorphism, in which the ∆G allele 
creates an open reading frame for IFNL4, while the TT allele does not. Furthermore, the ∆G allele 
(rs368234815) is reported to be in linkage disequilibrium with the T allele of rs12979860 polymorphism
[13,19].

The rs12979860 polymorphism has a relevant and well-known role in the spontaneous and treatment-
induced clearance of HCV infection[20]. However, the importance of this polymorphism in the 
progression of HCV-associated liver diseases is still unclear. Therefore, the objective of our study was to 
investigate the potential role of the variants from IFNL4 rs12979860 polymorphism in the progression to 
hepatic fibrosis, cirrhosis, and HCC in chronic HCV-infected patients.

MATERIALS AND METHODS
Study population
This case-control study was conducted using a convenience sampling strategy. The case group was 
comprised of 305 patients who visited the outpatient clinic of the Gastroenterology-Hepatology Service 
of the Hospital de Clínicas de Porto Alegre in Brazil. HCV-positive patients diagnosed with fibrosis, 
cirrhosis, or HCC were included in the case group. Fibrosis (METAVIR F1-F3) was diagnosed based on 
liver biopsy findings, while cirrhosis was diagnosed based on liver biopsy or clinical evidence, such as 
liver imaging (abdominal ultrasonography, computed tomography, and magnetic resonance) 
abnormalities or endoscopic findings as well as current or past clinical evidence of decompensation, 
including Child-Pugh B or C classification (score of > 6), ascites on physical examination, hepatic 
encephalopathy, or variceal bleeding. HCC was diagnosed through liver biopsy (64/98; 65.3%) or in 
cirrhotic patients through dynamic computed tomography or magnetic resonance by the presence of a 
nodule of at least 1 cm featuring arterial phase enhancement with decreased enhancement during the 
portal venous phase as recommended by international guidelines. Patients with HCV/human 
immunodeficiency virus and/or HCV/HBV coinfection were excluded as well as patients with other 
causes of liver diseases such as HBV, metabolic associated fatty liver disease, alcohol abuse (more than 
20 or 30 g daily consumption of ethanol for females and males, respectively), and/or hemochromatosis. 
The control group was comprised of 260 samples obtained from the donors at the Hospital de Clínicas 
de Porto Alegre blood bank. As Brazilian laws for blood donation requires, all have been tested negative 
for HBV, HCV, human immunodeficiency virus, syphilis, and Chagas disease. This study was approved 
by the Research Ethics Committee of the Hospital de Clínicas de Porto Alegre (protocol number: 15-
0126). All participants provided their written informed consent to participate in the study.

Molecular analysis
DNA was extracted from the blood samples using the salting-out method as described previously[21]. 
The polymorphism was genotyped using the validated pre-designed real-time PCR TaqMan® Assays 
(Applied Biosystems Inc., Foster City, CA, United States; catalog 4351376, assay ID: C___7820464_10) in 
the StepOnePlusTM Real-Time PCR Systems (Applied Biosystems Inc.). PCR was performed in an 18 μL 
reaction volume containing 10 mmol/L Tris-HCl (pH 8.5), 50 mmol/L KCl, 1.5 mmol/L MgCl2, 0.0625 
mmol/L dNTPs, 0.25 μM of each primer, 0.045 μM of each probe, 1 U Taq DNA polymerase (Cenbiot 
Enzimas, Porto Alegre, Brazil), and 1 μL extracted DNA (10-200 ng). The PCR conditions were as 
follows: 95 °C for 10 min (initial DNA denaturation), followed by 40 cycles of 95 °C for 15 s 
(denaturation) and 60 °C for 1 min (annealing and extension).
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Statistical analyses
All statistical analyses were performed using SPSS® software (Statistical Package for the Social Sciences 
17.0 version, Chicago, IL, United States). The normal distribution of the quantitative variables was 
examined using the Kolmogorov-Smirnov test with Lilliefors correction. The quantitative variables, 
which were expressed as mean ± SD, were analyzed using analysis of variance, followed by Tukey post-
hoc test. For the categorical variables, the frequencies were calculated and expressed as percentages. 
Gene frequencies were determined by direct allele counting. Hardy-Weinberg equilibrium (HWE) 
deviation and the gene frequencies between groups were compared using the Chi-square test. Yates’ 
correction for continuity was used to analyze the 2 × 2 contingency tables. Odds ratio (OR) was 
estimated with 95% confidence interval (CI). The differences were considered significant at P < 0.05 
(two-tailed). Potential confounding factors were entered in the logistic regression models based on 
statistical criteria (only if the variable was associated with the study factor and with the outcome at P < 
0.20). The statistical methods used in this study were reviewed by Dr. D. Simon from the Human 
Molecular Genetics Laboratory, Universidade Luterana do Brasil (Canoas, Brazil).

RESULTS
The sociodemographic and clinical characteristics of patients are described in Table 1. Patients were 
stratified into the following three groups: Fibrosis (n = 53), cirrhosis (n = 154), and HCC (n = 98). The 
mean age of the patients was 59.85 ± 8.83 years, with a statistically significant difference among the 
groups studied (P = 0.019). A significant statistical difference (P = 0.024) was also observed in the 
frequency of males in the HCC group (58.2%) when compared to the fibrosis (37.7%) and cirrhosis 
groups (43.5%). The mean value of body mass index presented a statistically significant difference 
between the groups with cirrhosis and HCC (27.80 ± 5.39 and 26.34 ± 4.15 kg/m2, respectively; P = 
0.038). Blood transfusion was the most frequent possible infection source among patients (41.0%). The 
frequencies of HCV 1 and 3 genotypes, which were the most common, were 40.7% and 36.7%, 
respectively.

Table 2 shows the allele and genotype frequencies of the IFNL4 rs12979680 polymorphism in the 
patient and control groups. The success rate for genotyping IFNL4 rs12979680 polymorphism was 100% 
in all studied groups. Statistically significant differences were observed regarding the allele frequencies, 
in which the frequency of the T allele was significantly higher in the three groups of patients analyzed 
when compared to the controls: [fibrosis group vs control group (OR = 1.57; 95%CI: 1.03-1.68; P = 0.047), 
cirrhosis group vs control group (OR = 1.75; 95%CI: 1.30-2.36; P < 0.001), and HCC group vs control 
group (OR = 1.57, 95%CI: 1.11-2.23; P = 0.01)].

Compared with those in the control group, the IFNL4 genotype frequencies were significantly higher 
in the cirrhotic and (P < 0.001) HCC groups (P = 0.002). The genotype distribution in the control and 
fibrosis groups was in agreement with those expected from HWE (P = 0.81 and P = 0.88, respectively). In 
contrast, the genotype frequencies in the cirrhosis and HCC groups deviated from those expected from 
HWE (P = 0.02 and P = 0.01, respectively). When the genotype distribution was analyzed in the total 
sample of patients (n = 305), deviations from HWE were maintained (P = 0.001).

The risk of developing fibrosis, cirrhosis, and HCC was calculated using the following two genetic 
models: Codominant and dominant T allele models (Table 3). In the codominant model, it was observed 
that the CT vs CC genotype conferred an increased risk of developing cirrhosis in HCV patients when 
compared with the control group (OR = 2.53; 95%CI: 1.55-4.15; P < 0.001). Additionally, the CT vs CC 
genotype conferred an increased risk for HCC (OR = 2.54; 95%CI: 1.44-4.56; P = 0.001). A similar result 
was observed in the comparison of the TT vs CC genotype between cirrhosis patients and controls (OR = 
2.88; 95%CI: 1.44-5.77; P = 0.001) but not for HCC. In the dominant T allele model, the CT + TT 
genotypes conferred an increased risk of developing cirrhosis (OR = 2.60; 95%CI: 1.63-4.19; P < 0.001) 
and HCC (OR = 2.45; 95%CI: 1.42-4.31; P = 0.001) when compared with the CC genotype. The observed 
associations remained significant when logistic regression models were analyzed controlling for 
potential confounding factors (data not shown).

Table 4 presents the distribution of the IFNL4 rs12979680 polymorphism genotypes regarding clinical 
features of HCC patients. A significantly higher frequency of the T allele in the dominant T allele model 
was observed among patients with HCV genotypes 1 and 3 with a frequency of 92% and 67%, 
respectively (P = 0.017). In addition, a higher frequency of the TT genotype was observed among 
patients with hepatic encephalopathy (P = 0.03).

DISCUSSION
This study investigated the association of the IFNL4 rs12979860 polymorphism with the development of 
fibrosis, cirrhosis, and HCC among patients with chronic HCV infection. The frequency of the T allele in 
the case group was higher than that in the control group. Additionally, the risk analyses indicated that 
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Table 1 Sociodemographic and clinical features of chronic hepatitis C virus positive patients

Characteristics Total, n = 305 Fibrosis, n = 53 Cirrhosis, n = 154 HCC, n = 98 P value

Age in yr 59.85 ± 8.83 57.89 ± 10.43 59.29 ± 8.43 61.78 ± 8.22 0.019

Male 144 (47.2) 20 (37.7) 67 (43.5) 57 (58.2) 0.024

Ethnicity, Caucasian 218 (71.5) 35 (66.1) 110 (71.4) 73 (74.5) 0.547

BMI in kg/m² 27.08 ± 4.85 26.39 ± 4.14 27.80 ± 5.39 26.34 ± 4.15 0.038

Level of education 0.366

Completed primary education or less 196 (62.0) 31 (56.6) 100 (62.3) 65 (64.3)

Secondary or higher education 102 (24.9) 20 (34.0) 51 (25.3) 31 (19.4)

Smoker 59 (19.3) 16 (30.2) 31 (20.1) 12 (12.2) 0.001

Alcohol consumption 0.004

No 260 (85.2) 49 (92.5) 137 (89.0) 74 (75.5)

Former 45 (14.8) 4 (7.5) 17 (11.0) 24 (24.5)

Illicit drug use 0.164

No 243 (79.7) 43 (81.1) 122 (79.2) 78 (79.6)

Yes 9 (3.0) 4 (7.5) 4 (2.6) 1 (1.0)

Former user 53 (17.4) 6 (1.1) 28 (18.2) 19 (19.4)

Coffee drinker 213 (69.8) 39 (73.6) 112 (72.7) 62 (63.3) 0.226

Age at infection of HCV in yr 27.43 ± 9.75 28.47 ± 9.12 27.48 ± 9.77 26.64 ± 10.26 0.735

Age at diagnosis of HCV in yr 49.11 ± 11.11 46.88 ± 12.99 49.17 ± 10.97 50.24 ± 10.11 0.223

HCV infection via blood transfusion 125 (41.0) 24 (45.3) 64 (41.6) 37 (37.8) 0.706

HCV-RNA as log10UI/mL 6.05 ± 0.86 - 6.11 ± 0.87 5.86 ± 0.78 0.141

HCV genotypes 0.060

1 124 (40.7) - 86 (55.8) 38 (38.8)

2 7 (2.3) - 4 (2.6) 3 (3.1)

3 112 (36.7) - 61 (39.6) 51 (52.0)

Antiviral treatment 178 (58.4) - 115 (74.7) 63 (64.3) 0.077

Diabetes 85 (27.9) - 50 (32.5) 35 (35.7) 0.595

Steatosis 24 (7.9) - 13 (8.4) 11 (11.2) 0.431

Ascites 66 (21.6) - 31 (20.1) 35 (35.7) 0.005

Portal hypertension 146 (47.9) - 72 (46.8) 74 (75.5) < 0.001

Esophageal varices 156 (51.1) - 91 (59.0) 65 (66.3) 0.231

Upper gastrointestinal bleeding 49 (16.0) - 26 (16.9) 23 (23.5) 0.184

Spontaneous bacterial peritonitis 13 (4.3) - 7 (4.5) 6 (6.1) 0.568

Hepatic encephalopathy 24 (7.9) - 13 (8.4) 11 (11.2) 0.431

Child-Pugh 0.083

A 137 (44.9) - 95 (61.7) 42 (42.9)

B 43 (14.1) - 28 (18.2) 15 (15.3)

C 9 (3.0) - 3 (1.9) 6 (6.1)

Number of tumors

1 - - 62 (63.37)

2 - - 17 (17.35)

≥ 3 - - 18 (18.37)
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Tumor size in cm - - 2.8 ± 1.81

Portal vein thrombosis - - 10 (10.20)

Extrahepatic metastases - - 7 (7.14)

Liver transplantation - - 47 (47.96)

Deaths 14 (4.59) - 8 (5.19) 6 (6.12) 0.754

Characteristics expressed as number and percentage or mean ± SD. BMI: Body mass index; HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus.

Table 2 Allele and genotype frequencies of interferon lambda-4 rs12979860 polymorphism in patients with hepatitis C virus-associated 
liver diseases and healthy control subjects

rs12979860 Control, n 
= 260

Total 
patients, n 
= 305

Fibrosis, 
n = 53

Cirrhosis, n 
= 154

HCC, 
n = 98 P value

Fibrosis 
vs Control

Cirrhosis 
vs Control

HCC vs 
Control

Fibrosis vs 
Cirrhosis

Cirrhosis 
vs HCC

Allele 0.047 < 0.001 0.010 0.708 0.618

C 345 (66.3) 331 (54.3) 59 (55.7) 163 (52.9) 109 
(55.6)

T 175 (33.7) 279 (45.7) 47 (44.3) 145 (47.1) 87 
(44.4)

Genotype 0.113 < 0.001 0.002 0.541 0.665

CC 115 (44.2) 76 (24.9) 16 (30.2) 36 (23.4) 24 
(24.5)

CT 115 (44.2) 179 (58.7) 27 (50.9) 91 (59.1) 61 
(62.2)

TT 30 (11.6) 50 (16.4) 10 (18.9) 27 (17.5) 13 
(13.3)

Variables expressed as number (percentage). HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus.

patients with HCV infection harboring the T allele were more susceptible to develop cirrhosis and HCC.
The studies on the role of IFNL4 rs12979860 polymorphism in HCV-related liver diseases have 

yielded controversial results. A recent meta-analysis of 18 studies involving different ethnicities 
attempted to elucidate the global association of this polymorphism with HCV and HBV[22]. The meta-
analysis revealed that the IFNL4 rs12979860 polymorphism is a risk factor for both HCV-and HBV-
related HCC. Although the meta-analysis enhanced our understanding of the role of IFNL4 rs12979860 
polymorphism in the outcomes of liver diseases with viral etiologies, the results must be carefully 
analyzed. Some limiting factors, such as ethnic differences, discrepancies in clinical characteristics 
among different studies, genotyping methods, HCV genotypes, nonuniform controls in case-control 
studies, and the influence of confounding factors should be considered.

Various studies have evaluated the role of IFNL4 rs12979860 polymorphism in the development of 
HCC. De la Fuente et al[23] examined the association of rs12979860 polymorphism with the 
development of HCC in both chronic HCV infection and nonviral cirrhosis. The authors reported that 
the TT genotype is highly prevalent in cirrhotic patients infected with HCV genotype 1 who were 
subjected to liver transplantation. However, there was no significant association between polymorphism 
variants and hepatocarcinogenesis.

The risk of developing HCC in patients responding to pegylated interferon plus ribavirin treatment is 
lower than that in nonresponders. Chang et al[24] evaluated 800 patients who received pegylated 
interferon plus ribavirin combination therapy but did not respond to treatment to evaluate the risk 
factors for HCC. The CT + TT genotypes of rs12979860 polymorphism were an independent risk factor 
for the development of HCC in these patients, which further indicated the importance of this 
polymorphism in the progression to HCC. Similarly, a study on 200 patients with advanced fibrosis 
revealed that the IFNL4 rs12979860 TT genotype was significantly associated with HCC development 
after direct-acting antiviral therapy for chronic hepatitis C[25].
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Table 3 Genetic models of association between interferon lambda-4 rs12979860 polymorphism and hepatitis C virus-associated liver 
diseases

rs12979860 Fibrosis vs Control Cirrhosis vs Control HCC vs Control Fibrosis vs Cirrhosis Cirrhosis vs HCC

OR (95%CI) P 
value OR (95%CI) P 

value OR (95%CI) P 
value OR (95%CI) P 

value OR (95%CI) P 
value

Codominant model

CC 1.00 (Ref.) - 1.00 (Ref.) - 1.00 (Ref.) - 1.00 (Ref.) - 1.00 (Ref.) -

CT 1.69 (0.82-
3.54)

0.126 2.53 (1.55-
4.15)

< 0.001 2.54 (1.44-
4.56)

0.001 1.50 (0.67-
3.28)

0.277 1.01 (0.52-
1.95)

0.986

TT 2.40 (0.87-
6.27)

0.053 2.88 (1.44-
5.77)

0.001 2.08 (0.86-
4.83)

0.068 1.20 (0.43-
3.45)

0.702 0.72 (0.28-
1.80)

0.447

T allele dominant 
model

CC 1.00 (Ref.) - 1.00 (Ref.) - 1.00 (Ref.) - 1.00 (Ref.) - 1.00 (Ref.) -

CT + TT 1.83 (0.94-
3.71)

0.061 2.60 (1.63-
4.19)

< 0.001 2.45 (1.42-
4.31)

0.001 1.42 (0.66-
2.97)

0.325 0.94 (0.50-
1.79)

0.840

CI: Confidence interval; HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; OR: Odds ratio; Ref.: Reference.

A large international study involving 2916 patients, mostly the European Caucasian population, 
revealed that the increased number of the T allele was significantly associated with the prevalence of 
cirrhosis/transition to cirrhosis in patients infected with HCV genotype 1. This association was evident 
in Caucasian European patients but not in Asian, Latin American, or Middle Eastern patients infected 
with HCV genotype 1[26].

The genetic background of populations can contribute to variable results among different studies as 
the allele frequencies of IFNL4 rs12979860 polymorphism vary among populations. In this study, the 
minor allele frequencies of the IFNL4 rs12979860 polymorphism, represented by the T allele, in the case 
and control groups were 0.46 and 0.34, respectively. The minor allele frequencies reported for European, 
Japanese, and Chinese populations in the 1000 Genomes database were 0.28, 0.10, and 0.06, respectively.

The role of IFN-λ4 in the pathophysiology of chronic HCV infection-mediated liver diseases is still 
under investigation. IFN-λ4 activates interferon-stimulated genes, induces cell death, and inhibits cell 
proliferation[27]. In the IFN-λ4-expressing cells, enhanced cell death may cause tissue inflammation, 
while the antiproliferative effect of IFN-λ4 could decrease the capacity of tissue remodeling[27,28]. In 
this sense, our study may provide significant information about the association of the genetic variants of 
the IFNL4 rs12979860 polymorphism with disease progression and clinical features of hepatitis C, 
demonstrating that this polymorphism has relevance in the HCV spontaneous and treatment-induced 
clearance of HCV infection. Also, the present study can stimulate the clarification of this issue by the 
analyses of large samples as well as the correlation of genetic variants with gene expression and protein 
interactions.

This study has some limitations. The sample size of this study is relatively small. A more repres-
entative sample could enhance the statistical power to detect genetic differences. In this study, the 
fibrosis group, which had the lowest sample number, exhibited a trend of association with the TT 
genotype and the T allele when compared with the control group. A larger sample size could clarify the 
role of this polymorphism in the development of fibrosis. In addition, some data are missing in the liver 
fibrosis group (such as HCV RNA, HCV genotype, number of patients on antiviral treatment, diabetes, 
and steatosis), which precluded a more detailed comparison with the other groups. Besides, the analysis 
of a nonfibrotic (F0) HCV-infected group would be important because it makes the study more compre-
hensive. The analysis of a single polymorphism is insufficient to fully explain the genetic basis of HCC. 
In the cirrhosis and HCC groups, the genotype frequencies of the IFNL4 rs12979860 polymorphism did 
not concur with those expected from HWE. The deviations from HWE can be due to the population 
stratification and selection or may indicate disease association[29,30]. As population stratification may 
have caused disequilibrium among the cirrhosis and HCC groups, HWE analysis was performed on the 
case group. However, the genotype frequency in the case group deviated from that expected from 
HWE. Thus, the observed imbalance could be explained by the effective role of this polymorphism in 
the sample of patients with HCV-related liver diseases.
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Table 4 Distribution of the interferon lambda-4 rs12979860 genotypes based on the clinical features of patients with hepatocellular 
carcinoma, n = 98

Genotypes Codominant model T allele dominant model

Variable CC, n = 24 CT, n = 61 TT, n = 13 P value P value

HCV genotypes 0.052 0.017

1 3 (14.3) 27 (46.6) 8 (61.5) 0.004

2 1(4.8) 2 (3.4) -

3 17 (81.0) 29 (50.0) 5 (38.5) 0.007

Diabetes 10 (41.7) 19 (31.1) 6 (46.2) 0.463 0.484

Steatosis 1(4.2) 8 (13.3) 2 (16.7) 0.409 0.195

Ascites 10 (41.7) 20 (32.8) 5 (41.7) 0.679 0.511

Portal hypertension 17 (70.8) 48 (78.7) 9 (75.0) 0.741 0.469

Esophageal varices 17 (70.8) 39 (63.9) 9 (75.0) 0.682 0.646

Upper gastrointestinal bleeding 8 (33.3) 10 (16.4) 5 (41.7) 0.075 0.201

Spontaneous bacterial peritonitis 1 (4.2) 5 (8.2) - 0.500 0.636

Hepatic encephalopathy 3 (12.5) 2 (3.3) 3 (25.0) 0.030 0.383

Child-Pugh 0.209 0.156

A 8 (61.5) 26 (63.4) 8 (88.9)

B 2 (15.4) 12 (29.3) 1 (11.1)

C 3 (23,1) 3 (7.3) -

Number of tumors 0.325 0.684

1 17 (70.8) 39 (65.0) 6 (46.2)

2 3 (12.5) 12 (20.0) 2 (15.4)

≥ 3 4 (16.7) 9 (15.0) 5 (38.5)

Portal vein thrombosis 4 (16.7) 4 (6.6) 2 (16.7) 0.286 0.238

Extrahepatic metastases 1 (4.2) 5 (8.6) 1 (7.7) 0.780 0.487

Variables expressed as number (percentage). HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus.

CONCLUSION
The findings of this study suggest that the T allele of IFNL4 rs12979860 polymorphism is a potential 
genetic factor that determines the susceptibility to cirrhosis and HCC development among patients with 
chronic HCV.

ARTICLE HIGHLIGHTS
Research background
As a serious public health problem worldwide, hepatitis C virus (HCV) infection has unfavorable trends 
in morbidity and mortality. Due to high hepatotrophic potential, HCV may cause chronic complications, 
such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Progression to chronic liver disease 
usually varies and is influenced by different factors, including genetic factors. The interferon lambda-4 (
IFNL4) rs12979860 polymorphism, characterized by a C to T transition in the intron 1, has been 
associated with spontaneous and treatment-induced clearance of HCV infection and may play a role in 
HCV-associated liver diseases, including HCC.

Research motivation
Although the rs12979860 polymorphism has a relevant and well-known role in the spontaneous and 
treatment-induced clearance of HCV infection, the importance of genetic variants of this polymorphism 



de Bitencorte JT et al. IFNL4 polymorphism in liver disease progression

WJH https://www.wjgnet.com 117 January 27, 2021 Volume 13 Issue 1

in the progression of HCV-associated liver diseases is still unclear.

Research objectives
We aimed to investigate the potential role of the variants in the progression to hepatic fibrosis, cirrhosis, 
and HCC in chronic HCV-infected patients. In addition, the distribution of the rs12979860 IFNL4 genetic 
variants was analyzed in accordance with clinical features of patients.

Research methods
This case-control study included 305 patients with chronic HCV infection patients (53 with fibrosis, 154 
with cirrhosis, and 98 with HCC), and 260 HCV-negative healthy individuals as controls. Diagnosis of 
fibrosis (METAVIR F1-F3) was performed by liver biopsy findings, while the diagnosis of cirrhosis was 
performed through clinical, laboratorial, anatomopathological, and/or imaging data. Lastly, diagnosis 
of HCC was performed through dynamic imaging tests, and/or anatomopathological markers. Patients 
with HCV/human immunodeficiency virus and/or HCV/ hepatitis B virus coinfection were excluded. 
Molecular analysis was performed using validated pre-designed real-time PCR TaqMan® Assays.

Research results
A higher frequency of the T allele was observed among the groups of patients (fibrosis, cirrhosis, and 
HCC) as compared to the controls: (P = 0.047; P < 0.001; and P = 0.01, respectively). Also, significant 
differences were observed concerning genotype frequencies between HCC (P = 0.002) and cirrhosis 
patients (P < 0.001) in comparison with controls. Two genetic models were tested in the risk analysis: 
Codominant model and dominant T allele model. In the codominant model, it was observed that the CT 
genotype was related to an increased risk of cirrhosis [odds ratio (OR) = 2.53; 95% confidence interval 
(CI): 1.55-4.15; P < 0.001] and HCC (OR = 2.54; 95%CI: 1.44-4.56; P = 0.001) as compared to CC genotype. 
In the comparison of the TT vs CC genotype, a significant difference was observed between the control 
group and cirrhosis group (OR = 2.88; 95%CI: 1.44-5.77; P = 0.001) but not the HCC group. In the 
dominant T allele model, the CT + TT genotypes confer an increased risk for the progression to cirrhosis 
(OR = 2.60; 95%CI: 1.63-4.19; P < 0.001) and HCC (OR = 2.45; 95%CI: 1.42-4.31; P = 0.001). Finally, a 
significant higher frequency of the T allele among patients with HCV genotypes 1 and 3 (92% and 67%, 
respectively; P = 0.017) and a higher frequency of TT genotype among patients with hepatic enceph-
alopathy (P = 0.03) was observed.

Research conclusions
This study suggests that the T allele from IFNL4 rs12979860 polymorphism is associated with the 
development of cirrhosis and HCC in chronic HCV-infected patients.

Research perspectives
As an important factor related to spontaneous and treatment-induced clearance of HCV infection, the 
analysis of IFNL4 rs12979860 polymorphism in the present study may provide a better understanding of 
the genetic variants with disease progression and clinical features. In order to clarify this issue, large 
samples are needed to verify the association of genetic polymorphisms with hepatitis C as well as the 
correlation of genetic variants with gene expression and protein interactions.
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Abstract
BACKGROUND 
Infections and associated morbidity and mortality may be more frequent in 
children who have undergone liver transplant than in healthy children. 
Immunization strategies to prevent vaccine-preventable infections (VPIs) can 
effectively minimize this infection burden. However, data on age-appropriate 
immunization and VPIs in children after liver transplant in Asia are limited.

AIM 
To evaluate the immunization status, VPIs and non-VPIs requiring hospitalization 
in children who have undergone a liver transplant.

METHODS 
The medical records of children who had a liver transplant between 2004 and 2018 
at King Chulalongkorn Memorial Hospital (Bangkok, Thailand) were 
retrospectively reviewed. Immunization status was evaluated via their vaccination 
books. Hospitalization for infections that occurred up to 5 years after liver 
transplantation were evaluated, and divided into VPIs and non-VPIs. Hospitaliz-
ations for cytomegalovirus and Epstein-Barr virus were excluded. Severity of 
infection, length of hospital stay, ventilator support, intensive care unit 
requirement, and mortality were assessed.

RESULTS 
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Seventy-seven children with a mean age of 3.29 ± 4.17 years were included in the study, of whom 
41 (53.2%) were female. The mean follow-up duration was 3.68 ± 1.45 years. Fortyeight children 
(62.3%) had vaccination records. There was a significant difference in the proportion of children 
with incomplete vaccination according to Thailand’s Expanded Program on Immunization (52.0%) 
and accelerated vaccine from Infectious Diseases Society of America (89.5%) (P < 0.001). Post-liver 
transplant, 47.9% of the children did not catch up with age-appropriate immunizations. There 
were 237 infections requiring hospitalization during the 5 years of follow-up. There were no 
significant differences in hospitalization for VPIs or non-VPIs in children with complete and 
incomplete immunizations. The risk of serious infection was high in the first year after receiving a 
liver transplant, and two children died. Respiratory and gastrointestinal systems were common 
sites of infection. The most common pathogens that caused VPIs were rotavirus, influenza virus, 
and varicella-zoster virus.

CONCLUSION 
Incomplete immunization was common pre- and post-transplant, and nearly all children required 
hospitalization for non-VPIs or VPIs within 5 years post-transplant. Infection severity was high in 
the first year post-transplant.

Key Words: Children; Hospitalization; Immunization; Liver transplant; Thailand; Vaccine-preventable 
infection

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Incomplete age-appropriate immunization in children waiting for a liver transplant was expected, 
and nearly half of them had not caught up with age-appropriate vaccinations post-transplant. Though there 
was no significant difference in hospitalization from vaccine-preventable infections (VPIs) and non-VPIs 
in children with complete and incomplete immunizations. At least 13.1% required hospitalization within 5 
years post-transplant, and > 10% were admitted to the intensive care unit and required respiratory support. 
The severity of infections was high during the first year post-transplant. Complete immunization and 
robust infection control should be prioritized in children both pre and post-liver transplant.

Citation: Sintusek P, Poovorawan Y. Immunization status and hospitalization for vaccine-preventable and non-
vaccine-preventable infections in liver-transplanted children. World J Hepatol 2021; 13(1): 120-131
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/120.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.120

INTRODUCTION
Infection after a liver transplant is a serious concern due to potential associated morbidity and mortality
[1-4], as well as the standard complications and severe symptoms that can be experienced by immuno-
competent patients. Such infections can give rise to graft rejection, thus affecting short- or long-term 
graft survival[4]. Accordingly, strategies to reduce overall post-transplant infection are warranted. 
Immunization is considered an effective, relatively noninvasive, and affordable way to reduce vaccine-
preventable infections (VPIs)[5] such as measles, varicella, influenza, and viral hepatitis A and B, among 
others. The Infectious Diseases Society of America (IDSA)[6] and the American Society of 
Transplantation Infectious Disease Community of Practice[7] encourage accelerated vaccination, partic-
ularly with regard to live vaccines in immunocompromised children awaiting for solid organ 
transplantation.

Children awaiting a liver transplant can be at a disproportionate risk of VPIs because they tend not to 
have undergone a complete series of age-appropriate immunizations, because their serious illness has 
taken medical priority over vaccination[8]. Verma and Wade[9] reported that in their experience at 
King’s College Hospital, only 20%-30% of children had undergone a complete series of age-appropriate 
immunizations prior to liver transplantation. Diana et al[10] reported that less than half of a cohort of 
children who underwent liver transplant at the Children’s Hospital of Geneva in Switzerland had 
undergone a complete series of age-appropriate vaccinations, with rates of 43% for diphtheria-tetanus-
acellular pertussis-polio vaccine, 44% for measles-mumps-rubella (MMR) vaccine, 13% for hepatitis B 
vaccine, and 5% for hepatitis A vaccine at the time of liver transplantation. Feldman et al[4,11] invest-
igated morbidity, mortality, and costs associated with VPIs in children after solid organ transplants, and 
reported a significantly higher rate of VPIs in these children than in the general pediatric population.

https://www.wjgnet.com/1948-5182/full/v13/i1/120.htm
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Studies conducted in the United States and other western countries have highlighted the effects of 
VPIs in children after solid organ transplantation[4,9-11], but published data on VPIs in children after 
liver transplantation in the East are scarce. To improve the quality of life of liver-transplanted children 
by minimizing the serious complications associated with post-liver transplant infections, strategies to 
avoid VPIs based on strong evidence should be initiated worldwide, including in Asia.

The aim of the present study was to evaluate immunization status in Thai children at the time of liver 
transplantation, and for up to 5 years post-liver transplantation. The prevalence and effects of VPIs and 
non-VPIs during hospitalization were also assessed.

MATERIALS AND METHODS
The current study was a retrospective review of all children who received a liver transplant at King 
Chulalongkorn Memorial Hospital in Thailand from January 2004 to August 2018. Demographic data, 
patient characteristics, and immunization records from vaccination books were collated. Hospitalization 
records pertaining to the liver transplant operation and admission due to infections for up to 5 years 
post-transplant were included. Hospitalizations for Epstein-Barr virus (EBV) and cytomegalovirus were 
excluded from the study. Infection etiology and source were investigated by the doctors in charge. 
Culture from specimens was available for all bacterial origins, and immunological and molecular 
techniques were available for the diagnosis of both viral and bacterial infections, including polymerase 
chain reaction panel analysis for respiratory tract infections and gastrointestinal infections, and 
antibody titers for hepatitis A/B/E, dengue, and measles.

Infections were divided into VPIs and non-VPIs. Length of hospital stay, severity of infections, and 
mortality from infections were collated and classified into three groups: Intensive care unit (ICU) 
requirement, ventilator support, and death. Complete immunization was defined as that conducted in 
accordance with the Expanded Program on Immunization (EPI) in Thailand (Table 1) and the 
accelerated vaccination recommendations described in the 2013 IDSA Clinical Practice Guideline for 
Vaccination of the Immunocompromised Host[6], which notes: “... children aged 6-12 mo can receive 
MMR and varicella vaccine and the second dose should be administered at 12 mo for MMR and ≥ 3 mo 
apart for varicella vaccine. However, the last MMR or varicella vaccine injection should not be within 4 
wk of a liver transplant schedule.”

Statistical analysis
Continuous and categorical data are presented as the mean ± SD, medians and interquartile ranges, 
proportions, or percentages as appropriate. The Mann Whitney U test and unpaired t-test were used to 
compare continuous data, and Fisher’s exact test and the χ2 test were used to compare discrete data. P < 
0.05 was considered statistically significant. Data analyses were performed using Statistical Package for 
the Social Sciences version 24.0.0 (SPSS, Inc.; Chicago, IL, United States). A biomedical statistician 
employed at the Department of Statistics Science, Kasetsart University (Bangkok, Thailand) reviewed 
the statistical analyses conducted in the study.

RESULTS
Patient characteristics and history of immunization
Seventy-seven children with a mean age of 3.29 ± 4.17 years were included in the study, of whom 41 
(53.2%) were female. The indications for liver transplantation were biliary atresia (n = 63), indeterminate 
acute liver failure (n = 3), progressive familial intrahepatic cholestasis (n = 2), Alagille syndrome (n = 2), 
cryptogenic cirrhosis (n = 1), citrin deficiency (n = 1), Budd-Chiari syndrome (n = 1), hepatoblastoma (n 
= 1), autoimmune hepatitis (n = 1), glycogen storage disease type IV (n = 1), and bile acid deficiency (n = 
1). The mean follow-up time was 3.68 ± 1.45 years, and 32 children were followed up for a full 5 years 
after liver transplantation. Vaccinations were noted in the vaccination books of 48/77 children (62.3%). 
Substantial proportions of children did not have complete vaccinations in accordance with Thailand’s 
EPI (n = 25, 52%) (Table 1) or accelerated vaccinations in accordance with the IDSA recommendations (n 
= 43, 89.5%) (P < 0.001). Post-liver transplant, 23 children (47.9%) could not catch up with the 
appropriate immunizations for age. All children were revaccinated with hepatitis B vaccine if hepatitis B 
surface antibody was < 10 mIU/mL. Other vaccines they received after liver transplantation included 
those for influenza (n = 12), invasive pneumococcal disease (n = 10), Japanese encephalitis (n = 6), 
diphtheria/ tetanus/pertussis-inactivated polio vaccine (n = 6), and hepatitis A (n = 3). A minority of 
children were not up-to-date with influenza vaccination (n = 18, 37.5%) and pneumococcal conjugate 
vaccine (n = 22, 45.8%) post-liver transplant compared with pre-liver transplant (n = 30, 62.5% for 
influenza and n = 36, 75% for pneumococcal conjugate vaccine) (P < 0.001; Table 2). With regard to live 
vaccines, three individuals were inadvertently vaccinated with MMR at their local hospitals without any 
serious side effects.
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Table 1 The immunization schedule in Thailand and accelerated vaccines by the Infectious Disease Society of America

Vaccine Birth 1 mo 2 mo 4 mo 6 mo 7 mo 9 mo 12 mo 18 mo 24 mo 4 yr 9 yr 11 yr

BCG 1

HBV 1 (For positive maternal 
HBsAg)

2 3

DTP, OPV/IPV 1 2 3 4 5

MMR Acc1 1 Acc1 2

JE 1 2

Influenza 1 2

Tdap 1

Thai’s EPI vaccines

HPV Acc 1-22

Rota 1 2 (3)

PCV 1 2 3 4

Varicella Acc1 Acc1 1 2

HAV 1 2

Optional vaccine in 
Thailand

Dengue 1-33

1Acc denotes accelerated vaccines from the 2013 Infectious Diseases Society of America Clinical Practice Guideline for Vaccination of the Immunocompromised Host in which measles-mumps-rubella (MMR) at 6 and 12 mo of age and 
varicella at 6 mo of age and 3 mo apart from the first dose.
2Indicates 0 and 6 mo.
3Indicates 0, 6, 12 mo.
BCG: Bacillus Calmette-Guerin vaccine; DTP: Diphtheria-tetanus-pertussis; EPI: Expanded Program on Immunization; HAV: Hepatitis A vaccine; HBsAg: Hepatitis B surface antigen; HBV: Hepatitis B vaccine; HPV: Human 
papillomavirus vaccine; JE: Japanese encephalitis; OPV/IPV: Oral polio vaccine/inactivated polio vaccine; PCV: Pneumococcal conjugate vaccine; Tdap: Tetanus-diphtheria-acellular pertussis.

Infections during and after liver transplant
Infection severity and mortality were highest during the first year post-liver transplant. The respiratory 
and gastrointestinal systems were the most common sites of infection (Table 3). Two children died 
within 3 mo after liver transplantation, and both had underlying post-transplant lymphoproliferative 
disorder. One of these two children had mixed infection with bocavirus, mycoplasma, and parvovirus 
B19. The other exhibited EBV viremia that progressed to respiratory failure with an unidentified 
infectious origin. Of the 31 hospitalizations for VPIs recorded during the study period the median 
length of hospital stay was 6 d (range: 3-8 d), and in three cases ICU admission and ventilator support 
were required; two with influenza and one with Streptococcus pneumoniae infection. When the children 
were divided into complete and incomplete immunization groups based on Thailand’s EPI, there were 
no significant differences in the numbers of hospitalizations for VPIs or non-VPIs (Table 4).
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Table 2 Vaccination history in children at liver transplant and up to 5 years follow-up (n = 48)

Incomplete vaccination for age at transplantation
Vaccines

Thai EPI program, n (%) Accelerated vaccine from IDSA, n 
(%)

Incomplete vaccination for age after liver 
transplant, n (%)

DTP-OPV/IPV 12 (25) N/A 6 (12.5)

HBV 6 (12.5) 0

MMR 12 (25) 30 (62.5)b 27 (56.3)b

JE 16 (33.3) N/A 10 (20.8)

Varicella 16 (33.3) 34 (70.8)b 34 (70.8)b

HAV 26 (54) 23 (47.9)

Influenza 30 (62.5) 18 (37.5)a

PCV 36 (75) 22 (45.8)b

Rota 37 (77) N/A 37 (77)

All 25 (52) 43 (89.5)b 23 (47.9)

(not included rota vaccine) (not included lived vaccine)

aP < 0.05 vs Thai Expanded Program on Immunization (EPI).
bP < 0.001 vs Thai EPI program.
DTP: Diphtheria-tetanus-pertussis; HAV: Hepatitis A vaccine; HBV: Hepatitis B vaccine; IDSA: Infectious Diseases Society of America; JE: Japanese 
encephalitis; MMR: Measles-mumps-rubella; N/A: Not applicable; OPV/IPV: Oral polio vaccine/inactivated polio vaccine; PCV: Pneumococcal conjugate 
vaccine.

Pathogens causing hospitalization in children post-liver transplant
A total of 237 infections requiring hospitalization were recorded during the study period. The most 
commonly identified bacterial pathogens were Escherichia coli (13.1%), Salmonella sp. (8.1%), and 
Klebsiella pneumoniae (6.8%), and the most commonly identified viral pathogens were parainfluenza 
(5.9%), rotavirus (3.4%), and respiratory syncytial virus (3.4%). In cases of VPIs, the most common 
pathogens were rotavirus (3.4%), influenza virus (2.5%), and varicella-zoster virus (2.1%) (Table 5 and 
6).

DISCUSSION
In this study, incomplete age-appropriate immunization before liver transplantation in children was 
common, particularly with regard to live vaccines that can be accelerated before liver transplantation. 
Post-liver transplant in nearly half of the children in the study did not catch up with all age-appropriate 
vaccines. At least 13.1% of the children in the study required hospitalization for VPIs during the 5 years 
post-liver transplant, and in these cases, the lengths of hospital stays were up to 1 wk. More than 10% of 
the children required admission to the ICU and respiratory support from VPIs, reflecting the burden of 
VPIs during the post-transplant period. With regard to non-VPIs, both bacterial and viral infections of 
the respiratory and gastrointestinal systems played major roles in hospitalizations with severe infections 
and mortality, especially during the first year post-transplant.

To the best of our knowledge, the current study is the first to investigate immunization status and 
infections requiring hospitalization in Asian children who underwent a liver transplant. Compared to 
previous studies in Europe[9,10] and the United States[4,11], in the present study, there was a higher 
rate of incomplete age-appropriate immunization before liver transplantation, particularly with respect 
to the accelerated MMR and varicella vaccination. However, the number of hospitalizations with VPIs 
(13.1%) was comparable to that in a study conducted in the United States by Feldman et al[4,11] (11.3%). 
Moreover, the VPIs in that study were more severe and required longer hospital stays than those in the 
current study. Genetic risk factors may explain this phenomenon, as with the more contagious and 
severe coronavirus disease 2019 infections in Europe and the United States than in Thailand.

Prior to liver transplantation, physicians frequently do not offer patient immunization, particularly 
with respect to live vaccines[8,12,13]. There is solid evidence of adequate immune responses to varicella 
and measles vaccination in children aged < 1 year[14-16]; hence, the policy to promote accelerated 
vaccination in children before immunosuppressant therapy was initiated[6,7,17,18]. It is probable that 
this is not standard practice in healthy children. Moreover, children waiting for a liver transplant may 
have had complex and serious illnesses that needed to be given priority. Some physicians may not be 
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Table 3 Characteristics of hospitalization from vaccine-preventable infections and non-vaccine-preventable infections up to 5 years follow-up

Type of infections Organ specific infections, n (%) The severity of infections, n (%)

VPIs Non-VPIsTime

Times, n (%) LOS (d)1 Times, n (%) LOS (d)1
RS GI Blood Renal Skin Others ICU Ventilator dependence Death

During transplant 4 (5.2) 51 (24,79) 73 (94.8)b 35 (27,49) 25 (35.2) 24 (31.2) 20 (26) 6 (7.8) 2 (2.6) 0 All All 0

< 3 mo 2 (6.9) 3 (3,3) 27 (93.1)b 12 (7,28)a 13 (44.8) 10 (34.5) 2 (6.9) 2 (6.9) 1 (3.4) 1 (3.4) 6 (20.7) 5 (17.2) 2 (6.9)

3-6 mo 5 (17.9) 8 (5,39) 23 (82.1)b 10 (4,15) 11 (39.3) 13 (46.4) 2 (7.1) 1 (3.6) 0 1 (3.6) 8 (28.6) 6 (21.4) 0

> 6-12 mo 3 (8.3) 5 (3,5) 33 (91.7)b 7 (6,17) 15 (41.7) 11 (30.6) 6 (16.7) 0 2 (5.6) 2 (5.6) 10 (27.8) 6 (8.3) 0

> 12-24 mo 6 (15) 5 (4,9) 34 (85)b 7.5 (5,10) 18 (45) 12 (30) 1 (2.5) 1 (2.5) 4 (10) 4 (10) 11 (27.5) 9 (22.5) 0

> 2-5 yr 11 (40.7) 6 (3,8) 16 (59.3) 5 (4,9) 7 (25.9) 10 (37) 1 (3.7) 0 6 (22.2) 3 (1.9) 5 (18.5) 1 (3.7) 0

Total 31 (13.1) 6 (3,8) 206 (86.9)b 8 (5,15) 89 (37.6) 80 (33.8) 32 (13.5) 10 (4.2) 15 (6.3) 11 (4.6) 40 (16.9) 27 (11.4) 2 (0.84)

aP < 0.05 vs vaccine-preventable infection (VPI) group.
bP < 0.001 vs VPI group.
1Data are presented as median (interquartile range).
GI: Gastrointestinal; ICU: Intensive care unit; LOS: Length of stay; RS: Respiratory system.

familiar with the accelerated immunization program[8,13], and therefore may decide to postpone 
vaccination. A specific protocol and concerted focus on educational interventions, or the development of 
specialized team care that is responsible for these issues is crucial to ensure that all candidates receive 
appropriate vaccinations to minimize complications associated with VPIs[6]. One great benefit of pre-
liver transplant vaccination is higher immunogenicity compared with revaccination post-liver 
transplant[18]. Moreover, pretransplant vaccination of children will likely lead to herd immunity that 
will be beneficial for other transplant children in inpatient and outpatient clinics during their visits[13].

In the present study, the rate of incomplete age-appropriate immunization after liver transplantation 
was high, and there was no significant difference between the pretransplant rate (52.0%) and the post-
transplant rate (47.9%). In theory, children’s vaccination schedules should be postponed for more than 2 
mo after liver transplantation because of the possibility of an inadequate immune responses[6]. The high 
level of immunosuppressants is another factor to consider. In the present study almost half of the 
children were not up-to-date with their age-appropriate immunizations during up to 5 years of follow-
up. The reasons might be relatively low concern over children in a stable condition post-transplant, and 
a level of immunosuppression that is not low enough to warrant immunization. Notably, only 62.3% of 
the children’s guardians brought vaccination books to visits to the doctor. As well as unawareness, 
financial problems would likely be a major concern for the children’s guardians, especially with regard 
to vaccines that are not included in Thailand’s EPI such as pneumococcal conjugate vaccine, influenza 
vaccine, hepatitis A vaccine, and varicella vaccine. Fortunately the infectious diseases unit in our 
department conducted a campaign to promote the administration of pneumococcal conjugate vaccine 
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Table 4 Children with vaccination records who developed vaccine-preventable or non-vaccine-preventable diseases

Thai’s Expanded Program on Immunization 2013 Infectious Diseases Society of America

Infection and hospitalization, n Infection and hospitalization, nAge-appropriate immunization

None VPIs and non-VPIs Non-VPIs
Total

None VPIs and non-VPIs Non-VPIs
Total

Complete immunization 5 5 12 22 9 9 25 43

Incomplete immunization 5 6 15 26 1 2 2 5

Total 10 11 27 48 10 11 27 48

VPIs: Vaccine-preventable infections.

and influenza vaccine to all immunocompromised children every year at no charge. This afforded the 
children in the present study the opportunity to access these vaccines, and there was a significant 
increase in the proportion of children that received these vaccines post-transplant (P < 0.001). Long-term 
provision of these high-cost vaccines by the authorities would be a worthwhile venture. With respect to 
live vaccines, there has been controversy about whether they should be administered to children after 
liver transplantation[17,19,20-23]. Thus, further reports and large cohort studies are required in order to 
clarify the safety of live vaccines in these vulnerable patients, before they are routinely vaccinated 
posttransplant.

In this study, the rate of hospitalization for VPIs up to 5 years post-transplant was similar to those 
reported in previous studies[9-11], but significantly higher than that in the normal population[9]. There 
was the mortality report of VPIs in children with immunocompromised hosts[1,2,22,24,25], but in this 
study, there was no mortality from VPIs. The VPIs requiring hospitalization in the current study were 
due to rotavirus, influenza, varicella, dengue fever, measles, Streptococcus pneumoniae, hepatitis B/E, and 
Vibrio cholera. These data should emphasize the value of complete immunization and robust infection 
control to physicians.

Viral hepatitis is endemic in Thailand, but interestingly in the present study there were no reports of 
hospitalization for hepatitis A post-liver transplant, and only one case of hepatitis E infection that 
required hospitalization. Viral hepatitis can be symptomatic and severe in older children and adults, 
and older children and adults may ingest more contaminated food and water than young children. 
Consequently, serology testing and immunization may be valuable in these groups. There is a reported 
case in which de novo hepatitis B infection was diagnosed 3 years after a liver transplant despite the 
recipient having undergone complete hepatitis B immunization pre-transplant[26]. This demonstrates 
that complete hepatitis B immunization pre-liver transplant does not guarantee post-transplant 
protection. That case prompted us to instigate a protocol for reimmunization and hepatitis B surface 
antibody monitoring every 3-6 mo to maintain a protective level of > 100 mIU/mL. De novo hepatitis B 
in the aforementioned boy who had hepatitis B surface antibody > 1000 mIU/mL pretransplant[26] may 
reflect waning immunity post-liver transplant. As well as vaccination, research evaluating the humoral 
and cellular immunity evoked by each vaccine should be conducted to determine vaccination schedules 
and the antibody parameters required to prevent VPIs more effectively. In the present study, the overall 
infection rate was high in the first year post-transplant, hence vaccination should be initiated as soon as 
possible after liver transplanted children are sufficiently stable. Predictors of high immunogenic 
responsivity to vaccination are needed to enable physicians to decide on optimal timepoints for 
reimmunization.

The current study had some limitations. It was a single-center study with a relatively small sample 
size. The true prevalence of VPIs may be lower than the frequency in the study, because the study only 
included children with severe enough illness to require hospitalization. Almost all children in the 
present study were referred from distant and rural areas, and it is possible that some of them 
subsequently attended more local hospitals due to infections. The main strength of the study was the 
reliable vaccination records obtained directly from the patients’ vaccination books, which facilitated 
comparisons of vaccination status pre-transplant and post-transplant.

CONCLUSION
Incomplete immunization was common in children pre-liver transplant and post-liver transplant. 
Almost all of the children in the study required hospitalization due to VPIs or non-VPIs within 5 years 
post-liver transplant. The severity of infections was highest in the first year post-liver transplant.



Sintusek P et al. Immunization and vaccine-preventable infections in liver-transplanted children

WJH https://www.wjgnet.com 127 January 27, 2021 Volume 13 Issue 1

Table 5 Pathogen causing hospitalization in children after liver transplantation

The rank of the pathogen, n (%)
Time

Bacteria Total Virus, fungus, and unidentified Total

During 
transplant

E. coli (n = 19, 24.7), K. pneumoniae (n = 12, 15.6), A. baumannii (n = 11, 14.3), Entero-
coccus/Staphylococcus (n = 4, 5.2), Salmonella (n = 3, 3.9), P. aeruginosa (n = 2, 2.6), B. 
cereus/Corynebacterium/S. pneumoniae/Elizabethkingia meningoseptica/Stenotro-
phomonas/Streptococcus mirabilis/C. difficile (n = 1, 1.3)

62 Rotavirus/adenovirus/bocavirus (n = 2, 2.6), parainfluenza/fungus/varicella-zoster virus (n = 1, 1.3) 9b

< 3 mo E. coli/K. pneumoniae/Enterococcus/Salmonella/Aeromonas (n = 2, 6.9), Corynebacterium
/C. difficile/Plesiomonas (n = 1, 3.4)

13 Parainfluenza (n = 3, 10.3), coronavirus (n = 2, 6.9), 
rotavirus/bocavirus/RSV/dengue/fungus/norovirus/rhinovirus/parvovirus B19 (n = 1, 3.4), unidentified (n = 6, 20.7)

19

3-6 mo Salmonella/E. coli (n = 2, 7.1), K. pneumoniae/Enterococcus/S. pneumoniae/Staphylo-
coccus (n = 1, 3.6)

8 RSV (n = 4, 14.3), influenza (n = 2, 7.1), rotavirus/parainfluenza/rhinovirus/measles/HHV6 (n = 1, 3.6), unidentified (n = 
9, 32.1)

20

> 6-12 mo E. coli (n = 4, 11.1), Salmonella (n = 3, 8.3), A. baumannii/Enterococcus/mycoplasma/C. 
difficile (n = 2, 5.6), Stenotrophomonas/Staphylococcus/Aeromonas/Pseudomonas/
Plesiomonas/P. jirovecii (n = 1, 2.8)

21 Parainfluenza (n = 3, 8.3), norovirus/herpes simplex virus (n = 2, 5.6), fungus/RSV/rhinovirus/influenza/measles (n = 1, 
2.8), unidentified (n = 3, 8.3)

15

> 12-24 mo Salmonella (n = 8, 12.5), E. coli (n = 3, 7.5), Aeromonas/Pseudomonas/mycoplasma/
Plesiomonas (n = 1, 2.5)

15 Parainfluenza (n = 6, 15), rotavirus (n = 2, 5), adenovirus/varicella-zoster 
virus/dengue/rhinovirus/influenza/measles/metapneumovirus/hepatitis E/coxakie AB (n = 1, 2.5) unidentified (n = 11, 
27.5)

28

> 2-5 yr Salmonella/mycoplasma (n = 2, 7.4), E. coli/K. pneumoniae/Staphylococcus/Vibrio 
cholera/B. cereus (n = 1, 3.7)

9 Varicella-zoster virus (n = 3, 11.1), rotavirus/RSV/dengue/influenza (n = 2, 7.4), fungus/norovirus/herpes simplex 
virus/hepatitis B (n = 1, 3.7), unidentified (n = 3, 11.1)

18

Overall E. coli (n = 31, 13.1), Salmonella (n = 20, 8.1), K. pneumoniae (n = 16, 6.8), A. baumannii (
n = 13, 5.5), Enterococcus (n = 9, 3.8), Staphylococcus (n = 8, 3.3), mycoplasma (n = 5, 
2.1), C. difficile (n = 4, 1.7), Plesiomonas Shigelloides/Aeromonas (n = 3, 1.3), Corynebac-
terium/S. pneumononiae/Stenotrophomonas/P. aeruginosa/Aeromonas (n = 2, 0.8), 
Bacillus/Elizabethkingia meningoseptica/Streptococcus mirabilis/P. jirovecii/Vibrio 
cholera/B. cereus (n = 1, 0.4)

128 Parainfluenza (n = 14, 5.9), rotavirus/RSV (n = 8, 3.4), influenza (n = 6, 2.5), varicella-zoster virus (n = 5, 2.1), 
dengue/norovirus/fungus/rhinovirus (n = 4, 1.7), adenovirus/bocavirus/herpes simplex virus/measles (n = 3, 1.3), 
coronavirus (n=2, 0.8), HHV6/metapneumovirus/hepatitis E/coxakie AB/hepatitis B (n = 1, 0.4), unidentified (n = 32, 
13.5)

109b

bP < 0.001; virus vs bacterial causes of infections at each time point. A. baumannii: Acinetobacter baumannii; B. cereus: Bacillus cereus; C. difficile: Clostridium difficile; E. coli: Escherichia coli; HHV6: Human herpes virus 6; K. pneumoniae: Klebsiella 
pneumoniae; P. aeruginosa: Pseudomonas aeruginosa; P. jirovecii: Pneumocystis jirovecii; RSV: Respiratory syncytial virus; S. pneumoniae: Streptococcus pneumoniae.
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Table 6 Vaccine-preventable infections causing hospitalization in children after liver transplantation

Time During transplant < 3 mo 3-6 mo > 6-12 mo > 12-24 mo > 2-5 yr Overall

Rota 2 1 1 0 2 2 8

Influenza 0 0 2 1 1 2 6

Varicella 1 0 0 0 1 3 5

Dengue 0 1 0 0 1 2 4

Measles 0 0 1 1 1 0 3

Streptococcus pneumoniae 1 0 1 0 0 0 2

Hepatitis B 0 0 0 0 0 1 1

Hepatitis E 0 0 0 0 1 0 1

Vibrio cholera 0 0 0 0 0 1 1

ARTICLE HIGHLIGHTS
Research background
Infection after liver transplantation is a serious concern due to potential morbidity and mortality, thus 
strategies to reduce overall post-transplant infection are warranted. Immunization is an effective and 
relatively noninvasive and affordable way to reduce vaccine-preventable infections (VPIs).

Research motivation
There is strong evidence that VPIs and non-VPIs post-transplant cause high fatality and increase graft 
rejection, but published data on VPIs and their effects in children post-liver transplant in Asia are scarce.

Research objectives
To investigate immunization status in children at the time of liver transplantation and up to 5 years 
thereafter. The prevalence and impact of VPIs and non-VPIs during hospitalization were also evaluated.

Research methods
The current retrospective study included 77 children who underwent liver transplantation and were 
followed up for up to 5 years thereafter. Demographic data, patient characteristics, immunization details 
derived from vaccination records, and hospitalizations for VPIs and non-VPIs were analyzed.

Research results
The mean follow-up duration after liver transplantation was 3.68 ± 1.45 years. Of the 77 children in the 
study, 48 (62.3%) had vaccination records in their vaccination books. There was a significant difference 
in the proportion of children with incomplete vaccination according to Thailand’s Expanded Program 
on Immunization (n = 25, 52%) and accelerated vaccine from Infectious Diseases Society of America 
recommendations (n = 43, 89.5%) (P < 0.001). Post-liver transplant, almost half of the children in the 
study did not catch up with appropriate immunizations for age. There were 237 infections requiring 
hospitalization during up to 5 years of follow-up post-liver transplant at our hospital. The risks of VPIs 
and non-VPIs were highest during the first year after liver transplantation, and 2 children died. 
Respiratory and gastrointestinal systems were common sites of infection. The most commonly identified 
pathogens that caused VPIs were rotavirus, influenza virus, and varicella-zoster virus.

Research conclusions
Incomplete age-appropriate immunization in children pre-liver transplant and post-liver transplant 
were common. At least 13.1% of the children in the study required hospitalization for a VPI during a 
follow-up period of up to 5 years post-transplantation. There was high morbidity, especially during the 
first year after transplantation. Hence, complete immunization and robust infection control should be 
considered in such children.

Research perspectives
The current study suggests that incomplete age-appropriate immunization is a major concern, because a 
large number of patients with VPIs requiring hospitalization were recorded. Interestingly, waning 
immunity post-liver transplant can evidently lead to VPIs, as evidenced by a case in which de novo 
hepatitis B infection developed 3 years postliver transplantation in a child who had a hepatitis B surface 
antibody titer of > 1000 mIU/mL pre-liver transplantation. As well as policies to increase pre- and post-



Sintusek P et al. Immunization and vaccine-preventable infections in liver-transplanted children

WJH https://www.wjgnet.com 130 January 27, 2021 Volume 13 Issue 1

transplant immunization rates, studies investigating humoral and cellular immunity induced by 
vaccination after liver transplantation are needed.
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Abstract
BACKGROUND 
Abnormal liver function tests (LFTs) in post-liver transplant (LT) patients pose a 
challenge in the timing and selection of diagnostic modalities. There are little data 
regarding the accuracy of endoscopic retrograde cholangiopancreatography 
(ERCP) and liver biopsy (LB) in diagnosing post-transplant complications.

AIM 
To evaluate the diagnostic performance of ERCP and LB in patients with non-
vascular post-LT complications.

METHODS 
This single-center retrospective study evaluated patients undergoing both ERCP 
and LB for evaluation of elevated LFTs within 6 mo of LT from 2000 to 2017. 
Diagnostic operating characteristics including accuracy, sensitivity and specificity 
for various diagnoses were calculated for ERCP and LB. The R factor (ratio of 
alkaline phosphatase to alanine aminotransferase) was also calculated for each 
patient.

RESULTS 
Of the 1284 patients who underwent LT, 91 patients (74.7% males, mean age of 51) 
were analyzed. Anastomotic strictures (AS, 24.2%), acute cellular rejection (ACR, 
11%) and concurrent AS/ACR (14.3%) were the most common diagnoses. ERCP 
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carried an accuracy of 79.1% (95%CI: 69.3-86.9), LB had an accuracy of 93.4% (95%CI: 86.2-97.5), 
and the combination of the two had an accuracy of 100% (95%CI: 96-100). There was no difference 
between patients with AS and ACR in mean R factor (AS: 1.9 vs ACR: 1.1, P = 0.24). Adverse 
events did not differ between the two tests (ERCP: 3.1% vs LB: 1.1%, P = 0.31).

CONCLUSION 
In patients with abnormal LFTs after LT without vascular complications, the combination of LB 
and ERCP carries low risk and improves diagnostic accuracy over either test alone.

Key Words: Liver transplantation; Endoscopic retrograde cholangiopancreatography; Liver biopsy; Abnormal 
liver tests; Acute cellular rejection; Anastomotic biliary stricture

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Patients commonly develop unexplained elevations in liver function tests after liver 
transplantation. After cross sectional imaging and basic lab tests, endoscopic retrograde cholangiopan-
creatography (ERCP) and liver biopsy (LB) are both performed in arbitrary fashion since the diagnostic 
capacity of each test remains unclear. In this study we found that ERCP and LB are both effective 
diagnostic tests in the setting of the 2 most common diagnoses, anastomotic biliary stricture and acute 
cellular rejection. Combining these tests increases the overall diagnostic accuracy to 100%, and both tests 
carried adverse event rates of < 5%. This study justifies combining ERCP and LB when the diagnosis 
remains elusive.

Citation: Attwell A, Han S, Kriss M. Endoscopic retrograde cholangiopancreatography and liver biopsy in the 
evaluation of elevated liver function tests after liver transplantation. World J Hepatol 2021; 13(1): 132-143
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/132.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.132

INTRODUCTION
Since 2012, the number of liver transplants (LTs) performed annually in the United States has increased 
each year, reaching a record number of 8250 in 2018[1]. Just as the field of transplantation has evolved 
over the past 5 decades, so too have the nuances of post-transplant clinical care. Clinicians commonly 
face the conundrum of abnormal liver function tests (LFTs) soon after LT which often indicates a 
transplant-related complication. Practice guidelines provided by the American Association for the Study 
of Liver Diseases (AASLD), American Society of Transplantation, and the European Association for the 
Study of the Liver note that the frequency of monitoring LFTs after LT and the subsequent work-up 
should be individualized to the patient and time after LT, prior complications, stability of serial testing, 
and the suspected underlying pathology[2,3].

The underlying cause, however, can be challenging to discern. Depending on the pattern of abnormal 
LFTs, evaluation of the biliary system with transabdominal ultrasound, MRI, CT, and/or endoscopic 
retrograde cholangiopancreatography (ERCP) may be most appropriate when the LFT pattern is 
cholestatic, whereas liver biopsy (LB) should be performed first when parenchymal injury is suspected
[2]. To date, there are insufficient data regarding the relative accuracy of ERCP and LB in diagnosing 
specific post-LT complications. Current societal guidelines strongly support both of these tests (Grade 
1A recommendations) but provide little guidance on which should be performed initially[2]. The 
decision to choose LB, ERCP, or both (and in which order) is therefore left to the discretion of the 
transplant surgeon, hepatologist, or interventional endoscopist. The primary aim of this study was to 
evaluate the diagnostic performance of ERCP and LB in patients with non-vascular post-LT complic-
ations.

MATERIALS AND METHODS
This was a single-center, retrospective review of all patients who underwent LT followed by both LB 
and ERCP at the University of Colorado Hospital from January 2000 to June 2017.

Patients
Patients undergoing deceased or living donor LT at our center during the study period were identified 
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using the LT database. Inclusion criteria included adult patients post-LT who underwent both LB and 
ERCP within 6 mo after LT with a primary indication of elevated LFTs. Patients with a clearly identi-
fiable cause of elevated LFTs–such as drug or medication-related hepatitis, vascular liver disease or 
infectious hepatitis based on the initial history, labs, or imaging studies-were excluded from the 
analysis. Patients who did not receive post-LT care at our institution were also excluded. Post-LT biliary 
anatomy types included duct-to-duct (DD) anastomosis and Roux-en-Y hepaticojejunostomy (RYHJ).

Patients with a mixed pattern of liver injury based on LFTs underwent either LB or ERCP initially at 
the discretion of the provider. ERCP was the first invasive diagnostic test performed when patients had 
symptoms suggestive of cholangitis or a predominantly cholestatic pattern of elevated LFTs. LB was 
performed after labs and cross-sectional imaging when hepatocellular disease was suspected. It is our 
practice to monitor immunosuppressant levels on all post-LT patients. Approval from the Colorado 
Multi-Institutional Review Board was obtained prior to beginning the study.

ERCP
ERCP was performed under conscious sedation, monitored anesthesia care, or general anesthesia by one 
of 7 advanced endoscopists who have performed > 1000 ERCPs each. Endoscopists utilized the standard 
technique in cannulating the bile duct and performing cholangiography. Occlusion cholangiography 
was used to visualize the entire native and donor biliary tree with particular attention paid to the 
anastomosis. Biliary sphincterotomy was performed in select cases at the discretion of the endoscopist. 
If present, strictures were treated with the placement of plastic or fully covered metal stents were placed 
across strictures according to the endoscopist’s judgment. Dilation of strictures via balloon or catheter 
was performed prior to stenting in select cases.

Conventional techniques such as balloon and basket sweeping were used to remove bile duct stones 
and/or casts, and single or multiple stents were placed across anastomotic bile duct leaks. For patients 
with DD biliary anastomosis, a standard duodenoscope was used to reach the ampulla. For patients 
with RYHJ anatomy either a pediatric colonoscope or small bowel enteroscope (single-balloon, double-
balloon, or rotational overtube) was used to reach the biliary anastomosis.

LB
While percutaneous (ultrasound-guided) LB represented the preferred route of biopsy, transjugular LB 
was generally performed in patients with an International Normalized Ratio > 1.5, when intravascular 
pressure measurements were needed, or when the abdominal anatomy precluded a safe percutaneous 
approach. Both percutaneous and transjugular LB were performed under conscious sedation. LB 
techniques are described in detail in an AASLD position paper[4]. Board certified GI pathologists 
examined all histology samples.

Outcomes and definitions
The study’s primary outcome was the accuracy of ERCP and LB in making the ultimate final diagnosis 
or diagnoses driving the abnormal LFTs, as determined by the GI and Hepatology services. Secondary 
outcomes included sensitivity and specificity for ERCP and LB in the final diagnosis. Acute cellular 
rejection (ACR) was defined and graded using a 1-9 scale based on histopathologic findings using the 
rejection activity index, which was based on inflammatory changes in the portal triads, bile ducts, and 
venous endothelium (with scores of 1-3 for each of the 3 categories)[5]. A score of 3 or more was 
classified as definite ACR (Figure 1)[5]. Recurrent hepatitis C infection (HCV) after LT was defined by 
detectable serum HCV RNA. Anastomotic stricture (AS) was defined as a benign-appearing narrowing 
in the region of the biliary anastomosis during ERCP, typically within 5-6 mm from the suture line, 
usually associated with delayed contrast drainage and/or moderate resistance to passage of an inflated 
12 mm balloon (Figure 2).

True positive results for LB or ERCP were defined by findings supportive of at least one of the final 
diagnosis/es as defined above. True negative results were defined by ERCP or LB results that failed to 
support the final diagnosis/es with or without supporting an alternative diagnosis. For example, if LB 
showed signs of a large bile duct obstruction or cholangitis, this was considered a true positive for a 
final diagnosis of anastomotic stricture or cholangitis, respectively. Conversely, if ERCP did not show 
biliary pathology, this was considered a false negative when the final diagnosis was a hepatocellular 
disorder such as ACR or recurrent HCV.

Statistical analysis
Descriptive statistics were used to depict patient demographics, symptoms and laboratory data. An R 
factor was calculated as the ratio between the degree of elevation of alkaline phosphatase and the 
degree of elevation of alanine aminotransferase[6]. R factors > 5 were considered to be consistent with 
hepatocellular damage and R factors < 2 suggested cholestatic patterns of injury, with R factors between 
2 and 5 suggesting a mixed pattern of injury. Diagnostic operating characteristics including sensitivity, 
specificity, and accuracy [(true positive + true negative)/(true positive + false negative + false positive + 
true negative)] were calculated for both ERCP and LB. Fisher’s exact test or the chi square test were used 
to compare categorical variables between patients with ACR and AS. The student’s t-test was used to 
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Figure 1 Photomicrograph of representative portal tract in acute cellular rejection. Mixed, lymphocyte predominant portal-based inflammation, bile 
duct inflammation characterized by lymphocyte infiltration (circle), and a large portal venule with subendothelial lymphocyte infiltration and intraluminal lymphocyte 
tethering[24] (hematoxylin and eosin stain, 40 ×).

Figure 2  Cholangiogram during endoscopic retrograde cholangiopancreatography demonstrating an anastomotic stricture (arrow).

compare continuous variables between patients with ACR and AS. Adverse event rates were compared 
between ERCP and LB using the Fisher’s exact test. All statistical analysis was performed using STATA 
15.1 (StataCorp, College Station, TX, United States).

RESULTS
Patients 
A total of 1284 patients underwent LT at our center during the study period (Figure 3). Of these, 96 
patients (7.5%) received both an ERCP and LB for evaluation of persistently elevated LFTs within the 
first 6 mo after LT. Ninety-one patients received long-term follow-up at our institution and were 
included in the final analysis. The mean time interval between the 2 procedures was 9.1 d (SD 6.9).

The mean age of the cohort was 51 (SD 12.1) and 74.7% (n = 68) were male (Table 1). Deceased donor 
transplants (n = 73, 80.2%) accounted for the majority of transplants, and 73.6% (n = 67) had DD biliary 
anatomy. Presenting symptoms included jaundice (23.1%, n = 21), abdominal pain (15.4%, n = 14), and 
fever (12.1%, n = 11), and 21 (25%) patients were asymptomatic. Initial imaging consisted of ultrasound 
(74.7%), CT (18.7%), and magnetic resonance cholangiopancreatography (MRCP, 6.6%) with a mean 
donor bile duct diameter of 4.6 (SD 1.9) mm. Imaging revealed a dilated duct in 9 (9.9%, 8 with 
ultrasound, 1 with MRCP) of patients. LB was performed as the first of the 2 tests in 51 (56%) patients, 
and 71.4% (n = 65) of LBs were performed via the percutaneous route. Nearly 75% of patients were on 
dual immunosuppression therapy (n = 68) with 22% of patients on monotherapy (n = 20) with the 
combination of tacrolimus and mycophenolate sodium being the most common combination therapy (n 
= 21).
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Table 1 Baseline characteristics reported as n (%) or mean (SD)

Variable Overall cohort (n = 91)

Age 51 (12.1)

Sex (male) 68 (74.7)

Presenting symptom

Jaundice 21 (23.1)

Fever 11 (12.1)

Abdominal pain 14 (15.4)

Asymptomatic 21 (25)

Liver biopsy performed first 51 (56)

Percutaneous liver biopsy 65 (71.4)

Bile duct diameter (mm) 4.6 (1.9)

R factor 2 (2.4), Range: 0.1-6.4

Alkaline phosphatase (international units/liter) 392.6 (248.4)

AST (units/liter) 200.5 (674.8)

ALT (units/liter) 205.4 (444.2)

Total bilirubin (mg/dL) 4.5 (5.4)

Deceased donor 73 (80.2)

Transplant biliary anatomy 

Duct-to-duct 67 (73.6)

Roux-en-Y hepaticojejunostomy 24 (26.4)

Tacrolimus 66 (73.3)

Sirolimus 20 (22.2)

Everolimus 6 (6.6)

Mycophenolate sodium 28 (31.1)

Mycophenolate mofetil 13 (14.4)

Cyclosporine 16 (17.8)

Prednisone 20 (22.2)

Immunosuppression monotherapy 20 (22)

Dual immunosuppression therapy 68 (74.7)

Triple immunosuppression therapy 3 (3.3)

AST: Aspartate aminotransferase; ALT: Alanine transaminase.

Technically, all LB and ERCP procedures were performed successfully. The most common single 
diagnosis ultimately was AS (34.1%), followed by ACR (11%) with all diagnoses displayed in Table 2. A 
total of 29 (31.9%) patients had multiple concurrent diagnoses contributing to the elevation in LFTs (and 
included as final diagnoses), and the most common was a dual diagnosis of AS with ACR (14.3%, n = 
13). Four (4.4%) patients had 3 concurrent diagnoses, all of which included ACR and AS (Table 2).

Diagnostic operating characteristics
The diagnostic operating characteristics of LB and ERCP are shown in Table 3. The overall accuracy of 
ERCP was 79.1% (95%CI: 69.3-86.9). The overall accuracy of LB was 93.4% (95%CI: 86.2-97.5). Combined, 
the 2 tests had an overall accuracy of 100% (95%CI: 96-100).

For AS, ERCP had an accuracy of 100% (95%CI: 84.6-100) while LB had an accuracy of 72.7% (95%CI: 
49.8-89.3). For ACR, LB had an accuracy of 100% (95%CI: 69.2-100) while ERCP had an accuracy of 0% 
(95%CI: 0-30.9). Sensitivities carried the same values as the accuracy in all cases due to the lack of false 
positive results. For the same reason, specificity could not be calculated for any of the diagnostic tests.
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Table 2 Etiologies of liver function test elevation reported as n (%)

Single diagnosis n (%)

Anastomotic stricture 31 (34.1)

Acute cellular rejection 10 (11)

Recurrent primary sclerosing cholangitis 6 (19.4)

Recurrent HCV 5 (5.5)

Biliary cast syndrome 3 (3.3)

Ischemic cholangiopathy 2 (2.2)

Papillary stenosis 1 (1.1)

Posterior reversible encephalopathy syndrome 1 (1.1)

Cholestatic hepatitis 1 (1.1)

Recurrent PBC 1 (1.1)

Venous outflow obstruction 1 (1.1)

Two diagnoses

Anastomotic stricture and acute cellular rejection 13 (14.3)

Recurrent HCV and anastomotic stricture 6 (19.4)

Bile leak and acute cellular rejection 2 (2.2)

Congestive hepatopathy and anastomotic stricture 1 (1.1)

Anastomotic stricture and suprahepatic cava stenosis 1 (1.1)

Recurrent PBC and anastomotic stricture 1 (1.1)

CMV hepatitis and bile leak 1 (1.1)

Three diagnoses

Acute cellular rejection, anastomotic stricture, and recurrent HCV 2 (2.2)

Acute cellular rejection, anastomotic stricture, and de novo autoimmune hepatitis 1 (1.1)

Acute cellular rejection, anastomotic stricture, and CMV hepatitis 1 (1.1)

HCV: Hepatitis C virus; PBC: Primary biliary cholangitis; CMV: Cytomegalovirus.

Table 3 Operating characteristics for endoscopic retrograde cholangiopancreatography and liver biopsy in diagnosing post-liver 
transplant complications

ERCP LB ERCP + LB

Overall accuracy % (95%CI) 79.1 (69.3-86.9) 93.4 (86.2-97.5) 100 (96-100)

Overall sensitivity % (95%CI) 79.1 (69.3-86.9) 93.4 (86.2-97.5) 100 (96-100)

Acute cellular rejection accuracy % (95%CI) 0 (0-30.9) 100 (69.2-100) 100 (91.9-100)

Anastomotic stricture accuracy % (95%CI) 100 (84.6-100) 72.7 (49.8-89.3) 100 (89.4-100)

ERCP: Endoscopic retrograde cholangiopancreatography; LB: Liver biopsy.

Liver function tests
The mean R factor (ratio of alkaline phosphatase and alanine aminotransferase) was 2 (SD 2.4), with a 
mean alkaline phosphatase (AP) level of 392.6 (SD 248.4) IU/L and mean total bilirubin (TB) level of 4.5 
(SD 5.4) mg/dL. The mean aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels 
were 200.5 (SD 674.8) and 205.4 (444.2), respectively. Between patients with AS and patients with ACR, 
there was no significant difference in R factor (AS: 1.9 vs ACR: 1.1, P = 0.24), AP (AS: 376.3 vs ACR: 
452.2, P = 0.48), TB (AS: 4.1 vs ACR: 5.5, P = 0.41), AST (AS: 130.9 vs ACR: 127.9, P = 0.94), or ALT (AS: 
203.1 vs ACR: 169.5, P = 0.58). There was also no difference between the 2 diagnoses in terms of bile duct 
diameter (AS: 4.8 mm vs ACR: 3.8 mm, P = 0.36). Patients with concurrent AS and ACR had a mean R 
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Figure 3 Flow diagram of patients. ERCP: Endoscopic retrograde cholangiopancreatography.

factor of 1.06 (0.7).

Adverse events
A total of 3 adverse events occurred after 96 ERCPs (3.1%): 1 case of mild post-ERCP pancreatitis treated 
conservatively, and 2 cases of post-procedure abdominal pain requiring overnight hospitalization and 
supportive care. One adverse event occurred after LB, a hepatoportal fistula that required hospital-
ization and angiography with embolization by Interventional Radiology. There was no significant 
difference in the adverse event rates due to ERCP or LB (3.1% vs 1.1%, P = 0.31).

DISCUSSION
It is common to encounter asymptomatic patients with abnormal LFTs in the post-LT setting, as well as 
symptomatic patients with normal LFTs. It is also common for patients to undergo multiple invasive 
diagnostic tests as part of the work-up. Abnormal LFTs post-LT are a major cause of unplanned hospital 
readmissions, and the ensuing work-up may consume significant resources[7]. ERCP is the accepted 
diagnostic and therapeutic test for suspected biliary pathology and LB is the accepted test for suspected 
hepatocellular pathology. But in reality, because of the poor specificity of LFT patterns and the 
limitations of cross-sectional imaging, patients with post-LT LFT elevations will too often undergo both 
procedures. The timing and order of these procedures is left to the discretion of the transplant surgeon, 
hepatologist and advanced endoscopist, with little evidence to guide them. Despite the high incidence 
of immune-mediated and biliary complications following LT, the usual clinical tools (e.g., clinical 
history, LFT patterns, bile duct diameter on imaging) are poorly specific for any single diagnosis. 
Besides the main finding of our study, this study demonstrated that patients with AS had no significant 
difference from patients with ACR in terms of R factor, alkaline phosphatase level, total bilirubin level, 
AST level, ALT level, or bile duct diameter. Hence, additional testing with LB and ERCP was justified.

Ultrasound and MRCP have variable accuracy in diagnosing biliary pathology post-LT, since 
obstructive ductal dilation in the transplanted liver is variable. Several studies have demonstrated poor 
sensitivity and specificity of bile duct diameter post-LT[8-11]. While both modalities can detect biliary 
dilatation, MRCP offers an advantage over ultrasound in being able to detect biliary strictures with a 
sensitivity ranging from 64%-79%[9,12]. While both of these modalities are first-line options for imaging 
in the diagnostic work-up of elevated LFTs after LT, we have found that MRCP both under-estimates 
and over-estimates stenosis size and severity. Additionally, ERCP permits a real-time accurate 
assessment of strictures, based on contrast drainage and balloon passage, and the ability to perform 
stricture therapy. For these reasons, we generally go straight to ERCP and bypass MRCP when there is 
significant ductal dilation, a cholestatic pattern of LFTs, or a negative LB.
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To our knowledge, this is the largest study evaluating the diagnostic performance of combined LB 
and LT in patients with abnormal LFTs after LT. Our novel finding in this study is the high diagnostic 
accuracy for ERCP and LB, in contrast to standard laboratory tests or cross-sectional imaging. 
Diagnostic accuracy was 79.1% overall for ERCP and 93.4% overall for LB. Combined, the 2 tests study 
had an overall diagnostic accuracy of 100%.

ACR and AS were the most frequent final diagnoses in our patients. These are commonly 
encountered diseases in the LT population, but the differential diagnosis remains broad (Figure 4) and 
includes de novo autoimmune hepatitis, recurrent liver disease (HCV, PSC, others), drug toxicity, de 
novo infection, biliary stones or casts, hepatic artery thrombosis, and more[2]. We recognize that a 
previously common clinical dilemma–differentiating recurrent HCV from ACR or other etiologies–is 
less common in the current direct-acting antiviral (DAA) era, and our study included patients in the 
current and pre-DAA eras.

In the early days of LT, ACR was a near-universal complication resulting in long-term graft failure
[13,14]. Advances in immunosuppression have subsequently led to reduced rates of allograft rejection, 
though the incidence still ranges from 20% to 40% after LT, with most occurring within the first month
[15-17]. In addition, ACR remains clinically significant, impacting long-term graft survival and mortality
[18]. The incidence of biliary complications after LT is highly variable but still relatively common. The 
estimated incidence of AS post-LT is up to 20% for patients following deceased donor LT and 19%-40% 
after living donor liver transplantation. Risk factors include graft ischemia, DD anastomosis, reperfusion 
injury, deceased donor, and hepatic artery thrombosis. The incidence of non-anastomotic stricture is 
0.5% to 10%, while stones/sludge are seen post-LT in approximately 5% of patients. Biliary cast 
syndrome is less common (2.5%-3%)[19-22].

It is critical to make a prompt and diagnosis when a transplanted patient presents with abnormal 
LFTs, since graft survival depends on timely and appropriate treatment. While ACR is successfully 
treated with various combinations of immunosuppressive medication, the management of biliary 
complications is procedural. AS may be treated successfully with endoscopic placement of multiple 
plastic stents or a covered metal stent. Recent data suggests that metal stents incur fewer procedures 
and costs while leading to stricture resolution similarly to plastic stents[23].

Our study sheds light on the frequency of dual diagnoses in patients with abnormal LFTs post-LT, 
which is an under-studied phenomenon. In this study, 34 (37.4%) patients had multiple diagnoses, of 
which the most common combination was AS plus ACR (14.3%). Four patients (4.4%) ultimately 
received 3 final diagnoses. In practice, patients receive therapy for multiple diseases concurrently (e.g. 
stenting for AS plus corticosteroid bursts for AS), so knowing which diagnosis is dominant can be 
challenging. Previous studies assessing abnormal LFTs in the post-LT population mostly included 
patients undergoing LB or ERCP but not both, so our study may represent more complex, sicker 
patients[7]. Alternatively, some of the various diagnoses in our patients may be clinically silent. AS, for 
example, is quite subjective and may be diagnosed or treated by endoscopists even though the stricture 
may not be high-grade or impede bile flow.

Our findings suggest that physicians managing post-LT patients can have a lower threshold to 
perform both LB and ERCP when evaluating abnormal LFTs within the context of the patient’s clinical 
presentation. While one modality alone has high diagnostic accuracy over lab tests and imaging, LB and 
ERCP combined have a very high diagnostic accuracy. Ultimately the decision to perform one test over 
the other depends on clinician experience, but both tests improve the diagnostic accuracy over one test 
alone. However, despite the high prevalence of multiple final diagnoses (37.4%), only 96 of 1284 
transplanted patients at our center underwent both ERCP and LB during the study period, suggesting 
they are used sparingly overall. Finally, the adverse event rates of ERCP and LB are low, and we 
demonstrated no significant difference between the two.

This study was limited by its size and design. It was performed at a single, United States tertiary care 
hospital with experienced endoscopists and transplant hepatologists, so the results may not be general-
izable to other centers. The final diagnosis was determined by review of the medical record and hence 
may be affected by bias or subjectivity amongst the various treating physicians. Moreover, a 
reproducible, objective grading score for AS has not been established. The study was also limited by its 
retrospective nature and by limiting the analysis to patients undergoing ERCP and LB early after LT 
during the 17-year study period. An additional limitation is the variable time gap between ERCP and 
LB, although across the entire study population the mean time interval between both procedures was 
relatively short (9.1 d) suggesting that the diagnostic evaluation typically occurred during a single 
clinical episode. Despite these limitations, our cohort represents the modern-day practice of ERCP and 
LB after LT, and the study permits a comparison between the 2 key diagnostic tests in the most common 
clinical scenarios. Future studies may include a prospective evaluation of abnormal LFTs post-LT or 
outcomes of post-LT patients who undergo empiric treatment without LB or ERCP.

CONCLUSION
In summary, these results offer insight into the diagnostic and etiology of abnormal LFTs after LT, in 
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Figure 4 Causes of liver test abnormalities after liver transplantation. Legend: Used with permission from Lucey et al[2], 2013. HBV: Hepatitis B virus; 
HCV: Hepatitis C virus; PBC: Primary biliary cholangitis; PSC: Pulmonary scar cancer.

which standard lab and imaging studies have poor specificity. Our study shows that LB and ERCP 
improve diagnostic accuracy over either test alone and carry low risk. Dual diagnoses are relatively 
common in this population. In the future, prospective and multicenter studies should include patients 
undergoing LB and ERCP beyond the early post-LT period and establish reproducible, objective criteria 
for the ultimate diagnosis.

ARTICLE HIGHLIGHTS
Research background
Elevated liver function tests (LFTs) are commonly encountered in the post-liver transplant (LT) setting. 
When a diagnosis is not made by history, labs, and cross-sectional imaging, endoscopic retrograde 
cholangiopancreatography (ERCP) and liver biopsy (LB) are commonly performed. However, the 
diagnostic performance of each of these tests individually and in combination remains unknown.

Research motivation
We first hoped to determine what are the most common diagnoses in the population of patients with 
elevated LFTs after LT. At the same time, we want to assess the diagnostic performance of both ERCP 
and LB in these patients so that we can decide which of these tests is safer and more effective at 
clinching the diagnosis.
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Research objectives
We aimed to assess the diagnostic accuracy and safety of ERCP and LB together and in isolation for a 
final diagnosis in patients with unexplained LFT elevations after LT.

Research methods
In this single-center, retrospective study we evaluated patients undergoing both ERCP and LB for the 
evaluation of elevated LFTs within 6 mo of LT based on review of existing medical records. Diagnostic 
accuracy, sensitivity and specificity for the various final diagnoses were calculated for each test.

Research results
Anastomotic strictures (AS), acute cellular rejection (ACR) and concurrent AS and ACR were the most 
common diagnoses. ERCP carried an accuracy of 79.1%, LB had an accuracy of 93.4%, and the 
combination of the 2 had an accuracy of 100% (95%CI: 96-100). The pattern of liver chemistries (R 
Factor) did not diagnostic accuracy of either test. Adverse event rates did not differ between the 2 tests.

Research conclusions
While LB had a higher accuracy than ERCP, the combination of the 2 tests had an accuracy of 100% and 
a low adverse event rate, suggesting that physicians can have a low threshold in utilizing both 
modalities for the evaluation of elevated LFTs.

Research perspectives
In patients with elevated LFTs after LT without a diagnosis, neither LB nor ERCP is clearly superior. 
Both tests can be used and the decision to use one over the other will depend on the clinical context and 
physician preference. However, when necessary both tests can be used safely together to reach a final 
diagnosis in nearly all patients.
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Abstract
BACKGROUND 
The oral nucleos(t)ide analogue, entecavir (ETV) was demonstrated to reduce the 
rate of hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV)-
associated liver cirrhosis. However, the reduction of HCC differs in various 
regions of the world.

AIM 
To investigate the reduction of HCC development due to ETV therapy by meta-
analysis.

METHODS 
We surveyed the differences in HCC development following ETV treatment based 
on published articles using PubMed (2004-2019).

RESULTS 
The regions with the most marked reduction in HCC development due to ETV 
therapy were Spain (1.0%/year) and Canada (Southern part, 1.3%/year), and the 
most ineffective areas were South Korea (3.6%-3.8%/year), China (3.3%/year), 
Taiwan (2.4%-3.1%/year), and Hong Kong (2.8%/year). Following ETV adminis-
tration, the incidence of HCC in genotype D regions (1.89% ± 0.28%/year, mean ± 
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SE) was significantly lower than that in genotype C regions (2.91% ± 0.24%/year, P < 0.01). With 
regard to the initial HBV-DNA level, in genotype C patients (average: 5.61 Log10IU/mL) this was 
almost the same as that in genotype D patients (average: 5.46 Log10IU/mL). Moreover, there was 
no association between the prevalence ratio of HBV and the incidence of HCC on ETV treatment.

CONCLUSION 
The effectiveness of ETV in preventing HCC development in HBV-associated liver cirrhosis is 
genotype-dependent.

Key Words: Hepatocellular carcinoma; Entecavir; Genotype of hepatitis B virus; Oral nucleos(t)ide analogue

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Entecavir was demonstrated to reduce the rate of hepatocellular carcinoma (HCC) in patients 
with hepatitis B virus (HBV)-associated liver cirrhosis. The reduction of HCC differs in various regions of 
the world. We surveyed these differences based on published articles using PubMed (2004-2019). 
Following entecavir administration, the incidence of HCC in genotype D regions (1.89% ± 0.28%/year, 
mean ± SE) was significantly lower than that in genotype C regions (2.91% ± 0.24%/year, P < 0.01). The 
initial HBV-DNA level in genotype C patients was almost the same as that in genotype D patients. The 
effectiveness of entecavir in preventing HCC development in patients with HBV-associated liver cirrhosis 
is genotype-dependent.

Citation: Tarao K, Nozaki A, Chuma M, Taguri M, Maeda S. Effectiveness of entecavir in preventing 
hepatocellular carcinoma development is genotype-dependent in hepatitis B virus-associated liver cirrhosis. World 
J Hepatol 2021; 13(1): 144-150
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/144.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.144

INTRODUCTION
The third-generation nucleos(t)ide analogue, entecavir (ETV) is currently recommended as one of the 
first-line antiviral therapies for chronic hepatitis B virus (HBV) infection. Moreover, it is generally 
accepted that long-term ETV treatment may reduce the incidence of hepatocellular carcinoma (HCC) in 
HBV-infected patients. Wong et al[1] demonstrated that the 5-year cumulative incidence of HCC was 
13.8% in an ETV cohort vs 26.4% in a control cohort.

However, on surveying published reports, the effect of ETV in preventing HCC differed in various 
regions of the world. In this study, we examined the reduction of HCC development in various regions 
of the world, and the possible reasons for these differences.

MATERIALS AND METHODS
The PubMed database was searched (2004-2019) for studies published in English regarding the follow-
up results of the development of HCC in patients with HBV-associated liver cirrhosis after treatment 
with ETV for more than 2 years. Studies with follow-up periods shorter than 3 years after ETV treatment 
were excluded.

In this study, we included only HBV cirrhotic cases. Furthermore, we surveyed the possible reasons 
for the differences in HCC reduction. We examined the association between the reduction in HCC 
development and initial HBV-DNA levels, which is a strong accelerating factor for HCC development
[2], the prevalence of HBV in these regions, and HBV genotypes.

To compare the incidence of HCC between the main genotypes C and D, we calculated the weighted 
mean of the HCC incidence rate for each genotype using the random effect model (ref: Dersimonian R, 
Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7: 177-188). To assess whether 
the incidence rate among genotype D patients was lower than that among genotype C patients, we 
calculated the P value using a Z test. All reported P values correspond to two-sided tests, and those with 
P < 0.05 were considered significant. All analyses were performed with JMP version 12 (SAS Institute, 
Cary, NC, United States).

https://www.wjgnet.com/1948-5182/full/v13/i1/144.htm
https://dx.doi.org/10.4254/wjh.v13.i1.144


Tarao K et al. Prevention of HCC by entecavir

WJH https://www.wjgnet.com 146 January 27, 2021 Volume 13 Issue 1

RESULTS
The results of HBV-associated cirrhotic patients administered ETV are presented in Table 1.

The regions where HCC development was markedly reduced by ETV therapy were Spain 
(1.0%/year)[3] and Canada (Southern part) (1.3%/year)[4]. The most ineffective regions were South 
Korea (3.6%-3.8%/year)[5,6], China (3.3%/year)[7], Taiwan (2.4%-3.1%/year)[8,9], Japan (Ehime, 
southern part of Japan 2.9%/year)[10], and Hong Kong (2.8%/year)[1]. The regions with a moderate 
reduction were Turkey (2.2%-2.7%/year)[11,12], the Caucasus (2.2%/year)[13], and Greece (1.8%/year)
[14].

With regard to the genotype of HBV, the incidence of HCC in regions where the main prevalent type 
is D (1.89% ± 0.28%/year, mean ± SE) was significantly lower than that in regions where the main 
prevalent genotype is C (2.91% ± 0.24%/year, P < 0.01) (Table 2).

Moreover, the incidence of HCC in regions where the main prevalent genotype is C was significantly 
higher than that in regions where the main prevalent genotype was other than C (D + A, 1.61% ± 
0.21%/year, P < 0.0001).

The initial HBV-DNA levels in genotype C patients (average 5.61 Log10IU/mL) was almost the same 
as that in genotype D patients (average 5.46 Log10IU/mL) (Table 3).

The association between the prevalence ratio of HBV in various countries and the incidence of HCC 
with ETV treatment was as follows (Table 1): The incidence of HCC with ETV treatment with a 
prevalence ratio of HBV of more than 8% was 2.64% ± 0.16%/year (mean ± SE), as compared with 2.39% 
± 0.14%/year in regions where the prevalence ratio of HBV was 2%-7% (not significant, P = 0.576).

DISCUSSION
We demonstrated that there were marked differences in the impact of ETV treatment on reducing the 
risk of HCC in patients with HBV-associated cirrhosis in many countries of the world. We must 
consider why such differences exist.

Firstly, the genotypes of HBV should be considered. Genotype C is seen mostly in Asia, and genotype 
A in Northwest Europe, North America, India, and Africa. Genotype D is seen in Southern Europe, 
Middle Eastern Europe, and India. Various cross-sectional studies have found that patients with 
genotype C have more severe liver disease including cirrhosis or HCC than those with other genotypes
[15,16].

In cohort studies of 426 chronic hepatitis B patients from Hong Kong[17] and of 4841 HBsAg-positive 
men from Taiwan[18], genotype C was associated with a 3-to 5-fold increased risk of HCC, respectively, 
compared with other HBV genotypes. Moreover, it was reported that the estimated 5-year cumulative 
incidence of HCC was 17% in East Asia where HBV genotype C is predominant and 10% in Western 
regions where HBV genotype D or A is predominant[19].

It is considered that the same tendency exists even on long-term treatment with ETV, and the 
incidence of HCC is higher in genotype C regions than in regions with other genotypes (especially 
genotype D).

In our studies, we demonstrated that ETV treatment of HBV cirrhotic patients with genotype C was 
less effective at preventing the occurrence of HCC than in those with other genotypes (chiefly genotype 
D).

In support of our findings, Kao et al[20] demonstrated differences in the response to lamivudine 
between HBV genotypes. They reported that genotype B showed a better virological response to 
lamivudine than genotype C in Taiwan.

Another factor that must be taken into account is the association between the prevalence ratio of HBV 
in various places and the incidence of HCC under ETV treatment. The incidence of HCC under ETV 
treatment where the prevalence ratio of HBV is more than 8% was 2.64% ± 0.16%/year, as compared 
with 2.39% ± 0.14%/year in regions where the prevalence ratio of HBV was 2%-7% (not significant, P = 
0.576).

Another important factor that must be taken into consideration is the initial HBV-DNA level. 
However, we demonstrated that the initial HBV-DNA level in genotype C patients was almost the same 
as that in genotype D patients.

CONCLUSION
The impact of long-term ETV treatment on reducing the risk of HCC in patients with HBV cirrhosis 
differs in many countries of the world[1-13,21]. Moreover, it was demonstrated that effectiveness of ETV 
in preventing HCC development is genotype-dependent in HBV-associated liver cirrhosis.
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Table 1 Difference in the impact of entecavir treatment on the risk of hepatocellular carcinoma in patients with hepatitis B virus-
associated cirrhosis in various regions of the world

Ref. Region Main genotype Prevalence ratio

Entecavir 
administered to 
HBV cirrhotics 
patients

Observation period (yr) Incidence of HCC 
(%/yr)

Riveiro-Barciela 
et al[3]

Spain (Caucasian) D 2%-7% 64 4.6 1.0

Coffin et al[4] Canada (South) D < 2% 25 3.2 1.3

Hosaka et al[21] Japan (Tokyo) C < 2% 79 5.0 1.4

Papatheodoridis 
et al[14]

Greece A 2%-7% 69 3.3 1.8

Idilman et al[11] Turkey D 2%-7% 72 4.0 2.2

Arends et al[13] Caucasus D > 8% 155 3.5 2.2

Su et al[8] Taiwan C > 8% 1315 4.0 2.4

Köklü et al[12] Turkey D 2%-7% 73 3.0 2.7

Wong et al[1] Hong Kong C > 8% 482 5.0 2.8

Watanabe et al
[10]

Japan (Ehime) C 2%-7% 86 5.0 2.9

Chen et al[9] Taiwan C > 8% 586 4.9 3.1

Chen et al[2] China (Chinese) C > 8% 61 4.0 3.3

Kim et al[5] Korea C 2%-7% 367 5.0 3.6

Choi et al[6] Korea C 2%-7% 510 4.0 3.8

HCC: Hepatocellular carcinoma; HBV: Hepatitis B virus.

Table 2 Difference in the incidence of hepatocellular carcinoma under long-term treatment with entecavir between genotype C and 
genotype D cirrhotic patients

Incidence of HCC (%/yr) P value

Genotype C group (n = 8) 2.91 ± 0.24 (SE) P < 0.01

Genotype D group (n = 5) 1.89 ± 0.28 (SE) P < 0.01

HCC: Hepatocellular carcinoma.
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Table 3 Comparison of initial hepatitis B virus deoxyribonucleic acid levels (log10 IU/mL) between genotype C and D cirrhotic patients 
treated with entecavir

Main genotype Ref. Entecavir administered to HBV cirrhotic 
patientssis Initial HBV DNA Average

C Su et al[8] 1315 5.5

C Wong et al[1] 482 5.0

C Watanabe et al[10] 86 6.4

C Chen et al[9] 586 5.9

C Chen et al[2] 61 5.8

C Kim et al[5] 367 4.6

C Choi et al[6] 510 6.7

5.61

D Riveiro-Barciela et al[3] 64 4.9

D Coffin et al[4] 25 6.5

D Idilman et al[11] 72 5.5

D Arends et al[13] 155 5.4

D Köklü et al[12] 73 5.7

5.46

HBV DNA: Hepatitis B virus deoxyribonucleic acid.

ARTICLE HIGHLIGHTS
Research background
The oral nucleos(t)ide analogue, entecavir (ETV) was demonstrated to reduce the rate of hepatocellular 
carcinoma (HCC) in patients with hepatitis B virus (HBV)-associated liver cirrhosis. However, the 
reduction in HCC is different in various countries of the world.

Research motivation
The relationship between the reduction of HCC and HBV genotypes is interesting.

Research objectives
We surveyed the differences in the reduction of HCC development following ETV administration in 
many countries.

Research methods
We surveyed the differences in the reduction of HCC development following long-term administration 
of ETV based on already published articles using PubMed (2004-2019).

Research results
The countries which showed the greatest reduction in HCC development following ETV administration 
were Spain, Canada, and most ineffective countries or regions were South Korea, China, Taiwan, and 
Hong Kong. With ETV administration, the incidence of HCC in genotype D regions was significantly 
lower than that in genotype C regions. The initial HBV-DNA levels in genotype C patients was almost 
the same as that in genotype D patients. No relationship was observed between the prevalence ratio of 
HBV and the incidence of HCC following ETV treatment.

Research conclusions
The effectiveness of ETV in preventing HCC development in HBV-associated liver cirrhosis is genotype-
dependent.

Research perspectives
In countries with low effectiveness of ETV in the prevention of HCC development, frequent surveillance 
using imaging modalities will be necessary.
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Abstract
BACKGROUND 
Budd-Chiari syndrome (BCS) is a challenging indication for liver transplantation 
(LT) due to a combination of massive liver, increased bleeding, retroperitoneal 
fibrosis and frequently presents with stenosis of the inferior vena cava (IVC). 
Occasionally, it may be totally thrombosed, increasing the complexity of the 
procedure, as it should also be resected. The challenge is even greater when 
performing living-donor LT as the graft does not contain the retrohepatic IVC; 
thus, it may be necessary to reconstruct it.

CASE SUMMARY 
A 35-year-old male patient with liver cirrhosis due to BCS and hepatocellular 
carcinoma beyond the Milan criteria underwent living-donor LT with IVC 
reconstruction. It was necessary to remove the IVC as its retrohepatic portion was 
completely thrombosed, up to almost the right atrium. A right-lobe graft was 
retrieved from his sister, with outflow reconstruction including the right hepatic 
vein and the branches of segment V and VIII to the middle hepatic vein. Owing to 
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massive subcutaneous collaterals in the abdominal wall, venovenous bypass was implemented 
before incising the skin. The right atrium was reached via a transdiaphragramatic approach. 
Hepatectomy was performed en bloc with the retrohepatic vena cava. It was reconstructed with an 
infra-hepatic vena cava graft obtained from a deceased donor. The patient remains well on 
outpatient clinic follow-up 25 mo after the procedure, under an anticoagulation protocol with 
warfarin.

CONCLUSION 
Living-donor LT in BCS with IVC thrombosis is feasible using a meticulous surgical technique and 
tailored strategies.

Key Words: Liver transplantation; Living donors; Budd-Chiari syndrome; Hepatic veno-occlusive disease; 
Inferior vena cava; Case report

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: A right-lobe living-donor liver transplantation (LT) with inferior vena cava (IVC) resection and 
reconstruction was performed in a patient with liver cirrhosis due to Budd-Chiari syndrome and hepato-
cellular carcinoma beyond the Milan criteria. It was necessary to remove the IVC because its retrohepatic 
portion was completely thrombosed, up to almost the right atrium. It was reconstructed with an infra-
hepatic vena cava graft obtained from a deceased donor. The patient remains well 25 mo after the 
procedure. This case highlights the meticulous surgical technique and tailored strategies required for 
dealing with these challenging procedures in living-donor LT.

Citation: Rocha-Santos V, Waisberg DR, Pinheiro RS, Nacif LS, Arantes RM, Ducatti L, Martino RB, Haddad LB, 
Galvao FH, Andraus W, Carneiro-D'Alburquerque LA. Living-donor liver transplantation in Budd-Chiari 
syndrome with inferior vena cava complete thrombosis: A case report and review of the literature. World J Hepatol 
2021; 13(1): 151-161
URL: https://www.wjgnet.com/1948-5182/full/v13/i1/151.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i1.151

INTRODUCTION
Budd-Chiari Syndrome (BCS) is characterized by the obstruction of hepatic venous drainage that leads 
to progressive hepatic congestion and, ultimately, portal hypertension and liver cirrhosis[1]. This 
blockage may be present in the hepatic venules, main hepatic veins, inferior vena cava (IVC) or right 
atrium[2]. Several nonsurgical therapeutics have been described, such as anticoagulation therapy, 
percutaneous transluminal angioplasty and interventional radiologic placement of a transjugular 
intrahepatic portosystemic shunt (TIPS) or direct intrahepatic portocaval shunt[1-3]. Liver 
transplantation (LT) is indicated in acute cases of fulminant hepatic failure or chronic cases with 
cirrhosis, which commonly evolve with gastrointestinal bleeding, untreatable ascites, sarcopenia, 
encephalopathy and hepatocellular carcinoma (HCC)[4]. In such scenarios, TIPS is often unfeasible due 
to extensive venous thrombosis or advanced liver disease[5].

Venous thrombosis can affect not only the hepatic veins but also a prolonged segment of the 
retrohepatic IVC, occasionally very close to the right atrium. The association between the severity of the 
disease, the extension of the venous thrombosis and the massive liver that is frequently present in BCS 
makes LT a particularly difficult procedure in these cases[1]. The hypercoagulative nature of the 
syndrome further increases the challenge, owing to vascular complications[6].

The challenge is even greater when considering living donor liver transplantation (LDLT) since the 
graft does not contain the retrohepatic IVC, as in deceased-donor liver transplantation (DDLT). 
Therefore, hepatic venous reconstruction is more complex, especially if the IVC is also obliterated[7]. 
That is the reason why only approximately 70 patients with BCS underwent LDLT worldwide between 
1989 and 2015[1,8]. When LDLT is performed and HCC is also present, DDLT may not be possible in 
case of postoperative complications if the patient is beyond the Milan criteria[9], depending on local 
legislation in some countries, such as Brazil. Thus, performing LDLT for BSC in such a scenario is even 
more risky.

We report a case of a complex retrohepatic IVC thrombosis due to BCS in a patient with HCC beyond 
the Milan criteria. As the patient had a good response to transarterial chemoembolization (TACE) and 
his alfa fetoprotein levels decreased, we decided to perform LDLT.

https://www.wjgnet.com/1948-5182/full/v13/i1/151.htm
https://dx.doi.org/10.4254/wjh.v13.i1.151
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CASE PRESENTATION
Chief complaints
A 35-year-old cirrhotic male patient was referred for LT evaluation due to BCS and HCC.

History of present illness
The patient had been diagnosed with cirrhosis and BCS four years previously, after presenting with 
ascites and hematemesis due to esophageal varices. Abdominal computed tomography (CT) scan on this 
occasion showed hepatic veins thrombosis and signs of chronic hepatopathy with paraumbilical vein 
recanalization and extensive collateral circulation in the splenic hilum, around the stomach, and in the 
anterior and lateral abdominal walls. The liver also showed multiple hepatic nodules of up to 1.5 cm in 
diameter, some them hypervascularized, which in the context of BCS, were compatible with 
regenerative hepatic nodules. Hepatic biopsy revealed chronic hepatic outflow obstruction. Laboratory 
testing for autoimmune hepatitis was negative, as were serological markers for hepatitis C and B 
viruses. The patient also denied previous alcohol abuse. No thrombophilia was diagnosed, despite 
extensive hematological investigation. The patient was then maintained on oral anticoagulation with 
warfarin.

History of past illness
The patient had no previous medical history.

Personal and family history
The patient was a smoker (10 cigarettes/day for 20 years). There was no relevant family history 
concerning this case.

Physical examination
The patient exhibited mild jaundice and extensive subcutaneous collateral veins in the anterior 
abdominal wall (Figure 1). Further physical examination was unremarkable.

Laboratory examinations
Blood analysis revealed normal hemoglobin, mild leukopenia and mild thrombocytopenia with mildly 
elevated total bilirubin, direct bilirubin and gamma-glutamyl-transferase (Table 1). Kidney function and 
electrolytes were normal as well as serum albumin, alanine aminotransferase, aspartate aminotrans-
ferase and alkaline phosphatase. The patient’s prothrombin time was elevated even without warfarin 
(Table 1). Considering that the patient did not present encephalopathy or ascites, his Child-Pugh score 
was A6, and his Model of End-Stage Liver Disease (MELD) score was 15. His alpha-fetoprotein level 
was 58.7 ng/mL (normal range < 10 ng/mL), although 6 mo earlier, it was 9.4 ng/mL.

Imaging examinations
During outpatient follow-up, an abdominal CT scan showed a heterogeneously vascularized nodule in 
segment V, which increased from 2 cm to 4 cm in three years (Figure 2A and B). He also showed 
complete thrombosis of the retrohepatic IVC, up to almost the right atrium, with large subcutaneous 
veins in his abdominal wall (Figure 2C). Further evaluation with abdominal liver magnetic resonance 
imaging with hepatobiliary contrast showed two hypervascularized nodules with hypocaptation in the 
biliary phase in segments V and II, 4 and 2.3 cm in size, respectively (Figure 3). Considering the 
previous CT scans with multiple regenerative nodules, these 2 specific nodules were classified as 
indeterminate lesions. Given their growth, the atypical pattern of contrast uptake and the rise in alpha-
fetoprotein serum levels, further investigation with biopsy of these nodules was indicated due to the 
suspicion of HCC.

FINAL DIAGNOSIS
Percutaneous ultrasound-guided biopsy of the largest nodule confirmed a moderately differentiated 
HCC (grade 3 Edmondson-Steiner grading system). Therefore, the patient presented liver cirrhosis due 
to BCS with retrohepatic vena cava thrombosis and multicentric HCC beyond the Milan criteria.

TREATMENT
According to Brazilian legislation, the patient could not be listed for DDLT due to being beyond the 
Milan criteria. He underwent 2 TACE procedures in order to downstage the lesions to within the Milan 
criteria so that he could be listed. Even though the serum alfa-fetoprotein level decreased from 58.7 to 18 
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Table 1 Laboratory tests results and normal range

Laboratory test Result Normal range

Hemoglobin 12.6 g/dL 12.5-17.5 g/dL

Leukocytes 3.5 × 109/L 4-11 × 109/L

Platelets 80 × 103/mm3 150-400 × 103/mm3

Total bilirubin 1.73 mg/dL 0.2-1 mg/dL

Direct bilirubin 0.85 mg/dL < 0.3 mg/dL

Alanine aminotransferase 20 U/L < 41 U/L

Aspartate aminotransferase 35 U/L < 37 U/L

Alkaline phosphatase 78 U/L 40-129 U/L

Gamma-glutamyl-transferase 115 U/L 8-91 U/L

Creatinine 0.79 mg/dL 0.7-1.2 mg/dL

Blood urea nitrogen 31 mg/dL 10-50 mg/dL

Sodium 143 mEq/L 135-145 mEq/L

Potassium 3.9 mEq/L 3.5-4.5 mEq/L

Albumin 4.4 g/dL 3.4-4.8 g/dL

Prothrombin time 21.8 s 9.4-12.5 s

International normalized ratio 1.75 0.95-1.2

Figure 1  Massive blood return by subcutaneous veins in the anterior abdominal wall, which required the use of venovenous bypass 
prior to the abdominal incision.

ng/mL, the nodules did not decrease in size and the patient remained beyond the Milan criteria. His 
sister then volunteered for liver donation and the patient was selected for LDLT. She was a healthy 51-
year-old female with a body mass index of 22.6 kg/m2. Liver volumetry revealed a right lobe of 724 cm3 

(66% of the entire organ), and usual biliary tree anatomy was found on magnetic resonance cholan-
giopancreatography. Liver parenchyma also showed simple cysts.

The patient weighed 71 kg, resulting in a predicted graft-to-recipient weight ratio (GRWR) of 0.81%. 
Donor operation consisted of a right hepatectomy with middle hepatic vein preservation. The procedure 
was uneventful, resulting in a 560 g right lobe graft with usual anatomy (GRWR of 0.79%). In the 
backtable operation, the right hepatic vein and the V5 and V8 branches of the middle hepatic vein were 
reconstructed to avoid outflow blockage.

For the recipient, the surgical strategy included the use of a venovenous bypass prior to incising the 
abdomen due to very large subcutaneous collaterals in the abdominal and thoracic walls. The left 
femoral and left axillary veins were used to implement the venovenous bypass. Hepatectomy was 
performed with the retrohepatic vena cava, close to the right atrium. The explanted liver weighed 1880 
g. The portal vein was then cannulated and added to the venovenous bypass. As the right lobe graft did 
not include the retrohepatic vena cava, it was reconstructed using an infra-hepatic IVC from a deceased 
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Figure 2 Abdominal computed tomography scans, with a 3-year interval. A: Heterogeneously vascularized nodule in segment V, of 2 cm, more visible 
in delayed phase due to hypocaptation (arrow); B: Same nodule in segment V in an exam scan performed 3 years later, with 4 cm (arrow). Massive subcutaneous 
veins in the abdominal wall are noted (arrowhead); C: The retrohepatic vena cava is completely thrombosed, up to almost the right atrium (asterisk).

Figure 3 Liver magnetic resonance imaging with hepatobiliary contrast (arterial phase). A: Hypervascularized nodule in segment V of 4 cm (arrow); 
B: Hypervascularized nodule in segment II of 2.3 cm (arrow).

donor (Figure 4A). The graft was then implanted using this newly formed IVC to be anastomosed with 
the graft venous conduit for the outflow reconstruction. The right portal vein, right hepatic artery and 
right hepatic duct of the graft were then respectively anastomosed to their counterparts in the recipient 
(Figure 4B and C). Total and warm ischemia times were 370 and 30 min, respectively.

OUTCOME AND FOLLOW-UP
The donor’s postoperative course was uneventful, and she was discharged home on postoperative day 
(POD) 5. The recipient was extubated on POD 2, and anticoagulation with enoxaparin was restarted, as 
well as low-dose aspirin. Liver Doppler ultrasound on POD 1 and 15 showed preserved graft vascular-
ization. Renal function remained preserved, and the patient’s condition progressively improved. The 
patient’s immunosuppression regimen included intraoperative corticoid bolus and tapering associated 
with tacrolimus. The patient was discharged home on POD 19. Everolimus was added to the tacrolimus 
regimen 3 mo after the transplantation. Low-dose corticoid was maintained for 6 mo.

On histopathological analysis, the explanted liver confirmed hepatic cirrhosis related to chronic BCS 
and two moderately differentiated HCCs in segment V (4.5 cm) and segment II (2.5 cm).

Routine abdominal CT scan performed 23 mo after transplant showed a patent retrohepatic vena cava 
and adequate right lobe vascularization (Figure 5). The patient remains well on outpatient clinic follow-
up 25 mo after the procedure, under an anticoagulation protocol with warfarin and without signs of 
HCC recurrence (alpha-fetoprotein 6.5 ng/mL).

DISCUSSION
Despite the numerous treatment modalities available for BCS, LT is performed in 10% to 20% of patients
[1,2]. Nevertheless, it is a rare cause for LT, accounting for approximately 1%[10,11]. This a challenging 
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Figure 4 Intraoperative images. A: Reconstructed retrohepatic vena cava using an infrahepatic vena cava graft of a deceased donor; B: Revascularized graft 
showing the venous conduit anastomosed to the newly formed vena cava (asterisk) and the portal vein anastomosis (arrowhead); C: Graft final aspect after 
arterialization at the end of transplantation.

Figure 5 Late postoperative abdominal computed tomography scan, portal phase. A: Graft with adequate aspect and preserved portal inflow 
(arrowhead); B: Coronal view showing patent retrohepatic vena cava (arrowhead) and preserved graft outflow; C: Sagittal view of patent retrohepatic vena cava 
(arrowhead).

indication for LT due to a combination of massive liver and increased bleeding, caudate lobe 
enlargement, retroperitoneal diffuse fibrosis, firm retrohepatic IVC adhesions and frequently presents 
with stenosis and/or thrombosis of the IVC[3]. Especially in LDLT, in which the donor’s IVC cannot be 
used, the retrohepatic IVC dissection performed during the piggyback technique and the venous 
outflow reconstruction are particularly problematic. Novel alternative techniques, aimed at eliminating 
stenosis or obstruction in the recipient IVC, are thus needed for LDLT in the context of BCS[6]. Some of 
them include cross-clamping the supra- and infrahepatic IVC and excising its thickened wall to create a 
wide orifice for graft implantation[7] or the V-Y plasty technique[12].

Nevertheless, when the IVC is completely occluded, which is known as obliterative hepatocavopathy 
(OHC), it is advisable to remove the IVC en bloc with the native liver[13], as the piggyback dissection 
becomes technically unfeasible due to dense inflammatory adhesions, enlarged collaterals and 
hypertrophied caudate lobe. If an LDLT is performed in this situation, it may be necessary to reconstruct 
the retrohepatic IVC. In 2006, Yan et al[14] reported the first LDLT for BCS with IVC reconstruction 
using an interposed cryopreserved cadaveric IVC graft[14]. Since then, many other studies have 
addressed IVC reconstruction with interposing autologous veins[15], cadaveric venous allografts[3,7,16-
18], cadaveric aortic allografts[7,17-20], synthetic material[12,13,18] or a combination of synthetic 
material and autologous vein[21,22] or venous allografts[18,23]. Table 2 provides a review of all cases 
found in the literature of LDLT for BCS with IVC resection.

In the present report, we faced three ordeals in the preoperative period. First, the massive liver was 
associated with extensive IVC thrombosis starting close to the renal veins and progressing up to the 
transition between the IVC and the right atrium. Second, it was necessary to use a living donor right 
lobe with the potential risk of postoperative small-for-size syndrome, given the association of extensive 
thrombosis, portal hypertension and partial graft[12]. Finally, the LDLT was performed in a patient with 
HCC beyond the Milan criteria, which, according to Brazilian law, prevented the use of a deceased-
donor graft in case of postoperative graft dysfunction.
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Table 2 Summary of all reported cases of living-donor liver transplantation for Budd-Chiari syndrome with inferior vena cava resection

Ref. Number of 
cases Technique Venovenous 

bypass use Outcomes

Yan et al[14], 
2006

n = 1 IVC replacement with cadaveric IVC allograft Yes Alive after 3 mo

Yamada et al
[2], 2006

n = 1 IVC resection without replacement No Alive after 10 mo

Shimoda et al
[15], 2007

n = 1 IVC replacement with autologous internal jugular vein, 
external iliac vein and suprarenal IVC

No Alive after 17 mo

Sasaki et al[16], 
2009

n = 1 IVC replacement with cadaveric IVC allograft No N/A

Kazimi et al
[32], 2009

n = 1 IVC resection without replacement No Alive after 3 mo

Choi et al[3], 
2010

n = 2 IVC replacement with cadaveric IVC allograft (n = 1) and 
RHV-atrial shunt using preexisting mesoatrial shunt (n = 1)

No Both alive after a median follow-up of 
18 mo

Ogura et al[21], 
2011

n = 1 IVC replacement with an inverted composite graft (Gore-Tex 
stretch vascular graft and transposed IVC)

Yes Alive after 24 mo 

Sakçak et al
[19], 2012

n = 1 IVC replacement with cadaveric aortic allografts No Alive after 4 mo

Fukuda et al
[24], 2013

n = 1 IVC resection without replacement No Alive after 60 mo 

Yagci et al[17], 
2015

n = 4 IVC replacement with cadaveric IVC (n = 1), iliac vein (n = 1) 
and aorta allografts (n = 2)

No 2 patients died due to biliary complic-
ations after 5 mo of follow-up

Cetinkunar et al
[20], 2015

n = 1 IVC replacement by cadaveric aortic allograft No Alive after 4 mo

Ara et al[7], 
2016

n = 7 IVC replacement with cadaveric IVC (n = 4) and cadaveric 
aorta allografts (n = 2). No replacement in one case

No 2 patients died due to recent HAT 
after LT, and 2 patients died of sepsis 
during follow-up 

Pahari et al[12], 
2016

n = 2 IVC replacement with e-PTFE graft No Both alive after a median follow-up of 
18 mo

Karaca et al[6], 
2017

n = 3 IVC resection without replacement No N/A

Sabra et al[25], 
2018

n = 1 IVC resection without replacement No Alive after 3 mo

Yagi et al[22], 
2018

n = 1 IVC replacement with an inverted composite graft (e-PTFE 
graft and transposed IVC) 

Yes Alive after 36 mo 

Ionescu et al
[23], 2018

n = 2 IVC replacement with caval-dacron composite graft No Both alive (follow-up not available)

Yoon et al[13], 
2019

n = 5 IVC replacement with synthetic material (ringed polyester) Yes (n=3) All alive after a median follow-up of 
10.5 years

Gonultas et al
[18], 2020

n = 12 IVC replacement with cadaveric IVC allograft (n = 6), 
cadaveric aorta allograft (n = 1), synthetic material (n = 3, 
Dacron) and caval-dacron composite graft (n = 2) 

No All alive after median follow-up of 15 
mo 

Present study n = 1 IVC replacement with cadaveric IVC allograft Yes Alive after 25 mo

N/A: Not available; e-PTFE: Polytetrafluoroethylene; HAT: Hepatic artery thrombosis; IVC: Inferior vena cava; RHV: Right hepatic vein; LT: Liver 
transplantation.

Most authors describe a transdiaphragmatic access to the supradiaphragmatic IVC or even the right 
atrium, although a rarely performed lower median sternotomy may be helpful in some cases[13,24]. In 
the present report, through a standard Makuuchi incision, the recipient’s liver was removed en bloc with 
the retrohepatic vena cava, from just above the renal veins to the beginning of the right atrium. This 
surgical approach, without thoracic access, was very useful as the patient had no major bleeding or 
hemodynamic instability. The interposition of a conduit replacing the retrohepatic IVC was necessary 
because we could observe considerable venous flow from the suprarenal vena cava. There is no 
consensus in the literature regarding the best material for IVC reconstruction[18]. The use of synthetic 
material raises concerns regarding the long-term patency of the anastomosis between the hepatic vein 
from the liver graft and the prosthesis, due to the possibility of thrombosis, deformity of the synthetic 
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orifice and anastomosis kinking consequent to growth of the liver graft[25]. Infection of prosthetic 
material is also an issue[26]. Many centers, including ours, therefore prefer autologous or allogeneic 
grafts, which present less thrombosis and infection risk[18,27]. Even cadaveric IVC recovered 25 h after 
the donor´s circulatory death has been successfully used[28]. As a high-volume center of DDLT, there is 
great availability of allografts in our institution biobank. Storage of such grafts is feasible and 
inexpensive, only requiring sterile Ringer Lactate solution and a laboratory freezer[29]. However, in 
countries with scarce deceased donor organ donation and in centers with a high volume of LDLT, access 
to these grafts may be difficult[18].

Given the complexity of such procedures, it is paramount to obtain a suitable amount of liver 
parenchyma[30]. Therefore, we used the right lobe, as in most reported cases; however, some authors 
have also used the right posterior segment[15], the left lateral segment (pediatric recipients)[7,17,19], the 
left lobe[2,22,24,25] and dual grafts[13]. Another concern is the possibly elevated portal inflow to the 
graft[31]. That is the reason why we routinely measure the portal venous pressure by a catheter inserted 
via a jejunal branch. As the portal pressure was below 14 mmHg in this case after graft implantation, we 
did not implement further strategies to decrease the portal inflow.

In most cases reported, venovenous bypass was not used (Table 2). Due to the chronicity of IVC 
obstruction, venous return is expected to occur via collaterals involving the azygos, hemiazygos, 
accessory hemiazygos and thoracolumbar veins[24]. In a large series addressing LDLT with IVC 
resection for various reasons in 29 patients by Gonultas et al[18], venovenous bypass was not used in 
any case, as there was no hemodynamic instability during IVC clamping. In our case, the patient 
presented a well-developed collateral circulation; however, we observed that it was mainly composed of 
a massive subcutaneous plexus in the abdominal and thoracic wall (Figures 1 and 2). Thus, we decided 
to use the extracorporeal venovenous bypass before the abdominal skin was incised. We feared that an 
abdominal incision could lead to hemodynamic instability, since it was necessary to ligate the collaterals 
forming this enormous subcutaneous plexus. Therefore, when we accessed the abdominal cavity and 
clamped the IVC, the patient was already on venovenous bypass.

Retrohepatic IVC resection without replacement in LDLT for BCS has also been reported[2,6,7,24,25,
32], in which the liver graft is anastomosed directly to the right atrium[6,32], to the intrapericardical IVC
[24,25] or to the rarely preserved supra-hepatic IVC[2,6,7]. In one patient, the graft was directly 
anastomosed to a previous mesoatrial shunt[3]. This raises the question of whether or not it necessary to 
reconstruct the IVC. As addressed by Gonultas et al[18], the venous continuity should be maintained in 
patients without a venous collateral circulation system or in those with insufficient venous drainage. For 
patients that have a well-developed venous collateral, on the other hand, the liver graft may be, in 
theory, anastomosed directly to the suprahepatic IVC without the need for reconstruction. In our case, 
as the collaterals forming the subcutaneous plexus were ligated during the skin incision, the IVC 
reconstruction was required. We also observed a significant blood flow in the infra-hepatic IVC after the 
native liver was removed, suggesting the necessity of venous continuity restoration with an IVC 
interposition graft.

Despite the complexity of cases, most studies describe successful outcomes after LDLT (Table 2). The 
literature review identified 2 deaths due to early hepatic arterial thrombosis and another 4 patients died 
during follow-up due to infectious and biliary complications occurring months after transplant. In the 
series by Gonultas et al[18], 4 patients experienced late thrombosis of the replaced IVC during follow-up 
that were successfully treated with percutaneous balloon dilatation and/or stenting. The early use of 
low-dose aspirin and low molecular weight heparin a few days after LDLT is important to prevent the 
recurrence of thrombosis[12,13,18,32].

CONCLUSION
We describe a novel surgical approach for LDLT in BCS with OHC and HCC beyond the Milan criteria 
that can be used in highly selected patients. Due to its complexity and rarity, LDLT in such situations is 
feasible using a meticulous surgical technique and tailored strategies.
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