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Abstract
Peripheral nerve injury has remained a substantial 
clinical complication with no satisfactory treatment 
options. Despite the great development in the field of 
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microsurgery, some severe types of neural injuries cannot 
be treated without causing tension to the injured nerve. 
Thus current studies have focused on the new approaches 
for the treatment of peripheral nerve injuries. Stem cells 
with the ability to differentiate into a variety of cell types 
have brought a new perspective to this matter. In this 
review, we will discuss the use of three main sources of 
mesenchymal stem cells in the treatment of peripheral 
nerve injuries.

Key words: Cell-based therapies; Peripheral nerve injury; 
Stem cells; Mesenchymal stem cells; Bone marrow 
mesenchymal stem cells; Adipose-derived mesenchymal 
stem cells; Umbilical cord mesenchymal stem cells

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Mesenchymal stem cells (MSCs) can differentiate 
into many kinds of cell types including Schwann cells (SCs). 
Since there are limitations for the use of SCs in nerve 
injuries, it is necessary to know about substitute cell types. 
So far different sources of MSCs such as embryonic stem 
cells, bone marrow MSCs, adipose-derived stem cells, etc. 
have been studied and the existence of beneficial effects 
on nerve regeneration after injury has been confirmed. 
Here in this paper, we have collected the latest updates 
on the use of MSCs from different sources in peripheral 
nerve regeneration.

Sayad Fathi S, Zaminy A. Stem cell therapy for nerve injury. 
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http://www.wjgnet.com/1948-0210/full/v9/i9/144.htm  DOI: 
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INTRODUCTION
Cell-based therapy in Peripheral nerve injuries (PNIs) 
has become an important intercession which amends 
clinical outcome. Contrary to central nervous system, 
the peripheral nervous system has the potential for 
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regeneration to a certain extent[1]. Nevertheless, com
plete functional recovery is strongly dependent upon the 
severity of the injury, anatomical site of injury, and the 
delay before any kind of applied intervention[2].

What is PNI?
Any harm to the peripheral nerves interrupting their 
function would be classified as a PNI. In the case of 
PNI, the connection between the involved nerve fiber 
and the distal organ would be negatively affected and 
sometimes even lost, so the distal organ undergoes 
atrophy due to denervation. In 1%-3% of patients 
with a traumatic accident, a PNI will almost always be 
involved[3,4]. It has been recognized in children suffering 
falls[5,6], as a consequence of medical procedures 
such as surgeries, chemotherapy, radiation[7-9] and 
sometimes it has been brought about some chronic 
conditions like diabetes and cancers[10,11]. It can also 
occur as an iatrogenic injury[12]. There are three main 
types of a condition causing PNI: Transection, tension, 
and compression[13,14]. First of which is commonly 
caused by penetrating trauma, the second one occurs 
when a nerve is over-stretched and the third can be 
reversed if the condition caused the injury is stopped 
within 8 h. In this article we have mainly focused on 
transection injuries.

What happens in cellular and molecular level?
A series of cellular and molecular events take place in 
response to nerve injury. In severe transection injuries 
(grade V in Sunderland classification or neurotmesis 
in Seddon classification[15,16]) caused by penetrating 
trauma, proximal and distal stumps of the injured nerve 
undergo pathological changes. “Wallerian degeneration” 
will occur in distal stump in which injured axons will 
turn into granule-like debris that will be later cleaned 
by macrophages[17]. Proximal stump also firstly retracts 
back to node of Ranvier[18] and then tries to reach the 
distal stump by giving rise to outgrowing axons[19,20] 
while activated Schwann cells (SCs) transform into 
regenerating phenotype and proliferate in the distal 
stump to form longitudinal columns called “bands of 
Büngner” which are essential to guide the outgrowing 
axons[21]. However, mentioned events along with the 
secretion of neurotrophic factors by SCs make a great 
environment for axonal stumps to meet, but the slow 
rate of axon regeneration which is location-dependent 
but is usually stated as 1 mm/d[22], almost always fails 
these processes and leads to impotency of activated 
SCs[23], misguidance of outgrowing axons and target 
organ atrophy due to prolonged lack of innervation[24].

Therapeutic strategies
In such cases, the Gold-Standard therapeutic strategy is 
to join the proximal and distal stumps of the damaged 
nerve through surgical interventions. Yet, when the gap 
is too wide to be repaired without stretching the nerve 
fiber, a nerve graft or a conduit is needed to bridge 

the gap. Although nerve grafting is the gold standard 
technique[20,25], this often leads to consequences such 
as donor site unwholesomeness for autologous grafts 
and graft rejection for heterologous grafts. On the 
other hand, conduits provide a guiding channel for 
axonal outgrowth and they can also serve as a vehicle 
to deliver essential growth factors and supporting 
cells[20,26-29]. In recent years, cell transplantation has 
been proposed as a method of improving peripheral 
nerve regeneration. SCs activated in response to 
nerve injury, as previously described play a key role 
in Wallerian degeneration and formation of bands of 
Büngner. These features make SCs the most suitable 
supporting cell candidate to transplant, but regarding 
other important features of SCs such as the difficulty 
of harvest, the slow expansion in culture and a high 
immunogenicity[30,31], SCs could not make the ideal 
supporting cells. So attentions have moved towards the 
use of differentiated and undifferentiated types of stem 
cells which have the capacity to transform into a variety 
of different cell types in presence of particular factors.

Use of stem cells
Stem cells are undifferentiated cells of an organism being 
capable of giving rise to indefinitely more cells of the 
same type, and other types of cells by differentiation. 
Stem cells commonly come from two main sources: 
Embryos (embryonic stem cells), which can be harvested 
during embryonic period and adult tissues (adult stem 
cells) that are available in all the tissues in the body. 
Stem cells are classified by their capability to differentiate 
into other cell types. Unipotent stem cells (like muscle 
stem cells) can only give raise to cells of their own type. 
Oligopotent stem cells can differentiate into a few cell 
types, like myeloid stem cells. Multipotent stem cells 
have the ability to differentiate into a nearly related 
type of cells, like hematopoietic stem cells which not 
only can produce red blood cells but also can give rise 
to white blood cells and platelets. Pluripotent stem 
cells can differentiate into almost all cell types and the 
examples include embryonic stem cells and the cells 
from ectodermal, mesodermal and endodermal layers. 
Totipotent stem cells are the only ones which are able to 
give rise to all possible cell types, the example is the first 
few cells that result from the division of the zygote and 
the fertilized zygote itself. 

Mesenchymal stem cells
In this review we mainly focused on mesenchymal stem 
cells (MSCs), the multipotent stem cells which can be 
obtained from various sources such as bone marrow, 
umbilical cord and amniotic fluid, adipose tissue, and 
also teeth. These cells are characterized morphologically 
by a small cell body containing a round nucleus with a 
clear appearance and a prominent nucleolus. Cells have 
a few long cell processes and the cytoplasm contains 
Golgi apparatus, mitochondria, rough endoplasmic 
reticulum and ribosomes. They are spread widely in the 
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extracellular matrix containing a low amount of reticular 
fiber.

All-together, this paper will discuss the recent pro
gress in the use of cell-based therapies and of interest 
the use of MSCs for peripheral nerve regeneration. It will 
summarize the perspectives of employing main sources 
of MSCs to speed up the healing process in injured 
peripheral nerves and involved mechanisms.

SURGICAL TECHNIQUES
The most common donor nerve used for autograft is 
Sural nerve which is a sensory nerve, hence it cannot 
be the proper choice for the repair of nerves with 
mixed motor and sensory or motor constituent[20,32]. 
Regarding to the complications of nerve autografts, 
researchers have focused on using substitute options 
to bridge the wide gaps with no harm to nerve ends. 
Various absorbable biomaterials have been used 
to make conduits and authors worldwide reported 
different results[20,26-29]. Conduits can be autogenous or 
synthetic. Autogenous conduits such as vein conduits 
sometimes accompanied by muscle or platelet-rich 
plasma components regardless of good outcomes 
require a donor site for harvesting[33,34]. A wide range of 
synthetic conduits made of collagen, polycaprolactone, 
polyglycolic acid and polyester have also been studied. 
Taras et al[35] used collagen conduits and reported 
good sensory nerves recovery. Wangensteen et al[36] 
and Ashley et al[37] showed that collagen conduits can 
have beneficial effects in clinical experiments as well 
as preclinical experiments with using them in trauma 
patients and infants with brachial plexus injuries 
respectively. They run a follow-up survey and monitored 
5 infants with transplanted collagen conduits and 
reported significant motor recovery. Lohmeyer et al[38] 
also used collagen conduits for nerve reconstruction and 
reported a 55% of two-point discrimination and 77% of 
protective sensation recovery. Boeckstyns et al[39] used 
collagen tubules for recovery of the injured median 
and ulnar nerves and Sosa et al[40] used collagen 
tubules containing platelet-rich fibrin for a patient with 
ulnar neuroma and both of them reported significant 
motor and sensory recovery. Mackinnon et al[18] used 
polyglycolic acid tubes in 15 patients with 17 mm nerve 
gaps and found that despite 14% of them having poor 
recovery, 86% of them showed excellent (33%) and 
good (55%) signs of recovery. Battiston et al[27] used 
polyglycolic acid conduits and muscle-vein conduits to 
see their difference healing properties. Results showed 
no significant difference between two groups. Weber et 
al[41] evaluated the beneficial effects of polyglycolic acid 
tubes compared to neurorrhaphy and nerve autografts 
and reported that in gaps of less than 4 mm or more 
than 8 mm, polyglycolic acids provided better recovery. 
Despite great improvements in surgical techniques 
and instruments, this field will have to be more and 
more investigated to make an optimal combination of 
cells and neurotrophic factors accompany a conduit to 

amend clinical outcomes.

IMPORTANT ROLE OF NEUROTROPHIC 
FACTORS
For axonal outgrowths are very slow to form and in 
severe cases it takes a long time for them to reach 
the distal stump, and on the other hand it is critical for 
activated SCs to innervate quickly in order to remain 
in their active form, thus administration of exogenous 
neurotrophic and growth factor with the ability of 
speeding up the mentioned processes has gathered 
attention. Neurotrophic factors are proteins which are 
necessary for many vital neural activities particularly in 
the regeneration of neurons after injuries[42-45]. Brain-
derived neurotrophin factor (BDNF) plays a key role 
after neural injuries and showed to have advantageous 
effects on outgrowing axons[46,47]. Nerve growth factor 
(NGF) have also a beneficial effect on the elongation of 
outgrowing sensory axons additional to enhancing SCs 
motility[48-50]. Glial cell line-derived neurotrophic factor 
(GDNF) acts like a chemoattractant for SCs[48-50]. Sox11 
is a very important transcription factor upregulating in 
response to PNI[51]. Its expression can affect myelination 
and axonal elongation and levels of BDNF[52-56]. It also 
can help with the survival of neurons through the 
expression of TNF receptor-associated factor-associated 
NF-kB activator (TANK)[51-55]. Vascular endothelial 
growth factor (VEGF) can improve outcomes of nerve 
regeneration through improving microcirculation[57]. 
Insulin-like growth factor (IGF) found to have stimulant 
effects on mitosis of SCs and axonal elongation[58] 
Mohammadi et al[59] used silicon tube with hepatocyte 
growth factor (HGF) filling and reported improved 
muscle atrophy. Li et al[60] also reported that same 
beneficial properties of HGF in combination with 
acellular nerve allograft. Mohammadi et al[61] reported 
improved recovery after using silicone tube filled with 
adrenocorticotropin hormone (ACTH). Emel et al[62] 
have reported that IGF-1 has a better effect on PNI 
compared to Platelet-rich plasma. Regardless of how 
much it could be helpful to use the combination of 
conduits and neurotrophins, it is still important to hold 
SCs at their active type because over a short period 
of time they lose their capacity for remaining active, 
researchers have had invented methods to transplant 
newly activated SCs to the site of injury or to use cell 
types which are able to transform into SCs or SC-like 
cells to support the healing process.

SCs IN NERVE REGENERATION
SCs actively produce cell adhesion molecules, neuro
trophins and growth factors and they can also serve as 
a scaffold allowing axonal sprouts to grow through their 
basal lamina[63-66]. They can also produce regulatory 
factors to help axonal outgrowth[67,68]. Despite promising 
results in preclinical experiments, clinical studies did 
not gain good results because the difficulties with 
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harvesting[68,69] and culture of SCs[70] and the fact that 
prolong denervated SCs lose the ability to stimulate 
regeneration[71].

STEM CELLS USED IN PNIs
Because of stem cells’ potentials they have become 
a source of cells which act s an alternative for SCs in 
peripheral nerve regeneration[70,72-74]. Stem cells as 
previously described, are biological progenitor cells which 
are undifferentiated and have the ability to produce 
more undifferentiated stem cells like themselves through 
mitosis. In addition, they can differentiate into almost all 
kinds of cell type depending on trophic and tropic factors 
they are exposed to. In the case of nervous system, 
stem cells have the ability to differentiate into supporting 
cells including oligodendrocytes, astrocytes, microglia, 
SC-like cells, and neurons themselves[75], so they can be 
differentiated in vitro before transplantation and can also 
be transplanted in their undifferentiated form allowing 
to differentiate in vivo at the site of injury. An ideal 
choice of stem cell would be depended on the important 
features of the cells, like the ease of harvesting through 
noninvasive procedures, rapid expanding in culture and 
low immunogenicity[30,31]. Many kinds of stem cells with 
different sources have been studied, among them, MSCs 
having mentioned features, have been suggested as a 
potential cell line to enhance nerve regeneration. MSCs 
are multipotent stromal cells which can differentiate into 
a variety of cell types. Three main sources of MSCs will 
be discussed in following sections.

Bone marrow mesenchymal stem cells
Several studies have reported that bone marrow mesen
chymal stem cells (BMSCs) can be induced to differentiate 
into mesodermal, ectodermal and endodermal line
age[76-80]. Interestingly they can differentiate into SC-like 
cells and ameliorate neural regeneration by releasing 
neurotrophic and growth factors, BDNF, GDNF, myelin 
basic protein[81] and by regulating SCs behavior[82]. These 
good effects seem to be irrelevant to their differentiation 
state because both differentiated and undifferentiated 
BMSCs represent positive molecular, electrophysiological, 
histological and behavioral effects in preclinical experi
ments[83]. Regarding some problems in harvesting 
BMSCs like the need of performing invasive and painful 
procedures that might yield a low number of cells, BMSCs 
have some disadvantages in clinical studies. Wang 
et al[84] compared the combination of BMSC-SCs and 
Adipose-derived stem cell SCs (ADSC-SCs) with acellular 
grafts to bridge the sciatic gaps of 15 mm and reported 
the greater regeneration recovery at the presence 
of BMSC-SCs and ADSC-SCs. Hu et al[85] used BMSC 
seeded grafts for the recovery of 50 mm median nerve 
injury in monkeys and found that the healing process 
with good functional and morphological outcomes was 
close to autografts. Cuevas et al[86,87] found that using 
BMSCs have beneficial effects on rat models of PNI with 

injured sciatic nerves. They have also run a follow-up 
experiment to assess the healing process and reported 
a significant improvement in sciatic nerve-injured rats 
with transplanted BMSCs compared to control group. 
Chen et al[81] used silicon conduits filled with BMSCs 
and assessed the recovery process measuring the 
number of growing axons and muscle atrophy along 
with walking test and reported their beneficial effects on 
mentioned indices highlighting the role of neurotrophic 
factors and myelin basic protein upregulation and not the 
increase in the number of SCs. Haghighat et al[88] and 
Mohammadi et al[89] also showed that using vein conduits 
with undifferentiated BMSCs can cause a significant 
increase in the number and diameter of growing axons 
and functional improvement consequently. Studies 
showed that differentiated BMSCs can have a better 
impact when used in combination with acellular nerve 
allografts rather than undifferentiated BMSCs[90]. It has 
been demonstrated that using BMSCs in PNIs can have 
similar outcomes as in use of autografts. Studies showed 
that BMSCs can possibly improve the outcome of nerve 
regeneration by modulating the behavior of SCs along 
with expressing neurotrophins[82]. Caddick et al[79] found 
that BMSCs can be induced to differentiate into SC-like 
cells representing SCs markers such as S100, P75, and 
GFAP. It has been reported that with the use of cytokines, 
rat BMSCs can be transformed into SC-like cells which 
were capable of myelinating PCl2 cells in vitro after 2 wk 
as well as increasing the myelinated axons in a rat model 
of PNI after 3 wk[91]. It has been shown that BMSCs apply 
their beneficial effects in a dose-dependent manner[92]. 

Adipose-derived mesenchymal stem cells
Adipose-derived mesenchymal stem cells (ADSCs) are 
another source of multipotent stem cells with the ability 
of transforming into all three germinal layers[93,94] and 
additionally has been showed to give much greater 
numbers of cells compared to other adult tissues[95], with 
minimally invasive surgical procedures and a very simple 
isolation protocol including washing; diffusing with the aid 
of enzymatic agents; centrifugation and remotion of red 
blood cells (RBCs). This protocol gives a cellular fraction 
containing various cell types. Among them, ADSCs of 
interest adhere to the plastic wall of the container and 
proliferate quickly, so it can be easily recognized and 
separated from other cells. Studies showed that ADSCs 
can be induced to express glial cell markers such as 
S100B, GFAP and P75 neurotrophin receptors in vitro[69]. 
Also in the case of ADSCs, it has been demonstrated 
that in vitro differentiation into SCs could not bring any 
further melioration probably because of ADSCs natural 
capacity of in vivo differentiation into SCs[65]. Di summa 
et al[65] demonstrated that ADSC-SCs, as well as BMSC-
SCs, can be used for the repair of rat sciatic nerve 
injury and since unlike the BMSCs, ADSCs can be easily 
harvested and expanded, they would be a better choice 
in PNI injuries. Erba et al[96] transplanted undifferentiated 
ADSCs in poly-3-hydroxybutyrate conduit to assess the 
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axonal outgrowth and the transplanted cells capacity 
to transform at the site of injury. They reported the 
increase in the number of SCs and regeneration however 
researchers could not detect any transformation 
into neither glial nor neural cells. A similar result has 
been reported by Santiago et al[97] and the possible 
mechanism suggested by the authors through which the 
regeneration has been enhanced, was the expression of 
neurotrophins. Other similar results have been reported 
by other researchers[98,99]. Wei et al[100] showed that 
ADSC filled conduits have the same regenerative effects 
in rat sciatic nerve injury as SC filled conduit. Researchers 
found that ADSCs cannot be differentiated into SCs 
in vivo despite in vitro differentiation[101]. It has been 
demonstrated that undifferentiated ADSCs can release 
neurotrophins but at a lower extent[102]. Oliveira et al[103] 
used polycaprolactone conduits seeded with MSCs and 
showed the improvement of myelination and function 
compared with empty conduits. Another research group 
used collagen conduits with collagen gel containing 
ADSCs filling and results showed that improvement was 
similar to nerve autografts[104]. 

Umbilical cord mesenchymal stem cells
Regarding ethical concerns with the use of umbilical 
cord mesenchymal stem cells (UC-MSCs) and limitation 
of its availability, there is still proofs which show they 
are superior to other adult stem cell with different 
sources: First, they can be collected in great numbers 
without causing any harm to donor simply from dis
cardable tissues after childbirth; second, as they will 
be collected at the perinatal period, they are less likely 
to have genetic damages[105]; third, they are younger 
than other adult stem cells so they can undergo higher 
number of mitosis and can be much more expanded 
in culture[106]; fourth, while they lack HLA-II, they have 
much lower immunogenic properties compared to other 
adult stem cells[107]. Matsuse et al[108] used tubes filled 
with SC-like cells which have been previously formed 
as a result of UC-MSCs differentiation and showed that 
they can promote axonal regeneration. Same results 
have been demonstrated by Kuroda et al[109] and Pereira 
et al[110]. Peng et al[111] demonstrated that SC-like cells 
can secrete BDNF, Neurotrophin-3, and NGF in vitro 
and when combined with PCl2 cells, axonal growth was 
seen.

CONCLUSION
To improve peripheral nerve regeneration for better 
sensory and motor recovery, the use of stem cells and 
especially MSCs would be greatly helpful. These cells 
not only can differentiate into SCs in vitro but also 
are able to transform into SCs directly at the site of 
injury. Furthermore, administration of stem cells, can 
regulate the activity of native SCs, modify the inhibitory 
regenerative environment, improve myelination and cell 
survival and enhance neurotrophic activity. In summary, 

MSCs with such suitable properties as the ease of 
harvesting especially in the case of ADSCs and the 
lower risk of immunogenic activities have got a great 
potential to improve the regeneration process. Thus, for 
sure by further investigations, significant improvements 
in neural regeneration by the help of MSCs will be 
obtained.
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Abstract
Mesenchymal stromal cells (MSCs) possess great ther
apeutic advantages due to their ability to produce 
a diverse array of trophic/growth factors related to 
cytoprotection and immunoregulation. MSC activation via 
specific receptors is a crucial event for these cells to exert 
their immunosuppressive response. The aryl-hydrocarbon 
receptor (AhR) is a sensitive molecule for external 
signals and it is expressed in MSCs and, upon positive 
activation, may potentially regulate the MSC-associated 
immunomodulatory function. Consequently, signalling 
pathways linked to AhR activation can elucidate some 
of the molecular cascades involved in MSC-mediated 
immunosuppression. In this minireview, we have noted 
some important findings concerning MSC regulation via 
AhR, highlighting that its activation is associated with 
improvement in migration and immunoregulation, as 
well as an increase in pro-regenerative potential. Thus, 
AhR-mediated MSC activation can contribute to new 
perspectives on MSC-based therapies, particularly those 
directed at immune-associated disorders.

Key words: Mesenchymal stromal cells; Aryl-hydrocarbon 
receptor; Cell activation and immunosuppression

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The aryl-hydrocarbon receptor (AhR) is an endo
genous sensor expressed in mesenchymal stromal cells 
(MSCs), regulating their immunomodulatory function. 
Therefore, in this review, we summarize important reports 
that demonstrate that AhR activation can substantially 
modulate the function of MSCs by mechanisms as
sociated with: (1) The induction of the death signal 
in pro-inflammatory cells; (2) the suppression of pro-
inflammatory genes/cytokines; (3) the improvement of 
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migration and regenerative potential in acute inflammatory 
models; (4) the inhibition of mesodermal differentiation; 
and (5) the up-regulation of global immunosuppression. 
Thus, the influence of AhR activation on MSC function 
can establish new perspectives on MSC-based therapies, 
especially for immune-associated diseases.

de Almeida DC, Evangelista LSM, Câmara NOS. Role of aryl 
hydrocarbon receptor in mesenchymal stromal cell activation: A 
minireview. World J Stem Cells 2017; 9(9): 152-158  Available 
from: URL: http://www.wjgnet.com/1948-0210/full/v9/i9/152.
htm  DOI: http://dx.doi.org/10.4252/wjsc.v9.i9.152

INTRODUCTION
Multipotent mesenchymal stromal cells
Multipotent mesenchymal stromal cells (MSCs), also 
referred to as mesenchymal stem cells, were originally 
described by Alexander Friedenstein in 1976 as non­
haematopoietic marrow cells in culture[1]. MSCs were 
identified as stromal cells that present plastic adherent 
characteristics and the ability to form in vitro fibroblast-
like colonies (CFU-F). In 1991, Caplan defined MSCs as 
a supportive cell population capable of differentiating into 
several mesodermal cell lineages including muscle, bone 
marrow stroma, fibroblasts, osteocytes, adipocytes and 
chondrocytes[2].

Phenotypically, MSCs are characterized by the ex­
pression of surface membrane molecules such as endoglin 
(CD105), NT5E (CD73), and Thy-1 (CD90) and the lack 
of expression of haematopoietic (CD45, CD34, CD11b/c 
and CD19) and endothelial (CD31, KDR) markers and 
of HLA-DR, an immune-associated molecule linked to 
major histocompatibility complex class Ⅱ (MHC Ⅱ)[3]. 
In addition, MSCs resemble vascular pericytes, and due 
to their wide perivascular distribution[4,5], these cells can 
be identified and expanded ex vivo from a multitude of 
tissues and organs, for instance: (1) Bone marrow[6]; (2) 
the umbilical cord[6]; and (3) adipose tissue[7], highlighting 
MSCs as a very attractive cell subpopulation for several 
clinical applications.

From a therapeutic perspective, MSCs possess 
advantages such as low immunogenicity, migration to 
injured tissues and the production of various trophic/
growth factors (e.g., cytokines, chemokines and diverse 
growth factors), which may be related primarily to the 
mechanisms of immunoregulation, anti-fibrosis, the 
induction of endogenous tissue progenitor cells, anti-
apoptosis, pro-angiogenesis and chemoattraction. 
Moreover, MSCs may act as effector agents in the 
modulation of internal gene expression by releasing 
extracellular microvesicles enriched with small regulatory 
RNAs[8-10].

In light of their functional multipotentiality, MSCs 
are essentially distinguished from other cells by 
retaining immunomodulatory properties that globally 
reduce the inflammation process, suppressing cellular 

alloreactivity. In this regard, studies have shown that 
the infusion of MSCs reduces local and systemic tissue 
injury in distinct experimental models, e.g., neural 
encephalomyelitis[11], pulmonary fibrosis[12], kidney 
injury[13] and heart inflammation[14], mainly via shifting 
from a pro-inflammatory to an anti-inflammatory pro
file. Thus, the immunosuppressive abilities of MSCs 
may be useful to repair tissue damaged by immune 
system aggression, for instance: (1) Crohn’s disease[15]; 
(2) ulcerative colitis[16]; (3) graft-versus-host disease 
(GVHD) followed by halogen transplantation[17]; and (4) 
organ rejection in transplants[18]. However, the majority 
of clinical trials with MSCs remain in phase Ⅰ/Ⅱ stu­
dies, and most have not clearly described a precise 
therapeutic response[19]. In this context, the complete 
elucidation of the mechanisms associated with the in 
vivo therapeutic effects of MSCs remains a target of 
intense investigation.

To date, scientists have considered MSCs a hetero­
genous population with several factors that can interfere 
in their therapeutic efficacy, such as phenotype, pro­
liferation, secretory profile, tissue origin, donor age, 
culture and expansion method conditions (i.e., growth 
factors, cell confluence, passages, oxygen pressure and 
biomaterials)[20,21]. Considering MSCs a manufactured 
“product” for cell-based therapy, it is essential to 
standardize operational processes, which must be in 
accordance with guidelines assigned by the international 
programme of good manufacturing practices, also known 
as “GMP”. Thus, given the high heterogeneity of cultured 
MSCs, it is not surprising that MSC-based therapies have 
not yet become a reality in operating centers distributed 
in several countries.

In an attempt to establish a global organizational 
process for MSC therapeutic programmes, there are 
potential strategies for refining the preparation and 
application of MSC cultures. According to several 
described approaches, the activation of MSCs via specific 
receptors is an innovative and accessible methodology 
for standardizing the use of these cell populations. 
Studies have found that MSCs express certain key 
receptors (e.g., TLRs, TNFRs, INFRs) that are activated 
by the inflammatory microenvironment, modulating 
its immunosuppressive activity[22,23]. This phenomenon 
was already demonstrated in vitro and in vivo, where 
important molecules (i.e., TNF-α, INF-γ, PAMPs, DAMPs, 
IDO, iNOS, PGE-2) and signalling pathways (i.e., PKR, 
STAT-1, NF-kB) were shown to be regulated during MSCs 
activation. In fact, one study found that MSCs exposed 
to IFN-γ became activated and efficiently suppressed 
the deleterious effects of an in vivo GVHD experimental 
model almost five-fold more strongly than unstimulated 
MSCs[24]. However, the precise role of each receptor, its 
molecular interactions and its impact on the biology of 
MSCs yet remain to be investigated.

ARYL-HYDROCARBON RECEPTOR 
The aryl-hydrocarbon receptor (AhR) is a member of 
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the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) 
family of transcription factors and is characterized as 
ligand-dependent transcriptional regulator acting on the 
modulation of a distinct number of genes associated 
with several biological processes including: (1) The cell 
cycle; (2) apoptosis; (3) hypoxia; (4) the circadian cycle; 
(5) differentiation; (6) haematopoiesis; (7) migration; 
and (8) the immune response[25]. AhR is considered a 
multifunctional sensor that responds to toxic/pollutant 
signals from the environment (e.g., dioxins, pollutants 
and by-products of metabolism), promoting the 
regulation of gene expression in responsive cells. AhR 
can be stimulated by a myriad of specific endogenous 
or exogenous ligands called hydrophobic aromatic 
hydrocarbons [e.g., polycyclic aromatic hydrocarbons 
(PAHs), halogenated aromatic hydrocarbons (HAHs) 
and planar polychlorinated biphenyls (PCBs)], which 
can be represented by two main classes: (1) Synthetic 
and non-biological: e.g., dioxins and dibenzofurans; 
and (2) natural and biological: e.g., carotenoids, 
flavonoids and tryptophan-derived metabolites, such as 
kynurenines[26,27].

AhR activation starts when a chemical signal enters 
the target cells and binds with strong affinity to the 
AhR cytosolic multiprotein complex, which is associated 
with actin filaments in the cytoplasm. This complex is 
composed of two Hsp90 chaperone molecules, along 
with co-chaperones such as hepatitis B virus X-associated 
protein (XAP2 or AIP) and p23 protein. After stimulation, 
AhR changes its conformational structure to present 
the nuclear localization sequence, which promotes its 
own translocation from the cytoplasm to the nucleus via 
the importin β protein. In the nucleus, the AhR-ligand 
complex detaches from the triplex protein (hsp90/XAP2/
p23) to form a dimer with a nuclear protein responsible 
for AhR translocation, ARNT, which converts AhR to an 
active isoform with elevated affinity for DNA. Then, the 
AhR-ligand-ARNT complex binds to a specific promoter 
regulatory region on DNA [5’-T (N) GCGTG-3’] known as 
the dioxin-responsive element/sequence (DRE), which is 
located upstream of the specific CYP1A1 locus or other 
genes responsive to the AhR signal. In contrast, the 
dimerization of ARNT with AhR repressor protein (AhRR) 
leads to non-association of the AhR-ligand complex and 
ARNT protein, and consequently, the AhR-ligand complex 
exposes its nuclear export sequence to the cytoplasm 
and is further conducted to the ubiquitination and 
proteasome degradation process (Figure 1)[28,29].

AhR is closely linked to the regulation and control of 
immunity, and there is a substantial amount of evidence 
supporting the hypothesis that AhR may influence PAH/
HAH/PPB-mediated immunoregulation[27,30]. Thus, some 
reports have shown that AhR activation by particular 
ligands (i.e., LPS, tetrachlorodibenzo-p-dioxin or TCDD, 
tryptophan metabolites) can differentially modulate 
various effects on immunological cells, for example: (1) 
The function and development of regulatory T cells; (2) 
the differentiation of Th17 cells; (3) the generation and 
activity of monocytes and dendritic cells[31-33]; (4) the 

growth and maturation of mast cells; (5) differentiation/
maturation and antibody production by B cells; (6) 
polarization and cytokine production in macrophages[34,35]; 
and (7) haematopoietic stem cell expansion, migration, 
and plasticity[36,37]. Another emerging aspect associated 
with AhR transcriptional biology involves its cooperative 
relationship with other signalling pathways, which may 
interact with AhR or by antagonism, such as the nuclear 
factor kappa-light-chain-enhancer of activated B cells 
(NF-κB), or by synergism, such as the signal transducer 
and activator of transcription 1 (STAT-1) and the nuclear 
factor (erythroid-derived 2)-like-2 factor (Nrf2). These 
multiple interactions of different signalling pathways can 
generate distinct responses according to the nature of 
the stimulus and the cell type target and thus qualifies as 
a tissue-specific molecular interchange[26,29,38].

Functionally, AhR can regulate an extensive number 
of protein-coding genes, specifically those associated 
with xenobiotic metabolizing enzymes, such as CYP1A1, 
which is a member of the superfamily of oxidative en­
zymes called cytochrome P-450 monooxygenases[28]. 
Among the potential ligands related to AhR activation, the 
tryptophan degradation products (i.e., tryptamine and 
kynurenine) are considered natural endogenous stimuli. 
Under normal conditions, these metabolites are classified 
as weak inducers, but after a physiological disturbance, 
their concentration may rise abruptly, leading to strong 
activation via CYP1A1 signalling[28]. In this sense, we can 
assume that an environment of intense inflammation and 
tissue injury may contain sufficient tryptophan-derived 
products for MSC activation via AhR, improving the MSC-
mediated immunotherapeutic responses. According to 
these findings, we believe that the immunomodulatory 
potential of MSCs can be strictly regulated by AhR, and 
their activation may be essential for MSCs to exert their 
immunosuppressive response. Indeed, some PAH/HAH-
derived metabolites themselves can, either directly or 
indirectly via AhR, down-regulate immune-associated 
pathways such as the antigen-specific T and B cell 
responses, compromising lymphocyte development. 
However, the influence of AhR on the regulation of 
MSC-induced immunosuppression remains poorly in­
vestigated[30].

AhR ACTIVATION IN MSCs
To explore the participation of AhR in MSC activation, it 
was predicted that MSC priming by AhR is a mechanism 
intimately associated with its immunotherapeutic res­
ponse. According to this perspective, it has been shown 
in vitro that MSCs, under standard conditions, support 
the growth/differentiation of B lymphocytes, but when 
the MSCs are pre-stimulated by AhR agonist (i.e., 
DMBA), these cells exert an inverse immunoregulatory 
response, inducing apoptosis by cell-cell contact in CD43+ 
pro/pre-B cells. This cell death signal is regulated mainly 
via a specific soluble stromal cell-dependent death signal 
that is presumably regulated by its responsive AhR gene, 
CYP1A1[10,30,39,40]. Later, the authors of the same study 
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reported that the addition of a precise and competitive 
inhibitor of AhR, α-naphthoflavone (α-NF), blocked 
DMBA-induced pre-B cell apoptosis in these bone marrow 
cell co-cultures[39].

Subsequently, another work showed that the 
activation of AhR in MSCs can also modulate their se­
cretory profile. In this report, the MSCs were stimulated 
with AhR-specific ligands (i.e., DMBA and TCDD), and 
after stimulation, these cells had their production of 
mRNA/protein of interleukin-6 (IL-6) suppressed through 
a process partially regulated by the coactivation of NF-
κB signalling pathways[41]. IL-6 is required for the growth 
and terminal differentiation of progenitor blood cells, 
and its aberrant expression is reportedly associated 
with autoimmune-related disorders (i.e., systemic lupus 
erythematosus, rheumatoid arthritis, and multiple 
sclerosis)[42-44]. Thus, this evidence illustrates the intrinsic 
importance of AhR-mediated MSC activation, highlighting 
the role of the IL-6/AhR axis in the regulation of the 
immune system.

Additionally, it was observed that the therapeutic 
abilities of MSCs can be modulated by AhR activation. 
The MSCs were activated by AhR-specific agonists (i.e., 
TCDD and cockroach allergen extract) and showed 
increased CYP1A1 and CYP1B1 expression. This process 
was accompanied by an elevated migration potential 
in vitro. Later, the authors also demonstrated in mouse 
models of experimental asthma that MSCs activated by 
AhR efficiently engrafted to injury sites and attenuated 
allergen-induced lung inflammation (i.e., reduced 
cell infiltrate and change cytokine profile), mainly via 
TGF-β1 modulation[45]. 

Moreover, it was determined that AhR stimulation in 
MSCs can also prevent their multipotent differentiation 
potential. It was shown that treatment with benzo(a)­
pyrene (BPs), a specific AhR agonist, markedly inhibited 
the terminal adipogenic differentiation of MSCs in an 
AhR-dependent manner, with reduced expression of 
classical adipogenic markers (FABP4), triglyceride en­
zymes (G3PDH) and adipogenic transcription factors 
(PPARγ and CEBPβ)[31]. Despite the decreased expression 
of AhR in differentiated MSCs, the expression of its 
target gene CYP1B1 remained elevated, indicating that 
AhR activation was fully functional during adipogenesis. 
Later, this same study demonstrated that the use of 
α-NF, an AhR antagonist, abrogated the AhR-mediated 
inhibition of MSC adipogenesis[31]. Complementarily, 
another report demonstrated that BP treatment inhibited 
adipocyte differentiation in vitro by down-regulating 
the PPARγ signal and increased the expression of 
cytochrome P450 (CYP1A1) in canine MSCs[46]. In 
addition, it was detected in vitro that TCDD-stimulated 
MSCs suppressed the mRNA levels of osteoblastic 
markers (i.e., Runx2, Ocn and Alp) in a dose-dependent 
manner through a process mediated by the inhibition 
of β-catenin expression. Later, similar observations in 
MSCs derived from inflamed collagen-induced arthritis 
mice (a possible environment for AhR activation) 
showed elevated nuclear expression and translocation 

of AhR and, in consequence, inhibition of osteogenesis-
associated genes as well as reduced β-catenin ex­
pression[47]. In fact, an additional study verified that 
AhR activation by BPs inhibited the MSC mesodermal 
differentiation, and when these activated MSCs were 
applied in a mouse model of bone fracture, the tibial 
ossification was affected mainly via SMAD-dependent 
(e.g., TGF-β1/SMAD4) and SMAD-independent (e.g., 
TGF-β1/ERK/AKT) signals[48]. Therefore, these results 
illustrate that the adipogenesis and osteogenesis 
signalling pathways are also potential targets for AhR 
regulation in MSCs.

Finally, another group found that the activation of 
MSCs through kynurenine, a natural AhR agonist, can 
enhance its immunosuppressive response. The authors 
detected that MSCs stimulated by kynurenine were more 
effective in suppressing in vitro lymphocyte proliferation 
than MSCs stimulated by IFN-γ and TGF-β separately. 
Further, the analysis of cytokines in the supernatants 
of lymphocyte/MSC co-cultures demonstrated that the 
combination of kynurenine with IFN-γ and TGF-β stimuli 
significantly reduced IL-6 and IL-17 secretion. In line 
with these findings, the authors also found that the 
combination of three effector stimuli (IFN-γ, TGF-β and 
kynurenine) promoted the overexpression of important 
immunomodulatory genes in MSCs (e.g., iNOS, IDO, 
COX2, HO-1, PGE-2, LIF and PD-L1). Later, when these 
triple-activated MSCs were used in the treatment of 
an experimental model of GVHD, the stimulated MSCs 
substantially decreased the inflammation and tissue 
injury score at a more significant level than normal 
unstimulated MSCs[49].

Altogether, these recent studies suggest that AhR 
activation can substantially modulate the function of 
MSCs by mechanisms associated with: (1) The induction 
of the death signal in pro-inflammatory cells, i.e., pre-B 
cells; (2) the suppression of pro-inflammatory cytokines, 
i.e., IL-6; (3) the improvement of migration and 
regenerative potential in acute inflammatory models, 
i.e., asthma and GVHD; (4) the inhibition of mesodermal 
differentiation, i.e., adipogenesis and osteogenesis; and 
(5) the up-regulation of global immunosuppression, i.e., 
the up-regulation of immunoregulatory genes (Figure 1).

CONCLUSION
The immunosuppressive properties of MSCs are of 
great interest for cellular therapy; however, randomized 
double-blind clinical studies have not shown clear 
benefits to date[42,50]. This inconclusive large-scale 
clinical result may be associated with the variety of 
cytokines/agonists in the distinct environments that 
MSCs encounter in vivo. In this context, the molecular 
mechanisms involved in the reparative status of MSCs 
through the activation of sensitive immune-associated 
receptors are so far unclarified, and, therefore, they are 
indispensable parameters for investigation. Thus, MSC 
activation is currently considered a sine qua non condition 
for MSCs and their bioproducts (i.e., trophic factors and 
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microvesicles) to exert their immunoregulatory response.
Considering this perspective, the quality of the 

immunoregulatory profile of MSCs can be considerably 
improved when these cells are exposed to sufficient 
levels of sensitive ligands (i.e., cytokines/growth 
factors). On the other hand, MSCs not subjected 
to pre-stimulation tend to decrease or lose their in­
trinsic immunosuppressive potential, promoting an 
undesired inflammatory response[49]. In this context, 
we hypothesized that the optimal immunomodulatory 
potential of MSCs can be obtained by establishing a 
steady regulatory phenotype in MSCs using precise MSC-
responsive ligands as AhR agonists. Thus, the activation 
of AhR in MSCs should be extensively explored as a 
mechanism in relevant pre-clinical and experimental 
studies, in the attempt to improve the applicability 
of MSCs in a set of degenerative and immunological 
diseases.

However, questions regarding the mechanisms of 
the MSC immunoregulatory response remain incon­
clusive. In this sense, MSC immunoregulation can vary 
among species, for instance, IDO up-regulation in MSCs 
is better described in humans, while inducible nitric 
oxide synthase (iNOS) is a key regulatory enzyme in 
mouse MSC immunomodulation[49]. In addition, the 
elucidation of the cross-talk between AhR agonists and 
other sensitive molecules (e.g., IFNγ, TGF-β, TNF-α, 

LPS and others) is a detrimental factor in applying 
the immunosuppressive response of MSCs. Moreover, 
the influence of MSCs in another set of experimental 
models is also important to consider. In line with 
this purpose, Aleman et al[49] (2015) reported that 
kynurenine, in combination with other effector stimuli 
(IFNγ and TGF-β), can induce elevated IDO, COX2, 
iNOS, and PGE-2 expression in MSCs and, at the same 
time, reduce the expression of EGFR, MHC Ⅱ and IL-6. 
Thus, further investigations should focus on identifying 
the major components that trigger the activation of 
the AhR signal and its cross-talk with other signalling 
pathways, to precisely understand the regulatory 
mechanism of AhR influence on MSC function. In line 
with this goal, aspects of this mechanism have begun 
to be investigated, such as the impact of AhR activation 
on MSC adipogenesis or osteogenesis; nevertheless, 
the specific AhR-dependent signalling pathways by 
which AhR agonists affect MSC-associated mesodermal 
differentiation also remain to be determined. 

In conclusion, we hope that the findings discussed 
here in this minireview will contribute to better com­
prehension of the major mechanisms behind MSC 
immunoregulation and provide a basic background 
for the development of innovative studies focused on 
the molecular cascade associated with AhR activation 
in MSCs. In summary, the study of AhR activation 
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can promote new insights for the better investigation 
of molecular signalling pathways associated with the 
regenerative and immunosuppressive potential of 
MSCs, and consequently, these studies will support the 
development of potential MSC-derived therapies for a 
wide variety of immune-associated disorders.
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Abstract
AIM
To establish a model to enrich and characterize stem-
like cells from murine normal liver and hepatocellular 
carcinoma (HCC) cell lines and to further investigate 
stem-like cell association with epithelial-to-mesenchymal 
transition (EMT).

METHODS
In this study, we utilized a stem cell conditioned serum-
free medium to enrich stem-like cells from mouse 
HCC and normal liver cell lines, Hepa 1-6 and AML12, 
respectively. We isolated the 3-dimensional spheres and 
assessed their stemness characteristics by evaluating the 
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RNA levels of stemness genes and a cell surface stem cell 
marker by quantitative reverse transcriptase-PCR (qRT-
PCR). Next, we examined the relationship between stem 
cells and EMT using qRT-PCR. 

RESULTS
Three-dimensional spheres were enriched by culturing 
murine HCC and normal hepatocyte cell lines in stem 
cell conditioned serum-free medium supplemented with 
epidermal growth factor, basic fibroblast growth factor and 
heparin sulfate. The 3-dimensional spheres had enhanced 
stemness markers such as Klf4  and Bmi1  and hepatic 
cancer stem cell (CSC) marker Cd44  compared to parental 
cells grown as adherent cultures. We report that epithelial 
markers E-cadherin and ZO-1 were downregulated, while 
mesenchymal markers Vimentin  and Fibronectin  were 
upregulated in 3-dimensional spheres. The 3-dimensional 
spheres also exhibited changes in expression of Snai , Zeb 
and Twist  family of EMT transcription factors. 

CONCLUSION
Our novel method successfully enriched stem-like cells 
which possessed an EMT phenotype. The isolation and 
characterization of murine hepatic CSCs could establish 
a precise target for the development of more effective 
therapies for HCC.

Key words: Hepatocellular carcinoma; Hepa 1-6; Cancer 
stem cells; Cancer initiating cells; Epithelial-to-mesenchymal 
transition; Cellular plasticity; Epithelial-to-mesenchymal 
transition transcription factors; AML12

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Although existing therapies can initially eliminate 
the bulk population of a tumor, the stem cell properties 
of cancer stem cells (CSCs) enable them to survive 
and repopulate the tumor, resulting in disease relapse. 
Therefore, elimination of CSCs has the potential to 
improve patient outcomes and survival. Isolation and 
characterization of liver CSCs is essential for the selective 
targeting of this crucial population of cells. We report 
that the sphere culture method is a more precise and 
reliable tool for the enrichment of murine stem-like cells 
which relies on their functional property of anchorage-
independent growth. 

Jayachandran A, Shrestha R, Dhungel B, Huang IT, Vasconcelos 
MYK, Morrison BJ, Ramlogan-Steel CA, Steel JC. Murine 
hepatocellular carcinoma derived stem cells reveal epithelial-to-
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most 

common cancer worldwide affecting one million indi­
viduals annually[1]. HCC is associated with high mortality 
rates largely due to the development of resistance to 
chemotherapy or radiotherapy, recurrence after surgery 
or intra-hepatic metastases[2]. While treatments such 
as surgical liver resection and liver transplantation 
have had a significant impact in early-stage HCC, these 
treatments have limited efficacy in most patients with 
advanced stage HCC[3]. Moreover, Sorafenib, the only 
available drug for advanced stage HCC has limited 
efficacy[4]. A better understanding of the biology of HCC 
would have a major impact on the management of this 
disease.

According to the stem cell model of carcinogenesis 
cancers are initiated and maintained by a rare fraction of 
cells called cancer stem cells (CSCs) or cancer initiating 
cells (CICs)[5,6]. The presence of CSCs with biological 
properties such as multipotency and self-renewal, 
similar to those of normal stem cells, was first reported 
in leukemia and subsequently in diverse malignancies 
including breast cancer, glioblastoma, prostate cancer, 
colon cancer and liver carcinoma[7-13]. CSCs have pro­
ven to play a central role in the development, main­
tenance, metastasis, and recurrence of HCC[14-16]. Th­
erefore the prospective identification and isolation of 
CSCs in HCC could generate a better understanding of 
hepatocarcinogenesis and facilitate the identification 
of novel druggable targets for development of more 
efficient therapeutic strategies.

Recent evidence indicates that CSCs may be ge­
nerated with the reactivation of the developmental 
epithelial-to-mesenchymal transition (EMT) program, 
which impacts tumor metastatic potential[17-19]. EMT 
describes a reprogramming of epithelial cells that leads 
to a phenotype switch from an epithelial to a mesen­
chymal cellular state. This cellular plasticity occurs 
during normal development as part of processes such 
as gastrulation and neural crest cell migration. During 
cancer progression, this phenotype is associated with 
metastatic dissemination, acquisition of drug resistance 
and acquisition of CSC state[20,21]. Whereas the role of 
EMT in HCC metastasis is well documented, its role in 
HCC CSC generation is only just emerging[22]. 

Although a number of cell surface markers have 
been identified for the enrichment of HCC derived 
CSCs, there is no general consensus on the best CSC 
markers for HCC[23,24]. We used an alternate method 
for the enrichment of HCC CSCs based on functional 
aspect of CSCs. CSCs exhibit anchorage-independent 
growth and form spheres that possess the capacity 
for self-renewal and tumorigenicity, when grown in a 
stem cell conditioned serum-free medium[25]. Sphere 
formation assay thus represent a more precise tool for 
the enrichment of CSCs. This study therefore aimed 
to enrich stem-like cells from mouse HCC and normal 
liver cell lines with the goal to better characterize the 
3-dimensional spheres. We also sought to examine the 
relationship between CSCs and EMT.
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MATERIALS AND METHODS
Cell lines and cell culture
Murine HCC cell line Hepa 1-6 and normal liver cell line 
AML12 were procured from American Type Culture 
Collection (ATCC) and maintained as per ATCC protocols. 
The cell lines Hepa 1-6 and AML12 were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) (Lonza, 
Australia) supplemented with 10% heat-inactivated fetal 
bovine serum (FBS) (Assay Matrix, Australia) and 1% 
penicillin/streptomycin (P/S) (Thermofischer Scientific, 
Australia) and incubated at 37 ℃ under a humidified 
atmosphere with 5% CO2 in air.

3-dimensional sphere enrichment assay 
Cells were cultured as 3-dimensional spheres using a 
stem cell conditioned serum-free medium which is based 
on a neural stem cell medium[25]. Stem cell conditioned 
serum-free medium was prepared by adding 1:1 mixture 
of DMEM and HAM’s F12 medium (Lonza, Australia) 
supplemented with 4 µg/mL heparin sulfate (Sigma-
Aldrich, United States), 1% penicillin/streptomycin (P/S) 
(ThermoFischer Scientific, Australia), 2% bovine serum 
albumin (BSA) (Sigma-Aldrich, United States), 20 
ng/mL recombinant human epidermal growth factor 
(rhEGF) (Lonza, Australia) and 10 ng/mL recombinant 
human basic fibroblast growth factor (rhbFGF) (Lonza, 
Australia). Briefly, adherent cells were detached 
and collected following Trypsin-EDTA (ThermoFisher 
Scientific, Australia) treatment. Cells were washed three 
times with 50 mL 1 × PBS to remove serum. Cells were 
counted and seeded at 5000 cells/ml in a T-25 ultra-
low-attachment flask (Corning Incorporated, United 
States) and cultured with stem cell medium at 37 ℃ in 
a humidified atmosphere of 5% CO2 in air. 

Enumeration of spheres
Cells were seeded at 2000 cells/well in a 6-well ultra-
low-attachment plates (Corning Incorporated, United 
States) and cultured with stem cell medium. Diameter 
of 3-dimensional spheroids and number of spheres per 
culture well were counted on day 5 using an inverted 
microscope equipped with a digital camera (Olympus 
DP21, Japan). 

RNA extraction and cDNA synthesis
The parental cells were plated at the same density as 
the sphere cells and on day 5 total cellular RNA was 
extracted using the Isolate Ⅱ Bioline RNA synthesis kit 
(Bioline, Australia) as per the manufacturer’s protocol. 
We performed on column DNAase digestion using 
RNase-Free DNase at room temperature (20 ℃-30 ℃) 
for 15 min in accordance to Bioline RNA synthesis kit 
instructions. Spectrophotometric quantification using 
the Nanodrop 2000 c (ThermoFisher, United States) 
confirmed purity of RNA and absence of DNA in our 
samples. One micrograms of the extracted RNA was 
reverse transcribed using the Bioline SensiFAST cDNA 

synthesis kit (Bioline, Australia). 

Quantitative reverse transcriptase-PCR 
Following reverse transcription, quantitative reverse 
transcriptase-PCR (qRT-PCR) was performed using Lo-
ROX SYBR Green (Bioline, Australia). Reactions were 
run in 384-well plates on a ViiA7 Applied Biosystems 
Real-Time PCR system. Amplification was performed 
according to a three-step cycle procedure consisting 
of 40 cycles of denaturation at 95 ℃ for 5 s, annealing 
at 60 ℃ for 10 s and extension at 75 ℃ for 15 s. 
E-cadherin expression was evaluated using QuantiFast 
SYBR Green PCR Kit (Qiagen, United States) following 
the manufacturer’s instructions. Amplification was 
performed according to a two-step cycling procedure 
consisting of 40 cycles of denaturation at 95 ℃ for 10 
s and combined annealing/extension at 60 ℃ for 30 s. 
Beta-Actin (ActB) was used as an internal control. The 
primers used are listed in Table 1. Expression levels 
were normalized to ActB and are presented as copies of 
target gene per 10000 copies of ActB, calculated using 
the formula: 2 (CTActB-CTtarget) × 10000. The copy 
number values were calculated from a minimum of 
three independent biological replicates.

Statistical analysis 
All experiments were repeated at least three times 
and representative results are presented. All statistical 
comparisons of data sets were performed using Student’

Table 1  List of primers for quantitative reverse transcriptase-
PCR

Primer Sequence (5’-3’)

ActB forward ATGGAGGGGAATACAGCCC
ActB reverse TTCTTTGCAGCTCCTTCGTT
Klf4 forward CAGTGGTAAGGTTTCTCGCC
Klf4 reverse GCCACCCACACTTGTGACTA
Bmi1 forward TGGTTGTTCGATGCATTTCT
Bmi1 reverse CTTTCATTGTCTTTTCCGCC
Cd44 forward AGCGGCAGGTTACATTCAAA
Cd44 reverse CAAGTTTTGGTGGCACACAG
E-Cadherin forward AAAAGAAGGCTGTCCTTGGC
E-Cadherin reverse GAGGTCTACACCTTCCCGGT
ZO-1 forward CCTGTGAAGCGTCACTGTGT
ZO-1 reverse CGCGGAGAGAGACAAGATGT
Vimentin forward AGAGAGAGGAAGCCGAAAGC
Vimentin reverse TCCACTTTCCGTTCAAGGTC
Fibronectin forward ACTGGATGGGGTGGGAAT
Fibronectin reverse GGAGTGGCACTGTCAACCTC
Snai1 forward AGTGGGAGCAGGAGAATGG
Snai1 reverse CTTGTGTCTGCACGACCTGT
Snai2 forward GATGTGCCCTCAGGTTTGAT
Snai2 reverse GGCTGCTTCAAGGACACATT
Zeb1 forward TCATCGGAATCTGAATTTGC
Zeb1 reverse CCAGGTGTAAGCGCAGAAAG
Zeb2 forward TGCGTCCACTACGTTGTCAT
Zeb2 reverse TCTTATCAATGAAGCAGCCG
Twist1 forward CATGTCCGCGTCCCACTA
Twist1 reverse TCCATTTTCTCCTTCTCTGGA
Twist2 forward GCCTGAGATGTGCAGGTG
Twist2 reverse GTCTCAGCTACGCCTTCTCC
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s two-tailed t-test in GraphPad Prism software version 
7.00 (GraphPad Software Inc). Statistical significance 
was set at aP <0.05, bP <0.01 and eP <0.001.

RESULTS
Mouse HCC and normal liver cells formed anchorage-
independent 3-dimensional spheres
Mouse HCC cell line Hepa 1-6 and normal mouse liver 
cell line AML12 were used for induction of spheres. 
Both cell lines could form anchorage-independent, 
non-adherent 3-dimensional spheres when grown in 
conditioned serum-free culture medium supplemented 
with rhEGF, rhbFGF and heparin sulfate (Figure 1A and 
C). Both cell lines formed floating small spheres which 
eventually form 3-dimensional structures by day 5. No 
adherent cells were detected. The number of spheres 
were counted and appeared to be similar in both the 
cell types (Figure 1B and D). 

Embryonic stemness and CSC marker expressions are 
enhanced in 3-dimensional spheres
With the goal of better characterizing the cells enriched 
by sphere culture, we examined the expression levels 
of some stem cell-associated genes important for the 
proliferation, self-renewal and differentiation of stem 
cells. As controls, the parental cells were plated as 
adherent cultures at the same density as the spheres. 
On day 5 RNA was extracted from 3-dimensional sphere 
cultures and adherent cultures. qRT-PCR analysis re­
vealed markedly elevated expression of embryonic stem 
cell-associated genes Kruppel like factor 4 (Klf4) and 
Bmi1 polycomb ring finger oncogene (Bmi1) in Hepa 
1-6 spheres compared with parental cells (Figure 2A and 

B). Cd44, a cell surface adhesion molecule which has 
been used as a CSC marker in HCC showed significantly 
increased expression in Hepa 1-6 spheres compared 
with adherent parental cells (Figure 2C). Similarly, 
AML12 derived 3-dimensional spheres also expressed 
significantly higher mRNA levels of Klf4 and Bmi1 
compared with the adherent AML12 population (Figure 
2D and E). Higher expression of Cd44 was detected in 
spheres from AML12 compared with the parental cells 
(Figure 2F). These results indicate that the conditioned 
stem cell serum-free medium is a precise tool for the 
selective enrichment of hepatic mouse stem-like cells.

CSC and EMT phenotypes are linked in 3-dimensional 
spheres
To elucidate whether there were connections between 
the spheres and EMT phenotype, we assessed the 
EMT characteristics of the 3-dimensional spheres from 
Hepa 1-6 and AML12. At the molecular level, EMT 
is characterized by a series of coordinated changes 
including down-regulation of the adherens junction 
molecule E-cadherin and tight junction molecule Zonula 
occludens-1 (ZO-1) and upregulation of Vimentin, an 
intermediate filament and Fibronectin, a key molecule 
of extracellular matrix. We observed that the expression 
of classical epithelial marker genes, E-cadherin and 
ZO-1 were significantly downregulated in 3-dimensional 
spheres from both Hepa 1-6 and AML12 compared 
with parental cells (Figure 3). These 3-dimensional 
spheres also exhibited the characteristic features of 
a mesenchymal phenotype with high expression of 
Vimentin and Fibronectin (Figure 4). These findings 
suggest that the stem cell phenotype is closely linked 
with an EMT phenotype.
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Core EMT transcription factors are enhanced in 
3-dimensional spheres
To further confirm the occurrence of EMT process in 

CSCs we examined the expression levels of core EMT 
transcription factors that govern cellular plasticity. In 
Hepa 1-6 spheres we observed significant upregulation 

e

Adherent          Sphere

600

400

200

    0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

e

Adherent          Sphere

1500

1000

  500

      0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

b

Adherent          Sphere

200

150

100

  50

    0
Co

py
 n

um
be

r 
pe

r 
10

00
0 

Ac
tB

 c
op

ie
s

Klf4 Bmi1 Cd44

b

Adherent          Sphere

1000

8000

6000

4000

2000

      0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

Bmi1 Cd44
a

Adherent          Sphere

500

400

300

200

100

    0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

Figure 2  Three-dimensional spheres expressed high stemness and cell surface cancer stem cell markers. qRT-PCR analysis revealed higher expression of A: 
Klf4, B: Bmi1 and C: Cd44 in Hepa 1-6 3-dimensional spheres compared with Hepa 1-6 grown as adherent cells. qRT-PCR analysis revealed higher expression of D: 
Klf4, E: Bmi1 and F: Cd44 in AML12 3-dimensional spheres compared with AML12 grown as adherent cells. Values are mean ± SEM of three experiments in triplicate 
(aP < 0.05, bP < 0.01, eP < 0.001). qRT-PCR: Quantitative reverse transcriptase-PCR; ActB: Beta-Actin.

A B C

e

Adherent          Sphere

500

400

300

200

100

    0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

Klf4D E F

e

Adherent       Sphere

2500

2000

1500

1000

   30

   20

   10

     0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

E-cadherinA
a

Adherent      Sphere

100

  80

  60

  40

  20

    0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

ZO-1B

a

Adherent     Sphere

800

600

400

200

    0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

E-cadherinC
a

Adherent     Sphere

200

150

100

  50

    0

Co
py

 n
um

be
r 

pe
r 

10
00

0 
Ac

tB
 c

op
ie

s

ZO-1D

Figure 3  3-dimensional spheres decreased expression of epithelial markers. qRT-PCR analysis revealed downregulation of A: E-cadherin and B: ZO-1 in Hepa 1-6 
CSCs compared with Hepa 1-6 grown as adherent cells. qRT-PCR analysis revealed lower expression of C: E-cadherin and D: ZO-1 in AML12 CSCs compared with 
AML12 grown as adherent cells. Values are mean ± SEM of three experiments in triplicate (aP < 0.05). qRT-PCR: Quantitative reverse transcriptase-PCR; ActB: Beta-
Actin.

Jayachandran A et al . Enrichment of murine hepatic stem-like cells



164 September 26, 2017|Volume 9|Issue 9|WJSC|www.wjgnet.com

of Snai family of transcription factors (Snai1 and 
2), Zinc-finger E-box-binding homeobox family of 
transcription factors (Zeb1 and 2) and helix-loop-
helix Twist family of transcription factors (Twist1 and 
2) compared with adherent parental cells (Figure 5). 
We observed a significant increase in the Zeb family of 
transcription factors in AML12 3-dimensional spheres 
compared with parental cells. AML12 3-dimensional 
spheres showed downregulation of Snai2, Twist1 and 
Twist2 RNA levels (Figure 6). This raises the possibility 
that distinct family of transcription factor may enable 
maintenance of CSC cellular plasticity in different cell 
types. Together, these features of EMT strongly suggest 
a possible relationship of EMT with the hepatic stem-like 
cell phenotype.

DISCUSSION
Worldwide, HCC, a primary liver cancer is one of the 
most common malignancies with a poor outcome[2]. 
Non-resectable advanced stage HCC remains an in­
curable disease for which novel therapies are urgently 
needed. Accumulating evidence suggests that CSCs 
play an important role in HCC tumorigenicity and the 
reactivation of EMT process has been implicated in the 
generation of CSCs[22]. The CSC field has experienced 
rapid advances in the past decade and a number of 
strategies have been applied to identify and harvest 
them[12-14,26-28]. Several markers have been proposed 
for the identification of CSCs in HCC, but not all are 
uniformly expressed in all CSC populations and single 
markers have been deemed insufficient to represent the 
real CSC phenotype[24]. Alternately, the sphere culture 
method, which is not dependent on markers, has been 
increasingly utilized in various tumors, including HCC 
for isolating, enriching, maintaining or expanding the 
potential CSC subpopulations[25,29-32]. To our knowledge, 
this is the first time that murine HCC and normal 
hepatocyte cell lines have been examined for sphere 

forming capacity, enrichment of stem-like cells and 
occurrence of epithelial-mesenchymal plasticity. 

Enrichment and characterization of murine deri­
ved CSCs provides a better understanding of how 
these CSCs interact with the CSC niche environment 
and host immune system in order to form a tumor 
and are indispensable for the development of new 
therapies for the elimination of CSCs. In HCC, the 
majority of studies of CSCs have utilized patient-
derived material or established human tumor cell lines 
inoculated into immunocompromised mice[29,31,32]. The 
immunocompromised mouse microenvironments do not 
recapitulate the microenvironment in a human patient 
with naturally occurring cancer and have limited value in 
assessing therapies targeting CSCs. Moreover, the ability 
of cells to grow in immunocompromised mice does not 
distinguish CSCs from non-CSCs, as it demonstrates 
selection for cells that can best adapt to growth in 
murine tissue, and therefore might not represent a 
true approximation of CSCs[25]. We have previously 
demonstrated that immunocompetent syngeneic 
models allow for interactions of the recipient mouse host 
immune system with CSCs, a situation that more closely 
models cancer in humans[25]. Future studies are needed 
to address whether mouse HCC derived CSCs are able 
to initiate tumors in syngeneic immunocompetent mice 
compared with the parental counterparts.

Our stem cell enrichment medium comprised of 
serum free media supplemented with rhEGF, rhbFGF 
and heparin sulfate, while others have previously used 
media supplements such as B27, leukemia inhibitory 
factor, N-acetyl-L-cysteine and neural survival factor 
for enriching human HCC CSCs[29,30]. Our finding that 
murine 3-dimensional spheres had enhanced expression 
of stem cell markers namely, Klf4, Bmi1 and Cd44 lends 
credence to the use of the sphere culture model for CSC 
enrichment. Positive expression of KLF4 was correlated 
with tumor relapse and a poor prognosis in patients with 
HCC[33]. CD44 expression was highly correlated with 
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decreased overall survival in HCC patients[34] while high 
BMI1 expression was associated with a poor prognosis 
in HCC patients[35]. 

Finally we demonstrate a striking association between 
the expression of CSC and EMT markers. The biologic 
link between EMT phenotypes and CSCs has recently 
been evidenced in many types of cancer, including 
HCC[3,22]. E-cadherin functions as a key gatekeeper of 
the epithelial state. Loss or downregulation of E-cadherin 
has been considered to be a hallmark of EMT[20,21]. In 
our study, 3-dimensional spheres demonstrated down-
regulation of E-cadherin and ZO-1. We also found that 
the 3-dimensional spheres exhibited high Vimentin 
and Fibronectin, the phenotypes of mesenchymal cells 
that have more aggressive biological behaviour. Most 
notably, we found elevation of core EMT transcription 
factors in 3-dimensional spheres. Downregulation of 
E-cadherin is often mediated by core EMT-controlling 
transcription factors of Snai, Zeb and Twist families which 
have recently been molecularly linked to self-renewal 
programs[36]. AML12 have yielded mixed results for EMT 
transcription factors in spheres with downregulation 
of Twists and Snai2. This indicates apparent cell type-

specific differences and the cause for this variance in 
transcription factor expression remains elusive and 
warrants further investigation. Taken together, our 
findings indicate that EMT transcription factors such 
as Snai1, Zeb1 and 2 may provide opportunities for 
therapeutic targeting of CSC via blocking EMT. An in-
depth investigation of crosstalk of stemness with 
EMT is essential for a better understanding of tumor 
progression in HCC. It is clear that further studies of 
CSC characterization will be critical to better understand 
plasticity and the mediators of phenotype switching as 
contributors to HCC initiation, progression, treatment 
failure and disease relapse. As a central player in these 
processes, EMT transcription factors may well serve as 
druggable targets in strategies to better treat HCC. 
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Background
Cancer stem cells (CSCs) have proven to play a central role in the development, 
maintenance, metastasis, and recurrence of hepatocellular carcinoma (HCC). 
Therefore the prospective identification and isolation of CSCs in HCC could 
generate a better understanding of hepatocarcinogenesis and facilitate the 
identification of novel druggable targets for development of more efficient 
therapeutic strategies.

Research frontiers
Although a number of cell surface markers have been identified for the enrichment 
of HCC derived CSCs, there is no general consensus on the best CSC markers 
for HCC. The authors used an alternate method for the enrichment of HCC CSCs 
based on functional aspect of CSCs. 

Innovations and breakthroughs
To the knowledge, this is the first time that murine HCC and normal hepatocyte 
cell lines have been examined for sphere forming capacity, enrichment of stem-
like cells and occurrence of epithelial-mesenchymal plasticity. 

Applications
The authors’ findings indicate that EMT transcription factors such as Snai1, 
Zeb1 and 2 may provide opportunities for therapeutic targeting of CSC via 

blocking EMT. An in-depth investigation of crosstalk of stemness with EMT is 
essential for a better understanding of tumor progression in HCC. It is clear 
that further studies of CSC characterization will be critical to better understand 
plasticity and the mediators of phenotype switching as contributors to HCC 
initiation, progression, treatment failure and disease relapse.

Terminology
CSC is cancer stem cells which have biological properties such as multipotency 
and self-renewal, similar to those of normal stem cells. EMT describes 
epithelial-to-mesenchymal transition, a reprogramming of epithelial cells that 
leads to a phenotype switch from an epithelial to a mesenchymal cellular state.
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This manuscript is interesting, presenting a feasible method for concentrating 
a stem-like population from hepatic cancer cells by extending their previously 
reported technique for enriching a cancer-initiating population from lung cancer 
cell lines.
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