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Abstract
Autophagy is a highly regulated catabolic process in which superfluous,
damaged organelles and other cytoplasmic constituents are delivered to the
lysosome for clearance and the generation of macromolecule substrates during
basal or stressed conditions. Autophagy is a bimodal process with a context
dependent role in the initiation and the development of cancers. For instance,
autophagy provides an adaptive response to cancer stem cells to survive
metabolic stresses, by influencing disease propagation via modulation of essential
signaling pathways or by promoting resistance to chemotherapeutics. Autophagy
has been implicated in a cross talk with apoptosis. Understanding the complex
interactions provides an opportunity to improve cancer therapy and the clinical
outcome for the cancer patients. In this review, we provide a comprehensive view
on the current knowledge on autophagy and its role in cancer cells with a
particular focus on cancer stem cell homeostasis.

Key words: Autophagy; Cancer stem cells; Cancer cells; Cancer therapy; Therapeutic
resistance; Cancer metastasis
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Core tip: Cancer stem cells (CSCs) are a distinct subpopulation in the tumor bulk that are
highly plastic, and autophagy has been suggested to modulate their stemness and
development during cancer progression. Autophagy is a pro-survival mechanism used by
cancer cells to provide bioenergetic substrates. Therefore, dissecting the role of
autophagy in cancer propagation can theoretically lead to a more efficient cancer
treatment via the modulation of autophagy, in combination with chemotherapeutics to
sensitize and target CSCs. This review summarizes the divergent role of autophagy in
CSCs and cancer cells and attempts to elucidate the molecular mechanisms involved.
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INTRODUCTION
Autophagy (“self-consumption”) is a conserved catabolic process which assists in the
clearance of superfluous, damaged organelles and proteins, and contributes in the
recycling of the constituents for the maintenance of metabolic homeostasis and as a
pro-survival  mechanism [1].  Autophagy  is  further  activated  by  intrinsic  and
environmental stressors including nutrient deprivation, oxidative stress, cytokine and
growth factor deficiency, hypoxia and exposure to infection[2,3]. It can be noted that
basal autophagy acts as a quality assurance mechanism in cells and as a source of
metabolites [4 ].  Dysregulation  of  autophagy  is  associated  with  a  variety  of
inflammatory and infectious conditions, as well as neurodegenerative pathologies,
ageing and cancer[5].

Autophagy is  a highly regulated mechanism that facilitates the deliverance of
cytoplasmic components for lysosomal mediated degradation. There are three distinct
forms of autophagy, such as microautophagy, chaperone mediated autophagy (CMA)
and macroautophagy. Microautophagy is modulated by the direct sequestration of
cytosolic cargo causing engulfment, followed by indentation of the lysosome leading
to degradation[6]. In comparison, CMA is a prime example of selective autophagy. In
this particular pathway, chaperones are utilized targeting specific proteins containing
a pentapeptide KFERQ motif sequence. Once engaged this leads to the translocation
across the lysosome membrane mediated by lysosome associated membrane protein
2A[7,8].  In contrast, macroautophagy (herein referred to as autophagy) initiates the
degradation  of  intracellular  organelles  by  delivering  them  to  the  lysosome  by
sequestrating  sections  of  the  cytoplasm  via  double  membrane  vesicles  called
autophagosomes.  The  fusion  between  these  two  entities  not  only  promotes
degradation  but  also  generates  bioenergetic  substances  for  recycling.  Emerging
studies describe the existence of a cross talk between CMA and macroautophagy that
promotes a compensatory mechanism under basal and stressed conditions[7,9].

The regulation and process of canonical autophagy
Autophagy relates genes (Atg) are involved in the development and turnover of the
autophagosomes. Formation of the autophagosome proceeds through multiple steps
that include initiation, nucleation, elongation, maturation and thereafter fusion with
the lysosome[8,10]. The mitochondria and the endoplasmic reticulum (ER) are contact
sites for the formation of autophagosomes[11,12] (Figure 1).

Upstream signaling pathway such mammalian target of rapamycin (mTOR) is a
major  negative  regulator  of  autophagy  as  it  senses  amino  acid  availability  and
initiation of cellular anabolism. 5’-AMP-activated protein kinase (AMPK) is activated
during starvation[2]. Under these circumstances, AMPK phosphorylates tuber sclerosis
complex 2 which inhibits mTOR[13]. Moreover, Atg7 protein is essential in modulating
starvation-induced autophagy as demonstrated in Atg7 conditional knockout mice[14].

The  inhibition  of  mTOR  sequentially  leads  to  the  activation  of  pre  initiation
complex  composed of  unc-51-like  kinase  1  (ULK1)  complex,  FAK family  kinase
interacting  protein  of  200  kDa,  Atg13  and  Atg101,  causing  translocation  to  the
membrane, and triggering the initiation step for the assembly of autophagosomes[10].
The ULK1 complex phosphorylates the class III phosphatidylinositol-3-kinase (PI3K)
vacuole protein sorting 34 (VPS34) complex; consisting of VPS15, Beclin-1 (BECN1)
and Atg14, which stimulates the generation of phosphatidylinositol-3-phospate 3
(PI3P),  an  essential  lipid  molecule  required  for  the  nucleation  step  of  the
phagophore[15-17]. Atg9 positive vesicles on the ER contribute to the nucleation process
by interacting with the ULK1 complex[17]. To promote autophagosomes elongation,
WD repeat domain phosphoinositide-interacting protein 2 (WIPI-2) and zinc-finger
FYVE domain-containing protein 1 are employed for the recruitment of two ubiquitin
like  systems[16].  Firstly,  Atg7  and  Atg10  act  as  E1  like  and  E2  like  enzymes  to
covalently conjugate Atg12 to Atg5 and then attach to Atg16L[8,18,19].  In the second
conjugation pathway, Atg12-Atg5 conjugate serves as an E3 like enzyme, where Atg8
family member LC3 is attached to phosphatidylethanolamine[2,19].  Atg7 and Atg3
mediate this process. Next, the autophagosome matures by membrane bound LC3.
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Figure 1

Figure 1  Canonical autophagy pathway. Autophagy is a multistep process that includes the following steps: initiation, nucleation, elongation, maturation and fusion
with the lysosome. Several proteins referred to as autophagy related genes regulate this process. Autophagy is stimulated under basal conditions and is induced by
stress, for example nutrient deprivation. ATG: Autophagy related genes; ER: Endothelial reticulum; FIP200: FAK family kinase interacting protein of 200 kDa; LC3:
Light chain 3; PE: Phosphatidylethanolamine; PI3P: Phosphatidylinositol-3-phospate 3; ULK1: Unc-51-like kinase 1; VPS34: Vacuole protein sorting 34.

NBR1 neighbor of BRAC1 and adaptor protein p62 facilitate in the degradation of
misfolded and ubiquitinated substrates by binding to Atg8-LC3[18-20]. The closure of the
autophagosome  is  driven  by  LC3  causing  the  Atg12-Atg5-Atg16L  complex  to
dissociate  from the autophagosome membrane leaving the lipidated LC3 (LC3B;
microtubule-associated proteins 1A/1B light chain 3B) in the autophagosome[16,18]. The
degradation of LC3B and p62 are widely accepted markers to measure the autophagic
flux.

It should be noted, however, that multiple signaling cascades control autophagy
and modify  ULK1 and class  III  PI3K complexes.  These  include  antigen  specific
receptors (B cell receptor and T cell receptor), CD40 “the co-stimulatory molecule”,
Toll like receptors, cytokine receptors and nucleotide-binding oligomerization domain
protein 2[2].  The VPS34-BECN1 complex can be inactivated by the anti-apoptotic
proteins from the B cell lymphoma-2 (BCL-2) family[16]. Here we have discussed the
major canonical pathway that utilizes mTOR (Figure 1).

Non-canonical autophagy
Autophagy that precedes the formation of autophagosomes without the involvement
of the core machinery is referred to as non-canonical autophagy. An example of non-
canonical autophagy would be LC3-associated phagocytosis (LAP) which depends on
class III PI3K subunit called RUBICON, a negative regulator of autophagy[2,21]. Unlike
canonical  autophagy,  LAP  only  requires  BECN1  and  VPS34  as  a  pre-initiation
complex and downstream conjugation of LC3 to generate NADH oxidase 2[22]. LAP-
LC3 is associated to autophagosome maturation and facilitating the degradation of
engulfed cells. LAP does not respond to nutrient deficiency or intracellular stressors,
unlike  canonical  autophagy.  Additionally,  the  substrates  for  this  process  are
extracellular entities including Toll like receptor, pattern recognition receptors and
dead cells[22]. LAP occurs in multiple immune cells, such as macrophages, dendritic
cells (DCs) and epithelial cells[21]. LAP deficiency in cells and animal models trigger
exaggerated inflammation[22].

In the canonical form, it is assumed that the generation of PI3P is essential for the
process  of  autophagy.  However,  Mauthe  et  al[23]  reported  resveratrol  mediated
autophagy  did  not  stimulate  PI3P  dependent  accumulation  of  WIPI-1  at  the
autophagosome membrane. This finding was confirmed by PI3P inhibition using
wortmannin in combination with resveratrol which led to an increased autophagic
flux of LC3B and GFP-LC3 puncta formation. This was promoted in the absence of
phagophore formation suggesting an alternative contact  site  for autophagosome
formation. Additionally, the actions of resveratrol were found to be independent of
BECN1; however, required Atg7 and Atg5 to induce the LC3 lipidation. It can be
concluded that resveratrol induces non-canonical autophagy[23].
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The  origin  of  the  autophagosome  membrane  and  the  formation  of  the
autophagosome  remains  unclear [24].  Recently,  using  freeze  fracture  replica
immunolabelling, WIPI-1 puncta were found to be localized on the ER and Plasma
membrane and WIPI-2 was detected close to the Golgi cisternae under starvation
induced autophagy, exclusively. These findings suggest that WIPI-1 and WIPI-2 are
essential components of the autophagosome and the autophagosome membrane site
and formation may potentially originate from the ER, Plasma membrane and the
Golgi[25].  Interestingly,  the deletion of WIPI-2 in the germinal center (GC) B cells
enhanced the autophagic activity, suggesting that B cells derived from the GC have
the ability to switch from canonical  autophagy upon challenge to non-canonical
autophagy to meet their metabolic demands[26].

It  is  believed that  Atg5 and At7 are  essential  for  autophagy.  However,  recent
studies  have  challenged  this  notion.  Atg5/Atg7  independent  non-canonical
autophagic pathway have been identified, which are able to form autophagosomes
mediated  in  a  Rab9  dependent  manner  from  the  trans-Golgi  network  and  late
endosomes. Autophagy proteins, such as ULK1 and BECN1 were found to regulate
this process independent of LC3[27]. The resulting autophagosomes mature and fuse
with  the  lysosome  and  undergo  cargo  clearance [ 2 8 ] .  Furthermore,  ULK1
dependent/Atg5 independent autophagy has been implicated in the removal of the
mitochondria from fetal definitive erythroid cells in vivo[29]. Additionally, ULK1-/- mice
models were able to express LC3B under nutrient depleted conditions; indicating the
role of ULK1 in the induction of autophagy is dispensable[30]. These reported studies
suggest ULK1 is not essential for Atg5/Atg7 dependent canonical autophagy[14,31].
Moreover, ULK1 is upregulated during non-canonical autophagy, and the silencing of
ULK1 inhibits this process[27].

Cross talk between autophagy and apoptosis
It is evident that autophagy participates in catabolism including the breakdown of
long-lived proteins, providing bioenergetics material to facilitate in the production of
adenosine triphosphate (ATP) and meet the metabolic demands of cells undergoing
adverse conditions and rescue them. However, under prolonged metabolic-stressed
conditions the pool of bioenergetic substrates will  be facilitated to generate ATP
dependent apoptosis[32]. Predominately, autophagy has a cytoprotective role. Overall,
it  can  be  assumed  that  autophagy  and  apoptosis  are  activated  by  a  common
stimulus[19].

Apoptosis “self-killing” is a form of type 1 programmed cell death (PD) and is
characterized by the distinct morphological changes causing nuclear condensation
(Pyknosis) and fragmentation (Karyorhexis), and membrane blebbing a requisite for
the generation of apoptotic bodies (smaller apoptotic cell fragments)[33,34].

Emerging  literature  indicates  a  complex  network  that  regulates  the  interplay
between autophagy and apoptosis.  This is  cell  type and stimuli  dependent.  This
dynamic interplay has been described in the following examples: Autophagy and
apoptosis can function together in order to induce cell death, autophagy can promote
cell  survival by antagonizing apoptosis,  or autophagy can assist  in cell  death by
activating apoptosis[16,35,36].

Multiple stimuli that can trigger cell death can also induce autophagy. Autophagy
as a cytoprotective mechanism is usually induced first, followed by apoptosis[16,37].
Death associated protein kinase (DAPK) signaling is an example when both apoptosis
and autophagy are induced either simultaneously or sequentially. Upon stimulation,
DAPK phosphorylates BECN1 leading to its dissociation from BCL-2; thus, activating
autophagy  by  binding  to  VPS34[38,39].  However,  activated  DAPK  is  also  able  to
stimulate apoptosis in autophagy deficient conditions[40].  It can be postulated that
DAPK regulated autophagy is induced by low levels of stress, however, intense and
chronic stress stimuli can initiate apoptosis through DAPK[16].

It  has  been  proposed  that  autophagy  and  apoptosis  display  an  inhibitory
relationship during the removal of pro-apoptotic proteins in the cytoplasm caused by
autophagy, resulting in reduced apoptosis.  Caspase-8 activation is a critical  step
during the extrinsic apoptosis signaling. However, selective autophagy may interfere
in an inhibitory manner with the cell-death pathway through the degradation of
capsase-8[41].  Furthermore, autophagy can be inhibited by apoptosis via  numerous
mechanisms; for example, autophagy exhaustion during increased intensity levels of
stress. In this condition, degradation of autophagic proteins and caspases activity is
reduced. For example, BECN1 inactivation occurs after caspase-mediated cleavage,
stimulating the release of pro-apoptotic factors, and resulting in autophagy inhibition
and induction of apoptosis[42].

Autophagy dependent cell death is defined as a form of cell death distinct from
apoptosis or necrosis that mechanistically depends on the autophagic machinery[43]. It
is postulated that the formation of autophagosome, and not degradation, leads to the
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activation  of  caspase-8  and  the  execution  of  cell  death.  As  reported  in  mouse
embryonic  fibroblasts  treated  with  proteasome  inhibitor  Bortezomib,  and  pan-
sphingosine kinase inhibitor. Pro-caspase- 8 interactions with p62 have been shown to
co-localize with the autophagosomes. The surface of the autophagosomes serves as a
platform  for  the  maturation  of  caspase-8  and  the  initiation  of  apoptosis[16,43].
Furthermore, the depletion of Atg5 ablated caspase-8 processing in the presence of
Bortezomib leading to a significant reduction in cell death[44].

CANCER STEM CELLS
Tumors are derived from heterogeneous cell types. Cancer stem cells (CSCs; also
known as tumor initiating cells) are a small subpopulation of cancer cells within the
tumor bulk tissue that retain the capacity for self-renewal, disease propagation, and
metastasis, which are decisive for tumor recurrences and are therapy resistance[45-47]. In
general, stem cells are characterized by their distinct ability to switch their cell cycle
profile from quiescent to proliferative behavior in order to maintain their capability
for self-renewal and later multi-potency[48]. Similarly, CSCs have the extraordinary
capability to self-renew and differentiate rapidly; accumulating mutations and genetic
alterations and transmitting these defects to the proliferating progeny, giving rise to
tumor heterogeneity conferring to resistance against anti-cancer therapeutics[49].

Similar to normal stem cells, CSCs reside in dynamic microenvironments known as
the stem cell niche, this regulates the fate of adult stem cells by providing signals,
such as cell-cell contact and secreting mediators to promote CSCs renewal, tumor
invasion and metastasis[24,50]. Normal niches are comprised of heterogeneous collection
of cells, such as endothelial, fibroblasts, immune cells, perivascular cells, components
of the extracellular matrix, cytokines and growth factors[51]. In comparison, the CSCs
niche itself is part of the tumor specific microenvironment that remains distinct from
the normal niche[52]. During tumor progression to a malignancy, the CSC state in the
primary tumor depends crucially on the microenvironment and potentially on the
CSC niche itself[53]. Targeting the CSCs niche is the current subject of research as it is a
valuable modality for the treatment and prevention of CSCs growth and downstream
signaling[52].

The functional characterization of CSCs in multiple studies have clarified that CSCs
are the foundation of tumor formation that can survive treatment with conventional
therapies and can cause the recurrence of cancer[54,55]. According to the concept of a
stem cell, it can be assumed that even a few surviving CSCs after therapy is sufficient
to develop a new tumor leading to a relapse. Due to the ability of CSCs to initiate
relapse  after  conventional  cancer  therapy,  they  represent  a  crucial  therapeutic
target[46]. CSCs were first identified in acute myeloid leukemia (AML); their presence
was confirmed by the isolation of AML-initiating cells based on their phenotypical
markers[56].  In solid tumors, breast cancer was one of the first to be characterized,
which  led  to  the  identification  of  a  specific  subpopulation  of  CSCs  marked  by
CD44+CD24-/Low  lineage. This tumorigenic population of cells was able to initiate
tumor  growth  in  immunosuppressed  mice[57,58].  Furthermore,  CSCs  have  been
discovered  in  several  solid  cancers,  such  as  lung[55],  pancreatic[59],  colon[60,61],
melanoma[62], ovarian[63,64], brain cancers[65,66] and hematological malignancies of both
myeloid and lymphoid origin[67-69].

CSC models of tumorigenesis and plasticity
To date, two paradigms: hierarchical and stochastic have been proposed to account
for the tumor origin, progression and heterogeneity. In brief, the hierarchical model is
based on a concept that tumor cells are hierarchically arranged cell populations and
CSCs represent the top of the arrangement. Carcinogenesis proceeds when a healthy
normal stem cell escapes regulation and transforms into a stem cell-like phenotype-
CSCs.  This  in  turn  gives  rise  to  heterogeneity  by  generating  differentiated  and
quiescent  cells  whose  proliferation capacity  is  restricted[52,70].  By contrast,  in  the
stochastic  model,  cancer  is  derived  from  a  single  somatic  cell  that  initiates
tumorigenesis and progression. This paradigm partially relies upon the environment
in  which  the  cancer  cell  is  located  in,  but,  fundamentally  is  defined  by  hyper
proliferation and the acquisition of mutational burden during the cell cycle process
contributing to clonal expansion[52].

WJSC https://www.wjgnet.com May 26, 2020 Volume 12 Issue 5

Mandhair HK et al. Modulation of autophagy in CSCs

307



AUTOPHAGY IN CANCER STEM CELLS

Role of autophagy in the maintenance of CSCs
As highlighted  earlier  in  this  review,  autophagy  is  a  multifaceted  pro-survival
mechanism. In cancer, the role of autophagy is context dependent. Autophagy elicits
tumor suppressing functions during tumor initiation by limiting inflammation, tissue
damage, and genome instability by removing damaged mitochondria and reducing
oxidative stress[2]. Extracellular stimuli, such as oxidative stress, nutrient depletion,
increased metabolism and hypoxia result to disease propagation; thus, demanding
autophagy to meet the high metabolic demands by providing recycled bioenergetic
substrates  to  the  CSCs,  and  whilst  doing  so,  implementing  its  role  as  a  tumor
promotor (Figure 2)[71].

It has been proposed that autophagy is associated to CSC maintenance. LC3B gene
knockdown  in  human  embryonic  stem  cells  (ESCs)  leads  to  a  reduction  in
pluripotency  and  due  to  the  accumulation  of  pluripotency  associated  proteins
suggesting autophagy regulates these proteins[72]. Autophagic flux is upregulated in
mammospheres in basal and starvation-induced autophagy and is driven by BECN1
and Atg4A for their survival and expansion. Inhibition of these autophagy genes
abolishes the tumor formation[73,74]. Aldehyde dehydrogenase 1-positive (ALDH1+)
CSCs isolated from MCF-7 mammospheres presented an increased LC3B dependent
autophagic flux with higher rate of p62 degradation compared to the bulk population;
indicating  an  increased  synthesis  of  autophagosomes.  In  addition,  suggesting
elevated autophagy is critical for CSCs[74]. Moreover, Antonelli et al[75] reports that
ataxia-telangiectasia mutated (ATM) kinase modulates breast CSCs through Atg4C.
This was validated in an overexpression study of Atg4C that was assessed in ATM
gene silenced cells using shATM; this led to the rescue of mammosphere formation in
ATM knockdown cells. These findings correlated with the microarray data of breast
cancer samples, however, excluded triple negative tumors[75]. Indeed, these autophagy
genes have shown to promote CSC survival and tumorigenicity. RNAi screenings
reveal constitutive STAT3 activity is regulated by autophagy and is enriched in the
triple  negative  breast  cancer  cell  lines[73,76].  In  those  cell  lines,  Atg7  and BECN1
modulate CD24 expression in CD44+CD24-/low CSC population and secret interleukin 6
(IL-6) through gp130 and JAK-STAT pathway for CSC maintenance[73,77].

MMTV-PyMT is a well-characterized transgenic murine model for breast CSCs
tumorigenesis. Yeo et al[78] reported autophagy differentially regulates two distinct
breast cancer stem-like cells ALDH1+ and CD29hiCD61+ though EGFR/STAT3 and
Tgfβ/Smad.  Depletion  of  FIP200  decreased  STAT3  activation  by  decreasing
phosphorylation  of  EGFR  and  had  consequently  impaired  the  tumor  initiating
properties of ALDH1+ and CD29HighCD61+ breast CSCs. Autophagy inhibition led to
decreased mRNA levels  of  TGFβ2  and TGFβ3  triggering  dysregulation  in  Smad
signaling  which  is  essential  for  CD29HighCD61+  CSCs[78].  The  secretion  of  IL-6  is
autophagy dependent and is mediated through STAT3/JAK2 pathway[77]. From these
studies, it can be assumed STAT3 signaling may potentially be an important factor in
CSCs transformation.

In general, FOXO transcription factors have been associated in the regulation of
cellular homeostasis, stem cell maintenance, ageing and tumor suppression. Mice
with somatic deletion of FOXO1, FOXO2 and FOXO4 resulted in thymic lymphomas
and hemangiomas[79]. Upregulation of FOXO1 promotes self-renewal of t(8;21) pre
leukemia cells in vitro  and in vivo,  and restricts differentiation of AML cells with
t(8;21) translocation; indicating FOXO1 is not a tumor suppressor, however, plays a
crucial role in leukemia stem cells (LSCs) maintenance[80]. Absence of FOXO3 has been
reported to contribute to the expansion of CSC population as well as increase self-
renewal and tumorigenesis in prostate[81], colon[82], and glioblastoma[83] and promote
tumor  initiation  in  breast  cancer[84].  Recently,  it  has  been  proposed  that  DNA
methyltransferase  1  mediates  FOXO3a  promoter  hyper  methylation  causing
downregulation of FOXO3a gene expression in breast CSCs; thus, suppressing CSCs
phenotype markers and tumorigenicity[85]. To date, the role of FOXO in CSCs remains
controversial. It has been reported FOXOs are implicated in autophagy[86-88]. FOXO3
overexpression studies reveal this gene directly regulates autophagy related genes
involved in  the  autophagosome pre-initiation complex:  WIPI-1/2,  core  initiation
complex: ULK1, autophagosome formation and elongation: Atg14, GABARAP, Atg5,
Atg10.  FOXO3  knockout  cells  downregulated  many  of  these  genes  and  PINK1
(component of mitophagy) and exhibited poor LC3B lipidation turnover; indicating
FOXOs  are required to maintain basal  autophagy in neural  stem and progenitor
cells[87]. FOXO3A induced autophagy promotes survival in human pluripotent stem
cells[88].  The  pro  autophagy  protein,  AMBRA1,  modulates  the  differentiation  of
regulatory T cells through FOXO3/FOXP3 axis. In the context of immunosurveillance
against tumors, AMBRA1 deficiency leads to defective generation of the induced
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Figure 2

Figure 2  Autophagy in cancer stem cells. Autophagy has a context dependent role in cancer. Cancer stem cells (CSCs) are a heterogeneous collection of different
cells types that acquire genetic aberrations/epigenetic modifications and retain the ability to undergo extensive cell proliferation, retain stemness and give rise to
differentiated diverse cancer cell lineages. Potentially the CSC niche will provide protective mechanisms for the disease propagation. Autophagy promotes invasion of
cancer stem cells through TGF-1β dependent epithelial-mesenchymal transition; however, during mesenchymal-epithelial transition autophagy is downregulated as
the circulating CSCs are scavenging an organ to seed for metastasis. Moreover, autophagy reinforces the resilience of CSCs plasticity, remodeling the
immunosurveillance and facilitating the acquisition of resistance to conventional chemotherapies which contribute to cancer relapse. By targeting autophagy, cancer
cells and CSCs are sensitized to enhancing the efficacy of chemotherapy agents and reducing their toxicity and disease relapse. CSC: Cancer stem cell; CC: Cancer
cell; EMT: Epithelial-mesenchymal transition; MET: Mesenchymal-epithelial transition; TIL: Tumor-infiltrating lymphocytes.

regulatory T cells in lymph nodes of tumor bearing mice; influencing the regulatory T
cells function in tumor response[89].

Additional FOXO family members are associated to autophagy. It is reported that
FOXA2 knockdown in ovarian CSCs leads to a reduction in the number of spherical
clusters of cells, size and the percentage of phenotype surface markers; suggesting
FOX2A modulates the ability of self-renewal in vitro[90]. Inhibition of autophagy by
Atg5 knockdown, bafilomycin A1 (vacuolar H+ ATPase inhibitor) or chloroquine (CQ;
lysosomotropic agent- late stage autophagy inhibitor) repressed FOXA2 expression.
FOXA2  overexpression  partially  rescues  these  effects;  indicating  autophagy
modulates  ovarian  CSCs  stemness  through  FOX2A[90].  These  studies  identify  a
synergy between FOXOs and autophagy. This relationship promotes CSC stemness
and tumorigenesis; however, the mechanisms behind these actions remains unclear
and require further elucidation. Though it is noteworthy that the regulatory role of
autophagy in CSC is very complex.

Autophagy induces metabolic reprogramming in CSCs
The tumor  microenvironment  (TME)  is  a  critical  driver  of  tumor  heterogeneity,
encouraging CSCs plasticity, remodeling immune surveillance, and facilitating their
metastatic  potential  and ultimately conferring CSCs resistance to  chemotherapy
drugs[52,91]. Non neoplastic cells, and their secreted mediators, such as growth factors
and  the  release  of  cytokines,  are  found  to  contribute  to  the  TME[92].  The  core
regulatory  mechanism  for  oxygen  sensing  and  adaption  to  hypoxia  is  hypoxia
inducible factor (HIF), in particular HIF-1α and HIF-2α. HIF target genes are able to
induce human ESCs markers  sufficient  to  induce pluripotent  stem cell  inducers:
OCT4,  NANOG,  SOX2,  KLF4,  MYC  and miRNA-302  in  multiple  cancer  cell  lines.
Similar results were reported in prostate tumors[93]. Hypoxia-Notch1-SOX2 signaling
axis has been found to activate ovarian CSCs by stimulating self-renewal capacity and
drug resistance[94]. Hypoxia activation and upregulation of HIFs has been implicated
in  aggressive  tumor  phenotypes,  including  breast  and glioma CSCs,  as  a  result
correlating with co-localization studies of these markers with CSCs markers results to
poor survival outcome in cancer patients[95,96].

The integration of autophagy in the cancer stem niche provides metabolic plasticity
to  CSCs  from  hypoxic  conditions,  nutrient  limitation  and  acidosis[92].  Immuno-
histochemistry  of  pancreatic  ductal  adenocarcinoma  (PDA)  tissues  reveals  co-
expression of hypoxia, pancreatic CSC markers (CD44, CD24) and autophagy (BECN1
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and LC3B). Hypoxia starvation induced autophagy has been demonstrated to increase
clonogenicity and migration of PDA-CSCHigh cells and the number of autophagosomes
formed[97]. In accordance, CD133+ pancreatic CSCs is dependent on HIF-1α to induce
autophagy for stem cell maintenance[98]. Similarly, CD133+ liver CSCs showed higher
survival  capacity  under  hypoxic  and  nutrient  deprived  conditions[99].  Recently,
phosphorylation of EZR at Thr567 residue and activation of PRKCA/PKCα kinase has
been suggested to be a responsible candidate for enhanced self-renewal capacity of
colorectal CSCs in hypoxia induced autophagy. The blockade of Atg5, BNIP3, BNIP3L,
or BECN1 reversed these effects[100]. Limited literature is available to define the exact
interplay between hypoxia, autophagy and the maintenance of the TME.

HIF-1α enhances the secretion of TGF-β1-Smad in mesenchymal stem cells (MSC)
which facilitates the propagation of CD44+ breast cancer stem-like cells[94], promoting
epithelial  to  mesenchymal  transition  (EMT)[101].  Autophagy  inhibition  by  Atg5
silencing  and  CQ treatment,  notably  enhanced  the  transcriptional  activation  of
epithelial marker CD24 whilst repressing EMT marker vimentin in response to TGF-
1β, dysregulating cellular ability to migrate and invade[102]. In non small cell lung cells,
vimentin was downregulated in the presence of TGF-β1 treatment in Atg7 knockdown
cells, indicating autophagy positively regulates TGF-β1 in EMT[103]. To the contrary,
autophagic targeting of EMT transcription factors, such as Snail and TWIST, through
death-effector domain-containing DNA-binding protein-PI3KC3 has been shown to
inhibit  tumor  metastasis  and  growth  in  breast  cancer[104].  The  divergent  role  of
autophagy in EMT has been illiustrated in Figure 2.

Recently,  it  has  been  shown  that  pluripotent  transcription  factor  NANOG,
contributes to hypoxia-induced autophagy by directly activating BNIP3L. NANOG
promotes resistance to immune mediated actions of cytotoxic T cells[105].

Mitophagy is the selective degradation of defective mitochondria by autophagy to
avoid the accumulation of oxygen species and its association to cell death, senescence
and malignant transformation. Mitochondria has a central role in generating ATP
derived from oxidative phosphorylation (OXPHOS) and the tricarboxylic acid cycle[2].
Human pancreatic CSCs are primarily reliant upon OXPHOS for energy acquisition,
as  compared  to  their  counterpart;  indicating  increased  mitochondrial  activity
contributes to CSC stemness[106].  Similar results were observed in mice exhibiting
KRAS gene ablation in pancreatic adenocarcinoma cells[107]. Moreover, KRASG12D
mutated pancreatic adenocarcinoma cells have been shown to enter into quiescence in
response to oncogene ablation and did not present metabolic stress and induced
autophagy.  This  finding  was  confirmed  by  measuring  the  levels  of  LC3B  by
immunoblotting and using flow cytometry to quantify the autophagic flux of KRAS
mutated cells stably expressing GFP-LC3; and Bafilomycin A1 treatment rescued the
GFP signaling. Interestingly, these cancer cells exhibited stem cell-like phenotype[107].
Increased mitophagy is reported in esophageal squamous cell carcinoma CD44High

undergoing EMT; the expression of CD44 is rendered during the inhibition of Parkin
dependent mitophagy, resulting to cell death[108]. Hepatic CSCs stemness and self-
renewal capacity is maintained by the removal of p53 localized to the mitochondria
and removed in a mitophagy dependent manner. In contrast, during the suppression
of mitophagy, p53 is phosphorylated by PINK1 and translocated to the nucleus to
prevent Oct4, SOX2 and NANOG transcription in the hepatic CSC population. These
results  suggest  that  the  activity  of  p53  is  regulated  by  mitophagy  to  promote
hepatocarcinogenesis[94]. In LSCs, the loss of p53 simultaneously activates endogenous
KRASG12D mutation inducing aggressive AML phenotype; thus, enabling abnormal
growth[109]. Mitophagy is activated in LSCs by the constitutive activity of AMPK and
FIS1; preventing differentiation via GSK3 downstream mechanism and promotes
stemness. Inhibition of AMPK-FIS1 axis results to suppression of proliferation and
induction of differentiation[110].

THE ROLE OF AUTOPHAGY IN DIFFERENTIATED CANCER
CELLS
Bcl-2  binds  directly  to  BECN1  and  plays  a  vital  role  in  the  development  and
differentiation of normal B cells to inhibit autophagy[111-113]. In accordance, immuno-
histochemistry studies of  patients with diffuse large B cell  lymphomas (DLBCL)
revealed  that  increased  BECN1  levels  with  reduced  levels  of  Bcl-2  correlated
favorably  to  the  clinical  survival  outcome with  better  response  to  the  first  line
treatment of R-CHOP[114,115]. The incidence of breast, ovarian and prostate cancer is
higher in 40%-75% patients with monoallelic deletions of BECN1 gene. Furthermore,
in mice with heterozygous deletion of  BECN1  predisposed them to spontaneous
malignancies  including DLBCL, suggesting BECN1  is  a  haplo-insufficient  tumor
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suppressor gene[116]. Similar findings were reported in the incidence of pre-B acute
lymphoblastic lymphoma with elevated expressions of programmed death ligand 1
(PD-L1) and IL-10[117]. A study led by Bertolo et al[118], suggests constitutive suppression
of autophagy responses in BCL-6 driven GC-derived lymphomas, including DLBCL
contribute to lymphomagenesis. In mice, the homozygote deletion of BECN1 results to
embryonic  lethality,  in  comparison  BECN1  heterozygous  deletion  leads  to  the
establishment of spontaneous tumors and defective autophagy; however, did not
impair apoptosis[119].

Enhanced  autophagic  flux  has  been  attributed  significantly  to  metastatic
tumorigenesis  and immunosuppression related chemoresistance.  In  ex  vivo  lung
cancer cells, CQ augments carboplatin treatment by sensitizing the lung cancer drug
resistant cells and non-resistant cells by limiting the proliferation status and providing
synergistic effects with carboplatin to induce apoptosis. These findings corroborated
with the decreased LC3B level and BECN1 protein expressions suggesting a decrease
in the formation of autophagosomes. The administration of CQ in drug resistant
cancer cells, strikingly reduced the drug resistant proteins: MDR1, MRP1 and ABCG2
and mRNA reduction of MRP1 and ABCC2. The combination treatment of CQ and
Carboplatin  significantly  reduced  both  the  protein  and  the  mRNA  levels.
Furthermore, this decreased the expression of PD-L1 suggesting autophagy has a role
in modulating of PD-L1 in cancer evasion and immunosuppression. Interestingly, the
combination treatment promoted the infiltration of CD4+, FOXP3+ tumor infiltrating
lymphocytes (TILs) indicating autophagy inhibition with carboplatin could mediate
lymphocyte infiltration in the tumor and upregulate only specific expression of TILs,
leading to immune system activation[120].

THE ROLE OF AUTOPHAGY IN TUMOR DORMANCY
Cancer progression leads to metastatic growth resulting to a majority of cancer related
deaths[121]. In many cases, dissemination of tumor cells (DTCs) has already occurred in
patients at diagnosis. It is challenging to detect DTCs at secondary sites, as they may
have entered into dormancy and become refractory to therapeutic targets[122].  The
divergent  characteristics  of  DTCs  have  emphasized  the  need  to  improve  this
phenomenon. It is postulated that autophagy is activated during the seeding process
of DTCs at secondary sites providing an adaptive response to nutrient depletion and
environmental  stress[123].  For  example,  the  tumor  suppressor  gene  ARHI  (RAS
homologue) is downregulated in 60% of ovarian cancer cases.  Studies in ovarian
cancer cell lines revealed autophagy induction is mediated by ARHI  as it inhibits
PI3K-mTOR signaling. This is corroborated by co-localization staining of Atg4 and
LC3B in autophagosomes suggesting ARHI facilitates the autophagosome formation
through this signaling. Xenograft model expressing SKOv3-ARHI cells supplemented
with ARHI by doxycycline repressed tumor growth, however, the withdrawal of
ARHI after 32 or 42 d stimulated rapid tumor growth, indicating that the cancer cells,
in  particular,  CSCs  remained  viable  and  dormant  during  latency.  Autophagy
inhibition  by  CQ  in  this  model  confirms  dormancy  requires  ARHI  mediated
autophagy[124].  Accordingly, Atg7  is  essential  for the reduction of lung metastatic
burden utilizing a non-canonical autophagy pathway independent of BECN1[125]. In
contrast, recent microarray analysis of CSCs in breast cancer patients revealed the
expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3), which
correlated with an aggressive cancer phenotype coupled with self-renewal ability and
metastasis potential.  Dormant breast  cancer cells  display Pfkfb3LowAutophagyHigh

phenotype with elevated levels of LC3B and p62. In contrast, the metastatic breast
cancer  cells  which  exhibited  Pfkfb3HighAutophagyLow;  suggesting  the  status  of
autophagy changes during the phenotypic transition. Knockdown of Atg3, Atg7 or p62
genes promoted the proliferation and outgrowth restoring the upregulated expression
of Pfkfb3 in dormant breast CSCs. The ablation of autophagy related genes gained
CD49fHigh/CD24Low  phenotype with increased stemness signature in CSCs.  These
findings reveal autophagy activation could function to prolong the overall survival of
patients by promoting permanent dormancy of CSCs. Additionally, Pfkfb3 protein
was found to directly interact with ubiquitin binding domain of p62, suggesting its
role as a substrate. Moreover, inactivation of autophagy can facilitate dormancy of
breast CSCs to metastatic lesions by stabilizing Pfkfb3 gene expressions via p62[126].
These studies highlight the poorly understood role of autophagy during dormancy in
breast  CSCs,  in  which targeting autophagy enables  the  sensitization of  CSCs to
chemotherapy by eliminating the adaptive response to autophagy[124,125]. Though it is
noteworthy, CSCs are heterogeneous and disease specificity adds complexity to the
matter[126].
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CLINICAL IMPLICATIONS OF TARGETING AUTOPHAGY IN
RESISTANCE CANCER STEM CELLS
Autophagy demonstrates tumor-suppressing actions in early cancer initiation; but
fundamentally provides adaptive responses – an advantage to cancer cells and CSC
during cellular stress. It remains an open question whether to stimulate or to inhibit
autophagy in  cancer,  specifically,  in  combination  with  anti-cancer  therapeutics.
Autophagy inhibition may provide a reasonable rational  to be used;  as multiple
tumors stimulate autophagy as a source of nutrient replenishment for their increased
metabolic  demands,  survival  and  disease  propagation  (Figure  3)[127].  Hydro-
xychloroquine (HCQ) is  an FDA approved drug, with the capability to suppress
autophagy at  a  later  stage by inhibiting lysosome acidification and due to these
functions it has been used in numerous early phase clinical trials[128]. Meta-analysis
data  reveals  autophagy inhibition  based treatment  leads  to  a  better  therapeutic
response as compared to chemotherapy or radiation in the absence of autophagy;
suggesting this may provide a new therapeutic strategy for anti-tumoral therapy[129].
However, the activation of autophagy may potentially hold a beneficial role as an
anticancer therapy. For example, tat-BECN1 peptide was shown to induce autophagy
in HER2-positive breast cancer xenografts and prevented tumor growth[131].

In hindsight, CSCs and their counterparts have a unique and complex interaction
within  the  tumor  niche  which  challenges  the  opportunity  to  target  autophagy
directly[132]. Several studies indicate the beneficial impact of combination treatments of
chemotherapeutics with autophagy modulators.  For instance, the combination of
autophagy modulators  with  chemotherapy showed to  stimulate  of  CD8+  T  cell-
dependent anticancer immune responses leading to tumor sensitization and cancer
cell growth reduction (Figure 2)[133].

TARGETING CANCER CELLS AND CANCER STEM CELLS
USING AUTOPHAGY MODULATORS
CSCs are highly tumorigenic and contribute to cancer relapse due to their ability to
self-renew and differentiate into heterogeneous cancer cell lineages. Their resilience is
demonstrated in the treatment of chemotherapy and radiation therapy[57]. In addition,
CSCs are able to remain in a quiescent state and cultivate their ability to become
resistant by gaining adaption to their environment[123].  For example, in castration
resistant  prostate  cancer  it  has  been  shown  that  autophagy  is  induced  during
Docetaxel treatment and STAT3 contributes to cancer cell survival[134]; suggesting it is
important to target autophagy directly or as a combination treatment to sensitize
cancer cells.

It should be highlighted that CQ and HCQ exert anti-tumor effects in combination
with  anti-cancer  treatments  in  clinical  trials[135].  In  PDA  the  combination  of
Gemcitabine with HCQ was assessed[136], this was also evaluated in studies of breast
cancer  and  irradiation [137],  or  in  combination  with  the  autophagy  inducer
Temsirolimus  in  patients  with  various  solid  cancers  including melanoma[138].  In
preclinical in vitro models of breast cancer, similar results were reported[139]. These
findings suggest that autophagy inhibition and activation are promising methods to
elicit the sensitization of CSCs to chemotherapy. Moreover, it can be concluded that
metastatic cells are preferentially vulnerable to lysosomal inhibition; however,  it
would be important to assess if these metastatic cancer cells express stem cell-like
phenotypical  features[140].  For  example,  autophagy  inhibition  in  breast  CSCs
expressing Pfkfb3 were found to promote tumor metastasis[126]; suggesting therapeutic
strategies involving autophagy modulation in treating CSCs, also depends on the
cancer phenotype. As mentioned above, CQ and HCQ have been used as late stage
autophagy inhibitors  in numerous studies.  However,  the development of  newer
generation of lysosome inhibitors are more selective and potent which have been
introduced, including Lys05 (analogue of CQ) and dimeric quinacrine (DQ661) - a
derivative  of  Lys05.  Both  are  specific  in  targeting  the  lysosome  and  causing
impairment of palmitoyl-protein thioesterase activity by impairing mTOR signaling
pathway[141]. Lys05 is a potent autophagy inhibitor in comparison to HCQ. Lys05 has
shown to decrease the number of LSCs in vitro by promoting their maturation; similar
results were seen in patient-derived samples[142]. DQ661 is effective in targeting cancer
paradigms of melanoma, colon cancer and PDA by repressing growth and inhibiting
autophagy[141]. Inhibitor of V-ATPase called Concanamycin A, protease inhibitor E64d
and pepstatin A, have also been introduced[143].  These autophagy modulators are
providing an opportunity to explore different combination treatments in different
cancer types. Moreover, these lysosomotropic targets are deemed to be effective in
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Figure 3

Figure 3  The divergent role of autophagy in cancer stem cells and cancer cells. Cancer stem cells (CSCs) drive the initiation and progression of cancer in
multiple tumors. CSCs are reliant on their niches to sustain their self-renewal capacity and plasticity. Hypoxia induced autophagy, provides metabolic plasticity to
CSCs. The role of autophagy in hypoxia is to modulate the metabolic remodeling of cancer cells, in particular CSCs. Additionally, autophagy and hypoxia have been
implicated in immunosurveillance of CSCs during glucose limitation by increasing the expression of programmed death ligand 1 which results to tumor-infiltrating
lymphocytes exhaustion. In addition, autophagy supports tumor dormancy, metastasis and invasion resulting to the treatment of resistant CSCs. CSC: Cancer stem
cell; CC: Cancer cell; ER: Endothelial reticulum; TIL: Tumor-infiltrating lymphocytes; TME: Tumor microenvironment.

bulk  autophagy  degradation,  in  comparison  to  selective  autophagy,  such  as
mitophagy[2]; in such instances early stage autophagy inhibitors would be considered
to be more beneficial. Early stage autophagy inhibitors could target the initiation of
autophagy, for example PIK-III (Vps34 inhibitor)[144], MRT68921, SBI-0206965 (ULK
inhibitors)[145,146] and SAR405 (PIK3C3/Vps34 inhibitor)[147]. Interestingly, SAR405 and
Everolimus (an autophagy inducers)  demonstrate  significant  synergism in renal
tumor  cells  by  reducing  cancer  cell  proliferation[147].  Additionally,  early  stage
autophagy  inhibitors  would  be  a  strategic  method  to  target  tumors  grown  in
oxygenated  environments,  as  they  use  OXPHOS  as  an  alternative  source  of
metabolism.

Autophagy is an adaptive mechanism modulating the TME surrounding CSCs.
Several  studies  defined  CSCs  inducing  autophagy  in  the  TME  to  support  their
stemness and cancer propagation by activating the autophagic machinery under
nutrient depleted and hypoxic conditions, for example in breast cancer[72-74]. By these
actions, autophagy can initiate the development of an aggressive cancer phenotype
and develop resistance to cell death. Further investigations are needed to explore the
role  of  autophagy  in  these  cells  within  the  tumor  niche  in  order  to  tackle  the
protective surroundings of the TME.

INTERACTION BETWEEN AUTOPHAGY AND
IMMUNOTHERAPY
Oncolytic viruses (OVs) therapy is an emerging anti-cancer treatment capable of
efficiently  killing  CSCs  and  cancer  cells  in  several  tumor  types[148].  The  most
commonly used OVs include adenoviruses,  herpes simplex virus,  measles  virus,
reovirus,  Newcastle  disease  virus  and adenovirus  serotype 5[149].  OVs retain  the
capability to infect, replicate and integrate into tumor cells and potentially in their
immunosuppressed TME. Malignant cells overexpressing certain virus receptors,
including coxsackie-adenovirus receptor[150,151], CD155[152], CD46[153] and laminin[154] are
targeted by OVs. Several studies revealed that autophagy facilitates immunogenic cell
death  via  stimulating  the  release  of  pathogen  associated  molecular  pattern  and
damaged associated molecular pattern and initiating their responses in the TME[155].
These responses activate the secretion of ATP from the tumor cells promoting the
stimulation  of  antigen  presenting  cells,  such  as  DCs  to  elicit  antigens  on  major
histocompatibility I and II molecules which stimulate T cells[13,156,157]. Consequently, pro
inflammatory  cytokines,  including  type  I  interferons  induce  the  stimulator  of
interferon genes signaling in DCs, further benefiting anti-tumoral T cell responses[158].
In the context of autophagy, OVs employ strategic methods to survive and propagate
within the cancer cells by perturbing the core autophagic machinery[159,160].

Autophagy  can  either  be  promoted  or  inhibited  during  oncolytic  adenovirus
therapy[161]. The expression of adenovirus oncoprotein triggers the upregulation of
Atg1, Atg5 and LC3 proteins[162]. Leukemic cells treated with oncolytic adenovirus
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encoding BECN1 (SG511-BECN1) significantly induced autophagic cell death in vitro.
Similarly, primary blasts isolated from chronic myelocytic leukemia patients with
Imatinib resistance and AML patients with relapse disease treated with SC511-BECN1
showed  an  increase  in  BECN1  expression  and  LC3B  accumulation.  This  led  to
significantly  reduction  of  colony  formation  in  comparison  to  SG511  control[163].
Interestingly, combination treatment of SG511-BECN1  and Doxorubicin is highly
synergistic in chronic myelocytic leukemia cell lines leading to significant cancer cell
death. Increased levels of BECN1 and LC3B proteins were observed in comparison
with normal mononuclear cells; suggesting the combination of SG511-BECN1  and
Doxorubicin elicits synergistic effects in an autophagy dependent manner[164].

In  liver  CSCs,  oncolytic  virus  expressing tumor suppressor  gene,  TSLC1,  and
specifically targeting Wnt signaling, promoted the generation of autophagosomes.
This was confirmed by the upregulation of BECN1 and accumulation of total LC3 and
led to the reduction of p62 and Survivin. This resulted in cell death in an autophagy
dependent manner. The inhibition of autophagy by CQ induced the accumulation of
total LC3 and p62, this in turn promoted the survival of the liver CSCs. The hepatic
xenograft models treated with this adenovirus induced apoptosis and inhibited tumor
metastasis  resulting  in  an  improved survival  outcome[165].  It  has  been  proposed
autophagy activators, such as Rapamycin or Temozolomide synergistically sensitize
tumor cells to adenovirus by stimulating autophagy, without modifying the viral
replication;  thus,  inducing  autophagy  dependent  cell  death  as  an  antitumor
mechanism[166].  In  addition,  the adenovirus E4 protein suppresses  autophagy by
activating mTOR signaling and inhibiting ULK1 activity[161].

IMMUNE CHECKPOINT INHIBITORS IN MODULATION OF
AUTOPHAGY
The clinical  development of  immune checkpoint inhibitors (ICIs)  is  an emerging
treatment  modality  for  the  reversal  of  TILs  dysregulation  phenotype,  thereby
imposing antitumor responses. Different immune checkpoints, such as T lymphocyte
antigen-4 (CTLA-4), PD-1 and PD-L1 could be clinically targeted using ICIs[167].

It is reported that PD-L1 expression on melanoma and ovarian cancer cells elicits
tumor growth mainly via  Akt-mTOR regulated autophagy; this data corroborated
with a comparative microarray analysis. Moreover, melanoma PD-L1High expressing
tumors demonstrated increased sensitivity to CQ; thus, limiting proliferation in vitro
and in vivo[168]. RNA sequencing data in PD-L1 positive glioma cells promoted cancer
invasion in starvation induced autophagy, utilizing the Akt-F-Actin signaling[169]. In
gastric cancers the knockdown of Atg5  and Atg7  genes inhibited LC3B formation,
leading to the upregulation of PD-L1 by the activation of NF-Kb pathway[170]. These
accumulating studies confirm intrinsic PD-L1 functions through the activation of Akt-
mTOR  pathway,  however,  the  mechanisms  by  which  PD-L1  transduces  signals
remains unknown. The identification of these targets may potentially lead to targeted
combinational  treatments  using  autophagic  agents.  Recently,  it  is  reported  that
Sigma1 promotes the degradation of PD-L1 using selective autophagy and ablates the
functional interaction of PD-1 and PD-L1 in co-cultures of T cells and tumor cells[171].
In accordance, targeting cancer cells expressing CD274 with PD-L1/PD-1 inhibitors
can stimulate autophagy and promote sensitization of cancer cells when combined
with autophagy inhibitors[172].

CTLA-4  inhibitor  is  an  effective  ICI  in  a  subset  of  patients  with  metastatic
melanoma. In a small cohort of melanoma patients, a subcluster of MAGE-A cancer
germline antigens, were found to be overexpressed causing resistance to CTLA-4
inhibition, but not PD-1. Tissue microarray data revealed that the LC3B expression in
MAGE-A+  tumors was significantly attenuated as compared to MAGE-A-  tumors.
Moreover, immunohistochemistry data indicated MAGE-A and damaged associated
molecular  pattern  protein  high-mobility  group box  1  (HMGB-1)  were  mutually
expressed in the clinical samples. In vitro  ubiquitination screening confirmed that
autophagy  was  suppressed  by  the  MAGE-TRIM28  ubiquitin  ligase  complex[173].
HMGB-1 is a pro autophagic protein that directly interacts with BECN1 by displacing
BCL-2; thus, sustaining autophagy and promoting cellular survival[174]. The secretion
of HMGB-1 mediates the priming of immune adaptive response[175].  To overcome
CTLA-4 therapy resistance in melanoma patients, the induction of autophagy may
potentially be relevant in enhancing the effect of CTLA-4 inhibitors; thus, minimizing
tumor immune tolerance.  Combining CTLA-4 inhibition with Rapamycin in vivo
during CD8+ T cell priming, led to an increase of Ag-specific memory CD8+ T cells and
enhanced their function, which in turn, resulted to tumor growth reduction, rapid
bacterial clearance and mediated cytokine production[176]. Taking these findings into
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consideration, the induction of autophagy would reinstate the CTLA-4 expression and
its suppressive functions, thereby, eliciting antitumoral activity.

CONCLUSION
New therapeutic concepts are needed to improve the prognosis of cancer patients.
One  possible  starting  point  is  the  tumor-specific  metabolism  of  cancer  cells.
Autophagy is a catabolic recycling process exciting different forms of cancer cells and
CSCs. In general, CSC maintenance and the development of an aggressive cancer
phenotype  have  strongly  been  correlated  to  autophagy.  In  cancer,  the  role  of
autophagy  is  context  dependent  as  it  demonstrates  functions  both  as  a  tumor
suppressor during tumor initiation and as a pro-survival mechanism during cancer
propagation  by  facilitating  CSCs  and  cancer  cells  adaptive  responses  during
metabolic stresses and dormancy.

Targeting autophagy could potentially represent a promising therapeutic target for
preventing the aggressive and resistance cancer phenotypes. There is convincing
evidence that the inhibition of autophagy in cancer cells, and specifically in CSCs,
augments  cytotoxicity  leading  to  antitumoral  effects  under  certain  conditions.
Therefore,  we  can  expect  valuable  knowledge  regarding  suitable  autophagy-
associated  biomarkers  in  tumor  cells  and  new  therapeutic  approaches  that  are
specifically directed against autophagy-dependent pathways in cancer cells or CSCs.
Additionally, it is increasing evident that autophagy is involved in the maintenance of
immune cell  homeostasis,  activation and function in the TME. However,  limited
studies are available to interpret whether autophagy enhancement or inhibition my
support  the effects  of  immunotherapy.  Several  additional  preclinical  studies are
necessary to identify them, specifically, in a context dependent manner. This would
represent an important step in the direction of improved and individualized cancer
therapy.
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Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease,
Huntington's disease and amyotrophic lateral sclerosis, are a group of incurable
neurological disorders, characterized by the chronic progressive loss of different
neuronal subtypes. However, despite its increasing prevalence among the ever-
increasing aging population, little progress has been made in the coincident
immense efforts towards development of therapeutic agents. Research interest
has recently turned towards stem cells including stem cells-derived exosomes,
neurotrophic factors, and their combination as potential therapeutic agents in
neurodegenerative diseases. In this review, we summarize the progress in
therapeutic strategies based on stem cells combined with neurotrophic factors
and mesenchymal stem cells-derived exosomes for neurodegenerative diseases,
with an emphasis on the combination therapy.

Key words: Neurodegenerative diseases; Stem cells; Brain-derived neurotrophic factor;
Glial cell line-derived neurotrophic factor; Nerve growth factor; Combination therapy
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Core tip: Neurodegenerative diseases are currently incurable and the therapeutic
strategies have been disappointing. Stem cells and neurotrophic factors are promising
therapeutic agents, with the combination of the two being more attractive. This review
focuses on the advances in such combination therapies in the treatment of
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neurodegenerative diseases. The combination of stem cells with neurotrophic factors can
not only replenish the target neurons but also provide secreted neurotrophins to improve
the microenvironment for nerve repair and regeneration, which might represent a new
approach in the treatment of neurodegenerative diseases.
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INTRODUCTION
Neurodegenerative diseases, mainly involving gradual and progressive neuron loss
and neuronal function decline, usually lead to cognitive and behavioral dysfunctions
and severe life quality impairment of the patients. Currently, there remains a lack of
effective therapeutic agents due to the obscure cause of the neuronal death and the
impeded early diagnosis of neurodegenerative diseases. Stem cells and neurotrophic
factors  are  promising  therapeutic  agents  with  neural  differentiation  and
neuroprotective effects for neurodegenerative diseases[1-3].  Figure 1 illustrates the
possible effects of mesenchymal stem cells (MSCs) and neurotrophic factors for each
disorder described in this paper.

Stem  cells  have  emerged  as  one  of  the  most  actively  researched  potential
therapeutic tools for a wide range of diseases. They can be divided into pluripotent
stem cells and adult stem cells. The former encompasses the embryonic stem cells and
induced pluripotent  stem cells;  the  latter  includes  the  neural  stem cells  (NSCs),
hematopoietic stem cells, MSCs, and olfactory ensheathing stem cells. All stem cells
have  the  potentiality  of  continuous  self-renewal,  high  proliferation,  and
multidirectional differentiation into various cell types to replace degenerated or dead
cells[4].  They  also  act  as  neuroprotection  and neurodifferentiation  promoters  by
secreting  neurotrophic  factors  (NTFs)  and  extracellular  vesicles  (EVs,  so  called
exosomes) containing NTFs. These abilities make stem cells a promising therapeutic
choice for neurodegenerative diseases. In particular, MSCs appear to be the most
suitable,  due  to  their  availability,  low immunogenicity,  multiple  differentiation
ability, and secretion of NTFs and exosomes[5-8].

The NTF protein family, mainly consisting of nerve growth factor (NGF), brain-
derived  neurotrophic  factor  (BDNF),  glial  cell  line-derived  neurotrophic  factor
(GDNF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-
1), neurotrophic factor 3 (NT3) and neurotrophic factor 4 (NT4), are necessary for
neuronal development, health and survival, as well as for stem cell proliferation and
differentiation into target neurons. Some NTFs are protective to cell survival and
neuronal  degeneration,  which  show  promise  as  therapeutic  agents  for
neurodegenerative  diseases[2,3].  However,  some  serious  problems,  e.g.,  rapidly
degraded NTFs need to be frequently delivered and recombinant NTFs protein cannot
pass through the blood-brain barrier (BBB), must be confronted[1,9,10].

Gene transduction by recombinant viral vectors makes it possible for a sustained
supply of therapeutic factors after single transfection of target cells. But, the vector
systems-associated drawbacks, including toxicity and inflammation, non-relevant cell
infection  and  risk  of  genome  insertional  mutagenesis,  still  prompt  alternative
therapeutic strategies, such as transplantation of NTF-releasing cells. The effectiveness
of this construct has been demonstrated in in vivo neuronal disease models, in which
cell-delivered BDNF has shown the same or even better neuroprotective effect than
recombinant BDNF[11]. MSCs have been considered as the optimal delivery platform
for sustained delivery of therapeutically relevant amounts of NTFs to degenerative
neuronal structures,  because of their secretion of various factors that can reduce
inflammation, cell toxicity and cell death, and can enhance neurons connections[12].
Moreover, when compared with MSCs alone, MSCs-NTFs showed better results in
several rodent neurodegenerative models[1].

EVs  are  phospholipid  bilayer  enveloped  spherical  particles  categorized  into
exosomes,  microvesicles,  and  apoptotic  bodies  based  on  their  origin  and  size.
Exosomes  are  30–100  nm in  diameter  and involved  in  cells  communications  by
transferring genetic  material  including mRNA and miRNA, proteins,  lipids  and
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Figure 1

Figure 1  Possible effects of mesenchymal stem cells and neurotrophic factors for Alzheimer’s disease, Parkinson’s disease, Huntington's disease and
amyotrophic lateral sclerosis. AD: Alzheimer’s disease; ALS: Amyotrophic lateral sclerosis; BDNF: Brain-derived neurotrophic factor; CN: Cholinergic neurons; DN:
Dopamine neurons; GDNF: Glial cell line-derived neurotrophic factor; GABA-N: Striatal GABAergic medium-sized spiny neurons; HD: Huntington's disease; MN: Motor
neurons; MSCs: Mesenchymal stem cells; NGF: Nerve growth factor; NTFs: Neurotrophic factors; PD: Parkinson’s disease.

membrane  receptors[13].  The  unability  to  cross  the  BBB of  most  drugs  is  a  great
challenge for the treatment of neurodegenerative diseases. Thus, the ability to cross
the BBB of exosomes makes it a promising delivery system to transport therapeutical
signals  or  drugs into  the  brain for  neurological  diseases  like  neurodegenerative
diseases. Furthermore, sophisticated techniques makes it possible to engineer more
precisely  targeted  exosomes  to  a  desired  tissue  or  region[6,14].  Exosomes  can  be
obtained from different cell types, MSCs can secrete a higher amount of exosomes
than other cell types, and MSC-derived exosomes show promising effects in multiple
conditions by triggering regeneration responses[15,16]. There is accumulating evidence
showing the neurotherapeutic potentiality and successful application of exosomes
secreted  by  various  stem  cell  types,  especially  MSCs  for  the  treatment  of
neurodegenerative diseases. MSC-exosomes is currently considered as an alternative
non-cell  therapy to stem cell  therapy.  Moreover,  the development of  genetically
modified  MSCs-exosomes  might  provide  a  new  perspective  for  developing
therapeutic strategies for neurodegenerative diseases in the future[6,17].

In summary, stem cells, NTFs and MSC-exosomes are promising therapeutics for
neurodegenerative diseases with their own distinctive advantages and disadvantages.
The  combination  therapy  might  not  only  have  enhanced  effect  but  also  play  a
complementary role in overcoming deficiencies of single therapy. Since excellent
comprehensive  reviews of  stem cell-based therapy and NTFs-based therapy for
neurodegenerative  diseases  have  been  published [1-3,5,7 ,10],  in  this  review,  the
combination of stem cells with NTFs and the MSC-exosomes for the treatment of
neurodegenerative  diseases  is  discussed,  with  an  emphasis  on  the  combination
therapy.

ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most
common type of dementia, affecting approximately 55 million people worldwide[18].
AD,  including  the  familial  type  and  sporadic  type,  manifests  with  cognitive
impairment. AD pathologies include senile plaques caused by excessive deposition of
beta-amyloid (Aβ) due to abnormal degradation of extracellular amyloid precursor
protein, neurofibrillary tangles formed by intracellular hyper-phosphorylated Tau,
loss of cholinergic neurons, neuroinflammation, oxidative stress, and changes in such
NTFs as NGF and BDNF[19,20]. Currently, drug therapies such as acetylcholinesterase
inhibitors (donepezil, galantamine) and NMDA receptor antagonists (memantine) can
only delay symptoms, but not relieve disease pathology or progression[21,22]. Studies
have demonstrated that neurons derived from stem cells can integrate with existing
neural  networks  and  repair  damaged  neurons  in  the  host  brain,  yielding
improvements  in  learning  and  memory  deficits[23],  and  that  NTFs  can  improve
symptoms and provide neuroprotective effects in AD[24,25].
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NTFs  such  as  NGF  and  BDNF  play  important  roles  in  neuron  survival  and
differentiation, synapse plasticity, learning, and memory[26,27]. NGF is secreted by the
postsynaptic cortex and hippocampal neurons in precursor form (proNGF), which
converts to the mature form (mNGF) upon interaction with the extracellular protease
plasmin.  Upon the NGF molecule  binding to  the receptor  tropomyosin receptor
kinase (Trk) A/p75,  the complex is  internalized and retroactively transported to
cholinergic cell  bodies in the basal forebrain, triggering cholinergic function and
promoting the release of  acetylcholine[28-30].  Both proNGF and mNGF can induce
neurotrophic effects  through TrkA, but proNGF can induce apoptotic  signals by
interacting with p75[31,32]. Interestingly, changes in NGF metabolism, accumulation of
proNGF level, and reduction of mNGF level have been observed in the pathological
process of AD. Higher proNGF levels not only induce pro-apoptotic signaling but also
affect the receptors binding to mNGF, leading to retrograde atrophy of cholinergic
neurons in the basal forebrain[32-34]. Since cholinergic cell bodies retain their sensitivity
to NGF, NGF delivery is a potential method to restore cholinergic signaling in the
cortex and hippocampus. BDNF, on the other hand, is a neurotrophic protein that is
highly expressed in the brain and plays important roles in neuronal survival and
differentiation, synaptic formation, and hippocampal long-term potentiation. These
BDNF effects in the hippocampus are mediated by the Trk B receptor[35,36]. ProBDNF is
a precursor form of BDNF that interacts with the p75 receptor to induce apoptosis. It
has  been  demonstrated  that  in  the  AD  brain,  proBDNF  and  p75  receptors  are
increased, while BDNF and TrkB receptor are decreased, a situation conductive to
apoptosis signaling[37-40].  Moreover,  studies have shown that higher serum BDNF
levels are associated with a slower rate of cognitive decline in AD patients[41].

NGF  and  BDNF  have  low  stability  and  short  half-life,  and  as  such  cannot
effectively  pass  through  the  blood-brain  barrier.  Additionally,  repeated  direct
delivery of NTFs may have serious peripheral side effects[42]. Stem cells can secrete
neurotrophins to a certain degree to improve the survival of neurons, despite their
lower cell survival, limited lifespan, and majority dying before they affect the injured
area[30,43].  Recently, it has been reported that using stem cells as carriers to deliver
NTFs to the AD brain can increase the survival rate of neurons, improve learning and
memory, reduce Aβ deposition, promote neurogenesis, and inhibit neuron apoptosis
and glial cell activation[25,44-50] (Table 1).

Transplantation  of  NSCs  combined  with  NGF into  AD rats  led  to  significant
improvement in learning and memory and supplemented basal forebrain cholinergic
neurons[25]. Hippocampus transplantation of bone marrow stromal cells (BMSCs)-NGF
also significantly improved learning and memory of AD rats, as compared with the
BMSC-implanted group,  suggesting that  BMSCs were effective carriers  for  NGF
delivery[44]. Lateral cerebral ventricle transplantation of human BDNF-modified NSCs
elicited a better improvement in learning and memory than that achieved in the
NSCs-implanted AD rats[45]. NSC transplantation into transected rat basal forebrain
followed by BDNF injection into the lateral ventricle also led to better improvements
in the number of cholinergic neurons and the ability of learning and memory than
implantation of NSCs alone[46]. Lateral ventricle transplantation of the BDNF gene-
modified BMSCs into the AD rat model significantly attenuated the nerve cell damage
in the CA1 region of the hippocampus, leading to significant improvement in learning
and memory[47]. The protective effect of MSCs on AD pathology was enhanced by
MSCs-BDNF, suggesting that the BDNF supply from MSCs-BDNF was enough to
prevent AD pathology[48]. Treatment of AD with BDNF-overexpressing NSCs has also
shown to  improve  the  vitality  of  NSCs,  to  increase  the  therapeutic  potential  of
implanted NSCs, and to alleviate AD cognitive deficits[49]. Our previous study showed
that transplanting BDNF-modified human umbilical cord MSCs-derived cholinergic
neurons not only improved memory and learning but also reduced the expression of
amyloid-associated protein Aβ levels and promoted neurogenesis in AD rats[50].

MSC-exosomes showed similar effects to MSCs on the stimulation of neurogenesis
and alleviation of learning and memory impairment evaluated by Morris water maze
and novel object recognition tests in AD mice bilaterally dentate gyrus injected with
Aβ1–42, suggesting the possibility of developing MSC-exosomes as a cell-free candidate
of  MSCs  for  AD  treatment[51].  Hypoxia-preconditioned  MSC-exosomes  restored
synaptic dysfunction, decreased amyloid plaque deposition and the Aβ levels, and
reduced inflammatory responses, leading to learning and memory improvement in
the APP/PS1 AD mice[52]. Human umbilical cord MSC-exosomes injection alleviated
neuroinflammation by modulating the microglia activation and cleared Aβ deposition
in the brains of AD mice, leading to cognition repairment[53]. Neocortex injection of
BM-MSC-EVs effectively  reduced the  Aβ burden and the  number  of  dystrophic
neurites  in  the  hippocampus  and  cortex  of  3  to  5-mo-old  (early  stages)
APPswe/PS1dE9 AD mice, indicating a potentiality to intervent AD in early stages[54].
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Table 1  Combination therapy of stem cells with neurotrophic factors in Alzheimer’s disease

Cell types Neurotrophic factors Study design and outcome Ref.

NSCs NGF Embryonic rat NSCs were separated
and induced by NGF-PEG-PLGA-
NPs in vitro, and were transplanted
into AD rats(lateral ventricular
injected with 192IgG-saporin). The
Morris water maze was used to
evaluate learning and memory,
followed by immunohistochemical
staining for basal forebrain
cholinergic neurons, hippocampal
synaptophysin, and AchE fibers. The
rats in the combined treatment group
showed significant improvement in
spatial learning as compared to the
untreated AD model animals. The
treated rats also showed significantly
higher number of basal forebrain
cholinergic neurons and fibers with
AchE positivity, and higher
expression of hippocampal the rats in
the NSCs group.

Chen et al[25], 2015

BMSCs NGF When compared with BMSCs
transplantation alone, BMSCs-NGF
transplantated into the hippocampus
of AD rats (bilaterally injected with
Aβ) significantly improved learning
and memory. The findings suggested
efficient NGF delivery by BMSCs.

Li et al[44], 2008

NSCs BDNF The AD rat model was established by
cutting the unilateral fibria-fornix of
male rats. Lateral cerebral ventricle
transplantation of the NSCs and
NSCs-hBDNF provided behavioral
amelioration of AD rats assessed via
the Morris water maze, and the effect
of NSCs-hBDNF was better than that
of NSCs.

Zhao et al[45], 2005

NSCs BDNF Transected rat basal forebrain BrdU-
labeled NSCs transplantation
followed by lateral ventricle BDNF
injection led to labeled NSCs
differentiation into neurons and
astrocytes in the basal forebrain. The
rats in the NSCs and BDNF
combination group showed better
improvement in the number of
cholinergic neurons, and learning
and memory as compared to the
other groups.

Xuan et al[46], 2008

MSCs BDNF BDNF gene-modified BM-MSCs were
transplanted into the lateral ventricle
of an AD rat model. Nerve cell
damage in the CA1 region of the
hippocampus was significantly
attenuated. BDNF tyrosine kinase B
mRNA and protein levels were
significantly increased, and learning
and memory were significantly
improved.

Zhang et al[47], 2012

WJSC https://www.wjgnet.com May 26, 2020 Volume 12 Issue 5

Wang J et al. Stem cells and NTFs for NDDs

327



MSCs BDNF A unique neuronal culture of
familial-type AD neurons was made
from the 5x familial-type AD mouse,
an amyloid precursor protein/PS1
transgenic mouse model, to
investigate progressive
neurodegeneration associated with
AD pathology and the efficacy of
MSCs-BDNF. Analyses of the
expression of BDNF, synaptic
markers and survival/apoptotic
signals indicated that pathological
features of cultured neurons could
accurately mimic AD pathology. The
protective effect of MSCs was
enhanced by MSCs-BDNF. The
BDNF supplied from MSCs-BDNF
was sufficient to prevent AD
pathology.

Song et al[48], 2015

NSCs BDNF Hippocampus transplanted NSCs-
BDNF integrated into the local brain
circuits of the 16-mo-old Tg2576
mice, improved the engrafted cells’
viability, neuronal fate, neurite
complexity, the synaptic density, and
the cognitive deficits of the AD mice.

Wu et al[49], 2016

hUC-MSCs BDNF Right hippocampus transplantation
of BDNF-modified hUC-MSCs-
derived cholinergic-like neurons
significantly improved spatial
learning and memory in the AD rats
assessed by Morris water maze
testing, increased the release of
acetylcholine, enhanced the
activation of astrocytes and
microglia, reduced the expression of
Aβ and BACE1, and inhibited
neuronal apoptosis detected by
Western blotting,
immunohistochemistry,
immunofluorescence assay, and
TUNEL assay.

Hu et al[50], 2019

Aβ:  Beta-amyloid;  AchE:  Acetylcholine  esterase;  AD:  Alzheimer’s  disease;  BDNF:  Brain-derived  neurotrophic  factor;  BM-MSCs:  Bone  marrow-
mesenchymal stromal cells; BMSCs: Bone marrow stromal cells; BMSCs-NGF: Nerve growth factor gene-modified bone marrow stromal cells; BrdU: 5'-
Bromo-2'-deoxyuridine;  hUC-MSCs: Human umbilical cord-mesenchymal stem cells;  MSCs: Mesenchymal stem cells;  MSCs-BDNF: Brain-derived
neurotrophic factor-modified mesenchymal stem cells; NGF: Nerve growth factor; NGF-PEG-PLGA-NPs: Nerve growth factor-poly(ethylene glycol)-poly
(lactic-co-glycolic acid)-nanoparticles; NSCs: Neural stem cells; NSCs-hBDNF: Human brain-derived neurotrophic factor-modified neural stem cells;
TUNEL: TdT-mediated dUTP nick end labeling.

PARKINSON’S DISEASE
Parkinson’s disease (PD) is the second most common neurodegenerative disorder.
The motor symptoms of PD mainly include rest tremor, rigidity, bradykinesia and
postural instability, while common nonmotor symptoms include neuropsychiatric
and sleep disorders as well as sensory and autonomic dysfunction[55]. The pathological
feature of PD is progressive degeneration and loss of dopamine (DA) neurons in the
midbrain substantia nigra. Symptoms arise when 50% of the DA neurons are lost[56].
Unfortunately,  there is  no cure or disease-modifying therapy available for PD at
present. Commonly used symptom-relief medications include levodopa, carbidopa,
DA agonists,  anticholingeric agents,  amantadine,  and DA metabolism inhibitors.
However, the currently available drugs often provide only partial symptom control
and elicit frequent side effects, such as motor complications (known as dyskinesia and
wearing-off[57]) and gastrointestinal and neuropsychiatric dysfunctions[55]. Considering
that  these  therapies  for  PD  do  not  treat  the  underlying  pathology,  alternative
therapies  are  still  intensively  pursued,  including those  based on stem cells  and
NTFs[49,55].

The goal of stem cell-based therapy to treat PD is to replace degenerated and lost
DA neurons in the substantia nigra with healthy ones or to prevent further neuron
loss[7]. Moreover, investigations into the use of NTFs as therapeutic options for PD
were prompted by their role in neuronal survival, differentiation and plasticity, their
correlation  with  the  disease  (namely  NTFs’  deficiency),  and  the  findings  of
replacement or enhancement of NTF signals providing neuronal protection in PD
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models[58,59]. The first identified potential NTF to treat PD was GDNF, which is able to
increase DA uptake and the survival of embryonic midbrain DA neurons[60]. GDNF
has since received the most attention for clinical trials[55]. Cell-based GDNF delivery is
currently recognized as an appropriate alternative for treatment of PD, following
clinical trials of GDNF alone yielding mixed results[61]. MSCs are the most promising
cellular  vehicle  to  deliver  NTFs  for  PD  treatment,  and  MSCs  engineered  to
overexpress GDNF or BDNF have received much attention[62-68] (Table 2).

In the PD rat model established by the injection of 6-hydroxydopamine (6-OHDA) ,
dopaminergic neuron sprouting increased as a result of striatum transplantation (at 4
d  prior  to  injury)  of  MSCs transfected  with  a  retrovirus  to  express  GDNF[62];  in
addition, unilateral striatum transplantation of GDNF-overexpressing human MSCs
decreased amphetamine-induced rotations and improved DA fibers’ rejuvenation[63].
In the lactacystin-induced neurotoxicity(in the medial forebrain bundle) PD rat model,
intrastriatal injection (at 1 wk prior to injury) of BMSCs transduced with lentivirus to
overexpress GDNF was protective against the neurotoxicity and led to significantly
increased striatal DA levels and behavior recovery, as assessed by apomorphine-
induced rotations[64]. In a MPTP-treated non-human primate PD model, striatum and
substantia nigra transplantation of BM-MSCs genetically modified to overexpress
GDNF resulted in increased striatum DA levels and improved contralateral limb
function [65 ].  In  a  lipopolysaccharide-induced  PD  model,  unilateral  striatal
transplantation of  MSCs-GDNF provided local  neuroprotection of  dopaminergic
terminals in the striatum of PD rats[66]. Transplantation of human (h)MSCs-BDNF into
the unilateral 6-OHDA-lesioned substantia nigra also resulted in remarkable nigral
tyrosine hydroxylase-positive cell hypertrophy, striatal tyrosine hydroxylase-staining
increase, and amphetamine-induced motor symptom stabilization[67]. In another study
of the 6-OHDA-lesioned PD rat model,  prior to transplantation, MSCs were first
induced to NTF-secreting cells by in vitro exposure to nystatin, L-glutamine, human
epidermal growth factor, human basic fibroblast growth factor (hbFGF) and N2 for 72
h,  then  dibutyryl  cyclic  AMP,  isobutylmethylxanthine,  human  platelet-derived
growth factor, human neuregulin 1-β1/HRG1-β1 EGF domain, and hbFGF for 3d,
resulting in aquintupled increase in BDNF expression and doubled increase in GDNF
expression.  The  striatum  transplantation  of  these  induced  MSCs  improved  the
amphetamine-induced  rotations  behavior,  and  ameliorated  DA  deficits  more
efficaciously than uninduced MSCs[68].  A study investigating the combination of
human umbilical vein mesenchymal stem cells (HUVMSCs)-derived dopaminergic-
like cells with NGF in a PD rat model found that as compared to cell grafting only,
combination therapy significantly promoted the survival of the grafted cells and
increased  the  dopaminergic  content,  leading  to  significant  motor  function
improvement[69].

A  study  investigating  the  therapeutic  effects  of  MSC-secretome  on  the
physiological recovery in a 6-OHDA rat PD model underwent substantia nigra and
striatum injection of MSC-secretome and rotarod and staircase tests, and observed
increased dopaminergic neurons and neuronal terminals in the injected areas and
recovery in the motor performance of PD rats, indicating that MSC-secretome is a
novel therapeutic strategy for PD[70]. In another 6-OHDA rat PD model, the injection of
hBMSC- secretome induced higher levels of neuronal differentiation, led to the rescue
of DA neurons and the recovery of behavioral performance in the staircase test[71].

HUNTINGTON’S DISEASE
Huntington's  disease  (HD)  is  a  fatal  inherited  neurodegenerative  disorder;  its
hallmark  motor,  cognitive  and  psychiatric  dysfunctions  manifest  upon  the
progressive deterioration of striatal GABAergic medium-sized spiny neurons caused
by mutations  in  the  huntingtin  (HTT)  gene,  leading to  increased polyglutamine
repeats in the HTT protein[72,73]. Multiple possible neurodegenerative mechanisms of
HD are currently under investigation, and this knowledge is anticipated to serve as a
basis for the development of new HD therapies. The abilities of stem cells to rescue or
replace the damaged and dying neurons, and to prevent further cell damage and
death,  make stem cell-based therapies  promising for  treatment  of  this  neurode-
generative disease[74].

In HD, BDNF has been demonstrated to mediate striatal neuronal function and
survival  by  providing  neurotrophins  and  neuroprotection[75].  Studies  have  also
revealed a reduction in BDNF levels in HD patients, which may contribute to the
clinical manifestations[76]. In the striatum, the reduced levels of BDNF are partially due
to function loss of the wild-type HTT protein, which assists in vesicle transport of
BDNF,  while  the  mutation of  which  has  adverse  effects  on  BDNF transcription,
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Table 2  Combination therapy of stem cells with neurotrophic factors in Parkinson’s disease

Cell types Neurotrophic factors Study design and outcome Ref.

MSCs GDNF MSCs-GDNF transplantation induced
a pronounced local trophic effect in
the denervated striatum of the 6-
OHDA PD rat model.

Moloney et al[62], 2010

MSCs GDNF Striatum transplantation of GDNF-
releasing Notch-induced BM-
MSCs(SB623 cells) significantly
decreased amphetamine-induced
rotation and promoted DA fiber
activation of the 6-OHDA PD rat
model.

Glavaski-Joksimovic et al[63], 2010

MSCs GDNF The intrastriatal transplantation of
BMSCs-GDNF significantly rescued
the DA neurons from lactacystin-
induced neurotoxicity, with regard to
behavioral recovery and striatal
dopamine level increase of the
lactacystin-lesioned PD rat model,
established by intrastriatum
transplantation of BMSCs-GDNF
followed by lactacystin induction of a
lesion at the median forebrain
bundles 1 wk later.

Wu et al[64], 2010

MSCs GDNF MSCs-GDNF were transplanted into
the unilateral striatum and SN of
cynomolgus monkeys (PD monkey
model) to investigate the protective
function of MSCs-GDNF against
MPTP-induced injury. Monkeys in
the MSCs-GDNF group showed
spared contralateral limbs’ motor
function and had higher dopamine
level and enhanced dopamine uptake
in the striatum of the grafted
hemisphere.

Ren et al[65], 2013

MSCs GDNF The lipopolysaccharide-lesioned PD
rat model was used to assess the
ability of MSCs-GDNF to protect
against lipopolysaccharide-induced
neuroinflammation,
neurodegeneration, and behavioral
impairment. Both experimental
groups received a unilateral
intrastriatal transplantation of either
MSCs-GDNF or MSCs-green
fluorescent protein. Protection
and/or sprouting of the
dopaminergic neuron terminals was
induced by the secreted GDNF in the
striatum of PD rats.

Hoban et al[66], 2015

MSCs BDNF The signals and/or molecules that
regulate BDNF expression/delivery
were investigated in hMSCs cultures
and the effect of epigenetically
generated BDNF-secreting hMSCs
were evaluated for their impact on
intact and lesioned SN. Results
showed that the amphetamine-
induced motor symptoms were
stabilized.

Somoza et al[67], 2010

MSCs BDNF; GDNF The intrastriatum transplantation of
NTF-SCs posterior to the 6-OHDA
lesion led to an obvious amelioration
of amphetamine-induced rotations,
and the damaged striatal
dopaminergic nerve terminal
network was regenerated.

Sadan et al[68], 2009
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HUVMSCs NGF As compared to HUVMSCs-derived
dopaminergic-like cells alone,
combination with NGF significantly
promoted the cell survival, increased
the dopaminergic content, and
improved motor function of PD rats.

Li et al[69], 2010

6-OHDA: 6-Hydroxydopamine; BDNF: Brain-derived neurotrophic factor; DA: Dopamine; GDNF: Glial cell line-derived neurotrophic factor; hMSCs:
Human mesenchymal stem cells; HUVMSCs: Human umbilical vein mesenchymal stem cells; MSCs: Mesenchymal stem cells; NGF: Nerve growth factor;
NTF: Neurotrophic factor; NTF-SCs: Neurotrophic factor-secreting stem cells; PD: Parkinson’s disease; SN: Substantia nigra.

proper  transport,  and  secretion [77].  BDNF  administration  was  shown  to  be
neuroprotective in vitro, to rat neurons containing mutant HTT, and in vivo, to the
striatum of R6/1 mice[75,78]. Therefore, BDNF administration is considered another
hopeful  candidate  for  HD  treatment.  To  this  end,  an  interesting  and  widely
characterized candidate therapy in which MSCs were engineered to secrete BDNF
was developed and found to promote neuron survival and regeneration in HD[79-81]

(Table 3).
Retrovirus-BDNF/NGF gene-modified MSCs were shown to produce a 6.8-fold and

4.6-fold increase in the expression of BDNF in stem cells and in cell culture media,
respectively.  All  4-mo-old  YAC  128  mice  bilateral  striatum  transplanted  with
unmodified MSCs or  NGF/BDNF (alone or  combination)-overexpressing MSCs,
showed  reduced  clasping;  in  addition,  mice  transplanted  with  the  BDNF-
overexpressing MSCs showed the longest rotarod latencies and the least amount of
striatum neuronal  loss,  restored striatum NeuN-positive  cell  counts  to  the  level
detected in  wild-type (non-HD) mice.  These  findings  demonstrated that  BDNF-
modified MSCs facilitated behavioral  and histological  recovery of  YAC 128 HD
mice[79]. Intrastriatal administration with human MSCs-BDNF to YAC128 and R6/2
transgenic  HD mice  demonstrated  that  the  MSCs-BDNF treatment  significantly
reduced anxiety, attenuated striatal atrophy in the YAC128 mice, and increased the
mean lifespan and neurogenesis-like activity of the R6/2 mice. These improvements
were attributed to the enhancement of endogenous neurogenesis stimulation and
maturation promoted by BDNF and various  complementary  therapeutic  factors
secreted by the MSCs[80].  Transplantation of  embryonic stem cell-derived BDNF-
overexpressing  neural  progenitors  to  three  different  HD  mouse  models  -  the
quinolinic acid-lesioned model and the two genetic models R6/2 and N171-82Q - led
to motor function improvement in the quinolinic acid-lesioned model, which may be
due to enhanced neuronal and striatal differentiation, while only subtle effects were
shown in the two genetic models. The difference in the behavior improvement can be
attributed to the different cell survival rates in different models; this is in agreement
with  the  finding  that  neural  progenitor  cells  (NPCs)  transplanted  into  the  two
transgenic mice lines usually show lower cell survival rate[81].

In an in vitro HD model of R6/2 mice-derived neuronal cells, exosomes derived
from adipose  stem cells  (ASC-exo)  significantly  decreased the  mHtt  aggregates,
reduced  abnormal  apoptotic  protein  level,  mitochondrial  dysfunction  and  cell
apoptosis, suggesting a therapeutic potentiality of ASC-exo for HD[82].

AMYOTROPHIC LATERAL SCLEROSIS
Amyotrophic  lateral  sclerosis  (ALS)  is  one  of  the  neurodegenerative  disorders
involving progressive degeneration of both upper and lower motor neurons, leading
to  palsy  and  death  ultimately  in  3-5  years  from  onset[83].  Multiple  underlying
mechanisms are  involved in  ALS pathology,  including glutamate  excitotoxicity,
oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, microglial
and astrocyte function abnormality, and neurotrophic support impairment[84]. There
are  currently  only  two  available  disease-modifying  medicines  -  riluzole  and
edaravone - that have shown benefit, albeit slight and to a limited set of patients[85].
Given the complex ALS pathogenesis and limited drug efficacy, there is a remarkable
urgency to find new therapies for ALS. Stem cell-based therapy holds great promise
for treating ALS by providing both cell replacement and NTF delivery to target the
multiple pathologies[86,87]. Stem cells available for ALS treatment include NSCs, MSCs,
embryonic stem cells, induced pluripotent stem cells, and olfactory ensheathing stem
cells[88].

NTFs might benefit  ALS patients by protecting motor neurons and preventing
disease progression[89].  Besides the replacement of degenerated motor neurons by
stem cells, neurotrophic support also plays an important role in the motor neurons’
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Table 3  Combination therapy of stem cells with neurotrophic factors in Huntington's disease

Cell types Neurotrophic factors Study design and outcome Ref.

MSCs BDNF; NGF BM-MSCs were genetically
engineered to overexpress BDNF
and/or NGF, and were then injected
into the striata of 4-mo-old YAC128
transgenic and wild-type mice to
determine the effects on motor
function. Transplantation of MSCs-
BDNF may slowdown
neurodegenerative processes and
provide behavioral sparing in the
YAC128 mouse model of HD.

Dey et al[79], 2010

MSCs BDNF MSCs-BDNF were intrastriatially
transplanted into YAC128 and R6/2
transgenic (immune-suppressed HD
model) mice. MSCs-BDNF
transplantation reduced anxiety,
decreased striatal atrophy in the
YAC128 mice and prolonged the
mean lifespan and increased
neurogenesis of the R6/2 mice.

Pollock et al[80], 2016

ESCs-derived NPCs BDNF ESCs-derived BDNF-overexpressing
NPCs were transplanted into a
quinolinic acid-lesioned model and
two transgenic mouse lines (R6/2
and N171-82Q). NPCs-BDNF had a
significant effect on motor function
recovery in quinolinic acid-lesioned
mice, while the genetic mouse model
had only slight improvement. Adult
neurogenesis was preserved in a
BDNF-dependent manner.

Zimmermann et al[81], 2016

BDNF: Brain-derived neurotrophic factor; BM-MSCs: Bone marrow-mesenchymal stem cells; ESCs: Embryonic stem cells; HD: Huntington's disease; MSCs:
Mesenchymal stem cells; NGF: Nerve growth factor; NPCs: Neural progenitors.

survival and function[90]. Thus, it is reasonable to combine stem cells and NTFs for the
treatment of ALS, especially by transplanting stem cells engineered to overexpress
NTFs[91]. Indeed, it has been shown that transplantation of stem cells combined with
specific growth factors can markedly preserve neuromuscular junctions, attenuate
motor neuron death, delay onset, improve motor function, and prolong survival of
the SOD1G93A rat ALS model[92-100] (Table 4).

It  has  been reported that  lumbar  spinal  cord transplantation of  human NPCs
genetically modified to secrete GDNF only limited motor neuron degeneration in the
SOD1G93A ALS rats[92,93], while cortex transplantation also prolonged the lifespan[94]. On
the other hand, bilateral intramuscular transplantation of human(h)MSCs-GDNF led
to survival of the hMSCs and release of GDNF into the muscle of the SOD1G93AALS
rats, which increased the number of neuromuscular connections and prevented the
loss of motor neurons in the spinal cord, leading to delayed disease progression and
increased lifespan (by 28 d)[95]. Similarly, intrathecal transplantation of human NSCs
overexpressing  VEGF  into  the  SOD1G93A  ALS  mice  delayed  disease  onset  and
prolonged  lifespan [96].  In  addition,  combination  therapy  of  intranasal  NGF
administration with lateral ventricle NSCs transplantation also delayed disease onset,
improved motor function and extended survival of the SOD1G93AALS mice[97].

In  order  to  determine  whether  the  effect  of  hMSCs-GDNF  on  slowing  the
progression of  the  disease  could be  enhanced by multiple  NTFs,  hMSCs-GDNF,
hMSCs-VEGF, hMSCs-IGF-1,  or hMSCs-BDNF were transplanted bilaterally into
muscles  of  the  SOD1G93AALS  rats.  Compared  to  individual  NTF  delivery,
intramuscular delivery of hMSCs-GDNF combined with hMSCs-VEGF demonstrated
synergic and greater effects on increasing survival rate, preventing motor neuron
degeneration, and protecting neuromuscular junction[98]. In addition, transplantation
of  muscle  progenitor  cells-MIX (a  mixture of  muscle  progenitor  cells  expressing
BDNF, GDNF, VEGF, or IGF-1) into the hind legs of the SOD1G93AALS mice, decreased
neuromuscular  junction degeneration and increased axonal  survival,  leading to
delayed disease onset  (by 30 d)  and prolonged survival  (by 13 d).  These results
demonstrated that continuous delivery of the mixture of NTFs by engineered muscle
progenitor cells might be a beneficial therapy for ALS[99]. In 2016, there were a phase
1/2 and a phase 2a clinical trials transplanting NTF-secreting BM-MSCs to small
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Table 4  Combination therapy of stem cells with neurotrophic factors in amyotrophic lateral sclerosis

Cell types Neurotrophic factors Study design and outcome Ref.

hNPCs GDNF hNPCs-GDNF were transplanted into
the lumbar spinal cord of SOD1G93A

ALS rats. Genetically-modified
hNPCs were able to survive,
integrate, and release GDNF in the
spinal cord of SOD1G93A rats.

Klein et al[92], 2005

hNPCs GDNF hNPCs-GDNF were unilaterally
transplanted into the spinal cord of
SOD1G93A ALS rats. There was robust
cellular migration into degenerated
areas, efficient delivery of GDNF and
remarkable preservation of motor
neurons at early and end stages of the
disease.

Suzuki et al[93], 2007

hNPCs GDNF hNPCs-GDNF were unilaterally
transplanted into the motor cortex of
SOD1G93A ALS rats. The hNPCs-
GDNF matured into astrocytes, and
released GDNF, which protected
motor neurons, delayed disease
pathology, and extended survival of
theSOD1G93A rats.

Thomsen et al[94], 2018

hMSCs GDNF hMSCs-GDNF were transplanted
bilaterally into three muscle groups
of a fALS rat model. Transplanted
cells survived within the muscle,
released GDNF, and increased the
number of neuromuscular
connections. Direct muscle delivery
of hMSCs-GDNF ameliorated motor
neuron loss within the spinal cord,
delayed disease progression, and
increased overall lifespan by 28 d.

Suzuki et al[95], 2008

hNSCs VEGF hNSCs overexpressing VEGF were IT
transplanted into SOD1G93A mice.
Intrathecal hNSCs-VEGF
transplantation significantly delayed
disease onset and prolonged survival
of the SOD1G93A mice.

Hwang et al[96], 2009

NSCs NGF Intranasal NGF administration
combined with lateral ventricle NSCs
transplantation to the SOD1G93AALS
mice delayed onset, improved motor
function and prolonged lifespan.

Zhong et al[97], 2017

hMSCs GDNF; VEGF; IGF-I; BDNF To determine whether multiple NTFs
played a synergistic role of slowing
disease progression, SOD1G93A rats
were bilaterally muscularly
transplanted with hMSCs-GDNF,
hMSCs-VEGF, hMSCs-IGF-I, or
hMSCs-BDNF. hMSCs-GDNF and
hMSCs-VEGF prolonged survival
and slowed the loss of motor
function, and the combined delivery
of GDNF and VEGF showed a strong
synergistic effect.

Krakora et al[98], 2013

MPCs BDNF; GDNF; VEGF; IGF-1 Hind legs transplantation of MPCs-
MIX, a mixture of MPCs expressing
BDNF, GDNF, VEGF, or IGF-
1,decreased neuromuscular junction
degeneration, increased axonal
survival, delayed onset and
prolonged lifespan of the SOD1 G93A

mice.

Dadon-Nachum et al[99], 2015
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MSCs GDNF; BDNF; VEGF; HGF To determine the safety and possible
clinical efficacy of autologous MSCs-
NTF cells transplantation in ALS
patients. All patients were followed
for 3 mo before the transplantation
and for 6 mo after the
transplantation. In the phase 1/2 part
of the trial, 6 patients with early-stage
ALS were injected IM and 6 patients
with more advanced disease were
transplanted IT. In the second stage, a
phase 2a dose-escalating study, 14
patients with early-stage ALS
received a combined IM and IT
transplantation of autologous MSCs-
NTF. Treatment of ALS patients with
autologous MSCs-NTF cells by IT,
IM, or combined (IT+IM)
administration was safe and well
tolerated. The rate of progression of
forced vital capacity and ALS
Functional Rating Scale-Revised
score in the IT (or IT+IM)-treated
patients were reduced.

Petrou et al[100], 2016 (clinical trials)

ALS: Amyotrophic lateral sclerosis; BDNF: Brain-derived neurotrophic factor; fALS: Familial amyotrophic lateral sclerosis: GDNF: Glial cell line-derived
neurotrophic factor; HGF: Hepatocyte growth factor; hMSCs: Human mesenchymal stem cells; hNPCs: Human neural progenitor cells; hNPCs-GDNF:
Lentivirus-modified hNPCs secreting GDNF; hNSCs: Human neural stem cells; IGF-1: Insulin-like growth factor-1; IM: Intramuscularly; IT: Intrathecally;
MPCs: Muscle progenitor cells; MSCs-NTF: Neurotrophic factor secreting mesenchymal stem cells; NGF: Nerve growth factor; NSCs: Neural stem cells;
NTF: Neurotrophic factor; VEGF: Vascular endothelial growth factor.

groups of ALS patients. Different administration methods were evaluated for patients
in different stages of the disease, with early patients transplanted intramuscularly and
progressive ones transplanted intrathecally. Results showed reduced progression rate
of  forced  vital  capacity  and  ALS  Functional  Rating  Scale-Revised  score  in  the
intrathecal (or intrathecal plus intramuscular)-treated patients. Clinical trials have
since shown that both routes of  administration are safe,  but the possible clinical
benefits need to be confirmed by a larger cohort study[100].

In in vitro  ALS models,  adipose-derived stromal cells derived exosomes (ASC-
exosomes)  showed  neuroprotection  through  oxidative  damage  protection,
mitochondria function restoration and anti-apoptosis effects, indicating that ASC-
exosomes is a promising approach to treat ALS[101-103].

CONCLUSION
Neurodegenerative diseases are a large group of neurological disorders characterized
by progressive  neuronal  degeneration and loss,  leading to  motor  and cognition
impairment and ultimately death of affected patients. There is currently a lack of
effective  treatments  for  all  neurodegenerative  diseases  because  of  their  obscure
pathogeneses. However, studies have revealed the considerable therapeutic promise
of stem cells and NTFs, and especially when used in combination. The combination
therapy of stem cells with NTFs – generated by engineering stem cells to overexpress
NTFs, that is, using stem cells as a delivery platform for NTFs - can not only replenish
the target neurons but also secrete neurotrophins to improve the microenvironment
for nerve repair and regeneration. However, different neurodegenerative diseases
exhibit  specific  neuron type loss,  with cholinergic neurons in AD, dopaminergic
neurons in PD, projection neurons in HD, and motor neurons in ALS. Thus, future
research should give priority to the use of stem cell-derived disease-specific cell types
in combination with cell-specific  NTFs.  Given the great  promise of  stem cells  in
combination  with  NTFs  in  clinical  application,  this  novel  treatment  avenue  is
expected to provide benefit to patients suffering from neurodegenerative diseases in
the future.
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Abstract
The postnatal skeleton undergoes growth, modeling, and remodeling. The
human skeleton is a composite of diverse tissue types, including bone, cartilage,
fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion
and bone defects are among the most challenging clinical problems in orthopedic
trauma. The incidence of nonunion or bone defects following fractures is
increasing. Stem and progenitor cells mediate homeostasis and regeneration in
postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem
cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone
regeneration. In recent years, a number of important studies have characterized
the hierarchy, differential potential, and bone formation of SSCs. Here, we
describe studies on and applications of SSCs and/or mesenchymal stem cells for
bone regeneration.
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Core tip: Stem cell-based therapies have multiple applications in the field of bone
regeneration. Recent research has demonstrated the advantageous use of skeletal stem
cells (SSCs) and mesenchymal stem cells for bone modeling and remodeling. Our
analysis indicates the hierarchy, self-renewal and differential potential of SSCs and the
functions of SSCs, mesenchymal stem cells, and circulating progenitor cells on bone
regeneration.
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INTRODUCTION
The bones in our body are living tissues. They are composed of two types of tissues:
(1) The cortical (compact) bone as a hard outer layer, which is dense, strong, and
tough; and (2) The trabecular (cancellous) bone as a spongy inner layer[1]. Long bones,
such as the tibia and femur, consist of articular cartilage, epiphyses, growth plate,
metaphysis, diaphysis, periosteum, endosteum, and a marrow cavity[1]. Bones provide
protection for vital organs and structural support for the body due to their tough and
rigid structures resulting from a mineralized matrix[2]. Bones also act as a storage area
for minerals (e.g., calcium) and provide a microenvironment for bone marrow (where
blood cells are produced in long bones)[3].

During life,  bones undergo organogenesis,  modeling,  and remodeling[4].  Bone
modeling  occurs  when  bone  formation  and  bone  resorption  occur  on  separate
surfaces,  which  means  these  two  processes  are  not  coupled  during  long  bone
increases in diameter and length[5]. Bone remodeling, the replacement of old bone by
new bone, occurs primarily in the adult skeletal system to maintain bone mass[5]. This
process involves the coupling of bone resorption and bone formation. Bone formation
occurs by two distinct developmental processes. Intramembranous ossification, which
occurs by the direct  differentiation of mesenchymal progenitors into osteoblasts,
involves  the  replacement  of  connective  tissue  membrane  with  bone  tissue[6].
Endochondral ossification involves the replacement of a hyaline cartilage model with
bone  tissue[7].  Bone  repair  or  fracture  healing  proceeds  through  four  phases:
inflammation, intramembranous ossification, endochondral ossification, and bone
remodeling[8].  Bone repair depends on the function of specific cell  types,  such as
mesenchymal  stem  cells  (MSCs)  and  osteoblasts[9,10];  the  expression  of  soluble
molecules  (cytokines  and growth  factors)[11-13];  the  scaffold  (hydroxyapatite  and
extracellular matrix molecules)[14,15]; and various mechanical stimuli during the entire
repair process[16,17].

Stem cells are defined as cells with the ability to self-renew and differentiate into
different cell types[18]. According to their differentiation capacity, stem cells can be
categorized as totipotent, pluripotent, multipotent, or unipotent[8]. Totipotent stem
cells  are  capable  of  generating  all  of  the  cell  types  in  animals,  such  as  early
blastomeres[19].  Pluripotent stem cells are capable of generating embryonic tissues
from all three primary germ layers. Induced pluripotent stem cells experimentally
derive from adult somatic cells, and embryonic stem cells (ESCs) originate from the
inner cell mass of the blastocyst[20-24].  Multipotent stem cells can differentiate into
multiple specific cell types in a specific tissue or organ[25] and are located in specialized
niches,  where they can interact with the local microenvironment to maintain the
stemness or differentiation potential.  The musculoskeletal system contains many
multipotent stem cells. The most studied multipotent stem cells in the musculoskeletal
system are the hematopoietic stem cells (HSCs)[26], which are the source of all types of
blood cells, and bone marrow mesenchymal stem cells (BMMSCs), also known as
bone marrow stromal cells (BMSCs)[27]. Unipotent stem cells can develop into only a
single cell type[28,29].

The skeletal system contains multiple tissue types including bone, cartilage, blood
vessels, nerves, and fat. Each tissue in the skeletal system is generated and maintained
by the accurate management of specific stem cells. Among the most well-known stem
cells in the skeleton are the HSCs, defined as having the critical role of the long-term
maintenance and production of all mature blood cell lineages during life[30,31].  The
isolation of non-hematopoietic stem cells in the bone marrow relies on the ability of
the cells to attach to plastic plates, which are thought to be ‘‘mesenchymal stem cells’’
or “skeletal stem cells.” These stem cells contain heterogeneous mixtures of cells with
different potencies, such as bone, cartilage, adipo-tissue, endothelial cells, fibroblasts,
and stroma. At this time, the MSCs have two opposing descriptions. MSCs can be the
self-renewing,  postnatal,  and  multipotent  stem  cells  for  bone  tissue,  which  are
considered a specific type of bone marrow perivascular cell. In contrast, MSCs can be
ubiquitous in connective tissues and are defined by in vitro characteristics, such as
adipose tissue[32,33], periosteum[34,35], the synovial joint[36-38], and muscle tissue[39,40]. In
2006, the International Society for Cellular Therapy proposed minimal criteria for
defining the concept of human MSCs: They must be plastic-adherent; highly express
CD105, CD73, and CD90 while lacking expression of CD45, CD34, CD14 or CD11b,
CD79a or  CD19,  and HLA-DR surface  molecules;  and be able  to  differentiate  to
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osteoblasts, chondroblasts, and adipocytes in vitro[41]. This set of standards for the
definition of human MSCs is consistent with laboratory-based scientific investigations
and preclinical studies. However, the relationships between MSCs and SSCs are still
not definitively known.

ORIGIN OF SSCs
The SSC concept derives from experiments conducted by Friedenstein et al[42], who
found that heterotopic transplants of bone marrow form reticular tissue and bone[42,43].
They confirmed the presence of colony-forming unit fibroblasts in the tissue culture
plastic (TCP), adherent, non-hematopoietic cells in the bone marrow. However, there
remained considerable heterogeneity within the TCP-adherent cell population. The
formation of the ectopic ossicle was ascribed to a specific cell population in the TCP-
adherent  cells.  Subsequently,  the  generation  of  an  ossicle  has  been  assigned  to
multipotent  clonogenic  progenitor  cells,  which  give  rise  to  cartilage,  bone,  and
adipocytes[44]. These progenitor cells were first termed as osteogenic by Friedenstein et
al[42]  or  as  stromal  stem  cells  by  Owen  et  al[44];  they  were  then  named  MSCs  by
Caplan[45] and Pittenger et al[46]. Finally, they were considered SSCs by Bianco et al[47].

In past decades, several studies have attempted to identify cell surface markers that
are expressed by SSCs, including the STRO-1 antigen, CD73, CD44, CD166, CD105,
CD90, CD146, and CD271, or by negative selection for hematopoietic markers, such as
CD45,  CD34,  CD14,  CD79a,  CD19,  CD11b,  and  HLA-DR  surface  markers[48,49].
However,  due  to  variation  in  certain  markers,  there  is  still  a  lack  of  consensus
regarding the cell surface markers unique to SSCs. The absence of a set of specific
surface  markers  may have  contributed  to  the  presence  of  confusing  data  in  the
literature related to the identification of SSCs. Concerning the present controversy, the
definition of SSCs states that the SSC population should have the capacity to produce
four distinct lineages: bone, cartilage, adipo-tissue, and hematopoiesis-supportive
stroma  in  vivo.  Nevertheless,  a  list  of  specific  surface  markers,  which  could  be
extensively studied, would be widely accepted.

SSCs
In  2013,  Chan  et  al[50]  reported  a  lineage-restricted  and  self-renewing  skeletal
progenitor that was isolated from the skeletal elements of fetal, neonatal, and adult
mice and could form bone, cartilage, and bone marrow; it was named bone-cartilage-
stromal progenitors (BCSPs). However, the main aim of the study was to focus on the
regulation of the vascularization and hematopoiesis of HSCs by BCSPs, and they did
not intensively study the role of BCSPs in bone regeneration or repair.

In 2015, two reports published in Cell helped to advance the SSC field and provide
insight into the cell hierarchy[51,52]. A study by Worthley et al[51] used the secreted bone
morphogenetic protein (BMP) agonist, Gremlin 1 (Grem1), to label skeletal progenitor
cells. They found Grem1 positive cells beside the growth plate and determined that
the trabecular bone could self-renew and generate diverse cells, such as osteoblasts,
reticular  marrow stromal  cells,  and chondrocytes  but  not  adipocytes.  They later
named them osteo-chondro-reticular (OCR) stem cells. In the femoral fracture callus,
they  found  that  Grem1+  OCR  stem  cells  contributed  to  the  expansion  and
differentiation into osteoblasts and chondrocytes. In another study, Chan et al[52] found
clonal regions in the bone, especially at the growth plate, that encompassed bone,
stromal tissue,  and cartilage in mice.  Subsequently,  they showed that  the CD45-
Ter119- Tie2- AlphaV + Thy- 6C3- CD10- CD200+ cell population in the growth plate
could self-renew in vitro and generate other subpopulations, such as pre-BCSP and
BCSP.  These  cell  populations  could  specify  their  differentiation  toward  bone,
cartilage, or stromal cells but not toward fat or muscle, which are regulated by soluble
factors. They concluded that the CD45- Ter119- Tie2- AlphaV+ Thy- 6C3- CD105-
CD200+ cell population represented SSCs in postnatal skeletal tissues. Furthermore,
they found that the SSC number increased in the callus of a femoral fracture more
than in the uninjured femur with enhanced osteogenic capacity. In a similar study,
Marecic et  al[53]  found that BCSP expansion preceded ossified callus formation in
femoral fractures and that irradiation reduced the fracture-induced BCSP expansion.
The fracture-induced BCSPs (f-BCSPs) possessed greater plating efficiency, viability,
alkaline phosphatase (ALP) activity, and Alizarin Red staining (ARS) than did the
uninjured femur BCSPs (u-BCSPs).  The f-BCSPs formed significantly larger bone
specimens compared with u-BCSPs when transplanted under the renal capsules of
immunodeficient  mice.  Although the hierarchy of  stem cells  and the differential
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capacity were studied in depth in these studies, little is known about the involvement
of SSCs in bone development, modeling, and remodeling. As mentioned above, SSCs
are  multipotent  cells  that  differentiate  into  bone,  cartilage,  and  stromal  niches;
however, they are unable to differentiate into other cell types, such as adipocytes,
fibroblasts, muscle cells, or hematopoietic cells.

Chan et al[54] published another study in 2018, which focused on the human SSC.
Using single cell RNA sequencing, fluorescence-activated cell sorting, and in vivo
differentiation assays, they showed that the PDPN+ CD146- CD73+ CD164+ fetal
growth plate cells produced the most colony-forming units in vitro and determined
that they possessed self-renewal and multipotency, which were thought to be putative
human SSCs.  Further  hierarchical  studies  showed that  this  cell  population  was
capable of the linear generation of osteogenic and chondrogenic subpopulations and
was at  the top of the differentiation tree.  These studies established an ingenious
human bone xenograft mouse model, transplanting human fetal phalangeal grafts
with intact periosteum into immunodeficient mice; they found that fracture of the
implanted  bone  induced  the  expansion  of  human  SSCs  near  the  fracture  site.
Furthermore, they found that human SSCs favored hematopoiesis and, conversely,
that HSCs supported the human SSC lineage.

Another study published in 2018 by Mizuhashi et al[55]  reported that SSCs were
generated from PTHrP-positive chondrocytes in the resting zone of the growth plate
in a mouse model. Mouse SSCs (41.6% ± 4.4%), pre-BCSP (31.7% ± 6.2%), and BCSP
(53.4% ± 16.9%) were positive for PTHrP. The analysis showed that PTHrP-positive
chondrocytes, which are considered a unique SSC class in the resting zone, were
multipotent and could longitudinally form columnar chondrocytes, which underwent
hypertrophy, then became multiple types of cells, such as osteoblasts and marrow
stromal cells, beneath the growth plate. Additionally, these stem cells were able to
send a signal to the transit-amplifying chondrocytes to maintain their proliferation so
that  they  could  maintain  the  integrity  of  the  growth  plate;  transit-amplifying
chondrocytes sent cues to determine the cell differentiation fates of PTHrP-positive
chondrocytes in the resting zone.

The SSCs were derived from the growth plate in most of  the abovementioned
studies, which focused on their multipotency by transplanting stem cells under the
renal  capsules  of  immunodeficient  mice  involved  in  endochondral  ossification.
Duchamp found that periosteal cells (PCs) and BMSCs were derived from the same
embryonic  Prx1-mesenchymal  lineage  and that  postnatal  PCs  had  an  enhanced
clonogenicity, growth, and differentiation capacity compared to BMSCs[56]. Although
they did not identify the SSCs in the periosteum, they concluded that the presence of
SSCs in the periosteum was associated with greater regenerative potency. Another
study,  from Weill  Cornell  Medical  School,  identified SSCs,  periosteal  stem cells
(PSCs), which were present in the periosteum of the long bones and calvarium of
mice[57]. The PSCs displayed self-renewal and multipotent capacities and possessed
different  transcriptional  signatures  compared  to  the  other  SSCs.  As  previously
mentioned, other SSCs form bones through endochondral ossification, whereas PSCs
form bones via a direct intramembranous pathway in the long bone or cranial bone.
The differentiation capacity of PSCs for bone formation would therefore be enhanced
in response to a fracture.

MSCs
In  1991,  Caplan[45]  introduced  the  term “mesenchymal  stem cells”  to  define  the
putative stem cells  of  skeletal  tissues (bone and cartilage).  The concept of  MSCs
extended to include bone marrow[58,59],  adipose tissue[33,60],  the periosteum[61],  the
synovial lining[62], muscle tissue[63], the umbilical cord[64], and different types of dental
tissues[65]. Among them, BMMSCs were one of the well-studied sources. It is currently
thought that BMMSCs show an essential role in supporting bone healing through the
secretion of nutritional and immunomodulatory factors rather than via a direct effect
on the formation of the bone callus. BMMSCs secrete growth factors and cytokines to
influence bone regeneration via paracrine and autocrine systems; this process includes
vascular  endothelial  cell  growth factors,  platelet-derived growth factors,  BMPs,
fibroblast growth factors, insulin-like growth factor, and epidermal growth factor[65,66].
Inflammation is essential for any wound healing including bone repair.  The first
phase of fracture repair is the inflammation phase. Besides the trophic role, BMMSCs
are critical  regulators of  the local  inflammation micro-environment during bone
repair. Macrophages are a key cell population that contributes to the inflammatory
environment,  whereas  BMMSCs  show  an  immunomodulatory  effect  on
macrophages[67,68]. These inflammation factors include prostaglandin-E2[69], monocyte
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chemoattractant  proteins  (MCP-1  and  MCP-3)[70],  tumor  necrosis  factor-α[71],
transforming growth factor-β[72], and numerous interleukins (IL-1, IL-3, IL-4, IL-6, and
IL-10)[73,74].

Zuk et al[75] first described the isolation of adipose tissue-derived MSCs (ADSCs)
from adipose tissue and characterized their phenotype and multipotency. Although
ADSCs do not have superior osteogenic potential compared to BMMSCs in vitro[76-79],
ADSCs are easier to acquire than BMMSCs. ADSCs have been reported to exhibit high
angiogenesis with either the ability to differentiate into endothelial cells or to secrete
angiogenic factors, which favor osteogenesis and bone healing[80]. Moreover, ADSCs
have a favorable effect on bone regeneration in vivo[81] and are widely used in clinical
trials.

The periosteum is a tough layer of dense connective tissue that surrounds the bone
surface, which contains different bone cells that enable bone to grow in thickness,
which favors  fracture  repair  and nourishes  bone tissues[82].  The  innermost  layer
contains stem cells that contribute to bone homeostasis and fracture healing, which
respond to bone injury within 48 h through rapid proliferation. The stem cells from
the  periosteum  have  enhanced  clonogenicity,  growth,  and  differentiation
capabilities[56,57].  Studies using reporter  mice have identified Prx1 as  a  periosteal
marker[83,84].  Studies  in  adult  animals  have  shown  that  Prx1  is  expressed  in  the
periosteum and contributes to the formation of fracture callus[85]. Although only a
limited  number  of  studies  have  focused  on  the  identification  of  MSCs  in  the
periosteum, it is generally accepted that the periosteum plays an essential role in bone
modeling and remodeling and is an important trophic pool for fracture healing.

Synovial  tissue-derived  mesenchymal  stem  cells  (SMSCs)  are  obtained  by  a
minimally invasive procedure and have been used for cartilage repair[86-89]. They are
effective in regenerating critically sized bone defects when combined with polyether
ketone[90], although few studies of SMSCs have focused on bone regeneration. Muscle-
derived MSCs also had high osteogenic potential in a mouse model[91] but need to be
further characterized. Umbilical cord MSCs (UCMSCs) show a favorable osteogenic
potential, similar to that of BMMSCs, and are able to contribute to bone and vessel
regeneration[92].  UCMSCs also show great  potential  for  bone regeneration in  the
presence of secretion factors[93-95], biomaterials[96-98], exosomes[99], and gene modification
therapy[100,101].  Dental tissue-derived MSCs have been well-characterized and have
shown features originally ascribed to BMMSCs. At least six different dental tissue-
derived mesenchymal stem cell types have been isolated and have been described by
Bartold et al[65]. Briefly, dental pulp stem cells and periodontal ligament stem cells
exhibit considerable bone regenerative capabilities, whereas human apical papilla
stem cells, dental follicle stem cells, exfoliated deciduous teeth stem cells, and gingival
mesenchymal stem cells require further study[65].

CIRCULATING PROGENITOR CELLS
Although hematopoietic cells are developmentally derived from the mesoderm in a
manner  similar  to  osteoblasts,  they  have  no  direct  role  in  fracture  healing  or
heterotopic  ossification[102].  Other  circulating  cells,  such  as  CD34+  cells  from
endothelial progenitor cells (EPCs), exhibit accelerated bone healing[103,104]. The EPCs,
induced into the peripheral circulation by trauma, contribute to neovascularization
and are involved in fracture healing[105,106]. CD31+ cells from peripheral blood facilitate
bone  endogenous  regeneration  by  supporting  immunomodulation  and
vascularization [ 1 0 7 ] .  The  circulating  osteogenic  progenitor  cells,  a  type  I
collagen+/CD45+ subpopulation of mononuclear adherent cells in bone marrow,
serve as osteogenic precursors for heterotopic ossification[108]. AMD3100, an antagonist
of the chemokine receptor 4 that rapidly mobilizes stem cell populations into the
peripheral  blood,  exerts  significant  beneficial  effects,  involving  improved
neovascularization  and  osteogenesis,  on  bone  healing[109-111].  Using  surgically
conjoined transgenic mice which constitutively express green fluorescent protein
(GFP)  in  no  erythroid  tissue  and  syngeneic  wild-type  mice  models,  circulating
osteogenic  connective  tissue  progenitors  (GFP+ cells)  from transgenic  mice  are
mobilized  to  fracture  sites  in  wild-type  mice  and  contribute  to  osteogenic
differentiation in the early stage of fracture healing[112].  Additionally, exposure to
young cells, by heterochronic parabiosis, rejuvenates bone repair in aged animals[113].
Taken together, these results demonstrate that circulating progenitor cells play an
important role in bone regeneration.
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CLINICAL TRANSLATION
Bone defects and fracture nonunion can be caused by skeletal abnormalities, tumor
resection, or infection, and they remain a major challenge in trauma and orthopedic
surgery. Current treatments recommend the use of autologous and allogenic bone to
repair these defects.  For large bone defects,  bone transfer techniques,  membrane
induction techniques, and vascularized fibula can be clinically adopted, but most of
these methods involve treatment in stages, with long treatment cycles, injury in the
blood supply area, complicated surgery, and other possible complications[114]. Tissue
engineering is an attractive approach for the current treatments and could minimize
these limitations. The easy accessibility of MSCs from bone marrow and their multi-
differentiation potency have driven the use of BMMSCs in the clinic.

Many  studies  currently  use  autologous  bone  marrow  cells  harvested  during
orthopedic  procedures,  and  most  of  them  use  stem  cells  in  combination  with
biomaterials[115-118].  Autologous MSCs combined with β-tricalcium phosphate graft
material  as  a  carrier  can promote  the  healing  of  femoral  bone  defects[116].  Using
autologous BMMSCs grown in a serum cross-linked scaffold is an alternative therapy
for maxillary bone defects[117].  Another trial  confirmed that  autologous BMMSCs
successfully  induced  significant  formation  of  new bone  in  patients  with  severe
mandibular ridge resorption[119]. Moreover, peripheral blood CD34+ cells and bone
marrow aspirate concentrates have been effectively used in bone defects and bone
nonunion[120,121].

Translational studies using stem cells are ongoing. Table 1 details 12 trials, which
were  completed  or  currently  underway  and  are  recorded  at  clinicaltrials.gov,
maintained by the National Institutes of Health. Randomized clinical trials using
defined SSC populations are needed to evaluate the efficacy of SSC-based therapies in
future clinical trials.

LIMITATIONS AND DISADVANTAGES
In recent years, significant progress has been made in the study of SSCs. However,
there is  still  a distance between basic research and clinical  translation. The main
reason is that there is currently no precise definition of SSCs, and they are relatively
difficult to obtain. SSCs in most studies are obtained from growth plates, which is
difficult and impractical for clinical translation. Although there is a lot of research on
circulating progenitor cells, there is also a lack of a unified definition of circulating
progenitor cells. Most of the studies do not focus on a unique class of cells but a group
of mixed cells. Subsequent research needs to accurately classify circulating progenitor
cells and study the specific functions of each group. Most of the circulating progenitor
cells can be more easily obtained through the blood system than other SSCs, and its
clinical translation has broad application prospects.

We recorded the relevant clinical trials from clinicaltrials.gov; however, it is still not
comprehensive enough.  In the future,  we should search for  the clinical  research
registration websites from different countries, and pay attention to the progress of the
trials on time. At present, MSCs are the most widely used in clinical trials, and in the
future scientists should expand clinical research on different types of SSCs.

CONCLUSION AND FUTURE PERSPECTIVES
Cell-based therapy has  been widely  used in  recent  decades  to  treat  a  variety  of
physiological defects. A number of stromal stem cells harvested from different tissues
have exhibited therapeutic characteristics in vivo and in vitro. Among them, BMMSCs
and ADSCs are widely considered to be the more usable candidates for regenerative
medicine due to their easy accessibility and expansion. For bone tissue regeneration,
SSCs and/or BMMSCs have positive differential potentials and therapeutic functions.
This will ensure the availability of SSCs and BMMSCs for animal research and clinical
applications in the future.

As  previously  mentioned,  SSCs  at  the  growth  plate  and  periosteum  can
differentiate into bone, cartilage, and bone marrow but not into adipose tissue. In the
future,  it  will  be  important  to  identify  an  original  SSC  population  that  can
differentiate into all  bone tissues.  The hierarchy of the original SSCs needs to be
clarified,  and  the  precise  definition  of  SSCs  requires  international  consensus.
Furthermore,  the  angiogenic  ability  of  SSCs  favoring  bone  repair  needs  to  be
thoroughly studied, and the effect of cell homing on bone repair should be a major
focus of future research.
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Table 1  Clinical trials employing mesenchymal stem cells for bone healing

Title Conditions Interventions Phase Enrollment Status

Allogeneic
mesenchymal stem cell
transplantation in tibial
closed diaphyseal
fractures

Tibial fracture Mesenchymal stem cell
injection

2 40 Completed

The efficacy of
mesenchymal stem
cells for stimulating the
union in treatment of
non-united tibial and
femoral fractures in
Shahid Kamyab
Hospital

Nonunion fracture Injection of
mesenchymal stem cell
in non-union site

2 19 Completed

Bone regeneration with
mesenchymal stem
cells

Mandibular fractures Application of
autologous
mesenchymal stem cells

3 20 Completed

Stem cells and tibial
fractures

Tibial fractures CD34+ hematopoietic
stem cells

1 9 Completed

Autologous
implantation of
mesenchymal stem
cells for the treatment
of distal tibial fractures

Tibial fractures Autologous
mesenchymal stem cells
implantation

2 24 Completed

Autologous stem cell
therapy for fracture
non-union healing

Non-union of fractures Carrier plus in vitro
expanded autologous
BMSCs

Not applicable 35 Completed

Treatment of non-
union of long bone
fractures by autologous
mesenchymal stem
cells

Nonunion fractures Cell injection 1 6 Completed

Percutaneous
autologous bone-
marrow grafting for
open tibial shaft
fracture

Tibial fractures;
fractures, open

Osteosynthesis Not applicable 85 Completed

Use of adult bone
marrow mononuclear
cells in patients with
long bone nonunion

Long bone nonunion Osteosynthesis 2 7 Completed

A comparative study
of 2 doses of BM
autologous H-MSC+
biomaterial vs iliac
crest autograft for bone
healing in non-union

Non-union fracture Cultured mesenchymal
stem cells; autologous
iliac crest graft

3 108 Recruiting

Clinical trial of
intravenous infusion of
fucosylated bone
marrow mesenchymal
cells in patients with
osteoporosis

Osteoporosis; spinal
fractures

Fucosylated MSCs for
osteoporosis

1 10 Recruiting

Reconstruction of jaw
bone using
mesenchymal stem
cells

Bone atrophy BCP with autologous
MSCs

1 13 Enrolling by invitation

BMSCs: Bone marrow mesenchymal stem cells; BM: Bone marrow; MSCs: Mesenchymal stem cells.
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Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous population that can be
isolated from various tissues, including bone marrow, adipose tissue, umbilical
cord blood, and craniofacial tissue. MSCs have attracted increasingly more
attention over the years due to their regenerative capacity and function in
immunomodulation. The foundation of tissue regeneration is the potential of
cells to differentiate into multiple cell lineages and give rise to multiple tissue
types. In addition,the immunoregulatory function of MSCs has provided insights
into therapeutic treatments for immune-mediated diseases. DNA methylation
and demethylation are important epigenetic mechanisms that have been shown
to modulate embryonic stem cell maintenance, proliferation, differentiation and
apoptosis by activating or suppressing a number of genes. In most studies, DNA
hypermethylation is associated with gene suppression, while hypomethylation or
demethylation is associated with gene activation. The dynamic balance of DNA
methylation and demethylation is required for normal mammalian development
and inhibits the onset of abnormal phenotypes. However, the exact role of DNA
methylation and demethylation in MSC-based tissue regeneration and
immunomodulation requires further investigation. In this review, we discuss
how DNA methylation and demethylation function in multi-lineage cell
differentiation and immunomodulation of MSCs based on previously published
work. Furthermore, we discuss the implications of the role of DNA methylation
and demethylation in MSCs for the treatment of metabolic or immune-related
diseases.

Key words: Mesenchymal stem cells; DNA methylation and demethylation; Multi-lineage
differentiation; Regeneration; Immunomodulation; Immune disease
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Core tip: Mesenchymal stem cells (MSCs) harbor the capacity to regenerate diverse
tissues and can also perform key immunomodulatory functions. DNA methylation and
demethylation are known to modulate stem cell maintenance and differentiation in
embryonic stem cells. However, the role of DNA methylation and demethylation in
MSC-based tissue regeneration and immunomodulation requires further investigation. In
this review, we discuss how DNA methylation and demethylation function in multi-
lineage cell differentiation and immunomodulation of MSCs based on previously
published work. In addition, we discuss the implications of the role of DNA methylation
and demethylation in MSCs for the treatment of metabolic or immune-related diseases.
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INTRODUCTION
DNA methylation and demethylation are two vital epigenetic regulatory mechanisms
for gene expression. DNA cytosine methylation is a frequently occurring process that
is  orchestrated  by  DNA  methyltransferases  (DNMTs),  which  generate  5-
methylcytosine (5mC)[1]. The methylation process at the 5th cytosine can be reversible,
which is called DNA demethylation. This process has received increased attention
over recent years. Increasingly more researchers began to identify enzymes that could
generate 5-hydroxymethylcytosine (5hmC) from 5mC in mammalian cells. For the
first time, in 2009, TET1 was shown to convert 5mC into 5-hmC[2]. Thereafter, all three
of the TET family proteins (TET1, TET2, and TET3) were demonstrated to catalyze a
similar  hydroxymethylation  reaction[3].  TET  family  proteins  are  also  receiving
increased attention because of their function in DNA demethylation.

In  addition  to  their  function  in  multi-lineage  differentiation  and  tissue
regeneration[4], mesenchymal stem cells (MSCs) also display profound immunomodu-
lation  capacity  via  a  sophisticated  molecular  network[5].  DNA  methylation  and
demethylation are known to modulate stem cell maintenance and differentiation by
activating or suppressing an array of genes[6]. Previous research on DNA methylation
and  demethylation  has  primarily  focused  on  embryonic  stem  cells  and  neural
systems.  Nevertheless,  how  DNA  methylation  and  demethylation  impact  MSC
function remains elusive. Here, we discuss recent studies concerning the effect of
DNA  methylation  and  demethylation  on  MSC-based  regeneration  and
immunomodulation.

OSTEOGENIC DIFFERENTIATION OF MSCS IS REGULATED
BY DNA METHYLATION AND DEMETHYLATION
MSCs hold promising potential for regenerative medicine due to their capacity for
self-renewal and multi-lineage differentiation into tissue-specific cells, which include
osteoblasts, chondrocytes, and adipocytes. During osteogenic differentiation of MSCs,
osteogenic-specific genes such as RUNX2, OPN, COX2, ALP, and OCN[7-11], which are
regulated by DNA methylation, showed increased expression and decreased DNA
methylation. Demethylation was observed at specific CpG regions in the promoters of
osteogenic lineage-specific genes, including Runx2, Dlx5, Bglap, and Osterix, during
osteogenic differentiation in adipose-derived MSCs (Ad-MSCs). Upon demethylation
inhibition, osteogenic gene expression became down-regulated[12]. On the other hand,
Daniunaite et al[13] found that genes encoding the main pluripotency factors, such as
Nanog and Sox2, showed decreased gene expression along with decreased 5hmC
levels during the osteogenic differentiation of Ad-MSCs.

In another study on Ad-MSCs, an age-related decline in proliferation was observed.
Ad-MSCs  isolated  from  old  donors  showed  significantly  impaired  osteogenic
differentiation  capacity  compared  to  young  donors.  Furthermore,  decreased
expression  of  Nanog,  Oct4,  and  Lin28A  and  increased  expression  of  Sox2  were
observed. A simultaneous decrease of global 5hmC in Ad-MSCs from old donors also
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occurred. When 5-azacytidine (5-Aza), a DNMT inhibitor, was used to treat Ad-MSCs
from old donors, increased global 5hmC and increased TET2 and TET3 expression
were observed, which was accompanied by an increase in osteogenic differentiation
capacity[14]. These results suggest that global DNA demethylation levels correlate with
the osteogenesis capacity of MSCs, and that DNMT inhibitors could down-regulate
DNA methylation to improve osteogenesis. Notably, an additional study by Kornicka
et al[15] drew similar conclusions.

Bone marrow MSCs (BMMSCs) are a population of multipotent stem cells isolated
from  bone  marrow  that  harbor  the  capacity  for  self-renewal  and  multi-lineage
differentiation.  The  osteogenic  differentiation  of  BMMSCs  is  also  regulated  by
dynamic changes, as well as a balance of DNA methylation and demethylation. Bone
loss caused by mechanical unloading is partially due to the impaired regeneration
capacity of BMMSCs[16]. When mechanical stimuli were rescued, Dnmt3b was released
from  the  Shh  gene  promoter,  thus  leading  to  promoter  demethylation  and  up-
regulated gene expression. Hedgehog signal was then activated by Shh, promoting
BMMSCs to differentiate into osteoblasts[17]. Yang et al[18] found that in Tet1 and Tet2
double knockout mice, 5hmC levels of the P2rX7  promoter were down-regulated,
leading to miR-293a-5p, miR-293b-5p, and miR-293c-5p accumulation, and a decrease
in BMMSC osteogenic differentiation capacity. Upon re-activating P2rX7, microRNA
secretion from Tet  double knockout BMMSCs was increased, thus partly rescuing
both the osteopenia phenotype and BMMSC function.

Mechanisms of TET-mediated DNA demethylation in distinct MSCs vary due to
their diverse sources. When small hairpin RNA lentiviral vectors were transfected to
knock down TET1, the proliferation rate and odontogenic differentiation capacity of
human dental pulp stem cells were significantly suppressed. This indicated that TET1
plays an important role in dental pulp repair and regeneration[19]. In another study
focusing on human BMMSCs, TET1 recruited other epigenetic modifiers, including
SIN3A and EZH2, to inhibit the osteogenic differentiation of BMMSCs in an indirect
manner.  On the other hand,  TET2 was found to directly promote the osteogenic
differentiation of BMMSCs[20]. The underlying mechanisms of how the TET family
proteins regulate MSC function from distinct sources require further investigation.

ADIPOGENIC DIFFERENTIATION OF MSCS IS RELATED TO
DNA METHYLATION AND DEMETHYLATION
Noer et al[21] reported that in undifferentiated Ad-MSCs, the promoters of adipogenic
genes, including LEP, PPARγ2, FABP4 and LPL, are hypomethylated, in contrast to
myogenic or endothelial genes. During adipogenic differentiation, although specific
CpG sites of the LEP promoter undergo demethylation, the global methylation status
of LEP, PPARG2, FABP4, and LPL promoters across different Ad-MSC clones remains
stable. Yang et al[18] showed that Tet1 and Tet2 small interfering RNA treatment does
not alter the adipogenic differentiation capacity of BMMSCs.

Barrand  et  al[22]  showed  that  in  adipose  MSCs,  the  promoter  of  OCT4  was
hypermethylated  consistent  with  its  repression.  Melzner  et  al[23]  found  that  the
promoter  of  leptin  underwent  extreme demethylation  (9.4% ±  4.4%)  during  the
maturation of human preadipocytes toward terminally differentiated adipocytes.
What’s  more,  methyl-CpG  binding  proteins  could  bind  to  specific  sites  in  the
promoter and repressed leptin expression. Fujiki et al[24]  reported that during the
differentiation of 3T3-L1 preadipocytes to adipocytes, the hypermethylated PPARγ2
promoter was progressively demethylated, while 5-Aza could increase the expression
of  PPARγ2,  indicating  that  the  methylation  of  its  promoter  inhibited  the  gene
expression.

Overall,  additional  research  on  the  dynamics  of  DNA  methylation  and
demethylation during adipogenesis from different MSC sources is necessary.

CHONDROGENIC DIFFERENTIATION IS REGULATED BY
DNA METHYLATION AND DEMETHYLATION
DNA methylation and demethylation status also change during MSC differentiation
into chondrocytes.  Chondrogenic  differentiation of  Ad-MSCs and BMMSCs was
associated with a < 50% reduction in methylation rates at two specific CpG sites in the
COL10A1  gene, and transcription of this gene was strongly induced[25].  Ito et al[26]

discovered that 5hmC increased during chondrogenic differentiation of C3H10T1/2, a
MSC line, and that TET1 expression was significantly up-regulated. Furthermore, Tet1
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knockdown resulted  in  a  marked decrease  in  the  expression  of  chondrogenesis
markers  such  as  Col2  and  Col10.  In  addition,  5hmC  in  the  Igf1  promoter  is  a
preferable binding site for TET proteins in chondrocytes. Additional targets of Tet
genes,  as  well  as  other  enzymes  that  function  in  DNA  methylation  and
demethylation, need to be identified in order to reveal the underlying mechanisms of
chondrogenic differentiation of MSCs.

Lin et al[27]  found that stepwise preconditioning–manipulated BMMSCs showed
improved cell proliferation and chondrogenic differentiation potential in vitro and
enhanced therapeutic  effect  on the progression of  osteoarthritis  in  vivo,  and one
mechanism of that is the reduction in CpG methylation at the promoters of Nanog and
Oct4. Pollock et al[28] demonstrated an experimental DMSO-free formulation which
could improve post-thaw function of MSCs including chondrogenesis, as DMSO is a
strong  inducer  of  demethylation  which  may  affect  the  potential  of  MSCs  for
therapeutic  use in treatment of  human diseases.  These studies reminded us that
epigenetic modification of MSCs could be a promising approach to improve their
therapeutic effects.

These  results  regarding  DNA  methylation  and  demethylation  indicate  that
hypomethylation of specific genes, such as Runx2, Opn, Dlx5, Osterix, Col2, and Col10,
play important roles in multi-lineage differentiation of and tissue regeneration by
MSCs (Figure 1).

MYOGENIC DIFFERENTIATION ASSOCIATED WITH DNA
DEMETHYLATION
Cardiogenic differentiation is another important property of MSCs, and stem cell
therapy for cardiovascular diseases is now in clinical trial[29]. Bhuvanalakshmi et al[30]

found that in differentiated cardiomyocytes from MSCs, six out of the ten CpG islands
of the promoter regions of Nkx2.5, the early cardiac gene, underwent demethylation.
What’s more, the CpG promoter demethylation of sFRP4, a Wnt antagonist, was also
observed. This result is consistent with the previous findings that 5-Aza treatment of
BMMSCs inhibited the ventricular scar from thinning and expanding, minimized left
ventricular chamber dilatation, and thus improved myocardial function[31]. Antonitsis
et al[32] treated hBMMSCs with 5-Aza in vitro to induce them to differentiate towards a
cardiomyogenic  lineage.  Nakatsuka  et  al[33]  also  used  5-Aza  to  investigate  the
myogenic  differentiation  potential  of  mouse  dental  pulp  stem  cells.  DNA
demethylation induced by 5-Aza and forced expression of Myod1 upregulated the
muscle-specific transcriptional factors such as Myogenin and Pax7.

IMMUNOMODULATION OF MSCS ASSOCIATED WITH DNA
METHYLATION AND DEMETHYLATION
Aside from tissue regeneration, MSCs play an important role in immunomodulation,
which may prove critical for treating a variety of immune diseases such as colitis,
arthritis, and systemic lupus erythematosus[34-36]. Immunomodulation by MSCs relates
to the secretion of extracellular matrix proteins[37] as well as a variety of cytokines
including IL-2, IL-4, IL-10, TNF-α, and INF-γ[38-40]. MSC immunoregulation can also
occur through cellular contacts[40-42]. B cell proliferation was found to be inhibited by
human MSCs, not through the induction of apoptosis but through G0/G1 cell cycle
arrest[43]. MSCs may suppress T cell proliferation, cytokine release, cytotoxicity, and
Th1/Th2 balance[44,45].

Of  late,  how  DNA  methylation  and  demethylation  regulate  MSC-induced
immunomodulation has received increasingly greater attention. Yang et al[46] found
that  Tet1-  and Tet2-mediated Foxp3  demethylation plays a significant  role in the
differentiation  of  regulatory  T  cells  as  well  as  the  maintenance  of  immune
homeostasis. Khosravi et al[47] reported that MSCs could enhance the demethylation of
the  Treg-specific  demethylated  region  upon  cell-cell  contact,  and  MSC-based
induction of regulatory T cells is associated with direct modifications of the RUNX
complex  genes  (RUNX1,  RUNX3,  and  CBFB).  Yu  et  al[48]  found  that  the  down-
regulation of both TET1 and TET2 leads to hypermethylation of the DKK-1 promoter,
which leads to  activation of  the Wnt/β-catenin signaling pathway and thus up-
regulates Fas ligand (the FasL gene) expression in periodontal ligament stem cells.
This in turn enhances their immunomodulatory ability, which is demonstrated by
their  elevated capacity  to  induce  T  cell  apoptosis.  Taken together,  these  results
demonstrate a significant role for TET-mediated DNA demethylation in MSC-based
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Figure 1

Figure 1  Hypomethylation of specific genes in mesenchymal stem cells drives multi-lineage differentiation and tissue regeneration. MSCs: Mesenchymal
stem cells.

immunomodulation (Figure 2). Nevertheless, further investigations are required to
reveal whether the methylation of MSCs is involved in regulation of other immune
cells such as macrophages and natural killer cells and the underlying mechanisms.

IMPLICATIONS FOR DISEASE TREATMENT
As previously mentioned, DNA methylation participates in the regulation of gene
expression, which may contribute to metabolic diseases when there is an imbalance in
DNA methylation vs  demethylation. García-Ibarbia et  al[49]  compared bone tissue
samples from patients with osteoporotic hip fractures and osteoarthritis. Their results
showed that Wnt pathway activity is reduced in patients with hip fractures compared
with those with osteoarthritis.  Additionally,  six genes,  including FZD10,  TBL1X,
CSNK1E, SFRP4, CSNK1A1L, and WNT8A, showed significantly different methylation
rates between both groups. FZD10, CSNK1E, TBL1X, and SFRP4 are hypermethylated
in osteoarthritis, while WNT8A and CSNK1A1L are hypomethylated compared with
fractures.  This  result  may help explain the distinctions in Wnt pathway activity
between the two groups. MSCs from spinal ligaments with ectopic ossification largely
differentiated into osteogenic lineage. Chiba et al[50] found that MSCs isolated from the
spinal  ligaments  of  ossification  from  yellow  ligament  patients  showed  higher
expression  of  GDNF  and Wnt5a,  which  are  hypomethylated  compared with  the
control group. This result indicates that osteogenic features of MSCs from patients
with  ossification  of  the  yellow  ligaments  are  promoted  by  GDNF  and  Wnt5a
demethylation.

In  2002,  Bartholomew  et  al[51]  first  reported  that  MSCs  harbored  immuno-
suppressive functions by demonstrating their ability to inhibit a mixed lymphocyte
response in vitro as well as prevent rejection in a baboon skin allograft model in vivo.
The immunosuppressive capacities of MSCs have therein provided new therapeutic
insights into immune-mediated disease treatments.  Centeno et al[52]  reported that
autologous MSCs and physiologic doses of dexamethasone could increase meniscus
volume of the human knee. In addition, MSCs can relieve symptoms of multiple
sclerosis,  multiple  system atrophy,  and amyotrophic  lateral  sclerosis  in  varying
degrees[53,54]. How DNA methylation and demethylation function in MSC therapy for
immunological diseases necessitates further exploration.

CONCLUSION AND PERSPECTIVE
Although a wealth of research has investigated MSC therapy, including hundreds of
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Figure 2

Figure 2  TET-mediated demethylation functions in regulatory T cell differentiation and mesenchymal stem cell-induced T cell apoptosis. MSCs:
Mesenchymal stem cells; Treg: Regulatory T cells.

MSC-based clinical trials that have been administered, the mechanisms that underlie
the multiple distinct MSC functions remain elusive. This review sheds light on the
roles  that  DNA  methylation  and  demethylation  play  in  regulating  MSC-based
regeneration and immunomodulation, although it is possible that we overlooked a
few studies due to our literature resource limitations. However, the precise function
of  DNA  methylation  and  demethylation  in  different  MSC  types,  as  well  as  the
associated  underlying  mechanisms,  remain  to  be  thoroughly  investigated.  This
knowledge would inform the development of novel approaches for enhancing MSC-
based tissue regenerative and immune therapies.
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Abstract
BACKGROUND
Peripheral blood stem cells (PBSC) are commonly cryopreserved awaiting clinical
use for hematopoietic stem cell transplant. Long term cryopreservation is
commonly defined as five years or longer, and limited data exists regarding how
long PBSC can be cryopreserved and retain the ability to successfully engraft.
Clinical programs, stem cell banks, and regulatory and accrediting agencies
interested in product stability would benefit from such data. Thus, we assessed
recovery and colony forming ability of PBSC following long-term
cryopreservation as well as their ability to engraft in NOD/SCID/IL-2Rγnull

(NSG) mice.

AIM
To investigate the in vivo engraftment potential of long-term cryopreserved PBSC
units.
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METHODS
PBSC units which were collected and frozen using validated clinical protocols
were obtained for research use from the Cellular Therapy Laboratory at Indiana
University Health. These units were thawed in the Cellular Therapy Laboratory
using clinical standards of practice, and the pre-freeze and post-thaw
characteristics of the units were compared. Progenitor function was assessed
using standard colony-forming assays. CD34-selected cells were transplanted
into immunodeficient mice to assess stem cell function.

RESULTS
Ten PBSC units with mean of 17 years in cryopreservation (range 13.6-18.3 years)
demonstrated a mean total cell recovery of 88% ± 12% (range 68%-110%) and
post-thaw viability of 69% ± 17% (range 34%-86%). BFU-E growth was shown in 9
of 10 units and CFU-GM growth in 7 of 10 units post-thaw. Immunodeficient
mice were transplanted with CD34-selected cells from four randomly chosen
PBSC units. All mice demonstrated long-term engraftment at 12 wk with mean
34% ± 24% human CD45+ cells, and differentiation with presence of human
CD19+, CD3+ and CD33+ cells. Harvested bone marrow from all mice
demonstrated growth of erythroid and myeloid colonies.

CONCLUSION
We demonstrated engraftment of clinically-collected and thawed PBSC following
cryopreservation up to 18 years in NSG mice, signifying likely successful clinical
transplantation of PBSC following long-term cryopreservation.

Key words: Colony-forming units assay; Cryopreservation; Hematopoietic stem cells;
Hematopoietic stem cell transplantation; In vitro techniques; Peripheral blood stem cell;
Viability; Transplant; Long-term storage

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Peripheral blood stem cells (PBSC) are commonly cryopreserved awaiting
clinical use for hematopoietic stem cell transplant. Long term cryopreservation is
commonly defined as five years or longer, and limited data exists regarding how long
PBSC can be cryopreserved and retain the ability to successfully engraft. We
demonstrated engraftment of clinically-collected and thawed PBSC following
cryopreservation up to 18 years in NSG mice, signifying likely successful clinical
transplantation of PBSC following long-term cryopreservation.

Citation: Underwood J, Rahim M, West C, Britton R, Skipworth E, Graves V, Sexton S,
Harris H, Schwering D, Sinn A, Pollok KE, Robertson KA, Goebel WS, Hege KM. How old
is too old? In vivo engraftment of human peripheral blood stem cells cryopreserved for up to
18 years - implications for clinical transplantation and stability programs. World J Stem Cells
2020; 12(5): 359-367
URL: https://www.wjgnet.com/1948-0210/full/v12/i5/359.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i5.359

INTRODUCTION
Peripheral blood stem cells (PBSC) are the most common source of stem cells for
hematopoietic stem cell transplantation (HSCT), being used for about two-thirds of all
transplants[1]. PBSC are the standard of care for adult HSCT and are often used for
pediatric autologous HSCT as well. PBSC are widely used due to the ease of collection
from donors, the high numbers and quality of the hematopoietic stem cells (HSC),
flexibility of timing for collection, and faster engraftment time compared to marrow.
Another reason for this popularity is the relative ease of storage of PBSC. This allows
for  many centers  to  initially  harvest  enough PBSC for  multiple  transplants  and
cryopreserve them for future use in the setting of tandem/multiple transplants, or for
use after relapse. The potential for long term storage is especially helpful due to the
added difficulty of collecting adequate stem cells in a relapse setting after a first
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transplant[2].
Peripherally  collected  hematopoietic  stem  cell  (HSC)  units  are  held  in

cryopreservation around the world waiting to be used for the treatment of malignant
and nonmalignant conditions in both children and adults. It is assumed that these
cryopreserved cells can be stored for long periods and used with no negative impact
on the patient receiving the cells for transplant[3,4]. Clinically, most PBSC units are
used within a few months to a year from collection. It is currently not well delineated
how long-term cryopreservation (commonly defined as > 60 mo) affects stem cell
recovery, viability, and stem cell function during transplantation.

Whereas the ability to cryopreserve HSC for extended periods has been appreciated
for  over  25  years[5-8],  data  on  PBSC viability  after  long-term cryopreservation  is
limited. Although decreased viability by trypan blue dye exclusion, decreased colony
forming ability and/or decreased CD34+ cell content have been described for PBSC
units cryopreserved for more than 10 years[9,10], other authors have reported that these
in vitro parameters largely remain stable for up to 19 years, at least after initial losses
due  to  freezing [11-13].  Furthermore,  several  studies  report  successful  clinical
engraftment of PBSC cryopreserved for at least 2 up to 11 years[4,12,14,15]. However, there
is insufficient data about successful engraftment of PBSC units cryopreserved beyond
11 years.

Our aim in this study was to determine if long-term cryopreserved PBSC units
could exhibit hematopoietic reconstitution after transplantation into immunodeficient
mice. Such functional studies in mice document the engraftment capability of long
term cryopreserved PBSC units and permit analysis of progenitor and mature cell
subtypes present in engrafted mice. We hypothesized that long-term cryopreservation
and thawing performed in a clinical Cellular Therapy Lab using validated protocols,
would not negatively impact recovery of PBSC nor the ability for engraftment in
NOD/SCID/IL-2Rγnull (NSG) mice. Knowledge of successful engraftment of long term
cryopreserved PBSC units is valuable information for cryopreservation facilities, as it
demonstrates clinical use of stored PBSC units. Successful long-term cryopreservation
of PBSC units also has implications for banking of HSC from other sources, and the
banking of other cellular therapy products.

MATERIALS AND METHODS

PBSC collection, cryopreservation, thawing and separation
PBSC units used for this study were collected and cryopreserved for clinical use by
the  Indiana  University  Health  Cellular  Therapy  Laboratory  following  standard
operating  procedures  in  place  at  the  time  of  collection.  These  PBSC units  were
scheduled for discard once no further clinical needs were identified (reasons include
death  of  patient  or  clinical  practice  no  longer  utilizing  HSCT  for  the  indicated
disease). PBSC use for research purposes was included in patient consent obtained at
the time of PBSC collection. The Institutional Review Board of the Indiana University
School of Medicine approved this study.

Briefly, in a biological safety cabinet, a sample was removed from the apheresis
collection bag for required clinical testing (e.g., WBC count, ABO typing, sterility). The
product volume was calculated by weighing the bag, and the total WBC/mL was
calculated. The minimum freeze volume was next calculated, which is the minimum
total volume of cells and freeze solution needed to ensure that the cell concentration
was a minimum of 0.50 × 108/mL and a maximum of 5.0 × 108/mL. Plasma depletion
was performed if the product volume was significantly greater than the minimum
freeze volume. The product was then distributed into the desired number of freezing
bags, and cell viability was determined by trypan blue staining prior to the addition
of freeze solution. Final freeze volume was calculated by dividing actual volume by
0.8; freeze solution volume was calculated as 20% of the final freeze volume. Freeze
solution consisting of  a  final  concentration of  donor  plasma (if  available)  or  5%
human serum albumin plus 10% DMSO was prepared in a 1:1 ratio, and chilled on ice
for at least 15 min before adding to the freezing bags. Freezing mix was slowly added
to  the  cells,  and  freezing  bags  were  chilled  if  warming  due  to  DMSO  addition
occurred. Following removal of samples for preparation of two cryovials for quality
assurance and final sterility testing, freezing bags were placed into freezing canisters
which were in turn placed into a controlled rate freezer and frozen to -80 °C over
approximately 50 min. The final frozen product was transferred to the vapor phase of
liquid nitrogen for storage.

Total nucleated cell count, viability and CD34+ cell content were determined at the
time of PBSC collection, and these data were available for comparison at the time of
thawing. Products were thawed using a standard clinical thaw and wash procedure.
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A water bath filled with sterile normal saline was warmed to 39-41 °C. The product
bag was removed from the freeze canister and, after identity was confirmed, the bag
was submerged into  the  warmed saline  and gently  agitated until  thawed.  After
thawing,  the  bag  was  transferred  to  a  biological  safety  cabinet,  the  port  covers
removed and swabbed with 70% isopropanol, and the product was washed with a 1:1
ratio of 6% hetastarch and 5% human serum albumin to remove the DMSO prior to
beginning experiments. HSC recovery was measured by the following: post-thaw
cellular counts and viability as compared to pre-freeze, in vitro colony forming assays,
and in vivo transplantation into NSG mice. Cellular measurements included: total
nucleated cell counts, CD34+ cell count via flow cytometry, and percent viable cells by
trypan blue dye exclusion.

In vitro colony assays
Thawed cells were plated for colony forming assays to assess burst-forming units-
erythroid and colony forming units-granulocyte/macrophage (BFU-E/CFU-GM)
utilizing standardized clinical assays. Normal donor PBSC previously validated in the
Cellular Therapy Lab were used as a positive control for the BFU/CFU assay. Test
cells were plated at concentrations to achieve approximately 100-150 total CFUs per
1mL dish (to yield high enough colony numbers to get accurate colony counts with
minimal colony overlap). Cells used in this assay were free of DMSO. Colonies were
scored after 14 d incubation in a humidified chamber.

In vivo NSG mouse assay
Most importantly, stem cell function was evaluated in vivo by transplantation into
NSG  mice.  McDermott  et  al [12]  established  NSG  mice  as  supporting  greater
engraftment of human hematopoietic stem cells than all other strains. Four randomly
chosen  thawed  PBSC  units,  as  a  representative  sample  from  the  10  PBSC  units
studied, were transplanted into NSG mice (n = 6-7 recipients for each thawed unit) to
investigate engraftment potential. Prior to transplantation into immunodeficient mice,
CD34+  cells  were  selected  to  deplete  T  cells  and  prevent  recipient  mice  from
developing graft-vs-host disease during the post-transplant period. CD34+ cells were
isolated  from  the  PBSC  units  by  incubation  with  anti-CD34  antibody  directly
conjugated to magnetic microbeads (Miltenyi, Bergisch-Gladbach, Germany). Positive
CD34+ cell selection was performed using the AutoMACS device (Miltenyi) according
to the manufacturer’s instructions, and yielded a purity of at least 93% CD34+ cells.
NSG mice  were  conditioned with  a  single  dose  of  sublethal  300-cGy total-body
irradiation using a GammaCell  40 (Nordion International  Inc.,  Ontario Canada).
Transplantation was performed as we previously described[15] with 2 × 105 CD34+ cells
per mouse in 400 μL of IMDM, 0.1% BSA given by tail vein injection. Controls were
age-matched NSG mice that received no irradiation or transplanted human cells.
Peripheral blood evaluations at 4 wk represented short-term engraftment, and bone
marrow evaluations at 12 wk represented long-term engraftment of human HSC.
Evaluations at these time points included determination of the percentage of human
CD45+, CD19+, CD3+, and CD33+ cells from the blood and/or bone marrow, and
were performed as previously described[16]. All animal experiments were performed
under supervision of the In Vivo Therapeutics Core using procedures approved by
the  Indiana  University  School  of  Medicine  Institutional  Animal  Care  and  Use
Committee.

RESULTS
PBSC units were analyzed pre-freeze (i.e., at the time of initial cryopreservation) and
again following validated, standardized clinical thaw procedures (post-thaw). The
total nucleated cell (TNC) count and percent viability were measured post-thaw and
compared to pre-freeze values. TNC recovery (TNC post-thaw as a percentage of pre-
freeze TNC) was calculated. BFU-E and CFU-GM were quantified using standardized
colony assays. These data regarding the PBSC units are summarized in Table 1.

The PBSC units tested were cryopreserved for a mean of 17 years (range 13.6-18.3
years). The mean donor age at the time of collection was 47 years-old (range of 24-66
years).  Diseases  for  which PBSC were clinically  collected included glioblastoma
multiforme, chronic myelogenous leukemia, multiple myeloma, and non-Hodgkin’s
lymphoma. The mean TNC recovery from the 10 units was 88% ± 12% (range 68%-
110%). Variable post-thaw viability was evident with a mean of 69% ± 17% viability
(range 34%-86%). Eight of the 10 units had a post-thaw viability of > 50%. Of the ten
PBSC units, nine exhibited BFU-E growth and seven showed CFU-GM growth.

Analysis of PBSC post-CD34+ selection and engraftment data in NSG mice were
obtained for four random units from patients with four different diagnoses. The four
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Table 1  Cryopreserved peripheral blood stem cells unit characteristics

PBSC unit
Unit characteristics Pre-freeze

characteristics Post-thaw characteristics Colony forming ability

Donor age
(yr) Disease Cryopreser

-vation (yr)
TNC ×
103/µL %CD34 TNC ×

103/µL
%TNC
Recovery %Viability BFU-E/105 CFU-

GM/106

A 25 GLIO 18.1 110 0.2 121 110 84 2 2

B 58 CML 17.7 120 0.5 111 103 86 6 10

C 46 MM 13.6 120 3.9 116 81 68 ++ ++

D 24 NHL 14.6 116 3.8 110 68 67 ++ ++

E 52 MM 17.9 127 0.2 164 90 86 0.3 0

F 66 MM 17 102 0.5 145 95 34 0 0

G 54 MM 18.3 134 0.5 114 79 81 4 6

H 52 MM 17.9 120 0.2 150 90 70 9 6

I 47 MM 17.2 114 1.5 120 80 62 0.3 0

J 47 MM 17.1 114 1.5 124 83 49 ++ ++

TNC: Total nucleated cells; BFU: Burst forming units; PBSC: Peripheral blood stem cells; CFU: Colony forming units; GLIO: Glioblastoma multiforme;
CML: Chronic myelogenous leukemia; MM: Multiple myeloma; NHL: Non-Hodgkin's lymphoma; ++: Overgrowth too numerous to count.

units included the youngest (13.6 years) and second oldest (18.1 years) cryopreserved
units.  The  CD34+  selected  cell  characteristics  and  engraftment  findings  are
summarized in  Table  2.  CD34+ selected  cells  demonstrated  vigorous  growth of
erythroid and myeloid colonies. Following transplantation, all mice demonstrated
short-  and  long-term  engraftment  at  4  and  12  wk,  respectively.  Marrow  from
transplanted mice harvested at 12 wk post-transplant demonstrated a mean of 34% ±
24%  human  CD45+  cells,  indicating  substantial  levels  of  long-term  human  cell
engraftment. PBSC Unit “B” had the highest average human CD45 levels at 63.6%,
despite being one of the older cryopreserved units with cryopreservation time of 17.7
years. All mice demonstrated multilineage differentiation on bone marrow at 12 wk
with the presence of human CD19+ (B lymphocytes),  CD3+ (T lymphocytes) and
CD33+ (myeloid) cells by flow cytometry. This transplantation study demonstrates
that  PBSC  can  be  cryopreserved  for  up  to  18  years  (i.e.,  the  age  of  the  oldest
cryopreserved unit)  while  retaining colony forming ability and the capability to
engraft into NSG mice.

DISCUSSION
PBSC units are held in cryopreservation around the world awaiting clinical use. The
ability to successfully store PBSC units is critical for patients who require multiple
transplants or for storing PBSC units for future use if a patient relapses. Whereas
frozen cord blood units  are entirely infused for a transplant,  sufficient PBSC for
multiple transplants can be collected from a single donor and used over time. Indeed,
tandem (or even triple) autologous transplants are currently used for patients with
multiple myeloma, germ cell tumors, neuroblastoma, and pediatric brain tumors,
among others. Most of these tandem transplants are performed within a year of PBSC
collection;  however,  under  certain  circumstances,  PBSC will  be  stored  for  later
transplantation. Many institutions collect sufficient PBSC for at least two transplants
for multiple myeloma patients, which may occur years apart. In addition, additional
allogeneic PBSC may be collected and stored should the patient relapse and require a
second transplant, need a stem cell boost for poor engraftment, or benefit from donor
lymphocyte  infusions  for  relapse  or  declining  donor  chimerism.  Again,  these
infusions may occur years after the initial PBSC collection. The ability to successfully
store  and  thaw long-term cryopreserved  products  is  particularly  important  for
autologous HSCT patients who may not successfully mobilize PBSC after relapse and
salvage  therapy  and  for  allogeneic  recipients  whose  donors  may  no  longer  be
available for subsequent PBSC collections.

Regulatory  agencies  and  accreditation  bodies  do  not  currently  have  specific
guidelines or limitations on the duration of storage for cryopreserved cell therapies.
The  guidelines  that  are  available  state  that  cells  used  for  hematopoietic  or
immunologic reconstitution must be preserved in a manner that is “appropriate for
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Table 2  Post-CD34 selection characteristics and engraftment data

PBSC unit Cryopreser
-vation (yr)

Post-CD34 selection characteristics Mouse bone marrow engraftment

TNC ×
103/µL %Viability %Purity BFU-E/105 CFU-

GM/106
Mean
%CD45

Mean
%CD19

Mean
%CD3

Mean
%CD33

A 18.1 0.3 96 95 19 56 43.4 14.8 1.1 12.6

B 17.7 0.3 94 93 54 85 63.6 20.8 0.4 13.1

C 13.6 2.5 96 98 ++ ++ 10.3 2.8 1 5.6

D 14.6 2.4 95 98 ++ ++ 20.3 6.8 0.5 7.8

TNC: Total nucleated cells; PBSC: Peripheral blood stem cells; BFU: Burst forming units; CFU: Colony forming units; ++: Overgrowth too numerous to
count.

long-term storage” and that caution should be used for cell units cryopreserved for
longer than 5 years[17,18]. Furthermore, clinical transplantation programs as well as
stem cell banking facilities are required to develop stability programs to demonstrate
proficiency in processing, freezing, storing and thawing clinically-relevant cellular
therapy products.  At the present,  programs must devise their  own protocols  for
thawing frozen products, in part due to the lack of long-term data.

Several groups have demonstrated that viable CD34+ cells and/or colony-forming
cells can be isolated in vitro from PBSC units cryopreserved for up to 19 years[3,9,11,12,19].
However, only a few reports exist demonstrating that long-term (defined in these
studies as 2-11 years) cryopreserved PBSC can successfully engraft in vivo[2,4,7,8,14]. Two
interesting paired studies in particular are enlightening, in which multiple myeloma
patients had sufficient PBSC collected for multiple transplants.  Patients had one
transplant within months of collection, then had a second transplant years later. In
this manner, the quality and function of a single PBSC collection could be compared
over time. Pavlu et al[4] found no differences in the time to neutrophil and platelet
engraftment  in  50  myeloma  patients  who  received  a  second  autologous  PBSC
transplant 2-9 years after the first. Similarly, Liseth et al[14] reported a one day delay in
both neutrophil and platelet recovery in 17 myeloma patients receiving a second
transplant a mean of 3.5 years after the first; this finding was modest but significant in
this  small  patient  population.  These studies  indicate  that  PBSC can successfully
engraft after cryopreservation for up to 11 years. Unfortunately, essentially no data
exists for PBSC units stored beyond 11 years.

The paucity of data on long-term cryopreserved PBSC is somewhat surprising,
especially since PBSC are by far the most common stem cell source for HSCT[1]. With
limited  data  on  long-term  cryopreservation  of  PBSCs,  investigations  into  the
properties of human cord blood may be informative. More data on cryopreserved
cord blood may exist since public cord blood banking is stringently regulated, in part
because, unlike PBSC, cord blood units are typically used years after processing and
freezing; thus, stability programs are necessary to monitor the quality of cord blood
units between banks over time. Compounding this issue is the fact that, also unlike
PBSC,  cord  blood  units  are  usually  processed  and  cryopreserved  at  a  different
institution, often in a different country, than where the transplant occurs. Efforts are
underway to create international standards governing the processing, storage, and
distribution  of  human  cells  and  tissues,  especially  cord  blood,  harmonizing
regulations  from  government  agencies  and  adopting  selected  standards  from
accrediting  bodies  such  as  NetCord-FACT  (Federation  for  the  Accreditation  of
Cellular Therapies) and The Joint Accreditation Committee ISCT-Europe & EBMT
(JACIE) to develop a set of minimal criteria for cord blood banking[20].

Yamamoto et al[21] evaluated 18 cord blood units in storage for over 10 years and
found 84% viability, with CD34+ counts and in vitro colony forming unit activity
(CFU)  similar  to  controls.  In  the  most  extensive  non-clinical  studies  to  date,
Broxmeyer et al[22-24], through a series of publications, evaluated cord blood units in
cryopreservation for 9-10 years, 15 years and 21-23.5 years. In the 15-year study, this
group found highly efficient  cell  recovery in 9 cord blood units,  with post-thaw
CD34+ counts similar to pre-cryopreservation counts. Furthermore, 3 of 4 units tested
were successfully transplanted into NSG mice with evidence of engraftment. In the
21-year study, this group again found highly efficient cell recovery in 23 cord blood
units  with  post-thaw CD34+ counts  similar  to  pre-cryopreservation counts,  cell
recovery with colony formation, as well as successful engraftment into NSG mice with
secondary repopulation.

Several groups examined engraftment of long-term cryopreserved cord blood in
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patients [25-27].  Parmar  et  al [25]  described  engraftment  of  15  cord  blood  units
cryopreserved for 5-12 years. The only factors identified as significant for recipient
survival were myeloablative conditioning and HLA mismatch, not the age of the cord
blood unit. Two other groups transplanted 62 cord blood units cryopreserved from 5
to 11 years[27] and 22 cord blood units cryopreserved for 10-13.4 years[26], respectively,
and found no difference in engraftment compared to younger units. In sum, these
clinical  studies  indicate  that  cryopreserved  cord  blood  retains  its  engraftment
potential in vivo for at least 11 years.

Our study evaluated PBSC after an average of 17 years in cryopreservation. We
focused upon PBSC units from patients which were collected, frozen and thawed
using validated clinical protocols for human transplantation in place at the time of
freezing and thawing, respectively; an evaluation of PBSC frozen using experimental
procedures, such as uncontrolled freezing methods and/or storing frozen cells in
mechanical freezers rather in vapor phase of liquid nitrogen[10,28] is beyond the scope of
this study. We assessed the in vitro proliferative abilities of these cells, and, most
importantly, assessed the in vivo capacity of these recovered cells to engraft and
repopulate the hematopoietic system of sublethally irradiated NSG mice. The post-
thaw viability of the 10 older units (mean 69 ± 17% viability, range 34%-86%) was
similar to that obtained in the Cellular Therapy Lab for PBSC units frozen for < 7 wk
and transplanted in quarter 4 of 2019 (73% ± 6% viability, range: 61%-84%, n = 55). Of
the ten different PBSC units, nine exhibited BFU-E growth and seven showed CFU-
GM growth.  Interestingly,  PBSC unit  “F”  that  lacked both  BFU-E and CFU-GM
growth was the unit with the lowest post thaw percent viability of 34%, but this was
not one of the oldest or youngest cryopreserved units. PBSC unit “F” was, however,
obtained from the oldest patient in our cohort of samples. Moreover, the two units
(units “E” and “I”) which had no CFU-GM growth, and the unit which had no CFU-
GM or BFU-E growth (unit “F”), were all from multiple myeloma patients. Of note,
mobilization and collection of  PBSC from patients  with multiple myeloma often
presents  a  challenge[29],  and thawed PBSC products  from myeloma patients  may
exhibit lower viability and TNC recovery than products from patients with other
diagnoses[30].  Furthermore, colony formation is known to be reduced in myeloma
patients relative to healthy donors[31]; however, PBSC from myeloma patients can still
successfully engraft in immunodeficient mice[31] and patients[32] despite reduced or
even absent colony-forming ability. Overall, these data indicate a highly efficient total
cell recovery and viability, which is an important factor in determining the likelihood
of engraftment.

Most importantly, both short- and long-term engraftment was demonstrated in
NSG mice with differentiation into multilineage phenotypes. Although the ultimate
success  for  PBSC  following  long-term  cryopreservation  would  be  long-term
engraftment in humans, our data build upon the pre-clinical and clinical experiences
with PBSC and cord blood detailed above, and imply that older PBSC units could also
successfully be used for clinical applications. Based on these data, our institution
increased the  time of  “safe  storage”  from 5  years  to  12  years  without  requiring
additional testing of the unit for viability (e.g., thawing of a cryovial for testing), and
will continue to increase the duration of safe storage based on ongoing stability data
with longer cryopreservation times.

ARTICLE HIGHLIGHTS
Research background
Peripheral  blood stem cells  (PBSC)  are  commonly cryopreserved awaiting clinical  use  for
hematopoietic stem cell transplant (HSCT). Long term cryopreservation is commonly defined as
five years or longer, and limited data exists regarding how long PBSC can be cryopreserved and
retain the ability to successfully engraft. Our study examines the engraftment potential of long-
term cryopreserved PBSC units. This could allow for PBSC units to be stored for a longer time
without repeated viability testing and for these units to be utilized in clinical HSCT.

Research motivation
We  investigated  the  viability  and  colony-forming  unit  capacity  in  vitro,  and  the  in  vivo
engraftment  potential  of  long-term  cryopreserved  PBSC  units.  This  was  done  to  gain  an
understanding of the viability of long-term cryopreserved PBSC units so that these long-term
cryopreserved units could be used for clinical HSCT.

Research objectives
Our intention  was  to  investigate  if  long-term cryopreserved PBSC units,  which  are  being
preserved in stem cell banks for many years, can be utilized with successful in vivo engraftment.
This will help with gaining insight to the potential use of long-term cryopreserved PBSC units.

WJSC https://www.wjgnet.com May 26, 2020 Volume 12 Issue 5

Underwood J et al. Engraftment of long-term cryopreserved PBSC

365



Research methods
PBSC units were collected and frozen as per validated clinical protocols. The units were then
thawed as per clinical standards of practice. Progenitor function was assessed with standard
colony-forming assays. CD34-selected cells were transplanted into NOD/ SCID/IL-2Rγnull (NSG)
mice and stem cell function was assessed.

Research results
Ten long-term cryopreserved PBSC units (mean of 17 years) demonstrated appropriate post-
thaw  viability  of  which  nine  had  BFU-E  growth  and  seven  showed  CFU-GM  growth.
Immunodeficient NSG mice (6-7 recipient mice/PBSC unit) were transplanted with 4 randomly
selected PBSC units that were cryopreserved for up to 18 years, and all mice showed short-term
and long-term engraftment and reconstitution of human myeloid and lymphoid cells. Moving
forward it will be important to analyze the engraftment of long-term cryopreserved PBSC units
in vivo on a larger scale.

Research conclusions
This study demonstrates the appropriate long term engraftment of  clinically collected and
thawed PBSC units follow cryopreservation up to 17 years in immunodeficient mice. This is one
of few studies that analyzes the in vivo engraftment potential of long-term cryopreserved PBSC
units.  This can allow institutions to safely increase the time of safe storage for PBSC units,
without further viability testing of the units. These findings are beneficial for clinical programs,
stem cell banks, and regulatory and accrediting agencies interested in product stability.

Research perspectives
In summary, this study demonstrates that long-term cryopreserved PBSC can exhibit short- and
long-term  engraftment  in  immunodeficient  mice  with  differentiation  into  multilineage
phenotypes. Future research would be to expand studies to look at in vivo engraftment on a
larger scale and ultimately to apply this to clinical transplantation in humans.
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Abstract
BACKGROUND
Intrauterine adhesion (IUA) can cause serious damage to women's reproductive
health, yet current treatment methods are difficult to achieve satisfactory results.
In our previous studies, we demonstrated that menstrual-derived stromal stem
cells (MenSCs), with high proliferative capacity and self-renewal ability, have a
powerful therapeutic effect in patients with severe IUA. However, safety
assessment of MenSCs transplantation is essential for its further application.

AIM
To evaluate the short-, medium-, and long-term biosafety of MenSCs via
intrauterine transplantation in a rat model of IUA, with a focus on toxicity and
tumorigenicity.

METHODS
MenSCs were injected into the sub-serosal layer of the uterus in an IUA rat
model, for 3 d, 3 mo, and 6 mo separately, to monitor the corresponding acute,
sub-chronic, and chronic effects. Healthy rats of the same age served as negative
controls. Toxicity effects were evaluated by body weight, organ weight,
histopathology, hematology, and biochemistry tests. Tumorigenicity of MenSCs
was investigated in Balb/c-nu mice in vivo and by colony formation assays in
vitro.

RESULTS
Compared with the same week-old control group, all of the IUA rats receiving
MenSC transplantation demonstrated no obvious changes in body weight, main
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organ weight, or blood cell composition during the acute, sub-chronic, and
chronic observation periods. At the same time, serum biochemical tests showed
no adverse effects on metabolism or liver and kidney function. After 4 wk of
subcutaneous injection of MenSCs in Balb/c-nu nude mice, no tumor formation
or cell metastasis was observed. Moreover, there was no tumor colony formation
of MenSCs during soft agar culture in vitro.

CONCLUSION
There is no acute, sub-chronic, or chronic poisoning, infection, tumorigenesis, or
endometriosis in rats with IUA after MenSC transplantation. The above results
suggest that intrauterine transplantation of MenSCs is safe for endometrial
treatment.

Key words: Menstrual blood-derived stromal cells; Endometrial treatment; Intrauterine
adhesion; Stem cell transplantation; Biosafety; Toxicity

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Menstrual-derived stromal stem cells (MenSCs) with high proliferative capacity
and self-renewal ability have a powerful therapeutic effect in patients with severe
intrauterine adhesion. However, safety assessment of MenSC transplantation is essential
for its further application. Here, we evaluated the short-, medium-, and long-term
biosafety of MenSCs via intrauterine transplantation in an intrauterine adhesion rat
model, with a special focus on toxicity and tumorigenicity. There was no acute, sub-
chronic, or chronic poisoning, infection, tumor, or endometriosis in rats with intrauterine
adhesions after MenSC transplantation, highlighting that intrauterine transplantation of
MenSCs is safe for endometrial treatment.

Citation: Chang QY, Zhang SW, Li PP, Yuan ZW, Tan JC. Safety of menstrual blood-derived
stromal cell transplantation in treatment of intrauterine adhesion. World J Stem Cells 2020;
12(5): 368-380
URL: https://www.wjgnet.com/1948-0210/full/v12/i5/368.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i5.368

INTRODUCTION
Intrauterine adhesion (IUA) is a traumatic disease mostly associated with intrauterine
surgery[1],  mainly  characterized  by  endometrial  functional  disorders,  including
abnormal menstruation (menstrual reduction or amenorrhea), thin endometrium,
pelvic pain, implantation abnormality, infertility, and abortion[2]. With the increasing
frequency of intrauterine operation, the incidence of IUA is gradually increasing.
Approximately  2.8%-45.5%  of  secondary  infertility  cases  are  related  to  IUA[3].
However, for patients with severe IUA, conventional treatment methods, such as
surgical  isolation  and  hormone  supplementation,  cannot  achieve  the  desired
therapeutic effect. Especially, it is difficult to improve the fertility in patients with
IUA.

Recent  studies  have  shown  that  tissue  and  organ  damage  can  be  repaired
effectively by stem cell transplantation. Mesenchymal stem cells (MSCs) are adult
stem cells that can be easily collected and cultured from tissues and organs[4]. Due to
the advantages of  strong proliferative ability,  high genetic  stability,  chemotactic
properties, and low immunogenetic effects, MSCs play an important role in the field
of  regenerative  medicine[5-7].  Recently,  MSCs  have  been  used in  stem cell-based
infertility treatment. Bone marrow-derived MSCs (BMSCs), umbilical cord-derived
MSCs (UCMSCs), and endometrial-derived MSCs were all proved to be effective in
recovering damaged endometrium[8-11].

Menstrual blood-derived stromal cells (MenSCs) are shedding endometrial stem
cells that are obtained from menstrual blood, and were first reported by Meng et al[12].
These  cells  exhibit  classic  MSC characteristics,  such  as  automatic  cloning,  high
proliferation, and pluripotency[13]. Recent studies have shown that MenSCs improved
a variety of diseases, including type 1 diabetes[14], liver disease[15,16], premature ovarian
failure[17], osteochondral defects[18], heart disease[19], and cartilage damage[20]. It is worth
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noting that MenSCs are easily obtained from abandoned menstrual blood in a non-
invasive manner, which can be obtained periodically and autologously transplanted
without trauma or ethical risk. Therefore, compared with BMSCs and adipose tissue-
derived mesenchymal stem cells (ADSCs), MenSCs have greater clinical application
potential on the premise of similar efficacy[21]. Our previous research confirmed that
autologous  MenSC  transplantation  can  significantly  promote  endometrial
morphology regeneration and functional recovery in seven patients with severe IUA,
and  achieved  four  positive  pregnancies[22].  After  MenSC  transplantation,  the
endometrial  pathology  and  uterine  fertility  of  an  IUA  rat  model  were  also
improved[23].  Therefore,  MenSC  transplantation  is  a  promising  treatment  for
endometrial injury.

It is undeniable that MenSCs represent a new type of therapeutic stem cells. Many
related treatment studies are still in the preclinical or phase 1 clinical trial phase. At
present,  the  effectiveness  of  MenSCs  in  treating  traumatic  diseases  has  been
confirmed. However, long-term observational data of clinical application of MenSCs
is scarce, and systematic biosafety evaluation is still lacking[24].

In this study, we aimed to investigate the biosafety of intrauterine transplantation
of MenSCs to treat endometrial injury over acute, sub-chronic, and chronic periods.
Based  on  an  IUA rat  model,  the  safety  of  MenSC treatment  was  systematically
evaluated for  toxicity,  tumorigenicity,  and abnormal differentiation.  Our results
provide a theoretical basis for the clinical application of MenSCs in endometrial injury
treatment.

MATERIALS AND METHODS

Culture and identification of MenSCs
MenSCs were cultured and identified as described previously[23].  In brief,  sterile
techniques were used to collect menstrual blood from three healthy volunteers, aged
25 to 30 years. After mixing with PBS, the samples of menstrual blood were lightly
placed on the upper layer of an equal amount of Ficoll. The intermediate cell layer
was separated and cultured in DMEM/F12 medium (1:1; HyClone, Logan, UT, United
States) containing 10% fetal bovine serum (Gibco, Waltham, MA, United States) at 37
°C in a 5% atmosphere. MenSCs at passage 3 (P3) were collected and MSC surface
markers were evaluated by flow cytometry (CD34, CD38, CD44, CD45, CD73, CD90,
and CD105) (Supplemental Figures 1). Only well-grown and verified P3 MenSCs were
used in this study.

Toxicology study
Establishment and treatment of a rat model of IUA: Forty-five eight-week-old female
Sprague-Dawley rats were purchased from HFK Bioscience Co. (Beijing, China) and
housed in a Specific-Pathogen-Free (SPF) laboratory (SYXK 2017-0004, China) at a
temperature of 22 °C ± 1 °C, a relative humidity of 50% ± 1%, and a light/dark cycle
of 12/12 h. Sterilized food and water were available ad libitum. All animal studies
(including euthanasia procedures) were conducted in accordance with the regulations
and guidelines of China Medical University institutional animal care and with the
AAALAC and IACUC guidelines. A rat model of IUA was established according to
the procedures outlined in our previous study. In brief, 30 female rats in estrus cycle
were  selected  for  surgery  (n  =  10  for  each  group).  After  anesthesia  with  3%
pentobarbital, the uterine horn was surgically exposed. The endometrium was then
damaged mechanically using a 16 G syringe. After two estrus cycles, the abdominal
wall was reopened and 5 × 105 MenSCs were injected into each uterine serosa. Five
rats in each group received a placebo (PBS) and acted as controls.

Sample acquisition:  The study involved three experimental groups according to
observation time: Acute group (3 d), sub-chronic group (3 mo), and chronic group (6
mo). All rats were weighed prior to sacrifice and 5 mL of blood was collected from the
abdominal aorta. Sodium citrate was added to 2 mL of peripheral blood to analyze the
blood cell composition. The remaining peripheral blood was quickly centrifuged and
the  serum was  separated  for  biochemical  detection.  After  removing the  surface
adipose tissue, the brain, heart, liver, spleen, lungs, kidneys, thymus, adrenal glands,
uterus,  and ovaries of  each rat  were weighed and recorded. Subsequently,  these
organs were fixed in 4% paraformaldehyde,  dehydrated,  and then embedded in
paraffin. Then, we prepared 5 μm serial sections of each tissue for staining.

Blood  cell  composition  test  and  serum  biochemical  test:  Freshly  collected  rat
peripheral venous blood was immediately tested for blood cell composition (Procyte
DX, IDEXX Laboratories, United States). Red blood cells, hematocritt, hemoglobin,
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Figure 1

Figure 1  Histopathological analysis of intrauterine adhesion rats after menstrual-derived stromal stem cell
treatment. Representative H&E staining of various organs (brain, heart, liver, spleen, lungs, kidneys, thymus, adrenal
glands, uterus, and ovaries). No structural changes or injuries were detected in theses organs. Scale bar = 100 μm.

average red blood cell volume, average hemoglobin concentration, red blood cell
distribution  width,  reticulocytes,  white  blood  cells,  neutrophils,  lymphocytes,
monocytes, eosinophils, basophils, neutrophils, and platelet related concentrations or
percentages were evaluated.  Subsequently,  blood glucose,  urea,  creatinine,  total
protein, albumin, globulin, alanine aminotransferase, aspartate aminotransferase,
alkaline phosphatase, and sodium, potassium, and chloride ion concentrations in the
serum of each group of rats were detected (Catalyst One, IDEXX Laboratories, United
States).

Histopathology
Paraffin sections of various organs were subjected to hematoxylin-eosin (HE) staining
after dewaxing and dehydration. The tissue morphology of each tissue was then
evaluated by light microscopy (NikonECLIPSE N80-i).

Tumorgenicity tests
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In  vivo:  P3  MenSCs  were  fluorescently  labeled  by  transfection  with  green
fluorescence  protein  (GFP)-labeled  lentivirus  (multiplicity  of  infection  =  20).
Subcutaneous  injection in  Balb/c-nu mice  was  applied to  detect  tumor-forming
properties of MenSCs in vivo. Eight-week-old female Balb/c-nu mice weighing 20 g,
were purchased from HFK Bioscience Co. (Beijing, China), and housed in a specific-
pathogen-free (SPF) laboratory (SYXK 2017-0004,  China).  We then injected GFP-
labeled 107 MenSCs into the epidermis on the groin of Balb/c-nu mice. The intensity
and range of fluorescence were then evaluated every 7 d by 470-535 nm excitation.
Each mouse was placed onto the scanning stage of the in vivo  MS FX Pro system
(Carestream, United States). Bioluminescence imaging was carried to identify the
location of GFP-MenSCs. Images were acquired and analyzed with Carestream MI SE
software.

In vitro: The tumorigenicity of MenSCs was evaluated by soft-agar colony formation
assays in vitro.  HELA cells were used as a positive control.  These cells were first
suspended in complete culture medium with 0.35% low melting agarose, then the
mixture was transferred onto solidified 0.6% agarose in a 6-well plate. Approximately
2. 5 × 103 and 5 × 103 cells were uniformly inoculated into the upper layer of each well
and cultured in DMEM/F12 medium containing 10% fetal bovine serum at 37 °C in an
atmosphere containing 5% CO2. The monoclonal formation of MenSCs and HELA
cells  was  observed  under  a  microscope  (Nikon  ECLIPSE  Hi)  to  investigate  for
malignant proliferation for a total period of 2 wk.

Statistical analysis
All  data in this  study are presented as the mean ± standard deviation (SD),  and
comparisons between groups were analyzed using one-way analysis  of  variance
(ANOVA).  Bonferroni  post  hoc tests  were used to further investigate significant
differences. Statistical analyses were carried out with Prism 8 software (GraphPad,
San Diego, United States) and P  < 0.05 was considered to represent a statistically
significant difference.

RESULTS

Toxicity
Body weights: Over the entire experimental period, no deaths or adverse response
were evident in either the control group or the MenSC transplantation groups. All rats
represented  with normal behavior without surgical complications. As shown in Table
1, there was no difference between each experimental group and the healthy controls
in terms of body weight throughout the entire experimental period (Pacute  = 0.207,
Psub-chronic = 0.255, and Pchronic = 0.696).

Organ weights: Next, we weighed the major organs of all rats. As shown in Table 2,
there was no difference between the control groups and the treatment groups in terms
of the relative weight of the brain, heart, liver, spleen, lung, kidney, thymus, adrenal
glands, uterus, and ovaries, indicating that organ weights were within the normal
range.  No  morphological  change  or  color  change  was  observed  in  any  of  the
examined organs.

Hematology and biochemistry: Next, blood cell composition and serum biochemical
and metabolic parameters were examined in two groups of rats (Tables 3 and 4). The
blood cell compositions in the MenSC transplantation groups fluctuated slightly, but
were all within the range of normal values. In addition, compared with controls of the
same  age,  there  were  no  changes  in  terms  of  serum  biochemical  or  metabolic
parameters in the MenSC transplantation groups.

Histopathology
Compared with controls of the same week-old age, there were no changes in the main
organ morphology or size in the MenSC transplantation groups.  In addition,  we
carefully examined the abdominal cavity of every rat, and no endometriosis or tumor
formation was observed at 3 d, 3 mo or 6 mo after MenSC transplantation.

Next, histopathological examinations of the brain, heart, liver, spleen, lung, kidney
thymus, thyroid, adrenal glands, uterus, and ovaries were carried out by HE staining.
Representative histological images are shown in Figure 1. Compared with the control
group of the same age, there were no obvious structural changes or tumor formation
in the MenSC transplantation group.

Tumorigenicity studies
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Table 1  Body weight changes of mice in toxicity study

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Body weight (g) 228.0 ± 18.18 228.8 ± 9.175 267.4 ± 26.16 265.8 ± 9.378 326.0 ± 22.75 303.7 ± 35.06

Measurements are given as the mean ± SD. Group 1: Control for acute group; Group 2: Acute group; Group 3: Control for subchronic group; Group 4:
Subchronic group; Group 5: Control for chronic group; Group 6: Chronic group (n = 5 for each control group, n = 10 for each experimental group).

In vivo  assay:  The tumorigenesis of MenSCs was examined in vivo  (Figure 2) via
hypodermic injection into Balb/c-nu mice. Four weeks post-injection, there was no
tumor formation in the nude mice injected with MenSCs and the fluorescent-labeled
MenSCs gradually disappeared over time. No fluorescent signals were detected in
other parts of the body. In contrast, Balb/c-nu mice with HELA cell injection showed
subcutaneous tumors and had surface gangrene (Supplementary Figure 2).

In vitro assay: The tumorigenesis of MenSCs was also investigated in vitro using soft-
agar assays. The tumorigenicity was negative for MenSCs in vitro, and no cell colonies
were formed during 2 wk of culture (Figure 3A). In contrast, as for Hela cells, there
were numerous colonies observed in the soft agar (Figure 3B). These tumor colonies
grew in stacks and spread outward with strong tumorigenicity.

DISCUSSION
MSCs are  the  most  commonly  used  stem cells  in  basic  and clinical  research.  In
addition  to  differentiation  potential,  MSCs  also  participate  in  the  regulation  of
immune balance. Moreover, MSCs have the effect on microenvironment formation
that is conducive to tissue regeneration[25]. Recent clinical studies have confirmed that
BMSCs, ADMSCs, UCMSCs, and vascular endothelial  MSCs provide therapeutic
effects with regard to organ function improvement and tissue regeneration, and thus
were widely used in clinical treatment research of cardiovascular disease, immune
system disease, motor system injury, and digestive system disease. During the follow-
up of these clinical studies, there were no tumor or serious complications associated
with stem cell transplantation[26-30].

Up to now, only two clinical trials of MenSC transplantation have been reported. In
2009,  Zhong’s  study  indicated  that  transplantation  of  allogeneic  MenSCs  can
effectively improve multiple sclerosis. During the one-year follow-up, there were no
complications related to immune response and cell transplantation observed in all
four  patients[31].  Similarly,  in  our  previous  clinical  trial,  no  transplant-related
complication was found in all seven severe IUA patients after receiving autologous
MenSC transplantation[22].

Currently,  MenSC treatment studies were mostly in the preclinical  or  phase 1
clinical research stage[24]. Therefore, it is essential to acquire more clinical and basic
research data  in  order  to  support  the further  clinical  application of  MenSCs.  To
transform  MenSCs  from  an  experimental  product  into  a  clinical  treatment
formulation, it is necessary to consider factors directly related to clinical application,
such  as  indications,  routes  of  administration,  and  dosage.  Due  to  the  high
proliferative potential and multi-pluripotency, the toxicity and tumorigenicity of stem
cells are the main concerns in clinical research[32]. Meanwhile, the biological safety
should be  assessed in  appropriate  in  vivo  and in  vitro  models.  In  this  study,  we
transplanted MenSCs in an IUA rat model using a dose and method consistent with
the clinical application, and evaluated the safety of MenSCs for acute, sub-chronic,
and chronic observations. To our knowledge, it is the first comprehensive preclinical
biosafety study of MenSCs.

In our study, 30 IUA rat models received 106 MenSCs via intrauterine sub-serosa
injection. During the observation periods from 3 d to 6 mo, all these rats maintained
normal  body  weight,  without  death,  abnormal  behavior,  or  transplant-related
diseases. At the same time, the weight, shape, and appearance of the main organs
remained  normal.  Moreover,  compared  with  the  control  group,  there  were  no
differences in blood cell composition or ratio after MenSC transplantation. Serum
biochemical  results  showed that  the liver  and kidney function in these rats  was
normal. The above results demonstrated that MenSCs were well tolerated, without
initiation of abnormal immune response or organ dysfunction.

It is worth noting that the leukocytes and lymphocytes in all experimental groups
were within the normal range, indicating that the preparation and transplantation
process of MenSCs was sterile. Menstrual blood is usually obtained non-invasively
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Table 2  Relative organ weights of rats in toxicity study

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Brain 1.314 ± 0.220 1.439 ± 0.176 1.480 ± 0.211 1.477 ± 0.197 1.441 ± 0.047 1.508 ± 0.176

Heart 0.718 ± 0.048 0.750 ± 0.087 0.744 ± 0.076 0.805 ± 0.064 0.826 ± 0.039 0.868 ± 0.039

Liver 8.383 ± 0.764 8.525 ± 1.012 8.563 ± 0.646 9.205 ± 1.385 9.982 ± 0.282 10.01 ± 0.872

Spleen 0.432 ± 0.101 0.490 ± 0.123 0.515 ± 0.051 0.506 ± 0.067 0.500 ± 0.018 0.501 ± 0.082

Lung 1.225 ± 1.104 1.269 ± 0.100 1.375 ± 0.129 1.374 ± 0.088 1.350 ± 0.084 1.374 ± 0.100

Kidney 0.900 ± 0.161 1.016 ± 0.267 1.028 ± 0.032 1.015 ± 0.181 1.012 ± 0.082 1.009 ± 0.144

Thymus 0.298 ± 0.021 0.335 ± 0.051 0.341 ± 0.072 0.339 ± 0.059 0.352 ± 0.032 0.338 ± 0.052

Adrenal gland 0.027 ± 0.003 0.025 ± 0.005 0.032 ± 0.002 0.029 ± 0.006 0.031 ± 0.002 0.030 ± 0.006

Uterus 0.512 ± 0.025 0.524 ± 0.017 0.511 ± 0.021 0.514 ± 0.020 0.536 ± 0.031 0.546 ± 0.045

Ovary 0.047 ± 0.004 0.049 ± 0.005 0.049 ± 0.004 0.051 ± 0.003 0.054 ± 0.005 0.053 ± 0.004

Measurements are given as the mean ± SD. Group 1: Control for acute group; Group 2: Acute group; Group 3: Control for subchronic group; Group 4:
Subchronic group; Group 5: Control for chronic group; Group 6: Chronic group.

through the vagina, which is a unique advantage of MenSCs in regenerative medicine.
However,  this  is  also  the  main  source  of  contamination  risks  during  MenSC
preparation. Therefore, the establishment of a quality control system is essential for
MenSC clinical application.

Tumorigenicity is  one of the most serious risk factors to be considered for the
clinical application of MSCs[33], which is strictly related to genomic instability[34]. Only
a few studies have investigated malignant lesions at MSC transplant sites, suggesting
that the potential risk of tumor formation may still exist[35-38]. In contrast, some other
studies  have indicated that  MSCs were not  associated with tumorigenicity  after
intravenous or intramuscular application[39,40]. To date, only one article has reported
spontaneous tumorigenic transformation due to long-term cultivation associated with
genomic alterations in culture[41].  It  is determined that MenSCs has no karyotype
changes in long-term culture in vitro[14].

In this study, no tumor formation was observed in IUA rat models after 6 mo of
intrauterine sub-serosa injection. After MenSC transplantation, no lump formed on
the abdominal wall or organs. The physiological structure of all organs remained
normal.  Furthermore,  we  used  Balb/c-nu  mice  to  detect  the  tumorigenicity  of
MenSCs. The subcutaneous GFP fluorescence range gradually decreased without
migration. These GFP-labled MenSCs completely disappeared at the fourth week,
indicating that MenSCs are none-tumorigenic in vivo.  In addition, soft agar assay
demonstrated that MenSCs did not form any tumor-like cell population in vitro. These
results  provide  good  evidence  that  MenSCs  is  non-tumorigenic  in  clinical
applications.

In conclusion, our current research confirms that intrauterine transplantation of
MenSCs is safe, without toxicities or tumorigenicity. The results indicate that MenSCs
are not only safe but also a promise source of cells for treating IUA and other types of
endometrial damage. In addition, it is necessary to conduct longer follow-up studies
on patients to fully ensure the safety of MenSC application.
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Table 3  Selected hematology analyses of rats in toxicity study

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

RBC (× 1012/L) 7.196 ± 0.090 7.225 ± 0.340 7.346 ± 0.418 7.462 ± 0.430 7.276 ± 0.421 7.300 ± 0.347

HCT (%) 39.32 ± 0.740 38.98 ± 1.992 39.08 ± 0.958 38.50 ± 2.253 38.90 ± 2.220 37.05 ± 0.576

MCV (fL) 54.64 ± 0.541 52.28 ± 0.784 53.28 ± 1.767 53.34 ± 0.845 53.00 ± 0.714 53.04 ± 1.681

MCH (pg) 18.66 ± 0.114 18.01 ± 0.470 18.10 ± 0.765 18.39 ± 0.341 17.82 ± 1.043 18.51 ± 0.905

MCHC (g/dL) 34.18 ± 0.523 34.42 ± 0.480 33.96 ± 0.493 34.50 ± 0.245 34.48 ± 0.590 35.12 ± 0.545

RDW (%) 17.42 ± 0.444 17.87 ± 0.912 17.78 ± 0.691 17.29 ± 1.152 17.30 ± 0.570 17.92 ± 0.651

RETIC (K/μL) 2.86 ± 0.434 3.78 ± 0.630 2.78 ± 0.691 2.93 ± 0.706 2.48 ± 0.798 2.81 ± 0.802

RETIC 214.7 ± 35.25 270.6 ± 39.98 202.2 ± 42.64 216.6 ± 49.50 162.3 ± 5.118 178.0 ± 19.04

WBC (×1012/L) 7.644 ± 1.668 6.932 ± 2.50 7.592 ± 2.96 7.504 ± 2.121 6.440 ± 1.248 5.883 ± 2.897

NEU (%) 13.72 ± 4.217 17.50 ± 5.977 12.48 ± 2.104 15.40 ± 5.918 12.10 ± 2.351 14.66 ± 2.831

LYM (%) 75.06 ± 5.697 73.91 ± 6.311 80.36 ± 4.360 79.33 ± 7.194 78.88 ± 3.440 76.26 ± 2.858

MONO (%) 5.180 ± 0.832 6.800 ± 0.902 4.520 ± 1.117 5.540 ± 1.169 4.540 ± 0.963 6.160 ± 1.190

EOS (%) 0.60 ± 0.123 0.80 ± 0.340 0.80 ± 0.200 0.53 ± 0.200 0.62 ± 0.356 0.61 ± 0.166

BASO (%) 0.14 ± 0.114 0.25 ± 0.151 0.20 ± 0.141 0.18 ± 0.140 0.16 ± 0.114 0.19 ± 0.171

NEU (× 109/L) 1.024 ± 0.288 1.116 ± 0.495 0.976 ± 0.153 1.011 ± 0.468 1.096 ± 0.163 1.000 ± 0.096

LYM (× 109/L) 6.178 ± 1.593 4.849 ± 2.150 6.158 ± 2.684 6.002 ± 2.089 5.672 ± 0.854 5.398 ± 1.097

MONO (× 109/L) 0.386 ± 0.042 0.455 ± 0.161 0.426 ± 0.083 0.415 ± 0.120 0.406 ± 0.067 0.346 ± 0.111

EOS (× 109/L) 0.046 ± 0.011 0.05 ± 0.017 0.050 ± 0.029 0.037 ± 0.016 0.004 ± 0.012 0.034 ± 0.013

BASO (× 109/L) 0.01 ± 0.007 0.014 ± 0.010 0.001 ± 0.007 0.013 ± 0.07 0.016 ± 0.009 0.016 ± 0.012

PLT (K/μL) 1001 ± 193.2 1107 ± 178.6 1032 ± 142.8 974.4 ± 121.9 1169 ± 74.37 1075 ± 45.99

MPV (fL) 8.50 ± 0.100 8.43 ± 0.216 8.42 ± 0.148 8.63 ± 0.095 8.44 ± 0.089 8.47 ± 0.206

PDW (fL) 8.50 ± 0.158 8.62 ± 0.148 8.46 ± 0.422 8.30 ± 0.133 8.42 ± 0.303 8.71 ± 0.778

PCT (%) 1.037 ± 0.038 0.962 ± 0.137 0.870 ± 0.129 0.80 ± 0.151 0.844 ± 0.167 0.88 ± 0.107

Note: Measurements are given as the mean ± SD. RBC: Red blood cells;  HCT: Hematocritt;  MCV: Average red blood cell  volume; MCH: Average
hemoglobin concentration; RDW: Red blood cell distribution width; RETIC: Reticulocytes; WBC: White blood cells; NEU: Neutrophils; LYM: Lymphocytes;
MONO: Monocytes; EOS: Eosinophils; BASO: Basophils; PLT: Platelet; MPV: Mean platelet volume; PDW: Platelet distribution width.

Table 4  Selected biochemistry analyses of rats in toxicity study

Group 1 Group 2 Group3 Group 4 Group 5 Group 6

Urea 6.220 ± 0.512 6.260 ± 0.657 5.860 ± 0.493 6.19 ± 0.659 5.840 ± 0.270 6.380 ± 0.570

CREA 27.60 ± 5.128 32.30 ± 6.430 28.40 ± 4.722 26.40 ± 2.011 31.00 ± 6.557 31.10 ± 6.367

BUN/CREA 55.80 ± 11.71 48.90 ± 7.279 55.20 ± 8.899 58 ± 8.679 56.60 ± 5.771 57.80 ± 3.967

TP 60.8 ± 4.087 62.20 ± 5.673 61.80 ± 7.014 57.40 ± 2.914 60.20 ± 3.962 60.30 ± 5.165

ALB 31.80 ± 2.683 32.4 ± 4.060 36.80 ± 3.899 30.2 ± 3.584 30.00 ± 2.739 32.90 ± 3.695

GLOB 29.40 ± 1.817 29.8 ± 2.300 25.90 ± 3.194 27.4 ± 1.350 26.00 ± 3.674 27.80 ± 2.201

ALT 35.00 ± 6.042 34.7 ± 5.539 31.40 ± 8.355 38.30 ± 3.889 34.60 ± 7.162 36.30 ± 6.897

AST 73.40 ± 11.84 66.6 ± 14.010 70.20 ± 7.662 75.2 ± 15.050 64.20 ± 16.68 61.4 ± 13.16

ALKP 108 ± 25.03 121.7 ± 32.840 107.0 ± 37.36 100.3 ± 11.910 108.4 ± 23.39 95.20 ± 11.70

Na 142.6 ± 1.949 141.2 ± 2.348 143.2 ± 1.483 141.7 ± 2.627 142.2 ± 1.643 144.1 ± 2.234

K 5.180 ± 0.148 5.230 ± 0.457 4.820 ± 0.601 5.01 ± 0.213 4.700 ± 0.245 5.96 ± 0.390

CL 103.8 ± 2.387 106.2 ± 3.293 104.2 ± 2.387 106.6 ± 3.084 103.8 ± 2.775 105.4 ± 5.719

Note: Measurements are given as the mean ± SD. CREA: Creatinine; TP: Total protein; ALB: Albumin; GLOB: Globulin; ALT: Alanine aminotransferase;
AST: Aspartate aminotransferase; ALKP: Alkaline phosphatase; BUN: Blood urea nitrogen.
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Figure 2

Figure 2  Tumorigenicity analysis of menstrual-derived stromal stem cells on nude mice 4 wk after subcutaneous injection. Representative photographs
show the cell proliferation of menstrual-derived stromal stem cells (MenSCs) on nude mice 4 wk after subcutaneous injection. Fluorescent expression, which
represented the MenSCs, gradually decreased over time. No metastatic or proliferative fluorescent signals were detected in other parts of the body.
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Figure 3

Figure 3  Tumorigenicity analyses of menstrual-derived stromal stem cells and Hela cells in soft-agar colony formation assay. A: Representative
photomicrographs show the cell malignant proliferation of 2500 and 5000 menstrual-derived stromal stem cells (MenSCs) after 1 and 2 wk of culturing. No cell colony
was formed in the MenSCs group. B: Representative photomicrographs show the cell malignant proliferation of 2500 and 5000 HELA cells after 1 and 2 wk of
culturing. Scale bar = 100 μm. MenSCs: Menstrual-derived stromal stem cells.
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ARTICLE HIGHLIGHTS
Research background
Intrauterine adhesion (IUA) can cause serious damage to women's reproductive health. In our
previous studies, we demonstrated that menstrual-derived stromal stem cells (MenSCs), with
high proliferative capacity and self-renewal ability, have a powerful therapeutic effect in patients
with severe IUA.

Research motivation
Safety assessment of MenSCs transplantation is essential for its further application in patients
with severe IUA.

Research objectives
The purpose of this study was to evaluate the short-,  medium-, and long-term biosafety of
MenSCs via  intrauterine transplantation in a rat model of IUA, with a focus on toxicity and
tumorigenicity.

Research methods
MenSCs were injected into the sub-serosal layer of the uterus in an IUA rat model, for 3 d, 3 mo,
and 6 mo separately,  to monitor the corresponding acute,  sub-chronic,  and chronic effects.
Healthy rats of the same age served as negative controls. Toxicity effects were evaluated by body
weight, organ weight, histopathology, hematology, and biochemistry tests. Tumorigenicity of
MenSCs was investigated in Balb/c-nu mice in vivo and by colony formation assays in vitro.

Research results
Compared  with  the  same  week-old  control  group,  all  of  the  IUA  rats  receiving  MenSC
transplantation demonstrated no obvious changes in body weight, main organ weight, or blood
cell composition during the acute, sub-chronic, and chronic observation periods. At the same
time, serum biochemical tests showed no adverse effects on metabolism or liver and kidney
function. After 4 wk of subcutaneous injection of MenSCs in Balb/c-nu nude mice, no tumor
formation or cell metastasis was observed. Moreover, there was no tumor colony formation of
MenSCs during soft agar culture in vitro.

Research conclusions
There  was  no  acute,  sub-chronic,  or  chronic  poisoning,  infection,  tumorigenesis,  or
endometriosis in rats with intrauterine adhesions after MenSC transplantation. The above results
suggested that intrauterine transplantation of MenSCs is safe for endometrial treatment.

Research perspectives
MenSCs are not only safe but also a promise source of cells for treating IUA and other types of
endometrial damage. In addition, it is necessary to conduct longer follow-up studies on patients
to fully ensure the safety of MenSC application.
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Abstract
BACKGROUND
Stroke is the second leading cause of death worldwide. There is a real need to
develop treatment strategies for reducing neurological deficits in stroke
survivors, and stem cell (SC) therapeutics appear to be a promising alternative for
stroke therapy that can be used in combination with approved thrombolytic or
thrombectomy approaches. However, the efficacy of SC therapy depends on the
SC homing ability and engraftment into the injury site over a long period of time.
Nonetheless, tracking SCs from their niche to the target tissues is a complex
process.

AIM
To evaluate SC migration homing, tracking and therapeutic efficacy in the
treatment of stroke using nanoparticles

METHODS
A systematic literature search was performed to identify articles published prior
to November 2019 that were indexed in PubMed and Scopus. The following
inclusion criteria were used: (1) Studies that used in vivo models of stroke or
ischemic brain lesions; (2) Studies of SCs labeled with some type of contrast agent
for cell migration detection; and (3) Studies that involved in vivo cellular homing
and tracking analysis.

RESULTS
A total of 82 articles were identified by indexing in Scopus and PubMed. After
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the inclusion criteria were applied, 35 studies were selected, and the articles were
assessed for eligibility; ultimately, only 25 studies were included. Most of the
selected studies used SCs from human and mouse bone marrow labeled with
magnetic nanoparticles alone or combined with fluorophore dyes. These cells
were administered in the stroke model (to treat middle cerebral artery occlusion
in 74% of studies and for photothrombotic induction in 26% of studies). Fifty-
three percent of studies used xenogeneic grafts for cell therapy, and the migration
homing and tracking evaluation was performed by magnetic resonance imaging
as well as other techniques, such as near-infrared fluorescence imaging (12%) or
bioluminescence assays (12%).

CONCLUSION
Our systematic review provided an up-to-date evaluation of SC migration
homing and the efficacy of cellular therapy for stroke treatment in terms of
functional and structural improvements in the late stage.

Key words: Stem cell; Nanoparticles; Homing; Tracking; Near-infrared fluorescence
image; Cellular therapy; Magnetic resonance image; Bioluminescence; Stroke

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The systematic review provided an up-to-date evaluation of stem cell (SC)
migration homing, using nanoparticles based on the technical and scientific aspects and
combined molecular images. Thus, the efficacy of SC therapy depends on the SC
homing ability and engraftment into the injury site over a long period of time, providing
functional and structural outcomes in preclinical studies, but limited evidence of
outcomes in clinical studies.

Citation: Nucci MP, Filgueiras IS, Ferreira JM, de Oliveira FA, Nucci LP, Mamani JB, Rego
GNA, Gamarra LF. Stem cell homing, tracking and therapeutic efficiency evaluation for
stroke treatment using nanoparticles: A systematic review. World J Stem Cells 2020; 12(5):
381-405
URL: https://www.wjgnet.com/1948-0210/full/v12/i5/381.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i5.381

INTRODUCTION
Stroke is the second leading cause of death worldwide. Because of the increase in life
expectancy and population growth, the total number of stroke cases was 104.2 million
(UI 98.5-110.1) with considerably increased 3.1% worldwide in the last two decades.
Furthermore, stroke patients may suffer from disabilities or incapacities requiring
temporary or  lifelong assistance,  resulting in  a  substantial  economic burden for
poststroke care[1,2].

Thus, there is a real need to develop alternative treatment strategies for decreasing
neurological  deficits,  and stem cell  (SC)  therapeutics  appear  to  be  an  emerging
paradigm in stroke therapy that represents a promising alternative for intervention[3,4].

SCs have the remarkable capability to differentiate into any cell of an organism
while  retaining  the  ability  to  self-replicate  and  keep  the  characteristics  of  their
parental cells[5]. Preclinical research has already demonstrated the survival, functional
integration, and behavioral effects of SC therapy in experimental stroke models[6-10],
which provides a wide scientific basis for beginning small clinical trials of SC therapy
in stroke patients. However, efforts to test the safety and efficacy of SCs and their
derivatives [primarily mesenchymal SCs (MSCs) and mononuclear cells], not just as a
stand-alone  therapy  but  preferably  in  association  with  approved  thrombolytic
treatments or thrombectomy, may further increase the likelihood of the successful
translation of SC therapy for stroke treatment clinical applications[11-16].

The efficacy of SC therapy depends on the SC homing ability and engraftment into
the injury site over a long period of time, and tracking cells from their niche to the
target  tissues  is  a  complex process[17,18].  The delivery process  is  affected by both
chemical factors (such as chemokines, cytokines, and growth factors) and mechanical
factors (for instance hemodynamic forces applied to the vessel walls in the form of
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shear  stress,  vascular  cyclic  stretching,  and  extracellular  matrix  stiffness)[18].
Nevertheless, the monitoring of transplanted SC migration in vivo is usually achieved
by labeling cells with a contrast agent and then scanning them in vivo through using
molecular imaging[18].

Among the noninvasive molecular imaging modalities used for cell  migration
analysis, magnetic resonance imaging (MRI), positron emission tomography (PET),
single-photon emission computed tomography (SPECT), near-infrared fluorescence
(NIRF) imaging, and bioluminescence imaging (BLI) show specific characteristics with
strengths  and weaknesses  of  each  imaging  modalities  regarding  their  technical
peculiarities,  tracking  evaluation,  translational  stage,  suitability  to  monitor  SC
transplantation[19-24], as shown in Table 1. MRI has a high spatial resolution between
0.02-0.1  mm  and  a  temporal  resolution  on  the  order  of  minutes  to  hours.  The
advantages of MRI include a lack of a tissue penetration limit and the fact that it does
not use radiation, but the disadvantages include the relatively low sensitivity, low
contrast, high cost and long scanning time. As an alternative to improve sensitivity in
the  CTM  traceability  process,  magnetic  nanoparticles  (such  as  magnetite  and
maghemite) are used, which exhibit biocompatibility, biodegradability, surface-to-
volume ratio, and greater surface area. In addition, when its surface is modified with
polymeric stabilizers and inorganic molecules (for example, silica, gold, gadolinium,
fluorescent dyes) it not only increases sensitivity but also its specificity[25,26]. PET has a
low spatial resolution between 1-2 mm and a temporal resolution on the order of
seconds to minutes. The advantages include high sensitivity, excellent penetration
depth, capability for whole-body imaging, while the disadvantages include the high
cost  of  the  cyclotron  that  is  needed and radiation  exposure.  The  SPECT spatial
resolution is similar to that of PET, but the temporal resolution is on the order of
minutes; the advantages include a high sensitivity and the lack of a tissue penetrating
limit or a need for a cyclotron, and the disadvantages are due to radiation exposure
and difficulties in quantifying the results. NIRF imaging and BLI have a low spatial
resolution between 2-3 mm and 3-5 mm, respectively. The temporal resolution of both
techniques is on the order of seconds to minutes; the advantages of NIRF imaging and
BLI include high sensitivity, the lack of radiation exposure, low cost, and the fact that
they  are  activatable.  In  addition,  BLI  has  the  advantages  of  simple  equipment
operation and non-damaging imaging; the disadvantages of both optical imaging
techniques are the attenuation of sensitivity by overlying tissues and poor penetration
depth. In addition, molecular imaging modalities shows a wide potentiality not only
for in vitro studies and pre-clinical applications but also in the translation of some
techniques in clinical studies, such as nuclear images (PET and SPECT) and MRI[19-24].

However,  technological  advances  have  led  to  the  development  of  hybrid
equipment that allows the use of different imaging modalities at the same time as well
as  the  development  of  multifunctional  probes  that  can  be  detected  by  different
molecular  imaging  modalities,  thus  providing  more  information  and  the
complementary  evaluation  of  SC  migration  homing  and  tracking  after
implantation[20-22,25,26].  In  addition,  other  techniques,  such as  BLI,  that  require the
genetic modification of cells  to express the signal,  such as the luciferase enzyme
signal,  allow the evaluation of not only migration but also cellular viability after
implantation[27-31].

Therefore,  through a systematic review, the present study discusses studies of
homing  SC migration,  tracking  and therapy  efficacy  for  stroke  treatment  using
nanoparticles based on the technical and scientific aspects of (1) The characteristics of
the SCs used in cell therapy; (2) The characteristics of the contrast agents used; (3) The
processes of labeling SCs with nanoparticle-based contrast agents;  (4) Preclinical
models of stroke induction; and (5) Strategies for the administration of nanoparticle-
labeled  SCs  and their  use  for  studies  of  their  subsequent  homing,  tracking  and
therapeutic efficacy for future clinical approaches.

MATERIALS AND METHODS

Search strategy
We searched publications published prior to November 2019 indexed in PubMed and
Scopus. All procedures were performed according to the PRISMA guidelines[32]. The
following selected criteria of interest, boolean operators (DecS/MeSH), and keyword
sequences were used:  (1)  PubMed:  (((((((“Cellular  Therapy”[Title/Abstract])  OR
“Stem cell”[Title/Abstract]) OR “stem cells”[Title/Abstract])) AND ((nanoparticle)
OR  nanoparticles))  AND  (((“cerebral  ischemia”[Title/Abstract])  OR  “ischemic
cerebrovascular  accident”[Title/Abstract])  OR  stroke[Title/Abstract])))  AND
((Homing) OR tracking); and (2) Scopus: ((TITLE-ABS-KEY (“Stem cell”) OR TITLE-
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Table 1  Molecular imaging modalities

Image
type

Tech-
nique

Physical
principle Tracrer In vitro

imaging

Prec-
lincal
imaging

Clinical
Imaging

Spatial
reso-
lution

Temporal
reso-
lution

Pene-
tration
depth

Sensi-
tivity

Stren-
gths

Limi-
tations

Optical
imaging

BLI Visible
light

Lumi-
nescent
proteins

Yes Yes No 3-5 mm Seconds to
minutes

1-2 cm High
(+++)

High
sensi-
tivity,
non-radio-
active, cell
expansion

Low pene-
tration
depth,
non-trans-
lational

FLI Visible or
NIRF light

Proteins
or fluo-
rescent
dyes

Yes Yes No 2-3 mm Seconds to
minutes

< 1 cm High (++) High
sensi-
tivity,
non-radio-
active

Low pene-
tration
depth,
autofluore
scence

Nuclear
imaging

PET High-
energy γ-
rays

Radioisoto
pes [89 Zr
(78.4 h), 18
F (1.83 h),
11 C (0.34
h), 64 Cu
(12.7 h), 68
GA (1.13
h)]

No Yes Yes 1-2 mm Seconds to
minutes

Limitless High (++) High
pene-
tration
depth,
high
sensitivity

Radiation
exposure,
high cost

SPECT Low-
energy γ-
rays

Radioisoto
pes [99
mTc (6.03
h), 123 I
(13.2 h),
111 In
(67.4 h)]

No Yes Yes 1-2 mm Minutes Limitless High (++) High
pene-
tration
depth,
high
sensitivity

Radiation
exposure,
high cost

Magnetic
imaging

MRI Radio
waves

Contrast
agents

No Yes Yes 0.02-0.1
mm

Minutes
to hours

Limitless Low High
pene-
tration
depth,
non-radio-
active,
high
spatial
resolution

High cost,
low
sensitivity
and
contrast

PET: Positron emission tomography; SPECT: Single-photon emission computed tomography; BLI: Bioluminescence; FLI: Fluorescence; MRI: Magnetic
resonance imaging; NIRF: Near-infrared fluorescence.

ABS-KEY (“Cellular Therapy”))) AND ((TITLE-ABS-KEY (nanoparticle) OR TITLE-
ABS-KEY (nanoparticles))) AND ((TITLE-ABS-KEY (“cerebral ischemia”) OR TITLE-
ABS-KEY (“ischemic cerebrovascular accident”) OR TITLE-ABS-KEY (stroke))) AND
((TITLE-ABS-KEY  (homing)  OR  TITLE-ABS-KEY  (tracking)))  AND  (LIMIT-
TO(DOCTYPE, “ar”)) and (LIMIT-TO(LANGUAGE, “English”)).

Inclusion and exclusion criteria
Only original articles written in the English language were considered for inclusion.
The following inclusion criteria were used: (1) Studies that used in vivo models of
stroke or ischemic brain lesions; (2) Studies that used SCs labeled with some type of
contrast  agent  for  cell  migration detection;  and (3)  Studies  that  involved in  vivo
cellular homing and tracking analysis. Articles that were indexed in more than one
database (duplicates), incomplete articles, abstracts, reviews, letters, communications,
conference presentations, book chapters, editorials and expert opinions, as well as
studies involving ex vivo analyses of cellular homing, were excluded.

Data compilation and review
In this review, five of the authors (Nucci MP, Filgueiras IS, Ferreira JM, Oliveira FA,
Mamani JB, Rego GNA and Gamarra LF) (in pairs) independently and randomly
selected  data  using  the  search  strategy  cited  and  verified  the  eligibility  of  the
references.  Discrepancies in study selection and data extraction between the two
reviewers were discussed with a third reviewer and resolved. The reviewed papers
were  divided  into  four  categories  that  addressed  the  following  topics:  (1)  The
characteristics of the nanoparticles used in the experiments and their interactions with
cells (Nucci MP, Filgueiras IS, Rego GNA and Mamani JB); (2) The characteristics of
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cells (type/source) and route of administration (Nucci MP, Filgueiras IS and Ferreira
JM); (3) Stroke models (Nucci MP, Ferreira JM and Oliveira FA); and (4) The imaging
techniques used for the evaluation of cell homing and tracking (Nucci MP, Oliveira
FA and Gamarra LF).

Data analysis
All results were described and presented using the percentage distribution for all
variables analyzed in the tables.

RESULTS

Overview of the reviewed literature
A total of 82 articles were identified by indexing in Scopus and PubMed. After the
inclusion criteria were applied, 35 studies were selected, the articles were assessed for
eligibility, and only 25 studies were included[28-30,33-54] (Figure 1). Of these, 22 articles
(88%) had been published within the past 15 years (2009 to 2019). Most of the studies
(76%) were conducted in Asia, mainly in China (48% of all articles), followed by South
Korea  (20% of  all  articles),  the  United  States  (8%),  Canada  (4%),  and  European
countries (12%) (Table 2, Figure 1).

SC characteristics
The main characteristics of the SCs used in the studies (cell type, source and culture
medium) are shown in Table 2. Regarding the type of SC, eleven[28-30,33,39,44,49-52,54,55] (44%)
studies used SCs sourced from humans, nine[34,36-38,40,41,43,46,47,56] (36%) used SCs from rats
(SCs from humans and rats  were used most  often),  and only five[35,42,45,48,53]  (20%)
studies used SCs from mice. In terms of the cell source, ten[36-42,46,48,50] (40%) studies used
SCs from bone marrow, four[30,34,45,47]  (16%) studies used SCs from neonatal brain,
three[28,29,44] (12%) studies used SCs from umbilical cord, the study by Lim et al[33] used
SCs from adipose tissue, and three[35,45,49] (12%) studies used brain immortal lineage
cells. Most of the studies [fifteen of 25 (60%)] used Dulbecco's modified Eagle medium
(DMEM) supplemented with  fetal  bovine  serum during  SC culture  prior  to  cell
application; two[29,42]  (8%) studies used endothelial cell growth basal medium, the
study by Argibay et al[38] used Iscove's modified Dulbecco's medium, and the study by
Zhang et al[57] used StemPro NSCs. The major source of SCs is the bone marrow of
rodents (rats and mice), followed by human neonatal brain, which is also widely used.

Contrast  agent  characteristics  used  in  the  SC  labeling,  homing  and  tracking
analysis
Consecutively, the SCs were submitted to the labeling process with contrast agents for
the evaluation of the SC homing and tracking process and the contrast agent physical-
chemical properties were described in Table 3. In all studies, magnetic nanoparticles
were used as the main contrast agent. Most studies (64%) used synthesized magnetic
nanoparticles for the labeling process, and the other 7 (28%) studies used commercial
nanoparticles and reported the companies supplying these nanoparticles as Feridex®

(or Endorem®) by Advanced Magnetic, United States[49,51,52,54], and Guerbet, France[53];
the study by Janowski et al[44] used ferrite by BioPAL Inc., United States, and the study
by Tan et  al[41]  used Resovist®  by  Fujifilm RI  Pharma Co.,  Japan.  In  terms of  the
physical-chemical characteristics of the contrast agents, the concentration range was
between 0.12 mg/mL[40]  and 27.9 mg/mL[41],  and the concentration of the contrast
agent most commonly used was 11.2 mg/mL[49,51-54]. The nanoparticles had core sizes
between 3.7 nm[38] and 30 nm[34,39] and hydrodynamic sizes ranging from 10.8 nm[40] to
900 nm[46].  In regard to the analysis of the process of cell labeling, the majority of
studies have used nanoparticles coated with dextran[30,38,39,44,49,51-54]; the studies by Zhang
et al[45], Wang et al[48] and Chen et al[28] used silica for coating, the study by Lim et al[33]

used chitosan, the study by Duan et al[37,40] used poly(D, L-lactide), and the study by
Tarulli et al[46] used divinyl benzene polymer. The zeta potential varied between -38
mV[39] and +32.8 mV[40]; eight studies[29,38,39,43,51-54,57] used nanoparticles with a negative
zeta potential, and eight studies[29,33,35-37,40,43,44] used nanoparticles with a positive zeta
potential.  Of the studies, four[29,42-44]  used rhodamine as the conjugated agent,  the
studies by Bai et al[42] and Lim et al[33] used Cy5.5, the study by Lu et al[35] used Nile red,
the study by Zhang et al[45] used fluorescein isothiocyanate and the study by Tarulli et
al[46]  used  Dragon  green  fluorophore.  In  the  studies  reporting  R2  values,  the
nanoparticles exhibited the characteristics of a negative contrast agent, with R2 values
ranging from 75.8  mmol-1s-1  (lower  contrast  power by T2)  to  701 mmol-1s-1  (high
contrast by T2).

The characteristics of the contrast agents allowed the detection of cells during
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Figure 1

Figure 1  The PRISMA flow diagram provides more detailed information regarding the process of study selection. After the inclusion of studies, the first
analysis focused on the publication year distribution; the graphic shows the number of studies per year and the distribution of the studies by the country in which the
research was conducted.

homing by MRI in all studies, but 11 of the studies also used another agent contrast
conjugated  to  iron  oxide,  allowing  the  bimodal  detection  of  SCs;  six  (24%)
studies[35,43-46,48] used visible field fluorescence, three (12%) studies[28-30] used BLI, three
(12%) studies[33,34,42]  used NIRF imaging and only one study[28]  used photoacoustic
imaging. Only one study[42] reported trimodal image detection using MRI, visible field
fluorescence and NIRF technical assessments.

SC labeling process with the contrast agent
The  cell  labeling  process  is  an  important  step  where  we  have  to  balance  two
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Table 2  Characteristics of the studies and the stem cells used

Ref. Yr Country Cell type Source of cells Medium culture - %FBS

Lim et al[33] 2019 South Korea MSC Human (adipose tissue) DMEM - 10%FBS

Wang et al[29] 2019 China MSC Human (umbilical cord) EBM-2 - 0%FBS

Yun et al[30] 2018 South Korea NSC Human (telencephalon) NR

Argibay et al[38] 2017 Spain MSC Rat (bone marrow) IMDM - 10%FBS

Duan et al[37] 2017 China MSC Rat (bone marrow) DMEM - 10%FBS

Lu et al[35] 2017 China NPC-Imm Mice (C17.2) DMEM - 10%FBS

Zhang et al[34] 2017 China NSC Rat (lateral ventricles) StemPro NSC - 0%FBS

Lin et al[36] 2017 China MSC Rat (bone marrow) DMEM -10%FBS

Zhang et al[39] 2016 China NSC Human (bone marrow) NR

Duan et al[40] 2016 China MSC Rat (bone marrow) DMEM - 10%FBS

Bai et al[42] 2015 China MSC Mice (bone marrow) EBM-2

Chen et al[28] 2015 China MSC Human (umbilical cord) DMEM-HG

Tan et al[41] 2015 Japan MSC Rat(bone marrow) DMEM - 10%FBS,

Janowski et al[44] 2014 Poland NSC Human (umbilical cord) DMEM-F12 - 2%FBS

Park et al[43] 2014 South Korea MSC Rat DMEM - 0%FBS

Zhang et al[45] 2013 China NPC-Imm Mice (neonatal cerebellum) DMEM - 10%FBS

Tarulli et al[46] 2013 Canada MSC Rat (bone marrow) αMEM - 20%FBS

Liu et al[47] 2013 China NSC Rat (neonate) DMEM-F12

Wang et al[48] 2011 China MSC Mice (bone marrow) DMEM

Lee et al[50] 2009 Singapore MSC Human (fetal bone marrow) DMEM - 10%FBS

Song et al[49] 2009 South Korea NPC-Imm Human (HB1.F3) DMEM - 5%FBS

Kim et al[51] 2008 South Korea MSC Human DMEM - 0%FBS

Guzman et al[52] 2007 United States NSC Human HNCM

Syková et al[53] 2006 Czech Republic MSC, rOEC Mice; Human; Rat NR

Zhu et al[54] 2005 United States NSC Human NR

MSC: Mesenchymal stem cells; NSC: Neural stem cells; NPC-Imm: Neural progenitor cell - immortalised; ESC: Embryonic stem cell; rOEC: Rat olfactory
ensheathing cells; C17.2: An immortalised mouse neural progenitor cell line; HB1.F3: An immortalized, clonal human NSC line; DMEM: Dulbecco's
modified Eagle medium; DMEM-HG: Dulbecco's modified Eagle's medium high glucose; DMEM-F12: 50:50 mixture of DMEM and Ham's F12 medium;
αMEM: Minimum essential medium Eagle: Alpha modification; EBM-2: Endothelial cell growth basal medium; IMDM: Iscove's modified Dulbecco's
medium; FBS: Fetal bovine serum; StemPro NSC: Human neural stem cell culture medium; HNCN: Human neurosphere culture medium; NR: No
reported.

important aspects, high internalization of contrast agents so that it has good detection
sensitivity by molecular imaging techniques, but at the same time high cell viability
after labeling, so it  is necessary, the use of an adequate concentration of contrast
agents,  for  a  sufficient  incubation time and choice of  strategies that  increase the
internalization efficiency without causing damage to the cell.

By using the SC labeling process with SPION (Table 4), 32% of the selected studies
showed that the cells used were from between passage 0 and 17[38], with the majority
studies[33,36,40,50]  using  cells  from  the  fifth  passage.  As  described  in  the  previous
paragraph, magnetic nanoparticles were used as contrast agents for all studies, and 5
studies[49,51-54] used Feridex® (or Endorem®), a commercial nanoparticle manufactured
by  Advanced  Magnetic,  USA.  In  most  studies[28-30,33-40,42,43,49,50],  the  iron  oxide
nanoparticles  used were  synthetized in-house  by the  labs.  The  concentration of
contrast agent used during SC labeling ranged between 0.5[45] and 300 μg/mL[33], and
the majority of studies (60%) used a concentration between 5 and 33 μg/mL. An
incubation time of 24 h for the labeling process was the most frequent (36%) amount
of time reported by the studies[38-42,46,47,50,52] and ranged between 0.5[45] and 72 h[49,53]. The
main reagent used to induce internalization in 32% of the selected studies was poly L-
lysine,  which  was  combined with  lipofectamine  in  the  Lu  study[35]  and  with  an
external magnetic field in the Park et al[43]’s study. Other studies[29,37,40]  used poly-
etherimide and protamine sulfate[51,52], and the Lim et al[33]’s study used tetraacetylated
N-azidoacetyl-D-mannosamine.  In  fifteen  of  the  25  selected  studies  (60%),  the
efficiency of cell labeling was greater than 95%[28,29,33,35-38,41,46,48-50,52,54]; five of these studies
used the ICP technique to quantify the iron load internalized into the cells[33,38,45,48,50,51],
and five other studies[28,34,36,37,40,49] used the AAS technique for quantification, while the
Guzman et al[52]’s study used semiquantitative analysis by MRI. The range for SPION
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Table 3  Characteristics of the contrast agents used in the stem cell labeling, homing and tracking analysis by molecular imaging
modalities

Ref. Contrast
agent

Concen-
tration
(mg/mL)

Core /
Hydrodyna
mic size
(nm)

Coating
agent

Zeta
Potential
(mV)

Conjugated
agent
(Ex/Em: nm)

Image
detection
mode

R1 / R2
(mmol-1.
Sec-1)

Developer

Lim et al[33] NP (BCN-
Fe3O4)

NR 20/238.9 BCN, chitosan +12.6 Cy5.5
(675/695)

Dual (Mgt,
NIRF)

NR/526.1 Synthesized

Wang et al[29] Alkyl-SPIO NR NR/80-120 Alkyl-PEI Appro-
ximately
+21.0

NA Dual (Mgt,
BLI)

NR/549.7 Synthesized

Yun et al[30] Zn0.4Fe2.6O4
(ZnMNP)12

NR NR Dextran NR NA Dual (Mgt,
BLI)

NR Synthesized

Argibay et
al[38]

Fe3O4
1 NR 3.7/94 Dextran -11.0 NA Mono (Mgt) NR/701 Synthesized

Duan et al[37] Fe3O4-LCP 0.12 6/136 PDLLA +18.0 NA Mono (Mgt) NR/500.2 Synthesized

Lu et al[35] PAsp(DMA)-
Lys-CA2 (C-
NP)2

NR NR/64.1 NR +15.32 Nile red
(552/636)

Dual (Mgt,
VFL)

NR/460.5 Synthesized

PEG-Lys-CA2
(N-NP)2

NR/69.4 +0.10 NR/462.9

Zhang et
al[34]

Ferritin2 NA NA NA NA NA Dual (Mgt,
NIRF)

NR Synthesized

Lin et al[36] SPION 0.25 NR/128 ASP +21.6 NA Mono (Mgt) NR/296 Synthesized

Zhang et
al[39]

SPION NR 30/50 Dextran NR NA Mono (Mgt) NR/300 Synthesized

Duan et al[40] Fe3O4-LCP2 0.12 6/136 PDLLA +18.0 NA Mono (Mgt) NR/500.2 Synthesized

Fe3O4
2 1.00 6/10.8 PLL +32.8 NR/457.2

Bai et al[42] bCD-Gd NR NA/24.4 NA NR Cy5.5
(675/695)
Rhod
(565/620)

Tri (Mgt,
NIRF, VFL)

8.6/NR Synthesized

Chen et al[28] GRMNB1 NR NA/130 Silica NR NA Dual (Mgt,
BLI)

1.21/127.89 Synthesized

Tan et al[41] γ-Fe2O3
(ferucar-
botran)

27.90 4/60 Carboxy-
dextran

NR NA Mono (Mgt) NR Resovist®,
Fujifilm RI
Pharma Co.
Ltd., Tokyo,
Japan

Janowski et
al[44]

Fe3O4 2.00 8/35 Dextran +31.0 Rhod
(565/620)

Dual (Mgt,
VFL)

30.4/75.8 BioPAL Inc,
Worcester,
MA, USA

Park et al[43] PCION NR 11/371.6 PEG +28.6 Rhod
(565/620)

Dual (Mgt,
VFL)

NR Synthesized

Zhang et
al[45]

fmSiO4@SPIO
Ns

NR 30/151
30/148

Silica -22.5 FITC
(490/525)

Dual (Mgt,
VFL)

NR/309.53 Synthesized

NR/231.74
fdSiO4@SPIO
Ns

-38.0

Tarulli et
al[46]

Fe3O4 (MPIO) NR NR/900 DBP < 0 DGF
(480/520)

Dual (Mgt,
VFL)

NR NR

Liu et al[47] SPION NR NR NR NR NR Mono (Mgt) NR NR

Wang et al[48] Fe3O4
(PMNC)

NR 8/120 Silica -38.0 Rhod
(565/620)

Dual (Mgt,
VFL)

3.81/435 Synthesized

Lee et al[50] MGIO NR 5/602 PMG NR NA Mono (Mgt) NR Synthesized

Song et al[49] FeO1.44
(Feridex)

11.20 5-6/50-180 Dextran -12.0 NA Mono (Mgt) 23.9/98.3 Advanced
Magnetic,
Cambridge,
MA, United
States

Kim et al[51] FeO1.44
(Feridex)

11.2 5-6/50-180 Dextran -12 NA Mono (Mgt) 23.9/98.3 Advanced
Magnetic,
Cambridge,
MA, United
States
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Guzman et
al[52]

FeO1.44
(Feridex)

11.2 5-6/50-180 Dextran -12 NA Mono (Mgt) 23.9/98.3 Berlex
Laboratories,
Wayne, NJ,
United States

Syková et
al[53]

Fe3O4
(Endorem)

15.8 4.3-5.6/150 Dextran -12 NA Mono (Mgt) 40/160 Guerbet,
Roissy,
France

Zhu et al[54] FeO1.44
(Feridex)

11.2 5-6/50-180 Dextran -12 NA Mono (Mgt) 23.9/98.3 Advanced
Magnetic,
Cambridge,
MA, United
States

1transduced with the luciferase protein (Vector Type - Lentiviral FUGW-Luc2).
2transduced with the GFP protein (Vector type - eGPF/FTH). Ex/Em: Excitation/Emission; NP: Nanoparticle; BCN: Bicyclo[6.1.0]nonyne; Fe3O4: Iron
oxide; SPIO: Superparamagnetic iron oxide; LCP: Loaded cationic polymersomes; ZnMNP: Zinc-doped ferrite magnetic nanoparticle; PAsp(DMA):
Poly(aspartic  acid-dimethylethanediamine);  Lys-CA:  Lysine-cholic  acid;  C-NP:  Cationic  nanoparticle;  PEG:  Polyethylene  glycol;  N-NP:  Neutral
nanoparticle; SPION: Superparamagnetic iron oxide nanoparticles; bCD-Gd: Bacterial cytosine deaminase-gadolinium; GRMNBs: Gold nanorods crystal-
seeded magnetic mesoporous silica nanobeads; PCION: Poly-(ethylene glycol)-coated cross-linked iron oxide nanoparticles; fmSiO4@SPIONs: Fluorescent
mesoporous silica-coated SPIONs; fdSiO4@SPIONs: Fluorescent dense silica-coated SPIONs; PMNC: Polystyrene magnetite nanocluster; MGIO: Microgel
iron oxide; MPIO: Micron-sized superparamagnetic iron oxide particles; NR: Not reported; NA: Not applicable; Alkyl-PEI: Amphiphilic low molecular
weight polyethylenimine; PDLLA: Poly(D,L-lactide); PEI: Polyetherimide; ASP: Spermine-modified amylose; PLL: Poly-L-lysine; DBP: Divinyl benzene
polymer; PMG: Precursor microgel; Cy5.5: Cyanine5.5; siRNA: Small interfering RNA; Rhod: Rhodamine B; pDNA: Plasmid DNA; FTH: Ferritin heavy
chain; FITC: Fluorescein isothiocyanate; DGF: Dragon green fluorophore; Mgt: Magnetic; NIRF: Near infrared fluorescence; BLI: Bioluminescence imaging;
VFL: Visible field fluorescence.

quantification was between 0.2 pgFe/cell[49]  and 33.3 pgFe/cell[50],  and 40% of the
selected  studies  did  not  mention  this  information.  In  terms  of  cellular  viability
analysis after the labeling process, 56% of studies reported this analysis, of which 36%
of studies[29,33-37,40,45,48] used the CCK-8 assay to reveal that more than 90% of cells were
viable; the other 10% of studies used different techniques for the cellular viability
analysis, such as LDH assays[38], MTT assays[28], flow cytometry[46], and cell counting[52],
and these studies also reported high cellular viability. Other in vitro analyses of the
labeling process were used in the selected studies,  such as confocal imaging[33,46],
MRI[29,33-37,40,43,48,49], BLI[28-30], electron microscopy[29,30,34,36-38,40,43,48,50,53] and microarrays[50].

Stroke model and brain injury evaluation, the target of SC migration
Stroke was studied mainly with two models,  which used either  an intraluminal
filament to occlude the passage of blood flow to the brain or the photothrombosis
technique. Brain damage caused by stroke induction attracts SCs to the target region
due to chemotactic signals released by compromised tissue.  The first  model was
reported in 68% of the selected studies (Table 5), and stroke was modeled via middle
cerebral artery occlusion[28,30,34-40,43,45,47-49,51,52], with the exception of the Tan et al[41]’s study,
which used lacunar infarction. This model was performed in rodents (72% rats), and
when  rats  were  used,  the  majority  of  studies  used  Sprague-Dawley  males
(85%)[30,34-37,40,43,47,49,51,52], followed by Wistar male rats[38,41]. Mice were used in 5 studies:
two of the 5 studies[28,39] used C57 black male mice, two studies[45,48] used CD1 female
mice, and only the Guzman et al[52]’s study used nonobese diabetic/severe combined
immunodeficiency male mice. In terms of the weights and ages of the animals used in
the studies, the rats used were adults[28,30,34,36,37,40,52] that weighed 250 g in the majority of
studies[30,36,37,41,43,49,51]  the  weights  ranged  from  240  g[30,41]  to  300  g[38,49,51],  with  the
exception of the Liu et al[47]’s study, in which the rats weighed between 160 and 180 g.
Mice had a weight ranging from 20[39] to 30 g[28]. The total number of animals used in
the studies ranged from 6[49] to 133[38]. The type of ischemia used in the stroke models
was  transient  in  most  studies,  with  an  average  of  120  minutes  of  ischemia
time[28,34,36,43,49]; the ischemia time ranged from 10[52] to 180 min[48]. Most studies used
inhaled anesthetics, such as sevoflurane[38], halothane[35], and isoflurane[41,49,52], followed
by injected anesthetics, such as pentobarbital[34,39] and chloral hydrate[28,47], and agent
anesthetics were also used[43,51]. In all animals, a midline neck incision was performed
to access the medial cerebral artery, and only two studies[38,51] controlled blood flow
during the procedure. Brain injury was detected by MRI in all studies.

The photothrombotic stroke model (Table 6) was performed more often in mice
(approximately 67%) than in rats; the mouse strain used in two studies was Balb/c
nude (male/female), and the Bai study used a diabetic mouse model and wildtype
mice (male). The rat strain used in two studies was Wistar (male/female), and the
Tarulli et al[46]’s study used Long Evans (male). The animal ages ranged from 8 to 12
wk, and the mouse weight was between 20 and 25 g in two studies. The number of
animals used in the selected studies ranged from 8 to 39. This stroke model used Rose
Bengal administered at a dosage of 100 mg/kg for intraperitoneal administration and
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Table 4  Stem cell labeling process

Ref. Cells Passage Contrast
agent

Concen-
tration
μg/mL)

Incu-
bation
time (h)

Strategy
of
interna-
lization

Effici-
ency

Quantification Cellular viability
Others
analysis(pgFe/ce

ll) Technique Method Results

Lim et
al[33]

MSC P5-P7 NP(BCN-
Fe3O4)

300 2 Ac4Man
NAz

98.7% 15.3 ICP-MS CCK-8
assay

> 95% CF, SEM,
CEM,
MRI

Wang et
al[29]

MSC P2-P7 Alkyl-
SPIO

an appro-
priate
amount
of Alkyl-
PEI/SPI
O (N/P =
20)

6 PEI High Eff. NA NA CCK-8
assay

> 90% BLI, MRI

Yun et
al[30]

NSC NR ZnMNP 50 NR PLL: 1.5
g/mL

NR 4.6 NR NA NA TEM, BLI

Argibay
et al[38]

MSC P0-P2,
P9, P17

Fe3O4 100 24 PLL: 1.5
μg/mL

High Eff. 0.9-7.7 ICP-OES LDH
assay

NSD TEM

Duan et
al[37]

MSC P3-P5 Fe3O4-
LCP

15 1.5 PEI Approxi-
mately
100%

Approxi-
mately 9

AAS CCK-8
assay

> 90% TEM,
MRI

Lu et
al[35]

NPC NR C-NP 10 4 PLL and
Lipo-
fectamin

Approxi-
mately
99.3%

NA NA CCK-8
assay

> 95% MRI, VFL

N-NP Approxi-
mately
8.7%

Zhang
et al[34]

NSC P2-P3 Ferritin MOI: 10 24 PLL Approxi-
mately
63%

3.5 AAS CCK-8
assay

NSD TEM,
MRI, PB

Lin et
al[36]

MSC P5-P9 ASP-
SPION

30 1 NA Approxi-
mately
100%

2.68 AAS CCK-8
assay

> 90% MRI,
TEM

Zhang
et al[39]

NSC NR Anti-
CD15-
SPION

NR NR NA NR NA NA NA NA NA

Duan et
al[40]

MSC P3-P5 Fe3O4-
LCP

15 1.5 PEI LCP >
PLL

8.373 AAS CCK-8
assay

> 90% TEM, in
vitro MRI

Fe3O4 25 24 PLL 9.214

Bai et
al[42]

MSC NR bCD-Gd 2 μmol 24 PLL NR NA NA NA NA NA

Chen et
al[28]

MSC NR GRMNB 10 2 NR High Eff. 33.62 AAS MTT 87.6 BLI

Tan et
al[41]

MSC NR Feru-
carbotran

NR 24 NA Approxi-
mately
95%

NA NA NA NA NA

Jano-
wski et
al[44]

NSC NR Fe3O4 25 48 PLL: 375
ng/mL

NR NA NA NI NI NA

Park et
al[43]

MSC NR PCION 1 0.25 PLL,
EMF

NR NA NA NA NA TEM,
MRI

Zhang
et al[45]

NPC NA fmNP 5, 10, 20,
33

0.5, 1, 2, 3 NA fmNP >
fdNP

5-30 ICP-AES CCK-8
assay

90%-98% TB

fdNP 1-2.5 NA NA NA

Tarulli
et al[46]

MSC NR MPIO 18.8 24 NA 95% 54 Flow cytometry Flow
cyto-
metry

Approxi-
mately
94%

CF

Liu et
al[47]

NSC NR SPION 14 24 NA NR NR NR NI NI NA

Wang et
al[48]

MSC NR PMNC 0.5 mmol 1 NA Approxi-
mately
100%

16-20 ICP-OES CCK-8
assay

> 95% TEM, CF,
MRI

Lee et
al[50]

MSC P5, P6 MGIO 50 24 NA Approxi-
mately
97%

33.3 ICP-OES NI > 95% TEM,
micro-
array
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Song et
al[49]

NPC NR Feridex 112.4 72 NA Approxi-
mately
100%

0.2 AAS TB Una-
ffected

MRI

Kim et
al[51]

MSC NR Feridex 1 12-16 PS NR 2.6 ICP/MS NI NI NA

Guzman
et al[52]

NSC NR Feridex 5 24 PS: 2.5
μg/mL

98% Halved
every 3 d
(%)

Semiquantitative
(MRI)

Cell
counting

Approxi-
mately
92%

NA

Syková
et al[53]

MSC,
rOEC

NR Endorem 112.4 48-72 NA NR NA NA NA NA TEM

Zhu et
al[54]

NSC NR Feridex NR 1 Effectene High Eff. NA NA NR NI NA

MSC: Mesenchymal stem cells; NSC: Neural stem cells; ESC: Embryonic stem cell; rOEC: Rat olfactory ensheathing cells; P: Passage; NR: No reported; NA:
Not applicable; NP: Nanoparticle; BCN: Bicyclo[6.1.0]nonyne; Fe3O4:  Magnetite; SPIO: Superparamagnetic iron oxide; ZnMNPs: Zinc-doped ferrite
magnetic nanoparticles; LCP: Loaded cationic polymersomes; C-NP: Cationic nanoparticle; N-NP: Neutral nanoparticle; ASP: Spermine-modified amylose;
SPION: Superparamagnetic iron oxide nanoparticle; bCD-Gd: Bacterial cytosine deaminase-gadolinium; GRMNB: Gold nanorods crystal-seeded magnetic
mesoporous silica nanobeads; MOI: Multiplicities of infection; PCION: Poly-(ethylene glycol)-coated cross-linked iron oxide nanoparticles;  fmNP:
FmSiO4@SPIONs; fdNP: FdSiO4@SPIONs; MPIO: Micron-sized superparamagnetic iron oxide particles; PMNC: Polystyrene magnetite nanocluster;
MGIO:  Microgel  iron  oxide;  Alkyl-PEI:  Amphiphilic  low  molecular  weight  polyethylenimine;  MOI:  Multiplicities  of  infection;  Ac4ManNAz:
Tetraacetylated N-azidoacetyl-D-mannosamine; PEI: Polyethylenimine; PLL: Poly-L-Lysine; EMF: External magnetic field; PS: Protamine sulfate; High Eff.:
Hight  efficiency;  LCP:  Loaded  cationic  polymersomes;  AAS:  Atomic  absorption  spectrophotometer;  CCK-8:  Cell  counting  kit-8;  LDH:  Lactate
dehydrogenase; MTT: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide; TB: Turnbull blue; NSD: No significant differences; CF: Confocal
fluorescence; SEM: Scanning electron microscope; CEM: Cryoelectron microscope; MRI: Magnetic resonance image; BLI: Bioluminescence image; TEM:
Transmission electron microscopy; VFL: Visible field fluorescence; PB: Prussian blue.

at a lower dosage intravenously. The photosensitizer most commonly used was Rose
Bengal, which was administered at a dosage of 100 mg/kg intraperitoneally, but the
Lee et al[50]’s study used 7.5 mg/kg administered by the tail vein; the Lim et al[33]’s
study used 10 mg/kg given by the penile vein, and most studies[29,33,42] performed 15
min of laser application after the administration of the photosensitizer. The Lee et
al[50]’s study performed 10 min of laser application, and the laser parameters used in
the Lee et al[50]’s study were 60 W (power), 603 nm (wavelength) and 3 mm (diameter).
The selected studies do not have a similar laser incidence (brain induction) area, and
most studies[29,33,42] used the left temporal region (+2.0 ML to Bregma point). All the
selected studies used MRI for injury (ischemia) evaluation, 2 studies[33,42] used NIRF,
and the other  2  studies[33,50]  used histological  analysis  with triphenyltetrazolium
chloride.

Two studies of clinical evaluation were included in the systematic review; one
involved case reports of global cerebral ischemia in children at 18 mo, in which the
injury evaluation was performed by MRI[44], while the other involved approximately
16 cases  of  open brain trauma caused by a  mixture of  focal  and global  ischemic
processes, which were evaluated by comparing the cellular therapy effect vs that of
the control group using fMRI and PET[54].

Imaging techniques used to detect SC migration
The main imaging technique used by all the selected studies for the tracking and
homing analysis of SCs labeled with SPIONs was magnetic resonance (Table 7). The
maximum time of the homing evaluation used by the selected studies was 160 d or 4
mo (Janowski et al[44]’s study). All selected studies used acute tracking analysis (first 48
h after cell implantation); 3 studies[35,38,43] analyzed immediate homing (less than 24 h),
while the other 22 of the 25 (88%) selected studies used a homing evaluation time
between 3 and 7 d. Thirteen studies[30,34,36,37,40,41,44,47-49,51-53] used a maximum time of 14 d.
Ten of 25 (40%) studies[28-30,33,38,39,41,42,52,56,58] used a MR preclinical equipment system, and
of these, seven of 10 studies[28,29,38,39,42,51,56] used MR equipment obtained from the Bruker
Company.  Regarding the MR clinical  equipment used by 60% of  all  the selected
studies, this equipment was most often obtained from General Electric (50%) and the
Phillips Medical System (45%); four studies[35,37,43,47]  used an animal coil, and three
studies[44,45,50] used a human coil. Most studies used ImageJ with MRI software. The
largest magnetic field used by the selected studies was 9.4 T[33,38]; the magnetic field
ranged between 1.5[44,45,50] to 9.4 T[33,38], and most studies used 3.0 T[30,34-37,39,40,43,46,47]. The
main weighted image type used by the selected studies was T2, and only the Bai et
al[42] and Kim et al[58] studies also used T1 images. The most used sequence (mode) was
Fast Spin Echo - FSE[30,35,37,39,40,42,45,46,48], the other MRI parameters are given in Table 7.

The NIRF imaging technique was also used by three of the selected studies[33,34,42] for
the tracking and homing analysis of SCs (Table 8); these studies analyzed immediate
(less than 24 h) and acute homing (first 48 h), and the maximal time of the homing
evaluation used by the selected FT studies was 42 d or 6 wk (Zhang et al[34]’s study); 2
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Table 5  Stroke models induced by filament intraluminal middle cerebral artery, brain injury evaluation and animal features

Ref.

Ische-
mia
mecha-
nism

Animals

n / N
Ische-
mia
type

Ische-
mia
time
(min)

Fila-
ment
type

Anes-
thesia

Brain
in-
duction
area
(AP; ML
to
bregma
in mm)

Blood
flow
analy-
sis

Injury
evalu-
ationSpecie Type Sex Weight

(g)
Age
(wk)

Yun et
al[30]

MCAo Rat SD M 240-260 Adult1 3-8/50 T 30 3-0
nylon
suture

NR MNI NI TTC,
MRI

Argi-
bay et
al[38]

MCAo Rat Wistar M 280-300 NR 6/133 T 45 silicon
rubber-

3%-4%
sevo-
flurane

MNI Laser-
Doppler

MRI

Duan et
al[37]

MCAo Rat SD M 250-280 Adult1 6/54 NR NR NR NR MNI NI MRI

Lu et
al[35]

MCAo Rat SD NR NR NR 6/12 T 90 4-0
nylon
suture,
silicone
coated
tip

1% halo-
thane

MNI NI MRI

Zhang
et al[34]

MCAo Rat SD NR 250-280 Adult1 NR/30 T 120 NR PB (40
mg/kg)

MNI NI MRI

Lin et
al[36]

MCAo Rat SD M 250-280 Adult1 6/18 T 120 NR NR MNI NI MRI

Zhang
et al[39]

MCAo Mice C57BL /
6J

NR 20-25 8 NR/45 T 20 Nylon
poly-1-
lysineco
ated

PB (6
mL/kg)

MNI NI MRI

Duan et
al[40]

MCAo Rat SD M NR Adult1 NR/24 NR NR NR NR MNI NI MRI

Chen et
al[28]

MCAo Mice C57BL /
6J

M 25-30 Adult1 NR/NR T 120 square
knot
using a
10
suture

CH (0.4
g/kg)

zygoma
/squa-
mosal
bone

NI MRI

Tan et
al[41]

Lacunar
infar-
ction

Rat Wistar M 240-260 NR NR/22 P NA NA 2%-4%
ISO

0; 3 NI MRI

Zhang
et al[45]

MCAo Mice CD1 F NR 4 NR/NR P NA 6-0
rounded
tip nylon

NR MNI NI MRI

Park et
al[43]

MCAo Rat SD NR 250-280 NR 8/16 T 120 Micro
clip 24
mm

Rompu
m (10
mg/kg)
+ Zoletil
(30
mg/kg)

MNI NI MRI

Liu et
al[47]

MCAo Rat SD M 160-180 NR 6-8/48 NR NR Nylon 10% CH
(300
mg/kg)

MNI NI MRI

Wang
et al[48]

MCAo Mice CD1 F NR 4 7/21 T 180 6-0
rounded
tip nylon

NR NI NI MRI

Song et
al[49]

MCAo Rat SD M 250-300 NR 3/6 T 120 NR 4% ISO MNI NI MRI

Kim et
al[51]

MCAo Rat SD M 250-300 NR 2-6/13 P NA NR ket. (80-
100
mg/kg)
+ AM (5
mg/kg)

MNI EEG MRI

Guz-
man et
al[52]

MCAo Rat SD M NR Adult1 5/10 P NA NA ISO MNI +
rhinal
fissure

NI MRI

WJSC https://www.wjgnet.com May 26, 2020 Volume 12 Issue 5

Nucci MP et al. SC migration and therapy efficiency in stroke

392



Global Mice NOD-
SCID

NR NR 0-1PN 12-16/28 T 5-10 NA Cryoane
-strhe-
tized

NA NI MRI

1Adult: Rat with 8-16 wk and mice with 6 to 20 wk. MCAo: Middle cerebral artery occlusion; SD: Sprague-Dawley; CD1: An outbred mice derived from a
group of outbred Swiss mice; NOD/SCID: Nonobese diabetic/severe combined immunodeficiency; M: Male; F: Female; NR: No reported; n/N: Number of
animals per group/total number of animals; T: Transient; P: Permanent; PN: Postnatal; NA: Not applicable; Ket: Ketamine; Xyl.: Xylamine; ISO: Isoflurane;
AM: Aceprozazine maleate; CH: Chloral hydrate; PB: Pentobarbital; MNI: Midline neck incision; EEG: Electroencephalogram; TTC: Triphenyltetrazolium
chloride; MRI: Magnetic resonance imaging.

studies[33,34,42] used Cy5.5 as the fluorescence agent, and the other parameters are given
in Table 8. The BLI technique was used by 3 of the selected studies[28-30] for the tracking
and homing analysis of SCs (Table 9), and all studies analyzed immediate (less than
24 h) and acute homing (first 48 h). The maximal time of the homing evaluation used
by the selected BLI studies was 21 d or 3 wk (Yun et al[30]’s study). All studies used
luciferase with eGFP as a lentiviral vector and D-luciferin as a fluorescence agent. The
dose, time of acquisition and other parameters are given in Table 9.

SC administration strategies after stroke induction, their migration analysis, and
the therapeutic effect
After the brain injury induction, SCs are administered by different routes, systemic or
local,  with their particularities as to the time after stroke induction, number and
volume of cells administered. The parameters adopted in the administration of the
cells can interfere with the successful migration and the therapeutic effect. The main
characteristics of SCs and SC tracking, homing and therapeutic efficacy in the selected
studies are described in Table 10. Fifteen (60%) studies[28,29,33,34,36-38,40-43,46,48,50,51]  used
mesenchymal SCs as the cell type, and the main source was human bone marrow
(Table 2) via a xenogeneic graft in 53% of the studies[28,29,33,42,43,46,48,50], via an allogeneic
graft in 33% of the studies and via an autologous graft in one study[51]; of the 40%
studies that used neural SCs, 60% used a xenogeneic graft, 30% used an allogeneic
graft and 10% used an autologous graft. Only the Sykova et al[55]’s study used both
xenogeneic and allogeneic grafting. The time of SC implantation after stroke was
commonly reported by the selected studies[29,30,37,39,42,49]; the time of implantation after
the  acute  stage  of  stroke (24  h)  ranged from 30 min[28]  to  14  d[43].  Regarding cell
administration, the main route used by the selected studies was intracerebral (64%), in
which 13 (81%) studies administered the cells in the contralateral side of the stroke
injury (IC-CTL), one (6%) study administered the cells in the ipsilateral side of the
injury, and one study (6%) did not report the specific area of the brain in which the
cells were implanted; via this route, the maximum volume of implanted cells was 10
μL,  which  commonly  contained 5  ×  105  cells.  Another  cell  administration  route
reported in six (24%) studies[28,38,45,47,49,53] was the intravenous route (tail and jugular),
and the intraarterial (intracarotid) route was used in three (12%) studies[30,38,42]; the
intracardial  route  was  used  by  the  Wang et  al[29]’s  study.  These  systemic  routes
allowed the administration of a greater volume, ranging from 100 to 700μL, with a
similar quantity of cells (approximately 5 × 105 cells). The range in the number of cells
used in the selected studies was between 2.0 × 104 (Janowski et al[44], 2014; Lee et al[50],
2009) and 4.0 × 106 (Song et al[49], 2009); most studies[28,29,35-37,40,41,45] used 5.0 × 105, since
the  most  commonly  used  SC  implantation  volume  used  by  the  selected
studies[36,43,45,47-50] was 5 μL, which ranged between 2[58] and 700 μL[46]. All of the selected
studies observed the positive presence of SCs labeled with SPION in the ischemic
area.  After the homing analysis,  these cells were monitored for 21 d by different
imaging techniques.  The outcome of  cellular  therapy was analyzed by different
approaches, including functional behavioral assessment, structural morphometric
analysis of the decrease in the ischemic lesion volume and the evaluation of cellular
differentiation using various types of immunohistochemical analysis. To assess the
functional outcome of cellular therapy, 8 studies reported behavioral assessment by
different tools, for which 6 studies showed positive improvement in the functional
analysis mainly after 14 d of cell implantation (ranging from 7 to 21 d). The structural
outcome of  the  infarct  volume was  reported  in  14  studies,  in  which  11  showed
effective improvements as a decrease in the infarct volume in the late stage (14 d after
cells implantation).  Cellular differentiation was analyzed by measuring different
molecular proteins such as Ki67, NeuN, GFAP, TuJ1, MAP2, BrdU, Nestin, TUNNEL,
CD31,  CD11,  CD15,  GFP,  and  MAPK,  as  well  as  by  using  reverse  transcription
polymerase chain reaction and tyrosine hydroxylase assays, which reveal positive
markers of cellular differentiation mainly 7 d after cell implantation.

The systematic review outcomes are schematically illustrated in Figure 2, which
shows each aspect analyzed for the SC homing, tracking and therapeutic efficacy
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Table 6  Stroke models induced by the photothrombosis of middle cerebral artery, brain injury evaluation and animal features

Ref.

Ische-
mia
mecha-
nism

Animals

n / N

Photo-
sensiti
zer -
rose
bengal
(dose;
via)

Laser application parameters

Anes-
thesia

Brain
induc-
tion
area
(AP;
ML to
Bre-
gma in
mm)

Injury
evalu-
ationSpecie Type Sex Weight

(g)
Age
(wk)

Time
(min)

Dia-
meter
(mm)

Wave-
lengh
(nm)

Power
(W)

Lim et
al[33]

PT Mice Balb / c
nude

M 20-25 10 3-5/19 10 mg /
mL;
penile
vein

16 NR 561 NR Zoletil
(50-30
mg/kg
i.p.)

0.5; 2.5 MRI,
NIRF,
TTC

Wang
et al[29]

PT Mice Balb / c
nude

F 20-23 8 4-6/39 100
mg/kg

15 4 NR NR PB (50
mg/kg
i.p)

-2.0; 2.0 MRI

Bai et
al[42]

PT Mice Db/Db M NR 8 4/8 100
mg/kg;
i.p.

15 NR NR NR 1% ISO 0.0; 2.0 MRI,
NIRF

Mice Wild
type

M NR 8 10/20 100
mg/kg;
i.p.

15 NR NR NR 1% ISO 0.0; 2.0 MRI,
NIRF

Tarulli
et al[46]

Focal
devascu
la-
rization

Rat Long
Evans

M NR 8-12 3/9 NA NA NA NA NA ISO +
Ketop-
rofen

3.0/-4.0;
1.5/4.5

MRI

Lee et
al[50]

PT Rat Wistar F NR NR NR/22 7.5 mg
/ mL;
tail vein

10 3 603 60 Ket. (7.5
mg/100
g) + Xyl.
(1
mg/100
g)

-2.0; -3.0 MRI,
TTC

Syko-
vá et
al[53]

Photoch
emical

Rat Wistar M NR 8-12 NR/NR NR NA NA NA NA NR NI MRI

Blood flow analysis was not reported in any of the selected studies that used stroke models induced by photothrombosis; due to the model induction, all
studies showed permanent ischemia after occlusion induction in the specific brain region. n/N: Number of animals per group/total number of animals; W:
Watts;  AP: Anterior-posterior;  ML: Medial-lateral;  PT: Photothrombosis;  Db/Db: Diabetic mice model;  M: Male;  F:  Female;  NR: No reported; i.p.:
Intraperitoneal; NA: Not applicable; ISO: Isoflurane; PB: Pentobarbital; Ket: Ketamine; Xyl.: Xylamine; MRI: Magnetic resonance imaging; NIRF: Near-
infrared fluorescence; TTC: Triphenyltetrazolium chloride.

evaluation for stroke treatment using nanoparticles.

DISCUSSION
The  current  systematic  review  examined  preclinical  studies  of  the  homing  and
tracking of MSCs with SPION used for the treatment of ischemic stroke and found
that  this  cellular  therapy  improves  outcomes  overall.  The  effects  were  robust
regardless of the species, delivery route, time of administration in relation to stroke,
MSC immunogenicity, and MSC dose. These results support further translational
studies of MSCs in the treatment of ischemic stroke in humans.

The  results  described  above  corroborate  the  recent  systematic  review  of
Boncoraglio[59], which reported the exponential growth of the use of this therapeutic
method in Eastern countries, mainly in China (Figure 1), by utilizing human cells
extracted  from  bone  marrow.  It  was  observed  that  15  studies  (60%)  used
mesenchymal  cells  and 10  (40%) used neural  cells,  this  characteristic  or  cellular
pattern, evidenced by the studies selected in this review, corroborates the current
literature and the review[59] cited. The MSC have strong immunomodulatory potential
into ischemic or damage area[60], mainly autologous and allogeneic source. The most
selected studies used bone marrow as source of SCs, but the human (40%), the review
cited[59], showed in these studies, stronger functional effects in the meta-analysis, the
most studies of this study used too human SCs of bone marrow.

The  selected  studies  have  demonstrated  the  presence  of  SCs  labeled  with
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Table 7  Magnetic resonance imaging features for stem cell homing evaluation

Ref. Equipment
system

Analysis
software MF (Tesla) Sequence

Weighted
images (TR/TE;
ms)

FOV; MT; ST
(mm)

Homing
evaluation time

Lim et al[33] PC - Agilent
Technologies

ImageJ (NIH) 9.4 T2 T2: 4000/32.5 NA; NA; 1.0 1, 3, 7, 10, 14 d

Wang et al[29] PC - PharmaScan
- Bruker

ImageJ (NIH) 7.0 TSE FLASH GRE T2: 3000/NA 20 × 20; 256 × 256;
1.0

1, 3, 7 d

ParaVision
(Bruker)

T2*: 159.4/5 55 × 55; 256 × 256;
1.0

Yun et al[30] Philips Medical
Systems; an
animal coil

NA 3.0 FSE T2: 4000/80 50; 256 × 256; 0.5 1 d, 3 w

Argibay et al[38] PC - Bio Spec -
Bruker; surface
coil array

ImageJ (NIH) 9.4 MGE T2*: 2.9/1.5 19.2 × 19.2; 192 ×
192; 1.0

4 h

Duan et al[37] Achieva - Philips
Medical Systems;
4-channel rat coil

ImageJ (NIH) 3.0 FSE T2: 800/60 60; 256 × 256; 1.0 1-4, 6-8 wk

FFE T2*: 500/18

Lu et al[35] Achieva - Philips
Medical Systems;
4-channel rat coil

NA 3.0 FSE T2: 200/31 60 × 60; 267 × 268;
1.0

1, 3, 7, 14 d

FFE T2*: 500/18

Zhang et al[34] Achieva - Philips
Medical Systems

ImageJ (NIH) 3.0 FSE T2: 800/60 60 × 60; 256 × 256;
1.0

1-6 wk

PDW PDW: 3000/20

FFE T2*: 500/18

Lin et al[36] Intera - Philips
Medical Systems

ImageJ (NIH) 3.0 Multi SE T2: 2000/20-80 80 × 80; 160 × 266;
2.0

1-6 wk

Zhang et al[39] PC - PharmaScan
- Bruker

ImageJ (NIH) 7.0 Turbo RARE T2: 6000/ 60 30; 256 × 256; 0.5 2 d, 8 d

FLASH GRE T2*: 400/3.5

Duan et al[40] Achieva - Philips
Medical Systems

ImageJ (NIH) 3.0 FSE T2: 800/60 60; 256 × 256; 1.0 1, 2, 3, 4, 6 wk

PDW PDW: 3000/20

FFE T2*: 500/18

Bai et al[42] PC - PharmaScan
- Bruker

ImageJ (NIH) 7.0 SE T1: 500/15 20 × 20; 256 × 256;
1.0

1, 3, 5, 7, 10, 14 d

FSE T2: 2000/50

Chen et al[28] PC - Bio Spec -
Bruker

ImageJ (NIH) 7.0 RARE SE T2: 3000/50 25.6; 256 × 256;
0.7

3 d, 7 d, 14 d

Tan et al[41] PC - Unity
INOVA, Varian

NR 7.0 SE T2: 2500/60 30 × 30; 512 × 512;
NR

1-42 d

Janowski et al[44] Sonata Maestro
Class - Siemens;
8-channel head
coil

Osirix (Pixmeo)
Amira (Visage
Imaging)

1.5 SWI T2*: 49/40 230; 168 × 256; 1.6 1 d, 1 wk, 1 mo, 2
mo, 4 mo

Park et al[43] Achieva - Philips
Medical Systems;
animal coil

NA 3.0 SE T2: 11000/125 NA; 284 × 286; 0.7 0 h, 2 d

Zhang et al[45] Sigma - GE
Healthcare; a
human head coil

NA 3.0 FSE T2: 5840/104 45 × 45; 256 × 256;
1.5-2.0

1 d, 3 d

Map MSME SE T2: 3500/20-160

Tarulli et al[46] Sigma - GE
Healthcare

NA 3.0 FSE T2: 4500/35-75 40 × 40 × 17; 256 ×
256; 1.0

1 d, 7 d, 14 d

3D-SPGR T2*: 25/7 40 × 40 × 20; 256 ×
256; 1.0

Liu et al[47] Sigma - GE
Healthcare; a rat
coil

3.0 T2* T2*: 2560/6.8 6.0; NR; 1.6 1, 7, 21 d

Wang et al[48] Sigma - GE
Healthcare

NA 3.0 FSE T2: 5840/104 45 × 45; 256 × 256;
1.5

1, 7, 30 d

Lee et al[50] Sigma - GE
Healthcare; a
clinical coil

NA 1.5 TSE T2: 2000/81 90; 192 × 192; 1.5 0, 1, 5, 12 d

GRE 280/20 20; 160 × 160; 1.5

Song et al[49] Sigma - GE
Healthcare

NA 1.5 T2 T2: 3500/80 60 × 60; 256 × 160;
2.0

1d, 3d, 1-4 wk

3D GRE T2*: 50/20 80 × 80; 256 × 160;
2.0
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Kim et al[51] PC - Bio Spec -
Bruker

NA 4.7 SE T1: 600/14 40 × 30; 256 × 192;
1.0

2 d, 1 w, 2 w...10
wkRARE T2: 5000/90

FLASH T2*: 758 × 30

Guzman et al[52] PC - Varian
Medical Systems

NA 4.7 SE T2: 2500/45 40; 256 × 256; 1.0 2 d, 7 d, 35 d

3D GRE T2*: 600/5 30 × 30 × 30; 128×
128 × 128

Syková et al[53] PC - Bio Spec-
Bruker

NA 4.7 FGE T2: NA NA 1 d, 1-7 wk

Zhu et al[54] Sigma - GE
Healthcare

NA 3.0 SE T2: 200/20 NA 1 d, 7 d

MRI: Magnetic resonance imaging; PC: Preclinical MRI scanner; NIH: National Institutes of Health; NA: Not applicable; MF: Magnetic field; T2: Transverse
relaxation time; FSE/TSE: Fast or turbo spin echo; FFE: Fast field echo; PDW: Proton density-weighted; GRE: Gradient echo; MGE: Multiple gradient echo;
SPGR: Spoiled gradient recalled echo; SE: Spin echo; FGE: Fast gradient echo; FLASH: Fast low angle shot; PDW: Proton density-weighted; RARE: Rapid
acquisition with refocused echoes; SWI: Susceptibility weighted imaging; MSME: Multi-spin-multi-echo; SPGR: Spoiled gradient recalled echo; TR: Time
repetition ; TE: Echo time ; FOV: Field-of-view; MT: Matrix; ST: Slice thickness.

superparamagnetic iron oxide nanoparticles in the ischemia area from a few minutes
to several days after preclinical stroke induction. However, during the last 15 years,
the understanding of the mechanisms of action has significantly advanced; rather
than cell replacement, the benefit of SC treatments in stroke seems to result from
indirect mechanisms, such as immunomodulation, which are intended to suppress the
postischemic inflammatory response and enhance endogenous repair[60].

The meta-analysis study[61] examined the quality of the preclinical MSC studies,
given the important bearing this has on translation potential. Over the past 10 years,
our group has been improving the evidence finding process for developing treatments
for neurological recovery through SCs labeled with iron oxide nanoparticles; in this
study, we used the PRISM method, and the median quality score was the same as that
in the Boncoraglio et al[59]’s study, which is the most recent and comprehensive meta-
analysis  of  studies  of  SC transplantation for  ischemic  stroke.  The  quality  of  the
twenty-five selected studies in this review was also found to be poor, and the majority
of studies reported by Boncoraglio et al[59] showed an unclear risk of bias due to poor
methodological reporting. This recent review showed that there are two major trial
paradigms or approaches reflected in the translated results that were used to improve
bedside stroke care: Neuroprotection in the acute phase and neurorestoration in the
chronic phase[59]. The massive, early and fast delivery of SCs into the ischemic area
reduces acute tissue injury and benefits from the paracrine effect of SCs, suppressing
oxidative  stress,  inflammation,  and  mitochondrial  impairment  to  suppress  the
apoptosis  process[62,63].  During  late  SC  delivery  (more  than  36  h  after  ischemic
damage), the same studies[62,63] suggest that the chemokine signaling of SCs near the
damaged/ischemic areas has already waned, and engraftment is intended to initiate
brain remodeling by stimulating quiescent SCs to begin reparative processes, as long
as they remain in damaged areas. Even so, SC administration results in enhanced
recovery of sensorimotor function, promotion of synaptogenesis, stimulation of nerve
regeneration,  and  suppression  of  tissue  plasminogen  activator-induced  brain
damage[64].  Therefore,  the analysis  of  the homing and tracking SC processes  is  a
pivotal strategy for utilizing preclinical results to increase translational knowledge to
improve stroke care at the bedside.

In addition, Sohni et al[65]’s review suggests that MSC homing is inefficient and that
many MSCs are trapped in the lungs following systemic administration. Therefore, it
is imperative to trace the fate of the injected cells to truly achieve clinical translation
aims. The same study cited several molecular imaging techniques to track the injected
cells in vivo, such as BLI, SPECT, PET, and MRI. In this review, the maximum time of
the homing evaluation used by all selected studies was 160 d or 4 mo (Janowski et
al[44]’s study) by MRI; two studies[43,50] reported an immediate homing analysis after SC
implantation at 0 h by MRI, 3 studies[35,38,43] analyzed homing fairly quickly (less than
24 h), and most of the selected studies (88%) used homing evaluation times ranging
from 1 to 7 d. Late homing evaluation occurred in 13 studies[30,34,36,37,40,41,44,47-49,51-53] at least
14  d  after  implantation,  and  this  was  the  most  common  scenario  in  the  recent
literature. Only 3 of the 25 selected studies[33,34,42]  performed tracking and homing
analysis of SCs by using retroviral vectors to express fluorescent proteins, and the
maximum time of homing measured by NIRF was 6 wk, which is nearly 1.5 mo[34]. The
maximum time of the BLI homing analysis was reported as three weeks[30]. Sohni et
al [65]’s  review  proposed  that  the  use  of  multifunctional  (dual-labeled  cells)
nanoparticles or molecular imaging techniques increased the efficacy of determining
the SC dose and route of inoculation owing to the time window after stroke and phase
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Table 8  Near-infrared fluorescence imaging features for stem cell homing evaluation

Ref. Agent Equipment Software
Excitation /
Emission
wavelength (nm)

Time of exposition Follow-up

Lim et al[33] DBCO-Cy5.5 IVIS Lumina Series
III (PerkinElmer)

Living Image
(PerkinElmer)

670/NA 1 min In vivo at 1, 3, 7, 10,
14 d; ex vivo at 2, 27,
30, 33, 36 h

Zhang et al[34] LV-FTH-EGFP small animal in vivo
FLI system (in vivo
FxPro; Carestream)

MI (Carestream) 487/509 NA 1, 2, 3, 4, 5, 6 wk

Bai et al[42] Cy5-5 Maestro in vivo
imaging system
(CRi, Woburn)

Maestro v. 2.10.0 675/695 NA 1, 3, 5, 7, 10, 14 d

DBCO: Dibenzylcyclooctyne; Cy5.5: Cyanine 5.5; LV-FTH-EGFP: Lentiviral vector-encoding ferritin heavy chain and enhanced green fluorescent protein;
NA: Not applicable; MI: Molecular imaging software; Cri: Cambridge research and instrumentation.

effects (early or late) in SCs in the damaged area. Many important aspects were not
addressed in most selected studies included in this review.

However,  our  group  showed  in  a  previous  study  the  first  standardized
methodological approach for triple modal imaging of SCs after stroke in a rodent
model, demonstrating SC homing, tracking and therapeutic efficiency using a low
dose and a systemic route[25]. In this review, only 6 of the 25 selected studies used
bimodal imaging, while three used NIRF[33,34,42] and three used BLI[28-30] combined with
MRI. In our previous study, in which fluorescence was combined with resonance
imaging techniques, our results showed that correlation analysis of the MNP load
internalized into MSCLuc determined via MRI, ICP-MS and NIRF techniques resulted
in the same correlation coefficient of 0.99.  Evaluation of the BLI,  NIRF, and MRI
signals in vivo and ex vivo after labeled MSCLuc were implanted into animals showed
differences in the contrast images according to the different MNP concentrations, and
the physical signals were associated with different techniques (MRI and NIRF; 5 and
20 µg Fe/mL, respectively). Therefore, the temporal analysis showed the acute and
late effects of SCs implanted in the sham groups (at 4 h and 6 d) and in the lesion due
to the chemical receptors involved in brain damage by comparing the sham group
and  stroke  group,  improving  the  imaging  techniques  that  assist  systemic  SC
administration/dose assessment.

Furthermore,  other  questions (limitations)  are  also relevant  regarding clinical
translation of the results, such as culture conditions, the number of passages, donor
age, the toxicity of the contrast agent used in the SC labeling process, and host factors
(aging),  among others,  due to  the  absence  of  a  reasonable  understanding of  the
pharmacokinetics  of  the  administered cells,  which  in  itself  would be  an  overall
nonnegligible adverse effect. In this review, most of the selected studies reported a
low cell passage (no later than the fifth passage), and the literature highlighted that a
higher passage was associated with decreased telomerase activity, paracrine function,
and renewal potential, which reduced cell differentiation and the immunomodulatory
impact[66-68].  In terms of  the toxicity of  the contrast  agent used in the SC labeling
process, which was usually iron[69], all selected studies used iron oxide nanoparticles
as  the  contrast  agent,  and  the  highest  SPION  concentration  was  300  µg/mL[33];
however, the cell viability after the labeling process remained high (more than 95%)
according to the CCK-8 assay, and the other selected studies also showed high cell
viability when using low SPION concentrations. In our previous study[70], we showed
that a high SPION concentration (100 µg/mL) maintained cell differentiation and the
absence  of  cytotoxicity.  The  most  recent  selected  studies  used  equipment  that
generated a high magnetic field (9.4 T), which was developed for preclinical imaging
with rodent-specific coils, such as that used in the Lim et al[33] and Argibay et al[38]

studies; this increased the detection sensitivity of the nanoparticles and generated
greater opportunities for broader temporal analyses as well as the use of labeled SCs
with lower SPION concentrations.

Although there were limitations/biases in all the selected studies included in this
review, the studies that used behavioral or structural analysis/outcomes showed
success in terms of neurological improvement using some sensitive motor tests as
well  as  the  reduction  of  the  penumbra  or  ischemic  brain  area.  Four  decades  of
preclinical research demonstrating the survival, functional integration, and behavioral
effects of transplanted SCs in experimental/preclinical stroke models have provided
an ample scientific basis to facilitate the translation of clinical trials of SC therapy into
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Table 9  Bioluminescence imaging features for stem cell homing evaluation

Ref. Lentiviral
vector Equipment Software Substrate Dose Image

acquisition Follow-up

Wang et al[29] Luc2/eGFP IVIS Lumina
Series III (Perkin-
Elmer)

NR D-luciferin
(Promega, United
States)

100 mL (30
mg/mL)

10 min after
injection

1 d, 3 d, 7 d

Yun et al[30] Fluc/eGFP IVIS® Spectrum
imaging system
(Perkin Elmer)

NR D-luciferin
(Promega, United
States)

150 mg/kg NR 1 d, 1 wk, 3 wk

Chen et al[28] Luc/GFP IVIS Imaging
System 200 Series
(Caliper)

Living Image 3.0
(Xenogen Corp.)

D-luciferin
(Caliper)

270 mg/g 15 min after
injection

0, 14 d

All substrates were administered intraperitoneally. Luc: Luciferase; Fluc: Firefly luciferase; GFP: Green fluorescent protein; eGFP: Enhanced GRP; NR: Not
reported.

treatments for stroke patients[62]. Although therapeutic efficacy has been demonstrated
by the functional and structural outcomes of preclinical studies, there have been no
relevant outcomes in clinical studies[11]. The best time window for cellular therapy for
ischemic stroke has not yet been defined, and a recent clinical trial[71] and Cochrane
review[59]  suggested a  time window between 24  and 36  h  after  the  stroke  event.
However, a long clinical follow-up is necessary in combination with the use of the
homing imaging technique as the gold standard to address the gap between the
clinical  application  and  the  preclinical  cellular  therapy  outcome.  Thus,  the
prescription of SCs labeled with SPION according to this review may help improve
future clinical trials.
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Table 10  Stem cell administration, homing and cellular therapeutic efficiency

Ref. Cell Type Immuno-
genicity

Time
from
stroke
(h)

Cell administration

Groups Follow-
up

Outcome

Route Number Volume
(µL) Behavior Infarct

volume

Mole-
cular
proteins/
others

Cells mi-
gration

Lim et
al[33]

MSC XNG NR IC-CTL 1 × 106 5 Stroke +
cells vs
Stroke-
cells

1, 3, 7, 10,
14 d

NR (+) NR (+)

Wang et
al[29]

MSC XNG 24 ITC1 5 × 105 100 Alkyl-
SPIO/siP
HD2 >
Alkyl-
SPIO/si

1, 3, 7 d (+) mNSS;
FFT at 14
d

(+) 7 d (+) Ki67;
CD31 -7 d;
(+) NeuN
-14 d

(+)

MSC XNG 24 ITC1 5 × 105 100 Alkyl-
SPIO/si vs
saline

1, 3, 7 d (+) mNSS;
FFT at 14
d

(-) 7 d (+) Ki67;
CD31 -7 d;
(+) NeuN
-14 d

(+)

Yun et
al[30]

NSC XNG 24 IA-IC 3 × 106 100 Mag-Cells
> UL-
Cells/sa-
line

0, 3, 5, 7,
21 d

(+)
Cilinder at
21d

NR (+) MAP2;
Nestin;
GFAP;
TuJ1 -7d

(+)

Argibay
et al[38]

MSC ALG 8 IA; IV-
jugular

2 × 105; 1
× 106

300 D-MNP-
labeled
MSC (IA ×
IV)

4, 24, 72 h (-)
Cilinder

(-) at 14d (-) CD31;
Ki67; DCX

(+)

Duan et
al[37]

MSC ALG 48 IC-CTL 5 × 105 3 Labeled
cell > UL-
cells

1, 2, 3, 4, 6,
8 wk

(-) mNSS (-) (-)
TUNNEL
(-) GFP

(+)

Labeled/
UL vs
control

1, 2, 3, 4, 6,
8 wk

(+) mNSS
at 3, 4, 6, 8
wk

(+) at 4, 6,
8 wk

(+)
TUNNEL
7-21 d, (+)
GFP 7-21
d

(+)

Lu et
al[35]

NPC ALG NR IC-IPS 5 × 105 2.5 labeling
with N-
NPS

0, 3, 7, 14
d

NR (+) (+) Nestin (+) low

labeling
with C-NP

0, 3, 7, 14
d

NR (+) (+) Nestin (+)

Zhang et
al[34]

NSC XNG 48 IC-CTL 5 × 105 3 FTH-
EGFP-
NSC >
non trans-
ducec
NSC

1, 2, 3, 4, 5,
6 wk

(+) mNSS
at 1-6 wk

(+) at 1-6
wk

(+) GFAP;
Nestin;
CD11b at
6 wk

(+)

Lin et
al[36]

MSC ALG 48 IC-CTL 5 × 105 NR ASP-
SPION vs
UL vs PBS

1, 2, 3, 4, 5,
6 wk

(-) mNSS (-) (-) GFAP;
NeuN;
CD11

(+)

Zhang et
al[39]

NSC XNG 7d IC-CTL NR 7 Stroke
pure >
Stroke +
Ara-C

0, 2, 8 d NR (+) at 8 d (+)
CD15+;
Nestin at 8
d

(+)

Duan et
al[40]

MSC ALG 48 IC-CTL 5 × 105 3 PLL-
SPION or
PM > UL

1, 2, 3, 4, 5,
6 wk

NR (+) at 4, 6
wk

(-) GFP (+)

Bai et
al[42]

MSC XNG 24 IA - IC 1 × 106 100 DM +
RWJ + cell
> DM +
cells

1, 3, 5, 7,
10, 14 d

NR (+) (+) p38
MAPK at
7 d

(+)2

Chen et
al[28]

MSC XNG 30 min IV-
femoral

5 × 105 Mag-cells
> UL-cells

0, 3, 7, 14
d

(+) VM at
14, 28 d

(+) at 14 d (+) TuJ1;
NeuN;
GFAP at
28 d; (+)
RT-PCR1

at 28 d

(+)
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Tan et
al[41]

MSC ALG 7 d IC-CTL 5 × 105 10 Stroke +
cells over
time

0, 1, 7, 14,
21, 42 d

NR NR (-) GFP
and NeuN
at 7 d; (+)
GFP and
NeuN at 6
wk

(+)

Janowski
et al[44]

NSC AuTL NR IC 2 × 104 10 Case over
time

0, 1, 7, 60,
120 d, 33
mo

NR NR NR (+)

Park et
al[43]

MSC XNG 14d IC-CTL 6 × 105 5 Pcion/pD
NA MSC
vs control

1, 2 d NR (-) NR (+)

Zhang et
al[45]

NPC ALG 24 IC-CTL 5 × 105 5 fsiSPION-
NPC vs
control

1, 3 d NR (+) (+) Nestin (+)2

NPC ALG 24 IV-tail 1 × 106 300 fsiSPION-
NPC vs
control

1, 3 d NR NR (+) Nestin (+)

Tarulli et
al[46]

MSC XNG 72 IV-tail 3 × 106 700 MPIO-
BMSC vs
UL-BMSC

1, 7, 14 d NR NR NR (+)

Liu et
al[47]

NSC XNG NR IC-CTL 3 × 104 5 Stroke +
NSC_FA >
Stroke +
NSC

1, 7 d NR NR (+) Sox-2
BrdU at 21
d

(+)

Wang et
al[48]

MSC XNG 7d IC-CTL 1 × 105 5 FMNC-
MSC >
UL-MSC
vs control
(FMNC)

0, 1, 7, 30
d

NR NR (+) TuJ1 (+)

Lee et
al[50]

MSC XNG 48 IC-CTL 2 × 104 5 M600-
MSC vs
FC-MSC

1, 5, 12 d NR NR NR (+)

MSC XNG 48 IV-tail 2 × 106 500 M600-
MSC vs
control

5, 12 d NR NR NR (+)

Song et
al[49]

NPC XNG 24 IC-IPS 4 × 105 5 FO-NPC
vs control

1, 3, 7, 14,
21, 28 d

NR NR (+) BrdU;
GFAP at
28 d

(+)

NPC XNG 24 IV-tail 4 × 106 500 FO-NPC
vs control

1, 3, 7, 14,
21, 28 d

NR NR (+) BrdU;
GFAP at
28 d

(+)

Kim et
al[51]

MSC AuTL 7d IC-
IPS/CTL

1 × 105 2 Feridex®-
labeled
hMSC
over time
for both
vias

2d, 1, 2, 4,
6, 8, 10 wk

NR NR (-) GFAP;
TH;
MAP2;
TuJ1;
Nestin at
10 wk

(+)

Guzman
et al[52]

NSC XNG 7d IC-CTL 3 × 105/5
× 104

NSC-
SCns-
SPION

3, 9, 12,18
wk

NR NR (+) SC121
or SC101;
TuJ1;
GFAP;
MAP2 at
18 wk

(+)

Syková et
al[53]

rOEC ALG NR IC-CTL NR NR OEC-
SPION
over time

3-7 wk NR NR (+) NeuN;
GFAP at
28 d

(+)

MSC XNG NR IV-
femoral

NR NR MSC over
time

6-30 d NR NR (+) NeuN;
GFAP at
28 d

(+)

Zhu et
al[54]

NSC AuTL NR IC NR NR Patients
treat with
NSC and
no treat

2 yr (+) SEP
and DRS
at 6, 9 mo

(+) cells
uptake by
PET at 3, 6
mo

NI (+)

1left ventricle.
2In addition to cell migration analysis, studies reported biodistribution analysis after stem cell administration. The Bay study[42] reported biodistribution in
the liver, spleen, heart, lungs, and kidneys; Zhang et al[45] reported that the SPION-labelled cells IV > IA at 3 d after injection were detected in spleen, liver,
heart, kidney, and lung. MSC: Mesenchymal stem cells; NSC: Neural stem cells; ESC: Embryonic stem cell; rOEC: Rat olfactory ensheathing cells; NR: No
reported; XNG: Xenogeneic; ALG: Allogeneic; AuTL: Autologous; IC: Intracerebral; IC-CTL: IC contralateral; ITC: Intracardially; IC-IPS: IC ipsilateral; IV:
intravenous; IA-IC: Intraarterial through internal carotid artery; Alkyl-SPIO: Amphiphilic low molecular weight superparamagnetic iron oxide; Mag:
External magnet; UL: Unlabeled; siPHD2: siRNA against PHD2; C-NP: Cationic nanoparticle; N-NP: Neutral nanoparticle; FTH-eGFP: ferritin heavy chain:
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Enhanced green fluorescent protein; ASP-SPION: Spermine-modified amylose superparamagnetic iron oxide nanoparticle; FBS: Fetal bovine serum; Ara-C:
Cytosine arabinosine; PLL: Poly-L-Lysine; PM: Polymersone; PCION: Poly-(ethylene glycol)-coated cross-linked iron oxide nanoparticles; MPIO: Micron-
sized superparamagnetic iron oxide particles; DM: Diabetes mellitus; RWJ: RWJ67657; fsiSPION: fmSiO4@SPION; FC: Ferucarbotran; FA: Folic acid; FO:
Ferumoxide; FMNC: Fluorescent-magnetite-nanocluster; mNSS: Modified neurological severity score; FFT: Foot-faults test; VM: Vertical movement; SEP:
Somatosensory evoked potential; DRS: Disability rating scale; MAP2: Microtubule-associated protein 2; GFAP: Glial fibrillary acidic protein; TuJ1: Neuron-
specific class III beta-tubulin; GFP: Green fluorescent protein; MAPK: Mitogen-activated protein kinase; RT-PCR: Reverse transcription polymerase chain
reaction; BrdU: 5′-Bromo-2′-deoxyuridine; TH: Tyrosine hydroxylase.

Figure 2

Figure 2  Schematic illustration of the aspects of stem cell homing, tracking and therapeutic efficacy evaluated in stroke using nanoparticles in the
selected studies included in this review. A: The multifunctional nanoparticle characteristics; B: Characteristics of stem cells labeled with nanoparticles/contrast
agents transfected with luciferase; C: Characteristics of the induction of the animal models of stroke; D: Routes of stem cell administration; E: Molecular imaging
techniques of stem cell migration homing and tracking; F: The combined imaging techniques used in the stem cell homing analysis. MSC: Mesenchymal stem cells;
NSC: Neural stem cells; NPC-Imm: Neural progenitor cell - immortalized; ESC: Embryonic stem cell; rOEC: Rat olfactory ensheathing cells; IV: Intravenous by tail and
femoral veins; IA: Intra-arterial by intracarotid; IC: Intracerebral; CTL/IPS: Contralateral or ipsilateral of brain injury; BLI: Bioluminescence; NIRF: Near-infrared
fluorescence; MRI: Magnetic resonance imaging; MCA: Middle cerebral artery.

ARTICLE HIGHLIGHTS
Research background
Stroke survivors commonly suffer from disabilities requiring temporary or lifelong assistance,
resulting in a substantial economic burden for poststroke care and stem cell (SC) therapeutics
appear to be a promising alternative for intervention in stroke therapy. However, the efficacy of
SC therapy depends on the SC homing ability and engraftment into the injury site over a long
period of time.

Research motivation
The  analysis  of  the  homing  and  tracking  SC  processes  is  a  pivotal  strategy  for  utilizing
preclinical results to increase translational knowledge to improve stroke care at the bedside.

Research objectives
In this systematic review, we aim to evaluate SC migration homing, tracking and therapeutic
efficacy in the treatment of stroke using nanoparticles.

Research methods
A systematic literature search was performed to identify articles published prior to November
2019 that were indexed in PubMed and Scopus. The following inclusion criteria were used: (1)
Studies that used in vivo models of stroke or ischemic brain lesions; (2) Studies of SCs labeled
with some type of contrast agent for cell migration detection; and (3) Studies that involved in
vivo cellular homing and tracking analysis.

Research results
A total of 82 articles were identified by indexing in Scopus and PubMed. After the inclusion
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criteria were applied, 35 studies were selected, and the articles were assessed for eligibility;
ultimately, only 25 studies were included. Most of the selected studies used SCs from human
and  mouse  bone  marrow  labeled  with  magnetic  nanoparticles  alone  or  combined  with
fluorophore dyes. These cells were administered in the stroke model (to treat middle cerebral
artery occlusion in 74% of studies and for photothrombotic induction in 26% of studies). Fifty-
three percent of studies used xenogeneic grafts for cell therapy, and the migration homing and
tracking evaluation was performed by magnetic resonance imaging as well as other techniques,
such as near-infrared fluorescence imaging (12%) or bioluminescence assays (12%).

Research conclusions
Our systematic review provides a comprehensive, up-to-date evaluation of the SC migration and
efficacy of cellular therapy for brain injury. Cellular therapy demonstrated considerable efficacy
with regard to the functional and structural evaluation, as well as the differentiation of the cells
in the late stage of evaluation (after 7 d of cell implantation), using protein molecular and other
tests.

Research perspectives
In summary, a long clinical follow-up is necessary in combination with the use of the homing
imaging technique as the gold standard to address the gap between the clinical application and
the preclinical cellular therapy outcome. Thus, the prescription of SCs labeled with SPION
according to this review may help improve future clinical trials.
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