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Abstract
Pancreatic cancer is considered one of the most aggressive cancers, with an 
increasing incidence in recent years. To date, chemotherapy is still the standard of 
care for advanced metastatic disease, unfortunately providing only a slight 
advantage in terms of survival. The molecular and cellular characteristics of 
pancreatic cancer cells, as well as the cells that characterize the pancreatic tumour 
microenvironment, are the basis of the mechanisms of resistance to treatment. 
After progression during first-line treatment, few patients are eligible for second-
line treatment due to the loss of performance status. To date, a clear survival 
advantage has not yet been demonstrated for second-line chemotherapy. 
Precision medicine could be the key to increasing responses to cancer treatment 
and finally impacting survival in this difficult-to-treat disease. In this review, we 
analyze current recommendations in the second-line setting and potential future 
prospects.

Key Words: Pancreatic adenocarcinoma; Second-line; Chemotherapy; Targeted therapy; 
Immunotherapy
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Core Tip: The incidence of pancreatic ductal adenocarcinoma is increasing, with 
anticipation of a large impact on the population. Despite achieving a survival gain in 
first-line treatment in the last decade, to date, little has been achieved in second-line 
treatment. The molecular and genetic characteristics of this tumour represent a 
fundamental challenge for preclinical and clinical research. In this review, we illustrate 
current clinical practice in second-line treatment for advanced pancreatic 
adenocarcinoma and the research landscape of potential future prospects.
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INTRODUCTION
Pancreatic cancer remains one of the deadliest malignancies, recording 432242 new 
deaths in 2018, with 458918 new pancreatic cancer cases reported globally[1]. 
Adenocarcinoma is the most common type of exocrine (non-endocrine) pancreatic 
cancer, accounting for over 90 percent of pancreatic cancer diagnoses. In most cases, it 
originates from the pancreatic ducts (ductal adenocarcinoma), in a smaller percentage 
of cases it can originate from the acini (acinar cell carcinoma). Rarer forms of 
pancreatic cancer are squamous cell carcinoma, adenosquamous carcinoma and colloid 
carcinoma. Despite advances in pancreatic cancer detection and management, the 5-
year survival rate is still very low, only approximately 9%[2]. It is expected to become 
the second most common cause of cancer-related death by 2030[3]. Unfortunately, 
most cases are diagnosed in locally advanced or metastatic stages, for which 
chemotherapy remains the standard of care[4]. Progress in the treatment of pancreatic 
ductal adenocarcinoma (PDAC) has been very limited; in particular, gemcitabine 
(GEM) has been used as a monotherapy agent for first-line treatment for 
approximately 20 years. Subsequently, in 2011, there was a breakthrough in the 
treatment of metastatic PDAC (mPDAC) with the introduction of the FOLFIRINOX 
regimen [5-fluorouracil (5FU), folinic acid, irinotecan (IRI) and oxaliplatin (OX)] as a 
first-line standard of treatment[5]. However, this regimen is not suitable for all 
patients. Eventually, the combination of nab-paclitaxel and GEM (NabGem) also 
demonstrated an overall survival (OS) gain in mPDAC compared to GEM 
monotherapy[6]. However, no prospective randomized studies have demonstrated a 
benefit in terms of OS for a second-line treatment; moreover, there is currently no 
standard regarding the sequencing of treatments.

CURRENT CLINICAL PRACTICE IN SECOND LINE MPDAC
Chemotherapy
mPDAC is a biologically aggressive cancer that is often characterized by clinically 
evident disease progression during first-line treatment (pain, fatigue, anorexia, weight 
loss, constipation, fever, diabetic decompensation, etc.) with a deterioration of the 
patient performance status (PS) that limits subsequent treatments. Several 
complications can also arise, such as duodenal stenosis, obstruction of biliary stents 
and cholangitis, gastrointestinal bleeding and intestinal obstructions, which further 
limit the possibility of accessing second-line chemotherapy. In this context, it is not 
surprising that few data from large randomized trials are available. To date, there are 
no clear data on the superiority of a specific chemotherapy regimen due to the lack of 
adequate comparisons.

In advanced PDAC, the choice of which chemotherapy to use in the second-line 
setting basically depends on the treatments used in the first-line setting, residual 
toxicities (e.g., peripheral neuropathy), patient PS, age and comorbidities. The ability of 
patients in different countries to access a specific treatment should also be considered 
due to the limitations of regulatory agencies.

Currently, in first-line treatment for patients with a good PS, Eastern Cooperative 
Oncology Group (ECOG) 0-1, two main regimens are indicated based on evidence of 
an OS benefit highlighted by randomized phase III trials: FOLFIRINOX and NabGem. 
In fact, the PRODIGE4/ACCORD11 trial showed the superiority of FOLFIRINOX over 
GEM in terms of OS (11.1 mo vs 6.8 mo), progression-free survival (PFS, 6.4 mo vs 3.3 
mo) and the objective response rate (ORR, 31.6% vs 9.4%)[5], while in the Metastatic 
Pancreatic Adenocarcinoma Clinical Trial (MPACT), NabGem showed superiority 
over GEM (OS 8.5 mo vs 6.7 mo, PFS 5.5 mo vs 3.7 mo, ORR 23% vs 7%, res-
pectively)[6]. It is significant to consider how many patients received a subsequent 
therapy after progression on first-line therapy in these trials. In the PRODIGE4/ 
ACCORD11 trial, second-line therapy was administered in approximately 50% of 
patients in both arms, while in the MPACT trial, second-line therapy was administered 
in 38% of patients in the NabGem group and in 42% of patients in the GEM group. 
Real-life data are very different; in fact, even in the best cases, they do not seem to 
include half of patients receiving second-line therapy. It is remarkable that patients 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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treated in high-volume centres, especially those aged < 65 years and with an ECOG PS 
of 0-1, receive more lines of therapy. According to Abrams et al[7], in the United States 
in 2015, approximately 56% of patients received second-line therapy and 22% received 
third-line therapy. The percentages reported in other recent databases are even lower: 
38.2% in the United States[8], 33% in Sweden[9], and 44%-48% in British Columbia and 
Canada[10]. Higher percentages are reported in Austria, where the proportions of 
patients who had access to second- and third-line therapy were 62%-65% and 29%-
37%, respectively[11].

The choice of subsequent treatment has to consider the chemotherapy drugs 
received in the first line. Therefore, there are two main scenarios: after a first-line 
treatment with GEM-based chemotherapy, the advice of the main guidelines is to 
choose a 5FU-based chemotherapy; in the case of a front line therapy with a 5FU-based 
scheme, the indication is a GEM-based therapy[12,13]. The choice between a multidrug 
combination regimen and monotherapy depends on the patient's PS (ECOG 0-1 or 2, 
respectively). A summary of the current possible options is reported in Figure 1. The 
study by Taieb et al[14] evaluated first-line and second-line treatment regimens and 
their geographic variation across European countries between 2014 and 2016, 
highlighting that the most common first-line treatments were FOLFIRINOX (35.6%), 
the first choice in France and in the United Kingdom; NabGem (25.7%); and GEM 
monotherapy (20.5%). Overall, GEM was the most frequently used second-line therapy 
(27.1%), followed by NabGem (17.8%), FOLFOX [5FU+ leucovorin (LV) + OX, 17.6%] 
and 5FU monotherapy (16.7%)[14]. It should be noted that nab-paclitaxel beyond the 
first line is not approved in all countries, and at that time, pegylated liposomal IRI 
(Nal-IRI) was not yet available.

Pancreatic cancers with specific molecular characteristics, such as microsatellite 
instability, fusion of the NTRK gene, and BRCA 1-2 mutations, require a separate 
discussion. In fact, currently, it is recommended by National Comprehensive Cancer 
Network guidelines to evaluate at least these three genetic features, but unfortunately, 
this is not accessible yet for everyone in several countries.

For a better understanding of the data available in the literature, we considered the 
following possible scenarios: (1) Second-line chemotherapy after treatment with 
FOLFIRINOX; and (2) Second-line chemotherapy after GEM-based regimens 
(Figure 1).

Second-line chemotherapy after treatment with FOLFIRINOX
There is no clear consensus on the second-line treatment after progression to 
FOLFIRINOX since no prospective randomized trials have been conducted in this 
setting. The choice is generally a GEM-based treatment, which could be GEM 
monotherapy or a GEM-based therapy. Table 1 summarizes the main second-line trials 
and their results, divided according to the type of study.

GEM in monotherapy: Only a series of retrospective studies have evaluated the 
efficacy of GEM as a second-line monotherapy after FOLFIRINOX failure[15,16]. The 
analysis conducted by Viaud et al[17] showed a median OS with GEM of 3.7 mo [95% 
confidence interval (CI): 2.5-5.2], a median PFS of 2.1 mo (95%CI: 2.0-2.6) and a disease 
control rate (DCR) of 40%, highlighting that age at diagnosis and PS were 
independently associated with OS in a multivariate analysis [hazard ratio (HR) of 1.86; 
P = 0.0055 and 2.42; P < 0.0001, respectively] and suggesting that GEM is beneficial for 
patients with a good PS. A multicentre retrospective study in the same setting showed 
an ORR of 11% and a clinical benefit of 44% for patients, regardless of their previous 
response to the first-line treatment, concluding that some patients benefit from a 
second-line treatment[18].

GEM based treatment: No randomized trials have evaluated the efficacy of the 
NabGem combination as second-line therapy. Zhang et al[19] published retrospective 
data collected from a total of 146 patients treated with FOLFIRINOX as the first-line 
treatment. Of those, 30 received the NabGem combination, 8 received GEM as 
monotherapy, and 22 received best supportive care (BSC). The median PFS and OS 
were 3.61 mo and 5.69 mo in the NabGem group and 2.51 mo and 3.82 mo in the GEM 
monotherapy group, respectively. In a second retrospective study[10], the percentage 
of patients receiving NabGem compared to GEM alone was different depending on the 
region considered and the respective possibility for reimbursement[20]. In this study, 
the OS outcomes favour the NabGem combination regardless of funded access to the 
second-line combination. The efficacy of the combination in the second-line setting 
was confirmed in a third multicentre retrospective analysis, although without a 
comparison with GEM alone[21]. A prospective study showed that the DCR with 
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Table 1 Studies of second-line treatment in metastatic pancreatic ductal adenocarcinoma

Ref. Type of study Patients 
(n) 1st-line regimen 2nd-line regimen Median 2nd-line 

OS (mo)

Median 2nd-
line PFS 
(mo)

2nd-line 
ORR 
(%)

2nd-line 
DCR 
(%)

Pelzer et al[35], 
2011

Phase III 461 GEM monotherapy OFF; BSC 4.8; 2.3 - - -

Oettle et al[36], 
2014, CONKO-
003

Phase III 160 GEM monotherapy OFF; FF 5.9; 3.3 2.9; 2.0 - -

Gill et al[37], 
2016, 
PANCREOX

Phase III 108 GEM-based 
(approximately 75% 
monotherapy)

mFOLFOX6; FU/LV 6.1; 9.9 3.1; 2.9 13.2; 8.5 60; 63.8

Wang-Gillam 
et al[37], 2016, 
NAPOLI-1

Phase III 417 GEM-based2 Nal-IRI; FU/LV; 
Nal-IRI + FU/LV

4.9; 4.2; 6.1 2.7; 1.5; 3.1 6; 1; 16 44; 24; 52

Chung et al[29], 
2018

Phase II 48 GEM-based mFOLFIRINOX 9.0 5.8 18.8 62.5

Tsavaris 
et al[33], 2005

Phase II 30 GEM OX 50 mg/mq + 
FU/LV (1-h iv 
infusion), weekly

6.25 - 23.3 53.3

Pelzer et al[32], 
2009

Phase II 37 GEM OFF 5.5 3.0 6 49

Yoo et al[34], 
2009

Phase II 61 GEM-based mFOLFIRI.3; 
mFOLFOX

3.9; 3.5 1.9; 1.4 0; 7 23; 17

Zaniboni 
et al[49], 2012

Phase II 50 GEM ± platinoid FOLFIRI 5 3.2 8 36

Chung et al[29], 
2018, SWOG 
S1115

Phase II 137 GEM-based Selumetinib+ MK-
2206; mFOLFOX

3.9; 6.7 1.9; 2.0 1.7; 8 22.4; 30.6

Portal et al[22], 
2015

Prospective 
cohort

57 FOLFIRINOX NabGem 8.8 5.1 17.5 58

Zaanan et al[47], 
2014

Prospective 
cohort

46 GEM/FOLFIRI.3 in 
FIRGEM trial

FOLFOX 4.3 1.7 0 36

Wainberg 
et al[45], 2020

Meta-analysis 454 GEM-based FOLFOX; Nal-IRI 6.3; 6.1 - - -

Sonbol et al[51], 
2017

Meta-analysis 895 GEM-based FPOX; FPIRIFP FPIRI vs FP: HR 
OS 0.7, PFS 0.64; 
FPOX vs FP: HR 
OS 1.0, PFS 0.81

Citterio et al[52], 
2018

Meta-analysis 1587 GEM-based FP, OX or IRI-based Most effective 
IRI-based 
regimens (results 
cannot be 
translated into 
the table)

Rahma et al[43], 
2013

Systematic 
analysis

1503 GEM-based GEM + platinum; 
FPOXBSC

6.0; 5.7; 2.8 4; 2.9; - - -

Petrelli et al[53], 
2017

Systematic 
analysis

- GEM-based OX-based; IRI-based 5.3; 5.5 2.9; 2.7 11.9; 8.7 41.1; 29.4

Berk et al[48], 
2012

Comparative 85 GEM-based FOLFOX4; XELOX 5.8; 4.9 3.7; 3.7 17; 18 43; 59

Zhang et al[19], 
2018

Retrospective 146 FOLFIRINOX NabGem; Gem alone 5.69; 3.82 3.61; 2.51 - -

Chae et al[21], 
2020

Retrospective 102 FOLFIRINOX NabGem 9.8 4.6 8.5 73.6

Viaud et al[17], 
2017

Retrospective 96 FOLFIRINOX GEM monotherapy 3.7 2.1 - 40

Gilabert et al[18], 
2017

Retrospective 72 FOLFIRINOX GEM monotherapy - 2.5 11 -
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Pointet et al[38], 
2020

Retrospective 137 NabGem FOLFOX; FOLFIRI; 
FOLFIRINOX

3.5; 9.7; 6.1 2; 6.6; 3.4 0; 9.5; 6.3 29.2; 
61.9; 50

Lee et al[41], 2020 Retrospective 120 GEM-based FPOX; FP 7.04; 7.43 2.89; 3.81 6.4; 5.4 52.6; 59.5

Neuzillet 
et al[50], 2012

Retrospective 63 GEM ± platinoid FOLFIRI 6.6 3.0 7.9 39.7

Kieler et al[24], 
2019

Retrospective 52 GEM-based Nal-IRI + FU/LV 6.79 3.84 19.2 46.2

1The trial was prematurely stopped due to insufficient accrual.
2Approximately 45% of gemcitabine alone and 55% in combination. About 30% of patients had received ≥ 2 previous lines for metastatic disease, with 45% 
of patients pretreated with fluorouracil/leucovorin-based regimens. GEM: Gemcitabine; DCR: Disease control rate; BSC: Best supportive care; OFF: 
Oxaliplatin, folinic acid and 5-fluorouracil; 5FU: 5-Fluorouracil; OX: Oxaliplatin; LV: Leucovorin; FF: Folinic acid and 5-fluorouracil; Nal-IRI: Liposomal 
irinotecan; FOLFIRINOX: 5-Fluorouracil, folinic acid, irinotecan and oxaliplatin; FOLFOX: 5-fluorouracil  + leucovorin + oxaliplatin; FPOX: 
Fluoropyrimidine and oxaliplatin-based regimens; HR: Hazard ratio; OS: Overall survival; NabGem: Nb-paclitaxel and gemcitabine; FP: Fluoropyrimidine; 
IRI: Irinotecan.

Figure 1 Current therapeutic possibilities for metastatic pancreatic ductal adenocarcinoma. NabP: Nab-paclitaxel; Nal-IRI: Nanoliposomal 
irinotecan; 5FU: 5-Fluorouracil; FOLFIRI: 5-Fluorouracil + irinotecan; FOLFOX: 5-fluorouracil + leucovorin + oxaliplatin; OFF: Oxaliplatin + 5-fluorouracil + folinic acid; 
CapeOx: Capecitabine + oxaliplatin; MSI-H: Microsatellite instability high; dMMR: DNA mismatch repair deficiency; Clinical trials?: Evaluate the availability of clinical 
trials suitable for the patient.

NabGem was 58% (ORR 17.5%), OS was 8.8 mo (95%CI: 6.2-9.7) and the PFS was 5.1 
mo (95%CI: 3.2-6.2)[22].

To date, there are no second-line treatment recommendations after progression on 
the FOLFIRINOX scheme, and the use of GEM alone or in combination with 
nabpaclitaxel is generally dictated by patient characteristics and by the possibility of 
reimbursement in individual countries.

Second-line chemotherapy after treatment with GEM based combination therapy
For patients previously treated with GEM-based regimens, the main international 
guidelines recommend 5FU-based therapies, which include FOLFIRI, Nal-IRI+5FU, 
OX, folinic acid and 5FU (OFF), FOLFOX or CapeOX and monotherapy with 5FU or 
capecitabine.

Nal-IRI ± 5FU/LV: Nal-IRI + 5FU/LV is the regimen with the most evidence and 
therefore a higher degree of recommendation[13]. This indication comes from the 
results of the NAPOLI-1 study, which compared 5FU/LV alone vs monotherapy with 
Nal-IRI or the combination of 5FU/LV + Nal-IRI in 417 patients with mPDAC and a 
Karnofsky PS ≥ 70 who were previously treated with GEM-based therapy[23]. In 
particular, 12% of patients received GEM-based therapy in the adjuvant, neoadjuvant, 
or locally advanced setting; 56% had received one previous line of metastatic 
treatment; and 32% had received two or more lines of metastatic treatment. It should 
be emphasized that few patients received NabGem in the first-line setting since the 
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GEM combination is preferred in current clinical practice, and 43% of patients had 
already received previous 5FU-based therapy (10% IRI and 32% platinum). Patients in 
the 5FU/LV + Nal-IRI group achieved a longer OS than patients in the 5FU/LV group 
(6.1 mo vs 4.2 mo; P = 0.012, HR: 0.67); however, no significant difference in OS was 
observed between the 5FU/LV and Nal-IRI monotherapy groups (4.2 mo vs 4.9 mo; P 
= 0.94, HR: 0.99).

These data were confirmed by a retrospective study that included 52 patients[24] 
and a similar Korean study[25]. However, in some countries, including Italy, this 
combination is not approved due to the methodological limitations of the study, such 
as the heterogeneity of the patient population, the study design without a comparison 
with the classic FOLFIRI regimen, and the inclusion of patients pretreated with 5FU or 
IRI[26].

Fluoropyrimidine and OX-based regimens: The efficacy and safety data of second-
line treatment with FOLFIRINOX are based on retrospective analyses[27,28] and on 
some phase II studies[29,30]. In the single-arm multicentre phase 2 study performed 
by Chung et al[29] (48 patients) of modified FOLFIRINOX (IRI 120 mg/m2 and OX 60 
mg/m2), the ORR, DCR, median PFS and OS were 18.8%, 62.5%, 5.8 mo and 9.0 mo, 
respectively, with significant toxicity (neutropenia grade 3 or 4 rates of 64.6%, febrile 
neutropenia 16.7%). A highly toxic triplet therapy is not very suitable for second-line 
palliative treatment in patients with a non-optimal PS and is reserved for only a few 
cases. Furthermore, in a recent real-world analysis, triplet therapy with FOLFIRINOX 
did not seem to have an advantage over sequential chemotherapy with FOLFIRI-
FOLFOX regimens[31].

For the other OX-based regimens, the data are controversial. Based on the promising 
results of some phase II studies[32-34], three main phase III trials have been 
conducted[35-37]. In the CONKO-003 trial, 160 patients were randomized to receive FF 
(folinic acid 200 mg/m2 followed by a continuous IV infusion of fluorouracil 2000 
mg/m2 over 24 h on days 1, 8, 15, and 22 every 42 d) or OFF (FF and OX 85 mg/m2 IV 
administered before FF on days 8 and 22). Compared to FF, OFF achieved a significant 
increase in both OS (5.9 vs 3.3 mo) and PFS (2.9 vs 2 mo)[36]. In phase III by Pelzer 
et al[35], OFF compared to BSC significantly prolonged OS (4.82 mo vs 2.30 mo, 
respectively) despite the premature closure for insufficient accrual (only 46 patients) 
due to the difficulty of clinicians and patients accepting BSC[35]. However, these 
results of the superiority of OFF over FF and BSC were not confirmed by the phase III 
PANCREOX trial[37]. In particular, in this study, the addition of OX to FF (in the 
mFOLFOX6 scheme) did not translate into an increase in OS; in contrast, it seemed 
detrimental (6.1 mo vs 9.9 mo) at the expense of increased toxicity.

In the literature, different retrospective trials and reviews have dealt with the same 
topic, with discordant results[38-47].

A comparative study evaluated the XELOX and FOLFOX schemes, highlighting 
their comparable results in terms of efficacy and toxicity profile[48].

IRI and 5FU-based regimens (fluoropyrimidine IRI): The use of second-line FOLFIRI 
in patients who progressed on first-line therapy of GEM and platinum (cisplatin or 
OX) was evaluated in a prospective multicentre study[49]. Among the 50 patients 
enrolled, four partial responses (8%) were observed with disease stability in 28% of 
patients, while PFS and OS were 3.2 mo and 5.0 mo, respectively. Similar results were 
obtained from another study that evaluated FOLFIRI after progression on GEM and 
platinoids[50]. Unlike the previous study, patients (n = 63) could receive more than 
one treatment line in the metastatic setting. In particular, most patients had received 
two previous lines. DCR was achieved in 25 patients (39.7%; partial response: n = 5, 
stable disease: n = 20) with FOLFIRI. The median time to progression (TTP) was 3.0 
mo, and the median OS was 6.6 mo. An ECOG PS of 2 was significantly associated 
with a poor TTP and OS, limiting the efficacy of FOLFIRI to patients with a good PS 
(PS 0-1).

Some meta-analyses have concluded that fluoropyrimidine (FP) IRI (FPIRI) is 
superior to FP and OX-based regimens (FPOX) after first-line treatment with gem-
based chemotherapy. In particular, Sonbol et al[51] collected randomized controlled 
trials comparing FP monotherapy vs FPOX or FPIRI and showed that FPOX or FPIRI 
improved PFS compared with single-agent FP, but only FPIRI reported an OS 
advantage. Similarly, in the network meta-analysis by Citterio et al[52] and the meta-
analysis by Catalano et al[40], FPIRI seemed superior to FPOX in terms of OS. 
Conversely, in the systematic review of 24 studies by Petrelli et al[53], FPOX and FPIRI 
were associated with a similar efficacy, with a pooled ORR, DCR, PFS and OS of 11%, 
37.9%, 2.87 mo and 5.48 mo, respectively.
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In conclusion, in patients with preserved PS (ECOG PS 0-1), without relevant 
comorbidities, it is reasonable to propose a second-line treatment with a 5FU-based or 
GEM-based treatment, depending on the first-line treatment used. Within the 5FU-
based regimens, any residual toxicities of the first-line treatment can lead to choose a 
scheme rather than another. For example, if the patient has residual neurotoxicity (e.g., 
from Nab-paclitaxel) the choice could be FOLFIRI or Nal-IRI-5FU; if he has diarrhea or 
bone marrow toxicity, FOLFOX. However, some treatments, such as NabGem or Nal-
IRI, are not reimbursed for the second-line in all countries, thus inevitably influencing 
the choice of treatment.

Targeted therapy
The introduction of increasingly accurate techniques for molecular sequencing and a 
better understanding of the pathogenetic role of genes related to PDAC have led to the 
drafting of numerous clinical trials to study potential targeted treatments in 
chemorefractory disease. Studies in the literature suggest that the use of precision 
medicine can have a substantial effect on survival in patients affected with PDAC and 
that molecular-guided treatments targeting oncogenic drivers promise potential 
developments in clinical practice[54]. Despite countless studies, to date, few biologic 
treatments have been approved for advanced PDAC. In particular, the FDA (Food and 
Drug Administration)- and EMA (European Medicines Agency)-approved targeted 
drugs for second-line treatment are erlotinib, larotrectinib and entrectinib. Olaparib is 
approved for maintenance after response to a first-line platinum-containing agent[55].

Erlotinib: The approval of erlotinib, an EGFR (epidermal growth factor receptor) TK 
inhibitor, in combination with GEM comes from a phase III study that demonstrated a 
statistically significant, albeit modest, improvement in survival in PDAC compared to 
GEM alone[56]. These data have been confirmed in other prospective[57] and 
retrospective studies[58].

Larotrectinib and entrectinib: Fusions involving NTRK1, NTRK2 and NTRK3 lead to 
the expression of chimeric rearrangements in tropomyosin receptor kinases (TRKs) A, 
B, and C, respectively, with constitutively active kinase function. TRK fusions are 
oncogenic drivers in numerous cancer histotypes, including pancreatic cancer, albeit in 
a very low percentage of cases, approximately 0.34%[59]. A peculiarity of the studies 
that evaluated TRK inhibitor drugs is that the efficacy of the specific treatment on a 
genomic alteration is evaluated independent of the tumour histology. No randomized 
trials have been conducted, but the high ORR that exceeded the predetermined 
minimum of the investigators (30%), which was 75% for larotrectinib and 57% for 
entrectinib, led to the approval of these drugs. However, data from studies of these 
two drugs are not comparable given the heterogeneity of the study populations 
involved.

The approval of entrectinib for solid tumours with NTRK gene fusions is based on 
the results of three clinical trials: ALKA-372-001, STARTRK-1[60] and STARTRK-2 
(NCT02568267). An integrated analysis of the following phase I and II studies included 
a total of 54 patients with NTRK fusion-positive advanced solid tumours for a total of 
19 different histotypes[61]. The median follow-up was 12.9 mo and showed 50% 
partial responses and 7% complete responses. This response to treatment has been 
maintained over time with a median duration of response of 10 mo and a good toxicity 
profile.

The approval of larotrectinib is based on data from three multicentre, open-label, 
single-arm clinical studies: LOXO-TRK-14001 (NCT02122913), SCOUT (NCT02637687) 
and NAVIGATE (NCT02576431). A pooled analysis of these studies by Hong et al[62] 
included 55 patients treated with larotrectinib. The ORR was 79% (95%CI: 72-85) in 153 
evaluable patients, with a 16% complete response rate and a good safety profile.

Given the clinical benefit, even considering the low prevalence of NTRK fusions in 
patients with pancreatic cancer and the lack of easy access to Next Generation 
Sequencing services, patients should be tested at diagnosis for such gene alterations to 
guide treatment decisions as well as for gaining access to potential clinical trials.

Unfortunately, in real life clinical practice it is not possible to require such molecular 
insights in all patients with mPDAC due to the cost sustainability. The lack of access to 
these drugs in different countries represents the current gap between what precision 
medicine for mPDAC could be in the future and current clinical practice in different 
oncology contexts. The use of resources and the high costs of oncological treatments 
will be an increasingly important topic in the near future and it is inevitable to take 
this into account.
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Immunotherapy
Immunotherapy has changed the natural history of various cancer pathologies, 
especially melanoma and lung cancer, providing results in terms of increased OS in 
other neoplastic pathologies, such as cancer of the head and neck, bladder cancer, 
renal carcinoma, Merkel cell carcinoma and triple-negative breast tumours. However, 
to date, immune checkpoint inhibitors (ICI) have not shown any efficacy in controlling 
advanced PDAC, either in monotherapy[63,64] or in combination with che-
motherapy[65,66]. Several actors are known to be responsible for the response/ 
resistance mechanisms to ICI. Among these actors, the ability of the tumour to express 
antigens recognizable by the cells of the immune system and the characteristics of the 
tumour microenvironment in which the balance of immuno-sensitizing/immuno-
suppressive factors is in favour of the latter[67]. In particular, PDAC are characterized 
by the presence of an abundant desmoplastic stroma composed of fibroblasts, 
extracellular matrix, immune cells and stellate cells. Immune cells infiltrating this 
stroma are mostly represented by tumour-associated macrophages, myeloid-derived 
suppressor cells and Treg cells, with very few effector T cells. Numerous trials are 
underway aimed at converting the pancreatic tumour microenvironment from 
immunosuppressive to immunosensitive[68,69]; however, to date, there is no 
indication for second-line immunotherapy treatments in chemorefractory disease. A 
PD-1 (programmed cell death protein 1) ICI, Pembrolizumab, has been approved by 
the FDA for diseases with microsatellite instability, regardless of tumour site[70]. 
However, this indication has not yet been approved by EMA, and in Europe, it is 
therefore not possible to prescribe immunotherapy in this setting outside of clinical 
trials.

FUTURE DIRECTIONS
As seen from current clinical practice in second-line treatment of mPDAC, there are 
fundamental open questions. These questions include therapeutic possibilities for 
treatment after progression on TRK inhibitors in TRK fusion-positive cancers, an 
increase in targeted therapies, and overcoming the immuno-resistance of metastatic 
pancreatic disease.

Therapeutic possibilities for treatment after progression on TRK inhibitors in TRK 
fusion-positive cancers
Patients may acquire resistance to first-generation TRK inhibitors; however, to date, 
the mechanisms of resistance to TRK inhibitor drugs are not known, and the only 
secondary resistance mechanism identified is the acquisition of targeted mutations in 
the NTRK kinase domain of the oncogenic fusion. Currently, several trials of newer 
molecules, such as LOXO-195[71] and TPX-00005[72], have been performed to evaluate 
the efficacy of targeted therapies after progression on TRK inhibitors with very 
promising results. Such molecules could become the second-line standard in the future 
after the failure of first-generation TRK inhibitors in TRK fusion-positive pancreatic 
adenocarcinoma.

Increase of targeted therapies
Despite the high ORR of TRK inhibitor drugs, unfortunately, the percentage of PDAC 
patients susceptible to this targeted treatment is extremely low. Furthermore, 
identification of the BRCA mutation allows the prescription of olaparib in maintenance 
after a response to a first-line platinum-based treatment, so there is currently no 
possibility of second-line targeted treatment in mutated BRCA patients[73].

To date, there are few data on the efficacy of targeted treatments in advanced 
PDAC; however, this deficiency should not discourage clinicians from requiring a 
genomic study in these patients. Indeed, knowledge of the prospective genomic profile 
can predict the response to chemotherapy treatment[74]. Furthermore, these data 
could be useful for the enrolment of second-line patients in a clinical trial. Research is 
currently progressing by targeting the recombination deficits of DNA as well as 
considering the driver genes in pancreatic carcinogenesis. Alongside drugs that target 
pancreatic tumour cells, there is a large amount of research addressing the peculiar 
tumour microenvironment that is partly responsible for the poor response to cancer 
treatments of advanced PDAC (Figure 2).

Regarding tumours with recombination deficiency of DNA repair, research is also 
underway to determine the extent of the cancer risk in patients with the so-called 
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Figure 2 Main targeted drugs under study for patients with advanced pancreatic ductal adenocarcinoma. EGFR: Epidermal growth factor 
receptor; TGFβ: Transforming growth factor β; APC: Antigen presenting cells; PD-1: Programmed cell death protein 1; PD-L1: Programmed cell death protein ligand 
1; CAR-T: Chimeric antigen receptor T cells.

‘bracness’ phenotype, or rather the genetic alterations that result in a defect in 
homologous recombination repair, mimicking the loss of BRCA1 or BRCA2. Among 
these mutations is the PALB2 mutation, which occurs in 3%-4% of familial pancreatic 
cancer cases[75,76]. Most studies of PARP inhibitors are conducted as maintenance 
after a response or stability after treatment with a platinum-based first line, i.e., the 
current indication for olaparib. However, studies have also been conducted on the 
second line in patients pretreated and in progression after a first-line chemotherapy 
treatment[77-79]. However, in this setting, the data are currently conflicting, promising 
for olaparib and rucaparib and not significant for veliparib. Nevertheless, phase 3 
studies are lacking.

Considering the major driver genes in pancreatic carcinogenesis, pancreatic 
tumours are characterized in most cases by activating mutations in KRAS (> 90%) and 
loss-of-function mutations in TP53 (50%) and CDKN2A (80%). Several studies are 
underway with the aim of targeting such drivers; however, to date, the potential 
therapeutic target genes are limited to KRASG12C and CDKN2A, which are found in 
only a small percentage of patients. AMG 510 is a novel small molecule that 
specifically and irreversibly inhibits KRASG12C and shows antitumour activity when 
administered as monotherapy in pretreated patients[80,81]. Since the loss of p16INK4a 
is a standard feature in KRAS-driven PDAC, pharmacological specific inhibition of 
CDK4/6 represents a possible targeted treatment. However, monotherapy treatment 
with CDK4/6 inhibitors does not appear to be remarkably effective for pancreatic 
cancer[82]. It has therefore been hypothesized that the activity of CDK4/6 inhibitors 
can be exploited by combination therapies, such as mTOR inhibitors or che-
motherapy[83]. Numerous clinical trials are currently underway (Table 2).

PI3K/Akt signalling is one of the most deregulated signalling pathways in cancer, 
including PDAC, and has a mediating role of the cellular signalling not only for 
tumour cells but also for stromal cells. Indeed, KRAS activates various signalling 
pathways of downstream effectors, including the PI3K pathway, which can, in turn, be 
activated by different signal transduction pathways linked to various growth factor 
receptors. In the last decade, there has been considerable interest in molecules 
inhibiting the PI3K/Akt-mediated transduction pathway, including PDAC[84,85]. One 



Cherri S et al. Pancreatic adenocarcinoma

WJG https://www.wjgnet.com 1856 May 7, 2021 Volume 27 Issue 17

Table 2 Main ongoing targeted therapy studies (clinicaltrial.gov) for advanced pancreatic adenocarcinoma

Treatment Target Phase of study Setting

Ribociclib plus trametinib; NCT02703571 CDK4/6 Phase I/II trial, open label single 
arm

Advanced or metastatic pancreatic cancer and 
KRAS-mutant colorectal cancer

Palbociclib + the PI3K/mTOR inhibitor, gedatolisib; 
NCT03065062

CDK4/6 Phase I, open label single arm Advanced squamous cell lung, pancreatic, head 
and neck and other solid tumours

Abemaciclib in combination with the TGF-β inhibitor 
galunisertib or other agents; NCT02981342

CDK4/6 Phase II, open label, randomized Previously treated metastatic pancreatic ductal 
adenocarcinoma

BKM120 + mFOLFOX6; NCT01571024 PI3K Phase I, open label, single arm Advanced solid tumours including metastatic 
pancreatic cancer

Metformin + Gemcitabine + Erlotinib; NCT01210911 PI3K Phase II, randomized, placebo 
controlled

Locally advanced or metastatic pancreatic 
cancer

Capecitabine + Cetuximab + Everolimus; 
NCT01077986

mTOR Phase I/II, open label, single arm Metastatic pancreatic cancer

Temsirolimus; NCT00075647 mTOR Phase II, open label, single arm Locally advanced or metastatic pancreatic 
cancer

MK2206 + Fluorouracil + Oxaliplatin + Selumetinib; 
NCT01658943

Akt Phase II, open label, randomized Metastatic pancreatic cancer

RX-0201 + Gemcitabine; NCT01028495 Akt Phase II, open label, single arm Metastatic pancreatic cancer

Gemcitabine ± nimotuzumab; NCT02395016 EGFR Phase III, prospective, randomized, 
controlled, double-blind

Locally advanced or metastatic pancreatic 
cancer

MRTX849 (inhibitor of KRAS G12C) + TNO155 
(inhibitor of SHP2); NCT04330664

KRASG12C Phase I/II, open label, non-
randomized

Advanced or metastatic cancer with a KRAS
G12C mutation

AMG 510 Monotherapy; NCT03600883 KRASG12C Phase I/II, open label, non-
randomized

KRAS p.G12C mutant advanced solid tumours

Gemcitabine + M7824 (TGF-β ligand trap); 
NCT03451773

TGF-β Phase I/II, open label, single arm Locally advanced or metastatic pancreatic 
cancer

FFX vs CPI-613 + mFFX; NCT03504423 CPI-613 Pase III, open-label randomized Mtastatic adenocarcinoma of the pancreas

TGF-β: Transforming growth factor β.

of the major challenges contributing to the suboptimal response to PI3K inhibitor drug 
monotherapies is the development of resistance mechanisms. Therefore, in this case, 
the current standard is the identification of new targeted combination therapies[86]. 
Table 2 reports the current ongoing clinical trials targeting the phosphoinositide 
signalling cascade for the treatment of pancreatic cancer.

The transformation of growth factor beta (TGF-β) signalling regulates cell 
proliferation and plays a fundamental role in the process of metastasis, angiogenesis 
and escape from immune surveillance. Several TGF-β inhibitory molecules are being 
studied, including oral inhibitors of the TGF-β receptor kinase, such as galunisertib 
(LY2157299), which specifically downregulates SMAD2 phosphorylation, blocking the 
activation of the canonical pathway[87], and trabedersen (AP 12009), a TGF-β2-specific 
antisense phosphorothioate oligodeoxynucleotide[88]. For example, data from a phase 
Ib study using galunisetinib in combination with second-line durvalumab suggests 
possible second-line activity of the combination[89].

CPI-613 is a new anticancer drug that selectively targets the altered form of 
mitochondrial energy metabolism in cancer cells, compromising the activity leading to 
apoptosis of cancer cells. Following the promising results of Phase I and II studies[90], 
a Phase III study is underway to compare this combination of FOLFIRINOX and CPI-
613 with FOLFIRINOX alone.

Numerous other potential targets have been studied, such as c-KIT, VEGFR, and 
RET. Unfortunately, both masatinib, an anti-cKIT tyrosine kinase inhibitor, and 
vandetanib, an anti-VEGFR2, -RET, and -EGFR tyrosine kinase inhibitor, have failed to 
demonstrate a benefit over standard therapy[91,92].

A possible explanation for the failure of targeted therapies is the adaptive response 
to drug inhibition, for example, through the blockage of downstream signalling and 
the activation of other signalling transduction pathways. The future is trending 
towards the identification of combinations of treatments, with the aim of overcoming 
resistance mechanisms with an acceptable toxicity profile. Alongside this trend, there 
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is the need to identify predictive molecular markers of response to treatment.

Overcome immuno-resistance of metastatic pancreatic disease
As previously reported, the initial enthusiasm for immunotherapy in advanced 
pancreatic cancer waned due to the not very encouraging data from early clinical 
trials. However, the improved understanding of resistance mechanisms has led to 
further clinical studies aiming to overcome the immuno-resistance of the pancreatic 
tumour microenvironment.

To date, data from clinical trials that evaluated the combination of ICI drugs in 
second-line treatment are not promising. The study conducted by O'Reilly et al[93] that 
evaluated the efficacy of the combination of durvalumab and tremelimumab in 
patients who progressed to first-line FP or GEM did not yield the desired results.

For the association of immunotherapy drugs with chemotherapy, the data seem to 
be encouraging; however, numerous association trials are also underway with cancer 
vaccines, adoptive T cell transfer, and direct targeted treatments in the tumour 
microenvironment (JAK/STAT inhibitors, CSF1R blockers, BTK inhibitors)[94].

Again, there is a lack of factors that allow us to predict the response to treatment; 
greater knowledge of the individual genetic characteristics together with the molecular 
characteristics of the disease could in the future lead to a broader selection of patients 
for immunotherapy treatments.

CONCLUSION
Treatment of patients with mPDAC has improved in recent years thanks to the 
introduction of more effective chemotherapy regimens in the first-line setting. 
Consequently, the proportion of patients who are candidates for second- and third-line 
regimens is increasing. However, to date, chemotherapy remains the second-line 
standard of care, and neither personalized medicine nor immunotherapy has in fact 
provided important positive results in the treatment of pancreatic cancer. There are 
many ongoing studies aiming to overcome the multiple resistance mechanisms to 
treatment; however, the key to overcoming these mechanisms and providing 
personalized medicine to patients who have progressed to a first line of treatment is 
far from being identified. The small improvements shown by ongoing clinical trials 
could be considered a first step in what could be the future of treatment for advanced 
pancreatic cancer.
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Abstract
With the growing prevalence of obesity and diabetes in the United States and 
across the world, a rise in the overall incidence and prevalence of non-alcoholic 
fatty liver disease (NAFLD) is expected. The risk factors for NAFLD are also 
associated with the development of chronic kidney disease (CKD). We review the 
epidemiology, risk factors, genetics, implications of gut dysbiosis, and specific 
pathogenic mechanisms linking NAFLD to CKD. Mechanisms such as ectopic 
lipid accumulation, cellular signaling abnormalities, and the interplay between 
fructose consumption and uric acid accumulation have led to the emergence of 
potential therapeutic implications for this patient population. Transplant 
evaluation in the setting of both NAFLD and CKD is also reviewed. Potential 
strategies for surveillance and management include the monitoring of 
comorbidities, the use of non-invasive fibrosis scoring systems, and the 
measurement of laboratory markers. Lastly, we discuss the management of 
patients with NAFLD and CKD, from preventative measures to experimental 
interventions.
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Core Tip: Patients with non-alcoholic fatty liver disease (NAFLD) are at higher risk for 
the development of chronic kidney disease (CKD) than the general population. The 
prevalence of mutual comorbidities in addition to direct pathogenic mechanisms 
linking NAFLD to the development of CKD can explain this finding. With the breadth 
of data linking NAFLD to CKD, there are minimal options for treating this patient 
population. Regardless, we have presented strategies that can be implemented at 
various levels including surveillance, preventative, and management level.

Citation: Heda R, Yazawa M, Shi M, Bhaskaran M, Aloor FZ, Thuluvath PJ, Satapathy SK. 
Non-alcoholic fatty liver and chronic kidney disease: Retrospect, introspect, and prospect. 
World J Gastroenterol 2021; 27(17): 1864-1882
URL: https://www.wjgnet.com/1007-9327/full/v27/i17/1864.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i17.1864

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of chronic liver 
disease ranging from steatosis on one end to fibrosis and cirrhosis on the other end[1]. 
NAFLD and non-alcoholic steatohepatitis (NASH) are the hepatic manifestations of 
metabolic syndrome (MetS), which is a driving force for a multitude of comorbidities, 
such as insulin resistance, cardiovascular disease (CVD), chronic kidney disease 
(CKD), obstructive sleep apnea (OSA), as well as increased malignancy risk[2]. While 
NASH is the second leading indication for liver transplantation (LT), it is expected that 
NASH will overtake hepatitis C virus (HCV) as the leading cause, given the efficacy of 
direct-acting antiviral therapy[3]. A recent epidemiological study has already 
confirmed a downward trend for HCV-related LT in the United States[4].

NAFLD is tightly linked to underlying insulin resistance and is associated with 
other comorbidities related to MetS[5]. Growing evidence suggests that NAFLD is a 
risk factor for CKD[6] due to shared metabolic risk factors[7]. Of note, several studies 
have shown an association between the severity of NASH and CKD[8-11]. 
Interestingly, a meta-analysis of 33 studies showed that diabetes status and metabolic 
risk factors had no impact on the positive correlation between the severity of NASH 
and CKD[12], suggesting a possible unique pathogenic link between NAFLD and CKD 
irrespective of their shared metabolic risk factors. We review the genetic, epidemi-
ologic, and pathogenic links between NAFLD and CKD in addition to potential 
preventative and management strategies.

PREVALENCE OF CKD IN NAFLD AND POTENTIAL PREDISPOSING RISK 
FACTORS
Two meta-analyses and a retrospective cohort analysis suggest that the incidence and 
prevalence of CKD increase in patients with NAFLD compared to patients without 
NAFLD (Table 1). In all analyses, the magnitude and direction of effects remained 
unaffected by diabetes status, even after adjustment for other risk factors[12-14]. 
Moreover, the association was stronger in patients with advanced fibrosis or 
decompensated cirrhosis as compared to compensated cirrhosis. The studies that were 
included in these major meta-analyses defined advanced fibrosis was defined by 
histological parameters, imaging findings, and/or elevations in the NAFLD fibrosis 
score (NFS). Of note, among 42 studies included in these two meta-analyses, only 13 (n 
= 2205) utilized liver histology, which is the gold standard in diagnosing NAFLD[15]. 
The majority of the studies established diagnosis of NAFLD via abdominal ultrasound, 
liver enzyme elevation [including serum gamma-glutamyl transferase (GGT) 

https://www.wjgnet.com/1007-9327/full/v27/i17/1864.htm
https://dx.doi.org/10.3748/wjg.v27.i17.1864
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Table 1 Incidence and prevalence of chronic kidney disease in patients with varying degrees of non-alcoholic fatty liver disease 
severity

Ref. Year n NAFLD diagnostic 
modalities Conclusion(s)

Musso et al[12]. A meta-
analysis of 33 studies

2014 63902 Liver biopsy, 
abdominal 
ultrasound, elevated 
liver enzymes 

(1) 20 cross-sectional studies: Nearly two-fold increased risk of CKD in patients with 
NAFLD (OR 2.12, 95%CI 1.69-2.66); (2) 11 longitudinal studies: 1.8-fold increased risk of 
CKD in patients with NAFLD (HR 1.79, 95%CI 1.65–1.95); and (3) advanced fibrosis 
associated with increased prevalence (OR 5.20, 95%CI 3.14-8.61) and incidence (HR 3.29, 
95%CI 2.30-4.71) of CKD in patients with NAFLD

Mantovani et al[13]. A 
meta-analysis of 9 
studies

2018 96595 Abdominal 
ultrasound; FLI; 
serum GGT

Incidence of CKD: (1) 1.4-fold increased long-term risk (HR 1.37, 95%CI 1.20–1.53) in 
patients with NAFLD with a median follow-up period of 5.2 years; and (2) 1.5-fold 
increased risk (HR 1.50, 95%CI 1.25-1.74) in patients with severe NAFLD (defined as 
NFS ≥ -1.455 or serum GGT ≥ 109 U/L)

Park et al[14]. 
Retrospective Cohort 
with Propensity Score 
Matching (1:3)

2019 262619 ICD-9 Incidence of CKD: 1.4-fold increased risk (aHR 1.41; 95%CI, 1.36-1.46) in patients with 
NAFLD after adjusting for demographics, baseline covariates, and ACEi/ARB use; Risk 
of incident CKD increases as the severity of NAFLD increases: (1) compensated cirrhosis 
(aHR, 1.47; 95%CI 1.36-1.59); and (2) decompensated cirrhosis (aHR, 2.28; 95%CI 2.12-
2.46)

NAFLD: Non-alcoholic fatty liver disease; CKD: Chronic kidney disease; HR: Hazard ratio; FLI: Fatty liver index; GGT: Gamma glutamyl transferase; NFS: 
NAFLD fibrosis score; CI: Confidence interval; OR: Odds ratio; ACEi: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin receptor blocker; ICD-9: 
International classification of disease-9.

elevation], or using international classification of disease-9 code.
Previous review articles estimated that the prevalence of CKD was 20% to 55% in 

patients with NAFLD, whereas the prevalence of CKD in patients without NAFLD 
was 5% to 30%[16,17]. However, most of these reviews evaluated the same pool of 
data[8,9,11,18-22], which were also included in the two meta-analyses mentioned 
above. Our conclusions were based on studies that were published before 2015 as 
several more recent studies did not use histology or imaging for NAFLD 
diagnosis[23-26].

Many non-hepatic and hepatic risk factors are associated with CKD in those with 
NAFLD.

Non-hepatic risk factors 
There is minimal data on non-hepatic risk factors to predict which patients will go on 
to develop CKD. However, there are a few studies outlined below to identify which 
patients may be at higher risk (Table 2).

Smoking
Current cigarette smoking is associated with CKD or death from end-stage renal 
disease. Mainstream cigarette smoke includes over 4000 compounds, and nicotine is 
one of many biologically stable and active compounds present in tobacco. Nicotine 
causes kidney damage by modulating α7nAChR, NLRP6 inflammasome, ER stress, 
and autophagy[27,28]. Studies examining the relationship between smoking and 
NAFLD are lacking; however, in a cohort study of 1525 CKD patients who underwent 
repeated health check-up examinations over 10 years, the decline in estimated 
glomerular filtration rate (eGFR) associated with NAFLD was greater in current 
smokers, hypertensive patients, or those with lower eGFR at baseline had greater age- 
and sex-adjusted decline in eGFR[29].

Diabetes
Around one-third of patients with NAFLD have impaired renal function and its 
prevalence in patients with NAFLD is dependent on the severity of liver disease and 
presence of diabetes mellitus[30]. The development of NAFLD in patients with 
diabetes appears to be an important event in its natural history predisposing these 
patients to a higher risk for developing CKD. Type 2 diabetes mellitus (T2DM) 
increases the risk of serious NASH and advanced fibrosis in patients with 
NAFLD[31,32]. Patients with T2DM or type 1 diabetes mellitus and NAFLD are at an 
increased risk of developing CKD compared to diabetics without NAFLD[20,33,34]. 
Despite accumulating evidence for NAFLD as a driver for CKD, the shared common 
risk factors make it difficult to isolate diabetes as an independent risk factor for CKD 
in NAFLD patients.
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Table 2 Summary of studies assessing non-hepatic risk factors for chronic kidney disease in patients with non-alcoholic fatty liver 
disease

Ref. Risk factor(s) Year n Comparison Findings

Önnerhag 
et al[147]

Older age 2019 120 Biopsy-proven NAFLD 
vs non-NAFLD

Higher prevalence of CKD in patients ≥ 55 years old

Targher 
et al[20]

Diabetes mellitus 2008 2103 NAFLD and T2DM vs 
T2DM only

Patients with NAFLD and T2DM independently associated with 
increased risk of CKD (OR 1.87; 95%CI 1.3-4.1, P = 0.020)

Targher 
et al[33]

Diabetes mellitus 2010 301 NAFLD and T1DM vs 
T1DM only

Patients with NAFLD and T1DM independently associated with 
increased risk of CKD

Jang et al[29] Elevated baseline eGFR, 
HTN, and current 
smoking

2018 1525 NAFLD vs Non-
NAFLD

The decline in eGFR associated with NAFLD appeared to be stronger 
among patients who were current smokers, hypertensive, and lower 
eGFR at baseline

NAFLD: Non-alcoholic fatty liver disease; CKD: Chronic kidney disease; T2DM: Type 2 diabetes mellitus; OR: Odds ratio; CI: Confidence interval; T1DM: 
Type 1 Diabetes Mellitus; eGFR: Estimated glomerular filtration rate; HTN: Hypertension.

Hypothyroid
Proper thyroid function is implicated in renal blood flow, glomerular and tubular 
function, electrolyte homeostasis, hepatic lipid metabolism, and fatty acid beta-
oxidation[35]. Hypothyroidism can cause NAFLD through fat accumulation, while 
hyperthyroid can cause NAFLD through reactive oxygen species formation[36]. 
Additionally, the prevalence of hypothyroidism increases for each 10 mL/min/1.73 m2 
decrement in eGFR[37], and patients with hypothyroidism were more than 2 times 
likely to have NAFLD and 4 times more likely to have NASH[38].

Hepatic risk factors 
NAFLD-related advanced fibrosis: Patients with NAFLD-related advanced fibrosis 
are more likely to have CKD compared to patients with NAFLD but without advanced 
fibrosis[39]. The risk of albuminuria increases with the severity of NAFLD-related 
advanced fibrosis, according to a 2017 study of 1763 Chinese diabetic patients[40]. 
After adjusting for common CKD risk factors such as diabetes and other metabolic 
comorbidities, advanced fibrosis but not steatosis was associated with a higher risk of 
albuminuria (OR: 1.52; 95%CI: 1.02-2.28; P = 0.039). In a 2019 study of 594 patients with 
T2DM, significant liver fibrosis as detected by elastography (LSM ≥ 7.0/6.2 kPa) was 
independently associated with a higher risk of CKD (adjusted OR: 3.6, 95%CI: 1.3-10.1; 
P = 0.01) in addition to CVD and other microvascular complications[41]. Increased 
liver stiffness as detected by transient elastography is a predictor of CKD in patients 
with ultrasound-diagnosed NAFLD[42]

In a 12-year prospective cohort, patients with non-obese NAFLD had a higher risk 
of developing CKD than patients with obese NAFLD[43]. A recent study has noted 
that the risk of developing CKD is higher in metabolically unhealthy non-obese 
NAFLD patients than their counterparts with metabolically healthy status defined by 
the lack of metabolic risk factors (i.e. diabetes mellitus, low High-density lipoprotein, 
hypertriglyceridemia, arterial hypertension)[44].

Pathophysiology: CKD secondary to fatty liver is thought to be due to systemic low-
grade inflammation[45], which may involve upregulation of the nuclear factor-κB (NF-
κB) pathway[45,46]. As discussed earlier, there is circumstantial evidence to suggest 
that patients with NASH-related advanced fibrosis have an increased prevalence of 
CKD. Progression of NASH may be partly mediated by the altered renin-angiotensin-
aldosterone system due to CKD has also been proposed as a mechanism for NAFLD 
progression[47]. Although direct pathogenic links between NAFLD and CKD seem to 
be confounded by common metabolic comorbidities, novel mechanisms have been 
described.

Insulin resistance: Increased adiposity leads to increased free fatty acids and pro-
inflammatory cytokine release that causes systemic insulin resistance (IR), which is an 
established mediator of NAFLD. IR is further exacerbated by the progression of 
NAFLD, leading to atherogenic dyslipidemia and further release of inflammatory 
cytokines resulting in CKD as shown in animal models[48]. Proinflammation occurs 
through the NF-κB and Jun-N-terminal kinase (JNK) pathways; activation of adipose-
specific JNK pathways has been shown to cause insulin resistance[48,49]. As NAFLD 
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progresses to NASH, the inflammatory component is neutrophil-predominant and can 
cause systemic endothelial dysfunction (Figure 1)[50,51]. Notably, IR leads to 
increased production of very-low-density lipoprotein and endoplasmic reticulum 
stress, both of which can cause podocyte damage in glomeruli[52]. These latter two 
mechanisms have been linked to proteinuria and subsequent hastening of CKD[53,54].

Ectopic lipid accumulation: In animal models, a high fat/fructose diet resulted in 
increased urinary albumin excretion, elevated transaminases, and increased incidence 
of liver tumors when compared to a standard diet. Microscopically, lipid deposition 
leads to accelerated hepatorenal pathologies, suggesting that intracellular lipid 
accumulation may link NAFLD to CKD[55]. When treated with fenofibrate, slower 
intracellular lipid accumulation was noted in co-incidence with slower progression of 
renal and hepatic pathologies[55].

Wnt signaling abnormalities: Alterations in cellular pathways critical for homeostasis 
play an important role in the development of CKD in patients with NAFLD. 
Specifically, abnormalities in the Wnt (named as a fusion of the Drosophila gene 
wingless and its vertebrate homolog, integrated) signaling pathway have been linked 
to lipid accumulation, chronic inflammation, and fibrosis in the development of both 
NAFLD and CKD[56].

Sterol regulatory element-binding proteins: Sterol regulatory-element binding 
proteins are activated in a nutrient-rich (i.e., anabolic) state that leads to insulin-
signaling and increased endoplasmic reticulum stress, which can cause increased 
lipogenesis and hepatosteatosis. These changes cause the progression of other 
metabolic phenomena such as CKD and MetS[57].

Fructose consumption and uric acid accumulation: Fructose intake has been linked to 
hepatorenal injury via uric acid accumulation by altering the gut microbiome 
(Figure 2)[45,58]. Patients with a normal body mass index (BMI) and elevated serum 
uric acid levels (> 10 mg/dL) have an increased prevalence of MetS when compared to 
patients with a serum uric acid < 6 mg/dL[59], which is corroborated by other 
studies[60-62]. An increase in serum uric acid levels is also associated with an increase 
in the incidence of NAFLD[63]. In patients with NAFLD, elevated uric acid levels are 
known to be pathogenic in CKD progression[42,64]. These studies suggest that MetS, 
NAFLD, and CKD are interconnected through elevated serum uric acid levels[65].

Uric acid stimulates fructokinase, which sensitizes hepatocytes to fructose 
metabolism, subsequently leading to fat deposition in the liver, thereby explaining the 
link between elevated uric acid and NAFLD[66]. Elevated uric acid levels in animal 
models lead to glomerular hypertension and tubulointerstitial fibrosis, two processes 
that preclude the development of CKD[64]. Decreased urate clearance in CKD patients 
may further exacerbate this pathology. Interestingly, xanthine oxidase inhibitors are 
currently being tested in patients with CKD to monitor for disease progression in the 
CKD-FIX[67].

Gut dysbiosis: Changes in the gut microbiome play a role in the pathogenesis of 
NAFLD and CKD[45]. Dietary conditions such as increased fructose intake and 
vitamin D deficiency are shown to cause dysbiosis, which may directly lead to low-
grade inflammation responsible for the development of NAFLD and CKD[45]. 
Dysbiosis and subsequent microbial fermentation lead to increased production of 
uremic toxins indoxyl sulfate and p-cresyl sulfate, which correlate directly with the 
progression of CKD[68]. The liver cytochrome P450 enzymes are directly regulated by 
these uremic toxins derived from alterations in gut microbial metabolism, hence the 
gut-liver-kidney axis[69]. Animal models have also shown the gut microbiota’s ability 
to metabolize choline into trimethylamine N-oxide (TMAO), which is considered both 
nephrotoxic and hepatotoxic. In a 2015 study comparing TMAO levels in patients with 
CKD (n = 521) to healthy patients (n = 3166), median TMAO levels among CKD 
patients were significantly higher (P < 0.001)[70]. Similarly, a 2019 case-control study 
comparing patients with NAFLD (n = 34) to those without (n = 14) showed that TMAO 
has a role in aggravating liver steatosis[71]. Lastly, certain species in the gut 
microbiota produce short-chain fatty acids (SCFAs) such as butyrate, acetate, and 
propionate and diffuse through gut mucosa, which can disrupt the integrity of the 
intestinal barrier. In the bloodstream, SCFAs can cause systemic inflammation, the 
common pathogenic link between NAFLD and CKD[45].

Genetic links between NAFLD and CKD: Two gene variants associated with both 
CKD and NAFLD are the G allele of the patatin-like phospholipase domain-containing (
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Figure 1 Two established mechanisms between non-alcoholic fatty liver disease and the development of chronic kidney disease are 
increased adiposity and insulin resistance. NF-κB: Nuclear factor-κB; JNK: Jun N-terminal kinases; NAFLD/NASH: Non-alcoholic fatty liver disease/Non-
alcoholic steatohepatitis; ROS: Reactive oxygen species; NO: Nitric oxide; CRP: C-reactive protein; IL-6: Interleukin-6; VLDL: Very low-density lipoprotein; TNF-α: 
Tumor necrosis factor alpha; CKD: Chronic kidney disease

PNPLA3) gene and the T allele of the transmembrane 6 superfamily member 2 (TM6SF2) 
gene. The G allele in the rs738409 polymorphism of the PNPLA3 gene has been shown 
to play a major role in the progression of NASH[72,73]. Patients with the G allele also 
have been shown to have lower eGFR, increased incidence of microalbuminuria, and 
increased prevalence of CKD, regardless of NAFLD/NASH status[74,75]. The patient 
population that was found to have the highest risk of CKD and NAFLD in a 2015 
study were patients who carried the G allele of the PNPLA3; furthermore, these 
patients were not obese, which is an important risk factor for CKD[75]. Another study 
showed that Chinese patients with normal alanine aminotransferase levels who 
carried the rs738409 polymorphism in the PNPLA3 gene were at risk for early 
glomerular and tubular damage, which could explain why these patients develop 
CKD even in the absence of well-known risk factors, such as obesity or diabetes[76]. In 
postmenopausal women with T2DM, having the G/G allele leads to a higher 
prevalence of CKD, regardless of NAFLD status, further supporting the argument that 
this polymorphism may be an independent predictor for CKD[77]. Patients who are 
found to have the G/G allele in the polymorphism rs738409 should have close 
monitoring for the development of NAFLD as well as renal dysfunction, even in 
normal-weight patients[75]. On the other hand, the rs58542926 polymorphism on the 
TM6SF2 gene, also known as the T allele of the TMS6F2 gene, has been associated with 
the development of NAFLD[78] but has also been associated with a higher eGFR and 
lower prevalence of microalbuminuria[74]. Thus, this specific polymorphism in 
TM6SF2 may be nephroprotective in patients with NAFLD.

Identifying NAFLD patients at risk for progression of CKD 

Role of non-invasive fibrosis scoring systems: Non-invasive scoring systems are 
utilized in assessing the severity of various chronic liver diseases. However, they have 
also been shown in several studies to be useful in predicting CKD in patients with 
NAFLD (Table 3). Incremental increases in the fatty liver index are an independent 
risk factor for developing CKD in a 10-year prospective analysis of 6238 adults (age 40-
69 years) without CKD at baseline[23]. In another study of 11376 Taiwanese subjects, 
the NFS was negatively correlated with eGFR[6]. Multiple studies show that patients 
who have an intermediate and high-risk category of fibrosis-4 index (FIB-4)-index and 
NFS are at an increased risk of CKD[79,80], while a 2019 cross-sectional study of 11836 
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Table 3 Summary of studies assessing non-invasive scoring systems for advanced fibrosis to assess risk for chronic kidney disease in 
patients with nonalcoholic fatty liver disease

Ref. Year n Scoring system(s) 
assessed Results

Ciardullo et al[82] 2020 2770 APRI, FIB-4, FLI, NFS NAFLD-related fibrosis as measured with FIB-4 associated 
with CKD (P < 0.01)

Hsieh et al[6] 2020 11376 NFS Higher NFS associated with impaired eGFR (P < 0.0001)

Choi et al[81] 2019 11836 APRI, BARD, FIB-4, FLI FIB-4 (P = 0.0258) most precise in predicting kidney 
dysfunction

Önnerhag et al[79] 2019 144 APRI, BARD, NFS, FIB-4 High-risk NFS (P < 0.001), FIB-4 (P < 0.001), APRI (P = 
0.008) predict CKD

Wijarnpreecha et al[80] 2018 4142 APRI, BARD, NFS, FIB-4 High/intermediate probability of liver fibrosis on NFS 
(AUC = 0.75) and FIB-4 (AUC = 0.77) independently predict 
CKD 

Huh et al[23] 2017 6238 FLI NAFLD cut-off for NAFLD is an independent RF for CKD (
P < 0.0001)

NFS: Nonalcoholic fatty liver disease fibrosis score; FIB-4: Fibrosis-4 index; APRI: Aspartate aminotransferase to platelet ratio index; FLI: Fatty liver index; 
CKD: Chronic kidney disease; eGFR: Estimated glomerular filtration rate; AUC: Area under the curve; RF: Risk factor; BARP: Biologically-oriented 
Alveolar Ridge Preservation; NAFLD: Nonalcoholic fatty liver disease.

patients showed that FIB-4 is the most precise tool when estimating renal dysfunction 
attributable to NAFLD (area under the curve = 0.6227, 95%CI: 0.5929-0.6526, P = 
0.0258) after adjusting for various demographic and clinical variables[81]. FIB-4 is the 
most superior predictor in other studies as well[80,82]. In summary, patients with 
NAFLD-related fibrosis are at increased risk for CKD, and these patients should 
undergo proper surveillance via non-invasive fibrosis scoring systems and/or 
advanced imaging techniques (i.e. Fibroscan, TE) (Figure 3).

Cystatin C: Serum creatinine, a widely used biomarker in assessing renal function, is 
inaccurate in determining GFR in patients with cirrhosis[83]. This is due to muscle 
wasting that occurs in cirrhosis, thus leading to diminished creatinine formation, 
increased tubular secretion of creatinine, and impaired assay interpretation caused by 
elevated bilirubin[83]. Alternatively, the measurement of cystatin C does not have the 
same limitations as serum creatinine due to its low molecular weight and because it 
does not require adjustment for gender, mass, or bilirubin level[84]. A combination of 
serum creatinine and cystatin C is more accurate in determining GFR than serum 
creatinine alone[85]. However, serum creatinine alone is superior for patients without 
cirrhosis[85]. Measurement of cystatin C in addition to serum creatinine may have 
utility for accurately assessing renal function in transplant candidates and for 
monitoring the development of CKD in patients with NASH cirrhosis. Although the 
cost of measuring eGFR using Cystatin C in addition to serum creatinine is higher, the 
burden of over-diagnosing CKD in patients with cirrhosis is lessened, which may lead 
to an overall reduction in unnecessary medical expenses for patients with cirrhosis 
who truly have CKD[86].

Alkaline phosphatase and GGT: In diabetic patients with NAFLD, serum alkaline 
phosphatase (ALP), a NAFLD-associated marker when elevate, was also significantly 
associated with impaired renal function[87,88]. Interestingly, ALP is associated with 
the release of proinflammatory cytokines from the liver that are known to disrupt the 
glomerular endothelial glycocalyx, leading to albuminuria, which may explain why 
ALP is a potential surveillance marker in patients with NAFLD who are at risk for 
developing CKD[89]. Furthermore, elevated serum GGT is associated with an 
increased risk of CKD[24,90,91]. GGT is associated with increased inflammatory 
markers and insulin resistance, both of which play central roles in patients with 
NAFLD who develop CKD[24,92]. However, elevated GGT may not be an accurate 
CKD parameter in Caucasian men, as GGT is confounded by BMI, lifestyle factors, and 
lipids, as noted in a 2017 study[25]. Therefore, elevated GGT in Caucasian men with 
NAFLD should be interpreted with caution when monitoring for CKD. Of importance, 
NAFLD was diagnosed by elevated GGT levels (in addition to ultrasound in only one 
study[91]; therefore, these findings may not apply to patients diagnosed by more 
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Figure 2 Fructose consumption and uric acid accumulation play a key role in patients with non-alcoholic fatty liver disease who develop 
chronic kidney disease. TMAO: Trimethylamine N-oxide; SCFAs: Short-chain fatty acids; RAAS: Renin-angiotensin-aldosterone system; PNPLA3: Patatin-like 
phospholipase domain-containing protein 3; NAFLD: Non-alcoholic fatty liver disease; CKD: Chronic kidney disease; NF-κB: Nuclear factor-κB.

invasive parameters (i.e. liver biopsy).

Managing the progression of CKD 

Surveillance of comorbidities: In general, we recommend patients with diabetes and 
NAFLD undergo frequent surveillance for underlying kidney dysfunction, more so 
than patients with diabetes only. Monitoring thyrotropin and thyroid hormone levels 
may have clinical utility when evaluating the risk of developing CKD in patients with 
NAFLD; however, future studies are needed to specifically address the risk of CKD in 
patients with NAFLD and hypothyroidism (Table 4).

Body weight 
Waist-to-hip ratio: Few studies have evaluated the impact of weight loss on the 
progression of CKD in patients with NAFLD. Recent studies have shown that a 
decrease in the waist-to-hip ratio (WHR) in patients with NAFLD decreases the risk of 
CKD development[43]. Serial monitoring of WHR may be beneficial in identifying 
patients with NAFLD at risk for CKD. A drawback to this finding is that a reduction in 
WHR does not differentiate between a reduction in visceral fat vs subcutaneous fat. 
Studies have shown that visceral fat, but not subcutaneous fat, is the key driver in 
NAFLD pathogenesis via increased insulin resistance[93]. However, with regards to 
reducing the risk of CKD, the significance of reducing visceral vs subcutaneous fat is 
not well-studied.

Weight loss: Data from a post-hoc analysis of a clinical trial involving 261 patients 
with NAFLD showed a statistically significant relationship between reduction in body 
weight and changes in eGFR (when calculated by CKD-Epidemiology collaboration 
and modification of diet in renal disease equations), even after adjusting for 
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Table 4 Summary of Interventions for patients with nonalcoholic fatty liver disease and chronic kidney disease

Intervention Ref. Year n Findings Recommendation

Decreasing 
WHR

Chon et al[43]. 
12-yr 
prospective 
cohort

2020 6137 A decrease in the WHR of more 
than 5% in patients with NAFLD 
leads to a significantly reduced 
risk of CKD development, even 
in non-obese patients

Serial Monitoring WHR may be 
beneficial in identifying patients with 
NAFLD at risk of developing CKD and 
reduction can ameliorate the 
progression

Weight loss Vilar-Gomez 
et al[94]. Post-
hoc analysis 

2017 261 Improvement in liver histology 
due to weight loss linked to 
improved renal outcomes, even 
after adjusting for medication 
profile, diabetes, and 
hypertension

Advocate for weight loss

Shimizu 
et al[96]. RCT

2019 57 SGLT inhibitor (Dapagliflozin) 
improved liver steatosis in 
patients with T2DM and NAFLD 
and attenuates liver fibrosis in 
patients with NAFLD-related 
advanced fibrosis 

SGLT2 
Inhibitors

Perkovic 
et al[95]. 
CREDENCE 
trial

2019 4401 SGLT2 inhibitor (Canagliflozin) 
decreased the risk of renal failure 
in patients with T2DM and CKD

Although data is not sufficient, consider 
using SGLT2 inhibitors in T2DM 
patients with NAFLD and CKD

Armstrong 
et al[100]. 
LEAN trial

2016 52 Liraglutide led to weight loss, 
glycemic control, and 
histological resolution of NASH

GLP-1’s in NASH is considered effective 
in improving components of MetS, 
however, long-term studies are needed 
to determine NASH-related outcomes

GLP-1

Tuttle 
et al[101]. 
AWARD-7 trial

2018 577 Once-weekly dulaglutide is 
associated with reduced decline 
in eGFR, while being as effective 
as insulin in achieving glycemic 
control

GLP-1 is a safe option for patients with 
CKD and is associated with slower 
progression of CKD

Farhangi 
et al[109] and 
Farsi et al[110]. 
RCT

2014[109] and 2016[110] 44[109] and 
41[110]

100 mg of oral CoQ10/d 
improve biochemical variables of 
NAFLD after 4 wk[109] and 12 
wk[110] of treatment

Coenzyme 
Q10

Yeung 
et al[111]. RCT

2015 15 Oral CoQ10 supplementation in 
patients with CKD showed 
significant improvement in 
serum creatinine when 
compared to placebo

Due to lack of data in patients with both 
NAFLD and CKD, the benefit of CoQ10 
supplementation is unknown; however, 
in separate trials with regards to both 
NAFLD and CKD, CoQ10 
supplementation is beneficial

WHR: Waist-to-hip ratio; NAFLD: Nonalcoholic fatty liver disease; CKD: Chronic kidney disease; SGLT2: Sodium-glucose co-transporter-2; RCT: 
Randomized controlled trial; T2DM: Type 2 Diabetes Mellitus; GLP-1: Glucagon-like peptide receptor agonist; NASH: Non-alcoholic steatohepatitis.

medication profile, diabetes, and hypertension[94]. Additionally, patients with 
improvement in liver histology due to lifestyle modifications such as weight loss were 
linked with significantly improved renal outcomes[94]. Overall, patients with NAFLD 
who had more than 5% weight loss and/or more than a 5% reduction in WHR had 
improved renal outcomes.

Sodium-glucose cotransporter type-2 inhibitors: In patients with T2DM, sodium-
glucose cotransporter type-2 (SGLT2) inhibitors have an established role in improving 
glycemic control, weight loss, cardiovascular outcomes, and lowering serum uric acid 
levels. In patients with type 2 diabetes, the landmark CREDENCE trial showed that 
patients treated with an SGLT2 inhibitor (i.e., canagliflozin) were shown to have 
improved outcomes related to CKD[95]. Furthermore, recent evidence has shown that 
SGLT2 inhibitors can also improve NAFLD progression as determined by TE[96] and 
biomarkers in NAFLD (i.e., liver enzymes)[96,97]. As SGLT2 inhibitors decrease serum 
uric acid levels, this may also contribute to this class’s positive effects on both diseases. 
In addition to facilitating glucosuria, SGLT2 inhibitors are thought to decrease inflam-
mation and reactive oxygen species formation[98], which is key in the pathogenesis of 
NAFLD and NASH[99].

Glucagon-like peptide 1 receptor agonists: Among its multiple mechanisms of action, 
glucagon-like peptide 1 (GLP-1)’s aid in increasing insulin secretion, delaying gastric 
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Figure 3 Identifying and managing non-alcoholic fatty liver disease patients who are at risk for developing chronic kidney disease. 
NAFLD: Non-alcoholic fatty liver disease; CKD: Chronic kidney disease; HTN: Hypertension; WHR: Waist-to-Hip ratio; GGT: Gamma-glutamyl transferase; T2DM: 
Type 2 diabetes mellitus; SLKT: Simultaneous liver-kidney transplantation; SGLT2: Sodium-glucose cotransporter type-2; GLP-1: Glucagon-like peptide 1.

emptying, and decreasing appetite, all of which can lead to improved glycemic control 
and weight loss. Additionally, a possible anti-inflammatory mechanism makes GLP-
1’s an attractive agent in NAFLD and NASH. For instance, GLP-1 Liraglutide, when 
compared to placebo, led to histological resolution of NASH; however, larger studies 
are still needed[100]. In CKD, GLP-1’s are shown to be nephroprotective, which could 
be due to GLP-1’s ability to lower blood pressure in addition to the aforementioned 
mechanisms[101,102]. GLP-1’s and SGLT2 inhibitors exhibit cardioprotective effects, 
and as discussed previously, patients with NAFLD and CKD are at high risk for CV 
events. Therefore, the use of these agents is recommended in patients with NAFLD 
and CKD. However, while there is landmark data to support the use of GLP-1’s and 
SGLT2 inhibitors to prevent CV events in patients with established CVD, data on 
primary prevention in patients with NAFLD and CKD is lacking[103,104]. Regardless, 
in patients with T2DM, CKD, and NAFLD, SGLT2 inhibitors or GLP-1’s are highly 
recommended not only for glycemic control but for the cardio-, hepato-, and nephro-
protective effects as well.

Coenzyme Q10: Coenzyme Q10 (CoQ10) is produced endogenously and has 
antioxidant and anti-inflammatory effects[105]. CoQ10 also serves as an electron 
carrier in cellular respiration and a cofactor in pyrimidine synthesis for DNA repair 
and replication, among other important roles. Patients with NAFLD, CKD, and/or 
CVD have been reported to have CoQ10 deficiency[106]. A majority of endogenous 
CoQ10 is produced in the liver, and patients with NAFLD had diminished CoQ10 
production[106,107]. CoQ10 deficiency will lead to oxidative stress, which plays a key 
pathogenic factor in NAFLD[108]. Results from separate trials assessing oral CoQ10 
supplementation in patients with NAFLD and CKD are summarized in Table 4. 
Briefly, CoQ10 has been shown to improve NAFLD parameters and CKD parameters 
in separate trials[109-111]. Specific findings are summarized in Table 4. CoQ10 has 
positive effects on the progression of CVD as well, which is notable because patients 
with CKD and NAFLD are at risk for cardiovascular events[112,113]. Supplementation 
may be beneficial in patients with NAFLD who have CKD, but clinical data in this 
population is lacking.

Experimental interventions
Thiazolidinediones: Thiazolidinediones are agonists of peroxisome proliferator-
activated receptors (PPARs), and they play a physiologic role in metabolism and 
cellular differentiation. PPARs have proven clinical utility in diseases such as hyperlip-
idemia (PPARα) and T2DM (PPARγ)[114]. Because CKD is a manifestation of a 
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metabolic and/or inflammatory process, the use of PPAR agonists has been studied in 
patients with CKD. Specifically, pioglitazone, a PPARγ agonist, has been shown to 
improve cardiovascular outcomes in patients with CKD and diabetes[115]. Several 
RCTs have shown the beneficial effects that pioglitazone has on histopathology and 
metabolic function in patients with NASH[116-120]. Pioglitazone has been endorsed as 
a pharmacological agent in biopsy-proven NASH by the American Association for the 
Study of Liver Diseases[121]. Rosiglitazone has been shown to improve histological 
components of NASH through increasing insulin sensitivity[122] while also improving 
liver function[123] in a separate study, although both studies did not show 
improvements in liver fibrosis[122,123]. Interestingly, an extension trial showed that 
rosiglitazone was only beneficial in the first year of treatment, without substantial 
benefit noted with longer use[124]. However, Rosiglitazone is not available in most 
countries and its use is limited in the United States due to data concerning for 
increased coronary events. The most widely studied PPAR agonist, Pioglitazone has 
shown favorable outcomes in patients with CKD and patients with NAFLD, but data 
assessing the efficacy in patients with both CKD and NAFLD is lacking[114].

Vitamin D: Vitamin D deficiency is associated with increased severity of NAFLD[125] 
and is also associated with CKD[126]. These findings may be explained by the 
physiology of vitamin D activation, which requires hydroxylation by both the kidney 
and liver, and therefore the presence of CKD and NAFLD inevitably leads to vitamin 
D resistance[58]. Furthermore, experimental models have demonstrated the role 
hypovitaminosis D plays in the pathogenesis of both CKD and NAFLD[58]. In patients 
with CKD, therapeutic implications of higher vitamin D supplementation showed an 
ability to correct hypovitaminosis D[127], but a meta-analysis yielded a higher 
incidence of hypercalcemia[128]. In patients with NAFLD, vitamin D supplementation 
did not correct hypovitaminosis D[129], however, trials are underway for assessing the 
use of Vitamin D supplementation in CKD and NAFLD/NASH[130-132] 
(NCT00893451, NCT01623024, and NCT02098317, www.clinicaltrials.gov).

Probiotics: In rodent models, fecal microbiota transplantation[133], antibiotics in 
fructose-fed models[134] reduced NAFLD severity, whereas specific probiotics (
Lactobacillaceae or Bifidobacteriales) alleviated proteinuria and reduced systemic inflam-
mation in rodents with CKD. While much of this data is based on studies from animal 
models, human trials are needed to further evaluate the therapeutic implications of the 
gut-liver-kidney axis.

LT for patients with NAFLD/NASH and CKD
In recent decades, NASH has become more prevalent and will become the most 
common indication for LT[135]. Patients with NASH have a higher incidence of CKD 
compared with other etiologies, and therefore, NASH is rapidly growing as a cause for 
not only LT[136,137] but also simultaneous liver-kidney transplantation (SLKT) in the 
United States given serum creatinine and dialysis status are important components of 
the model for end-stage liver disease (MELD) score[138]. Considering the increased 
incidence of renal dysfunction at LT due to prioritization based on the MELD 
allocation system in the United States, SLKT rates climbed from 2.7% of all LT in 2000 
to 9.3% in 2016[138-140]. NASH is currently the leading and most rapidly growing 
indication for SLKT in the United States[138,140] with a 200% increase for SLKT from 
2002 to 2010[138]. Patients with NASH have a high probability to undergo SLKT rather 
than LT alone since they are highly incident for CKD for a prolonged duration, which 
can fulfill criteria for SLKT (patients with CKD: GFR ≤ 60 mL/min for ≥ 3 mo with 
recent GFR ≤ 30 mL/min or on hemodialysis, patients with AKI: Dialysis for > 6 wk 
GFR ≤ 25 for > 6 wk)[141].

Patients with NASH were independently associated with a higher risk of CKD or 
advanced kidney damage after LT compared with those without NASH[142-144]. In 
general, renal dysfunction after LT is affected not only by immunosuppressant 
medications, especially calcineurin inhibitors, pre-LT kidney dysfunction, but also 
persistent or de novo metabolic co-morbidities such as hypertension, diabetes, and 
obesity - all of which are highly likely in NASH patients undergoing LT[142,145]. 
Special attention to the recognition of CKD is needed for patients with NASH patients 
when deciding LT vs SLKT. Controlling for metabolic complications and avoiding or 
keeping a low dose of calcineurin inhibitors as much as possible seems to be crucially 
important to reduce the risk of incident CKD, and risk of progression of CKD after 
liver transplant in NASH patients.

http://www.clinicaltrials.gov).
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CONCLUSION
Despite the breadth of research, minimal guideline-based management of patients 
with both NAFLD and CKD is available. However, important pathogenic links and 
shared risk factors between NAFLD and CKD underscore the importance of earlier 
surveillance and strict control of shared metabolic risk factors. Although preventative 
strategies for CKD in NAFLD are limited, treatment directed specifically for NASH in 
the future will hopefully ameliorate the progression of renal dysfunction in affected 
patients. There is a plethora of clinical trials underway, and if these drugs show safety 
and efficacy in improving NASH, they may translate into improving renal 
function[146]. Specific interventions for preventing CKD progression using SGLT2 
inhibitors, PPAR agonists, SAM, XO inhibitors, and Vitamin D have been tried but 
need further confirmation. Progression from NAFLD to NAFLD-related advanced 
fibrosis is linked to an increased risk of CKD, and earlier intervention in those with 
renal dysfunction is warranted. Genetic links between NAFLD and CKD have also 
been proposed, specifically in the G allele of PNPLA3 and the T allele of TM6SF2, and 
future studies targeting patients with such genetic profiles to prevent progression to 
CKD is needed.
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Abstract
Diabetes mellitus type 2 and cancer share many risk factors. The pleiotropic 
insulin-dependent and insulin-independent effects of metformin might inhibit 
pathways that are frequently amplified in neoplastic tissue. Particularly, 
modulation of inflammation, metabolism, and cell cycle arrest are potential 
therapeutic cancer targets utilized by metformin to boost the anti-cancer effects of 
chemotherapy. Studies in vitro and in vivo models have demonstrated the 
potential of metformin as a chemo- and radiosensitizer, besides its chemopreven-
tive and direct therapeutic activity in digestive system (DS) tumors. Hence, these 
aspects have been considered in many cancer clinical trials. Case-control and 
cohort studies and associated meta-analyses have evaluated DS cancer risk and 
metformin usage, especially in colorectal cancer, pancreatic cancer, and 
hepatocellular carcinoma. Most clinical studies have demonstrated the protective 
role of metformin in the risk for DS cancers and survival rates. On the other hand, 
the ability of metformin to enhance the actions of chemotherapy for gastric and 
biliary cancers is yet to be investigated. This article reviews the current findings 
on the anti-cancer mechanisms of metformin and its apparatus from pre-clinical 
and ongoing studies in DS malignancies.
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chemotherapy's anti-tumor outcomes. Herein we review the studies that have 
demonstrated the likelihood of metformin as chemo and radiosensitizer, in addition to 
its chemopre-ventive and direct therapeutic activity in gastrointestinal tumors.
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INTRODUCTION
Diabetes mellitus type 2 (DM2) and cancer share several risk factors[1]. Notably, 
obesity and metabolic syndrome, with their inherent biological connections, such as 
hyperinsulinemia[2] and chronic inflammation[3]. Furthermore, some antihypergly-
cemic medications (e.g., sulfonylureas and insulin) used for the treatment of DM2 may 
increase cancer risk[4]. Particularly, central obesity, physical inactivity, and perhaps a 
low dietetic polyunsaturated fat to saturated fat ratio are major risk factors for insulin 
resistance and hyperinsulinemia and seem to be related to cancer risk[5]. All of them 
have been recognized as proposed gears holding those relationships[6-9]. Epidemio-
logic studies and meta-analyses have suggested that patients with DM2 have a higher 
incidence and mortality from malignancies[10,11], including digestive system (DS) 
cancers[12-15].

Metformin is a well-known oral hypoglycemic drug that belongs to the biguanide 
class and has been used to treat DM2 for almost a century[16]. Importantly, those 
patients with DM2 with long-term use of metformin have a decreased tumor incidence 
and lower cancer-associated mortality[17-21]. Furthermore, recent research indicates 
that metformin can have direct anti-cancer activity against many tumor cells, including 
tumor stem cells[22,23], therefore, carrying out pleiotropic effects in both the cancer 
cell and the neoplastic microenvironment[24]. Their potential mechanisms are insulin-
dependent [via insulin growth factor (IGF) receptor, phosphatidyl inositol 3 kinase 
(PI3K), and Akt/mammalian target of rapamycin (mTOR)][25,26] and insulin-
independent [via adenosine kinase monophosphate (AMPK), tuberous sclerosis 
complex (TSC), and mTOR][27,28]. Moreover, it promotes antitumor immunity-related 
metabolic checkpoints in T-cells, cancer cells, as well as associated with immuno-
suppressive cells of the tumor milieu[29]. Furthermore, it might interfere with the gut 
microbiota and have systemic impacts on body metabolism[30,31]. This article aims to 
review the rationale of metformin as a drug that might be repurposed for DS cancer 
treatment.

MECHANISM OF ACTION OF METFORMIN AS AN ANTI-CANCER AGENT
Two potential mechanisms for the antineoplastic action of metformin have been 
suggested (Figure 1). First, metformin can directly activate AMPK, resulting in 
inhibition of downstream Akt/mTOR signaling and consequent suppression of cell 
proliferation[32,33]. Second, metformin-induced reductions in circulating insulin and 
IGF concentrations may reduce activation of the IGF receptor signaling axis, resulting 
in decreased growth promotion and mitogenesis[2,34]. Hence, the anti-cancer effects of 
metformin are mediated through a systemic improvement in the metabolic milieu or 
directly on tumor cells[35].

The noticeable intracellular metabolic change caused by metformin is the decreased 
accumulation of glycolytic intermediates and a coordinated decrease in tricarboxylic 
acid (TCA) cycle intermediates[36,37]. Moreover, the activation of AMPK reduces fatty 
acid synthase (FAS) gene expression in the synthesis of fatty acids[32]. Furthermore, 
metformin offers other direct anti-tumor effects by (1) decreasing specific protein (Sp) 
transcription factors and Sp-related oncogenic proteins[38,39]; (2) decreasing AMPK-
dependent c-Myc oncogene; (3) increasing other miRNAs, such as mir33a[40]; (4) 
increasing other miRNAs, such as miR-26a[41]; (5) reducing endogenous reactive 
oxygen species and associated DNA damage[42]; (6) reducing Sonic hedgehog 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i17/1883.htm
https://dx.doi.org/10.3748/wjg.v27.i17.1883


Cunha Junior AD et al. Metformin effects on GI cancers

WJG https://www.wjgnet.com 1885 May 7, 2021 Volume 27 Issue 17

Figure 1 Overview of cellular mechanisms of metformin in cancer. Metformin inhibits mitochondria complex I, stimulates the adenosine monophosphate-
activated protein kinase signaling pathway, and/or inhibits the insulin signaling pathway. Blue lines represent activated pathways while red lines represent inhibitory 
pathways. AMPK: Adenosine monophosphate-activated protein kinase; ACC: Acetyl-CoA carboxylase; HIF-1α: Hypoxia-inducible factor-1 alpha; IGF: Insulin growth 
factor; IGF-1: Insulin-like growth factor-1; IGF-1R: Insulin-like growth factor-1 receptor; IR: Insulin receptor; IL-1: Interleukin 1; IL-6: Interleukin-6; NF-κB: Nuclear 
factor kappa; OCT1: Organic cation transporter 1; ROS: Reactive oxygen species; STAT: Signal transducer and activator of transcription; AMP: Adenosine 
monophosphate; ATP: Adenosine triphosphate; PI3K: Phosphoinositide 3-kinase; mTOR: Mechanistic target of rapamycin.

expression[43]; (7) reducing expression of angiogenic factor CCN1, which inhibits 
invasion induced by the stromal cell-derived factor-1 and reducing levels of type 4 
chemokine receptor[44]; and (8) inhibiting Rac1 GTPase activity[45]. Finally, 
metformin might interfere with the gut microbiota[30,31], as well as interfere with the 
balance between T-cells and associated immunosuppressive cells in the tumor 
milieu[29].

Insulin-dependent or indirect effects
A central signal transduction pathway involved in cancer is the PI3K/Akt/mTOR 
pathway, which, when hyperactivated, leads to deregulation of survival and cell 
growth[28,46,47]. IGF-1 is a more potent mitogen than insulin and, like insulin, binds 
to its particular growth factor receptor and stimulates cell growth and anti-apoptotic 
activity via MAPK/ERK or Ras/Raf/MEK/ERK and PI3K/Akt/mTOR signaling 
[2,34]. In addition, IGF-1 inhibits PTEN, a phosphatase that deactivates PI3K/Akt/ 
mTOR[2]. The indirect mechanisms of metformin action include inhibition of hepatic 
gluconeogenesis and stimulation of peripheral glucose absorption, which ultimately 
lead to decreased blood glucose and insulin levels. Thus, the most apparent 
mechanism of insulin-dependent metformin involves decreasing insulin levels, which 
reduces insulin binding to the insulin receptor (IR), inhibiting tumor growth[48]. A 
reduction of insulin/IGF-1 levels is, at least in part, involved in the antiproliferative 
activity of metformin[49]. Additionally, metformin downregulates IGF-R and IR by 
decreasing the promoter activity of receptor genes with subsequent Akt/mTOR and 
MAPK/ERK signaling inhibition[50,51].

Insulin-independent or direct effects
Metformin activates AMPK by inhibiting mitochondrial complex I, which leads to 
impaired mitochondrial function, decreased adenosine triphosphate synthesis, 
increased adenosine monophosphate, and subsequent phosphorylation and activation 
by LKB1[52]. Activated AMPK then phosphorylates TSC2, which negatively regulates 
mTOR activity[53]. Activation of LKB1 and AMPK, AMPK-induced stabilization of 
TSC1-TSC2 (inhibitor of Rheb, an mTORC1 activator), and activation of the tumor 
suppressor p53[54]. Moreover, independent of AMPK, metformin impedes mTORC1 
by raising p53-dependent expression of REDD1 and repressing Rags[55]. Metformin 
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also retards transformation by inhibiting mediators of the inflammatory response, 
including transcription factors (nuclear factor kappa, Signal transducer and activator 
of transcription 3, and Forkhead box O signaling), and downregulating Lin28B, most 
Let-7 miRNA family members, and inflammatory molecules [interleukin (IL)-1α, IL-
1β, IL-6, and vascular endothelial growth factor (VEGF)][56].

Metformin has other AMPK-mediated actions that may be implicated in cancer. 
Through the activation of AMPK, metformin causes the suppression of FAS gene 
expression, which is involved in the synthesis of fatty acids, resulting in reduced 
lipogenesis, increased fatty acid oxidation, and decreased cell proliferation[32,57]. The 
activation of AMPK also modulates cyclin D1 (cell cycle protein), p21 and p27 (cyclin-
dependent protein kinase), which further contribute to its anti-cancer effects[55,58]. 
Interestingly, metformin may act as a chemosensitizer, for example, increasing the 5-
fluorouracil (5-FU) and paclitaxel sensitivities of cancer cell lines[59,60]. The ability of 
metformin to disconnect the electron transport chain by inhibiting complex I (NADH 
dehydrogenase) strongly induces cell death when glucose is limited. Metformin also 
reduces the hypoxic activation of hypoxia inducing factor (HIF-1), suggesting that the 
effects of metformin are increased in hypoglycemic and hypoxic conditions[61].

Other mechanisms
As a drug that controls metabolism, metformin promotes a coordinated decrease of 
TCA cycle intermediates, including succinate, fumarate, malate, citrate, and α-
ketoglutarate[36,37]. The dependency of neoplastic cells on glutamine metabolism has 
been shown to be reprogrammed by the Kras oncogenic pathway through a single 
pathway involving serum glutamic-oxaloacetic transaminase, which maintains the 
cellular redox states essential to mitochondria and offers innovative therapeutic targets 
in combination with metformin[62].

Metformin can exert antitumor activity by increasing CD8+ T-cells[63,64]. It might 
inhibit apoptosis of CD8+ tumor infiltrating lymphocytes and prevent immune 
exhaustion[63,65]. Furthermore, metformin might adjust the expression profile of 
immune checkpoints[66], such as programmed death ligand 1, in the context of the 
neoplasm[37], thereby suggesting that a combination of metformin might have the 
potential to enhance the strength of cancer immunotherapy[63].

There is evidence that epigenomic modifications by metformin may contribute to its 
anti-cancer properties[67]. Metformin might regulate the activity of numerous 
epigenetic modifying enzymes, principally by modulating the activation of AMPK. 
Activated AMPK can phosphorylate several substrates, comprising epigenetic 
enzymes, such as histone acetyltransferases (HATs), class II histone deacetylases 
(HDACs) and DNA methyltransferases (DNMTs), usually resulting in their inhibition; 
however, HAT1 activity may be increased. Metformin has also been related to the 
diminished expression of various histone methyltransferases[68], enhancing the 
activity of the class III HDAC SIRT1 and minimizing the influence of DNMT 
inhibitors[69,70].

METFORMIN STUDIES IN DIGESTIVE SYSTEM MALIGNANCIES
Metformin in colorectal cancer
Cell lines and animal models: Metformin promotes cell cycle arrest in the G0/G1 
phase in colorectal cancer (CRC) cell lines. It also decreases the expression of c-Myc 
and causes down-regulation of IGF-1R[71]. Consequently, up-regulation of the 
adenosine A1 receptor induces apoptosis[72]. Additionally, it was shown that 
metformin enhances the activity of the Sprouty2 gene, which suppresses colon cancer 
growth[73].

The combination of metformin with 5-FU was investigated on the SW620 CRC cell 
line and on patients with DM2. The study showed that metformin plus 5-FU treatment 
significantly inhibited the proliferation of SW620 cells compared with that in 
monotherapy. Additionally, the examination of 86 CRC tissue samples obtained from 
patients with DM2 revealed that treatment with metformin decreased the proportion 
of poorly differentiated tumors[74]. Moreover, a synergistic effect of 5-FU and 
metformin was observed in a 5-FU resistant cell line[74] and metformin radiosensitizer 
CRC cells, with reduced survival of ionization-resistant cells[75]. Consistently, the 
association of oxaliplatin, 5-FU and metformin also demonstrated a superior anti-
tumor activity in chemoresistant HT-29, and HCT-116 cells compared to that with the 
drugs separately[76].
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In 1977, it was firstly reported that phenformin inhibits metabolic immuno-
suppression in rats[77]. Since then, several reports have demonstrated that metformin 
has both chemopreventive and therapeutic activities in animal models of CRC. For 
instance, metformin treated ApcMin/+ mice showed significantly smaller polyps[78], 
and carcinogen-induced animal models that received metformin had a reduction of 
aberrant crypt foci[79], indicating the chemopreventive effect of metformin. Moreover, 
the association of metformin with D3 vitamin demonstrated a chemopreventive effect 
against 1,2-dimethylhydrazine (DMH)-induced CRC in rats and DMH-dextran sodium 
sulfate-induced colitis-associated CRC in mice[80]. On the other hand, treatment with 
metformin, 5-FU and oxaliplatin demonstrated superior antiproliferative effects in 
SCID mice bearing CRC[76]. In avatar models, metformin suppressed the tumor 
growth in the patient-derived xenografts by 50%[81]. In the same study, when 
metformin was combined with 5-FU, the tumor growth was inhibited up to 85%[81].

Clinical use of metformin
Metformin and CRC risk: As shown in Table 1 many case-control and cohort studies 
and associated meta-analyses have evaluated DS cancer risk and metformin use. 
Specifically, a decreased risk of CRC was found in the majority of studies[82-86], but 
no association or an increased risk of CRC was found in some of them[87-91]. 
Although these different results may be related to biases, a large cohort study that 
used adequate methods to minimize biases also concluded that metformin use 
decreased the risk of CRC[92].

Saliently, Cardel et al[82] demonstrated, in a case-control study, that the risk of CRC 
was decreased by 17% (OR: 0.83, 95%CI: 0.74-0.92) among patients treated with 
metformin compared to that among patients not using metformin[82], while Liu 
et al[93] showed a 22% risk reduction for the development of CRC[93]. Importantly, 
the role of metformin for CRC prophylaxis was addressed in a prospective Japanese 
phase III trial that demonstrated that low metformin doses for 1-year reduced polyp 
formation and colorectal adenomas in non-diabetic patients at high risk for new 
polyps[94]. However, further studies are necessary to draw a definitive conclusion.

Metformin and CRC treatment
Table 2 summarizes the clinical studies of metformin on DS cancers treatment. 
Specifically related to CRC, a Korean study of 595 patients with diabetes who had CRC 
with clinical stages I to IV showed that patients using metformin had higher overall 
survival (OS) and specific cancer survival compared to patients who did not use it[95]. 
In accordance, metformin use in 424 diabetic patients with CRC was associated with 
an OS of 76.9 mo vs 56.9 mo in patients not using metformin (P = 0.048)[95]. After 
adjusting for possible confounding factors, the study showed that patients with DM2 
treated with metformin had a 30% increase in OS when compared to patients with 
DM2 treated with other antidiabetic drugs[95]. Recent meta-analyses demonstrated 
that metformin increases the OS of patients with CRC, as well as a 10% reduction in 
the incidence of the disease[96,97]. The ASAMET trial, an ongoing randomized, phase 
II, double-blind, placebo-controlled trial aims to determine the effect of low-dose 
aspirin and metformin in patients with stage I-III CRC in reducing CRC mortality rates 
and adenoma recurrence[98]. The 160 patients with CRC were divided in four arms: 
aspirin, metformin, aspirin plus metformin and placebo for a duration of 1 year.

The radiotherapy-induced tumor response was improved with metformin in a 
Korean retrospective study that evaluated patients with localized rectal cancer. The 
diabetic patients receiving metformin had significantly more tumor regression grade 
3-4 (P = 0.029) and higher lymph node downstaging (P = 0.006) as compared to 
patients not receiving the medication. However, the disease-free survival (DFS) and 
OS was not affected[99]. Consistently, a study with 482 patients examined the effect of 
metformin use on pathologic complete response (pCR) rates and outcomes in patients 
submitted to neoadjuvant chemoradiotherapy for rectal cancer. The pCR rates were 
higher in patients with DM2 taking metformin (35%) compared with those in 
nondiabetic patients (16.6%) and patients with DM2 not using metformin (7.5%). 
Additionally, significantly increased DFS and OS was found in patients taking 
metformin[100].

A phase II clinical trial addressed the combination of metformin with 5-FU in 
patients with refractory CRC. It demonstrated a disease control rate in 8 wk of 22%, 
with a median OS of 7.9 mo and progression-free survival (PFS) of 1.8 mo[101]. A trial 
of our group with a similar design that analyzed the combination of irinotecan with 
metformin found 41% disease control rate and OS of 8.2 mo[102]. Further randomized 
prospective studies are needed to establish metformin as a modern drug for the 
treatment of refractory CRC.
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Table 1 Selected clinical studies of metformin on digestive system cancers chemoprevention

Ref. Study design and population Inclusion criteria
Combined 
interventions 
/drugs 

Main findings 

Comparison groups Risk estimates and 
95%CI

Colorectal 
cancer 

Cardel et al[82], 
2014

Case-control study. Cases-controls: 2088:9060 Cases: DM2 with CRC. Controls: DM2 
without CRC

Metformin user vs 
nonuser

OR: 0.83 (0.68-1.00)

Lee et al[83], 
2011 

Prospective Cohort, Taiwan. n = 480984 DM2 and cancer free subjects Metformin user vs 
nonuser

HR: 0.36 (0.13-0.98)

Sehdev 
et al[84], 2015 

Case control study. Cases-controls: 2682:5365 Cases: DM2 with CRC. Controls: DM2 
without CRC

Metformin user vs 
nonuser 

OR: 0.85 (0.76-0.95)

Tseng et al[84]., 
2012 

Retrospective Cohort. Men: 493704. Women: 
502139

Subjects covered by National Health 
Insurance without CRC

Metformin user vs 
nonuser

RR: 0.64 (0.49-0.84)

Zhang et al[86], 
2011

Meta-analysis. 108161 DM2 patients Studies conducted in humans that 
evaluate metformin and CRC

Metformin user vs 
nonuser

RR: 0.63 (0.47-0.84)

Kowall 
et al[87], 2015

Retrospective Cohort, United Kingdom. 80263 
DM2 patients

Patients aged 30-89 years with DM2 
diagnosis

Metformin user vs 
sulfonylurea user

HR: 1.04 (0.82-1.31)

Lin et al[88], 
2015 

Prospective Cohort. 36270 DM2 patients. 
145080 non DM2

Patients older than 20 years old DM2 
and Cancer- free 

Metformin user vs 
nonuser

HR: 0.74 (0.53-1.03)

Smiechowski 
et al[89], 2013 

Case-control, United Kingdom. Cases-controls: 
607:5837

DM patients treated with non-insulin 
antidiabetic agents

Metformin user vs 
nonuser

RR: 0.93 (0.73-1.18)

Bodmer 
et al[90], 2012 

Case control, United Kingdom. Cases-controls: 
920:5519

Cases: DM2 with CRC. Controls: DM2 
without CRC

Metformin user vs 
nonuser

Men: OR: 1.81 (1.25-
2.62). Women: OR: 
1.00 (0.63-1.58)

Knapen 
et al[91], 2013 

Retrospective Cohort, Denmark. 177281 DM2 
with OHA 

Oral antidiabetic drug users were 
matched 1:3 with population-based 
reference group

Biguanide user vs 
non-diabetic

HR: 1.19 (1.08-1.30)

Bradley 
et al[92], 2018 

Retrospective Cohort, Northern California. 
47351 DM2 patients

DM2 and no history of cancer or 
metformin use

Long-term 
metformin use ( 5 
years) vs nonuser

All population: HR: 
0.78 (0.60-1.02). Men: 
HR: 0.65 (0.45-0.94)

Liu et al[175], 
2017 

Meta-analysis. 20 case-control and cohort 
studies

Studies about metformin therapy and 
risk of adenoma/CRC in DM2 patients

Metformin user vs 
nonuser

Adenoma: OR: 0.75 
(0.59-0.97). 
Carcinoma: OR: 0.781 
(0.7-0.87)

Higurashi 
et al[94], 2016 

RCT, phase 3. n = 151 patients with resected 
adenomas or polyps 

Non- diabetic adult patients who had 
previously had single or multiple 
colorectal adenomas or polyps resected 
by endoscopy

Metformin 250 daily 
or placebo (1:1) for 1 
yr

Adenoma: RR 0.60 
(0.39-0.92)

Gastric cancer 

Tseng 
et al[107], 2016 

Retrospective Cohort, Taiwan. 287971 DM2 
with metformin. 16217 DM2 without 
metformin

DM2 patients newly treated with 
antidiabetic drugs

Metformin user vs 
nonuser 

HR: 0.45 (0.36-0.56)

Dulskas 
et al[108], 2020 

Retrospective Cohort study. n = 99992 DM2 patients with gastric cancer Metformin user vs 
nonuser 

SIR: 0.75 (0.66-0.86)

Ruiter 
et al[109], 2012 

Retrospective Cohort study. 85289 DM2 
patients

DM2 with more than one prescription 
of antidiabetic drugs

Metformin user vs 
sulfonylurea user

HR: 0.90 (0.88-0.91)

Kim et al[110], 
2014 

Retrospective cohort study. 39978 DM2 
patients

DM2 receiving oral antidiabetic drugs Metformin user and 
non-insulin user vs 
nonuser

HR: 0.73 (0.53-1.01)

Cheung 
et al[112], 2019 

Prospective Cohort study. 7266 DM2 DM2 with prescription of therapy for 
H. pylori. Exclusion: history of GC

Metformin user vs 
nonuser

HR: 0.49 (0.24-0.98)

Tsilidis 
et al[113], 2014 

Retrospective Cohort study. 51484 metformin. 
18264 sulfonylureas 

DM2 receiving oral antidiabetic drugs Metformin user vs 
sulfonylurea user

HR: 0.96 (0.60-1.56)

de Jong 
et al[114], 2017 

Retrospective Cohort study, Netherlands. 
57621 DM2 with OHA

DM2 receiving oral antidiabetic drugs Metformin user vs 
nonuser

HR: 0.97 (0.82-1.15)
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Zheng 
et al[115], 2019

Prospective Cohort study. 544130 DM2 
patients

Diabetes Cohort: DM2 receiving 
antidiabetic drugs. Matched cohort: 
common-medication users. Exclusion: 
History of GC or gastrectomy

Metformin user vs 
nonuser

Non-cardia: HR: 0.93 
(0.78-1.12). Cardia: 
HR: 1.49 (1.09-2.02)

Shuai et al[116], 
2020 

Meta-analysis. 11 cohort studies Studies conducted in humans that 
evaluate metformin and GC risk

Metformin user vs 
nonuser

HR: 0.79 (0.62-1.00)

Zhou et al[117], 
2017 

Meta-analysis. 7 Cohort studies. n = 591077 Studies conducted in humans that 
evaluate metformin and GC risk

Metformin user vs 
nonuser

HR: 0.76 (0.64-0.91)

Pancreatic ductal adenocarcinoma

Currie 
et al[123], 2009

Retrospective cohort study. n = 62.809 DM2. 
Comparison between treatment: Metformin 
alone; Sulfonylurea alone; metformin plus 
sulfonylurea; insulin

DM2 developed > 40 years of age; 
United Kingdom residents

Metformin vs 
Sulfonylurea. 
Metformin vs Insulin

HR: 0.20 (0.11-0.36). 
HR: 0.22 (0.12-0.38)

Li et al[124], 
2009 

Hospital-based case control. Cases-controls: 
973:863. Comparison between treatment: 
Metformin; insulin secretagogues; Other 
antidiabetic medications; insulin

DM subjects; cases: Newly PDAC 
diagnosed. Controls: Nonblood relative 
controls; United States residents

Metformin user vs 
nonuser

OR: 0.38 (0.22-0.69)

Soranna 
et al[126], 2012 

Meta-analysis of 17 case-control and cohort 
studies. Any cancer: 17 case-control and cohort 
studies; 37632 cases. PDAC: 4 case-controls and 
retrospective cohort studies; 1192 cases

DM2 patients exposed to metformin 
alone or combined to sulfonylurea

Metformin user vs 
nonuser

RR: 0.38 (0.14-0.91)

Zhang 
et al[125], 2013 

Meta-analysis of 37 case-control and cohort 
studies. n = 1535636

DM2 patients on treatment Metformin user vs 
nonuser

SRR: 0.54 (0.35-0.83)

Hepatocellular carcinoma

Donadon 
et al[159], 2010 

Clinic-hospitalbased case control. Cases-
controls: 190:359 

Cases: HCC patients. Controls: Liver 
cirrhosis patients and healthy controls 

Metformin vs 
sulfonylurea. 
Metformin vs insulin

OR: 0.39 (0.22-0.73). 
OR: 0.21 (0.11-0.42)

Hassan 
et al[158], 2010 

Hospital-based case control. Cases-controls: 
122:86 

Cases: HCC. Controls: Healthy controls Metformin user vs 
nonuser

OR: 0.30 (0.20-0.60)

Ma et al[160], 
2017 

Meta-analysis of 19 case-control and cohort 
studies and post hoc analysis of RCT of DM2 
patients. n = 550.882

DM2 exposed to metformin or 
biguanide 

Metformin user vs 
nonuser

OR: 0.52 (0.40-0.68)

Intrahepatic cholangiocarcinoma

Chaiteerakij 
et al[168], 2013 

Clinic-hospital based case-control. Cases-
controls: 612:594

Cases: ICC patients. Controls: Non-
cancer patients

Metformin user vs 
nonuser

OR: 0.40 (0.20-0.90)

PDAC: Pancreatic ductal adenocarcinoma; HR: Hazard ratio; OHA: Oxidized hyaluronate; RCT: Randomized clinical trial; HCC: Hepatocellular 
carcinoma; ICC: Intrahepatic cholangiocarcinoma; CRC: Colorectal cancer.

Interestingly, a randomized trial that included 40 patients with stage III CRC 
evaluated the use of metformin in preventing oxaliplatin-induced neuropathy. After 
the 12th cycle of the FOLFOX-4 regimen, in the metformin group, there were fewer 
patients with grade 2 and 3 neuropathy as compared to the control arm (60% vs 95%, P 
= 0.009). Moreover, significantly higher total scores on the Ntx-12 questionnaire and 
pain score were found in the metformin arm. The serum levels of neurotensin and 
malondialdehyde were also significantly lower in the metformin arm after 6 and 12 
cycles[103].

Furthermore, there are ongoing trials evaluating the role of metformin in CRC. We 
highlight, in adjuvant setting, a phase 3 trial (NCT02614339) with high-risk stage II 
and stage III CRC that aims to evaluate the impact of metformin for 48 mo on disease 
free survival. In refractory CRC setting, there is an interesting phase 2 trial is recruiting 
patients to explore the combination of the immune checkpoint inhibitors, such as 
nivolumab and metformin (NCT03800602).

Metformin and gastric cancer
The effect of metformin alone or in combination with cisplatin or rapamycin was 
studied in a tumor xenograft model[104]. It demonstrated that metformin alone 
decreased tumor volume. The combination of metformin with cisplatin, rapamycin or 
both increase the effect of each drug alone and inhibited the peritoneal dissemination 
of gastric cancer (GC)[104]. In accordance, Wu performed an in vitro study with AGS 
cell lines that analyzed how the association of metformin with cisplatin or adriamycin 
or paclitaxel enhanced the effects of each drug alone[105]. In striking contrast, Lesan 
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Table 2 Selected clinical studies of metformin on digestive system cancers treatment

Ref. Study design and population Inclusion criteria Combined interventions /drugs Main findings
Colorectal 
cancer

Ramjeesingh 
et al[99], 2016 

Retrospective cohort. 1394 all stages 
CRC patients

Patients with CRC Metformin user vs nonuser HR: 0.81 (0.60-1.08)

Skinner 
et al[100], 2013

Retrospective cohort. 482 locally 
rectal cancer patients

Locally advanced rectal 
adenocarcinoma treated 
with chemoradiation and 
surgery

Metformin user vs nonuser pCR: OR: 16.8 (1.6-181.1). OS 
at 5 and 10 years (metformin 
vs non): 81% and 79% vs 56% 
and 39% (P = 0.022)

Miranda 
et al[101], 2016

Phase 2 Clinical trial. 50 refractory 
CRC patients

Refractory CRC patients Metformin 850 mg twice a day+ 5-FU 
425 mg/m2 weekly

PFS: 1.8 mo. OS: 7.9 mo. 
Obese vs lean: 12.4 vs 5.8 mo

Bragagnoli 
et al[102], 2021 

Phase 2 Clinical trial, 41 refractory 
CRC patients

Refractory CRC patients Metformin 2500 mg a day+ Irinotecan 
125 mg/m2 D1, D8, every 21 d

PFS: 2.4 mo, CI 95%, 2.0-4.5 
mo. OS: 8.4 mo, CI 95%, 5.9-
10.8 mo

El-Fatatry 
et al[103], 2018 

Clinical Trial, 40 Stage III CRC 
patients

Stage III CRC patients FOLFOX 4 12 cycles + metformin 500 
mg 3 times a day

Neuropathy grade 2-3 
(metformin vs non): 60% vs 
95% (P = 0.009)

Gastric cancer

Lee et al[118], 
2016 

Retrospective Cohort, single center 
in Korea. 1974 GC resected patients: 
– 132 DM2 with metformin; –192 
DM2 without metformin; –1648 
non-diabetic 

GC patients who 
underwent curative 
gastrectomy

Metformin user vs nonuser OS-HR: 0.58 (0.37-0.93). RFS-
HR: 0.63 (0.41-0.98)

Lacroix 
et al[120], 2018 

Retrospective Cohort. 371 Patients Stage I to III GC patients Metformin user vs nonuser OS-HR: 0.73 (0.52-1.01); 
cancer specific mortality-HR: 
0.86 (0.56-1.33)

Baglia 
et al[121], 2019

Prospective cohort study in 
Shangai. 543 GC patients 

Breast, CRC, lung and GC 
patients

Metformin user vs nonuser OS-HR: 1.11 (0.81-1.53). 
Disease-specific survival-
HR: 1.03 (0.73-1.43)

Seo et al[119], 
2019

Retrospective cohort study. 2187 
GC resected patients: – 103 DM2 
with metformin; –139 DM2 without 
metformin; –1945 non-diabetic

GC patients who 
underwent curative 
gastrectomy

Metformin user vs nonuser HR: 0.45 (0.30-0.66)

PDAC

Sadeghi 
et al[128], 2012 

Retrospective cohort. n = 302 DM2 patients. All stages. 
United States single center

Metformin user vs nonuser HR: 0.64 (0.48-0.86)

Chaiteerakij 
et al[129], 2016 

Retrospective cohort. n = 980 DM2 patients. All stages. 
United States single center

Metformin user vs nonuser HR: 0.93 (0.81-1.07)

Lee et al[133], 
2016 

Retrospective cohort. n = 237 DM2 patients. All stages. 
Korean single center

Use of metformin ≥ 1-mo post-
diagnosis vs nonuser

HR: 0.61 (0.46-0.81)

Ambe 
et al[130], 2016 

Prospective cohort study n = 44 DM2 patients. Resected 
PDAC, stage I-II. United 
States single center

Metformin user vs nonuser HR: 0.54 (0.16-1.86)

Cerullo 
et al[131], 2016 

Retrospective cohort. n = 3393 Resected PDAC United 
States population based

Metformin use after surgery vs 
nonuser

HR: 0.79 (0.67-0.93)

Jang et al[132], 
2017 

Prospective cohort. n = 764 DM2, OHA user. Resected 
Korean population based

Metformin user vs nonuser HR: 0.73 (0.61-0.87)

Hwang 
et al[135], 2013 

Retrospective cohort. n = 516 DM2 patients. Locally 
advanced and metastatic. 
United Kingdom 
population based

Use of metformin peridiagnosis vs 
nonuser

HR: 1.11 (0.89-1.38)

Choi et al[134], 
2016 

Retrospective cohort. n = 183 DM2 patients. Locally 
advanced and metastatic. 
Korean single center

Metformin user vs nonuser HR: 0.69 (0.49-0.97)

Kordes 
et al[137], 2015

RCT, n = 121 Locally advanced and 
metastatic. Multicentric. 
Netherlands

Gemcitabine-everolimus (1000 mg/m2 

D1, 8, 15-every 28 d-1.000 mg/d) +/- 
metformin (2000 mg/d)

HR: 1.05 (0.72-1.55)

PEXG (cisplatin-epirubicin-
capecitabine-gemcitabine: 30 mg/m2 

Reni et al[138], 
2016 

RCT. n = 60 Metastatic. Single center. 
Italian

HR: 1.56 (0.87-2.80)
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D1,14- 30 mg/m2 D1,14-2500 mg/m2 
D1–28 – 800 mg/m2 D1–14) +/- 
metformin 2000 mg/d

Zhou 
et al[136], 2017 

Meta-analysis12 cohort studies and 
2 RCT. n = 94778 

Studies that investigated 
metformin exposition. All 
stages PDAC

Metformin user vs nonuser HR: 0.77 (0.68-0.87)

Li et al[139], 
2017 

Meta-analysis. 9 cohort study and 2 
RCT. n = 8089 

Studies that investigated 
metformin exposition. All 
stages PDAC

Metformin user vs nonuser HR: 0.86 (0.76-0.97)

Wan et al[140], 
2018 

Meta-analysis 15 cohort studies and 
2 RCT, n = 36791 

Studies that investigated 
metformin exposition. All 
stages PDAC

Metformin user vs nonuser HR: 0.88 (0.80-0.97). Asians 
only HR: 0.74 (0.58-0.94); 
Stage I-II HR: 0.76 (0.68-
0.86); Stage III-IV HR: 1.08 
(0.82-1.43)

Braghiroli 
et al[141], 2015 

Single-arm phase II. n = 20 Locally advanced or 
metastatic. 2nd line 
treatment. Single center. 
Brazilian

Paclitaxel (80 mg/m2 D1, 8, 15 every 
28 d) + metfomin 1750 mg/d

DCR at 8 wk 31, 6%

Pancreatic neuroendocrine tumor

Pusceddu 
et al[153], 2018 

Retrospective cohort. n = 445 Locally advanced or 
metastatic. Multicentric. 
Italian 

No DM2 vs DM2. Metformin user vs 
nonuser

HR: 0.45 (0.32-0.62). HR: 0.49 
(0.34-0.69)

Hepatocellular carcinoma

Chen 
et al[163], 2011 

Retrospective cohort. n = 53 DM2. Early-stage HCC. 
RFA treated. Single center. 
Taiwanese 

Metformin user vs nonuser HR: 0.24 (0.07-0.90)

Ma et al[164], 
2016

Meta-analysis. 11 cohort studies. n = 
3452 

Studies that investigated 
metformin exposition. 
HCC patients

Metformin user vs nonuser HR: 0.59 (0.42-0.83)

Intrahepatic cholangiocarcinoma

Yang 
et al[169], 2016 

Retrospective cohort. n = 250 DM2. Newly diagnosed 
ICC. United States single 
center

Metformin user vs nonuser HR: 0.80 (0.60-1.20)

PDAC: Pancreatic ductal adenocarcinoma; ORC: Origin recognition complex; HR: Hazard ratio; PCR: Polymerase chain reaction; OS: Overall survival; PFS: 
Progression-free survival; RFS: Regarding refeeding syndrome; OHA: Oxidized hyaluronate; RCT: Randomized clinical trial; PEXG: Pseudoexfoliative 
glaucoma; DCR: Dacryocystorhinostomy; HCC: Hepatocellular carcinoma; RAF: Rapidly accelerated fibrosarcoma; ICC: Intrahepatic cholangiocarcinoma; 
CRC: Colorectal cancer; DM2: Diabetes mellitus type 2; GC: Gastric cancer.

et al[106] showed in vitro that metformin and cisplatin in combination decreased the 
effects of cisplatin alone[106].

In recent years, several observational studies have shown that metformin reduces 
the risk of GC[107-112]. The study of Tseng et al[107] demonstrated that GC risk was 
reduced using metformin, especially when the cumulative duration was more than 2 
years[107]. In addition, metformin reduced the risk of GC, while opposite results were 
observed with sulfonylureas[108].

On the other hand, a study conducted in United Kingdom did not show a difference 
in GC incidence in patients receiving metformin compared to sulfonylureas[113]. 
Other reports also could not find any reduction in GC risk associated with metformin 
us[83,114,115]. Despite that, a meta-analysis showed a 21% reduction in the risk of GC 
with the use of metformin, in Asians the benefit was more prominent than in 
Westerners[116]. Another meta-analysis of cohort studies that included 591077 
patients found a significantly lower incidence of GC with metformin therapy than 
other types of therapy (HR: 0.763; 95%CI: 0.642-0.905)[117].

Two retrospective studies conducted by Lee et al[118] and Seo et al[119] concluded 
that metformin reduced GC recurrence in patients undergoing gastrectomy[118,119]. 
Lacroix et al[120] showed that metformin improved OS but not cancer specific 
survival, in contrast, Baglia et al[121] observed that metformin use did not impact 
patient’s survival[120,121].

More studies are needed to confirm the effect of metformin in GC treatment and 
chemoprevention. Unfortunately, there are few clinical trials that are ongoing to 
analyze this question. An interesting phase 2 randomized trial (NCT04114136) are 
ongoing to evaluate the synergistic effect of metformin, rosiglitazone and anti-PD-1 on 
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the treatment of refractory solid tumors including GC. Metformin could reduce tumor 
oxygen consumption creating a less hypoxic T cell environment leading to restore its 
anti-tumor cell function. The trial NCT04033107 analyze the combination of metformin 
and vitamin C in DS tumors including GC.

Metformin and pancreatic cancer
Pancreatic cancer is the fourth leading cause of cancer death in the United States and 
its prognosis remains dismal, encouraging research to discover innovative agents 
active in its treatment is an urgent unmet need[122]. Pancreatic ductal adenocarcinoma 
(PDAC) is its most common histologic type. An association between metformin use 
and decreased PDAC incidence in patients with DM2 was first recognized by two 
large clinical studies. In a large general practice retrospective cohort, Currie et al[123] 
reported risk reduction in metformin users related to sulfonylurea users (HR: 0.20; 
95%CI: 0.11-0.36) and to insulin-based-treatment users (HR: 0.22; 95%CI: 0.12-0.38). 
Likewise, in a hospital-based case-control study, Li et al[124] encountered risk 
reduction in metformin users compared to those who did not use metformin (OR: 0.38; 
95%CI: 0.21-0.67). Several meta-analyses have strongly reinforced PDAC risk 
reduction with metformin use in patients with DM2[18,125-127]. However, this effect 
should prospectively be confirmed in large prospective clinical trials.

Regarding survival, in a retrospective study, Sadeghi et al[128] reported a 36% lower 
risk of death (HR: 0.64; 95%CI: 0.48-0.86), OS benefit of 4 mo (15.2 mo vs 11.1 mo) and 
approximately 2-fold increase in 2-year survival rate (30.1% vs 15.4%) in patients who 
took metformin compared to those inpatients who did not take metformin. 
Interestingly, longer survival was only observed in non-metastatic disease, when 
stratified by disease stage[128]. Further evidence also encountered survival improve-
ment in the subgroups of resected or locally advanced but not in patients with 
metastatic disease[129]. Specifically, among resected patients with PDAC, metformin 
use seemed to improve OS after 18 mo[130-132]. Related to locally advanced or 
metastatic disease, further evidence was contradictory on survival gains in patients 
with PDAC exposed to metformin with benefit being reported only in an Asian 
cohort[133-135]. A large meta-analysis analyzed data from 12 retrospective cohorts 
demonstrating OS improvement in metformin users at various stages (HR: 0.77; 
95%CI: 0.68-0.87)[136].

Stimulated by this retrospective evidence, two European groups explored, in 
randomized clinical trials (RCTs), the association of metformin with gemcitabine-
based chemotherapy as first-line treatment of advanced PDAC with negative results 
on OS improvement[137,138]. Recently, a meta-analysis, with inclusion of two RCTs, 
re-analyzed the improvement in OS and confirmed benefit in the whole population of 
diabetic patients with PDAC (HR: 0.86; 95%CI: 0.76-0.97)[139]. Analysis of subgroups 
in this study demonstrated improved survival in patients with resected or locally 
advanced tumors but not in the metastatic group. Similar results were observed in 
another group with a benefit in OS at various stages, which was more evident in the 
subgroups of less advanced stages and Asian patients[140]. Considering second-line 
treatment, a single arm prospective study did not reach survival gain of metformin 
associated to paclitaxel[141]. Results of ongoing clinical trials recently completed are 
expected with substantial interest. NCT01666730 explores overall survival 
improvement of metformin associated with modified FOLFOX6 in metastatic patients, 
NCT02005419 evaluates DFS at 1 year with the combination of metformin and 
gemcitabine in resected subjects and NCT02048384 analyses safety of metformin with 
or without rapamycin after disease stabilization on first line chemotherapy in 
metastatic individuals.

This clinical evidence is associated with the pre-clinical data that pancreatic cancer 
cells are sensitive to inhibition of oxidative phosphorylation, decreases in insulin-IGF 
signaling and inhibition of the mTOR pathway through AMPK activation, which are 
some of the major antineoplastic effects of metformin[39,142-145]. Identifying 
predictive or prognostic factors of response to metformin should be of relevance to 
select patients most likely to benefit from the effects of metformin[39]. Recent 
advances in molecular characterization might distinguish different biology and 
response to therapy in patients with morphologically similar PDAC and may be 
incorporated into clinical trials[146-148]. Moreover, the recently experienced challenge 
of standard of care in advanced pancreatic cancer treatment with polychemotherapy 
also brings new perspectives, as patients experience longer survival with the need to 
combine other active agents[149,150]. Future trials would include disease stage, 
identification of biomarkers and concentrations of metformin in neoplastic tissue to 
powerfully evaluate the benefit of metformin in the treatment of PDAC.
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Another pancreatic neoplasm with rising incidence is pancreatic neuroendocrine 
tumors (panNETs)[151]. Few studies have evaluated the clinical benefit of metformin 
in the treatment of panNETs[152]. Pusceddu et al[153], in a multicentric retrospective 
cohort of patients receiving everolimus with or without somatostatin analogues, 
reported increased PFS in diabetic patients exposed to metformin compared to diabetic 
patients not exposed to metformin or non-diabetic patients [44.2 vs 20.8 mo (HR: 0.49; 
95%CI: 0.34-0.69) or 15.1 mo (HR: 0.45; 95%CI: 0.32-0.62), respectively][153]. This result 
correlates with in vitro evidence that metformin decreases proliferation in human 
panNET cell lines[154,155]. A recent study demonstrated that the combination of 
metformin and everolimus strongly inhibited human panNET cell proliferation 
through mTOR suppression, compared to each agent used alone[156]. Results of the 
ongoing NCT02294006 prospective trial are expected to better evaluate the effects of 
this experimental treatment on PFS at 12 mo.

Metformin and hepatocellular carcinoma
The incidence of hepatocellular carcinoma (HCC) has strongly increased in last two 
decades, as well as the prevalence of its metabolic risk factors[156,157]. Hassan 
et al[158] and Donadon et al[159], in hospital-based case-control studies, first observed 
the strong association of metformin use and reduced risk of HCC in subjects with DM2 
(HR: 0.15; 95%CI: 0.04-0.50) (HR: 0.30; 95%CI: 0.20-0.60)[156,158,159]. This protective 
effect was validated by accumulated evidence of observational studies including more 
than 0.5 million subjects (OR: 0.52; 95%CI: 0.40-0.68), being more evident in case-
control than in cohort studies and without significance in the post hoc analysis of 
RCTs[160-162]. These data suggest an association between metformin use and reduced 
HCC incidence that needs to be confirmed in prospective clinical trials.

Improvement in HCC survival was first reported by Chen et al[163] in an early-stage 
cohort of patients treated with radiofrequency ablation with longer OS in metformin 
users compared to non-users (HR: 0.24; 95%CI: 0.07-0.90)[163]. A meta-analysis of 11 
cohort studies was in accordance with better prognosis related to metformin use in 
patients with HCC related to their counterparts (HR: 0.59; 95%CI: 0.42-0.83)[164].

Although the antineoplastic effects of metformin in liver cancer are not completely 
understood, pre-clinical evidence observed inhibition of proliferation and induction of 
cell cycle arrest and apoptosis in HCC cells through AMPK activation[165,166]. Future 
prospective trials should explore the potential benefit of metformin in prevention and 
treatment of HCC.

Metformin and intrahepatic cholangiocarcinoma and gallbladder cancer
Intrahepatic cholangiocarcinoma (ICC) is the second most common hepatic cancer, and 
its incidence has markedly increased in the last decades[167]. Chaiteerakij et al[168], in 
a clinic-hospital-based retrospective cohort, reported 60% reduced risk of ICC in 
patients with DM2 who used metformin related to non-users (OR: 0.4; 95%CI: 0.2-
0.9)[168]. The same group, however, did not encounter better prognosis in patients 
with DM2 with ICC taking metformin (HR: 0.8; 95%CI: 0.6-1.2)[169]. Although 
gallbladder cancer (GBC) is the most common biliary tract cancer[170], no clinical data 
and scarce basic evidence have explored the antineoplastic effects of metformin and its 
potential mechanisms of action in GBC.

Regarding comprehension of the possible mechanistic effects of metformin on ICC 
and GBC there are some in vitro and in vivo evidence. Overall, the studies observed the 
induction of apoptosis and cell cycle arrest mediated by activation of the AMPK-
mTOR axis[171-173]. The association of metformin in combination with gemcitabine 
and cisplatin (the standard of care for advanced ICC) enhanced the antiproliferative 
effects of treatment in a cell model through their effects on AMPK, cyclin D1 and 
caspase-3[174]. Furthermore, Liu et al[175] first observed the decreased survival of 
GBC cells via inhibition of phosphorylated Akt (p-Akt) and Bcl-2 signaling[175]. 
Likewise, metformin inhibited GBC cell proliferation via downregulation of HIF-1α 
and VEGF and promoted cell cycle arrest by reduction of cyclin D1 expression in 
different animal experiments[176,177]. The association of metformin with cisplatin also 
promoted reduced expression of p-Akt and cyclin D1 downregulation, resulting in a 
synergistic antiprolife-rative effect in GBC cells[178].

These pre-clinical and preliminary clinical evidence highlights the need for 
metformin to be more deeply explored in clinical studies of ICC and GBC prevention 
and treatment. Considering the rationale that metformin may be active in the 
prevention and treatment of ICC and limited clinical data, exploratory studies should 
address this issue for a better understanding of its benefit in these clinical settings.
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PERSPECTIVES
DS tumors are often associated to high morbidity and mortality and their incidence 
has increased over recent decades[179]. Recognition of its main risk factors and 
conditions of worse prognosis as well as development of strategies for prevention and 
treatment urges. In this context, projection of a worldwide burden of cancer 
attributable to diabetes and excess weight for the near future is an alarming public 
health concern[180]. Association of several cancers, including many DS tumors to 
diabetes and obesity have already been recognized (IARC, WCRF). Further strategies 
of prevention and treatment urge to be known. The large amount of evidence 
presented herein supports the idea of an important effect of metformin in decreasing 
risk and improving prognosis of several DS tumors.

Although most clinical studies presented here are retrospective that are often 
limited by immortal time and selection bias, recent discoveries of pre-clinical research 
on antineoplastic effects of metformin establish biological plausibility for the clinical 
data and reinforce the interest on its effects in carcinogenesis and cancer progression. 
These preclinical and clinical evidence supports running of adequately powered trials 
to investigate clinical use of metformin on DS tumors treatment. This should consider 
diabetic status, predictive biomarkers, disease stage and treatment setting. Concerning 
chemoprevention, safety, low cost, and widespread access are key to its feasibility. 
Therefore, repurposing metformin for DS cancer treatment is a scientific field of 
remarkable interest as it focuses on a global public health problem.

Currently, clinical research is considered a job with its inherent needed professional 
skills[181]. Taking in consideration that the low metformin cost does not impact the 
expensive process of drug repurposing, the development of this potential anti-cancer 
drug has been hampered. Moreover, the current stage of metformin clinical 
development needs testing in large, randomized, genome-guided, multicenter trials. 
These aspects explain, at least in part, the shortage of current studies on metformin in 
cancer prevention and treatment despite the large number of pre-clinical and clinical 
evidence indicating its potential benefit. We hope that this comprehensive review 
integrating the potential mechanisms, pre-clinical and clinical studies of metformin as 
anticancer agent alert the DS cancer community for the need of studying metformin 
effects in more specific clinical scenarios.

CONCLUSION
The remarkable intracellular pathway change caused by oncogenesis and the potential 
mechanisms of the antitumoral action of metformin have been supported. They have 
revealed novel target molecules and newly discovered treatment possibilities. In 
connection with epidemiological, pre-clinical, and clinical research, data support that 
metformin benefits some patients with DS tumors, requiring strict clinical trials to 
identify those who might obtain advantage from metformin combinations. Given that 
the survival outcomes are affected by a multitude of factors, such as cancer type, 
differentiation, staging and treatment, for adequately repurposing the use of 
metformin in DS cancers it is essential to take into consideration patient characteristics 
that may serve as predictive biomarkers of metformin antitumoral effects, such as 
insulin resistance, diabetes, body composition, and chronic diseases related to 
inflammation, as well as the specific tumor driven oncogenic pathway, which may 
interfere with the direct and indirect antitumoral effects of metformin.
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Abstract
Due to their immunomodulatory potential and release of trophic factors that 
promote healing, mesenchymal stromal cells (MSCs) are considered important 
players in tissue homeostasis and regeneration. MSCs have been widely used in 
clinical trials to treat multiple conditions associated with inflammation and tissue 
damage. Recent evidence suggests that most of the MSC therapeutic effects are 
derived from their secretome, including the extracellular vesicles, representing a 
promising approach in regenerative medicine application to treat organ failure as 
a result of inflammation/fibrosis. The recent outbreak of respiratory syndrome 
coronavirus, caused by the newly identified agent severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), has forced scientists worldwide to use all 
available instruments to fight the infection, including the inflammatory cascade 
caused by this pandemic disease. The use of MSCs is a valid approach to combat 
organ inflammation in different compartments. In addition to the lungs, which are 
considered the main inflammatory target for this virus, other organs are 
compromised by the infection. In particular, the liver is involved in the 
inflammatory response to SARS-CoV-2 infection, which causes organ failure, 
leading to death in coronavirus disease 2019 (COVID-19) patients. We herein 
summarize the current implications derived from the use of MSCs and their 
soluble derivatives in COVID-19 treatment, and emphasize the potential of MSC-
based therapy in this clinical setting.
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Core Tip: The recent coronavirus disease 2019 (COVID-19) pandemic outbreak has 
forced scientists worldwide to use all available options to fight this disease, in 
particular the inflammatory cascade caused by this infection. Mesenchymal stromal 
cells, for their immunomodulatory potential, represent a valid approach to combat 
organ inflammation. The main targets for this virus are the lungs, while other organs 
such as the liver are compromised by the infection. Evaluation of the albumin role in 
COVID-19 patients, and the connection to the “capillary leak syndrome” have focused 
attention on liver dysfunction correlated with the infection.

Citation: Chinnici CM, Russelli G, Bulati M, Miceli V, Gallo A, Busà R, Tinnirello R, Conaldi 
PG, Iannolo G. Mesenchymal stromal cell secretome in liver failure: Perspectives on COVID-
19 infection treatment. World J Gastroenterol 2021; 27(17): 1905-1919
URL: https://www.wjgnet.com/1007-9327/full/v27/i17/1905.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i17.1905

INTRODUCTION
The liver can be damaged by various factors, including cytotoxic molecules, ischemia, 
metabolic alterations, or viral infections[1], which result in inflammatory responses 
contributing to further liver damage[2]. If the inammation persists, a transition from 
acute to chronic injury can occur, inducing hepatic brosis[2]. Therefore, therapies that 
can reduce liver inflammation/fibrosis are crucial in order to avoid organ failure and 
the need for transplantation.

In recent years, the use of mesenchymal stromal cells (MSCs) has been considered a 
promising therapeutic approach to treat liver injuries[3]. MSCs can be isolated from 
different compartments including adipose tissue[4], umbilical cord[5], bone 
marrow[6], or placenta[7,8]. These cells have been successfully used in different 
therapeutic applications aimed at reducing inflammatory responses[9]. Moreover, the 
infusion of MSCs immediately after liver transplantation promotes organ regeneration 
and prolonged recipient survival by reducing acute inflammation[10].

Despite their beneficial properties, there are several limitations to the use of MSCs 
for cellular therapies; for example, their plasticity causes the potential risk of 
differentiation into undesired tissues and the possibility of malignant transformation is 
under debate[11,12]. To overcome these issues, the use of cell-free therapy is gaining 
considerable attention as a treatment for liver injury, an alternative to conventional cell 
transplantation[13]. Indeed, the regenerative properties of the MSC secretome include 
immunomodulatory effects mediated by growth factors and cytokines, such as 
transforming growth factor beta (TGF-β), prostaglandin E2, indoleamine 2,3-
dioxygenase, hepatocyte growth factor (HGF), interleukin-10 (IL-10), and tumor 
necrosis factor alpha (TNF-α)[14,15], which can also attenuate fibrogenesis. In 
addition, the MSC therapeutic effects could also result from the released extracellular 
vesicles (EVs). EVs include a highly heterogeneous group of vesicles of different size 
able to modulate the immune responses[16,17]. Indeed, MSC-derived EVs can be 
selectively enriched with anti-fibrotic[18] and anti-apoptotic[19] factors, as well as 
specific non-coding RNA with therapeutic potential[20].

In December 2019, several cases of death from pneumonia were reported in Wuhan, 
later related to a new coronavirus-related disease called coronavirus disease 2019 
(COVID-19). Analysis of its genome revealed it to be phylogenetically related to severe 
acute respiratory syndrome coronavirus (SARS-CoV)[21], and for this reason it was 
named SARS-CoV-2 by the World Health Organization (WHO). Due to its worldwide 
spread, the WHO declared COVID-19 a pandemic in March 2020. Angiotensin-
converting enzyme 2 receptor (ACE2), highly expressed in the respiratory tract, was 
considered the main SARS-CoV-2 viral attachment for animal cells. Most likely for this 
reason, the lungs are the principal target organs for SARS-CoV-2[22,23]. This virus 
triggers an exacerbated immune reaction because large amounts of different 
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inflammatory factors, including cytokines and chemokines, are produced by immune 
reactive cells.

It has been hypothesized that MSC-based therapy for COVID-19 patients can 
prevent the development of a cytokine storm by activating the immune system and 
promoting organ repair[24,25]. Intravenously injected MSCs reach the lungs, where 
they engraft and secrete a variety of soluble factors including anti-inflammatory 
factors, angiogenic factors, and EVs[26,27]. Studies aimed toward reversing COVID-19 
side effects through MSC treatment are ongoing. In this review, we summarize the 
therapeutic potentials of the MSC secretome for treating liver injuries associated with 
COVID-19.

MSC SECRETOME AND EVS FOR ORGAN INJURY
The use of MSC-based therapy for regenerative medicine applications counts in the 
hundreds of registered clinical trials (www.clinicaltrial.gov) because of the ability of 
these cells to promote immunomodulation and organ regeneration[28]. The release of 
trophic factors has demonstrated that their action is in part attributable to their 
secretome and, in particular, to secreted EVs[29]. Because of their intrinsic therapeutic 
potential, EVs are a powerful tool of regenerative medicine for the treatment of a wide 
range of diseases[30]. Due to heterogeneity in size and contents, as well as lack of 
specific markers, distinguishing the various EV subtypes is an ongoing challenge. 
According to the International Society for Extracellular Vesicles (ISEV), the generic 
term EVs includes nano-sized particles naturally released into the extracellular space 
by all cell types; they are delimited by a lipid bilayer and cannot replicate[31]. The 
ISEV consensus suggests considering physical parameters (e.g., size or density) to 
distinguish “small” EVs, often referred as “exosomes” (< 100-200 nm in diameter) 
from “medium/large” EVs or “microvesicles” (> 200 nm). EVs are replete with diverse 
proteins, lipids, carbohydrates, and nucleic acids, and exert many of their functions of 
intercellular communicators by transferring their cargo molecules among cells. The 
specific cargo composition of EVs is largely defined by the tissue/cell type from which 
they originate[32]. Similarly to EVs from other cell types, MSC-EVs can be 
characterized according to the guidelines indicated by the ISEV. The available data 
suggest that EVs may significantly contribute to the paracrine effects of MSCs on 
tissue regeneration[33]. Because of EVs’ broad biological functions, as well as their 
ability to transfer molecules between cells, MSC-EV-based therapy represents an 
attractive alternative to cell-based therapy. Application of MSC-EVs as a cell-free 
therapy has several advantages over conventional cell therapy. Primarily, EV injection 
carries lower safety risks because of their minimal reactivity to the immune system, 
and seem to be generally well tolerated, even when used xenogenically[34]. Then, 
because of their small size compared to MSCs, the intravenous delivery of EVs 
presents lower risk of vascular obstructions. Finally, EVs can also be genetically 
manipulated to carry desired therapeutic cargo for a broad, expanding range of 
potential clinical applications. The number of studies demonstrating the therapeutic 
potential of MSC-EVs in different disease models is growing rapidly. The beneficial 
effects of MSC-EV-based treatment are evidenced especially in cardioprotection and 
angiogenesis[35].

Understanding the mechanisms of action behind the therapeutic effects of MSC-EVs 
are crucial in view of their future clinical applications. Despite increasing interest, this 
field is still in its infancy in identifying the relevant bioactive molecules released by 
MSC-EVs that play a role in tissue repair. Efforts to identify these molecules lead to the 
conclusion that MSC-EVs preferentially contain mRNAs and microRNAs (miRNAs) 
targeting genes that participate in several cellular pathways involved in tissue repair, 
such as angiogenesis, migration, proliferation, self-renewal, differentiation, cellular 
transport, and apoptosis[36,37]. The overexpression of certain miRNAs can contribute 
to enhancing the therapeutic efficacy of MSC-EVs. For example, MSC-EVs over-
expressing miR-21 have neuroprotective effects by targeting several genes involved in 
the inhibition of cell apoptosis[38,39]. The list of miRNAs known to increase the 
therapeutic potential of MSC-EVs in numerous disease models is long, and their 
therapeutic effects range from tumor modulation, immune suppression, and 
angiogenesis to tissue regeneration[40].

In addition to miRNAs, the beneficial effect of EV-derived proteins has been 
explored in terms of tissue repair and anti-inflammatory effects as a treatment for liver 
fibrosis, ischemia, myocardial infarction, acute renal injury, neural regeneration, or in 
the context of bone and cartilage regeneration[40]. Proteins identified in MSC-EVs and 
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linked to tissue repair include glial-derived neurotrophic factor, vascular endothelial 
growth factor, fibroblast growth factor, HGF, and angiotensin 1[41].

Although the number of clinical studies is limited, growing evidence shows the 
beneficial effects of MSC-EVs on tissue injuries. The impact of MSC-EVs on tissue 
regeneration has been investigated in several animal models of neuronal, cardiac, 
bone, cartilage, kidney, muscle, wound healing, respiratory injury, and liver 
regeneration[41,42]. Interestingly, data from animal models indicate that MSC-EVs can 
exert therapeutic potential similar to their cellular origin[41,43-46]. The list of 
registered clinical trials (https://clinicaltrials.gov) reporting tissue injuries-treated 
with MSC-EVs is shown in Table 1.

MSC-EVs show great potential as a regenerative medicine treatment for liver 
diseases. The benefits of MSC-EVs in liver diseases are documented in animal models 
of both acute[20] and chronic[47] liver injuries. MSC-EVs exert a beneficial effect by 
alleviating fibrosis and improving regeneration of hepatocytes[46]. In particular, EVs 
from fetal MSCs promote hepatocyte proliferation and decrease hepatocyte apoptosis 
in liver injury induced by carbon tetrachloride[48], or ameliorate oxidative stress in 
ischemia reperfusion injury (IRI) models in rats[49] and mice[50]. Similarly, EVs of 
MSC-derived induced pluripotent stem cells have hepatoprotective effects on a rat 
model of IRI by inducing hepatocyte proliferation[51,52]. Finally, the anti-fibrotic 
effects of hydrogel-embedded MSC-EVs are documented in chronic liver failure[53]. 
The results from in vivo studies indicate EVs as essential contributors to MSC 
therapeutic efficacy, and suggest that MSC-EV-based therapy may be a successful 
alternative to cell-based treatments. Nevertheless, there are still many important 
questions to be answered before MSC-EVs can become a fully realized cell-free 
therapy. These challenges comprise studies establishing the exact contribution of EVs 
to MSC-based therapy, including the underlying molecule mechanisms, or identifying 
which EV population is the most therapeutically effective. In addition, a major 
ongoing debate in the field of MSC EV-based therapy concerns the purity of the 
obtained vesicles due to contamination of the samples with non-EV proteins, RNAs, 
and lipoproteins[41].

LIVER FAILURE IN COVID-19 PATIENTS
SARS-CoV-2 is the etiological agent of the pandemic COVID-19, characterized by 
respiratory distress and/or hypoxemia, fever, fatigue, dry cough and, in severe cases, 
septic shock, metabolic acidosis, and death[54]. SARS-CoV-2, as with other corona 
viruses, enters the host cells by binding to the ACE-2 receptor[55], while the serine 
protease transmembrane serine protease 2 is required for S protein priming[56]. 
Despite the higher tropism for the respiratory tract, SARS-CoV-2 also targets other 
tissues, given that the ACE2 receptor is widely distributed in other tissues[57-61]. To 
shed light on the SARS-CoV-2 tropism, Nardo et al[62] analyzed, on the Human 
Protein Atlas, the expression levels of two proteins, ACE-2 receptor and TMPRSS2, in 
different human tissues, thus revealing a higher expression in the intestine and gall 
bladder, but their absence in the liver. A single-cell analysis, performed on healthy 
human liver samples, showed that while ACE-2 expression level in cholangiocytes is 
comparable to that of alveolar cells in the lungs, it is barely detectable in 
hepatocytes[63]. Interestingly, the liver cell line HuH7 is an established permissive cell 
type for both SARS-CoV and SARS-CoV-2 infection, and has recently been extensively 
used as a model in SARS-CoV-2 studies[64,65]. In addition, an in vitro study found that 
SARS-CoV-2 infection leads to a decrease of cholangiocellular tight junction protein 
claudin 1 mRNA expression, implying a reduced barrier function of cholangio-
cytes[66]. The presence of SARS-CoV-2 receptors in the gastrointestinal (GI) tract 
suggests an important role of the hepatobiliary tract in viral replication and 
excretion[67]. In fact, the virus has also been isolated from stool samples[68]. The 
involvement of the GI tract in COVID-19 disease is confirmed by the GI symptoms 
occurring in more than 60% of infected patients, as la ack of appetite, loss of smell and 
taste, anorexia, diarrhea, abdominal pain, nausea, and vomiting[69-74]. Moreover, 
post-mortem biopsies of SARS-CoV-2-infected patients showed the presence of the 
viral genome in hepatocytes and the GI tract by reverse transcription polymerase chain 
reaction (RT-PCR)[75-77].

Though liver failure in COVID-19 patients has been considered marginal, the 
incidence of hepatic tissue injury in these patients ranges from 14.8% to 53%[78], while 
mortality ranges from 58.06% to 78%[79,80]. The liver is a key organ in nearly all 
metabolic processes, has immunologic functions, and is the main detoxifying organ. 
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Table 1 List of registered clinical trials on the use of mesenchymal stromal cell-derived extracellular vesicles for tissue injury

Tissue injury disease Condition Treatment Trial ID Status

Chronic lung disease Pediatric bronchopulmonary dysplasia BM-MSC-derived EVs NCT03857841 Phase I

Lung disease Pneumonia, COVID-19 BM-MSC-derived EVs NCT04493242 Not yet recruiting

Lung disease Pneumonia, COVID-19 Inhalation of mesenchymal stem cell 
exosomes

NCT04276987 Phase I

Multiple organ failure Multiple organ dysfunction syndrome MSC exosomes NCT04356300 Not yet recruiting

Lung disease Pulmonary infection MSC exosomes NCT04544215 Recruiting

Dry eye GVHD UC-MSC exosomes NCT04213248 Recruiting

Cartilage injury Osteoarthritis Secretome or EVs from adipose MSCs NCT04223622 Not yet recruiting

Skin disease Dystrophic epidermolysis bullosa BM-MSC EVs NCT04173650 Phase II

Brain Cerebrovascular disorders Allogenic MSCs enriched with miR-124 NCT03384433 Phase II

BM: Bone marrow; COVID-19: Coronavirus disease 2019; EV: Extracellular vesicle; GVHD: Graft-vs-host disease; MSC: Mesenchymal stromal cell; UC: 
Umbilical cord.

Moreover, because of the production of albumin, acute phase reactants and 
coagulation factors, the liver can strongly affect the multisystem manifestations of 
COVID-19[62]. In fact, modified levels of hepatic function indicators such as aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), albumin, gamma-glutamyl 
transferase, and bilirubin have been observed in patients with COVID-19, and 
principally in severe diseases[59,81-84]. Many studies have shown that liver injury 
occurs in the early stage of the disease, with mild or moderate increase of ALT, AST, or 
bilirubin together with a decrease in albumin levels[79,85,86]. High AST levels have 
been associated with the highest mortality risk[57,87], while decreased albumin levels 
have been associated with severe infection and poor prognosis[88,89]. Since the 
specific pathogenetic mechanism by which the virus causes liver injury is still unclear, 
many hypotheses have been offered, including immune-mediated damage. The 
triggering of an exacerbated immune response to the viral infection leads to a massive 
release of cytokines and inflammation mediators known as cytokine storm, which is 
responsible for immune-mediated liver damage[89] (Figure 1).

High levels of cytokines and chemokines (i.e. IL-1β, Il-2, IL-6, IL-8, IL-10, Il-17, 
interferons [IFNs], IFN-induced protein 10, TNF-α, granulocyte-macrophage colony-
stimulating factor [GM-CSF], monocyte chemoattractant protein-1, macrophage 
inflammatory protein-1α) and other inflammatory molecules (PCR, ferritin, lactate 
dehydrogenase, D-dimer) have been observed in severe SARS-CoV-2-infected 
patients[54,57,88,90-92]. This highly inflammatory milieu leads to multiorgan damage, 
including liver failure, and is strictly linked to poor prognosis and death in COVID-19 
patients[88,90]. As confirmation, liver samples from COVID-19 patient autopsies have 
revealed micro-vesicular steatosis and inflammation[93-95]. In fact, SARS-CoV-2 
infects both hepatic cells and bile duct epithelium, causing liver impairment by direct 
cytopathic effect, as demonstrated by high transaminase levels and post-mortem liver 
biopsy specimens showing moderate micro-vesicular steatosis and mild lobular and 
portal activity[79]. Furthermore, the presence of SARS-CoV-2 has been found in 
parenchymal cells and vascular endothelium of the liver in COVID-19 patients[76,77].

Additional causes of liver injury can include hypoxia, hypovolemia, and 
microvascular thrombosis. The hypoxic state associated with COVID-19 can induce 
ischemic/hypoxic liver injury[87-89]. Considering that COVID-19 patients suffer from 
severe hypoxia, with the induction of ACE2 receptor expression on hepatocytes[96], a 
direct infection of hepatocytes by SARS-CoV-2 in hypoxic conditions has been 
suggested[25]. Liver injury can also be drug-induced. Most of the drugs used against 
SARS-CoV-2 are potentially hepatotoxic: Antivirals (lopinavir/ritonavir, remdesivir, 
umifenovir), antibiotics (macrolides, quinolones), chloroquine, tocilizumab, and 
steroids as well as antipyretic drugs used for fever in COVID-19[79,90,97,98]. 
Moreover, it must be considered that the majority of COVID-19 patients developing 
liver complications have a pre-existing chronic liver disease, rendering them more 
susceptible to liver injury. Interestingly, it has been reported that liver fibrotic/ 
cirrhotic conditions lead to an increase of ACE-2 receptor expression in 
hepatocytes[96], thus suggesting again a possible role of pre-existing pathological liver 
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Figure 1 Schematic representation of severe acute respiratory syndrome coronavirus 2 impact on lungs and liver. Cytokine storm with the 
cascade triggered by natural killer (NK) cells, T helper (Th) cell and monocytes, and the production of inflammatory cytokines (interleukin 1 beta [IL-1b], Il-2, IL-6, IL-8, 
IL-10, Il-17, interferons [IFNs], IFN-induced protein 10, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor [GM-CSF]). The infection in the 
liver causes an increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and bilirubin, and a decrease in 
albumin. Mesenchymal stromal cells (MSCs) can reduce the inflammatory response by extracellular vesicle (EV) release (large ≥ 200 nm and small ≤ 150 nm). ER: 
Endoplasmic reticulum; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

conditions in exacerbating SARS-CoV-2 hepatic tropism.

MSCS AND IMMUNOMODULATION IN COVID-19
The immunomodulatory properties of MSCs represent a promising therapeutic 
approach for the treatment of autoimmune and inflammatory diseases[99]. The anti-
inflammatory and regenerative properties of MSCs have been established in numerous 
preclinical models of immune-related disorders including graft-vs-host disease, sepsis, 
inflammatory bowel disease, and allergic airway disease[100-103]. Recent phase I/II 
clinical trials have shown that the infusion of MSCs immediately after liver 
transplantation promoted organ regeneration and prolonged recipient survival by 
reducing acute inflammation, thus suggesting that MSCs can be a promising candidate 
for cell-based immunotherapy in solid organ transplantation[10,104]. In addition, 
murine models of liver fibrosis showed that human MSC-derived EVs are able to 
reduce hepatic inflammation and fibrosis through a decrease of TGF-β, IFN-γ, IL-1, IL-
2 and TNF-α levels, an increase of Treg numbers, and a reduction of collagen 
deposition, all acting together to combat necrosis in the liver[105-107] (Figure 1). 
Among others, liver injury has been reported as a common complication in SARS-
CoV-2 infection, with the degree of liver damage strictly related to the severity of 
COVID-19[92,108-110]. Although the exact mechanism of liver injury in COVID-19 
patients is still unknown, it has been suggested that either the progression of pre-
existing hepatic diseases or a direct damage of the liver can be associated with the 
systemic inflammation caused by SARS-CoV-2 infection, toxicity of anti-viral drugs, or 
hypoxia-reperfusion injury[109,110].

Pathogenic T cells are rapidly activated after SARS-CoV-2 infection, thus producing 
GM-CSF, IL-6, and other proinflammatory factors. GM-CSF will further activate 
inflammatory monocytes (CD14+CD16+), which in turn produce a larger amount of IL-
6 and other pro-inflammatory factors, triggering the cytokine storm, which is the main 
cause of the organ damage, such as in the lungs, kidney, and liver[110]. Recently, the 
use of MSCs has been proposed as a promising therapeutic approach for COVID-19 
patients. The effectiveness and safety of MSC-based treatment are supported by 
several clinical studies, suggesting that MSC therapy may improve the clinical 
outcomes of COVID-19 patients through immunomodulation, regulation of 
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inflammatory response, and promotion of tissue repair[111-115]. Moreover, a vast 
number of clinical trials that use MSCs to treat COVID-19 have already been registered 
(http://www.chictr.org.cn; https://clinicaltrials.gov). According to their immuno-
modulatory properties, the use of MSC-based therapies could be a novel strategy to 
counteract the harmful effects on the liver caused by SARS-CoV-2 infection.

DISCUSSION
Among the numerous drug treatments, which include antiviral therapy, cytokine 
inhibitors (e.g., IL-6), and specific antibody treatment (serum/monoclonal)[116], MSCs 
represent a potential option for critical cases[117]. As discussed above, SARS-CoV-2 
infection induces a cytokine storm, causing acute respiratory distress syndrome and 
multiple-organ failure. IL-6 inhibition by tocilizumab was positively tested in a 
randomized clinical trial (http://www.chictr.org.cn/showprojen.aspx?proj=49409). 
Likewise, in this inhibition MSCs can represent a valid alternative, and it has been 
shown that EV administration counteracts IL-6-induced acute liver injury (ALI) in rat 
models through the presence of miR-455-3p[118]. MSC treatment showed that the 
symptomatology of patients was relieved within 2-4 d after MSC infusion, with 
oxygen saturation increasing to 95% at rest[119]. Another study involved critically ill 
COVID-19 patients treated with an infusion of human umbilical cord MSCs. In this 
case, the patients were treated with three different infusions of cells at an interval of 3 
d, displayed no observable side effects, and were able to walk within 4 d[115]. Leng 
et al[119] showed that after infusion of MSCs in COVID-19 patients, the number of 
peripheral lymphocytes increased, while the levels of C-reactive protein decreased. In 
addition, in MSC-treated COVID-19 patients compared with those treated with 
conventional therapy a clear reduction of the major pro-inflammatory cytokine TNF-α, 
and an increase of IL-10 concentration were observed[119]. Therefore, in an immune-
mediated disease condition like COVID-19 infection, the anti-inflammatory activities 
of MSCs could contribute to improving the conditions of patients after their infusion.

Despite the limited published data, and based on various studies, it could be 
speculated that SARS-COV-2 induces ALI[79]. SARS-CoV-2 could insult the liver 
either directly, by the cytopathic effect of the virus after infections of the hepatocytes, 
or indirectly, by induction of uncontrolled immune reaction, oxidative stress, and/or 
by pharmacological treatments for COVID-19 that induce liver injury. However, the 
mechanisms underlying liver impairment in COVID-19 patients are still unknown. 
Tian et al[94] found sinusoidal dilatation and focal macrovesicular steatosis in liver 
biopsies obtained post-mortem from four patients with COVID-19 and, in one of these, 
SARS-CoV-2 RNA was isolated from liver tissue. Wang et al[73] found that four 
patients (2.9% of 138 patients hospitalized for COVID-19) had chronic liver disease. In 
another study, cases of ALI were reported in 13 of 274 patients (4.7%)[120]. 
Interestingly, Richardson et al[121] showed that, in a study including 5700 COVID-19 
patients, 58.4% and 39% developed higher levels of ALT and AST, respectively. In 
addition, among these patients, 56 (1%) developed acute hepatic injury (32320003). 
Therefore, many COVID-19 patients showed higher levels of both ALT and AST, and 
mainly in patients with severe disease, liver impairment can occur[54,59,120].

The intravenous administration of MSCs lowered the elevated serum levels of AST 
and ALT, and increased the amount of HGF, resulting in reduction of ALI[122]. 
Moreover, in a rat model of ALI, MSCs inhibited neutrophil infiltration, oxidative 
stress, and hepatocyte apoptosis[123], showing that MSC treatment had significant 
systemic anti-inflammatory effects and reduction of hepatic inflammation. Moreover, 
MSCs can prevent lung damage not only directly, with anti-inflammatory activity, but 
also indirectly by supporting liver function in maintaining the plasma level of albumin 
(Figure 1). Johnson et al[124] recently underscored the interplay between albumin and 
SARS-CoV-2, while the importance of albumin in COVID-19 patients has also been 
strongly stressed by several research teams, who describe a “capillary leak syndrome” 
in infected patients. This extravascular leakage of intravascular fluids is induced by 
hypoglobulinemia[125]. A histological analysis of COVID-19 lungs in SARS-CoV-2-
infected patients confirmed the presence of pulmonary vascular permeability where 
the endothelial cells appear swollen[126]. Hypoalbuminemia is an indication of liver 
dysfunction in the elderly, where it is, per se, an index of increased mortality[127]. The 
large amounts of extravascular fluid due to the resulting vascular permeability, 
require mechanical ventilation to overcome the problem.

http://www.chictr.org.cn
https://clinicaltrials.gov
http://www.chictr.org.cn/showprojen.aspx?proj=49409
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CONCLUSION
At present, there is no standardized therapy for COVID-19 patients. Though many 
innovative treatments have been rapidly approved, additional experimental therapies 
are necessary to treat the worse cases of infection. Despite the fact that all MSC clinical 
trials for COVID-19 treatment are currently focused on lung/respiratory function, and 
some of the exclusion criteria are liver disease/insufficiency, we believe, on the basis 
of current studies, that MSC-based therapy can also help liver dysfunction correlated 
with SARS-CoV-2 infection.
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Abstract
Inflammatory bowel disease (IBD) is a complex and multifaceted disorder of the 
gastrointestinal tract that is increasing in incidence worldwide and associated 
with significant morbidity. The rapid accumulation of large datasets from 
electronic health records, high-definition multi-omics (including genomics, 
proteomics, transcriptomics, and metagenomics), and imaging modalities 
(endoscopy and endomicroscopy) have provided powerful tools to unravel novel 
mechanistic insights and help address unmet clinical needs in IBD. Although the 
application of artificial intelligence (AI) methods has facilitated the analysis, 
integration, and interpretation of large datasets in IBD, significant heterogeneity 
in AI methods, datasets, and clinical outcomes and the need for unbiased 
prospective validations studies are current barriers to incorporation of AI into 
clinical practice. The purpose of this review is to summarize the most recent 
advances in the application of AI and machine learning technologies in the 
diagnosis and risk prediction, assessment of disease severity, and prediction of 
clinical outcomes in patients with IBD.
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Core Tip: The application of artificial intelligence (AI) in the field of inflammatory 
bowel disease (IBD) has grown significantly in the past decade. AI has been used to 
analyze genomic datasets, construct IBD risk prediction models, and increase IBD 
diagnosis precision. Machine learning has been used to analyze endoscopic images to 
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improve disease severity grading. AI has enabled the integration of large clinical and 
laboratory datasets with gene expression profiles to predict clinical outcomes such as 
therapy response. Future studies will need to validate these findings in independent 
cohorts and determine whether applying these AI-derived prediction models improves 
clinical outcomes in IBD.
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INTRODUCTION
Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and 
ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract. 
IBD has emerged as a global disease with increasing incidence worldwide and 
associated with significant healthcare utilization[1,2]. The pathogenesis of IBD is 
complex and is thought to involve an interplay between loss of tolerance to 
commensal gut bacteria, intestinal epithelial barrier dysfunction, and immune 
dysregula-tion[3-7]. The diagnosis of IBD is based on a combination of factors 
including clinical data (e.g., chronicity of gastrointestinal symptoms), laboratory values 
(elevated inflammatory markers such as C-reactive protein and fecal calprotectin), 
imaging, endoscopy, and histology (gastrointestinal inflammation with architectural 
distortion)[8]. Although treatment algorithms based on clinical trials and experience 
have been developed to inform clinical management in IBD[9], there is significant 
heterogeneity among patients with IBD with regards to presentation, response to 
therapy, and long-term clinical outcomes such development of strictures and need for 
surgery[10,11]. There is a great need for precision medicine strategies to improve 
diagno-stic and therapeutic approaches in IBD.

Precision medicine efforts in IBD have led to more in-depth phenotyping of patients 
with IBD using large scale databases from clinical trials and cohort studies, deep 
immunophenotyping using whole genome gene expression datasets, proteomics, 
transcriptomics, and metagenomics of gut microbiota, and complex predictive models 
incorporating computer-assisted analysis of endoscopic images and histology[12-14]. 
This has inevitably led to vast arrays of high dimensional data that pose significant 
challenges with traditional statistical and computational methods[15]. Technological 
advances in artificial intelligence (AI) have revolutionized the ability of clinicians and 
researchers to process, analyze, and interpret high dimensional data and large 
datasets.

AI is a broad and multidisciplinary field incorporating concepts from computer 
science, engineering, philosophy, and linguistics aimed at understanding and 
designing systems that display or mimic human intelligence. The term was first coined 
in 1965 by McCarthy J[16,17]. Machine learning (ML) is a subdiscipline of AI where 
computer algorithms apply statistical models to learn associations of predictive power 
from examples in provided datasets (e.g., Dragon dictation, SPAM, Netflix). ML may 
be programmed through supervised learning or unsupervised learning. In supervising 
learning, computer programs are trained to learn associations between inputs and 
outputs in data through analysis of predefined outputs of interest (by human 
operator). Once associations have been learned using existing data, supervised ML 
classifiers could then be used to predict future examples using different datasets. 
Examples of supervised ML include random forest (RF) and support vector machines 
(SVM). In unsupervised learning, computer programs learn associations in data 
without external definitions of associations of interest. This method allows for the 
identification of previously undiscovered predictors. Deep learning, commonly known 
as neural networks, includes newer techniques that are based on models with fewer 
assumptions, rely on multiple layers of representation of the data with successive 
transformations that amplify aspects of the input which improves discrimination 
power and thus able to handle more complex data (e.g., Facebook face recognition, 
credit card fraud)[17]. There has been increased interest in use of AI in IBD in recent 
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years with many prior groups applying ML methods to identify meaningful insights in 
diagnostics and prediction models in IBD. The purpose of this review is to provide a 
comprehensive summary of advances in the application of AI and ML technologies in 
the diagnosis and risk prediction, assessment of disease severity, and prediction of 
clinical outcomes in patients with IBD.

LITERATURE SEARCH
We performed a literature review using PubMed (MEDLINE) from inception to 
December 15, 2020 of studies applying AI in IBD. Our search strategy included the 
following combinations: (((((((((inflammatory bowel disease[Title])) OR (ulcerative 
colitis[Title])) OR (Crohn's disease[Title])) AND (artificial intelligence[Title])) OR 
(computer-assisted[Title])) OR (computer-aided[Title])) OR (neural network[Title])) 
OR (machine learning[Title])) OR (deep learning[Title]). We included studies that used 
AI in the (1) diagnosis or risk prediction of IBD, (2) assessment of disease severity in 
IBD, and (3) prediction of therapy response and clinical outcomes in IBD. We excluded 
reviews, studies with non-human subjects (animal models), or studies that did not 
provide objective measures of the efficacy of AI applications (e.g., measures of 
precision, accuracy, area under the curve (AUC), sensitivity, specificity, etc.).

RESULTS
Our search strategy yielded 98 studies evaluating AI in IBD of which 58 studies[18-74] 
met inclusion criteria and were included in the final review. About 86.2% (50/58) of 
studies were published within the past 5 years (2015 and later). There were 23 
studies[18-39] that focused on IBD diagnosis and risk prediction, 19 studies[40-58] 
which evaluated disease activity, and 17 studies[45,59-74] which predicted IBD clinical 
outcomes (response to therapy, colonic neoplasia, post-surgical complications, quality 
of life, IBD well-being and emotional content). There were 22 studies with combined 
IBD cohorts (CD and UC), 16 studies with UC patients only, 18 studies with CD only, 
and 5 pediatric IBD cohorts. The most common AI classifications used were neural 
networks (convolutional and deep) at 32.7% (19/58 studies), RF at 29.3% (17/58 
studies), and SVM at 29.3% (17/58 studies).

AI in diagnosis and risk prediction of IBD
Table 1 summarizes studies included which applied AI in the diagnosis and risk 
prediction of IBD. There were 17 studies focused on IBD diagnosis, whereas 5 studies 
focused on predicting risk of IBD. Data modalities included genetic/genomic datasets 
(n = 16 studies), imaging and endoscopic datasets (n = 4), and protein expression/ 
proteomics (n = 2 studies). Some groups have used ML to develop IBD risk prediction 
models based on gene expression datasets. In a cross-sectional study of 180 CD 
patients, 149 UC patients and 90 healthy controls by Isakov et al[21], RF and SVM used 
microarray and RNA-seq data sets to classify a list of 16390 genes. Their combined IBD 
risk prediction model demonstrated an AUC, sensitivity, specificity, and accuracy 
values of 0.829, 0.577, 0.880, and 0.808, respectively. In another cross-sectional study of 
18227 CD patients and 34050 healthy controls, Romagnoni et al[20] used gradient 
boosted trees and artificial neural networks to analyze gene expression profiles. Using 
single nucleotide polymorphisms, their final predictive model for CD achieved AUC 
of 0.80. Likewise, a cross-sectional study of 20 UC patients and 20 healthy controls by 
Duttagupta et al[33] used SVM to analyze microRNA profiles. Their SVM classifier 
measurements revealed a predictive score accuracy of 92.8%, specificity of 96.2%, and 
sensitivity of 89.5% in distinguishing UC patients from normal individuals.

A major challenge in IBD diagnosis is the distinction between CD and UC which is 
based on clinical features such as the distribution of inflammation along the 
gastrointestinal tract. The misdiagnosis of IBD subtype is not uncommon[74]. 
Distinguishing between CD and UC is clinically important as IBD subtype informs 
clinical management. AI has been employed to analyze molecular data to distinguish 
between CD and UC. In a cross-sectional study of 59 CD patients, 26 UC patients, and 
42 healthy controls applying deep belief networks (DBNs) and SVM to gene 
expression datasets, Smolander et al[25] explored the diagnosis UC from CD. Using 
DBN only, the accuracy for diagnosis of UC was 97.06% and CD was 97.07%. Using 
both DBN and SVM, accuracy for diagnosis of UC was 97.06% and CD was 97.03%. In 
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Table 1 Artificial intelligence in diagnosis and risk prediction of inflammatory bowel disease

Ref. AI classifier vs comparator IBD 
type

Study design and 
sample size Modality Outcome Study results/validation cohort

Mossotto et al
[18], 2017

Support vector machines (SVM) vs 
linear discriminant

Peds 
CD/UC

Prospective cohort, 287 
IBD patients

Endoscopic and histologic 
inflammation

Diagnosis 
of IBD

Diagnostic accuracy of 82.7% with an AUC of 0.87 in diagnosing Crohn's disease or ulcerative colitis. 
Validation cohort included

Wei et al[19], 
2013

SVM with gradient boosted trees 
(GBT) vs simple log odds method

CD/UC Cross-sectional, 30000 
IBD patients, 22000 
healthy controls

Genetics, ImmunoChip Risk of IBD The SVM demonstrated very comparable performance (AUC 0.862 and 0.826 for CD and UC, 
respectively), whereas GBT showed inferior performance (AUC 0.802 and0.782 for CD and UC, 
respectively. Validation cohort included

Romagnoni 
et al[20], 2019

Artificial neural networks (ANNs) vs 
penalized logistic regression (LR), 
and GBT

CD Cross-sectional, 18227 
CD patients, 34050 
healthy controls

Genetics, ImmunoChip Risk of IBD Using single nucleotide polymorphisms (SNPs), final predictive model achieved AUC of 0.80. 
Validation cohort included

Isakov 
et al[21], 2017

Random forest (RF), SVM with 
svmPoly), extreme gradient boosting 
vs elastic net regularized generalized 
linear model (glmnet)

CD/UC Cross-sectional, 180 CD 
patients, 149 UC 
patients, 90 healthy 
controls

Expression data 
(microarray and RNA-seq)

Risk of IBD The method was used to classify a list of 16390 genes. Each gene received a score that was used to 
prioritize it according to its predicted association to IBD. The combined model demonstrated AUC, 
sensitivity, specificity, and accuracy values of 0.829, 0.577, 0.88, and 0.808, respectively. Validation 
cohort included

Yuan 
et al[22], 2017

Sequential minimal optimization vs 
DisGeNET (Version 4.0)

CD/UC Cross-sectional, 59 CD 
patients, 26 UC patients, 
42 healthy controls

Gene Expression datasets Risk of IBD By analyzing the gene expression profiles using minimum redundancy maximum relevance and 
incremental feature selection, 21 genes were obtained that could effectively distinguish samples from 
IBD and the non-IBD samples. Highest total prediction accuracy was 97.64% using the 1170th feature 
set. Validation cohort included

Hübenthal 
et al[23], 2015

SVM vs RF CD/UC Cross-sectional, 40 CD 
patients, 36 UC patients, 
38 healthy controls

MicroRNAs Diagnosis 
of IBD

Measured by the AUC the corresponding median holdout-validated accuracy was estimated as 
ranging from 0.75 to 1.00 and 0.89 to 0.98, respectively. In combination, the corresponding models 
provide tools for the distinction of CD and UC as well as CD, UC and healthy control with expected 
classification error rates of 3.1 and 3.3%, respectively. Validation cohort included

Tong et al[24], 
2020

RF vs convolutional neural network 
(CNN)

CD/UC Retrospective Cohort, 
875 CD patients, 5128 
UC patients

Colonoscopy Endoscopic 
Images

Diagnosis 
of IBD

RF sensitivities/specificities of UC/CD were 0.89/0.84, 0.83/0.82, and 0.72/0.77, respectively, while 
the values for the CNN of CD was 0.90/0.77. The precisions/recalls of UC-CD when employing RF 
were 0.97/0.97, 0.65/0.53, respectively, and when employing the CNN were 0.99/0.97 and 0.87/0.83, 
respectively. Validation cohort included

Smolander 
et al[25], 2019

Deep belief networks (DBNs) vs SVM CD/UC Cross-sectional, 59 CD 
patients, 26 UC patients, 
42 healthy controls

Gene Expression datasets Diagnosis 
of IBD

Using DBN only, accuracy for diagnosis of UC was 97.06% and CD was 97.07%. Using both DBN and 
SVM, accuracy for diagnosis of UC was 97.06% and CD was 97.03%. Validation cohort included

Abbas 
et al[26], 2019

RF vs network-based biomarker 
discovery

Peds 
CD/UC

Cross-sectional, 657 IBD 
patients, 316 healthy 
controls

Large dataset of new-
onset pediatric IBD 
metagenomics biopsy 
samples

Diagnosis 
of IBD

For the diagnosis of IBD, highest AUC attained by top Random Forest classifiers was 0.77. No 
validation cohort included

Khorasani 
et al[27], 2020

SVM vs recently developed feature 
selection algorithm (robustness-
performance tradeoff, RPT)

UC Cross-sectional, 146 UC 
patients, 60 healthy 
controls

Gene Expression dataset Diagnosis 
of IBD

Our model perfectly detected all active cases and had an average precision of 0.62 in the inactive 
cases. Validation cohort included

Rubin 
et al[28], 2019

CITRUS supervised machine 
learning algorithm. No comparator

CD/UC Cross-sectional, 68 IBD 
patients

Peripheral blood 
mononuclear cells and 
intestinal biopsies mass 
cytometry

Diagnosis 
of IBD

An 8-parameter immune signature distinguished Crohn's disease from ulcerative colitis with an 
AUC = 0.845 (95%CI: 0.742-0.948). No validation cohort included
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Pal et al[29], 
2017

Naïve Bayes and with a consensus 
machine learning method vs Critical 
Assessment of Genome 
Interpretation (CAGI) 4 method

CD Cross-sectional, 64 CD 
patients, 47 healthy 
controls

Genotypes from Exome 
Sequencing Data

Risk of IBD The AUC for predicting risk of Crohn's disease using the SNP model was 0.72. No validation cohort 
included

Aoki et al[30], 
2019

Deep CNN. No comparator CD Retrospective Cohort, 
115 IBD patients

Wireless capsule 
endoscopy images

Diagnosis 
of IBD

The AUC for the detection of erosions and ulcerations was 0.958 (95%CI: 0.947-0.968). The sensitivity, 
specificity, and accuracy of the CNN were 88.2% (95%CI: 84.8-91.0), 90.9% (95%CI: 90.3-91.4), and 
90.8% (95%CI: 90.2-91.3), respectively. Validation cohort included

Bielecki 
et al[31], 2012

SVM vs human reader (pathologist) CD/UC Cross-sectional, 14 CD 
patients, 13 UC patients, 
11 healthy controls

Raman spectroscopic 
imaging of epithelium 
cells

Diagnosis 
of IBD

Raman maps of human colon tissue sections were analyzed by utilizing innovative chemometric 
approaches. Using SVM, it was possible to separate between healthy control patients, patients with 
Crohn's Disease, and patients with ulcerative colitis with an accuracy of 98.90%. No validation cohort 
included

Cui et al[32], 
2013

Recursive SVM vs unsupervised 
learning strategy

CD/UC Cross-sectional, 124 IBD 
patients, 99 healthy 
controls

16S rRNA gene analysis Diagnosis 
of IBD

Selection level of 200 features results in the best leave-one-out cross-validation result (accuracy = 
88%, sensitivity = 92%, specificity = 84%). Validation cohort included

Duttagupta et 
al[33], 2012

SVM. No comparator UC Cross-sectional, 20 UC 
patients, 20 healthy 
controls

MicroRNAs Diagnosis 
of IBD

SVM classifier measurements revealed a predictive score of 92.8% accuracy, 96.2% specificity and 
89.5% sensitivity in distinguishing ulcerative colitis patients from normal individuals. Validation 
cohort included

Daneshjou et 
al[34], 2017

Naïve bayes, neural networks, 
random forests vs CAGI methods

CD Cross-sectional, 64 ICD 
patients, 47 healthy 
controls

Exome Sequencing Diagnosis 
of IBD

In CAGI4, 111 exomes were derived from a mix of 64 Crohn’s disease patients. Top performing 
methods had an AUC of 0.87. Validation cohort included

Geurts et al
[35], 2005

RF vs SVM CD/UC Prospective cohort, 30 
CD patients, 30 CD 
patients

Proteomic Mass 
Spectrometry

Diagnosis 
of IBD

Random forest model to diagnosis IBD had a sensitivity of 81.67%, specificity of 81.17%. Support 
vector machine model to diagnosis IBD had a sensitivity of 87.92%, specificity of 87.87%. Validation 
cohort included

Li et al[36], 
2020

RF vs ANN UC Cross-sectional, 193 UC 
patients, 21 healthy 
controls

Gene Expression Profiles Diagnosis 
of IBD

The random forest algorithm was introduced to determine 1 downregulated and 29 upregulated 
differentially expressed genes contributing highest to ulcerative colitis occurrence. ANN was 
developed to calculate differentially expressed genes weights to ulcerative colitis. Prediction results 
agreed with that of an independent data set (AUC = 0.9506/PR-AUC = 0.9747). Validation cohort 
included

Wingfield 
et al[37], 2019

RF vs SVM CD Cross-sectional, 668 CD 
patients

Metagenomic Data Diagnosis 
of IBD

Highest RPT measure for Crohn’s disease was random forest 0.60 and SVM 0.58. For ulcerative 
colitis, RPT was random forest 0.70 and SVM 0.48. Validation cohort included

Han et al[38], 
2018

RF vs LR, CORG CD/UC Cross-sectional, 24 CD 
patients, 59 UC patients, 
76 healthy controls

Gene Expression Profiles Diagnosis 
of IBD

The gene-based feature sets had median AUC on the validation sets ranging from 0.6 to 0.76). 
Validation cohort included

Wang 
et al[39], 2019

AVADx (Analysis of Variation for 
Association with Disease) vs two 
GWAS-based CD evaluation 
methods

CD Cross-sectional, 64 CD 
patients, 47 healthy 
controls

Whole Exome or Genome 
Sequencing Data

Diagnosis 
of IBD

AVADx highlighted known CD genes including NOD2and new potential CD genes. AVADx 
identified 16% (at strict cutoff) of CD patients at 99% precision and 58% of the patients (at default 
cutoff) with 82% precision in over 3000 individuals from separately sequenced panels. Validation 
cohort included

AI: Artificial intelligence; IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis; AUC: Area under the curve.
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a cross-sectional study of 68 IBD patients using a CITRUS supervised ML algorithm to 
analyze single cell immunophenotyping of peripheral blood mononuclear cells by 
mass cytometry, Rubin et al[28] demonstrated that an 8-parameter immune signature 
distinguished CD from UC with an AUC = 0.845 [95% confidence interval (CI): 0.742-
0.948]. ML algorithms have also been applied to analyze large arrays of endoscopic 
images to differentiate between UC and CD. In a recent retrospective cohort study of 
875 CD patients and 5128 UC patients by Tong et al[24] using RF and convolutional 
neural networks (CNNs) on endoscopic images, the precision of diagnosing UC/CD 
with RF and CNNs were 0.97/0.65 and 0.99/0.87, respectively. Taken together, these 
studies suggest that AI classifiers have high performance in diagnosing or predicting 
risk of IBD but have some variability with type of AI classifier and modality of data 
(molecular vs endoscopic).

AI in assessment of disease severity in IBD
The assessment of disease activity and grading of severity in IBD could be 
accomplished using validated clinical symptom scores (e.g., Harvey Bradshaw Index 
for CD, Mayo Score for UC)[75,76], biomarkers of inflammation (e.g., C-reactive 
protein, fecal calprotectin)[77,78], endoscopic inflammation indices (e.g., Mayo 
endoscopic score, simple endoscopic score)[79,80], and histologic scoring systems (e.g., 
Geboes Score, Robarts Histopathology Index)[81,82]. However, these systems may be 
subject to recall bias, heterogeneity in patient clinical presentation, and intraobserver 
and interobserver variability[83]. AI has been applied to these existing systems to 
improve precision and accuracy of quantifying disease severity in IBD.

Table 2 summarizes studies included which applied AI in the assessment of disease 
severity in IBD. There were 2 studies that assessed clinical disease activity, 2 studies 
that assessed disease activity by biomarker (C-reactive protein), 13 studies that focused 
on endoscopic inflammation, and 3 studies that focused on histologic inflammation. 
Data modalities included electronic health records (n = 2), molecular datasets (n = 3), 
endoscopic datasets (n = 11 studies), and histologic datasets via endomicroscopy/ 
endocytoscopy (n = 2). Using RF to integrate and analyze clinical and laboratory data 
from publicly available clinical trials (UNITI-1, UNITI-2, and IM-UNITI) data 
consisting of 401 CD patients, Waljee et al[42] constructed a CD remission prediction 
model using the week 6 albumin to C-reactive protein ratio with an AUC of 0.76 
(95%CI: 0.71-0.82). Reddy et al[44] applied gradient boosting machines to electronic 
health records and predicted inflammation severity in a retrospective cohort of 3335 
CD patients with a very high accuracy (AUC) = 92.82%. In a CNN analysis of 
colonoscopy images from a retrospective cohort of 841 UC patients by Ozawa et al[55], 
the CNN-based computer aided diagnostic system showed a high level of performance 
with AUC of 0.86 and 0.98 to identify Mayo 0 and 0-1, respectively. The performance 
of the CNN was better for the rectum than for the right side and left side of the colon 
when identifying Mayo 0 (AUC = 0.92, 0.83, and 0.83, respectively). Likewise, in an 
ordinal CNN analysis of wireless capsule endoscopy images in a retrospective cohort 
of 49 CD patients by Barash et al[50], the classification accuracy of the algorithm was 
0.91 for grade 1 vs grade 3 ulcers, 0.78 for grade 2 vs grade 3, and 0.624 for grade 1 vs 
grade 2. The role of AI in grading severity of histologic inflammation in IBD has also 
been explored. For example, in a retrospective cohort study of 187 UC patients by 
Maeda et al[46], application of SVM to data derived from endocytoscopy to assess 
histologic inflammation provided diagnostic sensitivity, specificity, and accuracy of 
74% (95%CI: 65-81), 97% (95%CI: 95-99), and 91% (95%CI: 83-95), respectively. These 
examples highlight the clinical utility, versatility, and performance of AI classifiers in 
grading the disease activity of IBD patients at the clinical, endoscopic, and histologic 
level. AI performance may be affected by location of inflammation and may be limited 
by ability to discriminate between subtle differences.

AI in prediction of therapy response and clinical outcomes in IBD
The armamentarium of therapies in IBD have expanded significantly in recent years 
with diverse mechanisms of action ranging from biologics that inhibit 
proinflammatory cytokines (anti-tumor necrosis factor-α, anti-interleukin-12/23) and 
leukocyte trafficking to the gut (anti-α4β7) to small molecule inhibitors of the JAK-
STAT signaling pathway[84-86]. Despite several IBD treatment options available to 
clinicians, there are no effective biomarkers or tools to predict response to therapy or 
to guide selection of alternative therapies after a failed response. Likewise, there is also 
an unmet clinical need to predict long term clinical outcomes in IBD such as colon 
cancer. To address these challenges, several groups have applied AI and ML 
algorithms to existing clinical and molecular datasets.
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Table 2 Artificial Intelligence in assessment of disease severity in inflammatory bowel disease

Ref. AI classifier vs 
comparator

IBD 
type

Study design and 
sample size Modality Outcomes Study results/validation cohort

Kumar 
et al[40], 2012

Support vector 
machines (SVM) vs 
human observers

CD Cross-sectional, 50000 
images (number of 
patients not given)

Small bowel capsule 
endoscopy

Endoscopic Inflammation Database of 47 studies including 50000 capsule endoscopy images evaluating severity of small 
bowel lesions.  Method had good precision (> 90% for lesion detection) and recall (> 90%) for 
lesions of varying severity. Validation cohort included

Biasci et al[41], 
2019

Logistic regression with 
an adaptive Elastic-Net 
penalty. No comparator

CD/UC Prospective cohort, 
118 IBD patients

Transcriptomics from purified 
CD8 T cells and/or whole 
blood

Disease severity, 
medication escalation

A 17-gene qPCR-based classifier stratified patients into two distinct subgroups.  IBDhi patients 
experienced significantly more aggressive disease than IBDlo patients (analogous to IBD2), with 
earlier need for treatment escalation [HR 2.65 (CD), 3.12 (UC)] and more escalations over time [for 
multiple escalations within 18 months: sensitivity=72.7% (CD), 100% (UC); negative predictive 
value = 90.9% (CD), 100% (UC)]. Validation cohort included

Waljee 
et al[42], 2019

RF. No comparator CD Post-hoc analysis of 
prospective clinical 
trials, 401 CD patients

Clinical and laboratory data 
from publicly available 
clinical trials (UNITI-1, 
UNITI-2, and IM-UNITI)

Crohn's disease remission, 
C-reactive protein < 5 
mg/L

A prediction model using the week-6 albumin to C-reactive protein ratio had an AUC of 0.76 [95% 
confidence interval (CI): 0.71-0.82]. Validation cohort included

Mahapatra 
et al[43], 2016

RF. No comparator CD Cross-sectional, 35 
CD patients

Abdominal magnetic 
resonance imaging

Segmentation of diseased 
colon (intestinal 
inflammation)

Model segmentation accuracy ranged from 82.7% to 92.2%. Validation cohort included

Reddy 
et al[44], 2019

Gradient boosting 
machines vs logistic 
regression

CD Retrospective, 3335 
CD patients

Electronic medical record Severity of intestinal 
inflammation (by C-
reactive protein)

Machine-learning-based analytic methods such as gradient boosting machines can predict the 
inflammation severity with a very high accuracy (AUC) = 92.82%. Validation cohort included

Douglas 
et al[45], 2018

RF. No comparator Peds 
CD

Cross-sectional, 20 
CD patients, 20 
healthy controls

Shotgun metagenomics 
(MGS), 16S rRNA gene 
sequencing

Disease State 
(Relapse/Remission)

MGS modules significantly classified samples by disease state (accuracy = 68.4%, P = 0.043 and 
accuracy = 65.8%, P = 0.03, respectively), 16S datasets had a maximum accuracy of 68.4% and P = 
0.016 based on strain level for disease state. Validation cohort included

Maeda 
et al[46], 2019

SVM vs human reader UC Retrospective cohort, 
187 UC patients

Endocytoscopy Histologic inflammation Computer aided diagnosis (CAD) of histologic inflammation provided diagnostic sensitivity, 
specificity, and accuracy as follows: 74% (95%CI: 65-81), 97% (95%CI: 95-99), and 91% (95%CI: 83-
95), respectively. Its reproducibility was perfect (k = 1). Validation cohort included

Charisis 
et al[47], 2016

SVM vs human reader CD Retrospective cohort, 
13 CD patients

Wireless capsule endoscopy 
(WCE) images

Endoscopic Inflammation Experimental results, along with comparison with other related efforts, have shown that the 
hybrid adaptive filtering [HAF-Differential Lacunarity (DLac) analysis (HAF-DLac)] via SVM 
approach evidently outperforms them in the field of WCE image analysis for automated lesion 
detection, providing higher classification results, up to 93.8% (accuracy), 95.2% (sensitivity), 92.4% 
(specificity) and 92.6% (precision). Validation cohort included

Klang 
et al[48], 2020

Convolutional neural 
network (CNN) vs 
human reader

CD Retrospective cohort, 
49 CD patients

WCE images Endoscopic Inflammation Dataset included 17640 CE images from 49 patients: 7391 images with mucosal ulcers and 10249 
images of normal mucosa. For randomly split images results, AUC was 0.99 with accuracies 
ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were 0.94-0.99. 
Validation cohort included

Ungaro 
et al[49], 2021

Random survival forest. 
No comparator

Peds 
CD

Retrospective case-
control, 265 peds CD 
patients

Protein biomarkers using a 
proximity extension assay 
(Olink Proteomics)

Penetrating and stricturing 
complications

A model with 5 protein markers predicted penetrating complications with an AUC of 0.79 
(95%CI: 0.76-0.82) compared to 0.69 (95%CI: 0.66-0.72) for serologies and 0.74 (95%CI: 0.71-0.77) 
for clinical variables. A model with 4 protein markers predicted structuring complications with an 
AUC of 0.68 (95%CI: 0.65-0.71) compared to 0.62 (95%CI: 0.59-0.65) for serologies and 0.52 (95%CI: 
0.50-0.55) for clinical variables. Validation cohort included
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Barash 
et al[50], 2021

Ordinal CNN. No 
comparator

CD Retrospective cohort, 
49 CD patients

WCE images Ulcer Severity Grading The classification accuracy of the algorithm was 0.91 (95%CI: 0.867-0.954) for grade 1 vs grade 3 
ulcers, 0.78 (95%CI: 0.716-0.844) for grade 2 vs grade 3, and 0.624 (95%CI: 0.547-0.701) for grade 1 
vs grade 2. Validation cohort included

Lamash 
et al[51], 2019

CNN vs semi-
supervised and active 
learning models

CD Retrospective cohort, 
23 CD patients

Magnetic resonance imaging Active Crohn’s Disease CNN exhibited Dice similarity coefficient of 75% ± 18%, 81% ± 8%, and 97% ± 2% for the lumen, 
wall, and background, respectively. The extracted markers of wall thickness at the location of min 
radius (P = 0.0013) and the median value of relative contrast enhancement (P = 0.0033) could 
differentiate active and nonactive disease segments. Other extracted markers could differentiate 
between segments with strictures and segments without strictures (P < 0.05). Validation cohort 
included

Takenaka 
et al[52], 2020

Deep neural networks 
vs human reader 
(endoscopist)

UC Prospective cohort, 
2012 UC patients

Colonoscopy images Endoscopic inflammation Deep neural network identified patients with endoscopic remission with 90.1% accuracy (95%CI: 
89.2-90.9) and a kappa coefficient of 0.798 (95%CI: 0.780-0.814), using findings reported by 
endoscopists as the reference standard. Validation cohort included

Bossuyt et al
[53], 2020

Computer algorithm 
based on red density 
(RD) vs blinded central 
readers

UC Prospective cohort, 29 
UC patients, 6 healthy 
controls

Colonoscopy Images Endoscopic and histologic 
inflammation

In the construction cohort, RD correlated with rhi (r = 0.74, P < 0.0001), Mayo endoscopic 
subscores (r = 0.76, P < 0.0001) and Endoscopic index of severity scores (r = 0.74, P < 0.0001). The 
RD sensitivity to change had a standardized effect size of 1.16. in the validation set, RD correlated 
with rhi (r = 0.65, P = 0.00002). Validation cohort included

Bhambhvani et 
al[54], 2021

CNN vs human reader 
(endoscopist)

UC Retrospective cohort, 
777 UC patients

Colonoscopy images Mayo Endoscopic Scores 
(MES)

The final model classified MES 3 disease with an AUC of 0.96, MES 2 disease with an AUC of 0.86, 
and MES 1 disease with an AUC 0.89. Overall accuracy was 77.2%. Across MES 1, 2, and 3, 
average specificity was 85.7%, average sensitivity was 72.4%, average PPV was 77.7%, and the 
average NPV was 87.0%. Validation cohort included

Ozawa et al
[55], 2019

CNN vs human reader 
(endoscopist)

UC Retrospective cohort, 
841 UC patients

Colonoscopy images MES The CNN-based CAD system showed a high level of performance with AUC of 0.86 and 0.98 to 
identify Mayo 0 and 0-1, respectively. The performance of the CNN was better for the rectum than 
for the right side and left side of the colon when identifying Mayo 0 (AUC = 0.92, 0.83, and 0.83, 
respectively). Validation cohort included

Bossuyt 
et al[56], 2021

Automated CAD 
Algorithm vs human 
reader

UC Prospective cohort, 48 
UC patients

Colonoscopy images with 
confocal laser 
endomicroscopy

Histologic Remission The current automated CAD algorithm detects histologic remission with a high performance 
(sensitivity of 0.79 and specificity of 0.90) compared with the UCEIS (sensitivity of 0.95 and 
specificity of 0.69) and MES (sensitivity of 0.98 and specificity of 0.61). No validation cohort 
included

Stidham 
et al[57], 2019

CNN vs human reader UC Retrospective cohort, 
3082 UC patients

Colonoscopy images Endoscopy severity The CNN was excellent for distinguishing endoscopic remission from moderate-to-severe disease 
with an AUC of 0.966 (95%CI: 0.967-0.972); a PPV of 0.87 (95%CI: 0.85-0.88) with a sensitivity of 
83.0% (95%CI: 80.8-85.4) and specificity of96.0% (95%CI: 95.1-97.1); and NPV of 0.94 (95%CI: 0.93-
0.95). No validation cohort included

Gottlieb 
et al[58], 2021

Neural network vs 
human central reader

UC Prospective cohort, 
249 UC patients

Colonoscopy images Endoscopy severity The model's agreement metric was excellent, with a quadratic weighted kappa of 0.844 (95%CI: 
0.787-0.901) for endoscopic Mayo Score and 0.855 (95%CI: 0.80-0.91) for UCEIS. No validation 
cohort included

AI: Artificial intelligence; IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis; AUC: Area under the curve; NPV: Negative predictive value; PPV: Positive predictive value; qPCR: Quantitative real-time polymerase 
chain reaction; HR: Hazard ratio.

Table 3 summarizes studies included which applied AI in the prediction of therapy 
response and clinical outcomes in IBD. There were 9 studies that predicted therapy 
response, 2 studies that predicted presence of extraintestinal manifestations of IBD, 1 
study predicting colonic neoplasia, and 1 study predicting post-surgical complications 
after colectomy. Data modalities included electronic health records (n = 11), molecular 
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Table 3 Artificial intelligence in prediction of therapy response and clinical outcomes in inflammatory bowel disease

Ref. AI classifier vs 
comparator

IBD 
type

Study design and 
sample size Modality Outcomes Study results/validation cohort

Waljee 
et al[59], 2018

Random forest (RF). No 
comparator

CD/UC Post-hoc analysis of 
prospective clinical 
trial, 594 CD patients

Veteran’s Health 
Administration 
Electronic Health 
Record (EHR)

Outpatient corticosteroids 
prescribed for IBD and 
inpatient hospitalizations 
associated with a diagnosis of 
IBD

AUC for the RF longitudinal model was 0.85 [95% confidence interval (CI): 0.84–0.85]. AUC for the 
RF longitudinal model using previous hospitalization or steroid use was 0.87 (95%CI: 0.87-0.88). 
Validation cohort included

Uttam 
et al[60], 2019

Support vector machines 
(SVM) vs nanoscale 
nuclear architecture 
mapping (NanoNAM)

CD/UC Prospective cohort, 
103 IBD patients

3-dimensional 
NanoNAM of normal-
appearing rectal 
biopsies

Colonic neoplasia NanoNAM detects colonic neoplasia with an AUC of 0.87 ± 0.04, sensitivity of 0.81 ± 0.09, and 
specificity of 0.82 ± 0.07 in the independent validation set. Validation cohort included

Waljee 
et al[61], 2017

RF. No comparator CD/UC Retrospective cohort, 
1080 IBD patients

EHR, lab values Remission and clinical 
outcomes with thiopurines

AUC for algorithm-predicted remission in the validation set was 0.79 vs 0.49 for 6-TGN. The mean 
number of clinical events per year in patients with sustained algorithm-predicted remission (APR) 
was 1.08 vs 3.95 in those that did not have sustained APR (P < 1 × 10-5). Validation cohort included

Popa et al[62], 
2020

Neural network model. 
No comparator

UC Prospective cohort, 
55 UC patients

Clinical and biological 
parameters and the 
endoscopic Mayo score

Disease activity after one year 
of anti-TNF treatment

The classifier achieved an excellent performance predicting the disease activity at one year with an 
accuracy of 90% and AUC 0.92 on the test set and an accuracy of 100% and an AUC of 1 on the 
validation set. Validation cohort included

Douglas 
et al[45], 2018

RF. No comparator Peds 
CD

Cross-sectional, 20 
CD patients, 20 
healthy controls

Shotgun metagenomics 
(MGS), 16S rRNA gene 
sequencing

Response to induction therapy 16S genera were again the top dataset (accuracy = 77.8%; P = 0.008) for predicting response to 
therapy. MGS strain (P = 0.029), genus (P = 0.013), and KEGG pathway (P = 0.018) datasets could 
also classify patients according to therapy response with accuracy = 72.2% for all three. Validation 
cohort included

Waljee 
et al[63], 2010

RF vs boosted trees, 
RuleFit

CD/UC Cross-sectional, 774 
IBD patients

EHR, lab values 
(thiopurine metabolites)

Response to thiopurine 
therapy

A RF algorithm using laboratory values and patient age differentiated clinical response from 
nonresponse in the model validation data set with an AUC of 0.856 (95%CI: 0.793-0.919). Validation 
cohort included

Menti 
et al[64], 2016

Naïve bayes vs Bayesian 
additive regression trees 
vs Bayesian networks

CD/UC Retrospective cohort, 
152 CD patients

Genomic DNA, genetic 
polymorphism

Presence of extra-intestinal 
manifestations in IBD patients

Bayesian networks achieved accuracy of 82% when considering only clinical factors and 89% when 
considering also genetic information, outperforming the other techniques. Validation cohort 
included

Waljee 
et al[65], 2017

RF vs baseline regression 
model

CD/UC Retrospective cohort, 
20368 IBD patients

EHR, lab values Corticosteroid-free biologic 
remission with vedolizumab

The AUC for corticosteroid-free biologic remission at week 52 using baseline data was only 0.65 
(95%CI: 0.53-0.77), but was 0.75 (95%CI: 0.64-0.86) with data through week 6 of vedolizumab. 
Validation cohort included

Morilla 
et al[66], 2019

Deep neural networks. 
No comparator

UC Retrospective cohort, 
47 UC patients

Colonic microrna 
profiles

Responses to therapy A deep neural network-based classifier identified 9 microRNAs plus 5 clinical factors, routinely 
recorded at time of hospital admission, that were associated with responses of patients to treatment. 
This panel discriminated responders to steroids from non-responders with 93% accuracy (AUC, 
0.91). Three algorithms, based on microRNA levels, identified responders to infliximab vs non-
responders (84% accuracy, AUC 0.82) and responders to cyclosporine vs non-responders (80% 
accuracy, AUC 0.79). Validation cohort included

Wang 
et al[67], 2020

Back-propagation neural 
network (BPNN), SVM 
vs logistic regression

CD Cross-sectional, 446 
CD patients

EHR Medication nonadherence to 
maintenance therapy

The average classification accuracy and AUC of the three models were 85.9% and 0.912 for BPNN, 
and 87.7% and 0.930 for SVM, respectively. Validation cohort included

Bottigliengo Bayesian machine Retrospective cohort, EHR, genetic Presence of extra-intestinal BMLTs had an AUC of 0.50 for classifying the presence of extra-intestinal manifestations. Validation CD/UC



Gubatan J et al. Artificial intelligence in IBD

WJG https://www.wjgnet.com 1929 May 7, 2021 Volume 27 Issue 17

et al[68], 2019 learning techniques 
(BMLTs) vs logistic 
regression

142 IBD patients polymorphisms manifestations in IBD patients cohort included

Ghoshal 
et al[69], 2020

Nonlinear artificial 
neural network (ANN) 
vs multivariate linear 
PCA

UC Prospective cohort, 
263 UC patients

EHR Responses to therapy The multilayer perceptron neural network was trained by back-propagation algorithm (10 networks 
retained out of 16 tested). The classification accuracy rate was 73% in correctly classifying response 
to medical treatment in UC patients. No validation cohort included

Sofo et al[70], 
2020

SVM leave-one-out 
cross-validation. No 
comparator

UC Retrospective cohort, 
32 UC patients

EHR Post-surgical complications 
after colectomy

Evaluating only preoperative features, machine learning algorithms were able to predict minor 
postoperative complications with a high strike rate (84.3%), high sensitivity (87.5%) and high 
specificity (83.3%) during the testing phase. Validation cohort included

Kang 
et al[71], 2017

ANN vs logistic 
regression

UC Cross-sectional, 24 
UC patients

Gene expression profiles Response to anti-TNF Balanced accuracy in cross validation test for predicting response to anti-TNF therapy in ulcerative 
colitis patient was 82%. Validation cohort included

Babic 
et al[72], 1997

CART vs back 
propagation neural 
network (BPNN)

CD/UC Cross-sectional, 200 
IBD patients

EHR Quality of life Best reached classification accuracy did not exceed 80% in any case. Other classifiers namely, K-
nearest-neighbor, learning vector quantization and BPNN confirmed that outcome. Validation 
cohort included

Dong 
et al[73], 2019

RF, SVM, ANN vs 
logistic regression

CD Retrospective cohort, 
239 CD patients

EHR, laboratory tests Crohn's related surgery The results revealed that RF predictive model performed better than LR model in terms of accuracy 
(93.11% vs 91.15%), precision (53.42% vs 44.81%), F1 score (0.6016 vs 0.5763), TN rate (95.08% vs 
92.00%), and the AUC (0.8926 vs 0.8809). The AUCs were excellent at 0.9864 in RF,0.9538 in LR, 
0.8809 in DT, 0.9497 in SVM, and 0.9059 in ANN, respectively. Validation cohort included

Lerrigo 
et al[74], 2019

Latent Dirichlet 
allocation, unsupervised 
machine learning 
algorithm. No 
comparator

CD/UC Retrospective cohort, 
28623 IBD patients

Online posts from the 
Crohn’s and colitis 
foundation community 
forum

Impact of online community 
forums on well-being and 
their emotional content

10702 (20.8%) posts were identified expressing: gratitude (40%), anxiety/fear (20.8%), empathy 
(18.2%), anger/frustration (13.4%), hope (13.2%), happiness (10.0%), sadness/depression (5.8%), 
shame/guilt (2.5%), and/or loneliness (2.5%). A common subtheme was the importance of fostering 
social support. No validation cohort included

AI: Artificial intelligence; IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis; AUC: Area under the curve; TNF: Tumor necrosis factor.

datasets (n = 4), and histologic data (n = 1). Waljee et al[59,65] and Popa et al[62] have 
previously applied RF classifiers to clinical data from electronic health records and 
laboratory values to predict response to various IBD therapies. In one study using data 
from a prospective clinical trial consisting of 594 CD patients[59], the AUC for a RF 
longitudinal model for predicting inpatient hospitalizations in IBD patients prescribed 
outpatient corticosteroids was 0.85 (95%CI: 0.84-0.85). Using a similar RF approach for 
predicting remission with thiopurine therapy in a prospective cohort of 55 UC patients 
yielded an AUC of 0.79[62]. Applying RF to data from a retrospective cohort of 20368 
IBD patients with vedolizumab use yielded an AUC of 0.65 (95%CI: 0.53-0.77) for 
corticosteroid-free vedolizumab remission at week 52 using baseline data and an AUC 
of 0.75 (95%CI: 0.64-0.86) with data through week 6 of vedolizumab[65]. Molecular 
datasets have also been used to differentiate between responders and non-responders 
to various IBD therapies. For example, Morilla et al[66] used a deep neural network 
classifier to construct a predictive panel of colonic microRNAs for IBD therapies in a 
retrospective cohort of 47 UC patients. Their panel discriminated responders to 
steroids from non-responders with 93% accuracy (AUC, 0.91). In addition, three 
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algorithms, based on microRNA levels, identified responders to infliximab vs non-
responders (84% accuracy, AUC 0.82) and responders to cyclosporine vs non-
responders (80% accuracy, AUC 0.79). A more recent prospective cohort study of 55 
UC patients by Popa et al[62] integrated clinical, laboratory, and endoscopic (Mayo 
scores) datasets using a neural network classifier to predict disease activity after one 
year of anti-tumor necrosis factor therapy in patients with UC. This classifier achieved 
an AUC of 0.92 for predicting the disease activity at one year on the test set and an 
AUC of 1.00 on the validation set. These studies suggest that AI classifiers may play a 
role in predicting clinical outcomes and response to specific therapies in patients with 
IBD. However, future clinical trials are needed to compare the efficacy of AI applica-
tions in IBD clinical management vs standard of care before incorporation into real life 
clinical practice.

Finally, AI algorithms have been previously applied to enhance the detection of 
colonic polyps[87] and distinguish among subtypes of neoplastic colorectal lesions[88] 
in the general population. Although patients with IBD who have extensive colitis have 
a significantly greater risk of colorectal cancer compared to the general population 
[89,90], there have been limited studies applying AI technologies to improve colorectal 
cancer surveillance or develop prediction risk models in patients with IBD. Most 
studies evaluating polyp detection have excluded IBD patients[91-93]. Our literature 
search yielded only one study applying AI for the detection of colonic neoplasia in 
IBD. Uttam et al[60] employed support SVM to analyze 3-dimensional nanoscale 
nuclear architecture mapping (NanoNAM) of normal-appearing rectal biopsies in a 
prospective cohort of 103 IBD patients. In their study, NanoNAM detected colonic 
neoplasia with an AUC of 0.87 ± 0.04, sensitivity of 0.81 ± 0.09, and specificity of 0.82 ± 
0.07 in the independent validation set. Further studies should focus on determining 
the clinical utility of incorporating AI methods to enhance standard of cancer 
surveillance in patients with IBD such as chromoendoscopy[94] and to develop 
predictive models for risks of colorectal malignancy in IBD patient populations.

CONCLUSION
In conclusion, our literature review has revealed that the applications of AI in IBD 
have significantly increased in recent years. Our review also highlighted that various 
AI classifiers may be applied to analyze and integrate large datasets ranging from 
clinical data from electronic health records, molecular data including gene expression 
and protein-based studies to a wide array of datasets consisting of endoscopic and 
histologic images. The application of AI has the potential to improve the accuracy and 
precision of predicting risk and diagnosis of IBD, assessing disease severity, and 
predicting outcomes with various IBD therapies. Currently, the application of AI 
methods in IBD has been limited to the research setting and has not yet been adopted 
in real life clinical practice. Furthermore, studies applying AI in the context of 
colorectal cancer surveillance or prediction in IBD are much needed. Given the current 
status of the field of AI in IBD, future directions should include: (1) Prospective 
validation of AI applications in IBD in independent cohorts as there is a risk of bias 
from internal training cohorts and potential limitations with generalizability; (2) 
Standardization of AI methods and comparative studies evaluating effect of 
heterogeneity from using different types of datasets on outcomes of interest; (3) 
Randomized controlled trials to determine whether application of AI in the clinical 
management of IBD improves clinical outcomes and could be translated into clinical 
practice; and (4) Randomized controlled trials to determine whether application of AI 
leads to greater clinical efficacy and cost-effectiveness compared to standard of care in 
IBD.
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Abstract
Progress in the fight against pancreatic cancer has been hampered by many 
factors. One of them is the inability to detect the disease early in overwhelming 
majority of patients. The present paper outlines a novel way in which progress 
could be accelerated. This includes a focus on two harbingers—post-pancreatitis 
diabetes mellitus and excess intra-pancreatic fat deposition—that converge at 
affecting the tumor macroenvironment and microenvironment specifically in the 
pancreas, not other organs. The two entities have the potential to be incorporated 
into future screening strategies with a view to early detecting of pancreatic cancer.
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Core Tip: Identification of harbingers of pancreatic cancer that are specifically related 
to the pancreas is necessary to enable cost-effective and achievement-appropriate 
screening for this disease. Post-pancreatitis diabetes mellitus and excess intra-
pancreatic fat deposition are positioned well to serve the purpose.
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INTRODUCTION
Pancreatic cancer incidence rates are on the rise since the 1990s[1]. Given that around 
90% of pancreatic cancer is unresectable at the time of diagnosis, early detection of 
pancreatic cancer is critical with a view to lessening the burden of this disease[2]. The 
development of an accurate test for early detection of sporadic pancreatic cancer 
would considerably improve the survival of these patients[3]. However, while more 
than 2500 putative biomarkers (genomics, transcriptomics, proteomics) were found to 
be overexpressed at the messenger RNA or protein level in pancreatic cancer[4], 
translating biomarker discoveries into clinical applications has been a litany of failures 
in the setting of pancreatic cancer. Identification of harbingers of sporadic pancreatic 
cancer and development of screening policies based on them is another avenue 
towards lessening the burden of this disease. New-onset diabetes and obesity became 
recognized as one of the most prominent risk factors for pancreatic cancer[5-7]. The 
present review focuses on how that knowledge has crystallized over the past 5 years or 
so to consider post-pancreatitis diabetes mellitus (PPDM) and excess intra-pancreatic 
fat deposition (IPFD) as the specific harbingers of pancreatic cancer that are superior to 
general risk factors such as new-onset diabetes mellitus and obesity.

PERSISTENT HYPERGLYCEMIA
A 2011 meta-analysis of 35 cohort studies showed that people with prevalent diabetes 
had a 1.9-times higher risk for pancreatic cancer as compared with those without 
diabetes (Figure 1)[8]. Later, a 2018 study from the Mayo clinic demonstrated that not 
any diabetes but only incident diabetes holds promise as a harbinger of pancreatic 
cancer[9]. A 60-mo temporal fasting plasma glucose profile was constructed for 
patients diagnosed with pancreatic cancer (as well as matched controls). The authors 
showed that hyperglycemia first occurred 30-36 mo prior to pancreatic cancer 
diagnosis and reached the diabetes threshold 6-12 mo prior to cancer diagnosis. 
Moreover, fasting plasma glucose concentrations increased with tumor volume, with 
the smallest tumor volume associated with hyperglycemia being 1.1-2.0 mL (which is 
considerably smaller than the average tumor volume of 11.5 mL at diagnosis of 
pancreatic cancer)[9]. In theory, diagnosing pancreatic cancer when it is that small 
could markedly increase cure rates and long-term survival. In practice, however, 
hyperglycemia alone cannot be implemented as a cost-effective screening strategy 
because pancreatic cancer is rare whereas hyperglycemia is very common. Further, 
hyperglycemia in the context of pancreatic cancer represents a paraneoplastic 
syndrome and therefore is not specific. For example, data from two large prospective 
cohorts (494078 person-years of follow-up) in the United States published in 2020 
confirmed that incident diabetes is a significant risk factor for pancreatic cancer 
(adjusted hazard ratio 2.07; 95% confidence interval 1.70 to 2.52)[10]. However, the 
study also showed that incident diabetes is a significant risk factor for cancer in 7 other 
organs (breast, large intestine, endome-trium, esophagus, liver, lung, and thyroid). 
Combining incident diabetes with weight loss was shown to increase the ability to 
predict the occurrence of pancreatic cancer in a 2018 retrospective study[11]. However, 
weight loss is another non-specific symptom and therefore is unlikely to be much 
more useful in determination of pancreatic cancer risk (as compared with cancer in the 
7 organs mentioned above).

It is conceivable that accurate determination of pancreatic cancer risk among people 
with persistent hyperglycemia can only be achieved when factors related specifically 
to the pancreas are considered. One such factor is inflammation of the pancreas prior 
to new-onset diabetes (i.e., PPDM). PPDM is a sub-type of diabetes of the exocrine 
pancreas and is caused by acute pancreatitis in four out of five people and chronic 
pancreatitis in one out of five people[12]. Its epidemiology, risk factors, pathogenesis, 
and management were comprehensively reviewed elsewhere[12]. A large 2020 cohort 
study by Cho et al[13] compared the risks of developing pancreatic cancer in PPDM vs 
type 2 diabetes mellitus without history of pancreatitis and showed that PPDM was 
associated with a 7-times significantly higher risk for pancreatic cancer (adjusted 
hazard ratio 6.94; 95% confidence interval 4.09 to 11.77). This held true after 
adjustment for age, sex, ethnicity, social deprivation index, alcohol abuse, tobacco 
smoking, history of gallstones, cholecystectomy, and Charlson comorbidity index. 
When a 12-mo lag period between diabetes diagnosis and pancreatic cancer diagnosis 
was introduced (to minimize the possibility of reverse causality), the results did not 
change materially (adjusted hazard ratio 7.93; 95% confidence interval 3.53 to 17.81). 
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Figure 1 A timeline of the major developments in regards to persistent hyperglycemia and excess body fat as harbingers of pancreatic 
cancer in the 21st century to date. IPFD: Intra-pancreatic fat deposition; PPDM: Post-pancreatitis diabetes mellitus.

Also, people with history of pancreatitis (without diabetes mellitus) had a 4.8-times 
significantly higher risk of pancreatic cancer (95% confidence interval 3.38 to 6.99) than 
those with type 2 diabetes mellitus without history of pancreatitis[13]. This suggests 
that diabetes mellitus without history of pancreatitis is not a major risk factor for 
pancreatic cancer; rather it is pancreatitis that is a major risk factor for pancreatic 
cancer in individuals with diabetes. Moreover, the study showed that an attack of 
pancreatitis in individuals with diabetes had a differential effect on the subsequent 
risk of pancreatic cancer depending on whether it occurred before or after diabetes. 
Specifically, it found that people with PPDM had a 2.3-times significantly higher risk 
of pancreatic cancer (95% confidence interval 1.12 to 4.93) than those with type 2 
diabetes mellitus that precedes pancreatitis, after adjustment for the above-mentioned 
covariates[13]. This suggests that the increased risk of pancreatic cancer in individuals 
with PPDM is not due to merely the effect of pancreatitis as a comorbidity in 
individuals with type 2 diabetes mellitus but rather pancreatitis exerts an effect 
beyond being a comorbidity in individuals with PPDM.

The 2018 Mayo clinic study[9] and the 2020 COSMOS study[13] are highly 
complemen-tary in nature, paving the way to identification of population at high risk 
of pancreatic cancer within a cohort of people with diabetes, which has the potential to 
enrich the cohort for pancreatic cancer. The 3-year incidence of pancreatic cancer in the 
Mayo clinic study was 1.0% among individuals with diabetes, which is in line with the 
0.7% estimate in individuals with diabetes in the entire cohort of the COSMOS study. 
The Mayo clinic developed a model using the data of 1516 individuals with first 
diagnosis of diabetes (based on fasting blood glucose and/or estimated average 
glucose) and the incidence of pancreatic cancer increased to 3.6% after applying the 
model[11]. The model requires five variables: age at first diagnosis of diabetes, blood 
glucose levels at two time points (approximately 12 mo prior to and at first diagnosis 
of diabetes), and weight at two time points (approximately 12 mo prior to and at first 
diagnosis of diabetes). The COMSOS study of 139843 individuals offered a 
complementary non-overlapping approach, in which the consideration of history of 
pancreatitis prior to first diagnosis of diabetes (regardless of changes in glycemia and 
weight prior to diabetes) enabled the enrichment of the cohort of people with diabetes 
for pancreatic cancer to the extent the Mayo clinic study did (from 0.7% to 3.1% in the 
COSMOS study as compared with from 1.0% to 3.6% in the Mayo clinic study)[13]. 
Interestingly, the COSMOS study found that resected pancreatic cancer yielded the 
highest risk (hazard ratio 16.2) in individuals with PPDM[13]. This likely reflects the 
higher likelihood of detection of pancreatic cancer at earlier stages in individuals with 
PPDM vs type 2 diabetes mellitus, which may be attributable to the fact that 
individuals with PPDM are more likely to undergo more intensive work-up during 
hospitalization for pancreatitis (e.g., earlier abdominal imaging and carbohydrate 
antigen 19-9, possibly resulting in a lead time) and are more closely monitored after 
hospital discharge. This is not dissimilar to the notion of ‘incidentaloma’—incidental 
abnormal finding from imaging test. Based on the above findings, it is reasonable to 
suggest that taking into account history of pancreatitis (in addition to age at diabetes 
diagnosis and changes in glycemia and body composition prior to diabetes) will 
further enrich cohorts of people with diabetes for pancreatic cancer. Purposely-
designed studies are warranted to operationalize the combined approach. But, in 
principal, it could be applied to all middle-aged and older adults after an attack of 
pancreatitis who develop new-onset diabetes and unintentional changes in body 
composition during follow-up. This might ultimately make screening for pancreatic 
cancer cost-effective and achievement-appropriate.
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EXCESS BODY FAT
In a 2003 prospective cohort study of more than 900000 adults, the relative risk of 
pancreatic cancer for people with morbid obesity (body mass index > 40 kg/m2) was 
2.76 (95% confidence interval 1.74 to 4.36) for women and 2.61 (95% confidence 
interval 1.30 to 5.40) for men (Figure 1)[14]. A 2009 prospective cohort study of more 
than 450416 adults estimated that general overweight or obesity (body mass index ≥ 25 
kg/m2) explained 8% of the population attributable risk for pancreatic cancer, which 
made it the second largest population attributable risk (following tobacco smoking) 
among all the modifiable factors studied[15]. Later, visceral adiposity (as evidenced by 
waist circumference) became acknowledged as a more accurate measure of excess 
body fat (Figure 1). Several prospective studies showed a significant association 
between risk of pancreatic cancer and visceral adiposity. These studies (encompassing 
787356 adults) were meta-analyzed in 2012 and the risk of pancreatic cancer was 
estimated to increase 1.1-times (95% confidence interval 1.05 to 1.18) with every 10-cm 
increase in waist circumference[16]. Based on the best available evidence in regards to 
both body mass index and waist circumference, the World Cancer Research Fund and 
the American Institute for Cancer Research concluded that the association between 
excess adiposity and pancreatic cancer is causal[17]. However, the causality was also 
postulated in relation to excess adiposity and cancer in several other organs 
(esophagus, liver, colorectum, breast, endometrium, kidney). Given that both general 
adiposity and abdominal adiposity have a low specificity, these are not useful 
specifically for the purpose of early detection of pancreatic cancer.

More recently, local fat contained within the pancreas—termed IPFD—has emerged 
as an early specific factor contributing to the formation of pancreatic tumorigenesis 
(Figure 1). The relationship between IPFD and pancreatic cancer or premalignant 
lesions had been investigated in several studies that were systematically reviewed in a 
2020 systematic review and meta-analysis by Sreedhar et al[18]. A total of 13 
retrospective studies (encompassing 2178 individuals) were included. The pooled 
prevalence of fatty pancreas disease in individuals with pancreatic cancer was 52% 
(95% confidence interval 38 to 66%). Further, there was a 2.8-times higher prevalence 
of fatty pancreas disease among individuals with pancreatic cancer or pre-malignant 
lesions compared with controls (risk ratio 2.78; 95% confidence interval 1.56 to 
4.94)[18]. High IPFD was also associated with dissemination and increased mortality 
of the disease in two single-center studies[19,20]. Besides, there was an evidence of a 
consistent association between the presence of pancreatic pre-malignant lesions and 
high IPFD, independent of fatty liver disease, abdominal adiposity, and general 
adiposity. In particular, one study showed a significantly increased IPFD in 
individuals with intraductal papillary mucinous neoplasm (n = 85), as compared with 
age-, sex-, and diabetes status-matched individuals with no pancreatic cyst (n = 
85)[21]. Taking into account that two types of pancreatic cancer can develop in 
individuals with intraductal papillary mucinous neoplasm (invasive carcinoma within 
the index lesion and concomitant pancreatic ductal adenocarcinoma arising at a site 
other than intraductal papillary mucinous neoplasm) and taking into account that 
progression to high-grade dysplasia within the index lesion is relatively easy to detect 
and follow up[22,23], an increased IPFD during follow-up could be particularly 
helpful in identifying individuals with intraductal papillary mucinous neoplasm who 
harbor concomitant pancreatic ductal adenocarcinoma.

IPFD was also investigated in the setting of pancreatitis—a major risk factor for 
pancreatic cancer[13,24-27]. A cross-sectional study by Stuart et al[28] investigated 119 
individuals after an attack of pancreatitis and 38 healthy volunteers. It found that IPFD 
(determined with the use of chemical shift-encoded magnetic resonance imaging) was 
significantly greater in individuals after an attack of pancreatitis (both acute and 
chronic) than healthy volunteers, in both crude analysis and after adjustment for age, 
sex, ethnicity, visceral-to-subcutaneous fat volume ratio, glycated hemoglobin, 
triglycerides. Notably, two other common ectopic fat phenotypes—liver fat and 
skeletal muscle fat deposition—did not differ significantly between the groups[28]. 
Several other cross-sectional studies showed that excess IPFD is associated with worse 
outcomes during hospitalization for acute pancreatitis[29-31]. Individuals with chronic 
pancreatitis alone (n = 58) had a significantly greater IPFD in comparison with controls 
(n = 60) in a cross-sectional study from the United States (determined with the use of 
chemical shift-encoded magnetic resonance imaging)[32]. Also, the severity of 
pancreatic ductal changes (based on the Cambridge classification) in individuals with 
chronic pancreatitis was not associated with IPFD[32]. It is worth noting that the study 
groups were compared in crude analysis only in that study, despite the fact that there 
were significant differences between the groups in terms of age, body composition, 
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alcohol consumption, and tobacco smoking. An earlier study from the United States 
found that individuals with chronic pancreatitis alone (n = 35) had a significantly 
greater IPFD in comparison with controls (n = 50) in a post-hoc analysis constrained to 
non-obese people only (body mass index < 30 kg/m2)[33]. A longitudinal study from 
Japan sought to investigate the temporal relationship between IPFD and chronic 
pancreatitis[34]. A total of 9933 individuals without pancreatitis were examined in 
2008 and followed up for 4 years as part of their medical check-up. The presence of 
fatty pancreas disease at baseline was associated with a 3.9-times higher risk of 
incident pancreatitis during follow-up (odds ratio 3.9; 95% confidence interval 2.0 to 
7.7), after adjustment for age, sex, body mass index, glycated hemoglobin, systolic 
blood pressure, alcohol abuse, tobacco smoking, and other covariates[34]. However, it 
is worth noting that transabdominal ultrasound was used in this study, which is 
suboptimal for diagnosing of both chronic pancreatitis and fatty pancreas disease.

Beyond people with pancreatic premalignant lesions or history of pancreatitis, it is 
tempting to speculate that people with incidentally found fatty pancreas disease could 
benefit from a regular follow-up with a view to early detecting of pancreatic cancer. 
However, given that fatty pancreas disease is very common in the general population 
(prevalence 16.1%; 95% confidence interval 13.3 to 18.8)[35] and taking into account 
that the state-of-the-art sequential assessment of the pancreas (i.e., the use of magnetic 
resonance imaging) is costly[36], screening of unselected people with fatty pancreas 
disease for pancreatic cancer is unlikely to reach current cost-effectiveness standards. 
However, it is envisaged that future studies will identify a subgroup of people with 
fatty pancreas disease in the general population that is at high risk for sporadic 
pancreatic cancer.

CONCLUSION
The complex nature and the relative rarity of pancreatic cancer make it challenging to 
implement screening in people with no family history of the disease[37,38]. In fact, a 
2019 evidence-based report by the United States Preventive Services Task Force 
deemed screening for pancreatic cancer in asymptomatic adults not to be cost-
effective[39]. However, to date, the cost-effectiveness of only conventional non-specific 
risk factors has been considered. A 2021 microsimulation screening analysis model 
investigated the impact of relevant uncertainties on the effectiveness of pancreatic 
cancer screening and showed that test specificity had higher influence than 
sensitivity[40]. Growing evidence compels a consideration of middle-aged and older 
adults with PPDM and/or incidentally found fatty pancreas disease as specific 
populations at very high risk of developing pancreatic cancer. Comprehensive 
understanding of the intricate relationship between PPDM and IPFD will offer 
actionable insights into early detection of pancreatic cancer.

ACKNOWLEDGEMENTS
Professor Petrov M, MD, MPH, PhD is the Principal Investigator of the COSMOS 
group, currently hosted at the School of Medicine, University of Auckland (New 
Zealand).

REFERENCES
Gordon-Dseagu VL, Devesa SS, Goggins M, Stolzenberg-Solomon R. Pancreatic cancer incidence 
trends: Evidence from the Surveillance, Epidemiology and End Results (SEER) population-based 
data. Int J Epidemiol 2018; 47: 427-439 [PMID: 29149259 DOI: 10.1093/ije/dyx232]

1     

McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: A 
review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 2018; 24: 
4846-4861 [PMID: 30487695 DOI: 10.3748/wjg.v24.i43.4846]

2     

Nannini G, Meoni G, Amedei A, Tenori L. Metabolomics profile in gastrointestinal cancers: Update 
and future perspectives. World J Gastroenterol 2020; 26: 2514-2532 [PMID: 32523308 DOI: 
10.3748/wjg.v26.i20.2514]

3     

Harsha HC, Kandasamy K, Ranganathan P, Rani S, Ramabadran S, Gollapudi S, Balakrishnan L, 
Dwivedi SB, Telikicherla D, Selvan LD, Goel R, Mathivanan S, Marimuthu A, Kashyap M, Vizza 
RF, Mayer RJ, Decaprio JA, Srivastava S, Hanash SM, Hruban RH, Pandey A. A compendium of 
potential biomarkers of pancreatic cancer. PLoS Med 2009; 6: e1000046 [PMID: 19360088 DOI: 

4     

http://www.ncbi.nlm.nih.gov/pubmed/29149259
https://dx.doi.org/10.1093/ije/dyx232
http://www.ncbi.nlm.nih.gov/pubmed/30487695
https://dx.doi.org/10.3748/wjg.v24.i43.4846
http://www.ncbi.nlm.nih.gov/pubmed/32523308
https://dx.doi.org/10.3748/wjg.v26.i20.2514
http://www.ncbi.nlm.nih.gov/pubmed/19360088


Petrov MS. Early detection of pancreatic cancer

WJG https://www.wjgnet.com 1941 May 7, 2021 Volume 27 Issue 17

10.1371/journal.pmed.1000046]
Molina-Montes E, Coscia C, Gómez-Rubio P, Fernández A, Boenink R, Rava M, Márquez M, 
Molero X, Löhr M, Sharp L, Michalski CW, Farré A, Perea J, O'Rorke M, Greenhalf W, Iglesias M, 
Tardón A, Gress TM, Barberá VM, Crnogorac-Jurcevic T, Muñoz-Bellvís L, Dominguez-Muñoz JE, 
Renz H, Balcells J, Costello E, Ilzarbe L, Kleeff J, Kong B, Mora J, O'Driscoll D, Poves I, Scarpa A, 
Yu J, Hidalgo M, Lawlor RT, Ye W, Carrato A, Real FX, Malats N;  PanGenEU Study Investigators. 
Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes and 
obesity/BMI through causal inference and mediation analyses. Gut 2021; 70: 319-329 [PMID: 
32409590 DOI: 10.1136/gutjnl-2019-319990]

5     

Pothuraju R, Rachagani S, Junker WM, Chaudhary S, Saraswathi V, Kaur S, Batra SK. Pancreatic 
cancer associated with obesity and diabetes: an alternative approach for its targeting. J Exp Clin 
Cancer Res 2018; 37: 319 [PMID: 30567565 DOI: 10.1186/s13046-018-0963-4]

6     

Paternoster S, Falasca M. The intricate relationship between diabetes, obesity and pancreatic cancer. 
Biochim Biophys Acta Rev Cancer 2020; 1873: 188326 [PMID: 31707038 DOI: 
10.1016/j.bbcan.2019.188326]

7     

Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, Zhang H, Li Z. Diabetes mellitus and risk of 
pancreatic cancer: A meta-analysis of cohort studies. Eur J Cancer 2011; 47: 1928-1937 [PMID: 
21458985 DOI: 10.1016/j.ejca.2011.03.003]

8     

Sharma A, Smyrk TC, Levy MJ, Topazian MA, Chari ST. Fasting blood glucose levels provide 
estimate of duration and progression of pancreatic cancer before diagnosis. Gastroenterology 2018; 
155: 490-500. e2 [PMID: 29723506 DOI: 10.1053/j.gastro.2018.04.025]

9     

Hu Y, Zhang X, Ma Y, Yuan C, Wang M, Wu K, Tabung FK, Tobias D, Hu FB, Giovannucci E, 
Song M. Incident type 2 diabetes duration and cancer risk: a prospective study in two us cohorts. J 
Natl Cancer Inst 2021; 113: 381-389 [PMID: 33225344 DOI: 10.1093/jnci/djaa141]

10     

Sharma A, Kandlakunta H, Nagpal SJS, Feng Z, Hoos W, Petersen GM, Chari ST. Model to 
determine risk of pancreatic cancer in patients with new-onset diabetes. Gastroenterology 2018; 155: 
730-739. e3 [PMID: 29775599 DOI: 10.1053/j.gastro.2018.05.023]

11     

Petrov MS. Post-pancreatitis diabetes mellitus: prime time for secondary disease. Eur J Endocrinol 
2021; 184: R137-R149 [PMID: 33460393 DOI: 10.1530/EJE-20-0468]

12     

Cho J, Scragg R, Petrov MS. Postpancreatitis diabetes confers higher risk for pancreatic cancer than 
type 2 diabetes: results from a nationwide cancer registry. Diabetes Care 2020; 43: 2106-2112 
[PMID: 32616613 DOI: 10.2337/dc20-0207]

13     

Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from 
cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348: 1625-1638 [PMID: 
12711737 DOI: 10.1056/NEJMoa021423]

14     

Jiao L, Mitrou PN, Reedy J, Graubard BI, Hollenbeck AR, Schatzkin A, Stolzenberg-Solomon R. A 
combined healthy lifestyle score and risk of pancreatic cancer in a large cohort study. Arch Intern 
Med 2009; 169: 764-770 [PMID: 19398688 DOI: 10.1001/archinternmed.2009.46]

15     

Aune D, Greenwood DC, Chan DS, Vieira R, Vieira AR, Navarro Rosenblatt DA, Cade JE, Burley 
VJ, Norat T. Body mass index, abdominal fatness and pancreatic cancer risk: A systematic review and 
non-linear dose-response meta-analysis of prospective studies. Ann Oncol 2012; 23: 843-852 [PMID: 
21890910 DOI: 10.1093/annonc/mdr398]

16     

World Cancer Research Fund/American Institute for Cancer Research.   Body fatness & weight 
gain. Continuous update project expert report 2020. [cited 1 March 2021]. In: World Cancer Research 
Fund International [Internet]. Available from: https://www.wcrf.org/dietandcancer/exposures/body-
fatness

17     

Sreedhar UL, DeSouza SV, Park B, Petrov MS. A systematic review of intra-pancreatic fat 
deposition and pancreatic carcinogenesis. J Gastrointest Surg 2020; 24: 2560-2569 [PMID: 31749093 
DOI: 10.1007/s11605-019-04417-4]

18     

Mathur A, Zyromski NJ, Pitt HA, Al-Azzawi H, Walker JJ, Saxena R, Lillemoe KD. Pancreatic 
steatosis promotes dissemination and lethality of pancreatic cancer. J Am Coll Surg 2009; 208: 989-
94; discussion 994 [PMID: 19476877 DOI: 10.1016/j.jamcollsurg.2008.12.026]

19     

Mathur A, Hernandez J, Shaheen F, Shroff M, Dahal S, Morton C, Farrior T, Kedar R, Rosemurgy 
A. Preoperative computed tomography measurements of pancreatic steatosis and visceral fat: 
prognostic markers for dissemination and lethality of pancreatic adenocarcinoma. HPB (Oxford) 
2011; 13: 404-410 [PMID: 21609373 DOI: 10.1111/j.1477-2574.2011.00304.x]

20     

Kashiwagi K, Seino T, Fukuhara S, Minami K, Horibe M, Iwasaki E, Takaishi H, Itoh K, Sugino Y, 
Inoue N, Iwao Y, Kanai T. Pancreatic fat content detected by computed tomography and its 
significant relationship with intraductal papillary mucinous neoplasm. Pancreas 2018; 47: 1087-1092 
[PMID: 30028443 DOI: 10.1097/MPA.0000000000001103]

21     

Tanaka M, Fernández-Del Castillo C, Kamisawa T, Jang JY, Levy P, Ohtsuka T, Salvia R, Shimizu 
Y, Tada M, Wolfgang CL. Revisions of international consensus Fukuoka guidelines for the 
management of IPMN of the pancreas. Pancreatology 2017; 17: 738-753 [PMID: 28735806 DOI: 
10.1016/j.pan.2017.07.007]

22     

Kanno A, Masamune A, Hanada K, Maguchi H, Shimizu Y, Ueki T, Hasebe O, Ohtsuka T, 
Nakamura M, Takenaka M, Kitano M, Kikuyama M, Gabata T, Yoshida K, Sasaki T, Serikawa M, 
Furukawa T, Yanagisawa A, Shimosegawa T;  Japan Study Group on the Early Detection of 
Pancreatic Cancer (JEDPAC). Multicenter study of early pancreatic cancer in Japan. Pancreatology 
2018; 18: 61-67 [PMID: 29170051 DOI: 10.1016/j.pan.2017.11.007]

23     

https://dx.doi.org/10.1371/journal.pmed.1000046
http://www.ncbi.nlm.nih.gov/pubmed/32409590
https://dx.doi.org/10.1136/gutjnl-2019-319990
http://www.ncbi.nlm.nih.gov/pubmed/30567565
https://dx.doi.org/10.1186/s13046-018-0963-4
http://www.ncbi.nlm.nih.gov/pubmed/31707038
https://dx.doi.org/10.1016/j.bbcan.2019.188326
http://www.ncbi.nlm.nih.gov/pubmed/21458985
https://dx.doi.org/10.1016/j.ejca.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/29723506
https://dx.doi.org/10.1053/j.gastro.2018.04.025
http://www.ncbi.nlm.nih.gov/pubmed/33225344
https://dx.doi.org/10.1093/jnci/djaa141
http://www.ncbi.nlm.nih.gov/pubmed/29775599
https://dx.doi.org/10.1053/j.gastro.2018.05.023
http://www.ncbi.nlm.nih.gov/pubmed/33460393
https://dx.doi.org/10.1530/EJE-20-0468
http://www.ncbi.nlm.nih.gov/pubmed/32616613
https://dx.doi.org/10.2337/dc20-0207
http://www.ncbi.nlm.nih.gov/pubmed/12711737
https://dx.doi.org/10.1056/NEJMoa021423
http://www.ncbi.nlm.nih.gov/pubmed/19398688
https://dx.doi.org/10.1001/archinternmed.2009.46
http://www.ncbi.nlm.nih.gov/pubmed/21890910
https://dx.doi.org/10.1093/annonc/mdr398
https://www.wcrf.org/dietandcancer/exposures/body-fatness
https://www.wcrf.org/dietandcancer/exposures/body-fatness
http://www.ncbi.nlm.nih.gov/pubmed/31749093
https://dx.doi.org/10.1007/s11605-019-04417-4
http://www.ncbi.nlm.nih.gov/pubmed/19476877
https://dx.doi.org/10.1016/j.jamcollsurg.2008.12.026
http://www.ncbi.nlm.nih.gov/pubmed/21609373
https://dx.doi.org/10.1111/j.1477-2574.2011.00304.x
http://www.ncbi.nlm.nih.gov/pubmed/30028443
https://dx.doi.org/10.1097/MPA.0000000000001103
http://www.ncbi.nlm.nih.gov/pubmed/28735806
https://dx.doi.org/10.1016/j.pan.2017.07.007
http://www.ncbi.nlm.nih.gov/pubmed/29170051
https://dx.doi.org/10.1016/j.pan.2017.11.007


Petrov MS. Early detection of pancreatic cancer

WJG https://www.wjgnet.com 1942 May 7, 2021 Volume 27 Issue 17

Feng Q, Li C, Zhang S, Tan CL, Mai G, Liu XB, Chen YH. Recurrence and survival after surgery for 
pancreatic cancer with or without acute pancreatitis. World J Gastroenterol 2019; 25: 6006-6015 
[PMID: 31660036 DOI: 10.3748/wjg.v25.i39.6006]

24     

Syed A, Babich O, Thakkar P, Patel A, Abdul-Baki H, Farah K, Morrissey S, Mitre M, Dhawan M, 
Kochhar G, Kulkarni A, Thakkar S. Defining pancreatitis as a risk factor for pancreatic cancer: the 
role, incidence, and timeline of development. Pancreas 2019; 48: 1098-1101 [PMID: 31404017 DOI: 
10.1097/MPA.0000000000001367]

25     

Gayam V, Sidhu JS, Mandal A, Garlapati P, Adapa S, Konala VM, Naramala S, Then EO, Maddika 
S, Gaduputi V. National trends and hospitalizations related to pancreatic cancer in acute pancreatitis 
patients: a nationwide inpatient sample study. Cureus 2019; 11: e5155 [PMID: 31523582 DOI: 
10.7759/cureus.5155]

26     

Sadr-Azodi O, Oskarsson V, Discacciati A, Videhult P, Askling J, Ekbom A. Pancreatic cancer 
following acute pancreatitis: A population-based matched cohort study. Am J Gastroenterol 2018; 
113: 1711-1719 [PMID: 30315287 DOI: 10.1038/s41395-018-0255-9]

27     

Stuart CE, Ko J, Modesto AE, Alarcon Ramos GC, Bharmal SH, Cho J, Singh RG, Petrov MS. 
Implications of tobacco smoking and alcohol consumption on ectopic fat deposition in individuals 
after pancreatitis. Pancreas 2020; 49: 924-934 [PMID: 32658076 DOI: 
10.1097/MPA.0000000000001600]

28     

Navina S, Acharya C, DeLany JP, Orlichenko LS, Baty CJ, Shiva SS, Durgampudi C, Karlsson JM, 
Lee K, Bae KT, Furlan A, Behari J, Liu S, McHale T, Nichols L, Papachristou GI, Yadav D, Singh 
VP. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci 
Transl Med 2011; 3: 107ra110 [PMID: 22049070 DOI: 10.1126/scitranslmed.3002573]

29     

Durgampudi C, Noel P, Patel K, Cline R, Trivedi RN, DeLany JP, Yadav D, Papachristou GI, Lee 
K, Acharya C, Jaligama D, Navina S, Murad F, Singh VP. Acute lipotoxicity regulates severity of 
biliary acute pancreatitis without affecting its initiation. Am J Pathol 2014; 184: 1773-1784 [PMID: 
24854864 DOI: 10.1016/j.ajpath.2014.02.015]

30     

Xie J, Xu L, Pan Y, Li P, Liu Y, Shan K, Zhang Y. Nonalcoholic fatty pancreas disease is related 
independently to the severity of acute pancreatitis. Eur J Gastroenterol Hepatol 2019; 31: 973-978 
[PMID: 31233410 DOI: 10.1097/MEG.0000000000001477]

31     

Tirkes T, Jeon CY, Li L, Joon AY, Seltman TA, Sankar M, Persohn SA, Territo PR. Association of 
pancreatic steatosis with chronic pancreatitis, obesity, and type 2 diabetes mellitus. Pancreas 2019; 
48: 420-426 [PMID: 30747825 DOI: 10.1097/MPA.0000000000001252]

32     

Acharya C, Cline RA, Jaligama D, Noel P, Delany JP, Bae K, Furlan A, Baty CJ, Karlsson JM, 
Rosario BL, Patel K, Mishra V, Dugampudi C, Yadav D, Navina S, Singh VP. Fibrosis reduces 
severity of acute-on-chronic pancreatitis in humans. Gastroenterology 2013; 145: 466-475 [PMID: 
23684709 DOI: 10.1053/j.gastro.2013.05.012]

33     

Fujii M, Ohno Y, Yamada M, Kamada Y, Miyoshi E. Impact of fatty pancreas and lifestyle on the 
development of subclinical chronic pancreatitis in healthy people undergoing a medical checkup. 
Environ Health Prev Med 2019; 24: 10 [PMID: 30732577 DOI: 10.1186/s12199-019-0763-2]

34     

Wong VW, Wong GL, Yeung DK, Abrigo JM, Kong AP, Chan RS, Chim AM, Shen J, Ho CS, Woo 
J, Chu WC, Chan HL. Fatty pancreas, insulin resistance, and β-cell function: a population study using 
fat-water magnetic resonance imaging. Am J Gastroenterol 2014; 109: 589-597 [PMID: 24492753 
DOI: 10.1038/ajg.2014.1]

35     

Siddiqui N, Vendrami CL, Chatterjee A, Miller FH. Advanced MR imaging techniques for pancreas 
imaging. Magn Reson Imaging Clin N Am 2018; 26: 323-344 [PMID: 30376973 DOI: 
10.1016/j.mric.2018.03.002]

36     

Chhoda A, Lu L, Clerkin BM, Risch H, Farrell JJ. Current approaches to pancreatic cancer screening. 
Am J Pathol 2019; 189: 22-35 [PMID: 30558719 DOI: 10.1016/j.ajpath.2018.09.013]

37     

Das KK, Early D. Pancreatic cancer screening. Curr Treat Options Gastroenterol 2017; 15: 562-575 
[PMID: 28879469 DOI: 10.1007/s11938-017-0149-8]

38     

Henrikson NB, Aiello Bowles EJ, Blasi PR, Morrison CC, Nguyen M, Pillarisetty VG, Lin JS. 
Screening for pancreatic cancer: Updated evidence report and systematic review for the us preventive 
services task force. JAMA 2019; 322: 445-454 [PMID: 31386140 DOI: 10.1001/jama.2019.6190]

39     

Koopmann BD, Harinck F, Kroep S, Konings IC, Naber SK, Lansdorp-Vogelaar I, Fockens P, van 
Hooft JE, Cahen DL, van Ballegooijen M, Bruno MJ, de Kok IM. Identifying key factors for the 
effectiveness of pancreatic cancer screening: A model-based analysis. Int J Cancer 2021 [PMID: 
33644856 DOI: 10.1002/ijc.33540]

40     

http://www.ncbi.nlm.nih.gov/pubmed/31660036
https://dx.doi.org/10.3748/wjg.v25.i39.6006
http://www.ncbi.nlm.nih.gov/pubmed/31404017
https://dx.doi.org/10.1097/MPA.0000000000001367
http://www.ncbi.nlm.nih.gov/pubmed/31523582
https://dx.doi.org/10.7759/cureus.5155
http://www.ncbi.nlm.nih.gov/pubmed/30315287
https://dx.doi.org/10.1038/s41395-018-0255-9
http://www.ncbi.nlm.nih.gov/pubmed/32658076
https://dx.doi.org/10.1097/MPA.0000000000001600
http://www.ncbi.nlm.nih.gov/pubmed/22049070
https://dx.doi.org/10.1126/scitranslmed.3002573
http://www.ncbi.nlm.nih.gov/pubmed/24854864
https://dx.doi.org/10.1016/j.ajpath.2014.02.015
http://www.ncbi.nlm.nih.gov/pubmed/31233410
https://dx.doi.org/10.1097/MEG.0000000000001477
http://www.ncbi.nlm.nih.gov/pubmed/30747825
https://dx.doi.org/10.1097/MPA.0000000000001252
http://www.ncbi.nlm.nih.gov/pubmed/23684709
https://dx.doi.org/10.1053/j.gastro.2013.05.012
http://www.ncbi.nlm.nih.gov/pubmed/30732577
https://dx.doi.org/10.1186/s12199-019-0763-2
http://www.ncbi.nlm.nih.gov/pubmed/24492753
https://dx.doi.org/10.1038/ajg.2014.1
http://www.ncbi.nlm.nih.gov/pubmed/30376973
https://dx.doi.org/10.1016/j.mric.2018.03.002
http://www.ncbi.nlm.nih.gov/pubmed/30558719
https://dx.doi.org/10.1016/j.ajpath.2018.09.013
http://www.ncbi.nlm.nih.gov/pubmed/28879469
https://dx.doi.org/10.1007/s11938-017-0149-8
http://www.ncbi.nlm.nih.gov/pubmed/31386140
https://dx.doi.org/10.1001/jama.2019.6190
http://www.ncbi.nlm.nih.gov/pubmed/33644856
https://dx.doi.org/10.1002/ijc.33540


WJG https://www.wjgnet.com 1943 May 7, 2021 Volume 27 Issue 17

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2021 May 7; 27(17): 1943-1958

DOI: 10.3748/wjg.v27.i17.1943 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

MINIREVIEWS

BRCA mutated pancreatic cancer: A change is coming

Michael N Rosen, Rachel A Goodwin, Michael M Vickers

ORCID number: Michael N Rosen 
0000-0002-6625-2230; Rachel A 
Goodwin 0000-0002-0250-8479; 
Michael M Vickers 0000-0002-2587-
2265.

Author contributions: Rosen MN, 
Goodwin RA and Vickers MM 
made contributions to the 
conception and design of the 
study; Rosen MN was involved in 
drafting and revising the 
manuscript; all authors reviewed 
the review and approved the final 
version of the manuscript.

Conflict-of-interest statement: 
Michael N Rosen and Michael M 
Vickers declare no conflict of 
interest for this topic. Rachel A 
Goodwin has received 
compensation for an advisory role 
with AstraZeneca.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Michael N Rosen, Rachel A Goodwin, Faculty of Medicine, The University of Ottawa, Ottawa 
K1H 8L6, Ontario, Canada

Michael M Vickers, The Ottawa Hospital Cancer Center, The University of Ottawa, Ottawa K1H 
8L6, Ontario, Canada

Corresponding author: Michael M Vickers, FRCPC, MD, Assistant Professor, Doctor, The 
Ottawa Hospital Cancer Center, The University of Ottawa, 501 Smyth Road, Ottawa K1H 8L6, 
Ontario, Canada. mvickers@toh.ca

Abstract
Pancreatic cancer remains a leading cause of cancer-related death with few 
available therapies for advanced disease. Recently, patients with germline BRCA 
mutations have received increased attention due to advances in the management 
of BRCA mutated ovarian and breast tumors. Germline BRCA mutations 
significantly increase risk of developing pancreatic cancer and can be found in up 
to 8% of patients with sporadic pancreatic cancer. In patients with germline BRCA 
mutations, platinum-based chemotherapies and poly (ADP-ribose) polymerase 
inhibitors are effective treatment options which may offer survival benefits. This 
review will focus on the molecular biology, epidemiology, and management of 
BRCA-mutated pancreatic cancer. Further-more, we will discuss future directions 
for this area of research and promising active areas of research.
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Core Tip: Recent advances in the field of BRCA-mutated pancreatic cancer suggest that 
these patients benefit from platinum-based chemotherapy regimens. In light of new 
findings from the Pancreas Cancer Olaparib Ongoing trial, patients with germline 
BRCA mutations may benefit from maintenance treatment with olaparib, a Poly (ADP-
ribose) polymerase inhibitors following response to platinum-based chemotherapy. 
Based on these important findings, all pancreatic cancer patients should be offered 
early access to genetic screening in order to identify patients who will benefit from 
these therapies.
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INTRODUCTION
Pancreatic cancer (PC) remains one of the most aggressive malignancies, with a 5-year 
survival rate of 8%[1,2]. Incidence of PC has increased over the past 4 decades, making 
it a leading cause of cancer-related mortality in North America[1-3]. The vast majority 
of pancreatic cancers are ductal adenocarcinomas (PDAC) of the exocrine pancreatic 
glands, occurring most commonly in the head of the pancreas[4]. Most cases of PDAC 
are considered sporadic, however 5%-10% are estimated to be familial with patients 
having a family history of PDAC[5]. Several genetic syndromes are known to cause 
familial PDAC including mutations of deoxyribonucleic acid (DNA) mismatch repair 
genes (Lynch syndrome), BRCA1 and BRCA2 (hereditary breast cancer syndrome); 
however, in the vast majority of cases a genetic cause cannot be identified[5-7].

Currently, the only potentially curative treatment for PC is surgical resection which 
is only possible in the early stages of the disease (locoregional) and highly dependent 
on the degree of invasion of surrounding critical structures such as vessels and bile 
ducts. Unfortunately, only 15%-20% of PDAC cases are considered resectable, and of 
these, over 75% will have recurrence within 5 years of their resection[4]. Recent data 
suggests that in patients with good performance status, treatment with a combination 
regimen of fluorouracil, oxaliplatin, leucovorin and irinotecan (FOLFIRINOX) is the 
optimal adjuvant therapy following resection[8]. Because early stage PC is usually 
asymptomatic, the vast majority of patients present with either locally advanced 
(involvement of local vasculature) or metastatic disease[4]. In these patients chemothe-
rapy and occasionally radiotherapy form the backbone of treatment and are used to 
relieve symptoms and modestly prolong life.

In the advanced setting of disease, the two standard of care palliative chemotherapy 
options include gemcitabine plus albumin-bound paclitaxel (nab-paclitaxel) and 
FOLFIRINOX. In the first-line setting, both have been shown to prolong overall 
survival (OS) relative to gemcitabine monotherapy in prospective, randomized clinical 
trials[9,10]. Even with these treatments, 2-year survival remains at 10% and median OS 
ranges from 8-11 mo[4].

Recent genomic evidence suggests that PDAC is a genetically heterogenous disease 
with different molecular subtypes, potentially explaining the failure of many novel 
therapies when trialled in unselected populations[11,12]. Currently, efforts are 
ongoing to identify select PDAC patient populations who would benefit from targeted 
therapies. A patient group which has garnered much interest are those with mutations 
of BRCA1 and BRCA2. These genes are important players in the homologous DNA 
repair (HR) pathway and mutations of both genes are strong risk factors for the 
development of several cancers including, breast, ovarian, prostate and pancreatic 
cancer[13,14]. Importantly, BRCA mutations also have implications for treatment as 
they may increase tumor susceptibility to both DNA-damaging chemotherapies such 
as platinum chemotherapy (PtCh), as well as poly (ADP-ribose) polymerase (PARP) 
inhibitors in breast and ovarian cancers. More recently, work has been done to 
determine if these clinical features translate to BRCA-mutated pancreatic cancer. This 
review will discuss the biology, epidemiology and clinical implications of BRCA 
mutations in PDAC, and will discuss future directions for this area of research.

MOLECULAR BIOLOGY OF HOMOLOGOUS REPAIR
Several reviews have previously described the biology of the HR system and the 
specific roles of BRCA1/2[15,16]. Briefly, DNA damage can occur as either a single-
stranded DNA break (SSB) or double-stranded DNA break (DSB). HR along with non-
homologous end joining (NHEJ) are the two major pathways that respond to DSB. HR 
has the highest fidelity and precision of the DSB repair pathways, therefore defects in 
this pathway (homologous repair deficiency, HRD) lead to error-prone repair and 
genomic instability, increasing cancer risk. Important proteins in the HR system 
include BRCA1, BRCA2, PALB2, ATM and RAD51[15]. Following DSB, BRCA1 
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negatively regulates factors involved in the NHEJ pathway (53BP1) and promotes end 
resection, an important first step in the HR pathway. BRCA1 directly interacts with 
PALB2 to bind BRCA2 which facilitates formation of RAD51 filaments later in the 
pathway[15]. RAD51 filament form along ssDNA created earlier by BRCA1-mediated 
end resection, allowing formation of homologous DNA and repair of the DSB 
(Figure 1)[15]. Notably, other proteins involved in the HR pathways such as PALB2 
and ATM are also mutated in PC, highlighting the importance of HR pathway 
integrity in determining PDAC risk[11,17].

While BRCA mutations confer increased cancer risk, emerging evidence suggests 
they also may be important markers for personalized medicine. In vitro and in vivo 
evidence suggests that both platinum-based chemotherapies and PARP inhibitors are 
more effective in patients harboring BRCA mutations[11].

EPIDEMIOLOGY AND DIAGNOSIS OF BRCA-MUTATED PDAC
Incidence of pathogenic BRCA  mutations in sporadic and familial PDAC
Mutations of the BRCA1 and BRCA2 genes were first identified as breast and ovarian 
cancer risk factors in the mid-1990s during studies aimed at characterizing the genes 
responsible for familial clustering of breast and ovarian cancers[18,19]. Early studies 
by the Breast Cancer Linkage Consortium identified a 2.3-fold and 3.5-fold increased 
risk of PC in carriers of BRCA1 and BRCA2 gene mutations, respectively[13,14]. In the 
general population, germline BRCA mutations occur at a rate between 1/300 and 
1/800[20]. However, incidence varies based on population as certain ethnic groups 
harbor founder mutations, increasing the incidence of BRCA mutations in these 
subgroups. The strongest example of the founder effect in BRCA is the Ashkenazi 
Jewish (AJ) population, where the presence of 3 founder mutations have increased 
rates of BRCA mutation to 1/40[21]. Other groups with founder BRCA mutations who 
are therefore at increased risk include Dutch, Norwegian and French-Canadian 
populations[22].

Among unselected PC patient cohorts, multiple studies have aimed to estimate the 
incidence of germline pathogenic BRCA mutations. Prevalence estimates ranged from 
0.7%-5.7% for BRCA2 and 0.3%-2.3% for BRCA1 (Summarized in Table 1)[6,23-26]. 
Notably, the cohorts in these studies varied widely based on several factors which 
could influence estimates of prevalence, including, number of AJ PC patients included, 
the number of patients with family histories of cancer, and median patient age[23]. For 
example, in AJ PDAC patients, studies have found that up to 19% of patients harbour 
germline BRCA mutations[23,27,28].

In familial PC, BRCA mutations, especially BRCA2 are also at increased frequency. 
In the case of BRCA2 mutations, studies have found germline mutations in 3.7%-19% 
of patients with strong familial histories of PDAC[29-32]. This range in estimates is 
likely a result of different criteria for familial pancreatic cancer (FPC), and different 
studies methodologies. Studies finding higher rates of BRCA2 mutation tended to have 
smaller sample sizes and included patients with three or more first- or second-degree 
relatives with PC, therefore included higher risk patients. Conversely, more recent 
studies have included larger sample sizes of patients, who met the more moderate FPC 
case definition (two first- or second- degree relatives with PC), finding more 
conservative estimates of prevalence (3.7% and 6%)[31,32]. Therefore, in patients with 
a stronger family history of PC, BRCA carrier status is more likely. The incidence of 
BRCA1 mutations in FPC has not been studied as well as BRCA2, however a recent 
study by Zhen et al[31] found that germline BRCA1 mutations were present in 1.2% of 
patients with FPC.

Diagnosis of BRCA-mutated PDAC and screening guidelines
While the identification of patients carrying BRCA mutations has been important in 
determining cancer risk, the discovery of personalized medicine options for this 
population has increased the clinical importance of identifying BRCA carriers. Genetic 
testing guidelines vary by region however, are primarily based on cancer phenotype 
which includes family history of breast, ovarian, prostate and pancreatic cancer, AJ 
ancestry and clinical presentation. Recently, genetic testing guidelines are being 
increasingly questioned as evidence accumulates to suggest that they would miss a 
large proportion of patients harboring BRCA mutations who may benefit from PARP 
inhibitors or platinum chemotherapies. In 2007, a Norwegian study tested breast and 
ovarian cancer patients for germline mutations in BRCA1 and BRCA2 and identified 
that 50% of patients with germline BRCA mutations do not have family histories of 
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Table 1 Summary of studies of incidence of germline BRCA mutations in unselected pancreatic cancer cohorts

Ref. Year Population Cohort size 
(Number AJ)

Germline BRCA1 
pathogenic mutation 
incidence (%)

Germline BRCA2 
pathogenic mutation 
incidence (%)

Combined germline 
BRCA mutation 
Incidence

Holter 
et al[23]

2015 North 
American

306 (33) 1.0% 3.6% 4.6%

Brand 
et al[24]

2018 North 
American

298 (26) 1.3% 1.3% 2.6%

Mizukami 
et al[25]

2020 Japanese 1005 (-) 1.7% 2.5% 4.2%

Grant et al[6] 2015 North 
American

290 (13) 0.3% 0.7% 1%

Lowery 
et al[26]

2018 North 
American

615 (111) 2.3% 5.7% 8%

AJ: Ashkenazi Jewish; BRCA: Breast cancer susceptibility gene.

Figure 1 Overview of the homologous repair pathway and roles of key proteins. A: Following double strand break, BRCA 1 binds to the site of 
damage, mediating end resection and initiating homologous repair. This prevents repair via non-homologous end joining; B: BRCA1 binds with PALB2 and BRCA2 
which facilitates assembly of RAD51 filaments; and C: RAD51 filaments form along ssDNA, subsequently leading to strand invasion and repair. DSB: Double strand 
break; HR: Homologous repair; NHEJ: Non-homologous end joining; BRCA: Breast cancer susceptibility gene.

BRCA-associated cancers[33]. Since then, multiple studies in different populations 
including patients with PDAC have confirmed these findings, showing poor 
associations between presence of BRCA mutations and expected family histories 
[23,34-38]. Furthermore, a recent study using data from 23&Me, a direct-to-consumer 
genetic test identified that 20% of carriers of the AJ founder variants don’t identify as 
AJ, and therefore would be excluded from screening criteria that include AJ 
ancestry[39]. They also found that of 393 BRCA mutation carriers with available data 
on family cancer history, 44% had no family history of BRCA-associated cancers, and 
therefore, given a diagnosis of PDAC, would not meet screening requirements. The 
recent IMPACT trial by the Memorial Sloan-Kettering Cancer Centre provided strong 
evidence in favour of increased testing access. Investigators tested 1040 patients (176 
PDAC) with advanced cancer and identified germline mutations in 21.5% of the PDAC 
patients. Notably, they found that across all cancers, 55% of clinically actionable 
mutations would not have been detected under current phenotype-based screening 
guidelines[40]. Together, this evidence strongly supports calls for increased access to 
genetic testing for PC patients. In early 2020, the National Comprehensive Cancer 
Network updated their recommenda-tions to suggest universal genetic testing for all 
PC patients as early as possible due to the rapid progression of the disease, and 
potential for early personalized therapy[41].
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CLINICAL FEATURES OF BRCA-MUTATED PDAC AND PROGNOSTIC 
IMPLICATIONS
While the ability of BRCA mutations to increase risk of PDAC is well established, their 
impact on the clinical features of the disease is less clear. Multiple cohort studies have 
shown in PDAC patients with germline mutations including BRCA1, BRCA2, PALB2, 
CDKN2A and ATM, are diagnosed earlier with PDAC than PDAC patients without 
germline mutations[31,42]. Conversely, a 2009 study comparing Jewish PDAC patients 
with and without germline BRCA mutations found no significant differences between 
age at diagnosis or any other clinicopathologic feature studied[28]. From a prognostic 
perspective, studies have shown mixed results. The largest cohort study to date 
including 71 BRCA-positive PDAC patients found a median OS of 14 mo for the whole 
cohort and 12 mo for patients with stage 3/4 disease. At time of publication, the 
median OS for early stage disease had not been reached as 52% of patients were still 
alive at 60 mo[43]. These findings suggest that BRCA-mutated PDAC patients may 
have a considerably better prognosis than the general PDAC population. On the 
contrary, more recent case-control studies by Blair et al[44] compared PDAC patients 
with BRCA1 and BRCA2 mutations to age-matched controls and showed that both OS 
and disease-free survival (DFS) were lower in carriers than controls. Another case-
control study comparing BRCA mutation-positive, early-stage PDAC patients 
undergoing surgical resection to age-matched BRCA-wildtype controls found no 
significant differences in median OS or DFS between the groups and concluded that 
BRCA mutations were not prognostic in early PDAC[45]. Authors have suggested that 
early findings of improved prognosis in this population may have been a result of 
ascertainment bias as patients surviving longer were more likely to receive genetic 
testing and participate in the study. Another factor that may lead to improved 
prognosis in this patient population is increased susceptibility to treatments such as 
PtCh. Most recently, a study using data from the Know Your Tumor program aimed to 
assess whether mutations of HRD and other DNA-damage response (DDR) genes 
conferred a survival benefit or whether observed benefits were a result of increased 
PtCh-sensitivity[46]. The authors found that patients with advanced PDAC and 
HR/DDR mutations had improved survival but only if treated with PtCh. In PtCh-
naïve patients, there was no survival benefit in this patient population[46].

Overall, identifying clinical differences between BRCA-mutated PDAC and 
wildtype PDAC has been difficult due to the relative rarity of these patients. Further-
more, the increasing use of personalized therapies (PARP inhibitors and platinum 
chemotherapy) in this population will make determining the prognostic implications 
of BRCA mutations more challenging.

MANAGEMENT OF BRCA-MUTATED PDAC: SYSTEMIC THERAPY
Platinum chemotherapy
While both FOLFIRINOX and gemcitabine/nab-paclitaxel chemotherapy regimens are 
more effective than gemcitabine monotherapy, there is yet to be a comparative 
randomized clinical trial to provide data on which regimen is more effective. In the 
locally advanced setting, a recent case series of 485 consecutive patients suggested that 
FOLFIRINOX was associated with a higher response rate (19% vs 6%, P = 0.001), 
however OS was not different with either treatment[47]. Retrospective studies in 
metastatic PDAC are inconclusive, with some studies reporting survival improvement 
on FOLFIRINOX while others report no difference between the two regimens[47,48]. 
Given the increased toxicity associated with FOLFIRINOX and potential survival 
benefits, identifying subsets of patients who are more likely to benefit from this 
regimen will be an important advancement in PC management.

The HRD phenotype of BRCA-mutated cancers appears to render them more 
sensitive to chemotherapies that induce DNA damage, such as PtCh. Early studies 
found that cells lacking BRCA1 are more sensitive to treatment with cisplatin[49]. In 
the presence of HRD, these cells are unable to appropriately repair the DNA damage, 
leading to genomic instability and cell death[50]. Clinical studies in breast cancer have 
found that platinum-chemotherapy improves objective response rates (ORRs) for 
metastatic breast cancer patients only in BRCA-mutated cancers. Based on genomic 
studies in PDAC, it appears that tumors with BRCA-mutations have “unstable” 
molecular phenotypes and are more likely to be sensitive to genotoxic therapies such 
as PtCh[11].



Rosen MN et al. BRCA mutated pancreatic cancer

WJG https://www.wjgnet.com 1948 May 7, 2021 Volume 27 Issue 17

In PC, several large retrospective studies have investigated the efficacy of PtCh such 
as FOLFIRINOX in patients with BRCA mutations or other genetic mutations leading 
to HRD (Table 2). To date, the largest cohort study was conducted by Golan et al[43] 
This multi-institution cohort study included 71 PC patients with germline BRCA 
mutations and found that among patients with advanced PDAC, OS was significantly 
longer in patients treated with PtCh (22 vs 9 mo). Since this study, several other 
retrospective cohort studies have reported improved outcomes [ORR, progression free 
survival (PFS)] in patients with germline mutations to HR-related genes who were 
treated with PtCh in both resectable and non-resectable PDAC[35,44,51,52]. For 
example, Blair et al[44] showed that median survival was significantly improved in 
resected PDAC patients with germline BRCA mutations who were treated with 
adjuvant PtCh compared to non-PtCh (31.0 vs 17.8 mo). Reiss et al[52] showed 
significant improvement in mOS in patients with unresectable PDAC and mutations in 
BRCA1, BRCA2 or PALB2 who were treated with PtCh compared to patients treated 
with non-PtCh (median follow-up of 20.1 mo vs mOS of 15.5 mo). Several studies have 
also compared the effectiveness of PtCh between patients with and without HRD 
mutations. In a cohort study of platinum-treated PDAC patients, patients found to 
have tumor-level mutations to 12 HR-related genes (including BRCA1, BRCA2, ATM 
and PALB2) had significantly improved median PFS compared to platinum-treated 
patient without HR-related gene mutations[35]. Similarly, two recent case-control 
studies reported improved PFS and ORR in platinum-treated patients who carried 
mutations to BRCA1, BRCA2 and PALB2[53,54]. Wattenberg et al[53] showed an ORR 
of 58% in mutation carriers treated with PtCh compared to 21% non-mutated PDAC 
patients. In resected PDAC treated with perioperative PtCh, Yu et al[54] reported that 
mutation carriers had significantly greater survival (mOS not met vs 23.1 mo, HR = 
0.12).

While these studies are promising, the retrospective nature introduces several 
limitations. Firstly, outcomes are widely subdivided as PtCh vs non-PtCh, however the 
PtCh groups generally include a variety of regimens such as gemcitabine + cisplatin, 
gemcitabine + oxaliplatin, FOLFOX and FOLFIRINOX. Seeing as oxaliplatin and 
cisplatin exert DNA damage through different mechanisms of action, it is unclear how 
well these findings will translate to modern clinics where patients are typically treated 
with FOLFIRINOX as a first-line therapy[52]. One study reported that there was no 
significant difference in survival for mutation-positive patients on different PtCh 
regimens, however in the mutation-negative group, patients only responded to 
FOLFIRINOX[53]. This suggests that there is potentially a role for PtCh regimens in 
BRCA-mutated patients that did not show benefit when tested in unselected PDAC 
populations, in situations when FOLFIRINOX cannot be tolerated. Another limitation 
is the current practices with respect to treatment selection. Because of the toxicity 
associated with PtCh such as FOLFIRINOX, these regimens are generally used in 
younger patients with better performance status. Therefore, in retrospective analyses 
of BRCA-mutated PDAC cohorts, it is unclear whether survival benefits seen are 
because of increased activity of PtCh in this patient population or because the patients 
treated with PtCh are younger and have better performance status. Few studies have 
reported data on patient age in these analyses and none have reported patient 
performance status. In light of this, these retrospective analyses are difficult to 
interpret. Lastly, retrospective studies may be affected by survival bias. Most studies 
compared confirmed mutation carriers to untested cohorts. It is possible that patients 
who survive longer are more likely to undergo genetic testing and be classified as 
carriers. In light of these limitations, a recent meta-analysis concluded that the current 
available evidence suggests PtCh is more effective in BRCA-mutated patients, however 
the quality of evidence is low[55].

To date, there have been few prospective studies assessing the effectiveness of 
platinum-chemotherapies in this population. A recent phase II randomized controlled 
trial investigated cisplatin and gemcitabine with or without Veliparib, a PARP 
inhibitor in patients with untreated advanced PDAC and a germline mutation of 
BRCA or PALB2[56]. While the primary endpoint (response rate) was not significantly 
different with Veliparib, the authors reported unprecedented survival rates, with a 2-
year survival rate of 30.6% and a 3-year survival rate of 17.8%[56]. Response rates were 
also high for both arms of the study (74% with Veliparib, 65.2% without veliparib)[56]. 
While this data provides compelling evidence for the use of PtCh in this patient 
population, the study lacks a control group treated with non-PtCh for comparison. 
This study adds to the literature as all patients were on the same PtCh regimen 
(gemcitabine + cisplatin) which showed impressive responses and survival rates. 
Notably, the patients included in this study all had a good performance status (ECOG 
0-1) and therefore these results may not translate as well to real-world PDAC patients 
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Table 2 Retrospective studies of platinum-chemotherapies in BRCA-mutated pancreatic ductal adenocarcinoma

Ref. Year Study design Patient population Findings

Golan 
et al[43]

2014 Multi-institution 
cohort study

71 patients with germline BRCA mutations (21 
BRCA1, 49 BRCA2, 1 both)

Superior mOS in stage 3/4 patients treated with platinum 
compared to non-platinum chemotherapy (22 vs 9 mo, P = 
0.039)

Vyas et al[51] 2015 Cohort study 10 patients with BRCA2 mutation and known 
PDAC

Duration of response on platinum agents ranged from 8-32 
wk, mean of 19.3 wk

Blair et al[44] 2018 Combined case 
control cohort 
study

22 patients with resected sporadic PDAC and 
germline BRCA mutations (1 BRCA1, 18 BRCA2
)

Improved OS in BRCA-mutated patients treated with adjuvant 
PtCh compared to patients treated with alternative 
chemotherapies or no adjuvant therapy (31.0 vs 17.8 vs 9.3 mo, 
P < 0.001)

Reiss et al[52] 2018 Cohort study 29 patients with unresectable PDAC and 
germline mutations of BRCA1, BRCA2 or 
PALB2(12 BRCA1, 15 BRCA2, 2 PALB2)

Superior mOS in platinum-treated patients (undefined mOS 
(median follow up 21 mo) vs 15.5 mo, P = 0.02)

Kondo 
et al[35]

2018 Cohort study 28 patients with advanced PDAC (13 had HR-
related gene mutations, 15 without mutations to 
HR-related genes)

Superior median PFS in HR-mutated PDAC patients treated 
with platinum chemotherapy compared to PDAC patients 
without HR mutations treated with platinum therapy (20.8 mo 
vs 1.7 mo, P = 0.049)

Yu et al[54] 2019 Case control 
study

32 resected PC patients with germline BRCA1, 
BRCA2, or PALB2 mutation, 64 resected PC 
patient controls without germline mutations

With peri-operative platinum exposure, mOS was longer in 
mutation-positive group that mutation negative group (mOS 
not yet met vs 23.1 mo, HR= 0.12)

Wattenberg 
et al[53]

2020 Case control 
study

26 platinum-treated patients with advanced 
stage PDAC and mutations of BRCA1, BRCA2 
or PALB2, 52 platinum-treated, wildtype, age-
matched controls

Improved ORR in patients with mutations compared to 
controls (58% vs 21%, P = 0.0022). Improved real world PFS in 
mutation carriers (10.1 mo vs 6.9 mo, HR = 0.43, P = 0.0068)

HR: Homologous Repair; mOS: Median overall survival; ORR: Objective response rate; PDAC: Pancreatic adenocarcinoma; PtCh: Platinum chemotherapy; 
BRCA: Breast cancer susceptibility gene.

where performance status may be lower.
Overall, there is evidence in favour of the use of PtCh as a first-line treatment for 

BRCA-mutated PDAC, however, most data is retrospective and the quality of the 
evidence in favour of this treatment is low. There is yet to be a randomized controlled 
trial confirming the observations that PtCh is preferable to other chemotherapy 
regimens in this population, however enrollment to such a study may be difficult due 
to current management practice. Furthermore, it is unclear whether or not 
FOLFIRINOX or gemcitabine plus cisplatin should be used for this patient population.

PARP inhibitors
The sensitivity of BRCA-deficient cancers to PARP inhibition was first reported in 
2005, in which researchers identified that loss of function of both BRCA and PARP is 
synthetically lethal[57,58]. PARP is an important family of enzymes involved in 
responding to SSB the other prominent form of DNA damage other than DSB. This 
combined loss of SSB repair in HRD cells is thought to lead to synthetic lethality 
(Figure 2). While the exact mechanism of action is still unclear, the earliest theory was 
that PARP inhibition prevents the repair of single-stranded DNA breaks (SSBs), 
leading to accumulation of replication-associated DSBs[59]. In HRD cells which have 
defective DSB repair, DSBs are repaired via error-prone NHEJ, leading to genomic 
instability and cell death. More recent evidence suggests that the biology of BRCA and 
PARP deficient synthetic lethality is more complex, however the detailed mechanisms 
are outside the scope of this review[60].

Therapeutic inhibitors of this pathway were evaluated in a phase I study of olaparib 
and confirmed activity in several different tumor types harboring BRCA 
mutations[61]. In ovarian cancer, PARP inhibitors are FDA-approved for use as a 
maintenance therapy in patients with recurrent ovarian cancer who demonstrated a 
complete or partial response to PtCh, regardless of HRD biomarker status[62]. This 
approval came following three phase III trials which demonstrated significant 
improvements in PFS in patients treated with oral PARP inhibitors as maintenance 
therapy following chemotherapy[63-65]. More recently, emerging data from several 
randomized clinical trials reporting efficacy of PARP inhibitors as a front-line 
treatment for newly diagnosed ovarian cancer[62]. In advanced breast cancer, PARP 
inhibitors have demonstrated improvements in PFS relative to chemotherapy in 
patients with HER2-negative, BRCA-mutation positive tumors[66,67]. However, there 
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Figure 2 Mechanism of synthetic lethality in BRCA-mutated cells treated with poly (ADP-ribose) polymerase inhibitors. While neither a breast 
cancer susceptibility (BRCA) mutation or treatment with Poly (ADP-ribose) polymerase (PARP) inhibitors alone is lethal to cancer cells, dual-inhibition of both systems 
through mutation and pharmacological inhibition is incompatible with survival. Following PARP inhibition, single-stranded deoxyribonucleic acid (DNA) breaks are 
unable to be repaired. During replication, replication forks stall at unrepaired DNA damage, resulting in formation of double-stranded DNA break. In cells with 
defective homologous repair (BRCA mutations), double-stranded damage is repaired through non-homologous end joining, resulting in genomic instability and cell 
death. Poly (ADP-Ribose) Polymerase. PARP: Poly (ADP-ribose) polymerase; BRCA: Breast cancer susceptibility gene.

is yet to be a clinical trial demonstrating improvements in OS with PARP inhibitor use 
in advanced breast cancer[68]. Recently, PARP inhibitors have also demonstrated 
effectiveness in metastatic prostate cancer[69].

With the success of PARP inhibitors in other BRCA-associated cancers, focus has 
shifted to translating these findings to BRCA-associated PDAC. To date multiple phase 
II studies have evaluated the efficacy of PARP inhibitors in PDAC patients with 
germline BRCA mutations[56,70,71]. In a phase II study by Kaufman et al[71], 298 
patients with advanced cancer (23 with pancreas cancer) and germline BRCA1/2 
mutations were treated with oral olaparib. The response rate among PC patients was 
21.7% in patients who had received two prior lines of chemotherapy[71]. Conversely, 
another phase II study evaluated the efficacy of Veliparib in 16 advanced PDAC 
patients with known germline mutations of BRCA1/2 or PALB2 who had undergone 1-
2 previous lines of treatment, finding no objective responses[70]. Authors suggested 
potential differences between olaparib and veliparib as a potential explanation for the 
difference in response rates between the two trials. Furthermore, the high rates of pre-
treatment with PtCh (88% of study population) coupled with a high disease 
progression rate (64% of those on PtCh) may indicate a high-level of platinum-
resistance in this study population, which may in turn lead to PARP inhibitor 
resistance[70]. This is a plausible explanation given the known association between 
platinum-sensitivity and PARP inhibitor sensitivity seen in ovarian cancer. Due to the 
tendency of cancers to develop resistance to PARP inhibitors, another approach that 
has been tried is combination regimens involving chemotherapy and PARP inhibitors. 
A recent phase II trial compared a combination regimen of gemcitabine plus cisplatin 
with or without veliparib as first line therapy for advanced PDAC patients with 
germline mutations of BRCA1/2 or PALB2[56]. Veliparib did not improve response 
rates over gemcitabine plus cisplatin alone (74.1% vs 65.2%, P = 0.55), however as 
discussed earlier, the response rates in both arms both exceeded pre-study thresholds 
of efficacy and therefore, the high response rate to gemcitabine plus cisplatin may 
have obscured any signal of benefit from veliparib.

With the relative success of combination chemotherapy regimens in PDAC 
(FOLFIRINOX, Gemcitabine-Abraxane), focus has been placed on the development of 
maintenance therapies which can prolong PFS and improve quality of life (QOL) in 
responders. Most recently, data from the Pancreas Cancer Olaparib Ongoing (POLO) 
trial has supported the use of PARP inhibitors as a maintenance therapy in this patient 
population following response to platinum-chemotherapy[72]. The POLO trial was an 
international phase III, double-blind, placebo-controlled randomized clinical trial 
investigating oral olaparib maintenance therapy in metastatic PDAC patients with 
germline BRCA1/2 mutations who had not progressed during first-line PtCh 
(minimum of 16 wk of chemotherapy). Patients were randomized to either olaparib or 
placebo maintenance therapy. PFS was significantly longer in the olaparib group (7.4 
vs 3.8 mo). At the time of publication, data on OS was not yet mature but preliminary 
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results indicated no significant difference in OS between the two groups (18.9 vs 18.1 
mo)[72]. 18 patients (20%) in the olaparib and 6 patients (11%) in the placebo group 
achieved a tumor response, and the median duration of responses were 24.9 mo and 
3.7 mo, respectively. Other evidence for maintenance therapy comes from the phase II 
study by O’Reilly et al[56] who reported exploratory analyses for 10 patients with 
germline BRCA or PALB2 mutations who underwent at least 4 mo of PtCh without 
progression and subsequently were switched to a PARP inhibitor as maintenance 
therapy, finding a median PFS of 23.4 mo in this subset of patients.

In the context of maintenance therapy, preservation of quality of life and 
minimization of adverse effects are important goals of treatment. In the POLO trial, 
Grade ≥ 3 adverse events occurred in 40% of the olaparib group and 23% of the 
placebo group[43]. The most frequently reported adverse events in the treatment 
group were fatigue or anesthesia, nausea and anemia, with the majority of these cases 
being low grade. Only 15% and 5% of patients on olaparib underwent dose reductions 
or discontinued treatment because of adverse events, respectively. More recently, 
secondary outcomes of health-related QOL were reported, showing that olaparib 
treatment did not lead to a reduction in quality of life scores, a concern in the context 
of maintenance therapy meant to preserve functioning and QOL[73].

In light of these findings, the FDA has approved olaparib for maintenance therapy 
in patients with metastatic PDAC patients with germline mutations of BRCA1/2 who 
have not progressed on at least 16 wk of first-line PtCh. This approval is not without 
controversy as there are several criticisms of the POLO trial and unanswered questions 
in regards to this therapy[74]. For example, the lack of improvement in OS puts the 
validity of the finding of improved PFS into question[74]. However, this may be 
because of the high rates of therapy in the placebo group following disease 
progression, including 15% of the patients who received a PARP inhibitor. In addition, 
it should be stated that the OS results were from an interim analysis with only 46% 
data maturity. Furthermore, concern has been raised that the discontinuation of PtCh 
after 16 wk in patients who were responding is incongruent with clinical practice 
guidelines for first-line platinum chemotherapy[74]. However, in the POLO trial, the 
majority of patients received FOLFIRINOX (> 80%) with a median duration of first line 
PtCh of 5 mo and 33% of patients receiving > 6 mo prior to randomization[72]. In 
addition, the PRODIGE 4/ACCORD 11 trial recommended a total of 6 mo of palliative 
chemotherapy[10], therefore, the duration of therapy of 1st line PtCh may not be out of 
keeping with other clinical trials in this setting of disease. Furthermore, use of placebo 
alone in the control group has come under criticism as evidence has emerged in favour 
of the continuation of 5-FU as maintenance therapy in patients who respond to 
FOLFIRINOX[75]. That being said, the accumulating side effects of > 4 mo of 
FOLFIRINOX may justify a treatment break, especially if there is no evidence of 
progression on imaging. Lastly, POLO only included patients with germline mutations 
of BRCA1/BRCA2, therefore it remains unclear if there is a broader population of 
PDAC patients who would benefit from olaparib as well, such as patients with 
germline mutations to other components of the HR system (PALB2, ATM) or patients 
with other positive biomarkers of HRD.

Immunotherapies
While immunotherapies such as checkpoint inhibitors (anti-PD1/PDL1 and CTLA-4) 
have revolutionized the management of many cancers, they have had limited efficacy 
in PDAC. The genomic instability and increased total mutational load of BRCA-
mutated and other HRD tumors results in neoantigens which may increase efficacy of 
immunotherapy in these tumors[11]. Recent translational studies have showed that 
specifically BRCA2-mutated tumors show increased sensitivity to immune checkpoint 
blockade as a result of their effect on the tumor immune microenvironment[76]. This is 
in line with previous findings of associations between BRCA mutations and PD-L1 
expression in PDAC, a predictive marker for immunotherapy[77,78].

An emerging strategy for BRCA-mutated cancers is combination therapy with 
immune check point inhibitors and PARP inhibitors[79]. Given that treatment with 
PARP inhibitors also increases expression of PD-L1 and total mutational burden 
(potential biomarkers of response), combining these two therapies may act 
synergistically against HRD tumors[79]. In BRCA-mutated ovarian and breast cancers, 
several clinical trials are currently exploring the clinical efficacy of PARP 
inhibitor/immune checkpoint blockade combination therapy with early trials showing 
promising results[80]. In the maintenance setting, the ATHENA trial is currently 
testing a combination therapy consisting of rucaparib with nivolumab as a therapy for 
ovarian cancer following response to PtCh (NCT03522246). In PDAC, there are several 
ongoing Phase II trials investigating combination regimens involving PARP inhibitors 
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and immune checkpoint inhibitors (Table 3). The PARPVAX study is investigating 
combination therapy of niraparib + either ipilimumab or nivolumab as maintenance 
therapy following response to PtCh (NCT03404960). Another phase II study is 
investigating combination therapy regimens including olaparib plus durvalumab in 
PDAC with a primary outcomes of changes in genomic and immune markers 
(NCT03851614). Most recently, a study has been initiated comparing olaparib with and 
without pembrolizumab as maintenance therapy for BRCA1/BRCA2 mutated-PDAC 
patients who responded to first-line PtCh (NCT04548752). Given the recent evidence 
for PARP inhibitors in PDAC, the use of immune checkpoint blockade for PDAC 
remains an active field of research.

BIOMARKERS OF HRD
In the context of both PtCh and PARP inhibitors, the development of biomarkers for 
HRD will be an important step in implementing these therapies broadly in clinical 
practice. While most research to date has focused on germline mutations of BRCA1/2 
and PALB2, combined these represent less than 10% of all PDAC cases. While this is an 
important mechanism of HRD, HRD can also arise through somatic mutations or 
epigenetic modification of DDR genes potentially resulting in sensitivity to PtCh and 
PARP inhibitors. Therefore, relying solely on germline mutations of these three genes 
for treatment selection will likely miss patients who would otherwise benefit from 
targeted therapy. For example, in advanced pancreatic cancer, tumor-level mutations 
to HRR genes such as BRCA1/2, ATM, PALB2, RAD51 were highly predictive of 
response to PtCh[35]. Recently a meta-analysis compared outcomes (ORR, survival) in 
PARP inhibitor trials and found that similar outcomes between patients with germline 
and patients with somatic BRCA mutations[81]. Interestingly, out of 99 studies of 
PARP inhibitors screened, only 18 included patients with somatic mutations, 
indicating that this is an understudied area of research[81]. Specifically in PDAC, only 
two studies investigated PARP inhibitors in patients with somatic BRCA mutations 
and both reported a non-significant increase in response rate in patients with somatic 
mutations, relative to germline[81]. No trials to date have evaluated the efficacy of 
maintenance olaparib, the only FDA-approved PARP inhibitor indication in PDAC in 
patients with somatic HR mutations. Two active trials of olaparib in PDAC are 
including patients with BRCA-associated family history or somatic HRD mutations, 
but explicitly excluding patients with germline BRCA mutations (NCT02677038, 
NCT02511223). However, these trials are not using olaparib in the maintenance 
setting. Given the efficacy of PARP inhibitors and PtCh in somatic BRCA-mutated 
ovarian cancer[63,82] this is an important area for future investigation in PDAC.

In addition to mutations of BRCA and other HR-related genes, genomic signatures 
of HRD have emerged as a promising biomarker of the HRD phenotype and 
subsequent treatment response[11]. These biomarkers will allow the identification sub-
populations of PDAC patients who would benefit from PtCh or PARP inhibitors, and 
therefore expand the scope of use for these agents in PDAC. Multiple commercial 
assays now exist which can assess tumor tissues and assign an HRD score[62]. 
Examples of these assays include MyChoice CDx Assay (Myriad Genetics) and the 
FoundationOne CDx (Foundation Medicine) which are both FDA-approved for the 
evaluation of HRD. These tests combine loss-of heterozygosity scores with other 
markers of genomic instability (telomeric-allelic imbalance, large-scale transition) in 
order to quantify HRD and identify patients who would benefit from HRD-targeting 
therapies. These assays have been used in several clinical trials in breast and ovarian 
cancer and have been validated as useful biomarkers for response to PARP 
inhibitors[64,83,84]. Confirmation of HRD by assay is now an FDA-approved 
biomarker for the use of several treatment regimens including combined olaparib with 
bevacizumab for ovarian cancer. Furthermore, olaparib was recently approved for 
metastatic prostate cancer in patients with BRCA mutations or HRD. Investigating 
these biomarkers in PDAC will aid in identifying BRCA-wildtype patients who may 
benefit from PARP inhibitors and PtCh, an important prospect considering the poor 
prognosis in advanced PC.

CONCLUSION
The field of HRD in PDAC is in its infancy relative to ovarian and breast cancers, 
however promising advances have been made in recent years. Currently, the available 
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Table 3 Ongoing phase II clinical trials investigating poly (ADP-ribose) polymerase inhibitor/Immune Checkpoint blockade combination 
therapy in pancreatic ductal adenocarcinoma

Study 
identifier Patient population Immunotherapy PARP 

inhibitor Phase and design
Estimated 
completion 
date

NCT03404960 Advanced PDAC patients who did not 
progress on PtCh

Nivolumab or 
Ipilimumab

Niraparib Phase Ib/II trial evaluating 
effectiveness of olaparib with 
either nivolumab or ipilimumab

June 2021

NCT03851614 Advanced PDAC, leiomyosarcoma or 
mismatch repair-proficient colorectal cancer

Durvalumab Olaparib Phase II trial evaluating impact of 
combination therapy on genomic 
and immune biomarkers

March 2022

NCT04493060 Metastatic PDAC with mutations of BRCA1/2 
or PALB2, previously treated with 1-2 lines of 
chemotherapy including a PtCh agent

Dostarlimab Niraparib Phase II, evaluating the disease 
control rate at 12 weeks (DCR12) 
with combination therapy 

December 2022

NCT04548752 Metastatic PDAC with germline BRCA1 or 
BRCA2 mutation treated with first-line PtCh

Pembrolizumab Olaparib Phase II trial comparing 
combination therapy to olaparib 
alone as maintenance therapy

March 2025

PDAC: Pancreatic adenocarcinoma; PtCh: Platinum chemotherapy; BRCA: Breast cancer susceptibility gene.

data from retrospective studies suggests that first-line PtCh is preferred however the 
PtCh regimen is yet to be defined. Olaparib maintenance therapy is a standard of care 
option in patients with BRCA1/2 mutations and offers the benefit of ongoing anti-
cancer therapy without traditional cytotoxic therapy toxicities. Important next steps 
include investigating these PtCh regimens and PARP inhibitors in the neoadjuvant 
setting, and determining if patients with somatic HR mutations or HRD as detected by 
genomic assays will also benefit from these treatments.
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Abstract
The association between chronic hepatitis C (CHC) infection and extrahepatic 
manifestations (EHMs), particularly cardiometabolic diseases, has been 
extensively examined. However, there has still been insufficient evaluation for 
these EHMs after virological cure. Several multidirectional mechanisms have been 
proposed explaining the ability of hepatitis C virus (HCV) developing EHMs, 
cardiometabolic ones, as well as the effect of antiviral therapy to resolve these 
EHMs. Data on these manifestations after achieving sustained virologic response 
(SVR) are still conflicting. However, current evidence suggests that reversal of 
hepatic steatosis and its coexistent hypocholesterolemia after successful viral 
eradication led to unfavorable lipid profile, which increases cardiovascular 
disease (CVD) risk. Additionally, most observations showed that metabolic 
alterations, such as insulin resistance and diabetes mellitus (DM), undergo some 
degree of reduction after viral clearance. These changes seem HCV-genotype 
dependent. Interferon-based antiviral therapy and direct acting antiviral drugs 
were shown to minimize incidence of DM. Large epidemiological studies that 
investigated the effect of SVR on CVD showed great discrepancies in terms of 
results, with predominant findings indicating that CVD events decreased in 
patients with SVR compared to non-responders or untreated ones. In this review, 
we present a summary of the current knowledge regarding extrahepatic sequelae 
of CHC following SVR, which may have an impact on healthcare providers’ 
clinical practice.

Key Words: Chronic hepatitis C; Sustained virologic response; Hepatic steatosis; Diabetes 
mellitus; Cardiovascular disease
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Core Tip: The implementation of direct acting antiviral drugs has dramatically changed 
the landscape of hepatitis C virus (HCV) treatment, with over 95% of patients 
achieving sustained virologic response (SVR). Although consistent evidence 
demonstrated better outcomes for both hepatic and extrahepatic complications after 
viral clearance, data on cardiometabolic manifestation showed inconsistent results. In 
this review, we are shading light on the latest findings about cardiometabolic 
extrahepatic manifestations post-SVR. These updates may guide clinicians engaged in 
HCV care to integrate in their management post-viral eradication risks and subsequent 
long-term care.

Citation: Shengir M, Elgara M, Sebastiani G. Metabolic and cardiovascular complications after 
virological cure in hepatitis C: What awaits beyond. World J Gastroenterol 2021; 27(17): 1959-
1972
URL: https://www.wjgnet.com/1007-9327/full/v27/i17/1959.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i17.1959

INTRODUCTION
Chronic hepatitis C (CHC) infection caused by hepatitis C virus (HCV) is associated 
with substantial morbidity and mortality globally, affecting approximately 2.5% 
individuals (equivalent to 177.5 million) worldwide[1]. It is currently one of the 
leading etiologies for hepatocellular carcinoma (HCC) and decompensated cirrhosis 
requiring liver transplantation in Western countries[2,3]. The primary goal of 
treatment is to achieve the cure of the infection or sustained virologic response (SVR), 
defined as undetectable HCV RNA in the serum 12 or 24 wk after the end of 
treatment[4,5]. Since the introduction of first-generation direct acting antiviral agents 
(DAAs), boceprevir and telaprevir, in 2011, there has been a rapidly expanding 
population of CHC patients achieving SVR[6]. Viral eradication has been associated 
with marked reduction in the risk of end-stage liver disease, need for liver 
transplantation, and decrease in both liver-related and overall mortality[7].

Although HCV is a hepatotropic virus, for two decades several studies described 
the association between HCV and a heterogeneous array of extrahepatic 
manifestations (EHMs)[8-10] (Figure 1). Yet, the mechanism by which the virus evokes 
the systemic diseases remain to be elucidated. Endocrine-metabolic alterations, which 
are most frequently found in CHC patients, are thought to be caused by direct and 
indirect effects of disturbing host lipid and glucose metabolism[11,12], as well as 
alteration in adipocytokines released from adipose tissue[13,14]. Likewise, CHC 
infection has also been identified as an independent predictor for cardiovascular 
events such as carotid artery atherosclerosis, stroke, myocardial ischemia and heart 
failure, all of which are linked with poor outcomes[12]. Nevertheless, the impact on 
cardiovascular disease (CVD) is not fully established[15]. In clinical settings, the 
prognosis of CHC is not only depending on liver-related outcomes but also on 
extrahepatic sequelae.

Recently, much attention is drawn toward EHMs that occur following viral cure. 
Nonetheless, whether the development of such manifestations is a long-term 
consequence of the viral infection itself or an effect of HCV medications remains 
unknown. In this context, various reports have shown ample evidence for high 
prevalence of CVD and metabolic alterations such as dyslipidemia, hepatic steatosis, 
insulin resistance (IR), obesity and diabetes mellitus (DM)[16-19] (Table 1). While the 
impact of CHC infection on liver-related outcomes pre- and post-treatment has been 
well studied, extrahepatic sequelae, especially in post-SVR setting, are less well 
known. This review article highlights the current knowledge regarding the effect of 
SVR on EHMs.
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Table 1 Summary of studies investigated cardiometabolic manifestations of chronic hepatitis C after viral cure

Ref. Antiviral regimen The studied HCV-associated 
cardiometabolic manifestations Post SVR outcomes

Hypercholesterolemia in patients with genotype 3

No change in genotype 3 non-responders and in 
patients with genotype 1 regardless of response

Fernández-Rodríguez 
et al[28], 2006

NA1 Lipid disturbances. Hepatic steatosis

Decrease in steatosis

Giordanino et al[71], 2008 IFN monotherapy or Peg-IFN 
+ RBV (24-48 wk)

Glucose abnormalities (IFG or DM) No significant reduction in the risk of glucose 
intolerance in long-term responders and non-
responders

Arase et al[70], 2009 IFN monotherapy or IFN + 
RBV2

DM Decreased incidence of DM in sustained 
responders. However, its development is 
associated with advanced liver disease 

Lipid abnormalities Increased LDL and total cholesterol from baseline 
compared to non-responders

Corey et al[18], 2009 NA1

Risk of CVD Increased CVD risk profile

IR Decreased IRConjeevaram et al[67], 2011 Peg-IFN + RBV (24-48 wk)

Obesity Decreased in BMI

Total cholesterol and triglycerides levels 
significantly increased

Kuo et al[27], 2011 Peg-IFN + RBV (24 wk) Change in serum lipid

No evident change in lipid profile occurred in non-
SVR group

Baseline and posttreatment HOMA-IR values were 
similar in SVR patients

Aghemo et al[68], 2012 Peg-IFN + RBV2 IR in non-diabetic CHC patients 

Significant increase in HOMA-IR was noted in non-
SVR patients

Clark et al[25], 2012 Albinterferon α-2b + RBV Lipid abnormalities in genotypes 2,3 Hypercholesterolemia 

Reduced IR in genotype 1 respondersThompson et al[66], 2012 Albinterferon α-2b vs Peg-IFN 
+ RBV (24-48 wk)

IR in genotypes 1,2,3

No change in genotype 1 non-responders and 
genotype 2 and 3 regardless of the response

Increased total cholesterol and triglycerides in 
sustained responders

Decreased HOMA-IR in patients with SVR and 
baseline IR

Chang et al[29], 2014 eg-IFN + RBV (24/48 wk) Lipids and IR in genotypes 2, 3

High HOMA-IR was found in patients without 
baseline IR (only in genotype 1)

Hsu et al[88], 2015 Peg-IFN + RBV (16-48 wk) Acute coronary syndrome and 
ischemic stroke

Improvement in both studied circulatory outcomes

Innes et al[89], 2015 NA1 CVD Reduced hazard and absolute risk for CVD

Increased LDL level and particle size and 
decreased triglycerides concentration and VLDL 
particle size irrespective to treatment response

Meissner et al[24], 2015 SOF + RBV (24 wk) Lipid disturbances in genotype 1

Increased intrahepatic lipid-related genes in 
sustained responders

Leone et al[72], 2016 IFN-based regimen DM and CVD No significant risk reduction in DM and CVD in 
SVR group as opposed to non SVR

Lower IFG and DM, and higher triglycerides in 
sustained responders

Yair-Sabag et al[39], 2016 Peg-IFN + RBV (24-48 wk) IFG and DM. Triglycerides. Hepatic 
steatosis

Improvement in hepatic steatosis

Chang et al[16], 2017 NA1 Cardiovascular complications An increased adipokine PAI-1 in SVR group, which 
accelerates cardiovascular risk, especially in 
vulnerable cases

Mahale et al[69], 2018 IFN-based regimen2 DM and CVD Antiviral therapy associated with lower risk of DM 
and stroke whereas no significant effect on CVD
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Nahon et al[90], 2017 Peg-IFN + RBV (16-48 wk) or 
combination therapies3

CVD Lower risk of CVD in SVR subjects in comparison 
to non SVR

Glycosylated hemoglobin was not affected in 
known diabetic patients

Stine et al[74], 2017 DAAs2,3 DM in genotypes 1, 2, 3

1/3 of patients required escalation of anti-diabetic 
therapy during antiviral treatment

While total cholesterol increased in both groups, 
triglycerides levels decreased in group 1 and 
increased in group 2 

LDL elevated in group 1 and No change in group 2

No significant variation in serum glucose

Carvalho et al[11], 2018 SOF + LDV ± RBV (group 1) vs 
Peg-IFN + RBV (group 2)

Lipid levels. Serum glucose. IR

Significant increase in HOMA-IR only in group 2

Decrease in CAP and LDL in patients with high 
baseline values

Kawagishi et al[17], 2018 DAAs3 Hepatic steatosis. Lipid 
abnormalities

Elevated sdLDL in patients who had dyslipidemia 
and hepatic steatosis at 24 wk

Li et al[73], 2018 DAAs4 DM Lower risk of DM in SVR patients than in treatment 
failure group

High prevalence of fatty liver Noureddin et al[46], 2018 DAAs3 Hepatic steatosis and fibrosis

Although fibrosis has been reduced in patients 
with and without steatosis compared to baseline, 
patients with steatosis continued to have clinically 
significant liver stiffness

Reduced glucose levelLi et al[10], 2019 IFN + RBV (48 wk) Serum glucose level and IR

Improved IR

Lower incidence in treatment group, compared to 
controls

DAAs showed greater risk reduction than 
interferon-based regimen

Butt et al[87], 2019 IFN + RBV2,3.DAAs2,3 CVD 

SVR associated with decreased CVD risk

Improvement of glycemic state and HOMA-IRAbdo et al[75], 2020 SOF + DCV (12-24 wk) Glycemic status, IR, and lipid profile 
in CHC patients with DM

Global worsening of lipid profile

Lower HOMA-IR compared to baseline

Higher total cholesterol, LDL, and HDL

Higher CAP relative to baseline

Graf et al[45], 2020 DAAs3 IR, lipid perturbations, body weight 
changes, and hepatic steatosis 

BMI did not significantly change over time

Increased total cholesterol and LDLHuang et al[31], 2020 DAAs4 Lipids and cardiovascular events

Higher cardio-cerebral diseases

1No data available on antiviral therapy.
2Data on course of treatment is not available.
3Various regimens were used.
4No data available neither on types of direct acting antiviral agents nor on treatment duration. BMI: Body mass index; CAP: Controlled attenuation 
parameter; CHC: Chronic hepatitis C; CVD: Cardiovascular disease; DAAs: Direct acting antiviral agents; DCV: Daclatasvir; DM: Diabetes mellitus; HDL: 
High density lipoprotein cholesterol; HOMA-IR: Homeostatic model assessment of insulin resistance; IFG: Impaired fasting glucose; IFN: Interferon; IR: 
Insulin resistance; LDL: Low-density lipoprotein cholesterol; LDV: Ledipasvir; NA: Not available; PAI-1: Plasminogen activator inhibitor-1; Peg-IFN: 
Pegylated interferon; RBV: Ribavirin; sdLDL: Small-dense low-density lipoprotein; SOF: Sofosbuvir; SVR: Sustained virologic response; VLDL: Very low-
density lipoprotein cholesterol; HCV: Hepatitis C virus.

DYSLIPIDEMIA
It has been known that HCV possesses a mutual relationship with host lipids and 
lipoproteins metabolisms, which the virus uses for multiple key steps in its life 
cycle[20,21]. HCV circulates as a lipid-rich particle, utilizing lipoprotein cell receptors 
to gain entry into the hepatocyte[22,23]. Within hepatocytes, it influences three 
mechanisms in lipid metabolism: It upregulates lipid biosynthesis, impairs 
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Figure 1 Hepatic and extrahepatic (cardiometabolic) manifestations associated with hepatitis C virus infection and the effect of sustained 
virologic response on the cardiometabolic manifestations based on most of the evidence. HCV: Hepatitis C virus; SVR: Sustained virologic 
response.

mitochondrial β-oxidation and thus lipid degradation, and reduces apolipoprotein 
exportation, in particular very low-density lipoprotein cholesterol (LDL), resulting in 
significant intracellular lipid accumulation and circulating hypocholesterolemia and 
hypolipoproteinemia[13].

Several studies have linked successful HCV eradication with rebound rise in lipid 
levels. Meissner et al[24], who investigated the influence of DAAs, sofosbuvir and 
ribavirin, on serum lipid profiles and intrahepatic lipid-related genes expression in 
patients with genotype 1 CHC, reported that serum LDL level and molecular size 
increased early in therapy, whereas triglycerides concentration and very low-density 
lipoprotein cholesterol (VLDL) particle size decreased concomitantly, irrespective of 
treatment outcome. This observation likely reflects a direct effect on lipid metabolism 
associated with the inhibition of HCV replication[24]. This notion was further 
supported in several reports. Clark et al[25], used cholesterol metabolites as an 
indicator to evaluate the impact of HCV on lipid metabolism. In this study, genotype 3 
but not genotype 2 showed a selected interference with late cholesterol synthesis 
pathway, resulting in hypocholesterolemia. However, this interference was resolved 
after SVR. Another Japanese study that included 100 subjects showed early rebound 
(within 28 d) in LDL level in CHC patients who underwent interferon-free DAA 
treatment. However, the elevation was regimen-specific, more prominent in the group 
who received daclatasvir and asunaprevir for 24 wk than in those received ledipasvir 
and sofosbuvir for 12 wk[26]. In addition, many reports correlated the rebound in lipid 
profile with treatment response status[27-29]. This was clearly demonstrated by Corey 
et al[18], which conducted a 2 steps study to evaluate the relationship between CHC 
infection and its treatment with lipid levels. After confirming that HCV infection is 
associated with significantly lower LDL concentrations in the first step, they found 
that remarkable hyperlipidemia was developed in patients who achieved viral 
clearance, compared to non-responders or those who relapsed. In the same context, 
some studies have further investigated the role HCV genotype on post-SVR 
hypercholesterolemia. In a study that included 215 patients, Fernández-Rodríguez 
et al[28] observed that increased serum cholesterol levels were associated with 
genotype 3 in patients who achieved SVR. In contrast, un-changed serum cholesterol 
figures were noted in genotype 3 non-responders and genotype 1 regardless of 
response[28]. Although the reversal of both hepatic steatosis and hypolipidemia has 
been reported only in genotype 3 in this study, there is accumulating evidence 
demonstrating that the reversal of hypolipidemia is not HCV-genotype specific[29,30].
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Many reports proposed that atherosclerotic CVD risk increases after successful 
eradication of HCV due to the unfavorable lipid profile, which is a result of reversed 
hypolipidemia, represented in high serum LDL and small dense LDL. The latter has 
greater atherogenic potential and is a better marker for prediction of CVD than 
LDL[31,32]. The important question at this point is whether these patients require 
lipid-lowering treatment. According to the National Cholesterol Education Program 
Adult Treatment Plan Guideline III, patients should be put on lipid lowering agents 
for: (1) an LDL >100 mg/dL, if they have coronary heart disease or its equivalents[1]; 
(2) an LDL >130 mg/dL, if they have two or more major coronary heart disease risk 
factors[2]; and (3) an LDL >190 mg/dL, with none or one major risk factor[33]. Corey 
and his colleagues have found that 13% of their studied cohort had post-SVR LDL 
levels requiring lipid lowering therapy as these patients had values > 130 mg/dL plus 
presence of two or more major coronary heart disease risk factors. Nonetheless, before 
antiviral therapy, none of these patients had LDL readings requiring medications. 
Post-treatment lipid profile deterioration may reach clinically meaningful level 
requiring the consideration for cholesterol lowering therapy.

HEPATIC STEATOSIS
Hepatic steatosis is a frequent histological liver finding in patients with CHC[34]. Since 
HCV is known to hijack lipid metabolic pathways for virion maturation and secretion, 
several possible mechanisms of HCV-induced liver steatosis have been suggested. 
HCV induces lipogenesis by increasing intrahepatic fat milieu through sterol 
regulatory element binding protein 1c, which is a protein that overexpresses LDL 
receptors which in turn facilitates fatty acid uptake by hepatocytes, leading to higher 
intrahepatic fat content[35]. In contrast, HCV inhibits lipolysis by disturbing mito-
chondrial β-oxidation[36], either directly by the virus itself or indirectly via 
downregulation of the enzyme carnitine palmitoyltransferase-1, which regulates fatty 
acids oxidation[37,38]. These two mechanisms further potentiated by HCV-induced 
IR[39]. Moreover, HCV core protein suppresses the activity of microsomal 
triacylglycerol transfer protein, which is used for the assembly and secretion of VLDL, 
resulting in increased intracytoplasmic lipid droplets and therefore steatosis[40]. 
Miyoshi et al[41], who studied the role of HCV core protein in development of steatosis 
in HCV genotype 2, revealed that core protein activates the enzyme δ-9 desaturase, 
fatty acid metabolizing enzyme, and therefore leads to accumulation of triglycerides. 
This lipid metabolism disorder was also associated with mitochondrial 
dysfunction[41].

Hepatic steatosis is commonly reported among patients with HCV genotype 1 and 
genotype 3. Its occurrence in the latter has been correlated mainly to the previously 
mentioned mechanisms. Therefore, resolution of steatosis observed after successful 
viral eradication suggests a direct steatogenic pathway for HCV genotype 3[42]. This 
hypothesis was backed in a study of patients treated with interferon-based regimen, in 
which 91% of genotype 3 patients and only 43% of other genotypes have had their 
steatosis improved after viral cure[43]. Kumar et al[44], have also observed similar 
findings when steatosis was profoundly reduced in genotype 3 patients post-SVR, 
while no change irrespective of the treatment response occurred in genotype 1. 
Although development of fatty liver was associated with viral characteristics in 
genotype 3 (viral steatosis), the condition in genotype 1 corresponded to metabolic 
features such as glucose level and IR (metabolic steatosis). This observation suggests 
that in patients with genotype 1, factors other than the viral features play an essential 
role in the development of hepatic steatosis[28].

After achieving SVR with antiviral therapy, reversal of steatosis is the most common 
reported outcome, which was seen in several studies[17,27,28,39]. However, recent 
reviews showed contradictory findings[45,46]. In a prospective study that investigated 
the prevalence of hepatic steatosis and fibrosis in patients with CHC post-SVR, 
steatosis prevalence found to be 47.5%, almost as same as the pre-treatment figure 
(50%). Besides, overall average fibrosis score was reduced after viral clearance. 
Nevertheless, patients who had steatosis have maintained clinically significant fibrosis 
scores, compared to those without fatty liver[46]. In another study included 49 patients 
aimed to evaluate the impact of DAAs on glucose and lipid homeostasis, controlled 
attenuation parameter values were markedly increased at the end of follow up 
compared to baseline. More importantly, this finding was independent of weight gain, 
since no change in body mass index (BMI) was observed over time[45].
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Patients with CHC and viral-induced hepatic steatosis have been shown to have 
worse hepatic outcomes in pre-treatment setting[47]. Nonetheless, a recent study 
depicts that presence of post-SVR steatosis does not carry a better risk profile[48]. In 
this study, which aimed to assess the effect of steatosis on HCC and all-cause mortality 
in CHC patients post-SVR, presence of fatty liver was associated with a considerable 
7.5-fold increase in both primary endpoints[48]. Furthermore, there is also a 
substantially higher risk of EHMs, particularly CVD, after amelioration of steatosis 
post-SVR[17]. These findings combined highlight the importance of hepatic steatosis as 
a major risk factor for poor outcome and warrant a special consideration of screening 
and follow-up in this population.

INSULIN RESISTANCE & DIABETES MELLITUS
Based on multiple epidemiological studies, metabolic alterations such as IR, DM, and 
metabolic syndrome are frequent comorbidities in patients with CHC, as opposed to 
controls[19,49]. The rationale behind this association is still not completely understood 
but it could be attributed to the presence of liver disease, metabolic characteristics such 
as obesity, or the inflammatory process induced by HCV infection. HCV has been 
found to modulate insulin signaling pathways although the precise molecular 
mechanism of HCV-mediated IR is not fully understood. In two mouse-model 
experimental studies, HCV core protein was found to play a major role in the 
development of IR[50,51] particularly through PA28γ gene-dependent pathway[50]. 
HCV genotypes 1, 2 and 4[52] and genotypes 1 and 4[53] were noticed to have higher 
IR compared to genotype 3[52] and genotypes 2 and 3[53], respectively. Oxidative 
stress and proinflammatory cytokines were also found to play a role in de novo 
IR[54,55]. The disruption in glucose and lipid metabolism associated with IR[56] leads 
to evolution of hepatic steatosis and development of DM. Among subjects with chronic 
liver disease, the prevalence of DM in CHC patients prior to treatment varies from 
13.6% to 67.4%, which is higher than that reported in individuals with other etiologies, 
such as chronic hepatitis B[57]. Furthermore, a case-control study demonstrated that 
the presence of CHC was associated with an over 11-fold increase in risk of developing 
DM over a follow-up period of 9 years[58]. DM seems to have a bidirectional 
relationship with HCV, in which the latter causes IR while DM is linked with more 
aggressive course of HCV-related outcomes such as progressive fibrosis[49,59,60], and 
increased risk of cirrhosis and HCC[61,62]. All the above conditions make patients 
with CHC more susceptible to have metabolic syndrome[63]. However, due to the 
hypolipidemia caused by HCV infection[64], which does not fit the traditional 
diagnostic criteria, a peculiar type of metabolic syndrome known as hepatitis C-
associated dysmetabolic syndrome has been defined[63,65].

There is frequent evidence that have showed a beneficial effect of antiviral therapy 
using interferon-based regimens on IR in long-term HCV responders. Thompson 
et al[66], who studied 1038 non-diabetic patients, concluded that IR was substantially 
decreased in HCV-genotype 1 responders but not in genotype 1 non-responders or 
those with genotype 2 or 3 irrespective of treatment outcome. This finding was 
independent of any changes in BMI. Similar findings were also reported in a 
prospective study[29]. In the Virahep-C, a prospective multicenter study, an 
improvement in the homeostatic model assessment for IR (HOMA-IR) was observed 
24 wk after treatment completion among HCV genotype 1 patients who had IR prior to 
therapy[67]. Nonetheless, Aghemo et al[68], who enrolled 384 non-diabetic patients 
with HCV genotypes 1 and 4 failed to display any differences in HOMA-IR values 
between baseline and 24 wk post-SVR. All the above findings indicate that longer 
follow-up may be needed to better assess glucose metabolism disturbances after HCV 
viral clearance with interferon-based regimens, especially in HCV genotype 1 patients. 
Paradoxically, in a head-to-head comparison of 178 subjects with HCV genotype 1 and 
4 between interferon-based antiviral therapy and DAAs to assess metabolic outcomes, 
there was a significant elevation in HOMA-IR in those who have taken interferon-
based regimen[11].

In addition to its effect on IR, antiviral therapy has been thought to decrease 
incidence of post-SVR hyperglycemia and DM. Interferon-based regimens have been 
studied extensively and they are usually associated with a decreased incidence of DM 
in non-diabetic patients with CHC after elimination of HCV[69]. However, several 
studies have emphasized the beneficial role of attaining SVR, which lessens glucose 
metabolism abnormalities induced by HCV infection[10,39,70]. Other studies could not 
detect any significant differences between treatment responders and non-
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responders[71,72]. Despite these conflicting results, a meta-analysis that included 
seven studies aiming to investigate the correlation between HCV clearance via 
interferon-based regimens and the incidence of hyperglycemia demonstrated that SVR 
is associated with lower risk of hyperglycemia [odds ratio 0.49, 95% confidence 
interval (CI): 0.42-0.58]. Heterogeneity between studies was minimal, indicating a 
reliable result. On the other hand, the use of DAAs for viral eradication was not 
investigated thoroughly. Studies on incidence of DM in non-diabetic patients 
demonstrated less glucose disturbance in long-term responders[10,73]. In a 
retrospective study conducted in United States, 5127 non-diabetic subjects with HCV 
were enrolled to investigate how the response to HCV treatment impacted the risk of 
subsequent DM. The authors found that those who achieved SVR had markedly lower 
risk of developing DM, compared to those with treatment failure[10]. Two studies 
investigated the effect of DAAs on previously known diabetic patients[74,75]. One 
illustrated an improvement in glycemic status after viral cure while in the other there 
was no difference in glycosylated hemoglobin between pretreatment and post-
treatment values. Importantly, one-third of patients in the latter study required 
escalation of anti-diabetic therapy during antiviral treatment. Further long-term 
prospective studies are still needed to resolve the current dilemma of changes on IR 
related to antiviral treatment.

CARDIOVASCULAR DISEASE
CHC infection has been linked to an array of EHMs, including an increased risk of 
CVD[76-79]. Several direct and indirect HCV pro-atherogenic mechanisms have been 
postulated. HCV is assumed to play a direct role in the development of arterial 
atherosclerosis by inducing endothelial dysfunction, likely through interleukin 1β[80], 
a pro-inflammatory cytokine. Likewise, it has been observed that HCV has the ability 
to live and replicate inside carotid plaques[81], which further supports an immediate 
pro-atherogenic effect. Moreover, chronic inflammation and oxidative stress that are 
caused by structural and non-structural viral proteins have also been shown to trigger 
plaque formation[80]. In a multicenter Italian study that evaluated the effect of 
attaining SVR using DAAs on subclinical carotid arteriosclerosis compared to an 
untreated cohort, ultrasonographic carotid measurements showed a significant 
reduction in mean carotid intima-media thickness in treatment group at the end of 
follow-up compared to baseline (from 0.94 mm to 0.81 mm, P < 0.001). No significant 
changes in the intima-media thickness were found in the control group. The BMI of 
these patients did not change during follow-up, while a significant increase in serum 
cholesterol levels was observed. The study concluded that eradication of HCV by 
DAAs led to an amelioration in carotid atherosclerosis, particularly intima-media 
thickness. Furthermore, HCV can also induce atherosclerosis indirectly since it is 
associated with an increased risk of metabolic syndrome components, including IR, 
DM, and hepatic steatosis, which are well-known predisposing factors for 
CVD[82-84]. On the other hand, some studies have failed to show any significant 
association between HCV and cardiovascular events[85,86].

Several studies have shown that either antiviral therapy or the attainment of SVR 
minimize CVD risk[87-90]. However, the results are rather controversial. Butt et al[87], 
who studied the effect of antiviral therapy, interferon- or DAAs-based regimens, on 
CVD risk found that the incidence of CVD in treatment arm was 7.2% in comparison 
with 13% in control group, regardless of the antiviral regimen. Treatment with DAAs 
was superior to interferon-based regimen, with a hazard ratio (HR) of 0.57 (95%CI: 
0.51-0.65) and HR 0.78 (95%CI: 0.71-0.85), respectively. SVR was also associated with 
lower risk of incident CVD events HR 0.87 (95%CI: 0.77-0.98). In a nation-wide cohort 
study on Taiwanese residents with HCV who had received interferon-based regimens 
compared to an untreated cohort, antiviral therapy was associated with lower risks of 
acute coronary syndrome and ischemic stroke, with HR 0.77 (95%CI: 0.62-0.97) and HR 
0.62 (95%CI: 0.46-0.83), respectively. This risk reduction was not observed in subject 
who had insufficient treatment course (< 16 wk)[88]. Further supporting data was 
observed in a study comprising 3385 HCV patients, which found that SVR was 
associated with a lower relative hazard reduction and absolute risk reduction for 
CVD[89]. However, some epidemiological studies have found contradictory findings. 
A large retrospective cohort study which enrolled 160875 subjects was aimed to 
investigate the impact of successful viral eradication on a variety of EHMs. In terms of 
CVD risk, the study concluded that SVR was associated with a diminished risk for 
stroke HR 0.84 (95%CI: 0.74-0.94), but not for CVD aHR 1.12 (95%CI: 0.81-1.56), when 



Shengir M et al. Cardiometabolic complications

WJG https://www.wjgnet.com 1967 May 7, 2021 Volume 27 Issue 17

compared to the untreated cohort[69]. From the same perspective, a negative result 
was also reported by Leone et al[72], who studied the influence of SVR on EHMs. The 
researchers did not find any significant cardiovascular risk reduction in SVR group 
compared to non-SVR, with HR 1.14 (95%CI: 0.57-2.3). Despite disparities in the 
findings across individual studies, a meta-analysis including 53841 patients 
demonstrated that SVR significantly reduces CVD risk, with a pooled of HR 0.76 
(95%CI: 0.61-0.94)[91].

Apart from the direct treatment effect on CVD risk, therapeutic changes on other 
EHMs may also play role in the development of atherosclerotic events. Deteriorated 
lipid profile after HCV clearance has been shown to predispose patients to an elevated 
risk of CVD[31]. In a study of 617 patients with a mean follow-up of 26.8 mo, Huang 
et al[31] investigated whether deterioration of lipid profile post-SVR increased the risk 
of cardio-cerebral disease. Five patients developed cardio-cerebrovascular events (3 
CVD and 2 cerebrovascular disease) over 1376 person-years. An LDL surge >40% was 
found to be the only predictor of these vascular events, with a HR of 15.44 (95%CI: 
1.73-138.20)[31]. Evidence on risk of CVD in CHC pre- or post-treatment remains 
contro-versial. Nonetheless, most of the literature indicates that achieving SVR via 
antiviral therapy is associated with a significant risk reduction.

CONCLUSION
EHMs including cardiometabolic conditions are commonly seen among patients with 
CHC infection. Data on these conditions after elimination of HCV is inconsistent. 
However, the predominant evidence in the literature suggests that viral clearance 
using antiviral therapy leads to deterioration in lipid profile, reduction in the incidence 
of metabolic alteration such as IR, DM, and hepatic steatosis, and improvement in 
CVD risk. To determine more robust level of association between SVR and EHMs and 
to understand the exact mechanisms of how antiviral therapies act on these EHMs, 
large prospective studies with long-term follow-up are needed.
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Abstract
BACKGROUND 
Primary biliary cholangitis (PBC) is a chronic and slowly progressing cholestatic 
disease, which causes damage to the small intrahepatic bile duct by immuno-
regulation, and may lead to cholestasis, liver fibrosis, cirrhosis and, eventually, 
liver failure.

AIM 
To explore the potential diagnosis and staging value of plasma S100 calcium 
binding protein A6 (S100A6) messenger ribonucleic acid (mRNA), LINC00312, 
LINC00472, and LINC01257 in primary biliary cholangitis.

METHODS 
A total of 145 PBC patients and 110 healthy controls (HCs) were enrolled. Among 
them, 80 PBC patients and 60 HCs were used as the training set, and 65 PBC 
patients and 50 HCs were used as the validation set. The relative expression levels 
of plasma S100A6 mRNA, long noncoding ribonucleic acids LINC00312, 
LINC00472 and LINC01257 were analyzed using quantitative reverse 
transcription-polymerase chain reaction. The bile duct ligation (BDL) mouse 
model was used to simulate PBC. Then double immunofluorescence was 
conducted to verify the overexpression of S100A6 protein in intrahepatic bile duct 
cells of BDL mice. Human intrahepatic biliary epithelial cells were treated with 
glycochenodeoxycholate to simulate the cholestatic environment of intrahepatic 
biliary epithelial cells in PBC.

RESULTS 
The expression of S100A6 protein in intrahepatic bile duct cells was up-regulated 
in the BDL mouse model compared with sham mice. The relative expression 
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levels of plasma S100A6 mRNA, log10 LINC00472 and LINC01257 were up-
regulated while LINC00312 was down-regulated in plasma of PBC patients 
compared with HCs (3.01 ± 1.04 vs 2.09 ± 0.87, P < 0.0001; 2.46 ± 1.03 vs 1.77 ± 0.84, 
P < 0.0001; 3.49 ± 1.64 vs 2.37 ± 0.96, P < 0.0001; 1.70 ± 0.33 vs 2.07 ± 0.53, P < 
0.0001, respectively). The relative expression levels of S100A6 mRNA, LINC00472 
and LINC01257 were up-regulated and LINC00312 was down-regulated in 
human intrahepatic biliary epithelial cells treated with glycochenodeoxycholate 
compared with control (2.97 ± 0.43 vs 1.09 ± 0.08, P = 0.0018; 2.70 ± 0.26 vs 1.10 ± 
0.10, P = 0.0006; 2.23 ± 0.21 vs 1.10 ± 0.10, P = 0.0011; 1.20 ± 0.04 vs 3.03 ± 0.15, P < 
0.0001, respectively). The mean expression of S100A6 in the advanced stage (III 
and IV) of PBC was up-regulated compared to that in HCs and the early stage (II) 
(3.38 ± 0.71 vs 2.09 ± 0.87, P < 0.0001; 3.38 ± 0.71 vs 2.57 ± 1.21, P = 0.0003, 
respectively); and in the early stage (II), it was higher than that in HCs (2.57 ± 1.21 
vs 2.09 ± 0.87, P = 0.03). The mean expression of LINC00312 in the advanced stage 
was lower than that in the early stage and HCs (1.39 ± 0.29 vs 1.56 ± 0.33, P = 0.01; 
1.39 ± 0.29 vs 2.07 ± 0.53, P < 0.0001, respectively); in addition, the mean 
expression of LINC00312 in the early stage was lower than that in HCs (1.56 ± 0.33 
vs 2.07 ± 0.53, P < 0.0001). The mean expression of log10 LINC00472 in the 
advanced stage was higher than those in the early stage and HCs (2.99 ± 0.87 vs 
1.81 ± 0.83, P < 0.0001; 2.99 ± 0.87 vs 1.77 ± 0.84, P < 0.0001, respectively). The 
mean expression of LINC01257 in both the early stage and advanced stage were 
up-regulated compared with HCs (3.88 ± 1.55 vs 2.37 ± 0.96, P < 0.0001; 3.57 ± 1.79 
vs 2.37 ± 0.96, P < 0.0001, respectively). The areas under the curves (AUC) for 
S100A6, LINC00312, log10 LINC00472 and LINC01257 in PBC diagnosis were 
0.759, 0.7292, 0.6942 and 0.7158, respectively. Furthermore, the AUC for these four 
genes in PBC staging were 0.666, 0.661, 0.839 and 0.5549, respectively. The 
expression levels of S100A6 mRNA, log10 LINC00472, and LINC01257 in plasma 
of PBC patients were decreased (2.35 ± 1.02 vs 3.06 ± 1.04, P = 0.0018; 1.99 ± 0.83 vs 
2.33 ± 0.96, P = 0.036; 2.84 ± 0.92 vs 3.69 ± 1.54, P = 0.0006), and the expression 
level of LINC00312 was increased (1.95 ± 0.35 vs 1.73 ± 0.32, P = 0.0007) after 
treatment compared with before treatment using the paired t-test. Relative 
expression of S100A6 mRNA was positively correlated with log10 LINC00472 (r = 
0.683, P < 0.0001); serum level of collagen type IV was positively correlated with 
the relative expression of log10 LINC00472 (r = 0.482, P < 0.0001); relative 
expression of S100A6 mRNA was positively correlated with the serum level of 
collagen type IV (r = 0.732, P < 0.0001). The AUC for the four biomarkers obtained 
in the validation set were close to the training set.

CONCLUSION 
These four genes may potentially act as novel biomarkers for the diagnosis of 
PBC. Moreover, LINC00472 acts as a potential biomarker for staging in PBC.

Key Words: S100 calcium binding protein A6; Long noncoding ribonucleic acids; Primary 
biliary cholangitis; Biomarker; Diagnosis; Staging

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Primary biliary cholangitis (PBC) is an autoimmune liver disease which is 
characterized by intrahepatic cholestasis. The expression of S100 calcium binding 
protein A6 (S100A6) was up-regulated in a bile duct ligation mouse model compared 
with sham mice. The relative expression levels of plasma S100A6 messenger 
ribonucleic acid, LINC00472 and LINC01257 were up-regulated and the relative 
expression of LINC00312 was down-regulated in PBC patients. S100A6 and the three 
long noncoding ribonucleic acids can be used as biomarkers for PBC diagnosis and 
staging using receiver operating characteristic curve analysis. The results were further 
verified in vitro using intrahepatic biliary epithelial cells.
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INTRODUCTION
Primary biliary cholangitis (PBC) is a chronic and slowly progressing cholestatic 
disease, which causes damage to the small intrahepatic bile duct by immuno-
regulation, and may lead to cholestasis, liver fibrosis, cirrhosis and, eventually, liver 
failure. The injury mechanism of intrahepatic biliary epithelial cells (iBECs) is the key 
to investigate the pathogenesis of PBC, but the accurate relationship between 
cholestasis and liver fibrosis is still indistinct. Currently, liver injury caused by 
cholestasis is mainly studied using liver cell lines or liver cancer cell lines treated with 
hydrophobic bile acids[1], while iBECs, the main target cells of PBC, have rarely been 
studied.

S100 calcium binding protein A6 (S100A6), also known as calcyclin, is a Ca2+ binding 
protein and is a member of the S100 family. Its distribution in the body is specific to 
cells and tissues, having a high expression in normal epithelial cells and fibroblasts, as 
well as in some tumor cells[2]. As an intracellular protein, S100A6 is involved in the 
regulation of various cellular functions, such as proliferation, apoptosis, cytoskeletal 
dynamics, and cell response to different stressors. It is believed that S100A6 may be 
involved in the ubiquitination of beta catenin and play an important role in controlling 
the cell cycle process[3]. S100A6 can interact with the calcyclin-binding protein/Siah-1-
interacting protein, which is a component of the ubiquitin ligase complex[4].

Long non-coding ribonucleic acids (lncRNAs) are involved in the regulation of a 
variety of intracellular processes[5]. As a structural component, lncRNAs can form a 
nucleic acid protein complex with gene regulatory transcription factors[6]. LncRNAs 
can also bind to specific transcription factors and change their cellular localization, 
thus affecting the transcription of target genes. Abnormal expression of lncRNAs in 
plasma has been shown to accurately predict several human diseases[7,8].

As a general rule, PBC diagnosis depends on titers of antimitochondrial antibody 
(AMA), serum level of alkaline phosphatase (ALP) and liver biopsy[9-11]. However, it 
is difficult to achieve an early diagnosis in AMA-negative patients, or to differentiate 
from other autoimmune liver diseases; thus, an invasive liver biopsy is required to 
make a definitive diagnosis, and this not only increases the financial burden of 
patients, but also brings mental and physical trauma to patients, often delaying the 
best time for treatment. However, after definite diagnosis, some patients fail to 
respond to ursodeoxycholic acid treatment and often have a poor prognosis or even 
progress to liver failure. The majority of PBC cases are diagnosed mostly at an 
advanced stage, so diagnosis and staging biomarkers of PBC are urgently needed.

In this study, we explored the value of S100A6 and its associated lncRNAs as 
potential biomarkers for the diagnosis and staging of PBC.

MATERIALS AND METHODS
Study design
This study included three phases (Figure 1): (1) The discovery phase, in which 
candidate genes and lncRNAs were searched using bioinformatics methods, and were 
then verified by a mouse model and cell model; (2) The training phase, in which 
quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to 
evaluate the relative expression levels of target gene and lncRNAs in the plasma of 
PBC patients and healthy controls, as well as to estimate their diagnosis and staging 
value; and (3) the validation phase, in which the diagnosis and staging value of target 
genes and lncRNAs was verified in another independent PBC cohort.

Identification of differentially expressed genes from the gene expression omnibus 
dataset
The GSE29776 array dataset was analyzed on the gene expression omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/)[12]. The dataset contains 6 mouse 
liver tissue samples, including 3 bile duct ligation (BDL) mouse samples and 3 sham 
mouse samples. “GEO2R” in the webpage was used to analyze the array database.

https://www.wjgnet.com/1007-9327/full/v27/i17/1973.htm
https://dx.doi.org/10.3748/wjg.v27.i17.1973
https://www.ncbi.nlm.nih.gov/geo/
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Figure 1  Study design. BDL: Bile duct ligation; GEO: Gene Expression Omnibus; PBC: Primary biliary cholangitis; ROC: Receiver operating characteristic curve; 
RT-PCR: Reverse transcriptase polymerase chain reaction.

LncRNAs selection
The PROMO usage database (http://alggen.lsi.upc.es/cgi-bin/promo_v3/ 
promo/promoinit.cgi?dirDB=TF_8.3) was used to predict the transcription factors of 
the S100A6 promoter[13]. There were multiple binding sites between the transcription 
factor estrogen receptor alpha (also known as ESR1) and the promoter of S100A6. 
Experiments with BDL mice and PBC patients suggested that the expression of 
estrogen receptor in bile duct epithelial cells was associated with cholestasis or bile 
duct epithelial cells in PBC[14]. We hypothesized that ESR1 could regulate the 
transcription of S100A6 as a transcription factor and thus play an important role in the 
injury of bile duct cells in PBC. The Gene-Cloud of Biotechnology Information 
database (https://www.gcbi.com.cn/gcanalyze/html/generadar/index) was used to 
screen lncRNAs associated with ESR1[15]. The binding force between lncRNAs and 
ESR1 was calculated by RNA-Protein Interaction Prediction (http://pridb. 
gdcb.iastate.edu/RPISeq/)[16]. As RF and SVM scores of LINC00312, LINC00472, and 
LINC01257 were all found to be close to 1.0, these three lncRNAs were selected as 
candidate lncRNAs in this study.

Animal studies, bile duct ligation model
Male C57BL/6J mice (aged 6-8 wk) were purchased from the Animal Experiment 
Department of China Medical University (Shenyang, Liaoning Province, China). All 
mice were weighed and randomly grouped with an average weight of 20-25 g into the 
BDL group and the sham group. To simulate cholestasis, 9 mice underwent BDL[17]. 
The animal protocol was designed to minimize pain or discomfort to the mice. The 
animals were acclimatized to laboratory conditions (24 °C, 12 h/12 h light/dark, 50% 
humidity, ad libitum access to food and water) for 2 wk prior to experimentation. The 
BDL procedure was performed with the common bile duct doubly ligated under 
anesthesia via laparotomy[18]. The sham procedure was performed via a similar 
laparotomy without BDL. Animal experiments were approved by the Ethics 
Committee of the Animal Experiment Department of China Medical University.

A portion of the liver tissue was placed in a 4% p-formaldehyde solution and 
routinely processed for histological assessment, while the remaining tissue was snap 
frozen and stored at -80 °C.

http://alggen.lsi.upc.es/cgi-bin/promo_v3/ promo/promoinit.cgi?dirDB=TF_8.3
http://alggen.lsi.upc.es/cgi-bin/promo_v3/ promo/promoinit.cgi?dirDB=TF_8.3
https://www.gcbi.com.cn/gcanalyze/html/generadar/index
http://pridb. gdcb.iastate.edu/RPISeq/
http://pridb. gdcb.iastate.edu/RPISeq/
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Histological analysis
The mice were sacrificed by cervical dislocation and the liver was immediately 
removed by laparotomy. Part of the right lobe of the liver was fixed in 4% 
formaldehyde. The liver tissues were embedded in paraffin and sliced. Hematoxylin 
and eosin stained liver sections were observed under a light microscope at x 400 
magnification to evaluate whether the cholestasis model was successfully 
established[19].

Double immunofluorescence
To identify whether the expression of S100A6 protein was up-regulated in bile duct 
epithelial cells in BDL mice, we performed double immunofluorescence[20] for S100A6 
antibodies (Abcam, USA, Cat. No. ab181975) with cytokeratin 19 (CK19) antibodies 
(Abcam, USA, Cat. No. ab52625) which was specifically expressed in epithelial 
cells[21]. The primary antibody was replaced by rabbit or mouse IgG for negative 
controls. The working concentration of fluorescein isothiocyanate and tetraethyl 
rhodamine isothiocyanate was 1:50. Nuclei were counterstained with DAPI. The 
empirical procedure was performed according to the manufacturer’s instructions. The 
sections were counterstained with DAPI and evaluated under a conventional 
fluorescence microscope.

Cells culture and treatments
Human intrahepatic biliary epithelial cells (HiBECs) were purchased from Guangzhou 
Jennio Biotech Company Limited (Guangzhou, Guangdong Province, China). Cells 
were cultured in RPMI-1640 supplemented with 10% fetal bovine serum (GEMINI, 
USA), 100 U/mL penicillin, and 100 mg/mL streptomycin in incubators at 37 °C with 
5% CO2. HiBECs were treated with 1000 mmol/L glycochenodeoxycholate (GCDC)[22] 
for 24 h to mimic cholestasis in PBC patients.

Patients
A total of 80 untreated PBC patients and 60 healthy controls as the training set were 
enrolled in order to differentially evaluate S100A6 and lncRNAs. In addition, another 
cohort consisting of 65 PBC patients and 50 healthy controls was used as the validation 
set. PBC patients were diagnosed by the Department of Gastroenterology or 
Rheumatology of The First Affiliated Hospital of China Medical University between 
January 2017 and November 2020. The diagnosis of PBC needed to meet two of the 
following three criteria[9-11]: (1) AMA titer > 1:40; (2) ALP level 1.5-times higher than 
the normal upper limit for more than 24 wk; and (3) liver biopsy revealing non-
suppurative cholangitis and interlobular bile duct damage. Written informed consent 
was obtained from all patients who participated in the study. This study was 
approved by the Ethics Committee of The First Affiliated Hospital of China Medical 
University and was carried out in accordance with the Declaration of Helsinki.

Percutaneous ultrasound-guided puncture biopsy of the right liver was performed 
in all PBC patients, followed by histopathological examination and pathological stage 
identification[23]. Four stages were defined based on intrahepatic bile duct injury[24]: 
Stage Ι: Cholangitis stage, chronic inflammation in the interlobular and septal bile 
duct. Lymphocytes and plasma cells around the damaged bile ducts infiltrate or form 
granuloma, but the inflammation in the portal area does not involve the liver 
parenchyma and there is no cholestasis; stage II: Periportal inflammation stage, with a 
continuous reduction in the number of interlobular bile ducts, reactive hyperplasia of 
bile ducts around the portal area, inflammation involving adjacent liver parenchyma 
and destruction of liver cells, and common focal necrosis, cholestasis also occurs; stage 
III: Progressive fibrosis stage, the portal area is continuously enlarged by inflammation 
and fibrosis progression, the fibrous septa formed gradually widens, and cholestasis is 
aggravated; stage IV: Liver cirrhosis stage, fibrous septa divides the liver parenchyma 
into patchy nodules, regenerating nodules, and forming pseudo lobules.

Extraction of total RNA from plasma samples and cells
The relative expression levels of S100A6 and lncRNAs in plasma were measured in 
PBC patients, as well as human intrahepatic biliary epithelial cell lines. Total RNA was 
extracted from plasma and HiBECs by an RNA extraction kit (Bioteke, China), 
according to the manufacturer’s instructions.

Reverse transcription and quantitative PCR for S100A6 and lncRNAs
Total RNA was amplified by reverse transcription using a reverse transcription kit 
(PrimeScriptTM RT Master Mix, TaKaRa, China)[25]. All reactions were completed in a 
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Themocycler (Mastercycler nexus, Eppendorf, Germany). Then, quantitative PCR was 
performed using SYBR® Premix Ex TaqTM II kit (Takara, China) on the LightCycler 
480 (Roche, Germany). GAPDH was used as an internal reference, and served as an 
internal control for plasma RNA quality. S100A6 and lncRNAs expression were 
calculated by the 2−ΔΔCt method {2[(Mean ct of RNA–mean ct of GAPDH) – (mean ct of control–mean ct of GAPDH)]}[26]. 
The calculated result was the relative quantitative expression value of S100A6 and 
lncRNAs compared with the internal reference. Primers for reactions were designed by 
Primer Premier 6.0 (Canada) software (Table 1)[27].

Statistical analysis
Statistical Package for Social Science 23.0 software (IBM Solutions Statistical Package 
for the Social Sciences Incorporated, USA) and GraphPad Prism 8 (GraphPad 
Software, Incorporated, San Diego, CA, USA) were used for all statistical analyses. The 
normal distribution data were recorded (mean ± SD), and comparisons between the 
two groups were performed using the unpaired t-test. The paired t-test was used to 
compare the expression levels before and after treatment. Non-normal distribution 
data were analyzed using the non-parametric Mann-Whitney U test[28]. Categorical 
data were analyzed using the χ2 test. The correlation between the plasma level of 
S100A6 mRNA and lncRNAs was analyzed using Pearson or Spearman correlation 
analysis. Receiver operating characteristic (ROC) curves were constructed and the 
areas under the curves (AUC) were used to evaluate the value of plasma S100A6 
mRNA and lncRNAs as biomarkers for the diagnosis and staging of PBC[29]. P < 0.05 
was considered statistically significant.

RESULTS
Identification of the target gene
“GEO2R” was used to analyze the differentially expressed genes in liver tissues of 
BDL and sham mice of GSE29776. The top 10 up- and down-regulated genes of 
GSE29776 in the BDL and sham group are listed in Table 2. To identify potential 
biomarkers for PBC diagnosis and staging, we used qRT-PCR to validate the analysis 
of bioinformatics up-regulated genes in plasma of 30 PBC patients and 30 healthy 
controls. It was found that S100A6 showed the greatest change in the plasma of PBC 
patients (t = 20.28, P < 0.0001) (Figure 2). Therefore, S100A6 was selected as the target 
gene in this study.

Expression of S100A6 protein in the BDL mouse model
HE staining revealed histological changes in liver tissues, with the BDL group 
showing liver cell swelling, vacuolar degeneration, and coagulative necrosis. 
Inflammatory cell infiltration was observed in the portal area and around the bile duct, 
and fibrosis around the bile duct (Figure 3A-C). In the sham group, there was no or 
minimal inflammatory cell infiltration around the portal area and bile duct (Figure 3D-
F).

Double immunofluorescence staining was used to label CK19 and S100A6 proteins. 
A fluorescence microscope was used for observation and Image J software was used 
for graph analysis. The results showed that S100A6 labeled with fluorescein 
isothiocyanate showed emerald green fluorescence and CK19 labeled with tetraethyl 
rhodamine isothiocyanate showed red fluorescence. Red and green fluorescent 
overlapping images showed that CK19 and S100A6 proteins were positively expressed 
in the iBECs of BDL mice (Figure 4A-C), while these two proteins were weakly 
expressed in the iBECs of mice in the sham group (Figure 4D-F).

The expression of S100A6 and lncRNAs analyzed in HiBECs
To investigate the mechanism of S100A6 and lncRNAs, the expression of S100A6 and 
lncRNAs was studied in HiBECs. Normal and HiBECs treated with GCDC were 
detected by qRT-PCR. The relative expression levels of S100A6 mRNA, LINC00472 
and LINC01257 were up-regulated and LINC00312 was down-regulated in HiBECs 
treated with GCDC compared with controls (2.97 ± 0.43 vs 1.09 ± 0.08, P = 0.0018; 2.70 
± 0.26 vs 1.10 ± 0.10, P = 0.0006; 2.23 ± 0.21 vs 1.10 ± 0.10, P = 0.0011; 1.20 ± 0.04 vs 3.03 ± 
0.15, P < 0.0001, respectively) (Figure 5).

Demographics and clinical features of PBC patients compared with healthy controls
There were no differences in age and gender between the training set and validation 
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Table 1 Primer sequences used in this study

Target gene Forward sequence (5’→3’) Reverse sequence (5’→3’)
S100A6 AATGTGCGTTGTGTAAGC CGGTCCAAGTCTTCCATC

LINC00312 GGAAGGAATACCACAGAAGT TGAAGAACAGGACATTGACA

LINC00472 AGAGTTGCTGTAGAAGAAGG AGGAGGAGAGTAGAAGAGAC

LINC01257 TGCTGCGAATGATGACTT AGGACTTGAATCTGCTACTG

HMGB2 TTACGTTCCTCCCAAAGGTG TCTTTGGCTGACTGCTCAGA

RC3H2 TTGCAAAGAAATGCGTTGAG GATTGGCAGACAACTGCTGA

ADAMTS1 CCTCTGTCTGTGTGCAAGGA GTGGCTCCAGTTGGAATTGT

SERPINE1 CTCTCTCTGCCCTCACCAAC GTGGAGAGGCTCTTGGTCTG

PALD1 GCCGAAGTTGTTCCCATTTA GCTGAAAGTCAGAGCCAACC

GSTA4 TCCGTGAGATGGGTTTTAGC TGCCAAAGAGATTGTGCTTG

ACTA2 TTCAATGTCCCAGCCATGTA GAAGGAATAGCCACGCTCAG

GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA

ACTA2: Actin alpha 2, smooth muscle; ADAMTS1: ADAM metallopeptidase with thrombospondin type 1 motif 1; GAPDH: Glyceraldehyde-3-phosphate 
dehydrogenase; GSTA4: Glutathione S-transferase alpha 4; HMGB2: High mobility group box 2; PALD1: Phosphatase domain containing paladin 1; 
RC3H2: Ring finger and CCCH-type domains 2; S100A6: S100 calcium binding protein A6; SERPINE1: Serpin family E member 1.

set (P = 0.504 and P = 1.0, respectively, Table 3). Moreover, there were no differences in 
age and gender between PBC patients and healthy controls (P = 0.58 and P = 1.0, 
respectively). Clinical serological data including alanine aminotransferase, aspartate 
aminotransferase, ALP, gamma-glutamyl transpeptidase, total bilirubin, direct 
bilirubin, total bile acid, hyaluronic acid, laminin, collagen type IV (C-IV) and 
procollagen III were all significantly higher in PBC patients than in healthy controls (P 
< 0.0001, Table 4).

Differential expression of S100A6 and lncRNAs in PBC patients compared with HCs
To compare the mean expression levels of S100A6 mRNA, LINC00312, and LINC01257 
in PBC patients and healthy controls, the Kolmogorov–Smirnov test was used to check 
normality. The results showed that these variables had a normal distribution (P > 
0.05), and the t-test was used for analysis, as the relative expression of LINC00472 
showed a skewed distribution, and was normally distributed after logarithmic 
conversion based on 10. The results showed that the expression levels of S100A6 
mRNA, log10 LINC00472 and LINC1257 in PBC patients were significantly up-
regulated compared to the healthy controls (3.01 ± 1.04 vs 2.09 ± 0.87; 2.46 ± 1.03 vs 1.77 
± 0.84; 3.49 ± 1.64 vs 2.37 ± 0.96, P values were all less than 0.0001, Figure 6A, C and D). 
The mean expression level of LINC00312 was significantly lower in PBC plasma 
samples compared with HCs (1.70 ± 0.33 vs 2.07 ± 0.53, P < 0.0001, Figure 6B).

Distribution of S100A6 and lncRNAs expression levels in different stages of PBC
The unpaired t-test analysis of variance was performed to evaluate differences in the 
expression of S100A6 and lncRNAs among different PBC stages and healthy controls 
(Figure 7). The results showed that the mean expression of S100A6 in the advanced 
stage (III and IV) of PBC was up-regulated compared to that in HCs and the early 
stage (II) (3.38 ± 0.71 vs 2.09 ± 0.87, P < 0.0001; 3.38 ± 0.71 vs 2.57 ± 1.21, P = 0.0003, 
respectively); and in the early stage (II), it was higher than that in HCs (2.57 ± 1.21 vs 
2.09 ± 0.87, P = 0.03) (Figure 7A). The mean expression of LINC00312 in the advanced 
stage was lower than that in the early stage and HCs (1.39 ± 0.29 vs 1.56 ± 0.33, P = 
0.01; 1.39 ± 0.29 vs 2.07 ± 0.53, P < 0.0001, respectively) (Figure 7B); in addition, the 
mean expression of LINC00312 in the early stage was lower than that in HCs (1.56 ± 
0.33 vs 2.07 ± 0.53, P < 0.0001) (Figure 7B). The mean expression of log10 LINC00472 in 
the advanced stage was higher than that in the early stage and HCs (2.99 ± 0.87 vs 1.81 
± 0.83, P < 0.0001; 2.99 ± 0.87 vs 1.77 ± 0.84, P < 0.0001, respectively) (Figure 7C). The 
mean expression of LINC01257 in both the early stage and advanced stage were up-
regulated compared with HCs (3.88 ± 1.55 vs 2.37 ± 0.96, P < 0.0001; 3.57 ± 1.79 vs 2.37 
± 0.96, P < 0.0001, respectively) (Figure 7D).
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Table 2 Top 10 dysregulated genes in bile duct ligation and sham mice

Gene name Transcript Lg fold change
Up-regulated

Hmgb2 ENSMUSG00000054717 3.53

Rc3h2 ENSMUSG00000075376 3.33

Adamts1 ENSMUSG00000022893 3.15

Serpine1 ENSMUSG00000037411 3.08

S100a6 ENSMUSG00000001025 2.98

Pald1 ENSMUSG00000020092 2.67

Gsta4 ENSMUSG00000032348 2.50

D17H6S56E-5 NM_033075 2.46

Acta2 ENSMUSG00000035783 2.39

Ifi204 ENSMUSG00000073489 2.33

Down-regulated

Mcm10 ENSMUSG00000026669 3.23

Upp2 ENSMUSG00000026839 2.85

2810043O03Rik AK012901.1 2.59

Dnaaf5 ENSMUSG00000025857 2.41

Sva ENSMUSG00000023289 2.40

Naca ENSMUSG00000061315 2.35

Dhps ENSMUSG00000060038 2.33

Cdh15 ENSMUSG00000031962 2.26

Gzmm ENSMUSG00000054206 2.20

Alox12 ENSMUSG00000000320 2.15

2810043O03Rik: RIKEN complementary deoxyribonucleic acid 2810043O03 gene; Acta2: Actin alpha 2, smooth muscle; Adamts1: A disintegrin-like and 
metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 1; Alox12: Arachidonate 12-lipoxygenase; Cdh15: Cadherin 15; D17H6S56E-5: 
Deoxyribonucleic acid segment, Chr 17, human D6S56E 5; Dhps: Deoxyhypusine synthase; Dnaaf5: Dynein, axonemal assembly factor 5; Gsta4: 
Glutathione S-transferase alpha 4; Gzmm: Granzyme M (lymphocyte met-ase 1); Hmgb2: High mobility group box 2; Ifi204: Interferon activated gene 204; 
Mcm10: Minichromosome maintenance 10 replication initiation factor; Naca: Nascent polypeptide-associated complex alpha polypeptide; Pald1: 
Phosphatase domain containing paladin 1; Rc3h2: Ring finger and CCCH-type domains 2; S100A6: S100 calcium binding protein A6; Serpine1: Serpin 
family E member 1; Sva: Seminal vesicle antigen; Upp2: Uridine phosphorylase 2.

Diagnosis and staging value of plasma S100A6 and lncRNAs for PBC patients
ROC curves were used to evaluate the potential diagnostic value of each biomarker for 
PBC. The AUC for S100A6, LINC00312, log10 LINC00472 and LINC01257 in PBC 
diagnosis were 0.759, 0.7292, 0.6942 and 0.7158, respectively (Figure 8A-D). 
Furthermore, AUC for these four genes in PBC staging were 0.666, 0.661, 0.839 and 
0.5549, respectively (Figure 8E-H).

Pearson or Spearman correlation analysis was performed to evaluate the correlation 
between relative expression of S100A6 mRNA and lncRNAs, as well as relative 
expression of S100A6 mRNA or lncRNAs and clinical serological data in PBC patients. 
Relative expression of S100A6 mRNA was positively correlated with log10 LINC00472 
(r = 0.683, P < 0.0001); serum level of C-IV was positively correlated with relative 
expression of log10 LINC00472 (r = 0.482, P < 0.0001); relative expression of S100A6 
mRNA was positively correlated with serum level of C-IV (r = 0.732, P < 0.0001) 
(Figure 9).

Comparison of expression levels of biomarkers before and after treatment
A total of 58 PBC patients were followed up after their treatment for one year. Paired t-
test analysis was used to compare the expression levels of these four genes before and 
after treatment. The relative expression of S100A6 mRNA, log10 LINC00472, and 
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Table 3 Demographics and clinical characteristics in the training and validation datasets

Characteristics Training Validation P value

No. 140 115 -

Age, mean ± SD, yr 56.0 ± 13.9 57.2 ± 13.2 0.504

Gender, n (%)

Male 17 (12.1) 13 (11.3)

Female 123 (87.9) 102 (88.7) 1.0

Pathological stage

Ι and II 36 (45.0) 26 (40.0)

III and IV 44 (55.0) 39 (60.0) 0.614

Normally distributed data are expressed as mean ± SD. Categorical variable values are described as n (%). SD: Standard deviation.

Table 4 Demographics and clinical characteristics of primary biliary cholangitis patients and healthy controls1

Characteristics PBC (n = 145) HCs (n = 110) P value

Age, mean ± SD, yr 56.1 ± 13.4 55.3 ± 11.8 0.58

Gender, n (%)

Male 17 (12.5) 13 (16.7)

Female 128 (87.5) 97 (83.3) 1.00

ALT, U/L 78.6 ± 35.7 18.4 ± 6.5 < 0.001

AST, U/L 104.8 ± 43.5 20.2 ± 4.3 < 0.001

ALP, U/L 257.4 ± 79.9 64.7 ± 14.5 < 0.001

γGT, U/L 416.7 ± 209.2 26.3 ± 10.4 < 0.001

TBIL, μmol/L 66.8 ± 10.6 11.8 ± 4.0 < 0.001

DBIL, μmol/L 51.9 ± 11.4 6.4 ± 0.5 < 0.001

TBA, μmol/L 71.3 ± 11.6 2.8 ± 0.4 < 0.001

HA, ng/mL 146.9 (104.6-190.1) 67.0 (53.9-79.7) < 0.001

LN, ng/mL 148.9 (76.7-182.8) 70.4 (58.7-82.9) < 0.001

C-IV, ng/mL 154.8 (121.1-192.0) 60.1 (55.2-66.7) < 0.001

PC-III, ng/mL 161.0 (135.1-184.5) 57.3 (49.9-63.5) < 0.001

Pathological stage

Ι and II 62 (42.8) -

III and IV 83 (57.2) -

1Normally distributed data are expressed as means ± SD, variables with a skewed distribution are presented as median (interquartile range). Categorical 
variable values are described as n (%). γGT: Gamma-glutamyl transpeptidase; ALT: Alanine aminotransferase; ALP: Alkaline phosphatase; AST: Aspartate 
aminotransferase; C-IV: Collagen type IV; DBIL: Direct bilirubin; HA: Hyaluronic acid; LN, Laminin; PC-III: Procollagen III; TBA: Total bile acid; TBIL: 
Total bilirubin; SD: Standard deviation; PBC: Primary biliary cholangitis; HCs: Healthy controls.

LINC01257 were significantly decreased after treatment (2.35 ± 1.02 vs 3.06 ± 1.04, P = 
0.0018; 1.99 ± 0.83 vs 2.33 ± 0.96, P = 0.036; 2.84 ± 0.92 vs 3.69 ± 1.54, P = 0.0006, 
respectively); in addition, the relative expression of LINC00312 increased significantly 
after treatment compared with before treatment (1.95 ± 0.35 vs 1.73 ± 0.32, P = 0.0007) 
(Figure 10).

Differences between PBC patients with high and low levels of LINC00472
According to ROC curves analysis, the AUC of log10 LINC00472 was 0.839 (P < 0.0001) 
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Figure 2  Validation of top 10 up-regulated genes in the plasma of primary biliary cholangitis patients and healthy controls by reverse 
transcriptase polymerase chain reaction. aP < 0.0001. ACTA2: Actin alpha 2, smooth muscle; ADAMTS1: ADAM metallopeptidase with thrombospondin type 
1 motif 1; GSTA4: Glutathione S-transferase alpha 4; HMGB2: High mobility group box 2; PALD1: Phosphatase domain containing paladin 1; RC3H2: Ring finger and 
CCCH-type domains 2; S100A6: S100 calcium binding protein A6; SERPINE1: Serpin family E member 1; PBC: Primary biliary cholangitis.

Figure 3  Liver tissues of mice in the bile duct ligation group and sham group were observed under an optical microscope (hematoxylin-
eosin stain, × 400). A-C: 5, 10 and 15 d after surgery in the bile duct ligation group, respectively; D-F: 5, 10 and 15 d after surgery in the sham group, respectively. 
BDL: Bile duct ligation.

and the Youden index was 1.551. Accordingly, the patients in the PBC group were 
divided into L1 (log10 LINC00472 < 2.33) and L2 (log10 LINC00472 ≥ 2.33) subgroups. 
The baseline characteristics of PBC patients classified by the relative expression of the 
log10 LINC00472 cutoff value (2.33) is shown in Table 5. The relative expression of 
S100A6 mRNA and serum level of C-IV were lower in the L1 subgroup (P < 0.0001, 
Table 5); in addition, the relative expression of LINC01257 was higher in the L1 
subgroup compared to the L2 subgroup (P = 0.005, Table 5).

Validation of diagnosis and staging value
The parameters estimated from the training data set were used to predict the 
probability of being diagnosed with PBC and staging of PBC for the independent 
validation data set. ROC curves were also constructed to predict the probability of 
diagnosis and staging. The AUC of S100A6 mRNA, LINC00312, log10 LINC00472 and 
LINC01257 in PBC diagnosis were 0.769, 0.772, 0.755 and 0.695, respectively 
(Figure 11A-D). Moreover, the AUC for log10 LINC00472 in PBC staging was 0.835 
(Figure 11E).
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Table 5 Characteristics of primary biliary cholangitis patients based on the expression of log10 LINC00472 cutoff value

Relative Expression of log10 LINC00472

L1 (< 2.33) (n = 38) L2 (≥ 2.33) (n = 42) P value

Age, mean ± SD, years 60.3 ± 14.9 55.1 ± 14.0 0.109

Gender, n (%)

Male 5 (13.2) 5 (11.9)

Female 33 (86.8) 37 (88.1) 0.886

ALT, U/L 73.2 (52.7-100.1) 73.2 (46.2-100.7) 0.985

AST, U/L 109.2 ± 45.9 103.0 ± 44.6 0.543

ALP, U/L 264.0 ± 89.4 252.2 ± 78.3 0.532

γGT, U/L 420.2 ± 197.9 413.2 ± 237.1 0.887

TBA, μmol/L 73.2 ± 12.4 70.9 ± 13.3 0.438

TBiL, μmol/L 68.0 (63.0-73.0) 63.0 (58.0-73.0) 0.166

DBiL, μmol/L 50.6 ± 9.8 52.2 ± 11.4 0.505

LINC00312 1.51 ± 0.32 1.43 ± 0.31 0.261

S100A6 2.40 ± 1.05 3.57 ± 0.66 < 0.0001

LINC01257 4.25 ± 1.39 3.22 ± 1.78 0.005

HA, ng/mL 144.8 (101.6-208.8) 135.5 (95.4-195.4) 0.537

LN, ng/mL 126.1 (48.4-178.4) 156.1 (57.6-175.8) 0.78

C-IV, ng/mL 127.2 (100.9-170.4) 176.0 (154.7-232.0) < 0.0001

PC-III, ng/mL 156.6 (125.8-190.1) 161.6 (128.0-184.5) 0.916

SD: Standard deviation; γGT: Gamma-glutamyl transpeptidase; ALT: Alanine aminotransferase; ALP: Alkaline phosphatase; AST: Aspartate 
aminotransferase; C-IV: Collagen type IV; DBIL: Direct bilirubin; HA: Hyaluronic acid; LN: Laminin; PC-III: Procollagen III; S100A6: S100 calcium binding 
protein A6; TBA: Total bile acid; TBIL: Total bilirubin.

DISCUSSION
PBC is a type of cholestatic liver disease which is a pathophysiological process caused 
by the obstruction of bile secretion and excretion. After analyzing the expression levels 
of the top 10 up-regulated genes of GSE29776 in the plasma of PBC patients, it was 
found that the difference in S100A6 mRNA expression levels between PBC patients 
and healthy controls was greatest (t = 20.28, P < 0.0001). Therefore, S100A6 was 
selected as the target gene. BDL is a common procedure for biliary obstruction widely 
used in rodent models of cholestasis and liver damage[30]. Immunofluorescence 
double labeling analysis was performed to identify the overexpression of S100A6 
protein in the intrahepatic bile duct epithelial cells of BDL mice compared with sham 
mice, which verified the results predicted by bioinformatics analysis. In this study, the 
bile duct cells proliferated greatly in the liver tissue 10 d after the operation in the BDL 
group[31,32], and S100A6 protein was expressed in large quantities during the 
corresponding period. However, the number of bile duct cells in the sham group was 
relatively low, and the expression of S100A6 protein was also relatively low. 
Therefore, it can be seen that proliferation of bile duct cells was specifically enhanced 
when cholestatic liver injury occurred; thus, there was a difference in S100A6 between 
the two groups. S100A6 is expressed as a 89-amino acid protein in mice and rats, a 90-
amino acid protein in humans and rabbits, and subtypes A (92 amino acids) and B (91 
amino acids) in chickens, which may be produced by mRNA selective splicing[33]. In 
this study, the S100A6 antibodies used were universal in humans and mice, so the 
results of the BDL mouse model could indirectly reflect the up-regulation of S100A6 
expression in human intrahepatic cholestasis.

In this study, S100A6 mRNA was overexpressed in the plasma of PBC patients 
compared with healthy controls. S100A6 expression is up-regulated in breast cancer, 
thyroid cancer, colorectal cancer, various types of skin tumors, acute myelogenous 
leukemia, epithelial tissues and other highly proliferating cell lines[34]. Apoptosis in 
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Figure 4  C57BL/6J mouse liver tissue double immunofluorescence (red light: Cytokeratin 19 protein, green light: S100 calcium binding 
protein A6 protein, × 200). A: Cytokeratin 19 (CK19) protein in bile duct ligation (BDL) mouse; B: S100 calcium binding protein A6 protein (S100A6) protein in 
BDL mouse; C: CK19 and S100A6 proteins merge in BDL mouse; D: CK19 protein in sham mouse; E: S100A6 protein in sham mouse; F: CK19 and S100A6 proteins 
merge in sham mouse. BDL: Bile duct ligation.

Figure 5  The expression of S100 calcium binding protein A6 protein messenger ribonucleic acid, LINC00312, LINC00472 and LINC01257 
in human intrahepatic biliary epithelial cells (control and treated with glycochenodeoxycholate) analyzed by quantitative reverse 
transcription-polymerase chain reaction. A: S100 calcium binding protein A6 protein messenger ribonucleic acid; B: LINC00312; C: LINC00472; D: 
LINC01257. aP < 0.005. GCDC: Glycochenodeoxycholate.

PBC is considered to be the cell effector injury mediated by T cells. Changes in 
apoptosis and apoptosis-related molecular expression of bile duct cells have been 
reported in bile duct lesions, but immune-mediated injury of bile duct epithelial cells 
has not been fully elucidated[35]. Joo et al[36] found that S100A6 may be involved in 
the process of apoptosis by regulating the transcriptional regulation of caspase-3. 
Therefore, it seems that S100A6 may play an important role in the pathogenesis of 
PBC.
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Figure 6  Differential expression of plasma s100 calcium binding protein A6 protein messenger ribonucleic acid and long non-coding 
ribonucleic acids in primary biliary cholangitis plasma samples compared with healthy controls. A: S100 calcium binding protein A6 protein 
messenger ribonucleic acid; B: LINC00312; C: log10 LINC00472; D: LINC01257. aP < 0.0001. HCs: Healthy controls; PBC: Primary biliary cholangitis.

The expression of lncRNAs is not only closely related to the occurrence and 
development of tumors[37], but also associated with autoimmune diseases[38]. In this 
study, the expression of lncRNAs selected by bioinformatics analysis was differentially 
expressed in the plasma of PBC patients compared with healthy controls. The levels of 
plasma LINC00312 was significantly down-regulated in PBC patients, while 
LINC00472 and LINC01257 were up-regulated in PBC patients, indicating that these 
lncRNAs might be valuable for PBC diagnosis. ROC curves were used to evaluate the 
diagnostic value of each marker. The differential expression in plasma between PBC 
patients and heathy controls indicated that S100A6 mRNA (AUC = 0.76, P < 0.0001), 
LINC00312 (AUC = 0.73, P < 0.0001), log10 LINC00472 (AUC = 0.69, P < 0.0001) and 
LINC01257 (AUC = 0.72, P < 0.0001) may be potential biomarkers for the diagnosis of 
PBC.

Furthermore, the ROC curves analysis also showed that plasma S100A6 mRNA 
(AUC = 0.67, P = 0.01), LINC00312 (AUC = 0.66, P = 0.01) and log10 LINC00472 (AUC 
= 0.84, P < 0.0001) could also be used to predict disease progression in PBC. In 
particular, LINC00472 had high diagnostic value for PBC staging (sensitivity was 
77.27%, specificity was 77.78%). According to the cutoff value (2.33) of log10 
LINC00472, the relative expression of S100A6 mRNA and serum level of C-IV in the 
high-level group were higher than those in the low-level group.

LINC00312, also known as NAG7, was found to inhibit proliferation and induce 
apoptosis in nasopharyngeal carcinoma (NPC) cells but also stimulate NPC cell 
invasion. LINC00312 was significantly down-regulated in NPC tissues compared with 
non-cancerous nasopharyngeal epithelium tissues. Positive expression of LINC00312 
was negatively correlated with tumor size but positively correlated with lymph node 
metastasis[39]. High expression of LINC00472 was associated with less aggressive 
breast tumors and better prognosis. Patients with high expression of LINC00472 had a 
significantly reduced risk of recurrence and death compared to those with low 
expression. Patients with high expression of LINC00472 also responded better to 
adjuvant chemotherapy or hormone therapy than those with low expression[40]. 
Therefore, studies on S100A6, LINC00312 and LINC00472 have all been related to 
tumors. This study is the first to explore the relationship between these three genes 
and autoimmune diseases. In addition, we investigated the relationship between the 
expression of LINC01257 and diseases for the first time.
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Figure 7  Scatter plot and distribution of expression levels of s100 calcium binding protein A6 protein messenger ribonucleic acid and 
long non-coding ribonucleic acids in different stages of primary biliary cholangitis compared with healthy controls. The unpaired t-test 
analysis of variance was performed to examine differences in S100 calcium binding protein A6 protein messenger ribonucleic acid and long non-coding ribonucleic 
acids expression levels between various groups. A: S100 calcium binding protein A6 protein messenger ribonucleic acid; B: LINC00312; C: log10 LINC00472; D: 
LINC01257. aP < 0.05, bP < 0.0001. HCs: Healthy controls.

The expression levels of plasma S100A6, LINC00312, LINC00472 and LINC01257 in 
PBC patients before and after treatment were analyzed by the paired t-test. It was 
found that the elevated biomarkers decreased after treatment, while the reduced 
biomarker increased. This provides further evidence that these four genes are 
biomarkers for PBC diagnosis.

The correlation analysis showed that relative expression of S100A6 mRNA was 
positively correlated with log10 LINC00472 (r = 0.683, P < 0.0001) and the serum level 
of C-IV (r = 0.732, P < 0.0001). C-IV serves as a histochemical marker of perisinusoidal 
basement membrane formation in liver disease[41]. It was further illustrated that 
S100A6 may be associated with PBC liver injury. The relative expression of log10 
LINC00472 was positively correlated with the serum level of C-IV (r = 0.482, P < 
0.0001), indicating that it was related to the disease severity of PBC. It was suggested 
that LINC00472 can be used as a marker of PBC staging. However, in our study, the 
four biomarkers did not correlate with the cholestasis indicator ALP, and we think this 
may be due to the following reasons: (1) The S100A6 protein was expressed in large 
quantities during the early period of cholestasis. This process may precede the increase 
in serum ALP level; (2) Proliferation of bile duct cells is characterized by irregular 
proliferation of intrahepatic bile ducts not only confined to portal areas, but also 
sprouting into periportal and parenchymal regions. This implies that the newly 
formed bile ducts are functionally ineffective[42,43]; and (3) In the late stage of liver 
fibrosis, considerable hepatocyte necrosis occurs.

Hepatocytes exposed to bile acids have been used in many studies on PBC. The 
most commonly used bile acid is GCDC, which is a type of toxic hydrophobic bile acid 
and can induce apoptosis of iBECs, form apoptotic bodies, and can lead to the 
pyruvate dehydrogenase complex E2 subunit as an autoimmune antigen to be 
exposed. A series of immune responses are then activated[44]. Hisamoto et al[45] 
studied the effects of hydrophobic bile acid on human BECs and autologous spleen 
mononuclear cells, especially the effects of GCDC on anion exchange protein 
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Figure 8  Receiver operating characteristic curves of s100 calcium binding protein A6 protein, LINC00312, LINC00472 and LINC01257 for 
primary biliary cholangitis diagnosis and staging in the training set. A-D: Receiver operating characteristic curves of s100 calcium binding protein A6 
protein, LINC00312, LINC00472 and LINC01257 for primary biliary cholangitis diagnosis in the training set; E-H: Receiver operating characteristic curves of s100 
calcium binding protein A6 protein, LINC00312, LINC00472 and LINC01257 for primary biliary cholangitis staging in the training set. AUC: Area under the curve; CI: 
Confidence interval.
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Figure 9  Correlation analysis of biomarkers and clinical serological indices. A: The positive correlation between relative expression of s100 calcium 
binding protein A6 protein messenger ribonucleic acid and log10 LINC00472, r = 0.683, P < 0.0001; B: The positive correlation between relative expression of log10 
LINC00472 and serum level of collagen type IV, r = 0.482, P < 0.0001; C: The positive correlation between serum level of collagen type IV and relative expression of 
s100 calcium binding protein A6 protein messenger ribonucleic acid, r = 0.732, P < 0.0001.

Figure 10  Comparison and analysis of s100 calcium binding protein A6 protein messenger ribonucleic acid, LINC00312, log10 
LINC00472, LINC01257 expression levels in primary biliary cholangitis patients before and after treatment using the paired t-test. A: S100 
calcium binding protein A6 protein messenger ribonucleic acid; B: LINC00312; C: log10 LINC00472; D: LINC01257.

expression of BECs and on the phenotype of BECs and local inflammatory response. It 
was proved that GCDC reduced the expression of anion exchange in BECs and 
accelerated the aging of BECs by inducing reactive oxygen species. Therefore, this 
study used GCDC to treat HiBECs to simulate a cholestatic environment and assess its 
damage to HiBECs. In this study, the expression levels of S100A6 mRNA, LINC00472 
and LINC01257 were up-regulated while LINC00312 was down-regulated in GCDC-
treated HiBECs compared with controls, consistent with the expression in plasma of 
PBC patients. It was further proved that these four indicators are related to PBC 
diagnosis and staging.
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Figure 11  Receiver operating characteristic curves of s100 calcium binding protein A6 protein, LINC00312, LINC00472 and LINC01257 for 
primary biliary cholangitis diagnosis and staging in the validation set. A-D: Receiver operating characteristic curves of s100 calcium binding protein A6 
protein, LINC00312, LINC00472 and LINC01257 for primary biliary cholangitis diagnosis in the validation set; E: Receiver operating characteristic curves of 
LINC00472 for primary biliary cholangitis staging in the validation set. AUC: Area under the curve; CI: Confidence interval.

The value of the above four biomarkers should be validated in an additional cohort 
of PBC patients and their specificity needs to be examined in other patient 
populations[46]. We chose another PBC cohort as the validation set. The AUC of the 
four genes were close to those in the training set. Therefore, the value of these four 
biomarkers in the diagnosis and staging of PCB was validated. However, in China, the 
vast majority are Han Chinese; therefore, it is difficult to verify these findings in other 
ethnic groups.

CONCLUSION
In conclusion, the expression of S100A6 protein in BDL mice was up-regulated, the 
expression of S100A6 mRNA, LINC00472 and LINC01257 were up-regulated, while 
LINC00312 was down-regulated both in the plasma of PBC patients and HiBECs 
treated with GCDC compared with controls. Although our study was confined to the 
expression analysis of S100A6 mRNA, LINC00312, LINC00472 and LINC01257, 
warranting further studies to investigate the mechanisms underlying the functional 
role of these four markers, nevertheless their potential as biomarkers for diagnosis and 
staging of PBC was elucidated by multiple evaluations in this study.

ARTICLE HIGHLIGHTS
Research background
Primary biliary cholangitis (PBC) is an autoimmune liver disease that mostly affects 
women. Fatigue and persistent pruritus are the most obvious symptoms. PBC may 
lead to cholestasis, liver fibrosis, cirrhosis and, eventually, liver failure. The injury 
mechanism of intrahepatic biliary epithelial cells is the key to investigating the 
pathogenesis of PBC, but the accurate relationship between cholestasis and liver 
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fibrosis is still indistinct.

Research motivation
To explore the target genes of intrahepatic biliary epithelial cell injury in PBC. To 
search for plasma biomarkers for early diagnosis and staging of PBC. To lay a 
foundation for further study on the pathogenesis of PBC.

Research objectives
To explore the potential diagnosis and staging value of plasma S100 calcium binding 
protein A6 (S100A6) messenger ribonucleic acid (mRNA), LINC00312, LINC00472, and 
LINC01257 in primary biliary cholangitis.

Research methods
The up-regulation of S100A6 was identified by double immunofluorescence in a bile 
duct ligation mouse model. We used quantitative reverse transcription-polymerase 
chain reaction to analyze the relative expression levels of S100A6 mRNA, long 
noncoding ribonucleic acids (lncRNAs) LINC00312, LINC00472 and LINC01257 both 
in patients with PBC and in human intrahepatic biliary epithelial cells treated with 
glycochenodeoxycholate.

Research results
The relative expression levels of S100A6 mRNA, LINC00472 and LINC01257 were up-
regulated while LINC00312 was down-regulated in both the plasma of patients with 
PBC and in human intrahepatic biliary epithelial cells treated with glyco-
chenodeoxycholate.

Research conclusions
These four genes may potentially act as novel biomarkers for the diagnosis of PBC. 
Moreover, LINC00472 acts as a biomarker for staging in PBC.

Research perspectives
Although we have demonstrated that S100A6 and related lncRNAs may be biomarkers 
for the diagnosis and staging of PBC, their detailed value needs to be analyzed in a 
large sample. The specific mechanisms of S100A6 and lncRNAs require further 
investigation.
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Abstract
BACKGROUND 
Previous studies have suggested that long non-coding RNAs (lncRNA) TP73-AS1 
is significantly upregulated in several cancers. However, the biological role and 
clinical significance of TP73-AS1 in pancreatic cancer (PC) remain unclear.

AIM 
To investigate the role of TP73-AS1 in the growth and metastasis of PC.

METHODS 
The expression of lncRNA TP73-AS1, miR-128-3p, and GOLM1 in PC tissues and 
cells was detected by quantitative real-time polymerase chain reaction. The 
bioinformatics prediction software ENCORI was used to predict the putative 
binding sites of miR-128-3p. The regulatory roles of TP73-AS1 and miR-128-3p in 
cell proliferation, migration, and invasion abilities were verified by Cell Counting 
Kit-8, wound-healing, and transwell assays, as well as flow cytometry and 
Western blot analysis. The interactions among TP73-AS1, miR-128-3p, and 
GOLM1 were explored by bioinformatics prediction, luciferase assay, and 
Western blot.

RESULTS 
The expression of TP73-AS1 and miRNA-128-3p was dysregulated in PC tissues 
and cells. High TP73-AS1 expression was correlated with a poor prognosis. TP73-
AS1 silencing inhibited PC cell proliferation, migration, and invasion in vitro as 
well as suppressed tumor growth in vivo. Mechanistically, TP73-AS1 was 
validated to promote PC progression through GOLM1 upregulation by 
competitively binding to miR-128-3p.

CONCLUSION 
Our results demonstrated that TP73-AS1 promotes PC progression by regulating 
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the miR-128-3p/GOLM1 axis, which might provide a potential treatment strategy 
for patients with PC.
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Core Tip: In this study, the expression level of TP73-AS1 in pancreatic cancer (PC) was 
measured and its clinical significance was assessed. In vitro and in vivo experiments 
were performed to determine the roles of TP73-AS1 in the progression and 
development of PC. Moreover, the underlying molecular mechanisms were also 
illustrated, which could provide a novel therapeutic target for patients with PC.
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INTRODUCTION
Pancreatic cancer (PC) is the fourth most frequent cause of cancer-related deaths with 
an extremely poor prognosis, especially in patients with advanced-stage PC [1,2]. 
Although standard treatments have been improved in recent years, the effectiveness of 
these treatments was still limited and surgical resection was the only chance to obtain 
curative treatment[2,3]. Hence, it is necessary to seek for new treatment to optimize 
therapeutic approaches.

Long non-coding RNAs (lncRNAs) are small endogenous non-coding RNAs whose 
lengths are larger than 200 nucleotides. LncRNAs have the capacity to regulate various 
biological processes such as tumor initiation, growth, metastasis, chemoresistance, and 
radioresistance by directly binding to partially complimentary sequences in their 
target genes[4-7]. Moreover, emerging evidence has revealed that lncRNAs could play 
crucial roles in the progression of PC[8,9]. LncRNA-BX111 was upregulated in 
pancreatic cancer and high BX111 expression was correlated with advance tumor-
node-metastasis (TNM) stage, lymphatic invasion, and distant metastasis, as well as 
poor clinical prognosis in patients with PC[10]. Further investigation revealed that 
BX111 contributed to metastasis and progression of PC by regulating expression of 
ZEB1 and its downstream proteins E-cadherin and MMP2[10]. PVT1 was identified as 
a regulator of gemcitabine sensitivity with a genome-wide and piggyBac transposon-
based genetic screening platform[11]. Therefore, lncRNAs may be new biological 
markers for disease diagnosis and could be taken as new drug targets, which would 
provide a new strategy for PC.

Dysregulation of TP73-AS1 has been identified in several human cancer types, 
including glioma, hepatocellular carcinoma, and non-small cell lung cancer[12-14]. 
However, little is known about the expression pattern and biological roles of TP73-AS1 
in PC. In this study, the expression level of TP73-AS1 in PC was measured and its 
clinical significance was assessed. In vitro and in vivo experiments were performed to 
determine the roles of TP73-AS1 in the progression and development of PC. Further 
investigation indicated that the 3’ untranslated region (UTR) of GOLM1 harbors a 
functional response element for miR-128-3p. Besides, miR-128-3p-3p could abrogate 
TP73-AS1-mediated expression of GOLM1, which suggested that TP73-AS1 could act 
as a molecular sponge to decrease miR-128-3p expression, thereby resulting in partial 
abolition of the translational repression of its target gene GOLM1 in PC cells. 
Therefore, we hope that the underlying molecular mechanisms of TP73-AS1 could 
provide a novel therapeutic target for patients with PC.
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MATERIALS AND METHODS
Clinical specimens
A total of 116 clinical PC tissues and corresponding normal tissues from surgical 
resection were collected at Shanghai General Hospital of Shanghai Jiao Tong 
University between April 2007 and July 2010. PC was diagnosed by pathological 
examinations. Patients were excluded if they received any treatments such as 
chemotherapy, radiotherapy, or molecular targeted therapy prior to surgery. All 
patients provided informed written consent prior to the use of these clinical materials 
for research purpose. This study was conducted in accordance with the ethical 
guidelines of the Declaration of Helsinki and approved by the Ethics Committee of 
Shanghai First People's Hospital (No. 2014-07DF), School of Medicine, Shanghai 
Jiaotong University (Shanghai, China). All human tissues were immediately frozen in 
liquid nitrogen until being used.

Cell lines and transfection
Human PC cell lines (SW1990, PANC-1, BXPC-3, AsPc-1, and Capan-1) and human 
pancreatic duct epithelial cell line (H6C7) were obtained from the Shanghai Cell Bank 
of Chinese Academy of Sciences (Shanghai, China). Cells were cultured in Dulbecco's 
modified Eagle's medium (DMEM, Invitrogen, Carlsbad, CA, United States) 
supplemented with 10% fatal bovine serum (FBS, Invitrogen), 100 U/mL penicillin, 
and 100 μg/mL streptomycin (Hyclone, South Logan, UT, United States) in a 
humidified incubator (5% CO2) at 37 °C. Small interfering RNAs (siRNAs) targeting 
TP73-AS1 (si-TP73-AS1#1, si-TP73-AS1#2, and si-TP73-AS1#3) and negative control 
(si-control) were purchased from GenePharma (Shanghai, China). MiR-128-3p, miR-
NC, anti-miR-128-3p, and anti-miR-NC were obtained from Thermofisher. Cell 
transfection was performed using FuGENE HD Transfection Reagent (Roche, United 
States) according to the manufacturer’s instructions.

Quantitative reverse transcription-polymerase chain reaction
Total RNA was isolated using TRIzol reagent (Invitrogen) from PC tissues and cell 
lines. RNA was reversely transcribed into cDNA using the PrimeScript™RT reagent 
Kit with gDNA Eraser (TakaRa, Dalian, China). Quantitative real-time polymerase 
chain reaction (qRT-PCR) was performed using FastStart Universal SYBR Green 
Master (Roche, Basel, Switzerland) on a Bio-Rad RT-PCR cycler (Bio-Rad, Hercules, 
United States). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and small RNA 
RNU6B (U6) were used as the internal controls for lncRNA/mRNA and miRNAs, 
respectively. Relative expression values of genes were analyzed by the 2−ΔΔCt method.

Cell proliferation, colony formation, and apoptosis assays
For cell proliferation assay, cells were plated into 96-well plates with four replicate 
wells per group and then incubated with 10 μL of CCK-8 reagent (Dojindo, 
Kumamoto, Japan). The absorbance was measured at 450 nm with a microplate reader 
(Bio-Tek, Winooski, United States) 2 h later. For colony formation assay, 
approximately 600 cells were plated into 6-well plates with three replicates. Cells were 
fixed with 10% formaldehyde and stained with 0.5% crystal violet 14 d later. Cell 
apoptosis was detected using Annexin-V-fluorescein isothiocyanate apoptosis 
detection kit (BD, Franklin Lakes, United States) according to the manufacturer's 
instructions. The apoptosis rate of cells was measured on a BD FACSAria™ II flow 
cytometer (BD).

Transwell assay
Cell migration and invasion were evaluated using the Boyden chambers (Millipore; 
Merck KGaA, Germany) with an 8 mm pore size. Briefly, a total of 2 × 104 cells in 100 
μL serum-free medium were transferred into the upper chamber, and the lower 
chamber was filled with medium containing 10% FBS. After 24 h incubation, cells were 
fixed with 10% formaldehyde for 15 min and stained with 0.5% crystal violet for 20 
min at room temperate. The migrated cells were counted under an X71 inverted 
microscope in six randomly selected fields and captured using a microscope (Nikon). 
The invasion assay was performed in the same way as the migration assay did except 
that the inserts were pre-coated with Matrigel (BD).

Luciferase reporter assay
The putative miR-128-3p binding sites in TP73-AS1 and GOLM1 3′UTR were 
synthesized and inserted into pMIR-REPORT™ miRNA Expression Reporter Vector 
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(Thermofisher). Their corresponding mutants were generated using MutanBEST Kit 
(TaKaRa). AsPc-1 and Capan-1 cells were co-transfected with these reporter plasmids 
and pMIR-REPORT β-gal, miR-128-3p mimics, or miR-128-3p inhibitors using 
Lipofectamine 3000 (Invitrogen). Luciferase activity was measured using Dual-
Luciferase Reporter Assay System (Promega, WI, United States) 48 h after the 
transfection.

RNA immunoprecipitation assay
PANC-1 and ASPC-1 cells transfected with miR-NC or miR-128-3p were harvested 
with revised importance-performance analysis lysis buffer (Cell Signaling Technology, 
Danvers, MA, United States) containing a proteinase inhibitor cocktail (Roche, IN, 
United States). The lysates were incubated with magnetic beads conjugated with 
human anti-Ago2 antibody and normal rabbit immunoglobulin G. Then RNA was 
isolated from the mixture with TRIzol reagent for qRT-PCR analysis.

Western blot analysis
Western blot was performed as we previously described[15]. The primary antibodies 
used in this study are listed as following: Anti-GOLM1 (H00051280-PW1, Abnova, 
Taiwan), anti-GAPDH (#10494-1-AP, Proteintech, IL, United States), anti-E-cadherin 
(14-3249-82, CST, United States), anti-N-cadherin (MA1-91128, CST, United States), 
anti-Vimentin (PA5-27231, CST, United States), anti-Caspase-3 (700182, CST, United 
States), and anti-Bcl-2 (MA5-11757, CST, United States).

In vivo xenograft experiment
All animal experiments were performed in compliance to institutional guidelines 
approved by the Use Committee for Animal Care and this study was approved by the 
Ethics Committees of Shanghai First People's Hospital of Shanghai Jiao Tong 
University (approval No. 201804SF). Female BALB/c-nude mice (4–6 wk of age) were 
purchased from Shanghai SJA Laboratory Animal Company (Shanghai, China) and 
maintained under specific pathogen free conditions. Capan-1 cells (1 × 107; transfected 
with si-control or si-TP73-AS1#1) mingled with 100 μL serum-free medium were 
injected subcutaneously into to the flanks of the nude mice. All mice were sacrificed 4 
wk after injection and then tumors were isolated and photographed. Tumor volumes 
were calculated using the formula length × width2/2 and tumor weights were 
measured. For tail vein injection, 1 × 106 cells in serum-free medium were injected into 
6 wk-old BALB/c-nude mice via the tail vein. Five weeks after injection, all mice were 
sacrificed and lung tissues were finally embedded with paraffin and subjected to 
hematoxylin and eosin (H&E) staining.

Statistical analysis
Data are shown as the mean ± SD. The differences between groups were analyzed by 
Student’s t-test or Chi-square test. The cumulative overall survival was calculated 
using the Kaplan-Meier method, and the log-rank test was used to analyze differences 
in the survival times. Data were analyzed using GraphPad software 7.0. P < 0.05 was 
considered significant.

RESULTS
TP73-AS1 is upregulated in PC and associated with a poor prognosis
To explore the roles of TP73-AS1 in PC, we first detected the expression of TP73-AS1 
in the human pancreatic duct epithelial cell line (H6C7) and five PC cell lines by qRT-
PCR. Our data indicated that TP73-AS1 expression was higher in all PC cell lines than 
in H6C7, especially in AsPc-1 and Capan-1 cells (Figure 1A). Then the expression of 
TP73-AS1 in 116 pairs of PC tissues and adjacent non-cancerous tissues was measured, 
and the results revealed that TP73-AS1 expression was significantly increased in PC 
tissues compared to the corresponding non-cancerous tissues (Figure 1B and C). 
Furthermore, it was shown that in the tissue samples of stages I and II PC patients, the 
expression levels of TP73-AS1 were lower than those in stage III PC patients 
(Figure 1D). Moreover, the associations between TP73-AS1 expression and the 
clinicopathological characteristics in PC patients were analyzed. The results suggested 
that increased TP73-AS1 expression was significantly correlated with tumor size, 
vessel infiltration, and TNM stage. Besides, no correlation was found between TP73-
AS1 expression and other clinical pathological features (Table 1). Kaplan-Meier 
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Table 1 Relationship between TP73-AS1 expression and clinicopathological features

(n) TP73-AS1 expression
Characteristic

n = 116 Low expression High expression
P value

Age 0.7101

< 60 65 32 33

≥ 60 51 23 28

Gender 0.7026

Male 74 34 40

Female 42 21 21

Tumor differentiation 0.5723

Poor 69 31 38

Middle and well 47 24 23

Tumor size 0.008

≤ 2 cm 48 31 17

> 2 cm 68 26 42

Tumor site 0.4555

Head 64 28 36

Body 52 27 25

Vessel infiltration 0.001

Negative 82 47 35

Positive 34 8 26

Lymph node metastasis 0.5526

No 78 35 43

Yes 38 20 18

TNM stage 0.0008

I-II 84 48 36

III 32 7 25

TNM: Tumor-node-metastasis.

survival results suggested that patients with higher TP73-AS1 expression had a shorter 
overall survival than those with lower TP73-AS1 expression (Figure 1E). These data 
indicated that TP73-AS1 might play a vital role in the progression of PC.

LncRNA TP73-AS1 is required for efficient PC cell proliferation, migration, and 
invasion
In order to assess the biological functions of TP73-AS1, we knocked down TP73-AS1 
by transfecting specific siRNAs in AsPc-1 and Capan-1 cells, which have higher 
endogenous TP73-AS1 expression. The knockdown efficacy was confirmed by qRT-
PCR analysis. The expression of TP73-AS1 was markedly decreased in AsPc-1 and 
Capan-1 cells after transfecting with siRNAs targeting TP73-AS1 (Figure 2A). CCK-8 
(Figure 2B) and colony formation assay (Figure 2C) showed that knockdown of TP73-
AS1 in PC cells markedly restrained cell proliferation. Furthermore, cell apoptosis was 
highly promoted by depletion of TP73-AS1 in AsPc-1 and Capan-1 cells (Figure 2D). In 
addition, in the transwell assay, TP73-AS1 silencing could effectively impede the 
invasive ability of PC cells (Figure 2E and F). These data revealed that TP73-AS1 acts 
as an oncogene and depletion of TP73-AS1 inhibits PC cell growth and invasion in 
vitro.
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Figure 1 Aberrantly expressed TP73-AS1 in pancreatic cancer cells and tissues. A: TP73-AS1 expression in pancreatic cancer (PC) cell lines and an 
immortalized human pancreatic duct epithelial cell (H6C7) detected by quantitative real-time polymerase chain reaction; B: The relative expression of TP73-AS1 in 
116 paired PC tissues and adjacent non-tumor tissues; C: TP73-AS1 is highly expressed in collected PC tissues; D: The different expression of TP73-AS1 between 
tumor-node-metastasis (TNM) stage I-II; and TNM stage III; E: Kaplan-Meier analysis of the overall survival in patients with PC based on the levels of TP73-AS1 
expression. aP < 0.05; bP < 0.01.

LncRNA TP73-AS1 functions as a competing endogenous RNA and sponges miR-
128-3p in PC cells
Accumulating evidence suggests that lncRNAs could bind to miRNAs and function as 
a molecular sponge in the tumorigenesis of various cancers[4]. To elucidate the 
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Figure 2 Knockdown of TP73-AS1 suppresses cell proliferation and invasion in vitro. A: Quantitative real-time polymerase chain reaction analysis of 
TP73-AS1 expression in AsPc-1 and Capan-1 cells transfected with si-control and small interfering RNAs targeting TP73-AS1; B: CCK-8 proliferation assay in 
pancreatic cancer cells transfected with si-control, si-TP73-AS1#1, or si-TP73-AS1#3; C: Colony formation assay in AsPc-1 and Capan-1 cells transfected with si-
control, si-TP73-AS1#1, or si-TP73-AS1#3; D: Role of TP73-AS1 on AsPc-1 and Capan-1 cells apoptosis checked by flow cytometry assay; E and F: Effect of TP73-
AS1 silencing on the migration and invasion ability of AsPc-1 (E) and Capan-1 (F) cell determined by transwell assay. aP < 0.05; bP < 0.01.
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underlying mechanism of TP73-AS1 involved in PC progression, the potential target 
miRNAs of TP73-AS1 were forecasted with bioinformatics analysis software (
http://starbase.sysu.edu.cn). Among these potential targets, miR-128-3p was chosen 
for further study because it had been validated as a tumor suppressor in PC 
(Figure 3A)[16]. Dual-luciferase reporter assay was used to validate the relationship 
between TP73-AS1 and miR-128-3p. The activity of the wild-type luciferase reporter 
gene was significantly reduced following transfection with miR-128-3p mimics, 
whereas the activity of the reporter gene containing the mutant sequence showed no 
significant change, which indicated that TP73-AS1 could bind to the specific sites of 
miR-128-3p (Figure 3B). Moreover, anti-Ago2 RNA immunoprecipitation in AsPc-1 
and Capan-1 cells transiently overexpressing miR-128-3p could significantly increase 
the amount of TP73-AS1 (Figure 3C), which could further validate their binding 
potential. The expression of miR-128-3p was significantly increased in PC cells 
transfected with si-TP73-AS1#1 and si-TP73-AS1#3 (Figure 3D). Then, we measured 
miR-128-3p expression level and the relationship between TP73-AS1 and miR-128-3p 
expression in PC tissues. Interestingly, qRT-PCR assay showed that the miR-128-3p 
level was remarkably reduced in PC tissues (Figure 3E) and the endogenous miR-128-
3p level was negatively correlated with TP73-AS1 in PC tissues (Figure 3F). These 
results suggested that TP73-AS1 might function as a competing endogenous RNA 
(ceRNA) for miR-128-3p.

MiR-128-3p-3p inhibits pancreatic cell proliferation, migration, and invasion
MiR-128-3p was reported to be a tumor suppressor in several cancers, including 
PC[16,17]. But its effects in the progression of PC are largely unknown. To explore the 
roles of miR-128-3p in PC cell growth and mobility, miR-128-3p mimics were 
transfected in AsPc-1 and Capan-1 cells (Figure 4A). CCK-8 (Figure 4B) and colony 
formation assays (Figure 4C) revealed that miR-128-3p had significant negative 
regulation effects on the ability of cell proliferation in AsPc-1 and Capan-1 cells. Flow 
cytometry assay indicated that overexpression of miR-128-3p increased the number of 
apoptotic cells both in AsPc-1 and Capan-1 cells (Figure 4D). Meanwhile, transwell 
assays demonstrated that miR-128-3p overexpression significantly restrained PC cell 
migration and invasion (Figure 4E and F). Considering the downregulation of miR-
128-3p in PC tissues, our results manifested that miR-128-3p could act as a tumor 
suppressor by regulating PC cell proliferation and invasion.

Inhibition of miR-128-3p partly reverses regulatory effects induced by depletion of 
TP73-AS1
To determine if TP73-AS1 knockdown could exert anti-proliferation and anti-
metastasis function by mediating miR-128-3p, anti-miR-128-3p was transfected into 
AsPc-1 and Capan-1 cells after TP73-AS1 silencing. Functional experiments 
demonstrated that the TP73-AS1-mediated pro-proliferation (Figure 5A) and anti-
apoptosis (Figure 5B) effect was dramatically abrogated by anti-miR-128-3p 
transfection in TP73-AS1 silencing PC cells. In addition, the inhibitory effects of TP73-
AS1 silencing on cell metastasis were rescued by anti-miR-128-3p transfection 
(Figure 5C and D). Moreover, epithelial-mesenchymal transition (EMT)-related 
proteins were detected by Western blot. Consistent with the functional assays above, 
the results showed that TP73-AS1 could regulate EMT-related proteins by regulating 
miR-128-3p (Figure 5E). All these data indicated that TP73-AS1 is involved in PC 
progression, at least partly through miR-128-3p.

LncRNA TP73-AS1 regulates GOLM1 expression by competing for miR-128-3p-3p
Since TP73-AS1 was demonstrated to bind to miR-128-3p, we assessed whether TP73-
AS1 could indirectly affect the target gene of miR-128-3p by serving as a ceRNA. Based 
on online bioinformatics analysis, GOLM1 3’UTR was found to possess a putative 
recognition site for miR-128-3p (Figure 6A). The luciferase reporter assay was carried 
out and the results showed that the luciferase activity of plasmid carrying GOLM1 
3’UTR-WT was significantly decreased by transfecting miR-128-3p mimics both in 
AsPc-1 and Capan-1 cells (Figure 6B). However, these effects were abolished when the 
binding sequences were mutated. Transfecting miR-128-3p mimics led to a significant 
decrease of GOLM1 mRNA and protein expression in AsPc-1 and Capan-1 cells 
(Figure 6C). To further explore the correlation between TP73-AS1 and GOLM1, the 
mRNA and protein expression of GOLM1 was detected after TP73-AS1 silencing. As 
expected, the mRNA and protein expression of GOLM1 was remarkably decreased 
after silencing TP73-AS1 both in AsPc-1 and Capan-1 cells (Figure 6D). Moreover, the 
level of GOLM1 mRNA was significantly down-regulated in PC tissues compared to 

http://starbase.sysu.edu.cn
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Figure 3 TP73-AS1 physically interacts with miR-128-3p-3p. A: miR-128-3p and its predicted binding sites in the TP73-AS1 sequence; B: Luciferase 
activity of pancreatic cancer (PC) cells co-transfected with miRNA mimics and luciferase reporter vectors containing TP73-AS1-WT or TP73-AS1-MUT; C: RNA 
immunoprecipitation assay of the enrichment of TP73-AS1 in AsPc-1 and Capan-1 transfected with miR-NC or miR-128-3p. Immunoglobulin G was used as negative 
control; D: Expression levels of miR-128-3p in AsPc-1 and Capan-1 cells transfected with si-control or small interfering RNAs targeting TP73-AS1; E: Expression 
levels of miR-128-3p in PC tissues and adjacent non-tumor tissues; F: The expression of TP73-AS1 and miR-128-3p exhibits a negative correlation in PC tissues. bP < 
0.01. IgG: Immunoglobulin G.

the corresponding non-cancerous tissues (Figure 6E). Interestingly, an inverse 
correlation was identified between miR-128-3p and GOLM1 mRNA levels in PC 
tissues (Figure 6F). In contrast, the positive relationship between TP73-AS1 and 
GOLM1 mRNA levels was observed in PC tissues (Figure 6G). The protein expression 
of GOLM1 was increased after anti-miR-128-3p transfection in TP73-AS1 silencing PC 
cells (Figure 6H), which suggested that TP73-AS1 could regulate the expression of 
GOLM1 by acting as a sponge for miR-128-3p in vitro.

TP73-AS1 silencing inhibits tumor growth and metastasis of PC cells
To further elucidate the biological roles of TP73-AS1 in PC tumorigenesis in vivo, 
Capan-1 cells transfected with si-TP73-AS1#1 or si-Control were implanted into nude 
mice via subcutaneous injection. Four weeks later, the subcutaneous tumors were 
collected. Tumor growth curve and tumor weight from the si-TP73-AS1#1 group 
showed lower size and lighter tumor weight (Figure 7A-C). Moreover, qRT-PCR 
analysis suggested that the expression of TP73-AS1 was decreased (Figure 7D) and the 
expression of miR-128-3p (Figure 7E) was increased in the si-TP73-AS1#1 group. In 
addition, Ki-67 immunostaining indicated that the subcutaneous tumors formed by 
TP73-AS1 silencing Capan-1 cells showed fewer Ki-67 positive cells compared to the 
control group (Figure 7F). Together, the in vitro and in vivo results suggested that 
TP73-AS1 might function as an oncogene in the progression of PC. To investigate the 
metastatic potential of TP73-AS1 in vivo, Capan-1 cells transfected with si-TP73-AS1#1 
or si-Control were injected into the mice via the tail vein. As shown in Figure 7G, 
silencing TP73-AS1 remarkably decreased the number and size of lung metastatic 
lesions as detected by H&E staining. Moreover, we detected apoptotic markers in the 
tumors from the two groups and the results showed that apoptosis-related genes were 
significantly altered (Figure 7H).

DISCUSSION
Increasing numbers of studies have shown that lncRNAs are involved in both normal 
development and pathological processes of human diseases by chromatin 
modification, genomic imprinting, RNA decay, and sponge-like miRNAs[5,18,19]. 
Dysregulation of lncRNAs might influence cell proliferation, metastasis, angiogenesis, 
and drug resistance[18,20,21]. It has been previously reported that increased 
expression of TP73-AS1 is associated with a poorer prognosis and shorter survival in 
patients with hepatocellular carcinoma[13]. High TP73-AS1 expression was also 
observed and associated with poor overall survival of patients with osteosarcoma[22]. 
TP73-AS1 was up-regulated in both colorectal cancer tissues and colorectal cancer cells 
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Figure 4 MiR-128-3p inhibits the proliferation, migration, and invasion of pancreatic cancer cells. A: The efficiencies of overexpression for miR-
128-3p determined by quantitative real-time polymerase chain reaction; B and C: CCK-8 assay (B) and colony formation assay (C) for detecting cell proliferative ability 
after overexpression of miR-128-3p; D: Effect of miR-128-3p on pancreatic cancer cell apoptosis determined by flow cytometry; E and F: Transwell assay with or 
without matrigel for assessing the effect of miR-128-3p on cell migration and invasion in AsPc-1 (E) and Capan-1 (F) cells. bP < 0.01.
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and high TP73-AS1 expression was associated with metastasis and advanced clinical 
stages in patients with colorectal cancer[23]. Above studies suggested that TP73-AS1 
might act as an oncogene in tumor progression, which encouraged us to explore the 
expression and biological function of TP73-AS1 in PC. In agreement with these studies, 
we found that TP73-AS1 was significantly increased and associated with tumor size, 
vessel infiltration, and poor prognosis in PC patients. Furthermore, our results showed 
that knockdown of TP73-AS1 suppressed the proliferation and invasion of PC cells in 
vitro and the tumor growth in vivo.

Emerging studies demonstrated that lncRNAs could function as ceRNAs to regulate 
gene expression through competitively binding to miRNAs[4,5]. To further investigate 
the mechanism of the TP73-AS1 in PC, bioinformatics analysis predicted that TP73-
AS1 is a target of miR-128-3p. Numerous studies have indicated that miR-128-3p could 
act as a tumor suppressive role in many tumors, including glioma, breast cancer, and 
non-small cell lung cancer[24-26]. In our present study, we found that miR-128-3p 
could significantly suppress PC cell growth and invasion. Luciferase reporter assay 
confirmed the relationship between TP73-AS1 and miR-128-3p. Mechanistical study 
showed that TP73-AS1 could mediate PC cell proliferation, migration, and invasion by 
sponging miR-128-3p and a negative correlation between TP73-AS1 and miR-128-3p 
expression was observed in PC tissues. Further investigation indicated that the 3’UTR 
of GOLM1 harbors a functional response element for miR-128-3p. GOLM1, a type II 
transmembrane protein, has been reported to be induced by virus infection[27,28]. 
Recent studies have shown that GOLM1 commonly expressed in epithelial cells of 
normal tissues was significantly upregulated in tumor tissues, which suggested a 
possible oncogenic role of GOLM1 in tumor progression[29,30]. Moreover, 
clinicopathological features showed that GOLM1 was correlated with Edmondson 
grade, vascular invasion, TNM stage, overall survival, as well as Vimentin 
expression[31]. GOLM1 was also reported to promote prostate cancer cell growth, 
migration, and invasion, and inhibited cell apoptosis via the PI3K/AKT/mTOR 
signaling axis[32]. The role of GOLM1 was unclear in PC and our data showed that the 
mRNA expression of GOLM1 was increased in PC tissues. Moreover, ectopic 
expression of miR-128-3p significantly inhibited the expression of GOLM1 at both the 
mRNA and protein level. Most interestingly, miR-128-3p-3p could abrogate TP73-AS1-
mediated expression of GOLM1, which suggested that TP73-AS1 could act as a 
molecular sponge to decrease miR-128-3p expression, thereby resulting in partial 
abolition of the translational repression of its target gene GOLM1 in PC cells.

KRAS gene, the most common genetic driver in PC, is mutated in about 93% of PC 
s[33,34]. The KRAS protein is a small GTPase, which is responsible for interacting with 
cell membrane growth factor receptors and controlling the switch of multiple signaling 
pathways and cellular processes. Oncogenic KRAS mutations have been found in 95% 
of pancreatic ductal adenocarcinoma tissues[35,36]. Decades of research have 
discovered and clarified the complex picture of KRAS-regulated biological processes, 
including cell metabolism, tumor cell signaling, the tumor microenvironment, 
micropinocytosis, apoptosis, and redox homeostasis[37,38]. In our research, ASPC-1 
and Capan-1 cells were the two PC cell lines that we selected, both of which contained 
mutations in the KRAS gene. As our results show, the regulatory roles of TP73-AS1 in 
cell proliferation, migration, and invasion ability were verified by Cell Counting Kit-8, 
wound-healing, and transwell assays in ASPC-1 and Capan-1 cells. Due to the vital 
role that KRAS could play in PC, we are also curious about the role of TP73-AS1 in 
KRAS wild cells. Therefore, in our further research, we would select BXPC-3 cell line, 
which contains wild KRAS gene, for in vitro and in vivo functional assays of TP73-AS1 
to detect whether KRAS gene could modulate the function of TP73-AS1 in PC.

CONCLUSION
In summary, our data suggested that TP73-AS1 could function as an oncogenic 
lncRNA in PC progression. Moreover, TP73-AS1 could promote tumor growth and 
invasion by acting as a ceRNA to promote GOLM1 expression by sponging miR-128-
3p in PC.
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Figure 5 MiR-128-3p is responsible for TP73-AS1-mediated malignant behavior. A: Knockdown of miR-128-3p eliminates the inhibition on cell 
proliferation by TP73-AS1 depletion; B: Depletion of miR-128-3p abolishes cell apoptosis induced by TP73-AS1 silencing; C and D: Representative images of 
migrated and invaded cells treated with si-TP73-AS1#1 and anti-miR-NC or anti-miR-128-3p in AsPc-1 (C) and Capan-1 (D) cells; E: Epithelial-mesenchymal 
transition-related proteins detected by Western blot. aP < 0.05; bP < 0.01. GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.
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Figure 6 TP73-AS1 increases GOLM1 expression by decreasing miR-128-3p. A: Schematic diagram presenting the putative miR-128-3p recognition 
site in the GOLM1 sequence; B: Luciferase activity in pancreatic cancer (PC) cells transfected with miR-128-3p and reporter plasmids containing WT or MUT GOLM1 
3’UTR; C: The GOLM1 mRNA (up) and protein (down) levels in AsPc-1 and Capan-1 cells with miR-128-3p transfection; D: The GOLM1 mRNA (up) and protein 
(down) levels in AsPc-1 and Capan-1 cells after TP73-AS1 silencing; E: The expression levels of GOLM1 mRNA in 116 pairs of PC and adjacent non-tumor tissues 
assessed by quantitative real-time polymerase chain reaction; F: The relationship between miR-128-3p and GOLM1 mRNA levels assessed by Pearson correlation 
analysis; G: The relationship between TP73-AS1 and GOLM1 mRNA levels assessed by Pearson correlation analysis; H: The protein expression levels of GOLM1 
detected by Western blot assay as indicated. bP < 0.01. GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.
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Figure 7 TP73-AS1 knockdown inhibits tumor growth and metastasis in nude mice. A: Images of resected tumors from nude mice from the indicated 
groups. n = 5 mice per group; B: Tumor growth curves established by measuring tumor volume after injection at the indicated time points; C: Weights of resected 
tumors from nude mice from the indicated groups; D and E: Quantitative real-time polymerase chain reaction to detect the expression of TP73-AS1 (D) and miR-128-
3p (E) in xenograft tumor tissues; F: Ki67 expression in resected tumor tissues evaluated by immunohistochemistry analysis; G: Representative images and 
quantification of hematoxylin and eosin staining of lungs isolated from mice; H: Apoptosis markers detected by Western blot. bP < 0.01. GAPDH: Glyceraldehyde-3-
phosphate dehydrogenase.

ARTICLE HIGHLIGHTS
Research background
Pancreatic cancer (PC) is the fourth most frequent cause of cancer-related deaths in the 
world. Emerging evidence has revealed that long non-coding RNAs (lncRNAs) could 
play crucial roles in the progression of PC. However, the biological role and clinical 
significance of TP73-AS1 in PC remain unclear.

Research motivation
Treatments for PC are still limited, and surgical resection could be the only chance to 
obtain curative treatment. We hope to provide a novel therapeutic target for patients 
with PC.

Research objectives
The present study aimed to investigate the role of TP73-AS1 in the growth and 
metastasis of PC.

Research methods
Quantitative reverse transcription-polymerase chain reaction was used to detect the 
expression of lncRNA TP73-AS1, miR-128-3p, and GOLM1 in PC tissues and cells. The 
regulatory roles of TP73-AS1 in cell proliferation, migration, and invasion ability were 
verified by Cell Counting Kit-8, wound-healing, and transwell assays. The 
bioinformatics prediction software ENCORI was used to predict the putative binding 
sites of miR-128-3p. The interactions among TP73-AS1, miR-128-3p, and GOLM1 were 
explored by bioinformatics prediction, luciferase assay, and Western blot.

Research results
Our data suggested that TP73-AS1 and miRNA-128-3p were dysregulated in PC 
tissues and cells. TP73-AS1 silencing inhibited PC cell proliferation, migration, and 
invasion in vitro as well as suppressed tumor growth in vivo. Moreover, TP73-AS1 
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could promote tumor growth and invasion by acting as a competing endogenous RNA 
to promote GOLM1 expression by sponging miR-128-3p in PC.

Research conclusions
TP73-AS1 could promote PC cell proliferation and metastasis by modulating the miR-
128-3p/GOLM1 axis.

Research perspectives
TP73-AS1 could promote PC progression, which might provide a potential treatment 
strategy for patients with PC.
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Abstract
BACKGROUND 
Liver cancer is one of the most common malignant tumors, and ranks as the 
fourth leading cause of cancer death worldwide. Microvascular invasion (MVI) is 
considered one of the most important factors for recurrence and poor prognosis of 
liver cancer. Thus, accurately identifying MVI before surgery is of great 
importance in making treatment strategies and predicting the prognosis of 
patients with hepatocellular carcinoma (HCC). Radiomics as an emerging field, 
aims to utilize artificial intelligence software to develop methods that may 
contribute to cancer diagnosis, treatment improvement and evaluation, and better 
prediction.

AIM 
To investigate the predictive value of computed tomography radiomics for MVI in 
solitary HCC ≤ 5 cm.

METHODS 
A total of 185 HCC patients, including 122 MVI negative and 63 MVI positive 
patients, were retrospectively analyzed. All patients were randomly assigned to 
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the training group (n = 124) and validation group (n = 61). A total of 1351 
radiomic features were extracted based on three-dimensional images. The 
diagnostic performance of the radiomics model was verified in the validation 
group, and the Delong test was applied to compare the radiomics and MVI-
related imaging features (two-trait predictor of venous invasion and radioge-
nomic invasion).

RESULTS 
A total of ten radiomics features were finally obtained after screening 1531 
features. According to the weighting coefficient that corresponded to the features, 
the radiomics score (RS) calculation formula was obtained, and the RS score of 
each patient was calculated. The radiomics model exhibited a better correction 
and identification ability in the training and validation groups [area under the 
curve: 0.72 (95% confidence interval: 0.58-0.86) and 0.74 (95% confidence interval: 
0.66-0.83), respectively]. Its prediction performance was significantly higher than 
that of the image features (P < 0.05).

CONCLUSION 
Computed tomography radiomics has certain predictive value for MVI in solitary 
HCC ≤ 5 cm, and the predictive ability is higher than that of image features.

Key Words: Hepatocellular carcinoma; Microvascular invasion; Radiomics; Image 
features; Computed tomography

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Microvascular invasion (MVI) is considered one of the most important 
factors for recurrence and poor prognosis of liver cancer. Thus, accurately identifying 
MVI before surgery is of great importance in making treatment strategies and 
predicting the prognosis of patients with hepatocellular carcinoma (HCC). This study 
showed that radiomics as an emerging method at present had a good diagnostic 
efficiency and exhibited better accuracy in predicting MVI than image features, 
indicating that radiomics is a more suitable method in predicting MVI in solitary HCC 
≤ 5 cm.

Citation: Liu P, Tan XZ, Zhang T, Gu QB, Mao XH, Li YC, He YQ. Prediction of 
microvascular invasion in solitary hepatocellular carcinoma ≤ 5 cm based on computed 
tomography radiomics. World J Gastroenterol 2021; 27(17): 2015-2024
URL: https://www.wjgnet.com/1007-9327/full/v27/i17/2015.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i17.2015

INTRODUCTION
Liver cancer is one of the most common malignant tumors, and ranks as the fourth 
leading cause of cancer death worldwide[1]. Furthermore, more than half of liver 
cancers occur in China, where there is a high incidence of hepatitis B[2]. Moreover, the 
recurrence rate after hepatectomy is 70%[3], and microvascular invasion (MVI) is 
considered one of the most important factors for recurrence and poor prognosis of 
liver cancer[4]. MVI has a relatively high incidence in hepatocellular carcinoma (HCC), 
which ranges from 12.4% to 57.1%, and may occur even in solitary HCC ≤ 2 cm[5,6]. 
Thus, accurately identifying MVI before surgery is of great importance in making 
treatment strategies and predicting the prognosis of patients with HCC[7]. However, 
MVI can only be confirmed by histopathology via surgical resection at present. 
Therefore, the accurate prediction of MVI before surgery is desperately needed. 
Radiomics as an emerging field, which aims to utilize artificial intelligence software to 
develop methods that may contribute to cancer diagnosis, treatment improvement and 
evaluation, and better prediction[8]. At present, few studies have focused on the 
prediction of MVI in the early stage of HCC (which refers to solitary tumor with a size 
of ≤ 5 cm, without intrahepatic venous invasion[9]). The present study aimed to 
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investigate the predictive value of computed tomography (CT) radiomics for MVI in 
solitary HCC ≤ 5 cm.

MATERIALS AND METHODS
Patients
Patients were retrospectively collected from January 1, 2014 to November 15, 2018 
(Hunan provincial People's Hospital). The inclusion criteria were: (1) Pathologically 
diagnosed hepatocellular carcinoma with MVI; (2) Solitary tumor with the maximum 
diameter of ≤ 5 cm; and (3) Enhanced CT scanning was performed before surgery. The 
exclusion criteria were: (1) Complicated with other malignant tumors, and multiple 
primary or recurrent liver cancer; (2) History of preoperative treatment; (3) CT 
revealed a vascular tumor thrombus or macrovascular invasion; or (4) The tumor 
boundary was difficult to determine. The flowchart for the screening of patients is 
presented in Figure 1.

Examination methods
The Philips (Brilliance iCT 256) and Neusoft (NeuViz 64EN) scanners were used, with 
a tube voltage of 100-200 kV, tube current of 171-313 mAs, scanning layer thickness of 
5 mm, layer spacing of 5 mm, and matrix of 1024 × 1024. The contrast medium 
(iopromide injection, 300 mgI/mL) was injected using a high-pressure syringe through 
the anterior cubital vein at a rate of 3.5 mL/s and at a dose of 1.2 mL/kg. Dynamic 
contrast-enhanced imaging data acquisition was performed at fixed time points: For 
the arterial phase, acquisition occurred at approximately 25-33 s after administration; 
for the portal vein phase, it was 57-63 s, and for the delayed phase, 117-123 s.

Observation of imaging features
The two-trait predictor of venous invasion (TTPVI) was defined as having two 
independent imaging characteristics at the same time, and the development of an 
internal tumor artery without the signs of low density at the tumor margin[10]. 
Radiogenomic invasion (RVI) comprised of three independent image features: 
Intratumoral artery, low-density ring, and tumor-liver difference[11]. If there was an 
intratumoral artery, but there was no low-density ring or tumor-liver difference, the 
tumor was considered to have RVI. The imaging features (TTPVI and RVI) were 
evaluated double-blindly by two radiologists (with three years and seven years of 
experience in abdominal radiology, respectively). If these radiologists had inconsistent 
evaluation results, a third senior radiologist (with 13 years of experience in abdominal 
radiology) would make the further confirmation. The detailed description is presented 
in Figure 2.

Drawing, image feature extraction, selection, and construction of region of interest
Region of interest selection: The CT images of the patients in the arterial phase were 
exported in DICOM format. Without knowing the pathological results, the radiologist 
with three years of experience in abdominal radiology used the 3D-Slice software (
www.slice.org) to delineate the region of interest (ROI) in each layer that contained the 
tumor, and finally formed the three-dimensional segmented image.

Extraction of radiomic features: After segmenting the images, the plug-in radiologics 
in the 3D-Slice software was used to analyze the original image data in the ROI, and 
1351 candidate texture parameters were extracted, including the histogram features, 
morphological features, original features, and texture features.

Selection of features correlated to the MVI status and construction of the radiomics 
tags: First, the extracted intraclass features were evaluated by intraclass correlation 
coefficient (ICC), and features with ICC < 0.75 were removed. Then, the least absolute 
shrinkage and selection operator (LASSO) algorithm was used for dimension 
reduction and feature construction, and the least feature variables were selected by 10-
fold cross-validation with the minimal value. The selected features were modeled by 
Logistic regression, in order to generate the formula of the radiomics score (rad-score, 
RS) and calculate the RS score of each patient.

Statistical analysis
The R language (version 3.4.0, https://www.r-project.org) was used for the statistical 
analyses, and P < 0.05 was considered statistically significant. The chi-square test for 

www.slice.org
https://www.r-project.org
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Figure 1 Screening process for patients with liver cancer. HCC: Hepatocellular carcinoma; CT: Computed tomography; MVI: Microvascular invasion.

two independent samples was used for categorical variables, and Mann-Whitney U-
test for two independent samples was used for continuous variables, in order to 
analyze the difference between the training group and verification group. The receiver 
operator characteristic curve and the area under the curve (AUC) were used to 
evaluate the prediction efficiency of the radiomic and image features, and the Delong 
test was used to determine whether there was a statistical difference between the two 
methods.

RESULTS
Patient clinicopathologic features
Finally, the study consisted of 185 patients. Tumor size ranged from 10 mm to 50 mm. 
The clinicopathological and CT features in the training group and verification group 
are presented in Table 1. There was no significant difference in scores for MVI, other 
clinical data, imaging features (TTPVI and RVI), or RS between the two groups (P > 
0.05), indicating the reasonable arrangement of the training group and verification 
group.

Construction of radiomics tags
After removal by high correlation, 185 of the 1531 features remained. Then, ten 
features were selected by dimension reduction using the LASSO algorithm, as shown 
in Figure 3.

According to the weighting coefficient corresponding to the feature (Figure 3), the 
radiomics formula was obtained and used to calculate the histological score of each 
lesion in the training group and verification group. The formula is as follows: Rad-
score = -0.66692761 - 0.02491645 × originalshapeFlatness + 0.10564798 × log.sigma.
1.0.mm.3DglcmContrast + 0.08789965 × log.sigma.2.0.mm.3DgldmDependenceVaria
nce- 0.06847308 × log.sigma.2.0.mm.3DglszmSizeZoneNonUniformityNormalized
- 0.01878760 × log.sigma.2.0.mm.3DglszmSizeZoneNonUniformity + 0.14275995 × 
log.sigma.3.0.mm.3Dfirstorder90Percentile + 0.04978394 ×  log.sigma.4.0.mm.3Dglsz
mSmallAreaEmphasis - 0.02095096 × log.sigma.4.0.mm.3DngtdmBusyness + 0.06796
763 × wavelet.HLLglcmSumSquares + 0.0767876 × 1wavelet.HLLglszmLargeAreaLow
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Table 1 Clinical and imaging features of patients in the training group and verification group

Feature Training group (n = 124) Verification group (n = 61) Z value/χ2 value P value

Age (yr), median (quartile) 54 (47; 63) 52 (46; 62) -0.900 0.368

Gender/cases

Male 102 53 0.349 0.555

Female 22 8

Hepatitis B 104 56 1.575 0.210

Liver cirrhosis 84 43 0.044 0.833

AFP (ng/mL)

≤ 20 73 30 1.188 0.276

> 20 51 31

MVI

Negative 82 40 0.000 1.000

Positive 42 21

Tumor size (mm), median (quartile) 36 (28; 44) 34 (27.5; 41) -0.746 0.456

TTPVI

Negative 56 25 0.145 0.703

Positive 68 36

RVI

Negative 93 40 1.362 0.243

Positive 31 21

Rad-score, median (quartile) -0.669 (-0.831; -0.546) -0.640 (-0.780; -0.494) -0.917 0.359

AFP: α-fetoprotein; MVI: Microvascular invasion; TTPVI: Two-trait predictor of venous invasion; RVI: Radiogenomic invasion; Rad-score: Radiomics score.

GrayLevelEmphasis.

Predictive performance of radiomics tags
The median RS [quartile interval] of MVI positive patients [training group: -0.574 (-
0.695, -0.412); verification group: -0.495 (-0.644, -0.429)] was significantly higher than 
that of MVI negative patients [training group: -0.710 (-0.899, -0.610); verification group: 
-0.709 (-0.805, -0.589)] in both the training and verification groups, and the difference 
was statistically significant (P < 0.05). The radiomics tags exhibited better diagnostic 
efficacy in both the training and verification groups, as shown in Table 2.

Comparison of predictive performance between radiomics tags and MVI-related 
image features
As shown in Figure 4 and Table 2, the diagnostic efficacy of the radiomics score was 
higher than that of the image features in the training group and verification group, 
and the difference was statistically significant (P < 0.05).

DISCUSSION
The present study revealed that radiomics, as an emerging method at present, 
exhibited good diagnostic efficiency and better accuracy in predicting MVI, when 
compared to image features, indicating that radiomics is a more suitable method for 
predicting MVI in solitary HCC ≤ 5 cm.

A number of studies have shown that tumor size and imaging features can predict 
MVI, in which TTPVI and RVI are good predictors with an ideal sensitivity and 
specificity[11]. However, the diagnostic performance of TTPVI and RVI in the present 
study was significantly lower than that in previous studies, which might be attributed 
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Table 2 Comparison of predictive performance between radiomics tags and image features

Training group Verification group

AUC (95%CI) P value AUC (95%CI) P value

Rad-score 0.724 (0.584-0.863) 0.745 (0.655-0.834)

TTPVI 0.590 (0.500-0.679) 0.522 (0.393-0.651)

RVI 0.545 (0.462-0.628) 0.528 (0.401-0.655)

Rad vs TTPVI 0.018 0.043

Rad vs RVI 0.002 0.048

AUC: Area under the curve; CI: Confidence interval; TTPVI: Two-trait predictor of venous invasion; RVI: Radiogenomic invasion; Rad-score: Radiomics 
score.

to the difference in tumor diameter of the study samples. Furthermore, previous 
studies did not define the tumor size, while the present study merely included patients 
with a tumor diameter of ≤ 5 cm. In addition, the imaging predictors, such as internal 
arteries and low-density shadow, were not commonly observed in cases with small 
tumors, which significantly reduced the positive rate of the MVI-related image 
features in the present study.

With the recent increase in development of radiomics, numerous studies have 
indicated that radiomics can reveal the pathological grade, prognosis, MVI, and 
treatment response of liver cancer. The nomogram of MVI in HCC based on CT 
radiomics established by Peng et al[12] exhibited good decision-making efficiency 
(AUC = 0.84), which was slightly higher than the results of the present study, but the 
model did not involve the tumor diameter. In another study[13], the diagnostic 
efficacy of predicting MVI in a tumor diameter of ≤ 5 cm based on radiomics (the AUC 
for the verification and verification group was 0.637 and 0.583, respectively) was 
slightly lower than that of the present study. Compared to that study[13], the present 
study adopted more stringent inclusion and exclusion criteria. Moreover, the present 
study only included solitary liver cancer with a diameter of ≤ 5 cm. Partial 
hepatectomy is the first choice for patients with solitary liver cancer ≤ 5 cm and good 
liver function[9]. However, if the lesion is not fully resected, the residual MVI near the 
surgical margin may be an important cause of recurrence in patients with HCC[14], 
and some studies have demonstrated that extended resection can reduce the early 
recurrence rate of patients with liver cancer complicated with MVI[15]. Therefore, the 
present study has certain reference value for surgery choice in patients with liver 
cancer. In addition, the present study excluded patients with a visible thrombus or the 
invasion of large blood vessels, rupture and bleeding of liver cancer, and intangible 
tumor boundary due to other reasons, because the ROI of these patients was difficult 
to delineate. Hence, measurement errors were hard to avoid. Furthermore, the present 
study employed the three-dimensional ROI of tumors to the extract radiomics features, 
which can better reflect the whole outline of the tumor, and allow for the extraction of 
more tumor information, when compared to two-dimensional ROI. Some studies have 
revealed that the feature extraction of the maximum cross-sectional area cannot 
represent the whole tumor[16]. Hence, the present study has obtained more objective 
prediction results.

The present study had some limitations. First, the present retrospective and single-
center study may have selection bias. Second, the present study only used arterial 
phase images. Multi-phase images may be utilized to obtain more tumor information 
and improve the diagnostic efficiency. Therefore, multi-center studies with large 
samples and multi-phase images would become our future research content.

CONCLUSION
In conclusion, CT radiomics has certain predictive value for MVI in solitary HCC ≤ 5 
cm. Compared to imaging features, the predictive ability of radiomics tags is 
significantly higher. The radiomics model of MVI would facilitate clinicians in 
choosing the appropriate treatment.
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Figure 2 Specific performance of two-trait predictor of venous invasion and radiogenomic invasion. A and B: The discriminant process of two-
trait predictor of venous invasion (TTPVI) (A) and radiogenomic invasion (RVI) (B); C: Negative intratumoral arteries: Negative TTPVI and RVI; D: Positive 
intratumoral arteries and peritumoral low density: Negative TTPVI and PVI; E: Positive intratumoral arteries, negative peritumoral low-density shadow, and positive 
tumor-liver differences: Positive TTPVI and negative RVI; F: Positive intratumoral arteries, negative peritumoral low density, and negative tumor-liver differences: 
Positive TTPVI and RVI. TTPVI: Two-trait predictor of venous invasion; RVI: Radiogenomic invasion.
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Figure 3 Selection of radiomic features using the least absolute shrinkage and selection operator-logistic regression model. A: Coefficient 
profile of 158 radiomics features against the area under the curve; B: Cross-validation curve. Red dotted vertical lines are drawn at the optimal log (Lambda) by using 
10-fold cross-validation and the 1-SE criteria. Ten nonzero coefficients are chosen. AUC: Area under the curve.

Figure 4 The two-trait predictor of venous invasion (green curve), radiogenomic invasion (red curve), and receiver operator characteristic 
of radiomics tag (blue curve) from the two groups. A: Training group; B: Verification group. TTPVI: Two-trait predictor of venous invasion; RVI: 
Radiogenomic invasion.

ARTICLE HIGHLIGHTS
Research background
Liver cancer is one of the most common malignant tumors, and ranks as the fourth 
leading cause of cancer death worldwide. Microvascular invasion (MVI) is considered 
one of the most important factors for recurrence and poor prognosis of liver cancer. 
Radiomics as an emerging field, aims to utilize artificial intelligence software to 
develop methods that may contribute to cancer diagnosis, treatment improvement, 
and evaluation and better prediction.

Research motivation
At present, few studies have focused on the prediction of MVI in the early stage of 
hepatocellular carcinoma (HCC) (which refers to solitary tumor with a size of ≤ 5 cm, 
without MVI). Our study aimed to investigate the predictive value of computed 
tomography (CT) radiomics for MVI in solitary HCC ≤ 5 cm.

Research objectives
This study aimed to investigate the predictive value of radiomics for MVI in solitary 
HCC ≤ 5 cm.

Research methods
A total of 185 HCC patients, including 122 MVI negative and 63 MVI positive patients, 
were retrospectively analyzed. All patients were randomly assigned to the training 
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group (n = 124) and validation group (n = 61), at a ratio of 2:1. A total of 1351 radiomic 
features were extracted based on three-dimensional images. In the training group, the 
least absolute shrinkage and selection operator feature selection algorithm was used to 
reduce the dimensions, and the most relevant radiomic features of MVI were selected 
to calculate the image score (Rad-score, RS) of each patient. The diagnostic 
performance of the radiomics model was verified in the validation group, and the 
Delong test was applied to compare the radiomics and MVI-related imaging features 
(two-trait predictor of venous invasion and radiogenomic invasion).

Research results
A total of ten radiomics features were finally obtained after screening 1531 features. 
According to the weighting coefficient that corresponded to the features, the RS 
calculation formula was obtained, and the RS score of each patient was calculated. The 
radiomics model exhibited a better correction and identification ability in the training 
and validation groups [area under the curve: 0.72 (95% confidence interval: 0.58-0.86) 
and 0.74 (95% confidence interval: 0.66-0.83), respectively]. Its prediction performance 
was significantly higher than that of the image features (P < 0.05).

Research conclusions
CT radiomics has certain predictive value for MVI in solitary HCC ≤ 5 cm, and the 
predictive ability is higher than that of image features.

Research perspectives
The accurate prediction of MVI before surgery is desperately needed. Radiomics as an 
emerging field, aims to utilize artificial intelligence software to develop methods that 
may contribute to cancer diagnosis, treatment improvement and evaluation, and better 
prediction. At present, few studies have focused on the prediction of MVI in the early 
stage of HCC (which refers to solitary tumor with a size of ≤ 5 cm, without MVI). The 
present study aimed to investigate the predictive value of CT radiomics for MVI in 
solitary HCC ≤ 5 cm.
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Abstract
BACKGROUND 
Antiviral therapy cannot completely block the progression of hepatitis B to 
hepatocellular carcinoma (HCC). Furthermore, there are few predictors of early 
HCC progression and limited strategies to prevent progression in patients with 
HBV-related cirrhosis who receive nucleos(t)ide analog (NA) therapy.

AIM 
The study aim was to clarify risk factors and the diagnostic value of alpha-
fetoprotein (AFP) for HCC progression in NA-treated hepatitis B virus (HBV)-
related cirrhosis patients.

METHODS 
In this retrospective cross-sectional study, we analyzed the clinical data of 266 
patients with HBV-related cirrhosis who received NA treatment between 
February 2014 and April 2020 at Zhejiang Provincial People’s Hospital. The 
patients were divided into two groups, 145 who did not progress to HCC (No-
HCC group), and 121 who progressed to HCC during NA treatment (HCC 
group). The logistic regression analysis was used to analyze the risk factors of 
HCC progression. The diagnostic value of AFP for HCC was evaluated by 
receiver operating characteristic (ROC) curve analysis.

RESULTS 
Univariate analysis showed that age ≥ 60 years (P = 0.001), hepatitis B and 
alcoholic etiology (P = 0.007), smoking history (P < 0.001), family history of HBV-
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related HCC (P = 0.002), lamivudine resistance (P = 0.011), HBV DNA negative (P 
= 0.023), aspartate aminotransferase > 80 U/L (P = 0.002), gamma-glutamyl 
transpeptidase > 120 U/L (P = 0.001), alkaline phosphatase > 250 U/L (P = 0.001), 
fasting blood glucose (FBG) ≥ 6.16 (mmol/L) (P = 0.001) and Child-Pugh class C (
P = 0.005) were correlated with HCC progression. In multivariate analysis, age ≥ 
60 years [hazard ratio (HR) = 3.089, 95% confidence interval (CI): 1.437-6.631, P = 
0.004], smoking history (HR = 4.001, 95%CI: 1.836-8.716, P < 0.01), family history 
of HBV-related HCC (HR = 6.763, 95%CI: 1.253-36.499, P < 0.05), lamivudine 
resistance (HR = 2.949, 95%CI: 1.207-7.208, P = 0.018), HBV DNA negative (HR = 
0.026, 95%CI: 0.007-0.139, P < 0.01), FBG ≥ 6.16 mmol/L (HR = 7.219, 95%CI: 
3.716-14.024, P < 0.01) were independent risk factors of HCC progression. ROC of 
AFP for diagnosis of HCC was 0.746 (95%CI: 0.674-0.818). A cutoff value of AFP 
of 9.00 ug/L had a sensitivity of 0.609, and specificity of 0.818 for diagnosing 
HCC.

CONCLUSION 
Age ≥ 60 years, smoking history, family history of HCC, lamivudine resistance, 
HBV DNA negative, FBG ≥ 6.16 mmol/L were risk factors of HCC progression. 
Serum AFP had limited diagnostic value for HCC.

Key Words: Hepatitis B virus; Hepatocellular carcinoma; Cirrhosis; Risk factors; 
Nucleos(t)ide analogs; Progression
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Core Tip: This retrospective cross-sectional study analyzed risk factors of hepatoce-
llular carcinoma (HCC) progression in hepatitis B virus-related cirrhosis patients 
receiving nucleoside acid analog therapy for at least 6 mo. We discuss the diagnostic 
value of serum alpha-fetoprotein level in these patients. The results of the present study 
increase our understanding of HCC pathogenesis and help to provide HCC prevention 
and control strategies.
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carcinoma progression in hepatitis B virus-related cirrhosis patients receiving nucleoside (acid) 
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INTRODUCTION
Liver cancer has the third-highest cancer mortality rate worldwide[1]. Hepatocellular 
carcinoma (HCC) is one of the most common subtypes of liver cancer and is the sixth 
most prevalent cancer type. In most countries, the HCC mortality rates have increased 
in recent decades[2]. HCC is the fourth most common malignant tumor type in China, 
accounting for over 55% of the total number of HCC cases[3]. Infection with the 
hepatitis B virus (HBV) greatly increases the incidence of HCC because HBV causes 
chronic hepatitis B (CHB), liver cirrhosis, and ultimately HCC[4,5]. The estimated risk 
of developing HCC was observed to be 25 to 37-fold higher in hepatitis B surface 
antigen (HBsAg) carriers compared with noninfected patients HBV infection is one of 
the most important contributors to the pathogenesis of HCC[6-8]. Over the past 30 
years, antiviral drugs, especially nucleos(t)ide analogs (NAs), have been widely used 
in clinical practice and have substantial long-term effects on the inhibition of HBV 
replication, namely, delaying and reducing the occurrence and development of 
hepatitis B-related events. Many studies have shown that antiviral therapy can 
considerably decrease the incidence of HCC, even for patients in whom CHB has 
progressed to cirrhosis[9,10]. However, antiviral therapy does not completely block 
the progression of CHB to liver cancer[11,12]. In the current study, we analyzed the 
risk factors of HCC progression in patients with HBV-related cirrhosis who received 
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NAs therapy for at least 6 mo. The diagnostic value of the serum alpha-fetoprotein 
(AFP) level was evaluated in those patients by receiver operating characteristic (ROC) 
curve analysis. The study results increase our understanding of HCC pathogenesis 
and help to provide HCC prevention and control strategies.

MATERIALS AND METHODS
Patients and design
This cross-sectional study retrospectively enrolled 266 patients with HBV-related 
cirrhosis who were treated with NA antiviral therapy at Zhejiang Provincial People’s 
Hospital between February 2014 and April 2020. The 266 patients were divided into 
two groups, 145with cirrhosis who did not progress to HCC during the observation 
period (No-HCC group), and 121 with cirrhosis who progressed to HCC (HCC group). 
The inclusion criteria were: (1) Age ≥ 18 years; (2) Treatment with lamivudine (LAM), 
adefovir (ADV), telbivudine, entecavir (ENT), or tenofovir (TDF) nucleoside or NAs 
for at least 6 mo; (3) Diagnosis of cirrhosis established by either histology (progressive 
fibrosis, nodule formation, and loss of hepatic architecture) or clinical data (symptoms 
and signs of cirrhosis, abnormal liver function, and ultrasonic identification). 
Demographic, clinical, laboratory, imaging, and pathology data were collected during 
the patient’s hospital stay. The severity of cirrhosis was classified by the Child-Pugh 
criteria. Patients with HBV-related cirrhosis were diagnosed in accord with the 
guidelines for the prevention and treatment of chronic hepatitis B formulated by the 
Hepatology Branch and the Infectious Diseases Branch of the Chinese Medical 
Association[13,14]; and (4) HCC and hepatitis diagnoses confirmed by clinical and 
serological characteristics, ultrasonography, computed tomography (CT), magnetic 
resonance imaging (MRI), hepatic arteriography with digital subtraction angiography 
(DSA) and pathological examination consistent with the hepatitis and primary liver 
cancer clinical diagnosis criteria[15,16]. The exclusion criteria were: (1) Hepatitis C 
virus, hepatitis D virus, or human immunodeficiency virus coinfection; (2) 
Autoimmune hepatitis and drug hepatitis; and (3) Hepatocarcinoma prior to antiviral 
treatment or within 6 mo after antiviral treatment. The study received no support from 
any pharmaceutical company and was approved by the Ethics Committee of the 
Zhejiang Provincial People’s Hospital (2020QT155), Hangzhou, Zhejiang Province, 
China.

Data collection and study design
The data collected from the electronic medical record system were age, sex, history of 
drinking and smoking, alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), albumin (ALB), glutamyltranspeptidase (GGT), alkaline phosphatase (ALP), 
total bilirubin, fasting blood glucose (FBG), AFP, prothrombin time (PT), presence of 
ascites, hepatic encephalopathy, Child-Pugh score and classification, and family 
history of HBV, hepatitis B, and HCC. Serological markers of hepatitis B, serum 
content of HBV DNA, and history of NA treatment were reported by the patients or 
their families. All patients in the cohort were followed-up for 3 years or until death.

Serum liver function was tested by routine automated techniques using an Olympus 
AU5400 automated analyzer (Olympus, Tokyo, Japan). HBsAg, hepatitis B e-antigen 
(HBeAg), and hepatitis B e-antibody were assessed at baseline by chemiluminescence 
immunoassay (Abbott ARCHITECT i2000 SR analyzer; Abbott Diagnostics, Chicago, 
IL, United States). The serum HBV DNA load was assessed by RT-PCR using a 
LightCycler PCR system (Roche LightCycler480 II fluorescence quantitative PCR) in 
strict accordance with the instructions provided with the reagent kit (Shenzheng PG 
Biotech Co. Ltd, China). The detection limit was approximately 100 viral genome 
IU/mL. Genotypic resistance to LAM and ADV were determined at baseline by direct 
sequencing of the PCR amplification products. The serum AFP tumor marker was 
assayed by electrochemiluminescence. The study protocol conformed to the 1975 
Declaration of Helsinki ethical guidelines for clinical studies.

Statistical analysis
Descriptive data were expressed as means ± SD or n (%). Continuous variables were 
compared using Student’s t-test. Skewness distribution data were reported as the 
median with the range and were analyzed using the Mann–Whitney U test. 
Categorical variables were analyzed using Fisher’s exact test or Pearson’s χ2 test. A 
logistic regression model was used to analyze single factors, and multivariate analysis 
with stepwise regression was used to identify statistically significant variables in the 
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single-factor analysis. The diagnostic performance of the serum AFP level was 
evaluated using ROC curves. The cutoff value, which was the maximum area under 
the ROC curve (AUROC), and accuracy were calculated with 95% confidence intervals 
(CIs). A P value of less than 0.05 was determined to indicate statistical significance. 
The SPSS statistical package (version 22.0; SPSS, Chicago, IL, United States) was used 
for the statistical analysis.

RESULTS
Clinical characteristics of HBV-related cirrhosis patients receiving NA therapy
The clinical features of the No-HCC and the HCC group were compared. There were 
no significant differences between the two groups in the sex ratio, duration of NA 
therapy, HBsAg level, HBeAg positivity, jaundice index, Child-Pugh class B ratio, and 
PT level (P > 0.05). The HCC group included significantly more patients older than 60 
years of age and patients with increased levels of ALT, AST, GGT, ALP, and FBG, and 
decreased levels of ALB than the No-HCC group. The HCC group also contained more 
patients with mixed etiology (alcohol + HBV), history of smoking, family history of 
HBV-related HCC, LAM resistance, Child-Pugh class C status, and an AFP > 20 μg/L 
and fewer HBV DNA-negative and Child-Pugh class A patients than the No-HCC 
group (Table 1).

Risk factors for HCC progression in HBV-related cirrhosis patients receiving NA 
therapy
We analyzed factors associated with HCC progression in HBV-related cirrhosis 
patients who received NA therapy. Univariate analysis found age ≥ 60 years (P = 
0.002), HBV + alcohol mixed etiology (P = 0.007), smoking history (P < 0.001), family 
history of HBV-related HCC (P = 0.002), LAM resistance (P = 0.046), HBV DNA 
negativity (P = 0.023), AST > 80 U/L (P = 0.002), GGT > 120 U/L (P = 0.001), ALP > 
250 U/L (P = 0.001), FBG ≥ 6.16 mmol/L (P = 0.001), and Child-Pugh class C (P = 
0.005) to be significantly related to HCC (Table 2). Multivariate analysis showed that 
age ≥ 60 years [hazard ratio (HR) = 3.089, 95%CI: 1.437-6.631, P = 0.004], smoking 
history (HR = 4.001 95%CI: 1.836-8.716, P < 0.01), family history of HBV-related HCC 
(HR = 6.763, 95%CI: 1.253-36.499, P < 0.05), LAM resistance (HR = 2.949, 95%CI: 1.207-
7.208, P = 0.018), HBV DNA negative (HR = 0.026, 95%CI: 0.007-0.139, P < 0.01), and 
FBG ≥ 6.16 mmol/L (HR = 7.219, 95%CI: 3.716-14.024, P < 0.01) independently 
predicted HCC progression in patients with HBV-related cirrhosis who received NAs 
therapy (Table 3).

Serum AFP levels in the No-HCC and HCC groups
In the HCC group, there were 56 patients with serum AFP levels > 20 μg/L, but that 
was seen in only 17 patients in the No-HCC group (P < 0.001). In the HCC group, 65 
patients had AFP levels < 20 μg/L. The AFP levels of 37 patients in the HCC group 
were > 400 μg/L, but only two patients in the No-HCC group levels > 400 μg/L (P < 
0.001, Table 4). The 17 patients in the No-HCC group with AFP levels > 20 µg/L were 
followed for 1 year. Their AFP level was determined every month and showed a 
dynamic decline, returning to normal within 1 year. All patients underwent enhanced 
MRI of imaging of the liver. We believe that hepatitis B activity, rather than HCC, led 
to the AFP abnormality. The AFP level distributions in the two groups are shown in 
Figures 1 and 2.

Serum AFP has limited ability to diagnose HBV-related HCC
We investigated the value of using serum AFP to diagnose HCC in patients who had 
HBV-related cirrhosis and were receiving NAs therapy. The AUROC of serum AFP for 
the diagnosis of HCC was 0.746 (95%CI: 0.674-0.818). The sensitivity of serum AFP in 
diagnosing HCC in those patients was 0.609, and the specificity was 0.818. The 
positive predictive value of HCC was 22.51%, the negative predictive value of HCC 
was 46.07%, the cutoff was 9.00, and the Youden index was 0.427 (Figure 3).

DISCUSSION
HBV infection remains a major risk factor for the development of cirrhosis and 
HCC[17]. Patients with chronic HBV are at risk of developing liver-related complica-
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Table 1 Comparison of the clinical characteristics of patients with and without hepatocellular carcinoma

Characteristic no-HCC group (n = 145) HCC group (n = 121) P value

Age ≥ 60 yr, n (%) 41 (28.3) 64 (52.9) < 0.001

Male, n (%) 99 (68.3) 91 (75.2) 0.133

Etiology of liver cirrhosis, n (%)

HBV 101 (60.7) 76 (62.8) 0.363

HBV + alcohol 31 (21.4) 45 (37.2) 0.006

HBV + HEV 1 (0.6) 0 (0.0) -

HBV + schistosome 1 (0.6) 0 (0.0) -

Smoking history, n (%) 21 (14.5) 51 (42.1) < 0.001

Family history of HBV-related HCC, n (%) 10 (6.9) 23 (19.0) 0.004

Medication history

Duration of NA treatment, yr, median (P25, P75) 3.9 (2.1, 5.8) 5.4 (2.3, 6.9) 0.067

LAM resistance, n (%) 18 (12.4) 27 (22.3) 0.021

HBsAg level, IU/L, median (P25, P75) 255.0 (56.0, 678.0) 269.0 (67.0, 656.0) 0.456

HBeAg positive, n (%) 37 (25.5) 21 (17.4) 0.136

HBV DNA negative, n (%) 67 (46.2) 39 (32.2) 0.033

ALB, U/L 36.29 ± 7.98 33.34 ± 6.62 0.002

ALT, U/L, median (P25, P75) 27.00 (18.00, 37.00) 32.00 (21.27, 62.00) 0.006

AST, U/L, median (P25, P75) 33.00 (23.00, 47.00) 44.50 (31.65, 96.85) < 0.001

GGT, U/L, median (P25, P75) 33.00 (20.00, 46.00) 61.50 (32.75, 160.75) < 0.001

ALP, U/L, median (P25, P75) 99.00 (73.00, 126.00) 134.50 (92.00, 198.85) < 0.001

TB, μmol/L, median (P25, P75) 20.41 (13.81, 44.60) 24.46 (16.60, 42.80) 0.192

FBS, mmol/L, median (P25, P75) 5.17 ± 0.68 6.99 ± 1.31 0.025

Ascites, n (%) 33 (20.0) 43 (34.7) 0.022

Child-Pugh class, n (%)

A 81 (55.9) 55 (45.5) 0.001

B 38 (26.2) 26 (21.5) 0.561

C 26 (17.9) 40 (33.1) 0.002

AFP ≥ 20 μg/L, n (%) 14 (9.7) 56 (46.3) < 0.001

PT s, median (P25, P75) 13.25 (11.80, 14.20) 13.51 (12.41, 15.02) 0.475

AFP: Alpha-fetoprotein; ALB: Albumin; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; FBS: Fasting blood 
sugar; GGT: Glutamyl transpeptidase; HBeAb: Hepatitis B e-antibody; HBsAg: Hepatitis B surface antigen; HBV: Hepatitis B virus; HCC: Hepatocellular 
carcinoma; LAM: Lamivudine; PT: Prothrombin time; SD: Standard deviation; TB: Total bilirubin.

tions, namely, cirrhosis and HCC. In China, 77% of cirrhosis cases and 84% of HCC 
cases are caused by HBV infection[18]. Antiviral therapy can reduce but not eliminate 
the risk of developing HCC[19-21]. The annual incidence of HCC ranges from 0.01% to 
5.4% in patients with CHB who are treated with ENT or TDF[19,22]. NAs antiviral 
treatments can markedly inhibit viral replication and improve liver necrosis, 
inflammation, and fibrosis. However, NAs cannot eliminate covalently closed 
template DNA (cccDNA) produced during hepatitis B viral replication or clear the 
integrated HBV genome; therefore, NAs cannot completely block hepatitis B cirrhosis 
from developing into HCC[12,21]. The persistence of cccDNA and an integrated HBV 
genome is the basis for hepatitis B cirrhosis progressing to primary liver cancer[23,24]. 
In this study, we investigated the clinical characteristics of HCC progression in 
patients with HBV-related cirrhosis who received antiviral therapy with NAs.
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Table 2 Univariate logistic regression analysis of hepatitis B-related cirrhosis progressing to hepatocellular carcinoma in patients 
treated with nucleos(t)ide analogs

Characteristic No-HCC group (n = 145) HCC group (n = 121) Univariate adjusted HR 
(95%CI) P value

Age, yr

≥ 60 40 (27.6) 65 (52.9) 2.664 (1.606-4.418) 0.001

< 60 105 (72.4) 56 (46.3)

HBV + alcohol

Yes 31 (21.4) 45 (37.2) 2.384 (1.271-4.473) 0.007

No

Smoking history

Yes 21 (14.5) 51 (42.1) 4.073 (2.281-7.273) < 0.001

No

Family history of HBV-related HCC

Yes 10 (6.9) 23 (19.0) 3.546 (1.573-7.998) 0.002

No

LAM resistance

Yes 18 (12.4) 27 (22.3) 2.284 (1.214-4.297) 0.011

No

HBV DNA negative

Yes 67 (46.2) 39 (32.2) 0.559 (0.339-0.922) 0.023

No

ALB (g/L)

< 35 67(46.2) 62(51.2) 1.223 (0.754-1.984) 0.414

≥ 35 78 (53.8) 59 (48.8)

ALT (U/L)

50-100 13 (9.0) 15 (12.4) 1.324 (0.612-2.866) 0.476

> 100 10 (7.0) 14 (11.6) 1.138(0.482-2.688) 0.768

AST (U/L)

40-80 32 (22.1) 24 (19.8) 0.919 (−0.713-0.514) 0.783

> 80 16 (10.3) 31 (29.8) 2.899 (0.436-1.767) 0.002

GGT (U/L)

60-120 15 (10.3) 20 (16.5) 1.853 (0.892-3.847) 0.098

> 120 8 (5.1) 28 (23.1) 5.663 (1.075-2.573) 0.001

ALP (U/L)

125-250 36(24.8) 45 (38.8) 1.609 (−0.062-1.028) 0.073

> 250 6 (1.4) 21 (17.4) 4.865 (0.667-2.993) 0.001

FBG (mmol/L)

≥ 6.16 19 (13.1) 37 (30.6) 3.3179 (0.587-1.902) 0.001

< 6.16

Ascites class

Yes 33 (22.8) 43 (35.5) 0.834 (−0.412-0.060) 0.142

No
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Child-Pugh class

A 81 (58.6) 55 (37.9) 0.658 (−0.938-0.064) 0.091

B 38 (26.2) 26 (21.5) 0.671 (−0.981-0.112) 0.165

C 26 (17.9) 40 (33.1) 2.260 (0.247-1.427) 0.005

Data are n (%) or mean ± SD as shown. AFP: Alpha-fetoprotein; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate 
aminotransferase; CI: Confidence interval; FBG: Fasting blood glucose; GGT: Glutamyl transpeptidase; HBV: Hepatitis B virus; HCC: Hepatocellular 
carcinoma; HR: Hazard ratio; LAM: Lamivudine. .

Table 3 Multivariate analysis of factors associated with hepatitis B-related cirrhosis progression to hepatocellular carcinoma in 
nucleos(t)ide analog-treated patients

Risk factor β SE Wald P value OR (95%CI)

Age ≥ 60 yr 1.127 0.390 8.347 0.004 3.089 (1.437-6.631)

Smoking history 1.387 0.397 12.180 < 0.01 4.001 (1.836-8.716)

Family history of HBV-related HCC 1.911 0.860 4.938 < 0.05 6.763 (1.253-36.499)

LAM resistance 1.082 0.456 5.638 0.018 2.949 (1.207-7.208)

HBV DNA negative -3.479 0.816 19.427 < 0.01 0.026 (0.007-0.139)

FBG ≥ 6.16 mmol/L 1.977 0.339 34.030 < 0.01 7.219 (3.716-14.024)

CI: Confidence interval; FBG: Fasting blood glucose; HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; LAM: Lamivudine OR: Odds ratio;; SE: 
Standard error.

Table 4 Comparison of the alpha-fetoprotein level distributions in patients with and without hepatocellular carcinoma, n (%)

AFP (μg/L) No-HCC group (n = 145) HCC group (n = 121) P value

< 20 128 (88.27) 65 (53.72) < 0.001

20-100 12 (8.27) 14 (11.57) 0.51

100-200 1 (0.69) 2 (2.17) 0.231

200-400 2 (1.38) 3 (2.48) 1

≥ 400 2 (1.38) 37 (30.58) < 0.001

AFP: Alpha-fetoprotein; HCC: Hepatocellular carcinoma.

Medical and healthcare progress, improved living standards, and decreased 
population fertility have led to population aging in China. Data from 22 tumor 
registration centers in China have shown that the average age of liver cancer onset 
increased from 58.80 to 62.35 years for men and from 64.02 to 68.99 years for women 
between 2000 and 2014[25]. Our study found that age ≥ 60 years was an independent 
risk factor for the progression of hepatitis B-related cirrhosis to HCC while receiving 
NAs antiviral therapy. An aging population and the burden caused by HCC mortality 
could be a future challenge for China. Previous studies have confirmed that poor 
lifestyle habits are related to a high incidence of liver cancer; in particular, a history of 
smoking and drinking increases the risk of HCC[26,27]. Tobacco smoke contains 
various carcinogens, 11 of which are classified as International Agency for Research on 
Cancer Group 1 human carcinogens. Epidemiologic evidence from a recent meta-
analysis showed a positive association between current tobacco smoking and liver 
cancer risk (risk ratio: 1.55, 95%CI: 1.46-1.65), suggesting a causal role of smoking in 
liver cancer development[28]. Liu et al[29] found that tobacco smoking and HBV 
infection positively interact in the development of liver cancer. Our results revealed 
smoking to be an independent risk factor of HCC progression (95%CI: 1.836-8.716, P < 
0.01) even if the patients were receiving antiviral treatment. Studies have frequently 
reported that a family history of liver cancer increases HCC risk independent of 
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Figure 1 Distribution of alpha-fetoprotein levels in patients without hepatocellular carcinoma. AFP: Alpha-fetoprotein; HCC: Hepatocellular 
carcinoma.

Figure 2 Distribution of alpha-fetoprotein level in patients with hepatocellular carcinoma. AFP: Alpha-fetoprotein; HCC: Hepatocellular carcinoma.

hepatitis. The combination of a family history of liver cancer and hepatitis B serum 
markers is associated with a greater than 70-fold increase in HCC risk[30]. Super-
additive and super-multiplicative interactions may exist between a family history of 
liver cancer and HBV infection that increase the risk of the development of liver 
cancer[31]. Our study found that a family history of HBV-related HCC is a risk factor 
of progression in cirrhotic patients receiving antiviral therapy (95%CI: 1.253-36.499, P 
< 0.05). Our results suggest that patients with HBV-related cirrhosis who smoke 
should quit smoking and cultivate a healthy lifestyle to reduce the risk of developing 
HCC[32,33]. Furthermore, close monitoring should be carried out if a patient’s first-
degree relative develops HBV-related HCC during antiviral treatment.

LAM has been used as an antiviral treatment for hepatitis B for the past 20 years in 
China. Some Chinese patients with hepatitis B-related cirrhosis have previously 
undergone primary LAM monotherapy. Studies have shown that long-term LAM 
antiviral therapy can delay disease progression, reduce liver function decompensation, 
and reduce the incidence of HCC[34,35]. The inflammation seen in liver histology can 
improve in patients with hepatitis B-related cirrhosis when they are treated with LAM, 
but with a prolonged treatment time, the incidence of drug-resistant viral mutation 
increases[34,36]. The clinical benefit of LAM is limited by the emergence of resistant 
mutant strains and viral breakthrough. Although some LAM-resistant CHB patients 
have received ADV combination therapy or sequential ENT or TDF monotherapy, 
some of these patients did not experience a beneficial treatment effect and still had 
continuous replication of HBV in the liver[37,38]. In patients with LAM resistance, 
those with cirrhosis had a higher HCC risk than non-cirrhotic patients. Rescue 
treatment with ADV in patients who developed viral breakthrough did not appear to 
reduce the risk of HCC compared with untreated patients without remission[11]. In 
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Figure 3 Receiver operating characteristic curve analysis of alpha-fetoprotein to diagnose hepatocellular carcinoma in patients with 
hepatitis B virus-related cirrhosis receiving nucleos(t)ide analog therapy. ROC: Receiver operating characteristic.

our study of patients treated with antiviral therapy for more than 6 mo, the number of 
HBV DNA-negative patients in the HCC group was lower than that in the No-HCC 
group. Many studies have found a correlation between serum HBV DNA levels and 
the occurrence of HCC in patients with hepatitis B. Kaneko et al[39] reported that 
detectable HBV DNA was significantly associated with a higher risk of HCC 
development compared with continuously undetectable HBV DNA. Chen et al[40] 
found that the incidence of HCC increased with serum HBV DNA level at study entry 
in a dose-response relationship ranging from 108/100,000 person-years for an HBV 
DNA level of < 300 copies/mL to 1152/100,000 person-years for an HBV DNA level of 
1 million copies/mL or more. The corresponding cumulative incidence rates of HCC 
were 1.3% and 14.9%.

Even if the serum HBV DNA level in patients with hepatitis B-related cirrhosis is 
kept at a low level (< 2000 IU/mL), the risk of HCC is still high[41]. As shown in our 
study, HBV DNA negativity (HR = 0.026, 95%CI: 0.007-0.139, P < 0.01) independently 
predicted HCC progression in patients with HBV-related cirrhosis who received NAs 
therapy. Thus, to help avoid HCC progression, hepatitis B patients should continue to 
maintain an HBV DNA-negative status. Therefore, drugs with a high genetic barrier to 
resistance are suggested as first-line antiviral drugs for HBV therapy, and are 
recommended by current guidelines. Drugs such as ETV, TDF, and TDF alafenamide 
fumarate should be selected to generate a sustained antiviral treatment response and 
to reduce the occurrence of HBV resistance and the incidence of HCC[42,43].

As an important metabolic organ, the liver plays a key role in maintaining glucose 
homeostasis. Studies have found a positive relationship between liver cancer and 
diabetes mellitus[44,45]. Cell and animal experiments have shown that type 2 diabetes 
and male sex are associated with HCC development. Gao et al[46] demonstrated that 
heterozygous deletion of the Ncoa5 gene caused spontaneous development of HCC 
exclusively in male mice, and NCOA5 deficiency increased susceptibility to both 
glucose intolerance and HCC. In a prospective cohort study, adjusted multivariable 
analysis showed that participants with 4.82 mmol/L ≤ FBG ≤ 5.49 mmol/L had a 47% 
increased risk of HCC, and those with an FBG > 5.49 mmol/L had a 69% increased 
risk[47]. In our study, the FBG level in the HCC group was higher than that in the No-
HCC group (Table 1), and FBG ≥ 6.16 mmol/L was an independent risk factor for the 
HCC progression in patients with hepatitis B-related cirrhosis receiving NA antiviral 
treatment. Controlling blood sugar concentrations might be a way to decrease the risk 
of HCC in the Chinese population.

AFP is a glycoprotein that exists in a variety of different glycotypes. AFP has been 
used in the screening, diagnosis, efficacy evaluation, and prognosis evaluation of 
HCC. AFP elevation is commonly seen in active hepatitis, pregnancy, liver cancer, and 
embryonic tumors[48,49]. Previous studies reported that there was a significant 
correlation between serum AFP levels and the tumor size in liver cancer, and that the 
sensitivity and specificity of AFP depended on the selected serum level 
threshold[20,50]. Liu et al[51] found that approximately one-third of patients with 
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HCC had normal serum AFP levels and that the level was related to the volume of 
liver cancer lesions, vascular invasion, and differentiation. In our study, we found 56 
patients with a serum AFP > 20 µg/L, and 19 with serum AFP levels between 20 and 
400 µg/L and with HCC confirmed by imaging and histopathological examination of 
liver masses. However, an AFP level of < 20 μg/L did not exclude the possibility of 
HCC. This study showed that 65 patients with a serum AFP of < 20 μg/L had space-
occupying lesions that were confirmed as HCC by MRI enhancement, histopathology, 
and liver DSA examination. That indicates that more sensitive diagnostic markers of 
HCC must be developed. In addition, more sensitive serum tumor markers such as 
milk fat globule-EGF factor 8, osteopontin, miRNA classifier, glypican-3[52-54], and 
others should be actively investigated or combined to identify HCC at an early 
stage[55]. However, their clinical sensitivity and specificity must first be confirmed.

This study had some limitations. First, it was not prospective. The impact of 
antiviral treatment time and the amount of smoking and drinking on the development 
of HCC require confirmation in prospective studies with larger sample sizes. Second, 
longer follow-up and surveillance of HBV-related cirrhosis patients receiving NA 
therapy is necessary to observe whether they progress to HCC in their lifetime, even 
though the 145 cirrhotic patients with NA therapy did not progress to HCC during the 
observation period. Third, additional molecular markers should be assessed for their 
ability to provide an early diagnosis of HCC in patients with HBV-related cirrhosis. 
Some data indicate that the currently used potent NAs can reduce but not eliminate 
the risk of HCC. The inability to eliminate HCC risk might persist because of risk 
factors that are not amenable to change by antiviral therapy or because of events that 
may have taken place before treatment initiation.

CONCLUSION
In conclusion, age ≥ 60 years, a history of smoking, family history of HBV-related 
HCC, LAM resistance, HBV DNA negativity, and FBG ≥ 6.16 mmol/L were risk 
factors for HCC progression in patients with HBV-related cirrhosis who received NAs 
therapy. Patients with HBV-related cirrhosis should be treated with NA antiviral 
therapy that has a high genetic barrier to resistance[7] in order to improve the long-
term response to antiviral therapy, to maintain an HBV DNA-negative status, and to 
prevent subsequent hepatitis activity. The early identification of HCC in patients with 
HBV-related cirrhosis remains difficult. Patients who receive antiviral therapy with 
NAs, especially those older than 60 years of age, should avoid smoking, control their 
blood sugar at a reasonable level, and undergo routine imaging examination of liver 
biochemistry and serum AFP evaluation. If space-occupying lesions are identified, the 
patient should undergo liver CT or MRI enhancement, or even liver DSA examination 
to identify HCC as promptly as possible, even if the AFP level is within the normal 
range.

ARTICLE HIGHLIGHTS
Research background
Antiviral therapy cannot completely block the progression of hepatitis B to 
hepatocellular carcinoma (HCC). Furthermore, there are few early predictors of HCC 
progression and early identification is difficult in patients with HBV-related cirrhosis 
who receive nucleos(t)ide analog (NA) therapy. The study is helpful to provide HCC 
prevention and control strategies by analyzing the risk factors of HCC progression and 
the diagnostic value of AFP for HCC in those people.

Research motivation
The study objective was to identify factors that affect the occurrence of HCC and how 
to identify early HCC in patients with hepatitis B virus (HBV)-related cirrhosis who 
receive NA therapy. The results can improve the understanding of the development of 
HCC in those patients so as to improve the early detection and prevention of HCC.

Research objectives
The study objectives were to clarify risk factors and the diagnostic value of alpha-
fetoprotein (AFP) for HCC progression in patients with HBV-related cirrhosis treated 
with NAs and to provide new strategies for prevention and control of HCC in those 
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patients.

Research methods
Logistic regression analysis was used to analyze the risk factors of HCC progression. 
The diagnostic value of AFP for HCC was evaluated by receiver operating chara-
cteristic curve analysis.

Research results
The study showed that age ≥ 60 years, smoking history, family history of HCC, 
lamivudine resistance, HBV DNA negativity, fasting blood sugar ≥ 6.16 mmol/L were 
independent risk factors of HCC progression. Serum AFP had limited diagnostic value 
for HCC. The results provide a meaningful strategy for early prediction and 
identification for HCC in those patients.

Research conclusions
A retrospective cross-sectional study was conducted to analyze risk factors of HCC 
progression in HBV-related cirrhosis patients receiving NA therapy. Metabolic effects 
of fasting blood sugar levels on the progress of HCC were seen during the receipt of 
NA therapy. The diagnostic value of the serum AFP level was evaluated in those 
patients.

Research perspectives
The study results will change the strategies used to prevent HCC in patients with 
HBV-related cirrhosis an receive NA therapy.
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Abstract
BACKGROUND 
High-dose intravenous iron is an effective treatment option for iron deficiency 
(ID) or ID anaemia (IDA) in inflammatory bowel disease (IBD). However, 
treatment with ferric carboxymaltose (FCM) has been associated with the 
development of hypophosphatemia.

AIM 
To investigate mechanisms behind the development of hypophosphatemia after 
intravenous iron treatment, and disclose symptoms and clinical manifestations 
related to hypophosphatemia short-term.

METHODS 
A prospective observational study of adult IBD patients with ID or IDA was 
conducted between February 1, 2017 and July 1, 2018 at two separate university 
hospitals in the southeast region of Norway. Patients received one dose of 1000 
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mg of either FCM or ferric derisomaltose (FDI) and were followed for an 
observation period of at least 7 wk. Blood and urine samples were collected for 
relevant analyses at baseline, week 2 and at week 6. Clinical symptoms were 
assessed at the same timepoints using a respiratory function test, a visual 
analogue scale, and a health-related quality of life questionnaire.

RESULTS 
A total of 106 patients was available for analysis in this study. The FCM treatment 
group consisted of 52 patients and hypophosphatemia was present in 72.5% of the 
patients at week 2, and in 21.6% at week 6. In comparison, the FDI treatment 
group consisted of 54 patients and 11.3% of the patients had hypophosphatemia at 
week 2, and 3.7% at week 6. The difference in incidence was highly significant at 
both week 2 and 6 (P < 0.001 and P < 0.013, respectively). We observed a 
significantly higher mean concentration of intact fibroblast growth factor 23 (P < 
0.001), a significant rise in mean urine fractional excretion of phosphate (P = 
0.004), a significant decrease of 1,25-dihydroxyvitamin D (P < 0.001) and of 
ionised calcium levels (P < 0.012) in the FCM-treated patients compared with 
patients who received FDI. No clinical symptoms could with certainty be related 
to hypophosphatemia, since neither the respiratory function test, SF-36 (36-item 
short form health survey) or the visual analogue scale scores resulted in 
significant differences between patients who developed hypophosphatemia or 
not.

CONCLUSION 
Fibroblast growth factor 23 has a key role in FCM induced hypophosphatemia, 
probably by inducing loss of phosphate in the urine. Short-term clinical impact of 
hypophosphatemia was not demonstrated.

Key Words: Iron deficiency; Hypophosphatemia; Inflammatory bowel disease; Ferric 
carboxymaltose; Ferric derisomaltose

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: High-dose intravenous iron is an effective treatment for iron deficiency 
anaemia (IDA) in inflammatory bowel disease (IBD). However, ferric carboxymaltose 
(FCM) is associated with development of hypophosphatemia. This study of adult IBD 
patients with IDA investigated the mechanisms and clinical manifestations related to 
hypophosphatemia after treatment of either FCM or ferric derisomaltose (FDI). The 
incidence of hypophosphatemia was significantly higher after FCM than FDI, and 
fibroblast growth factor 23 had a key role, inducing loss of phosphate in the urine 
along with a significant lowering of 1,25-dihydroxyvitamin D and ionised calcium 
levels. Short-term clinical impact was not demonstrated.

Citation: Detlie TE, Lindstrøm JC, Jahnsen ME, Finnes E, Zoller H, Moum B, Jahnsen J. 
Hypophosphatemia after high-dose intravenous iron treatment in patients with inflammatory 
bowel disease: Mechanisms and possible clinical impact. World J Gastroenterol 2021; 27(17): 
2039-2053
URL: https://www.wjgnet.com/1007-9327/full/v27/i17/2039.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i17.2039

INTRODUCTION
Iron replacement therapy is often needed in patients with inflammatory bowel disease 
(IBD) because iron deficiency (ID) and ID anaemia (IDA) occur frequently in this 
patient group[1-3]. A large proportion of IBD patients experience intolerance to oral 
iron[4]. Additionally, it is asserted that oral iron can lead to an exacerbation of inflam-
mation in the bowel mucosa due to a local effect on the enterocytes[5-7]. Therefore, 
administration of high-dose iron as an intravenous infusion is an effective, suitable 
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and convenient treatment option in IBD. Ferric carboxymaltose (FCM; Ferinject®; Vifor 
Pharma) and ferric derisomaltose (FDI), previously known as iron isomaltoside 
(Monofer®; Pharmacosmos A/S), are the most widely used preparations in Europe 
when high-dose intravenous iron is indicated.

In a recent publication, we described a high incidence of hypophosphatemia in IBD 
patients who had received treatment with FCM[8]. The mechanism behind the 
development of hypophosphatemia has been described by Wolf et al[9], but probably 
is not yet fully understood, and has not been investigated in patients with IBD. 
Fibroblast growth factor 23 (FGF23) is a small peptide hormone, synthesized by 
osteocytes, which regulates phosphate and vitamin D homeostasis[9]. FGF23 consists 
of a biologically-active component (full-length, intact FGF23) and inactive C-terminal 
fragments (C-terminal FGF23). FCM causes an increase in intact FGF23, which triggers 
the pathophysiological cascade of renal phosphate wasting, suppressed levels of 1,25-
dihydroxyvitamin D, and secondary hyperparathyroidism[9]. In contrast, FDI does not 
appear to induce increased intact FGF23 levels, and is associated with a low incidence 
of hypophosphatemia[9].

Moderate to severe hypophosphatemia over time, as well as acute severe hypophos-
phatemia, can lead to serious complications, e.g., respiratory failure, haemolysis, left 
ventricular failure, and rhabdomyolysis[10-13]. Development of osteomalacia with 
pseudo-fractures has been found in patients with sustained hypophosphatemia 
[14-17]. However, there are uncertainties with regard to both the frequency of 
symptoms and the clinical impact of hypophosphatemia.

Reduced quality of life (QoL) is common and well-documented in IBD patients due 
to chronic inflammation in the gut and the occurrence of extra-intestinal manifesta-
tions[18,19]. Therefore, addressing additional symptoms and implications of 
hypophosphatemia in this patient group is a challenge, and no specific questionnaire 
related to hypophosphatemia is available.

In this short-term study, we aimed to investigate the mechanisms causing the 
development of hypophosphatemia in IBD patients, with ID or IDA, who received one 
high-dose (1000 mg) infusion of iron. Moreover, we aimed to document symptoms and 
clinical manifestations related to hypophosphatemia.

MATERIALS AND METHODS
Study design and patient population
This prospective observational study was conducted between February 1, 2017 and 
July 1, 2018. The study design and patient recruitment have previously been described 
in detail (Detlie et al[8]). In brief, adult IBD patients (> 18 years) diagnosed with ID or 
IDA (according to European Crohn’s and Colitis Organisation guidelines)[2] were 
recruited at two separate study sites in the southeast region of Norway and treated 
with either FCM or FDI.

Eligible patients were prescribed 1000 mg of high-dose intravenous iron, FCM (50 
mg/mL) or iron derisomaltose (100 mg/mL), administered as a single dose. Patients 
who had received high-dose intravenous iron treatment or a packed red blood cell 
transfusion within 3 mo of study entry, or for whom high-dose intravenous iron 
treatment was contraindicated, were not included in the study.

Enrolment continued until at least 50 consecutive patients with complete adherence 
to the study protocol were recruited at each site (a total of more than 100 patients) (
Supplementary Figure 1). The enrolment period was followed by a prospective 
observation period, which lasted ≤ 7 wk for each patient and included three study 
visits.

Study inclusion was performed at baseline, at which time intravenous iron 
treatment was administered. Patients attended the clinic at week 2 (10-15 d) and at 
week 6 (5-7 wk) following intravenous iron treatment. Each patient could receive only 
one infusion within an approximate 2-mo period after consenting to study 
participation.

Study assessments and data collection
Blood analysis at each study visit included ionised calcium, creatinine, phosphate, 
parathyroid hormone (PTH) and vitamin D (25-hydroxyvitamin D).

Blood samples were also frozen and sent to Medizinische Universität Innsbruck, 
Universitätsklinik für Innere Medizin I, for analysis of 1,25-dihydroxyvitamin D, intact 
and C-terminal FGF23. The Kainos FGF-23 ELISA Kit was used for the FGF23 analysis. 
The assay for intact FGF23 measures only full-length peptide, whereas the assay for C-

http://creativecommons.org/Licenses/by-nc/4.0/
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terminal FGF23 measures full-length peptide and the C-terminal fragments thereby 
representing total FGF23.

Spot urine samples were collected at each study visit and analysed for urine 
phosphate and urine creatinine. A calculation of the fractional excretion of phosphate 
rate (FEPO4) was then performed using the formula, FEPO4 = (urine phosphate × 
plasma creatinine × 100)/(plasma phosphate × urine creatinine). Oslo University 
Hospital Ullevål used the Roche analysis method (Roche/Hitachi Cobas® C systems 
PHOS2 and CREP2) while Akershus University Hospital used the Vitros analysis 
(VITROS® MicroSlide Assay 5.1 FS Diluent Pack 3). The slight sensitivity difference 
between the two analytical methods was minimized by recalculating FEPO4 using the 
above-mentioned formula.

Symptoms that might be related to hypophosphatemia were assessed at each of the 
three study visits using the MicroRPMTM (CareFusion) test to determine respiratory 
muscle function by measuring maximum inspiratory and maximum expiratory 
pressure, a health-related QoL questionnaire (36-item short form health survey, SF-36), 
and a visual analogue scale (VAS).

For the MicroRPMTM respiratory function test, patients were asked to inhale and 
exhale as hard as possible. The test was repeated three times at every visit, and the 
best result of the three attempts was registered.

The SF-36 is a generic, self-administered questionnaire containing 36 items[20]. The 
items are divided into eight multi-item scales that reflect general health, physical 
functioning, role limitations due to physical problems, bodily pain, vitality, mental 
health, social functioning, and role limitations due to emotional problems. Each scale is 
transformed into a 1-100 scale, where a lower score represents more disability. The 
processing of raw SF-36 data into results was executed according to the SF-36 scoring 
algorithms[21].

The VAS is a 10 cm line on which the patient is asked to place a vertical mark to 
indicate the level of intensity of a symptom that best fits his or her experience. Scores 
range from 0-100 (mm) where a higher score represents greater symptom intensity. 
The VAS was used to assess general weakness, fatigue, joint pain, joint stiffness, 
muscle pain, bone and skeletal pain, and difficulties performing daily activities.

All demographic information was collected from patients’ medical records and was 
entered into an electronic case report form.

The study was completed when all enrolled patients had received intravenous iron 
administration, had attended all three study visits, and had fulfilled the requirements 
of the study protocol.

Study outcomes
Serum phosphate, PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, ionised 
calcium, creatinine, intact and C-terminal FGF23, and FEPO4 (urine phosphate and 
urine creatinine) were measured in order to assess possible mechanisms behind the 
development of hypophosphatemia after intravenous iron treatment. Results from the 
FCM treatment group were compared with results from the FDI treatment group.

Hypophosphatemia was defined as a serum phosphate level < 0.8 mmol/L (< 2.5 
mg/dL). The clinical impact of hypophosphatemia was evaluated at week 2 and week 
6 using the respiratory muscle function test, SF-36, and the VAS score. In relation to 
the assessment of clinical impact, the hypophosphatemia group was defined as 
patients experiencing hypophosphatemia at both week 2 and week 6. Results for 
patients with hypophosphatemia were compared with results for patients without 
hypophosphatemia, independent of treatment group.

Statistical analysis
This study was designed to achieve 80% power to detect a difference in the primary 
outcome, which was the incidence of hypophosphatemia (previously described by 
Detlie et al[8]). Hence, the MicroRPMTM respiratory test, SF-36, and VAS scores were 
not used to justify sample size.

Data are presented descriptively, as mean with SD or 95% confidence intervals for 
continuous variables, and as the number of exposed patients (with proportions) for 
categorical variables. Hypothesis tests for differences in change between treatment 
groups, change from baseline, and groups with or without hypophosphatemia, were 
conducted using paired t-tests. All analyses were performed in R. A P value of < 0.05 
was considered significant.

Ethical considerations
The study protocol was approved by the relevant local regulatory and ethical 
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committees and adhered to the applicable laws on data protection. A study 
registration application was sent to the EudraCT system with the application No. 2016-
003476-41, but the application was deemed unnecessary since there were no 
indications of a medical intervention study.

All patients gave informed consent before inclusion into the study, and the study 
was performed in accordance with the principles for post-authorisation safety studies, 
according to Good Clinical Practice guidelines.

All biological material obtained from patients was destroyed after analysis, as were 
the frozen blood samples sent to the Medical University of Innsbruck.

Study nurses were blinded to the results of laboratory findings but, for safety 
reasons, the primary investigator at each study centre was not blinded.

RESULTS
Of the 130 patients screened for this study, 106 patients (52 patients at Oslo University 
Hospital Ullevål and 54 patients at Akershus University Hospital) were included in the 
analyses. Demographic and clinical characteristics of the patients have previously been 
described[8].

Data for serum phosphate, FEPO4, intact and C-terminal FGF23, 25-hydroxyvitamin 
D, 1,25-dihydroxyvitamin D, ionised calcium, and PTH at baseline and at each study 
visit are shown in Table 1. A sub-analysis of the same data, stratified according to 
hypophosphatemia status (with/without) at week 2 and at week 6, is shown in 
Table 2.

Serum phosphate and urinary excretion of phosphate
As previously described, following treatment with FCM, hypophosphatemia was 
present in 72.5% (37/51) of patients at week 2, and in 21.6% (11/51) of patients at week 
6. In comparison, in the FDI treatment group, 11.3% (6/53) of patients had hypophos-
phatemia at week 2, and 3.7% (2/54) at week 6. There were no new incidences of 
hypophosphatemia at week 6. The difference in incidence was highly significant at 
both week 2 and 6 (P < 0.001 and P < 0.013, respectively)[8]. These findings are 
consistent with the mean urine FEPO4 that was significantly (P = 0.004) higher at week 
2 in the FCM treatment group compared with the FDI treatment group, and still 
elevated (though declining) at week 6 in the FCM group (Table 1 and Figure 1A). In 
the sub-analysis, the FDI-treated patients with hypophosphatemia (n = 6) had 
numerically increased FEPO4 (Table 2).

Patients in both treatment groups without hypophosphatemia at week 2 also 
experienced an increase in FEPO4 at week 2 compared to baseline values, but urinary 
phosphate excretion declined again at week 6 in these patients.

FGF23
There was a significant (P < 0.001) increase in intact FGF23 from baseline to week 2 
after infusion of FCM, compared with the FDI treatment group (Table 1 and 
Figure 1B). At week 6, intact FGF23 values in the FCM treatment group had returned 
close to baseline. In comparison, after FDI treatment no such increases were found 
(Figure 1B). At baseline, the serum concentration of C-terminal FGF23 was higher in 
the FDI treatment group than in the FCM treatment group (Table 1), and declined after 
FDI infusion (Figure 1C). This high value at baseline was not seen in the FCM 
treatment group (Table 1), which is probably compatible with the less severe ID/IDA 
seen in the FCM group[8].

In the sub-analysis, for the FCM-treated patients with hypophosphatemia, intact 
FGF23 was significantly increased compared with FCM-treated patients without 
hypophosphatemia at week 2 and at week 6 (Table 2). In the FCM-treated patients who 
had normal phosphate, intact FGF23 was not increased at week 2 or week 6.

For FDI-treated patients, the sub-analysis showed that there was no significant 
difference in mean intact FGF23 Levels between patients with/without hypophospha-
temia at week 2 or at week 6 (Table 2). At week 2, only one FDI-treated patient with 
hypophosphatemia had significantly increased intact FGF23; the other five patients 
with hypophosphatemia had minimal change in their intact FGF23 values.

Vitamin D
There were no significant differences between the treatment groups in the concen-
tration of 25-hydroxyvitamin D throughout the study period (Figure 1D). However, 
the sub-analysis showed that 25-hydroxyvitamin D concentrations were lower at week 
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Table 1 Descriptive data for laboratory parameters at baseline, at week 2 and at week 6

Analysis
High-dose 
intravenous 
iron

Baseline, 
mean ± 
SD

Week 
2, 
mean 
± SD

Difference 
from 
baseline at 
week 2

Difference 
between 
FCM and FDI 
at week 2 
(95%CI)

P 
value

Week 
6, 
mean 
± SD

Difference 
from 
baseline at 
week 6

Difference 
between 
FCM and FDI 
at week 6 
(95%CI)

P 
value

FCM 1.07 ± 0.2 0.65 ± 
0.2

-0.417 1.00 ± 
0.3

-0.072Serum phosphate, 
mmol/L (ref. value 
0.8-1.65)

FDI 1.15 ± 0.2 1.07 ± 
0.2

-0.073

-0.344 (-0.427 
to -0.260)

< 
0.001

1.14 ± 
0.2

-0.002

-0.070 (-0.144 
to 0.004)

0.064

FCM 43.42 ± 14.2 91.61 ± 
63.8

49.205 44.79 ± 
23.1

1.718Intact FGF23, 
pg/mL (ref. value 
11.50-48.90)

FDI 43.88 ± 14.5 47.77 ± 
22.1

3.892

45.312 (25.982 
to 64.697)

< 
0.001

44.04 ± 
16.6

0.159

1.559 (-6.407 to 
9.525)

0.698

FCM 2.46 ± 3.2 1.68 ± 
1.3

-0.756 0.94 ± 
1.2

-1.507C-terminal FGF23, 
pmol/L (ref. value 
0.30-3.00)

FDI 8.87 ± 30.6 1.33 ± 
1.4

-7.539

6.783 (-1.319 to 
14.885)

0.099

2.24 ± 
7.6

-6.632

5.124 (-1.310 to 
11.558)

0.116

FCM 9.95 ± 5.8 18.70 ± 
10.8

9.946 13.68 ± 
11.3

4.210FEPO4, % (ref. value 
N/A)

FDI 12.55 ± 5.9 17.03 ± 
8.6

4.570

5.375 (1.801 to 
8.95)

0.004

13.37 ± 
6.0

0.884

3.326 (-0.309 to 
6.96)

0.072

FCM 5.46 ± 2.6 7.02 ± 
3.4

1.608 5.97 ± 
3.3

0.767PTH, pmol/L (ref. 
value 1.5-7.0)

FDI 5.51 ± 2.6 6.72 ± 
3.4

1.166

0.442 (-0.561 to 
1.445)

0.384

5.69 ± 
2.3

0.176

0.590 (-0.358 to 
1.539)

0.220

FCM 1.21 ± 0.0 1.20 ± 
0.0

-0.015 1.21 ± 
0.0

0.000Ionised calcium, 
mmol/L (ref. value 
1.16-1.32)

FDI 1.23 ± 0.0 1.23 ± 
0.1

0.005

-0.020 (-0.035 
to -0.004)

0.012

1.25 ± 
0.0

0.018

-0.018 (-0.036 
to -0.001)

0.044

FCM 58.35 ± 24.4 57.13 ± 
23.1

-1.212 57.48 ± 
20.8

-0.86525-hydroxyvitamin 
D, nmol/L (ref. 
value 50-125)

FDI 63.51 ± 21.9 64.63 ± 
20.0

0.922

-2.133 (-6.238 
to 1.972)

0.305

62.75 ± 
21.1

-0.706

-0.160 (-7.078 
to 6.759)

0.964

FCM 51.10 ± 19.2 28.77 ± 
17.9

-21.074 53.78 ± 
20.2

3.2181,25-
dihydroxyvitamin 
D, ng/L (ref. value 
20-79) FDI 52.85 ± 20.4 48.24 ± 

17.7
-4.611

-16.463 (-
24.487 to -
8.438)

< 
0.001

50.71 ± 
19.8

-2.139

5.357 (-3.164 to 
13.878)

0.215

Normal phosphate levels: > 0.8 mmol/L = > 2.48 mg/dL; Mild hypophosphatemia 0.79-0.6 mmol/L = 2.44-1.86 mg/dL; Moderate hypophosphatemia 0.59-
0.32 mmol/L = 1.83-0.99 mg/dL; Severe hypophosphatemia < 0.32 mmol/L = < 0.99 mg/dL. CI: Confidence interval; FCM: Ferric carboxymaltose; FDI: 
Ferric derisomaltose; FEPO4: Fractional excretion of phosphate; FGF23: Fibroblast growth factor 23; PTH: Parathyroid hormone; N/A: Not applicable.

6 in the two FDI-treated patients with hypophosphatemia when compared with 
baseline concentrations within the same group (Tables 1 and 2). At week 2, 1,25-
dihydroxyvitamin D concentrations were significantly lower in patients who received 
FCM compared with patients who received FDI (Table 1). In the FCM-treatment 
group, the mean concentration of 1,25-dihydroxyvitamin D returned to baseline at 
week 6 (Table 1 and Figure 1E). However, the sub-analysis revealed that, for the FCM-
treated patients with hypophosphatemia, low 1,25-dihydroxyvitamin D levels 
persisted at week 6 (Table 2). In the subgroups of patients without hypophosphatemia, 
1,25-dihydroxyvitamin D levels were relatively unchanged.

In our cohort, we identified 36 patients (34.0%) with vitamin D deficiency (25-
hydroxyvitamin D < 50 nmol/L) at baseline; 10 of these patients had severe vitamin D 
deficiency (25-hydroxyvitamin D < 30 nmol/L). The distribution of these patients was 
equal in the two treatment groups, as well as equally distributed across disease states – 
ulcerative colitis and Crohn’s disease. Moreover, we found no association between low 
levels of vitamin D and development of hypophosphatemia.
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Table 2 Laboratory parameters for patients stratified by hypophosphatemia status (with/without) at week 2 and at week 6

Analysis
High-dose 
intravenous 
iron

Week 2 
serum 
phosphate ≥ 
0.8 mmol/L, 
mean ± SD

Week 2 
serum 
phosphate < 
0.8 mmol/L, 
mean ± SD

Difference P 
value

Week 6 
serum 
phosphate ≥ 
0.8 mmol/L, 
mean ± SD

Week 6 
serum 
phosphate < 
0.8 mmol/L, 
mean ± SD

Difference P 
value

FCM 33.71 ± 10.56 (n 
= 14/51)

114.33 ± 62.22 (
n = 37/51)

80.62 < 
0.001

39.30 ± 16.79) (
n = 40/51)

66.86 ± 30.05 (n 
= 11/51)

27.56 0.013Intact FGF23, 
pg/mL (ref. value 
11.50-48.90)

FDI 45.82 ± 16.90  (n 
= 47/53)

57.16 ± 46.35 (n 
= 6/53)

11.43 0.577 43.85 ± 16.83 (n 
= 52/54)

48.93 ± 10.13 (n 
= 2/54)

5.08 0.604

FCM 1.03 ± 0.99 (n = 
14/51)

1.93 ± 1.33 (n = 
37/51)

0.9 0.014 0.76 ± 0.63 (n = 
40/51)

1.64 ± 2.14 (n = 
11/51)

0.88 0.206C-terminal FGF23, 
pmol/L (ref. value 
0.30-3.00)

FDI 1.36 ± 1.47 (n = 
47/53)

1.08 ± 0.72 (n = 
6/53)

-0.28 0.465 2.27 ± 7.79 (n = 
52/54)

1.31 ± 0.33 (n = 
2/54)

-0.97 0.384

FCM 13.35 ± 5.94 (n 
= 12/46)

20.59 ± 11.60 (n 
= 34/46)

7.24 0.009 9.62 ± 6.56 (n = 
36/47)

26.99 ± 13.38 (n 
= 11/47)

17.37 0.001FEPO4, % (ref. value 
N/A)

FDI 15.97 ± 7.85 (n 
= 46/52)

25.11 ± 10.22 (n 
= 6/52)

9.14 0.080 13.00 ± 5.79 (n 
= 52/54)

22.85 ± 4.41 (n 
= 2/54)

9.85 0.176

FCM 5.46 ± 2.83 (n = 
14/48)

7.46 ± 3.23 (n = 
34/48)

2 0.042 5.22 ± 2.39 (n = 
39/47)

9.93 ± 4.43) (n = 
8/47)

4.71 0.020PTH, pmol/L (ref. 
value 1.5-7.0)

FDI 6.28 ± 2.97 (n = 
47/53)

10.13 ± 4.70 (n 
= 6/53)

3.85 0.102 5.66 ± 2.32 (n = 
52/54)

6.40 ± 1.70 (n = 
2/54)

0.74 0.649

FCM 1.21 ± 0.32 (n = 
13/50)

1.19 ± 0.05 (n = 
37/50)

-0.02 0.336 1.21 ± 0.05 (n = 
40/51)

1.22 ± 0.04 (n = 
11/51)

0.01 0.496Ionised calcium, 
mmol/L (ref. value 
1.16-1.32)

FDI 1.24 ± 0.45 (n = 
46/52)

1.21 ± 0.09 (n = 
6/52)

-0.03 0.422 1.25 ± 0.05 (n = 
51/53)

1.23 ± 0.02 (n = 
2/53)

-0.02 0.314

FCM 63.00 ± 30.94 (n 
= 14/51)

54.54 ± 19.69 (n 
= 37/51)

-8.46 0.354 60.05 ± 21.68 (n 
= 40/51)

45.45 ± 10.00 (n 
= 11/51)

-14.6 0.00225-hydroxyvitamin 
D, nmol/L (ref. 
value 50-125)

FDI 64.16 ± 20.30 (n 
= 45/51)

64.83 ± 18.93 (n 
= 6/51)

0.67 0.937 63.68 ± 20.97 (n 
= 50/52)

39.50 ± 2.12 (n 
= 2/52)

-24.18 < 
0.001

FCM 46.34 ± 19.10 (n 
= 14/50)

21.46 ± 11.63 (n 
= 36/50)

-24.88 < 
0.001

56.76 ± 20.27 (n 
= 40/50)

40.89 ± 15.95 (n 
= 10/50)

-15.87 0.0161,25-
dihydroxyvitamin 
D, ng/L (ref. value 
20-79) FDI 49.05 ± 18.52 (n 

= 47/53)
45.72 ± 7.15 (n 
= 6/53)

-3.33 0.414 50.88 ± 19.92 (n 
= 52/54)

46.45 ± 21.85 (n 
= 2/54)

-4.43 0.822

Normal phosphate levels: > 0.8 mmol/L = > 2.48 mg/dL; Mild hypophosphatemia 0.79-0.6 mmol/L = 2.44-1.86 mg/dL; Moderate hypophosphatemia 0.59-
0.32 mmol/L = 1.83-0.99 mg/dL; Severe hypophosphatemia < 0.32 mmol/L = < 0.99 mg/dL. FCM: Ferric carboxymaltose; FDI: Ferric derisomaltose; 
FEPO4: Fractional excretion of phosphate; FGF23: Fibroblast growth factor 23; PTH: Parathyroid hormone; N/A: Not applicable.

Calcium and PTH
Ionised calcium values dropped significantly from baseline to week 2 in the FCM 
treatment group compared with the FDI treatment group (P < 0.012) but stayed within 
normal range. The mean values in the FCM group had increased by week 6, but the 
between-group difference was still significant (P < 0.044). Calcium values remained 
stable throughout the study in the FDI treatment group (Figure 1F), and in the 
subgroup of FCM-treated patients who did not develop hypophosphatemia. The sub-
analysis showed that there was a numerically lower level of ionised calcium in the 
FDI-treated patients with hypophosphatemia than in the FDI-treated patients without 
hypophosphatemia (Table 2).

PTH values were elevated (> 7 pmol/L) in 28 patients (26.4%) at baseline; the distri-
bution was similar between treatment groups. PTH concentrations were similar 
between treatment groups at baseline, and no significant between-group differences 
were observed in mean PTH concentrations at week 2, and at week 6 (Table 1). PTH 
values increased in both treatment groups at week 2 and decreased again at week 6 
(Figure 1G). The sub-analysis indicated that the increase in PTH in both treatment 
groups was mainly driven by the patients who developed hypophosphatemia, with 
significant differences at week 2 and week 6 for the FCM-treated patients with 
hypophosphatemia compared to FCM-treated patients without hypophosphatemia 
(Table 2).
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Figure 1 mean ± SD change from baseline in laboratory parameters in inflammatory bowel disease patients with iron deficiency/iron 
deficiency anaemia treated with a single 1000 mg intravenous dose of ferric carboxymaltose or ferric derisomaltose. A: Fractional excretion 
of phosphate; B: Intact fibroblast growth factor 23; C: C-terminal fibroblast growth factor 23; D: 25-Hydroxyvitamin D; E: 1,25-Hydroxyvitamin D; F: Ionised calcium; G: 
Parathyroid hormone. FCM: Ferric carboxymaltose; FDI: Ferric derisomaltose; FEPO4: Fractional excretion of phosphate; FGF23: Fibroblast growth factor 23; PTH: 
Parathyroid hormone.
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Respiratory muscle function tests
In the comparison of patients who developed hypophosphatemia vs those who did not 
develop hypophosphatemia, independent of treatment group, no significant 
differences were observed in the respiratory muscle function test results. The 
differences between patients with hypophosphatemia and those with normal 
phosphate values were minimal and the standard deviation was wide in both groups 
(Figure 2).

SF-36
The results of the SF-36 QoL assessment are presented in Table 3. Overall, there were 
no significant differences between patient groups with or without hypophosphatemia 
at baseline and at any time point during the study. The mean scores at baseline in both 
treatment groups were generally low.

VAS scores
There were no significant differences in VAS scores between the groups of patients 
with/without hypophosphatemia at week 2 and at week 6 (Table 4). Overall, VAS 
scores were elevated at baseline. However, the group of patients who developed 
hypophosphatemia had lower VAS scores at baseline for the items joint pain, muscle 
pain, and bone and skeletal pain, compared to the group of patients who did not 
develop hypophosphatemia; between-group differences were not significant for these 
items. There was, however, a significant between-group difference (P < 0.001) at 
baseline for the VAS joint stiffness item score, with lower values in the group of 
patients who developed hypophosphatemia.

DISCUSSION
Our study indicates that FGF23 plays an important role in the development of 
hypophosphatemia in IBD patients treated with FCM. In these patients, a high level of 
intact FGF23, an increased excretion of phosphate in the urine, a decrease of 1,25-
dihydroxyvitamin D and of serum calcium levels, and a slight elevation of PTH, was 
demonstrated.

Previous clinical trials of FCM have shown similar results[9,22]. However, for the 
most part, these studies have been conducted in healthy and, predominantly, female 
populations. The role of FGF23 has also been described in earlier publications[23-26]. 
Regulation of phosphate concentrations in the body seems to be strongly influenced by 
intact FGF23, which reduces phosphate reabsorption in the proximal tubules in the 
kidneys and inhibits production of 1,25-dihydroxyvitamin D, probably by inhibiting 
the activity of the enzyme 25-hydroxyvitamin D-1a-hydroxylase and increased 
expression of 24-hydroxylase[24,26]. Our findings suggest that FCM could have a 
direct impact on cleavage of FGF23, resulting in a high level of intact FGF23 and 
consequent phosphate wasting. This might also explain why baseline phosphate level 
does not predict the development of mild or severe hypophosphatemia, due to the 
inappropriate excretion of available phosphate in the urine, following FCM 
treatment[8]. We also observed a decrease in 1,25-dihydroxyvitamin D (the active 
vitamin D metabolite), a decrease in ionised calcium, and development of secondary 
hyperparathyroidism. This might explain why some patients treated with FCM still 
had hypophosphatemia six weeks after treatment, when the intact FGF23 values had 
normalized (Table 2) since elevated PTH promotes excretion of phosphate in the 
urine[9,27,28].

The majority of patients in the FCM treatment group developed hypophosphatemia 
at week 2. The remaining patients did not develop hypophosphatemia and had 
unchanged levels of intact FGF23. So, there is a clear association between the 
development of high levels of intact FGF23 and hypophosphatemia. Therefore, it can 
only be speculated that there might be some individual factors related to the handling 
of FCM that cause the majority of patients treated with FCM to develop hypophos-
phatemia, whereas others do not. Neither is it known if any individual patient would 
develop hypophosphatemia on subsequent administrations of FCM, or if the effect of 
FCM treatment on phosphate wasting is indiscriminate. Perhaps some patients are 
protected against the influence of FCM on the enzyme responsible for FGF23 protein 
cleavage. From our results, we postulate that the mechanism of FCM-induced 
hypophosphatemia is not related to IBD; instead, it appears to be independently 
connected to the drug itself.
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Table 3 Descriptive 36-item short form health survey scores for patient groups with/without hypophosphatemia independent of treatment group

SF-36 scale 
item

Normal 
phosphate 
population, 
baseline, mean ± 
SD

Hypophosphatemia 
population, baseline, 
mean ± SD

Difference1 at 
baseline, 
mean (95%CI)

Normal phosphate 
population, change 
at week 2, mean ± 
SD

Hypophosphatemia 
population, change at 
week 2, mean ± SD

Difference1 at 
week 2, mean 
(95%CI)

Normal phosphate 
population, change 
at week 6, mean ± 
SD

Hypophosphatemia 
population, change at 
week 6, mean ± SD

Difference1 at 
week 6, mean 
(95%CI)

General health 50.91 ± 20.1 48.50 ± 26.1 2.4 (-14.5 to 19.4) -0.45 ± 12.9 0.75 ± 12.2 -1.2 (-9.2 to 6.8) 3.06 ± 16.3 3.25 ± 15.1 -0.2 (-10.2 to 9.8)

Physical 
functioning

78.72 ± 22.4 86.11 ± 21.1 -7.4 (-21.3 to 6.6) 2.63 ± 10.9 -0.28 ± 6.3 2.9 (-1.6 to 7.4) 3.97 ± 14.5 -0.28 ± 4.7 4.2 (0.2 to 8.3)

Role limitations 
due to physical 
problems

47.61 ± 42.8 66.67 ± 40.4 -19.1 (-45.7 to 
7.6)

-4.08 ± 28.1 -6.25 ± 18.8 2.2 (-10.8 to 
15.1)

11.32 ± 39.2 2.08 ± 16.7 9.2 (-3.7 to 22.1)

Bodily pain 65.65 ± 25.1 67.17 ± 27.6 -1.5 (-19.6 to 
16.5)

0.68 ± 18.9 4.42 ± 12.2 -3.7 (-12.2 to 4.7) 3.40 ± 19.8 10.83 ± 19.1 -7.4 (-20.0 to 5.2)

Vitality 37.98 ± 22.0 40.00 ± 22.4 -2.0 (-16.7 to 
12.7)

4.05 ± 13.1 7.50 ± 15.9 -3.4 (-13.8 to 6.9) 10.89 ± 18.0 12.92 ± 16.0 -2.0 (-12.7 to 8.6)

Mental health 71.72 ± 18.9 70.33 ± 16.9 1.4 (-9.9 to 12.6) 3.37 ± 9.0 4.33 ± 5.0 -1.0 (-4.5 to 2.6) 4.89 ± 13.2 1.67 ± 11.1 3.2 (-4.2 to 10.7)

Social 
functioning

68.35 ± 26.3 68.75 ± 30.4 -0.4 (-20.2 to 
19.4)

3.86 ± 16.7 7.29 ± 13.5 -3.4 (-12.5 to 5.6) 8.70 ± 20.7 7.29 ± 15.5 1.4 (-9.1 to 11.9)

Role limitations 
due to 
emotional 
problems

67.91 ± 41.5 72.22 ± 42.2 -4.3 (-32.1 to 
23.4)

-2.66 ± 34.8 -8.33 ± 37.9 5.7 (-19.1 to 
30.5)

6.52 ± 38.0 -2.78 ± 26.4 9.3 (-8.8 to 27.4)

Hypophosphatemia defined as serum phosphate < 0.8 mmol/L (< 2.5 mg/dL).
1Differences are normal phosphate group minus hypophosphatemia group. CI: Confidence interval; SF-36: 36-Item short form health survey.

A few patients who received treatment with FDI also developed hypophosphatemia 
but, unlike those receiving FCM, these patients did not on average have significantly 
elevated intact FGF23 Levels when assessed at week 2, which would suggest a 
different underlying mechanism. A transient increase in intact FGF23 during the first 2 
wk in patients experiencing hypophosphatemia cannot be ruled out, as data were not 
collected during this time period. A numerical increase in PTH was observed at week 2 
along with decreased ionised calcium, and decreased 25-hydroxyvitamin D at week 6. 
It is not clear whether these observations are the result of a transient increase of intact 
FGF23 during the first 2 wk, or solely a physiological response to a rapid correction of 
ID, or simply an artefact due to the low numbers of FDI patients who developed 
hypophosphatemia. The general physiological response of mineral metabolism 
markers to rapid ID correction is not fully elucidated and is an area of further research.



Detlie TE et al. Hypophosphatemia in patients with IBD

WJG https://www.wjgnet.com 2049 May 7, 2021 Volume 27 Issue 17

Table 4 Descriptive visual analogue scale score for patient groups with/without hypophosphatemia independent of treatment group

VAS item

Normal 
phosphate 
group, 
baseline, mean 
± SD

Hypophosphatemia 
group, baseline, mean 
± SD

Difference1 at 
baseline, 
mean 
(95%CI)

P 
value

Normal 
phosphate 
group, change 
at week 2, mean 
± SD

Hypophosphatemia 
group, change at week 
2, mean ± SD

Difference1 at 
week 2, 
mean 
(95%CI)

P 
value

Normal 
phosphate 
group, change 
at week 6, mean 
± SD

Hypophosphatemia 
group, change at week 
6, mean ± SD

Difference1 at 
week 6, 
mean 
(95%CI)

P 
value

General 
weakness

43.54 ± 28.7 31.17 ± 30.5 12.4 (-7.6 to 
32.4)

0.205 -4.98 ± 14.9 -1.50 ± 17.2 -3.5 (-14.7 to 
7.7)

0.515 -10.64 ± 21.9) -6.33 ± 25.7 -4.3 (-21.1 to 
12.5)

0.589

Fatigue 37.53 ± 30.0 29.58 ± 30.1 7.9 (-11.8 to 
27.7)

0.403 -3.31 ± 19.4 -1.33 ± 17.9 -2.0 (-13.9 to 
9.9)

0.728 -8.93 ± 22.0 -5.17 ± 26.7 -3.8 (-21.2 to 
13.6)

0.648

Joint pain 17.30 ± 23.3 8.25 ± 14.8 9.1 (-1.2 to 
19.3)

0.081 0.32 ± 14.3 -3.09 ± 6.9 3.4 (-1.9 to 8.7) 0.197 2.17 ± 18.0 0.17 ± 7.4 2.0 (-3.8 to 7.8) 0..489

Joint stiffness 13.31 ± 22.3 1.42 ± 3.4 11.9 (6.9 to 
16.8)

< 
0.001

-0.57 ± 18.1 -0.64 (2.1) 0.1 (-3.9 to 4.0) 0.972 0.99 ± 17.7 1.75 ± 8.5 -0.8 (-7.1 to 5.6) 0.807

Muscle pain 15.35 ± 23.1 5.83 ± 14.5 9.5 (-0.5 to 
19.6)

0.062 -1.71 ± 14.6 2.45 (8.9) -4.2 (-10.7 to 
2.3)

0.194 -0.50 ± 20.6 -0.17 ± 11.0 -0.3 (-8.3 to 7.6) 0.932

Bone and 
skeletal pain

7.24 ± 19.4 1.92 ± 6.6 5.3 (-0.3 to 
10.9)

0.061 1.85 ± 20.2 2.64 (8.7) -0.8 (-7.7 to 6.1) 0.817 3.42 ± 18.7 -1.67 ± 6.8 5.1 (-0.5 to 
10.7)

0.076

Difficulties 
performing 
daily activities

34.38 ± 28.5 29.67 ± 29.7 4.7 (-14.8 to 
24.2)

0.611 -3.80 ± 14.9 -2.17 (23.5) -1.6 (-16.8 to 
13.5)

0.819 -9.45 ± 20.0 -11.00 ± 24.8 1.6 (-14.6 to 
17.7)

0.839

Hypophosphatemia defined as serum phosphate < 0.8 mmol/L (< 2.5 mg/dL).
1Differences are normal phosphate group minus hypophosphatemia group. CI: Confidence interval; VAS: Visual analogue scale.

An important observation is that 34% of the study population was vitamin D 
deficient at baseline with 25-hydroxyvitamin D values < 50 nmol/L and, perhaps more 
interestingly, 24% of the patients had PTH values compatible with secondary 
hyperparathyroidism. These findings were equally distributed between the two 
treatment groups. This disturbance in vitamin D metabolism is unlikely to be a 
consequence of previous iron infusions since no patients received high-dose 
intravenous iron treatment during the 6 mo prior to inclusion in this study. The high 
prevalence of vitamin D deficiency at baseline is in agreement with previous studies of 
patients with IBD[29]. However, it is important to note that, in our study, many of the 
samples were taken during the winter months when sun exposure is reduced in 
Norway, and individuals could therefore be expected to be somewhat vitamin D 
deficient during this time. Nevertheless, this finding is important since both 
hypophosphatemia and vitamin D deficiency can contribute to the development of 
metabolic bone disease, including osteomalacia.
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Figure 2 mean ± SD changes from baseline in respiratory pressure in inflammatory bowel disease patients with iron deficiency/iron 
deficiency anaemia treated with a single 1000 mg intravenous dose of ferric carboxymaltose or ferric derisomaltose. A: Inspiratory pressure; 
B: Expiratory pressure.

Guidelines regarding hypophosphatemia diagnosis, treatment, and follow-up are 
available, but the possible risk or incidence rate of developing hypophosphatemia 
with symptoms or complications are rarely mentioned[30]. A risk of developing 
respiratory failure, rhabdomyolysis, and left ventricular failure due to severe 
hypophosphatemia has been reported in case series[10]. More recent data also predict 
an increased risk of developing osteomalacia, especially in long-standing 
hypophosphatemia[14,15]. What is less well known is the number of patients 
developing more subtle, but identifiable, symptoms related to hypophosphatemia that 
are experienced as troublesome and might influence QoL.

With respect to the clinical impact of hypophosphatemia, measuring forced 
inspiratory and expiratory respiratory pressure can be used as a proxy to assess the 
physical effect of hypophosphatemia on skeletal and proximal muscles. There are no 
specific questionnaires available to evaluate the clinical impact of hypophosphatemia. 
The SF-36 is, however, one of the most commonly applied QoL questionnaires used 
world-wide in health surveys. Additionally, the VAS score can be used as a general 
assessment of impact of symptoms, such as fatigue, general weakness, bone and 
skeletal pain, and joint and muscle conditions. In our study, these three methods were 
applied to assess clinical impact in patients who developed hypophosphatemia 
compared to those who did not develop hypophosphatemia. All three methods failed 
to demonstrate significant differences in clinical impact following one administration 
of high-dose intravenous iron in this short-term study.

We hypothesize several reasons that might explain these results. In addition to the 
fact that a type II error cannot be excluded, it can be speculated that the positive effect 
of the correction of ID or IDA plays a more important role than any short-term 
negative clinical impact of hypophosphatemia and, hence, the effects of hypophospha-
temia would be difficult to discern in our study. Another challenge is that IBD, ID, 
IDA and hypophosphatemia are associated with similar symptoms and, possibly, 
similar impacts on daily life. Indeed, assessing the specific impact of hypophos-
phatemia with questionnaires would, therefore, prove difficult. Since the SF-36 and the 
VAS questionnaires are not disease- or population-specific, there may be uncertainty 
surrounding the reliability of the results. Additionally, the patient cohort had more 
than one dynamic medical condition, with overlapping symptoms, and patients were 
observed in a longitudinal manner. Certainly, it would be almost impossible to 
determine which disease state or co-morbidity is reflecting improvement or worsening 
of clinical status.

The already affected baseline recordings in SF-36 and the VAS score should not go 
unnoticed. These findings mirror previous studies of IBD populations[31], and reflect 
the reduced QoL and the intensity of symptoms that these patients experience in 
general. Finally, the fact that we did not detect clinical consequences in patients who 
developed hypophosphatemia suggests that, in order to detect overt symptoms and 
complications, the population size needs to be larger than our sample, as one might 
expect such complications to be relatively rare. Hence, this needs to be taken into 
account when considering the expectation of finding significant changes in the clinical 
outcomes in this study.



Detlie TE et al. Hypophosphatemia in patients with IBD

WJG https://www.wjgnet.com 2051 May 7, 2021 Volume 27 Issue 17

CONCLUSION
In summary, our study has implicated the small peptide hormone FGF23 in the 
development of hypophosphatemia in IBD patients treated with FCM. An increase in 
intact FGF23 occurs, which probably results in phosphate wasting in the urine. 
Assessment of symptoms did not exclude, nor did they demonstrate, any short-term 
clinical impact of hypophosphatemia in IBD patients treated for ID or IDA with high-
dose intravenous iron.

ARTICLE HIGHLIGHTS
Research background
High-dose intravenous iron is an effective and frequently used treatment option for 
iron deficiency (ID) or ID anaemia (IDA) in inflammatory bowel disease (IBD). 
However, treatment with ferric carboxymaltose (FCM) has been associated with the 
development of hypophosphatemia.

Research motivation
We aimed to investigate the occurrence of hypophosphatemia after treatment with 
either FCM and ferric derisomaltose (FDI) for ID or IDA in patients with IBD.

Research objectives
In this part of the study, we aimed to disclose underlying mechanism behind the 
development of hypophosphatemia after treatment with high dose intravenous iron 
and whether hypophosphatemia had a clinical impact on these patients.

Research methods
A prospective observational study of adult IBD patients with ID or IDA was 
conducted between February 1, 2017 and July 1, 2018 at two separate university 
hospitals in the southeast region of Norway. Patients were recruited consecutively and 
received one dose of 1000 mg of either FCM or FDI, and were followed for an 
observation period of at least 7 wk at three timepoints; baseline, week 2 and week 6. 
Blood and urine samples were collected for relevant analyses at all three visits in 
addition to assessment of clinical symptoms using a respiratory function test, a visual 
analogue scale, and a health-related quality of life questionnaire.

Research results
Our study results demonstrate an association between FCM treatment and the 
development of hypophosphatemia by increasing the level of intact Fibroblast Growth 
Factor 23 (iFGF23) and phosphate wasting in the urine. Moreover, we observed a 
significant decline in active Vitamin D and ionised calcium. No clinical impact was 
detected by applying Short Form-36 questionnaire, visual analogue scale score and 
real-time position management breathing test in an observation period of 6 wk.

Research conclusions
FCM treatment is associated with the development of hypophosphatemia in patients 
with IBD. This is due to increased formation of iFGF23 which in turn probably results 
in an increase of urinary phosphate output. No clinical impact was detected nor 
excluded. Assumably our study is underpowered together with a too short 
observation period to provide solid information with regard to clinical impact of 
hypophosphatemia.

Research perspectives
Based on our results we encourage clinicians to be aware of the risk of developing 
hypophosphatemia after treatment with FCM. Larger studies with a longer 
observation period to detect possible clinical impact of hypophosphatemia is desirable.
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