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Abstract
Liver diseases are caused by different etiological agents, 
mainly alcohol consumption, viruses, drug intoxication 
or malnutrition. Frequently, liver diseases are initiated 
by oxidative stress and inflammation that lead to the 
excessive production of extracellular matrix (ECM), 
followed by a progression to fibrosis, cirrhosis and 
hepatocellular carcinoma (HCC). It has been reported 
that some natural products display hepatoprotective 
properties. Naringenin is a flavonoid with antioxidant, 
antifibrogenic, anti-inflammatory and anticancer 
properties that is capable of preventing liver damage 
caused by different agents. The main protective effects 
of naringenin in liver diseases are the inhibition of 
oxidative stress, transforming growth factor (TGF-β) 
pathway and the prevention of the transdifferentiation 
of hepatic stellate cells (HSC), leading to decreased 
collagen synthesis. Other effects include the inhibition 
of the mitogen activated protein kinase (MAPK), toll-like 
receptor (TLR) and TGF-β non-canonical pathways, the 
inhibition of which further results in a strong reduction 
in ECM synthesis and deposition. In addition, naringenin 
has shown beneficial effects on nonalcoholic fatty 
liver disease (NAFLD) through the regulation of lipid 
metabolism, modulating the synthesis and oxidation 
of lipids and cholesterol. Moreover, naringenin protects 
from HCC, since it inhibits growth factors such as TGF-β 
and vascular endothelial growth factor (VEGF), inducing 
apoptosis and regulating MAPK pathways. Naringenin is 
safe and acts by targeting multiple proteins. However, 
it possesses low bioavailability and high intestinal 
metabolism. In this regard, formulations, such as 
nanoparticles or liposomes, have been developed to 
improve naringenin bioavailability. We conclude that 
naringenin should be considered in the future as an 
important candidate in the treatment of different liver 
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Core tip: Natural products such as flavonoids have 
been shown to display hepatoprotective properties. 
Naringenin possesses the ability to inhibit oxidative 
stress and inflammation and has anti-inflammatory 
and anticancer properties. Thus, naringenin should be 
considered in the future as an important candidate for 
the treatment of liver diseases.

Hernández-Aquino E, Muriel P. Beneficial effects of naringenin 
in liver diseases: Molecular mechanisms. World J Gastroenterol 
2018; 24(16): 1679-1707  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v24/i16/1679.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i16.1679

INTRODUCTION
Liver damage can be caused by alcohol intake, heavy 
metal intoxication, hepatitis virus infection, obstruction 
of the biliary tract or malnutrition. Chronic hepatic 
injury results in organ fibrosis characterized by an 
imbalance between the synthesis and degradation 
of extracellular matrix (ECM) derived from oxidative 
stress and inflammation during liver damage. After 
fibrosis, cirrhosis develops with tissue scars, the loss 
of parenchymal architecture, the disruption of hepatic 
blood flow and organ failure[1,2]. The main causes of 
fibrosis globally are NAFLD (40%), hepatitis B virus 
(HBV) (30%), hepatitis C virus (HCV) (15%), and 
harmful alcohol consumption (11%)[3]. The prevalence 
of cirrhosis is increasing; in 2010, 33% more people 
died from cirrhosis than in 1990[4].

While the elimination of the causative agent may 
be the best option for some cirrhotic patients, in most 
cases, medical intervention is required. Therefore, 
pharmacological strategies should be developed to 
prevent or reverse hepatic damage. Researchers have 
developed multiple therapeutic strategies to combat 
this disease, including transforming growth factor-β 
(TGF-β) inhibitors[5], antivirals[6], cell-based therapies[7], 
nanoparticles[8], and natural products[9-15]. 

Liver transplantation is an interesting option; unfor
tunately, the lack of sufficient donors and organ rejection 
restrict this surgical procedure. In recent years, the 
investigation on hepatoprotective properties of natural 
products has increased. Due to their molecular structure, 
many of them possess antioxidant properties and display 
anti-inflammatory and anticancer properties and are ge
nerally considered safe for human consumption. Among 

the most studied natural compounds are silymarin, 
quercetin, and curcumin[10,12,14], but recently, a flavonoid 
with very specific hepatoprotective properties has 
emerged: naringenin.

Naringenin has been studied in various in vivo and 
in vitro liver damage models, using hepatic damage 
agents such as carbon tetrachloride (CCl4), alcohol, 
N-methyl-N-nitro-Nitroguanidine, lipopolysaccharide 
(LPS), and heavy metals, among others, displaying a 
good hepatoprotective activity due to its antioxidant 
capacity as well as its ability to inhibit inflammatory and 
profibrotic signaling pathways. However, despite the 
importance of naringenin in liver diseases, there is no 
detailed review of the effects of naringenin on hepatic 
pathologies.

Therefore, our objective was to document the 
effects of naringenin on liver diseases and to highlight 
the importance of this flavonoid in the therapeutic of 
pathologies of this organ. 

 
literature search
A systematic literature search was conducted using 
PubMed, Scopus and EMBASE.

ABSORPTION, METABOLISM AND 
DISTRIBUTION OF NARINGENIN
Naringenin (4’,5,7-trihydroxy flavanone) is a flavonoid, 
specifically a flavanone, and is the aglycone of naringin 
(naringenin-7-rhamnoglucoside)[16]; naringenin can 
also be found as narirutin (naringenin- 7-O-rutinoside) 
or naringenin-glucoside (naringenin-7-O-glucoside), 
depending on the sugar motive (Figure 1)[11]. 

This review is focused on the effects of naringenin 
(aglycone); the reader interested in glycosylated 
molecules is referred to another review[11]. Because 
naringenin is found mostly in citrus fruits, natural 
intake occurs orally. Due to its chemical structure, 
naringenin is very lipophilic; thus, it is readily absorbed 
through the intestinal epithelium by passive diffusion 
into enterocytes. Once inside the intestinal cells, it can 
enter the general circulation by multidrug resistance-
associated proteins (Mrp1) or can be transported by 
active efflux protein carriers P-glycoprotein (P-gp) 
and Mrp2 back to the intestinal lumen, out of the 
enterocytes, repeating the cycle[17] (Figure 2).

On the other hand, small intestine, colonic epith
elium, and liver metabolize naringenin via phase II 
conjugation by UDP-glucuronosyl transferase (UGT), 
sulfotransferase, and catechol-O-methyltransferase[18-20]. 
Naringenin-glucuronides leave the cells by Mrp2 protein 
or pass into blood via breast cancer-resistant protein 
(Bcrp1)[21]. Moreover, naringenin can be cleaved by 
β-glucuronidases (GUSB) located in tissues and liver[22]. 
This deconjugation results in release of the aglycone, 
which in turn can be absorbed by passive transcellular 
diffusion or undergo efflux by Mrp2 and P-gp[19]. Then, 
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naringenin is metabolized in the lower intestine by 
Streptococcus S-2, Lactobacillus L-2, and Bacteroides 
JY-6 to generate a series of low molecular weight 
aromatic acids[11] (Figure 2). 

With respect to naringenin distribution, it has been 
found in the stomach, small intestine, liver, kidney, 
trachea, lung, heart, fat, muscle, testis, ovary, spleen, 
brain, and urine[20,23-25]. Furthermore, naringenin and 
its metabolites are bound to plasma proteins such as 
albumin[26-28]. 

ANTIOXIDANT EFFECTS OF NARINGENIN, 
BEYOND THE STRUCTURE ACTIVITY 
RELATIONSHIP
Normally, flavonoid antioxidant activity has been attri
buted to the structure-activity relationship of flavonoids. 

However, in addition to a direct antioxidant property by 
free radical scavenging activity, naringenin possesses 
the ability to induce the endogenous antioxidant system.

Classically, naringenin’s antioxidant effect is due 
to its hydroxyl substituents (OH), which have high 
reactivity against reactive oxygen species (ROS) 
and reactive nitrogen species (RNS). In general, the 
antioxidant capacity of a given molecule increases 
in function with the number of OH radicals in the 
molecule, which, in the case of naringenin, is 3. Then, 
OH can donate its H to free radicals (R•), and later, 
naringenin can be stabilized by resonance[29,30] (Figure 
3). Within the typical structure of flavonoids, the B ring 
is very important because when OH groups are in the 
ring, flavonoids can stabilize hydroxyl (OH•), peroxyl 
(ROO•), and peroxynitrite (ONOO•) radicals, producing 
a relatively stable flavonoid radical. On the other hand, 
5-OH substitution and a 5,7-m-dihydroxy arrangement 
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Naringin (naringenin-7-rhamnoglucoside)

(S)-naringenin (4', 5, 7-trihydroxy flavanone)

Narirutin (naringenin-7-O-rutinoside)
(R)-naringenin (4', 5, 7-trihydroxy flavanone)

Naringenin-glucoside (naringenin-7-O-glucoside)

Figure 1  Chemical structure of naringenin, naringin, narirutin, and naringenin-glucoside. The flavonoid naringenin exists in two forms: Glycosylated (naringin, 
narirutin and naringenin-glucoside) and aglycone (naringenina). There are three types of naringenin glycosides depending of sugar moiety bound to the flavonoid: 
Naringin (rhamnose), narirutin (rutinose) and naringenin-glucoside (glucose); when the sugar moiety is cleaved by specific enzymes, the aglycone (naringenin) is 
released.  
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of naringenin on liver LP in the presence of HO2
• or OH• 

was 1.21 and 0.23 mmol/L, respectively[35].
As seen, the antioxidant effect of naringenin can 

be considered ambiguous, and it may depend on the 
radical formed and the model used and the flavonoid 
concentration. Even though naringenin has fewer antioxi
dant functional groups than quercetin, it shows other 
properties due to its structure-activity relationship, as it 
has been reported that naringenin is able to accumulate 
in cell membranes[36] and biomembranes[37,38]. Interaction 
with membranes is favored because flavonoids form 
reversible bonds with the polar heads of the phospho
lipids[39], and this interaction may be possible due to 
naringenin’s solubility, since it is highly lipophilic because 
of its structure (Figure 4). 

Interestingly, it has been shown that naringenin 
decreases membrane fluidity. Membrane fluidity is the 
relative motional freedom of the lipid molecules in the 
membrane bilayer, and naringenin accumulates in the 
membrane hydrophobic core, where it modifies lipid 
packing order leading to decreased membrane fluidity 
in a concentration-dependent manner. Therefore, by 
increasing the rigidity of membranes, naringenin can 
reduce the interaction between R• and lipids; as a result, 
LP may be attenuated[38]. In conclusion, in addition 
to its antioxidant capacity, naringenin can block LP by 
reducing membrane fluidity[40] (Figure 4).

Although antioxidant assays are important, in vitro 
and in vivo model systems offer much more infor
mation since normal functions of a complete system 
are preserved. Either by its antioxidant activity or 
by protection of lipid membranes, naringenin offers 
protection against ROS and other R• in in vitro and 
in vivo models. Naringenin protects against ROS in a 
model of neuronal damage, since it reduces their levels 
in neurons and decreases mitochondrial dysfunction 
and increases mitochondrial membrane potential[41]. 
In addition, naringenin inhibits KO2-induced oxidative 
stress in a pain model in mice by inhibiting LP and O2

•
 

production[42]. On the other hand, naringenin exerts 

antioxidant effects against paraquat-induced toxicity 
in human bronchial epithelial cells, since it decreases 
intracellular ROS generation[43]. Moreover, this fla
vanone significantly decreased thiobarbituric acid 
reactive substances (TBARS) and improved membrane 
phospholipid composition in favor of n-3 PUFAs and 
the n-6/n-3 PUFAs ratio in the liver of old-aged Wistar 
rats[44]. 

Naringenin has shown the ability of combating LP in 
many organs, tissues and cells, for example, in lung[45], 
ankle joints (arthritis model)[46], retina of streptozotocin-
induced diabetic rats[47], SH-SY5Y cells[48], cardiomyoblast 
cells[49], skin[50], testis[51] and, interestingly, in liver[44,52,53]. 
It can be concluded that, in contrast to the results 
obtained in chemical antioxidant assays, the beneficial 
effects of naringenin against LP in systems involving 
living organisms or cells, the flavanone shows strong 
activity. This characteristic is very important for the 
treatment of hepatic diseases, since LP constitutes one of 
the main causative agents that triggers liver damage. 

In the studies where a reduction in LP by naringenin 
was demonstrated, a relationship between reduced 
glutathione (GSH) and flavonoid levels is observed. In 
fact, it has been observed that naringenin improves GSH 
levels during oxidative stress[44,47-52]. Improvement of 
GSH levels by naringenin is associated with the beneficial 
properties of this flavonoid on the liver because oxidative 
stress plays a causative role in hepatic disorders[54].   

The effect of naringenin on GSH levels deserves 
further explanation. GSH is a tripeptide (L-γ-glutamyl-
L-cysteinyl-glycine) that serves several essential 
functions within the cell. The main functions of GSH 
are antioxidant, detoxification of oxygen-derived free 
radicals, thiol disulfide exchange and storage/transfer of 
cysteine. GSH is formed in two steps: in the first (rate-
limiting) step, cysteine and glutamate form c-glutamyl 
cysteine by the enzyme glutamyl cysteinyl ligase (GCL); 
in the second step, GSH forms from c-glutamyl cysteine 
and glycine by GSH synthetase (GSS) catalysis[55-57] 
(Figure 4). It has been observed that naringenin 
possesses the ability to increase total and mitochondrial 
GSH levels during hydrogen peroxide (H2O2)-induced 
liver damage[48,49,51], as well total hepatic GSH[52,58,59] 
and total GSH in other organs[60,61]. These effects can be 
explained because naringenin increases the expression 
of the GCLC catalytic subunit and the GCL modulatory 
subunit at both the protein and mRNA levels[60-62].

The tripeptide can directly scavenge R• or function 
as a co-substrate of the internal antioxidant system 
enzymes. For example, GSH is the co-substrate of 
glutathione peroxidase (GPx) in H2O2 reduction and of 
glutathione transferase (GST), which catalyzes xenobi
otics biotransformation in the liver[56,57]. In either case, 
GSH is oxidized to GSSG, which leads to consumption 
of GSH. Therefore, there are mechanisms in charge 
of maintaining the GSH/GSSG balance; for example, 
glutathione reductase (GR or GSR) is responsible of 
GSSG reduction to the disulfide form (GSH) at the 

Figure 3  Naringenin antioxidant activity-structure relationship. In red: 
Hydroxyl substituents (OH) that have high reactivity against reactive oxygen 
species and reactive nitrogen species. In green: 5,7-m-dihydroxy arrangement 
in the A-ring serves to stabilize the structure after donating electrons to free 
radicals. In blue: The association between 5-OH and 4-oxo substituents 
contributes to the chelation of compounds such as heavy metals.
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expense of NADPH[55-57]. It has been reported that 
naringenin increased the GSH/GSSG ratio[59,61] by 
improving GR mRNA levels and activity in the liver[44,63-66] 
and in other organs[67,68] (Figure 4).

Naringenin can influence cellular antioxidant balance 
not only through its own chemical structure but also 
by inducing the cell antioxidant system. In this regard, 
it has been reported that naringenin upregulates 
important antioxidant enzymes, such as superoxide 
dismutase (SOD), catalase (CAT), GPx and GST.

SOD catalyzes the reaction in which O2
• is converted 

to H2O2, a more stable species but that at high con
centrations is harmful to cells; in turn, CAT eliminates 
excess H2O2, generating water[69]. Naringenin signi
ficantly increases SOD enzyme activity in different 
models of liver damage induced by oxidative stress[44,

50,52,62-65,67,70-74]. This effect is associated with the ability of 
this flavonoid to increase enzyme protein levels in the 
liver and other organs[58,59,68]. Naringenin can prevent 

CAT activity decrement after damage to several 
tissues[44,49,50,52,62-65,67,70-74] by increasing protein[58,59,68] 
and mRNA levels[43]. 

SOD and CAT, together with GPx and GST, are 
diminished during oxidative stress. It is worth noting 
that naringenin has been reported to upregulate these 
enzymes[44,63-66] (Figure 4). There are some reports trying 
to explain the mechanism of naringenin to increase GPx 
activity. One report indicates that the flavanone produces 
an increment in GPx mRNA levels[43], while others 
indicate that it increases the protein content[58,59,68]. 
Another hypothesis postulates that during cell damage, 
GSH is almost depleted and, thus, cannot be utilized by 
GPx as a cofactor, leading to decreased enzyme activity; 
in this situation, naringenin acts by improving GSH levels 
and, as a consequence, enzyme activity[44,49,50,52,63-65,71-74]. 
Further experiments are needed to clarify this point.

Naringenin preserves GST activity under prooxidant 
conditions associated with several illnesses[49-51,63-65,70,72,74]. 
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It has been demonstrated that the flavanone acts 
by increasing mRNA levels of GST[61,63], which in turn 
induces the transduction of the corresponding functional 
protein[68]. The specific action mechanism by which 
naringenin produces these effects remains to be elu
cidated (Figure 4).

As it has been previously described, naringenin 
has very important effects on endogenous antioxidant 
system enzymes, in contrast to its own weak antioxidant 
properties in comparison to those of other natural 
compounds, such as quercetin. This low antioxidant 
activity suggests that naringenin’s effects are not only a 
result of its structural activity relationship but also due 
to other properties. In this regard, it is worth noting that 
naringenin influences microRNAs (miRNAs) and nuclear 
factor-erythroid 2 related factor 2 (Nrf2).

miRNAs are noncoding or nonmessenger RNAs that 
are approximately 22 nucleotides in length that regulate 
gene expression because they bind to target mRNA, 
inhibiting protein synthesis[75]. miR-17-3p is involved in 
oxidative stress, and its targets are mRNAs coding for 
SOD and GPx, thereby preventing the expression of 
these proteins[76]. Naringenin decreased the expression 
level of miR-17-3p, which is in agreement with increased 
levels of target mRNAs coding for SOD and GPx2[77]. As 
noted, this reduction in miR-17-3p expression may be a 
mechanism by which naringenin modulates antioxidant 
enzymes; however, more research is needed on the role 
of naringenin in miRNA and its effect on the endogenous 
antioxidant system (Figure 4).

Nrf2 interacts with the actin binding protein, Kelch-
like ECH associating protein 1 (Keap1), inactivating 
Nrf2 in the cytoplasm. Nrf2 must be released from 
Keap1 to be active. Its release can occur either by 
MAPK phosphorylation or by conformational changes 
in Keap1 due to ROS. Once free, Nrf2 translocates to 
the nucleus, where it forms a dimer with the musculo-
aponeurotic fibrosarcoma (Maf) family proteins. Nrf2-
Maf dimer is a transcription factor that binds to the 
antioxidant response element (ARE) sequence, resulting 
in transcriptional activation of detoxification proteins 
such as NADPH quinone oxidoreductase (NQO1), GST, 
and aldo-keto reductase (AKR), antioxidant enzymes 
such as thioredoxin (TXN1), thioredoxin reductase 
1(TXNR), peroxiredoxin 1 (PRDX1), GPx, GCL, GR, 
CAT and SOD, and heme and iron metabolism proteins 
such as heme oxygenase (OH-1) and ferro chelatase 
(FECH)[78-80] (Figure 4).

Interestingly, there are reports indicating that narin
genin upregulates Nrf2 in various models. In a model 
of UVB irradiation-induced skin inflammation and oxi
dative damage in hairless mice, naringenin significantly 
increased Nrf2 mRNA levels compared with those in the 
damaged group[66]. Moreover, in a model of KO2-induced 
inflammatory pain in mice, naringenin inhibited the 
KO2-induced decrease in Nrf2 mRNA expression[42]. In 
addition, naringenin upregulated the mRNA expression 
of Nrf2 in complete Freund’s adjuvant-induced rats[46], 

and naringenin increased Nrf2 mRNA expression in a 
model of oxidative stress induced by H2O2

[49].
The induction of Nrf2 mRNA may propitiate Nrf2 

protein levels to increase. It has been reported that 
naringenin is capable of increasing Nrf2 protein levels 
in CCl4-induced hepatic damage[63]. In addition, the 
flavonoid protected SH-SY5Y cells against 6-OHDA 
neurotoxicity via Nrf2 because it improved the levels 
of this protein[60]. Moreover, one mechanism to explain 
why naringenin prevented CCl4-induced acute liver 
injury in mice is by preserving Nrf2 levels[59]. In addition, 
naringenin improved intracellular Nrf2 levels in LPS-
induced apoptosis of PC12 cells[81] and reduced oxidative 
stress by increasing Nrf2 protein levels in neurons[41].

Increased Nrf2 protein levels do not necessarily 
correlate with increases in Nrf2 activity. Nrf2 must 
dissociate from Keap1 to translocate to the nucleus and 
to induce proteins of the antioxidant system. Naringenin 
activates Nrf2 because it promotes its translocation 
from the cytoplasm to the nucleus[43,61-63,82]. 

Phosphorylation of Nrf2 by extracellular signal-
regulated protein kinase (ERK) triggers the dissociation 
of Nrf2-Keap1 and inhibits the reassociation of Nrf2-
Keap1 complexes[83,84]. Other important proteins 
involved in the activation of Nrf2 are 5′ AMP-activated 
protein kinase (AMPK)[85], phosphatidylinositol-3-kinase 
(PI3K/AKT), and protein kinase C (PKC)[86]. Notably, 
it has been observed that naringenin upregulated 
phosphorylated ERK1/2, leading to nuclear translocation 
of Nrf2 in doxorubicin-induced toxicity in H9c2 
cardiomyocytes[62]. In another report, after treatment 
with 40 μg/ml of naringenin, nuclear Nrf2 increased at 
0.25 h and remained elevated until 3 h after naringenin 
treatment to H9c2 cells[82]. In addition, naringenin 
increased the phosphorylation levels of ERK1/2, PKCδ, 
and AKT, but this increase was prevented by chemical 
inhibitors of AKT (LY294002), ERK1/2 (PD98059), and 
PKCα (rottlerin), which suppressed Nrf2 activation 
induced by naringenin[82]. These results suggest that the 
naringenin-induced activation of Nrf2 signaling may be 
mediated by the phosphorylation of ERK1/2, PKCδ, and 
AKT[82] (Figure 4).

Nrf2 activation and its translocation to the nucleus 
lead to its union with Maf; Nrf2-Maf dimer, in turn, 
binds to ARE sequence, which results in transcriptional 
activation of detoxification and antioxidant proteins. 
Naringenin not only activates Nrf2 but also increases the 
mRNA and protein levels of target genes such as NQO1, 
GPx, GCL, GR, OH-1, and GST[43,46,49,59-63,66,81,82,87]. To 
corroborate this effect, experiments have been carried 
out to silence Nrf2. A small interfering RNA (siRNA) 
study revealed that the knockdown of Nrf2 can abrogate 
naringenin-mediated protection of the BEAS-2B cells 
from paraquat-induced cellular toxicity[43]. Another 
report showed that naringenin fails to block 6-OHDA 
neurotoxicity if Nrf2 siRNA is administered[60]. Moreover, 
naringenin prevented mitochondrial depolarization is 
inhibited by Nrf2 siRNA[87]; in addition, the naringenin-
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induced upregulation of GCL and HO-1 proteins was 
significantly inhibited by Nrf2-siRNA transfection in H9c2 
cells[82]. Finally, silencing of Nrf2 suppressed naringenin-
induced cytoprotection and mitochondrial protection in 
SH-SY5Y cells exposed to H2O2

[48] (Figure 4).
Due to the important regulatory effects of naringenin 

on endogenous antioxidant system, the flavonoid 
takes great importance as a possible hepatoprotector, 
since one of the main mechanisms of liver damage 
is oxidative stress[54]. In addition, this antioxidant is 
different from others, since in addition to its direct 
effect as an antioxidant, it induces the expression of 
endogenous antioxidants.

NARINGENIN PREVENTS LIVER DAMAGE 
CAUSED BY ALCOHOL
Liver damage induced by excessive alcohol con
sumption is a worldwide problem[3]. It has been 
reported that an intake of 80 g/day by men and 40 
g/day by women between 10-20 years may lead to 
fibrosis[88-90]. Therefore, it is important to find a drug 
that prevents or reverses the effects of alcohol abuse in 
the population.

Liver alcohol metabolism consists of the following 
steps: (1) In the cytosol, alcohol is converted into 
acetaldehyde by the enzyme alcohol dehydrogenase 
(ADH) using NAD+ to generate NADH; acetaldehyde 
is also formed in microsomes by CYP2E1 and in peroxi
somes by CAT; and (2) In the mitochondria, acetaldehyde 
dehydrogenase (ALDH) transforms acetaldehyde to 
acetate[91-93] (Figure 5). During these reactions, secondary 
harmful products to hepatocytes are generated; 
among the most important of these harmful products 
is MDA, which forms adducts with proteins and is also 
an important indicator of LP[91-93]. Moreover, ROS, such 
as H2O2 and O2

•, are generated during the metabolism 
of alcohol by CYP2E1. Additionally, alcohol metabolism 
induces fatty liver disease by increasing the NADH/NAD+ 
ratio. In general, these processes induce hepatocyte 
damage, leading to an inflammatory environment that 
activates endothelial cells, Kupffer cells and HSCs[91-93]. 

The evidence indicates that naringin, the naringenin-
glycoside, significantly lowered ethanol concentration 
in plasma in a dose-dependent manner[94]. Ethanol 
administration resulted in higher ADH and lower ALDH 
activities, resulting in toxic acetaldehyde accumulation. 
Naringin increased the activities of both enzymes, 
resulting in efficient alcohol elimination via acetalde
hyde and its conversion to acetate, preventing the 
accumulation of acetaldehyde, and resulting in the rapid 
clearance of alcohol from the serum[94]. In agreement 
with these findings, naringenin administration to 
alcohol-treated rats increased ADH and ALDH enzyme 
activities[70]. In addition, ethanol increased the activity 
of cytochrome CYP2E1, while this effect was reversed 
by naringenin[70] (Figure 5). 

Ethanol consumption modifies the phase I and 
phase II xenobiotic metabolism enzymes. During 
phase I metabolism, enzymes catalyze reactions of 
oxidation, reduction, and hydrolysis of xenobiotics to 
increase their polarity and improve their excretion. On 
the other hand, phase II reactions are glucuronidation, 
acetylation, S-methylation, and glutathione- or sulfo-
conjugation of xenobiotics. These reactions are carried 
out on phase I products for their better excretion, since 
tissue damage occurs if the products of phase I are 
not eliminated by the enzymes of phase II[95]. It has 
been reported that alcohol intake raises the activity 
of phase I enzymes such as CYP450, cytochrome b5, 
NADH-cytochrome b5 reductase and NADPH-CYP450 
reductase. In contrast, ethanol injection decreases 
the activity of phase II enzymes such as GST and DT-
diaphorase[70,96]. Interestingly, naringenin was able to 
reverse these effects caused by alcohol in both types 
of enzymes, leading to efficient elimination of alcohol 
metabolism products and reestablishment of the NADH/
NAD+ ratio[70] (Figure 5). 

Due to acetaldehyde accumulation during alcohol 
metabolism, oxidative stress is generated. This is 
characterized by LP, increased R• and endogenous 
antioxidant system dysfunction[97]. During ethanol 
administration in vivo, significantly elevated levels of 
TBARS, lipid hydroperoxides (LOOH), conjugated dienes 
(CD), protein carbonyl content and significantly lowered 
activities of SOD, GPx, CAT, GR and GST, and lowered 
levels of GSH have been observed[64,70,94]. 

As discussed above, naringenin displays antioxidant 
effects at different levels, and this was evident when the 
administration of naringin or naringenin prevented and 
reverted oxidative stress caused by ethanol, normalizing 
levels of TBARS, LOOH, CD, protein carbonyl content, 
antioxidant enzymes activity and GSH levels[64,70,94] 

(Figure 5).  
If oxidative stress is constant and the antioxidant 

system has failed, liver damage is generated; this 
liver damage is marked by increases in liver damage 
markers such as alkaline phosphatase (AP), aspartate 
aminotransferase (AST), alanine aminotransaminase 
(ALT), γ-glutamyl transferase (GGT) and lactate dehy
drogenase (LDH) activities or by the elevation of serum 
bilirubins and aspartate levels. However, naringenin 
administration during ethanol-induced hepatic damage 
decreases the activity/levels of liver damage markers, 
demonstrating that naringenin protects hepatocytes 
against necrosis, cholestasis and membrane perme
ation[64,70,98] (Figure 5).

After hepatocyte damage occurs, an inflammatory 
reaction is produced that is characterized by increases 
in cytokines and proteins that mediate the immune 
response. It has been reported that rats that received 
20% ethanol equivalent to 6 g/kg body weight (bw) 
every day for a period of 60 days showed significantly 
elevated mRNA levels of tumor necrosis factor-alpha 
(TNF-α), interleukin-6 (IL-6), nuclear factor-kappa 
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B (NF-κB), cyclooxygenase-2 (COX-2), macrophage 
inflammatory protein 2 (MIP-2) and CD14, as well as 
increased staining for inducible nitric oxide synthase 
(iNOS) protein adducts in the liver. Notably, when 
naringenin (50 mg/kg p.o.) was administered every 
day during the last 30 d of alcohol intoxication, the 
flavanone decreased the mRNA levels of all inflamma
tory markers[98], indicating the potent anti-inflammatory 
properties of naringenin (Figure 5). 

One of the main effects of alcohol abuse on the 
liver is lipid accumulation in hepatocytes. Even though 
fatty liver is a reversible condition, it can progress to 
inflammation and fibrosis. During alcohol consumption, 
there is a deregulation of pathways that regulate lipid 
synthesis, oxidation and very-low density lipoprotein 
(VLDL) exportation that leads to the accumulation 
of triglycerides and fatty acids in the liver[93]. In a 
study performed to investigate the effect of naringin 
supplements on lipid metabolism in ethanol-treated 
rats, the results showed that the concentrations of 
plasma/liver total cholesterol and plasma/liver total 

triglyceride were significantly higher in the ethanol-
treated rats and, conversely, decreased the high-density 
lipoprotein (HDL)-cholesterol level and HDL-cholesterol/
total-cholesterol ratio, while naringin reestablished 
normal levels of all measured lipid parameters. Another 
interesting effect of the glycoside was a decreased 
number of hepatic cells containing lipid droplets 
compared to the alcohol-group, where many of these 
cells were observed. It was concluded, therefore, that 
naringin is able to prevent lipid accumulation in liver 
caused by alcohol[94]. 

In another study, serum insulin was diminished, 
glucose/insulin ratio and liver triglycerides were in
creased in ethanol-drinking rats; however, naringenin 
co-administration partially protected rats from these 
effects produced by alcohol intoxication. Unfortunately, 
naringenin was not able to protect from alterations in 
serum glucose, triglycerides, total, free and esterified 
cholesterol or HDL cholesterol, or from liver and muscle 
triglycerides or glycogen[99]. 

Naringenin has effects on several steps of ethanol 
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Figure 5  The role of naringenin in alcohol-induced liver damage. Alcohol metabolism: In the cytosol, alcohol is converted into acetaldehyde by alcohol 
dehydrogenase (ADH); it is also formed in microsomes by CYP2E1 and in peroxisomes by catalase (CAT). In mitochondria, acetaldehyde dehydrogenase (ALDH) 
transforms acetaldehyde to acetate. Ethanol elevates ADH and CYP2E1 activities but decreases ALDH activity, resulting in toxic acetaldehyde accumulation, 
free radical (R•) formation in the form of lipid hydroperoxides (LOOH) or protein carbonyls and resulting in the elevation of lipid peroxidation (LP). Naringenin (N) 
increases the activities of all those enzymes, which results in alcohol efficient elimination leading to endogenous antioxidant system restoration, oxidative stress 
prevention and balance of phase Ⅰ and phase Ⅱ xenobiotic metabolism enzymes. Naringenin also prevents increased levels of alkaline phosphatase (AP), aspartate 
aminotransferase (AST), alanine aminotransaminase (ALT), and γ-glutamyl transferase (GGT) as well as inflammation during alcohol-mediated liver damage. 
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metabolism, as well as on liver damage by this xeno
biotic, suggesting that it can be used in the prevention 
and reversion of alcohol-induced liver damage. However, 
more studies are necessary to further investigate 
naringenin’s mechanism of action in alcohol-induced 
hepatic injury and whether it is able to protect from 
fibrosis induced by alcohol abuse.

EFFECT OF NARINGENIN ON CCl4-
INDUCED LIVER DAMAGE 
CCl4 is a haloalkane widely used to induce liver 
damage[100]. To induce liver damage, CCl4 must be 
activated by CYP2E1, CYP2B1 or CYP2B2, and CYP3A, 
to form the trichloromethyl radical (CCl3•). This radical 
reacts with oxygen to form the trichloromethylperoxy 
radical (CCl3OO•), a highly reactive species. These two 
species are highly reactive; they can bind to cellular 
molecules, for example, nucleic acids, proteins or 
lipids. CCl3OO• initiates the chain reaction of LP, which 
attacks and destroys PUFAs, those associated with 
phospholipids in cell membranes as the mitochon
drial or the reticulum membranes. This membrane 
damage leads to hepatocyte damage, which in turn 
activates Kupffer cells and HSC, regulating fibrosis and 
cirrhosis[31,101] (Figure 6).

Facino et al[102] were pioneers to study the effe
ctiveness of naringenin against CCl4 damage. In this 
study, a glycosidic fraction (containing naringenin-
glycoside) and naringenin-glycoside extracted from the 
flowering tops of Helichrysum italicum G. Don were 
utilized to investigate the effect of these flavonoids on 
CCl4-induced rat microsomes, finding that microsomal LP 
was reduced by the glycosidic fraction and by naringenin-
glycoside[102]. Another study showed that CCl4-
induced liver damage was decreased by concomitant 
administration of an aqueous extract of the rhizomes of 
Sansevieria liberica, containing 5.99% naringenin, since 
AP, AST and ALT activities and fatty degeneration of 
hepatocytes were prevented[103]. Finally, another report 
investigated the effect of an aqueous extract of Trifolium 
pratense L. (Leguminosae) leaves on CCl4-induced liver 
damage; it was observed that naringenin in the extract 
was able to reduce LP levels and xanthine oxidase (XOD) 
activity[104].  

On the basis that natural extracts containing na
ringenin had positive effects against injury induced 
by CCl4, different protocols have been carried out to 
evaluate naringenin hepatoprotective capacity. In 
2009, Yen et al[16] evaluated the ability of naringenin 
to prevent acute liver failure induced by CCl4 in rats. 
Naringenin (100 mg/kg) was administered during three 
consecutive days, and then on the fourth day, CCl4 was 
intraperitoneally (i.p.) administered with a single dose 
(3 ml/kg, olive oil: CCl4, 1:1). The flavonoid was able to 
prevent AST, ALT and LP elevations and the reduction of 
SOD, CAT and GPx levels, and it significantly suppressed 
the activation of caspase (Cas)3 and Cas9 induced by 

CCl4 administration[16]. 
Later, Hermenean et al[105] published an experiment in 

which acute liver damage was induced in mice with CCl4 
(1.0 ml/kg, olive oil: CCl4, 1:1, i.p.), and naringenin (50 
mg/kg) pretreatment for seven days was evaluated. 
The elevation of serum AST, ALT and LP levels as well 
as the reduction of CAT, SOD and GPx activities and 
GSH levels in livers from rats intoxicated with CCl4 were 
all significantly prevented by naringenin. Moreover, 
naringenin prevented necrotic changes of hepatocytes, 
fatty degeneration, sinusoidal dilatation, mild fibrosis, 
and inflammatory cell infiltration and retained the 
normal ultrastructure of the hepatocytes, including mild 
restoration of normal bile canaliculi configuration filled 
with microvilli[105]. 

The action mechanism of naringenin on acute liver 
damage induced by CCl4 can be explained by different 
mechanisms. CCl4 is activated in hepatocytes by 
CYP2E1; therefore, the R• formed attacks membranes 
of these cells, generating LP. During CCl4 administration, 
the expression of CYP2E1 is elevated; however, it has 
been reported that naringin strongly inhibited this 
cytochrome; therefore, one possible mechanism of 
hepatoprotection is the inhibition of CYP2E1 by the 
flavanone, preventing bioactivation of CCl4[59] (Figure 
6). Another mechanism is associated with the ability 
of naringenin to induce the endogenous antioxidant 
system by upregulating Nrf2. It was reported that 
the administration of 50 mg/kg of naringenin to 
rats significantly increased Nrf2 protein levels in the 
cytoplasm and nucleus, elevating mRNA levels of its 
target genes, such as HO-1, NQO1 and GST[63]; in 
addition, naringenin can prevent the decrease in Nrf2, 
HO-1 and SOD protein levels exerted by CCl4 treatment 
in mice[59] (Figure 6).  

In addition to oxidative stress, inflammation plays a 
crucial role in the development of liver damage. During 
fibrosis produced by CCl4 chronic administration, there 
is a proinflammatory environment generated by Kupffer 
cells and HSCs. In these cells, inflammatory signaling 
pathways, mainly NF-κB-related signaling pathways, 
are activated. This pathway starts when TLRs are 
activated; then, intermediaries lead to inhibitor κB (IKB) 
phosphorylation by IκB kinase (IKK) and NF-κB release 
into the cytoplasm. NF-κB then translocates into nucleus 
to induce the transcription of target genes. NF-κB 
regulates proinflammatory protein expression of TNF-α, 
IL-1β and IL-6[59,31,106]. In addition, NF-κB binds to iNOS 
and COX-2 gene promoters, activating the transcription 
of these genes; iNOS catalyzes the production of nitric 
oxide (NO), which is a highly oxidizing product[107,108]. 
On the other hand, during the NF-κB pathway, the 
intermediate TGF-β-activated kinase 1(TAK1) is 
activated. Additionally, through MAPKs, NF-κB activates 
activator protein 1 (AP-1), a factor that promotes the 
transcription of genes related to inflammation[106,109]. 
Moreover, high mobility group box 1 (HMGB1) is widely 
involved in proinflammatory processes through its 
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receptor for advanced glycation end product (RAGE) 
and TLRs; HMGB1 is released by necrotic cells and by 
monocytes or macrophage[110].

Because inflammation plays a pivotal role in the 
establishment and perpetuation of liver diseases, 
naringenin has been evaluated as an anti-inflammatory 
therapeutic agent. In this context, a recent paper 
reported that naringenin (30, 60 and 120 mg/kg) 
administration to mice treated with CCl4 (0.3% CCl4, 10 
ml/kg, dissolved in olive oil) showed that at a dose of 
120 mg/kg, the flavonoid dramatically downregulated 

the expressions of TLR4, TNF-α, IL-1β, IL-6, iNOS, 
AP-1, COX-2, HMGB-1 and NF-κB[59]. Another report of 
a study carried out in rats that were acutely intoxicated 
with CCl4 indicates that naringenin (50 mg/kg) prevents 
the CCl4-induced increases in TNF-α and elevations in 
iNOS, COX-2 protein and mRNA[63]. Figure 6 shows 
that naringin and naringenin possess important anti-
inflammatory properties by blocking the NF-κB signaling 
pathway.

During hepatic damage, hepatocytes may undergo 
apoptosis mediated by intrinsic or extrinsic pathways. 
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Figure 6  Naringenin prevents acute and chronic CCl4-induced liver damage. Carbon tetrachloride (CCl4) is activated by CYP2E1, CYP2B1, CYP2B2, and 
CYP3A (CYP) to form the trichloromethyl radical (CCl3•); then, it reacts with the oxygen-forming trichloromethylperoxy radical (CCl3OO•). The CCl3OO• initiates 
lipid peroxidation (LP), free radical (R•) generation, and imbalance of the endogenous antioxidant system formed by superoxide dismutase (SOD), catalase (CAT), 
glutathione peroxidase (GPx), glutathione (GSH), heme oxygenase (OH-1), NADPH quinone oxidoreductase (NQO1) and nuclear factor-erythroid 2 related factor 
2 (Nrf2). Naringenin prevents CCl4 metabolism, LP and imbalance of the antioxidant system. Naringenin also prevents increased levels of alkaline phosphatase 
(AP), aspartate aminotransferase (AST), alanine aminotransaminase (ALT), and γ-glutamyl transferase (GGT). On the other hand, CCl4 increases intrinsic and 
extrinsic apoptosis pathways in hepatocytes; however, naringenin prevents CYPc release, as well as BCL2-associated X protein (Bax), BCL2-antagonist/killer 1 
(Bak), Caspase 3 (Cas3) and Caspase 9 (Cas9) elevation, a protein related with the intrinsic pathway. For the extrinsic apoptosis pathway, naringenin prevents 
Fas and Fas ligand (FasL) increases produced by CCl4 administration. During CCl4-induced fibrosis, there is a proinflammatory environment generated by Kupffer 
cells and HSCs. The NF-κB pathway starts when TLRs are activated; then, intermediates are activated leading to inhibitor κB (IKB) phosphorylation by IκB kinase 
(IKK) and NF-κB release. NF-κB regulates inflammatory protein expression, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 
(COX-2), interleukin-1 (IL-1) and inducible nitric oxide synthase (iNOS), while naringenin maintains normal levels of these proteins during CCl4-induced liver damage. 
Transforming growth factor-β (TGF-β) activates receptor-activated Smad3 (Smad3), leading to transcriptional induction of α-smooth muscle actin (α-SMA), connective 
tissue growth factor (CTGF), and collagen-1 (Col-1). Moreover, Smad3 is also activated by JNK via linker domain phosphorylation. Naringenin prevents Smad3 
activation and α-SMA, CTGF, and Col-1 elevation because it inhibits TGF-β elevation and JNK activation. Metalloproteases (MMPs) cleave extra cellular matrix 
(ECM) proteins, favoring TGF-β release as well as HSC migration to other sites, increasing fibrosis development; naringenin prevents MMPs elevation. On the other 
hand, CCl4 decreases Smad7 protein levels; this protein inhibits the TGF-β signaling pathway by TGF-β receptor I (TβRI) ubiquitination, but nevertheless, naringenin 
maintains normal levels of Smad7 during CCl4 treatment.
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In the intrinsic pathway, BCL2-associated X protein (Bax) 
and BCL2-antagonist/killer 1 (Bak) are activated by 
proapoptotic stimuli, resulting in the release of electron 
transport protein CYPc from the mitochondria to the 
cytoplasm; then, this protein binds to Apaf-1, forming 
the apoptosome. In turn, the apoptosome activates 
Cas9, which cleaves procaspase 3 zymogens, amplifying 
the cell death cascade[11]. 

The administration of CCl4 induces apoptosis in 
hepatocytes as well as DNA fragmentation, increases 
the mRNA levels of Bax, Bak, Cas3 and Cas9 and 
increases CYPc release[59,31,101]. It has been reported 
that glycosylated naringenin (naringin) effectively 
prevented CCl4-induced DNA fragmentation, apoptosis 
and mitochondrial injury by attenuating the release of 
CYPc, therefore inhibiting apoptosis initiation. Another 
explanation is that naringin significantly increased the 
expression of antiapoptotic proteins B-cell CLL/lymphoma 
2 (Bcl-2) and BCL2-like 1 (Bcl-xL) but decreased Bax, 
Bak, Cas3 and Cas9 mRNA levels[59] (Figure 6). 

Through the extrinsic pathway, Fas is activated by 
Fas ligand (FasL), which then binds to Fas-associated 
protein with a death domain (FADD). The Fas-FADD 
complex activates procaspase 8, which in turn activates 
other Cas, leading to apoptosis[111]. After CCl4-induced 

acute liver damage, the mRNA levels of Fas, FasL, and 
proapoptotic protein p53 are increased, but preventive 
administration of naringin inhibited this increase and 
reduced apoptosis in liver[59] (Figure 6).   

While there are some reports indicating evidence 
of the beneficial effects of naringenin on acute liver 
damage induced by CCl4, there is little information 
on the effect of this flavanone on chronic treatment. 
Recently, we have demonstrated that naringenin 
effectively prevents liver cirrhosis induced by chronic 
administration of CCl4 in the rat[112]. Moreover, we 
studied the molecular mechanisms involved in the 
hepatoprotective effects of naringenin on CCl4-induced 
liver fibrosis. Our results indicate that naringenin 
prevented necrosis and cholestasis and improved liver 
biosynthetic capacity in CCl4-treated rats since the 
flavonoid completely prevented the increase in ALT, AP 
and GGT serum activity and hepatic glycogen depletion. 
In addition, naringenin inhibited oxidative stress caused 
by chronic liver damage, maintaining normal levels of 
MDA, GSH and GPx activity. Moreover, inflammation 
was prevented by naringenin since the levels of NF-
κB, IL-1β and IL-6 were preserved within normal values 
despite CCl4 administration[112]. 

Perhaps the most important feature of chronic liver 
damage is the deposition of scar tissue in the hepatic 
parenchyma, leading to fibrosis and cirrhosis. In general, 
livers of rats treated with CCl4 presented macro nodular 
fibrosis; the tissue showed liver parenchymal disruption, 
steatosis, hyperchromatic nuclear hepatocytes, and 
atypical pleomorphic nuclei. In addition, cirrhotic rats 
presented large amounts of collagen around fibrotic 
nodules. In contrast, rats treated with naringenin 

had livers without macro nodular fibrosis; collagen 
accumulation as well as regenerative nodules were 
prevented, and it was found that total collagen and 
collagen-I (Col-I) accumulation was prevented by 
naringenin. One of the main profibrogenic signaling 
molecules is TGF-β, which exerts its effects by activating 
receptor-activated Smads (R-Smads), leading to 
transcriptional induction of α-smooth muscle actin 
(α-SMA), the main marker of transdifferentiation of HSCs, 
and connective tissue growth factor (CTGF), a TGF-β 
downstream signal amplifier[113,114]. Notably, naringenin 
was able to maintain basal levels of TGF-β, as well as 
α-SMA, CTGF and Col-I, in rats treated with CCl4. In 
addition to being activated by TGF-β, MAPKs also activate 
R-Smads in an alternative pathway (non-canonical), 
where the linker domain is phosphorylated instead 
of the carboxyl domain in R-Smads molecules[115,116]. 
After the administration of CCl4 for 8 wk, activated 
JNK levels increased significantly, as well as total and 
phosphorylated Smad3 in the linker domain (pSmad3L); 
however, naringenin was able to prevent these effects, 
providing another explanation for the antifibrotic effect 
of the flavonoid (Figure 6). Moreover, metalloproteases 
(MMPs), produced by the activated HSCs, cleave TGF-β, 
leading to further activation and proliferation of HSCs and 
collagen fiber formation; consequently, fibrosis ensues. 
In agreement with these findings, we noticed that 
chronic CCl4 administration produced increased MMP2, 
MMP9 and MMP13; notably, we found for the first time 
that naringenin treatment preserved normal levels of 
these MMPs[117] (Figure 6).

Furthermore, CCl4 decreased Smad7 protein levels; 
Smad7 inhibits the TGF-β profibrogenic signaling 
pathway by TGF-β receptor I (TβRI) ubiquitination[118]. 
Nevertheless, naringenin was able to maintain normal 
levels of Smad7 during CCl4 treatment, therefore 
preserving the normal/physiological antifibrotic pathway 
and, thus, blocking ECM deposition in the hepatic 
parenchyma (Figure 6).

Our working group recently showed that naringenin 
also has effects on the reversion of a previously 
established fibrosis (unpublished data). CCl4 was given 
for 12 weeks to male Wistar rats (400 mg/kg, 3 times/
wk); however, naringenin (100 mg/kg/two times a 
day, p.o.) was administered at the beginning of week 
9 of CCl4 treatment to determine its ability to reverse 
established experimental cirrhosis. Different techniques 
demonstrated that naringenin had the ability to reverse 
elevated liver damage biochemical markers and to 
restore GSH and glycogen levels. Additionally, the high 
levels of TGF-β and α-SMA (protein and mRNA) observed 
during CCl4 treatment were diminished by naringenin 
administration. The protein levels of CTGF, Col-1 and 
MMP13, as well as the activity of MMP2 and MMP9, 
proteins involved in MEC remodeling, were restored by 
the flavonoid. The protein levels of NF-κB, IL-1β and 
IL-10 were elevated during CCl4 intoxication; however, 
naringenin reversed this effect. Naringenin also reversed 
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JNK activation and Smad3 phosphorylation in the linker 
domain, as well as total protein and total Smad3 mRNA. 
The results demonstrate that naringenin blocks TGF-
β-Smad3 and JNK-Smad3 pathways, and thereby, it 
has antifibrotic effects, making it a good candidate for 
properly performed clinical studies. In summary, these 
results show that naringenin not only reduces CCl4-
induced acute liver damage but also reduces fibrosis. 
The action mechanism of naringenin to protect the liver 
from chronic liver damage covers several fronts. This 
flavonoid displays important effects on the endogenous 
antioxidant system, blocks the main proinflammatory 
factor, NF-κB, and inhibits many profibrogenic pathways. 
These actions make this flavonoid an effective compound 
to not only to prevent but also to reverse chronic hepatic 
damage induced by CCl4. 

ANTICANCER ACTIVITY OF NARINGENIN 
IN THE LIVER
HCC is one of the most frequent tumor types world
wide. It is the fifth most common cancer in men and 
the ninth in women, with approximately 500000 and 
200000 new cases per year, respectively[119]. 

HCC is a genetically heterogeneous tumor. Hepa
tocarcinogenesis is complex and, therefore, requires 
several genetic and epigenetic alterations. Several 
etiological factors of HCC have been defined, including 
HBV, HCV, excessive alcohol consumption, obesity, and 
aflatoxins, and the prevalence/contribution of these risk 
factors vary by region[120]. In Western countries, the 
increasing prevalence of nonalcoholic steatohepatitis 
(NASH), known as the manifestation of the metabolic 
syndrome, is becoming the most prevalent risk cause 
for liver failure and HCC[3].

HCC is strongly associated with oxidative stress[121]; 
hepatic virus infection, the deposition of heavy metals, 
and fatty liver disease are closely associated with chronic 
inflammation, which in turn can induce oxidative stress 
in hepatocytes[122]. Alterations in cell structure and 
mitochondria can generate electron leakage from the 
mitochondria, resulting in the activation of pro-oncogenic 
pathways[123]. In addition, Kupffer cell activation during 
inflammation produces ROS that are liberated in 
the liver tissue, inducing damage to the hepatocyte 
membrane[124].

Elevated levels of intracellular ROS induce the accu
mulation of many genetic and epigenetic modifications 
that may play a pivotal role in the induction of many 
proinflammatory, onco-suppressor- and onco-promoter-
related genes that participate in HCC development[125]. 
When ROS are increased for prolonged periods of 
time, the antioxidant defense capacity and the repair 
systems of the cells can be insufficient and lead to lipid, 
protein and DNA damage, altering different cellular 
pathways and influencing gene expression, cell adhesion, 
cell metabolism, the cell cycle, and cell death[126]. In 
general, ROS have negative effects; they are potential 

carcinogens because of their role in mutagenesis and the 
consequential chromosomal aberrations[127], as well as in 
the regulation of tumor promotion and progression[128]. 
It is worth noting that ROS have been linked to the 
hepatocarcinogenic process because they are implicated 
in the activation of cellular signaling pathways, such 
as those mediated by MAPKs, NF-kB, PI3K, p53, and 
b-catenin/Wnt, which are associated with mutagenesis, 
angiogenesis, tumor promotion, and progression[129,130] 

(Figure 7).
Abundant evidence from humans and experimental 

animals has shown that a high intake of natural products 
rich in antioxidants is associated with a decreased 
risk of many cancers[131-135]. Flavonoids have diverse 
biological activities because of their antiallergic, anti-
inflammatory, antioxidant, and anticancer properties 
without significant systemic toxicity[134,135]. Naringenin 
has been found to exhibit antioxidant, antimutagenic 
and anticarcinogenic effects[65,136,137] and acts as 
chemopreventive agent against colon carcinogenesis in 
vitro and in vivo[138,139]. It is worth noting that naringenin 
inhibits cell proliferation via the downregulation of NF-
κB, VEGF, and MMPs and induces apoptosis via Bcl-2, 
Bax and Cas in a rat model of hepatocarcinogenesis by 
N-nitrosodiethylamine (NDEA)[140]. Arul and Subramanian 
demonstrated that naringenin attenuates NDEA-
induced hepatocarcinogenesis; they postulated that the 
flavanone aids in liver cell regeneration, leading to the 
protection of hepatic cells and membrane integrity by 
scavenging R• and enhancing the antioxidant status, thus 
hindering the process of carcinogenesis[141]. A growing 
body of evidence indicates that naringenin prevents 
liver damage in chemically induced hepatotoxicity by 
inhibiting R• and LP and by enhancing the antioxidant 
system of the cell[65,112,142-144]. Accordingly, the admini
stration of naringenin effectively suppressed NDEA-
hepatocarcinogenesis and preneoplastic lesions by 
modulating antioxidant enzymes and attenuating LP 
through the scavenging of free radicals, thus enhancing 
the antioxidant status[141]. Taken together, naringenin 
can markedly modulate oxidative stress by its activation 
of the antioxidant defense system. Thus, naringenin 
appears to be an attractive candidate as an antioxidant 
supplement for HCC prevention (Figure 7).

In another study, naringenin was found to inhibit the 
growth of Hep G2 cells in a concentration-dependent 
manner[145]. The activation of p53 has been implicated 
in triggering cell cycle arrest, including both G1 and G2 
phases of the cell cycle. Notably, naringenin induced a 
rapid accumulation of p53 in a dose-dependent manner, 
which might account for the naringenin-induced G0/G1 
and G2/M phase arrests in Hep G2 cells[145] (Figure 7).

In addition, evidence has shown that the anti
proliferative effect of natural products is associated 
with the induction of apoptosis[146,147]. In agreement, 
naringenin was found to exert antiproliferative effects by 
inducing apoptosis, as evidenced by the nuclei damage 
of Hep G2 cells[148,149]. The dysregulation of the cell cycle 
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mechanism and the induction of cancer cell apoptosis 
are recognized as important targets in cancer therapy. 
In this sense, naringenin is known to induce apoptosis 
through the modification of Bcl-2 family of proteins 
involved in the apoptotic mitochondrial pathway, and 
the results from HepG2 cells showed that naringenin 
increases the activity of Cas3[145]. Additionally, flow 
cytometry with Annexin V-FITC/PI staining demonstrated 
that the flavonoid increased apoptotic cells, confirming 
that naringenin induced apoptosis in HepG2 cells[145]. 
The accumulated data suggest that naringenin, as well 

as other compounds derived from plants, may induce 
apoptosis through the mitochondria-initiated death 
pathway[148,150,151] (Figure 7). 

On the other hand, two-pore channels (TPCs), are 
members of the voltage-gated ion channel superfamily 
and localize in acidic Ca2+ stores and have been impli
cated in different pathophysiological processes[152,153]; 
TPC2 is expressed predominantly in late endosomes 
and lysosomes[154]. It has been found that naringenin 
impairs TPC2-dependent biological activities, leading to 
antiangiogenic effects mediated by VEGF. Overall, these 

ECM

LP

R•
VEGF

VEGFR TLRs

MMP9

EGF

EGFR

Apoptosome

Apaf-1

Cas9

Cas3

Apoptosis

Bak

CYPc

CYPc Bax Bcl2

SOD

O2
•

Mitochondria

LOO•

N

N

N

CAT H2O

H2O2

Antioxidant
system

Oxidative 
stress

LP
ROO•

LOOH•

HO•

Keap1
Nrf2

Nrf2

GSH

GS-SG
GPx

P

Acidic stores
endosomes and lisosomes

Ca2+

NAADP

NAADP TPC2

PLC DAG

IP3

TRAM

TRIF

TAK1

NFκB

NFκB
IKB

IKB
IKK

ERK
JNK
p38

MKK

C-Jun

AP-1

Fos Cell 
cycleN

G0/G1

Ciclin E

CDK2

p21

PI3K

PIP2PIP3

AKT
Raf

SOS

Grb2 Ras

Ca2+Ca2+

Ca2+ Ca2+

Ca2+

Ca2+

PKC

N

N

N
N

N

NFκB
MMP9

AP-1
MMP9

p53
p21

Nucleus

Figure 7  Naringenin in cancer development. Hepatocellular carcinoma is strongly associated with elevated levels of free radicals such as lipid hydroperoxides 
(LOOH•), peroxyl radicals (ROO•), and hydroxyl radicals (OH•), leading to the development of lipid peroxidation (LP), oxidative stress and finally to an imbalance 
of the endogenous antioxidant system. Naringenin (N) inhibits oxidative stress by its intrinsic antioxidant properties and by improving the endogenous antioxidant 
system. Notably, oxidative stress has been linked to the hepatocarcinogenic process because it is implicated in the activation of mitogen activated protein kinases 
(MAPKs), nuclear factor-kappa B (NF-κB), or phosphatidylinositol-3-kinase (PI3K/AKT) pathways, increasing the production and activity of metalloprotease 9 (MMP9), 
which is involved in migration and invasion processes. When toll-like receptors (TLRs) are activated, TRAMP is recruited to activate TRIF; in turn, it promotes 
transforming growth factor beta-activated kinase 1 (TAK1) activation, which phosphorylates IκB kinase (IKK). Then, IKK promotes NF-κB release via inhibitor κB (IKB) 
phosphorylation. On the other hand, phospholipase C (PLC) catalyzes phospholipid hydrolysis, generating inositol triphosphate (IP3) and diacylglycerol (DAG); the 
latter is an activator of protein kinase C (PKC), which can induce the NF-κB pathway in a TRAMP-dependent manner. Then, NF-κB induces the expression of MMP9. 
Epidermal growth factor (EGF) is highly involved in carcinogenic pathways; it binds to epidermal growth factor receptor (EGFR) promoting Grb2, SOS, Ras, Raf and 
mitogen-activated protein kinase kinase (MKK) activation, which participates in extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and 
p38 (MAPK) phosphorylation and activation. Then, MAPKs promote activator protein 1 (AP-1) activation by c-Jun and Fos dimerization. After that, AP-1 induces the 
expression of MMP9. Alternatively, MAPKs are activated via PI3K/AKT. PI3K produces phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3) from phosphatidylinositol 
4,5-bisphosphate (PIP2); PIP3 activates AKT, which promotes MAPK activation in a Ras-dependent pathway. It has been reported that naringenin inhibits MM9 
expression and secretion through diminution of p38, JNK, ERK, IKB, and PI3K/AKT phosphorylation as well as NF-κB and AP-1-DNA binding. In addition, naringenin 
inhibits PKC cytoplasm-to-membrane translocation. Notably, naringenin induces p53 accumulation, leading to p21 expression. Then, p21 inhibits cyclin E/cyclin-
dependent kinase 2 (CDK2) complex, which participates in proliferation. p53 accumulation results in naringenin-induced G0/G1 phase arrests. An important 
mechanism for the elimination of cancer cells is apoptosis. Naringenin induces apoptosis by increased cytochrome c (CYPc) release, as well as BCL2-associated 
X protein (Bax), BCL2-antagonist/killer 1 (Bak) and Caspase 3 (Cas3) elevation. Additionally, naringenin inhibited B-cell CLL/lymphoma 2 (Bcl-2) an antiapoptotic 
protein. Two-pore channels (TPCs) are members of the voltage-gated ion channel superfamily localized in acidic calcium (Ca2+) stores and have been implicated in 
angiogenic processes. Vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor (VEGFR) promotes TPC activation via 
nicotinic acid adenine dinucleotide phosphate (NAADP); then, Ca2+ is transported to the cytoplasm through TPCs, activating angiogenic signals. Naringenin inhibits 
VEGF angiogenesis induction blocking NAADP activation and NAADP/TPC association. 
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data suggest that naringenin inhibition of TPC2 activity 
and the observed inhibition of the angiogenic response 
to VEGF are linked by impaired intracellular calcium 
signaling[155]. Therefore, TPC2 inhibition is emerging as 
a key therapeutic step in the progression and metas
tatic potential of malignant cells. The identification of 
naringenin as an inhibitor of TPC2-mediated signaling 
provides a novel and potentially relevant tool for the 
advancement of anticancer research (Figure 7).

12-O-tetradecanoylphorbol-13-acetate (TPA) is 
widely utilized for studying the mechanisms of carcino
genesis[156]. TPA upregulated MMP9 expression via PKC-
dependent activation of the Ras/ERK signaling pathway, 
increasing invasiveness in cell lines[157] and tumor 
metastasis[158]. Importantly, Yen et al[159] demonstrated 
that naringenin possesses a strong antiinvasive and 
antimigratory effect in TPA-activated hepatoma cells 
via the downregulation of PKC, epidermal growth factor 
(EGF), MAPK and PI3K/Akt signaling pathways, and NF-
κB, AP-1 and MMP9 activities (Figure 6). 

In conclusion, naringenin is highly effective in inhi
biting cell proliferation and inducing apoptotic cell death 
in HepG2 cells and reducing invasion and metastasis. 
Therefore, it may be a promising candidate for hepato
carcinogenesis treatment.

NARINGENIN PROTECTS FROM LIVER 
DAMAGE INDUCED BY HEAVY METALS
Heavy metals can be classified according to their 
mechanism of action in redox-active metals or redox-
inactive metals. Redox-active metals such as iron 
(Fe), copper (Cu), chromium (Cr), cobalt (Co), among 
others, develop redox cycling reactions, and they 
produce R• in biological systems, producing oxidative 
stress, LP, DNA damage and other deleterious effects. 
Meanwhile, redox inactive metals such as cadmium 
(Cd), arsenic (As) and lead (Pb) bind to proteins and 
sulfhydryl groups and induce GSH depletion[160].  

In this section, liver damage caused by redox-active 
and -inactive metals will be discussed. 

Iron
Iron is an indispensable micronutrient for living organ
isms; it participates in oxygen transport, DNA synthe
sis and host defense, among others. Total body iron 
content ranges from 3 to 5 g, but its level increases 
due to diseases or intoxication[161]. The liver is the main 
iron depot; thus, it is highly susceptible to damage 
induced by iron overload[161,162].

Iron is captured by hepatocytes through transferrin 
receptor 1 (TfR1); during iron overload, its transcript is 
degraded and its synthesis is inhibited; however, iron 
uptake can be mediated by TfR2 even with high iron 
levels[161,162]. When iron binding capacity or transferrin 
saturation is exceeded, non-transferrin bound iron 
(NTBI) is elevated, and then it is transported into 
hepatocytes through divalent metal transporter 1 

(DMT1). In hepatocytes, iron is incorporated into the 
ferritin molecule that preserves iron bioavailability[162] 
(Figure 8). 

One of the most reactive R• is O2
•; under normal 

conditions, it is produced in the respiratory chain by 
NADP oxidase, and then, it is neutralized by SOD, 
generating H2O2. Intracellular iron is released from 
ferritin by O2

•; next, free iron reacts with H2O2 in the 
Fenton reaction, generating high amounts of OH•, and 
in turn, OH• attracts the double bonds of DNA bases. 
In the case of lipids, free iron produced LP forming 
ROO•[160]. These processes produce hepatocyte damage, 
such as mitochondrial dysfunction and apoptosis, 
which results in the recruitment of Kupffer cells that 
phagocyte damaged hepatocytes, leading to the release 
of proinflammatory and profibrogenic cytokines that 
activate HSCs; as a result, hepatic fibrosis ensues[161-163].

The Fenton reaction is inhibited by flavonoids 
with 3´,4´-catechol, 4-oxo, and 5-OH arrangements. 
Chelating complexes with cations may form between the 
5-OH and 4-oxo group or between the 3´- and 4´-OH[29]. 
Using an electrospray mass spectrometry study, it was 
observed that naringenin can form complexes with 
Fe(III) through its 4-oxo and 5-OH groups; in addition, 
this flavonoid is oxidized in the presence of metal ions, 
which are consequently reduced[164]. Furthermore, 
naringenin was investigated for its ability to suppress 
the Fenton reaction characteristic of the iron-ATP 
complex; the flavanone interfered with the voltammetry 
catalytic wave associated with the iron-ATP complex in 
the presence of H2O2 because it has the arrangement 
of 4-oxo and 5-OH that is indispensable for this 
inhibition[165] (Figure 8).

In an experiment where the modulation of DNA 
integrity in Fenton’s system by naringin was studied, 
it was shown that the glycoside protected DNA from 
damage caused by OH• generated during the Fenton 
reaction; naringin blocks the Fenton reaction by iron 
chelation rather than by antioxidant mechanisms or 
reduction of Fe(III) to Fe(II), and as a result, damage 
is prevented[166]. In another study, the isolated mouse 
liver mitochondrial fraction was incubated with naringin 
before Fe(III) loading, generating elevations in LP, 
protein carbonyl content and DNA oxidation, while iron 
overload decreased GSH levels and GST, GPx, CAT and 
SOD activities; however, pretreatment with naringin 
inhibited these iron effects[167]. Iron exposure in HepG2 
cells caused a decline in cell survival, a time-dependent 
increase in DNA oxidation, an elevation in DNA strand 
breaks, a high level of LP, and a depletion of GSH as 
well as decreases in GPx, CAT and SOD levels. Notably, 
the pretreatment of HepG2 cells with naringin resulted 
in cell survival induction, DNA damage prevention, 
improvement in the antioxidant system and the inhibition 
of iron-mediated cellular damage[168] (Figure 8).   

Regarding naringenin’s effects on iron-induced 
damage in vivo, it has been reported that the flavanone 
protected against iron-induced neurotoxicity in the 
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cerebral cortex of Wistar rats. After four weeks of iron 
administration, LP and protein oxidation were increased, 
but SOD, CAT, total thiols and ascorbic acid were 
decreased. Significant decreases in acetylcholinesterase 
and Na+/K+-ATPase activities were also shown, along 
with a substantial rise in NO levels. Co-administration 
with naringenin blocked the development of oxidative 
stress and improved antioxidant enzyme activities in 
the cerebral cortex[169]. In another work, the effect of 
naringenin on iron-induced hippocampus damage was 
investigated: iron administration for 28 d induced an 
impairment of the anxiogenic-like behavior and induced 
purinergic and cholinergic dysfunctions with oxidative 
stress-related disorders on mitochondrial function in the 
rat hippocampus, but naringenin was able to restore 
those parameters[170] (Figure 8). 

As seen, naringenin and naringin have the ability 
to block iron-induced oxidative stress; these natural 
compounds are able to chelate metal ions such as iron; 
thus, free iron is not available for the Fenton reaction, 
and therefore, OH• generation is blocked, as is oxidative 
stress. The chelation capacity is given in the naringenin 
molecule by the 4-oxo and 5-OH groups, which probably 

represent the place where an iron ion is conjugated. In 
the absence of this arrangement, some flavonoids do not 
have chelating capacity or are less effective[164-166]. This 
structure-activity relationship indicates that naringenin 
and naringin can act as antioxidants or as chelators, 
depending on the hepatotoxic agent employed. 

Copper
Copper is a redox active metal, and an imbalance in 
its metabolism produces disorders such as Wilson´s 
disease, Indian childhood cirrhosis or endemic Tyrolean 
infantile cirrhosis, which share the common end of 
cirrhosis due to excessive copper accumulation; another 
problem is copper toxicity caused by copper poisoning or 
dietary copper toxicity[160,171,172]. Like iron, copper exerts 
its hepatotoxic effects by oxidative stress generation; this 
is a consequence of its redox reactivity, triggering events 
that end in liver damage.

Like iron, copper is stored in the liver; it is intro
duced into the hepatocyte through the high-affinity 
human copper transporter (hCtr1)[173]. Once inside 
the hepatocyte, cupric ion (Cu(II)), can be reduced to 
cuprous ion (Cu(I)) when reacting with O2
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radical (O2

•); normally, it is produced by NADP oxidase, and then, it is neutralized by superoxide dismutase (SOD), generating hydrogen peroxide (H2O2). Intracellular 
Fe is releases from ferritin by O2

•; next, free Fe reacts with H2O2 in the Fenton reaction, generating high amounts of hydroxyl radicals (OH•). After that, OH• attacks 
double bonds of DNA bases. In the case of lipids, free Fe produces lipid peroxidation (LP) through peroxyl radicals (ROO•), producing lipid hydroperoxides (LOOH•), 
conjugated dienes and protein carbonyl. Regarding Cu, once inside the hepatocyte, Cu ion (Cu2+), can be reduced to cuprous ion (Cu1+) when reacting with O2

•; 
then, it mediates H2O2 decomposition in OH• via the Fenton reaction. These processes result in hepatocyte and liver damage. Naringenin can chelate these metals, 
preventing their participation in the Fenton reaction; naringenin also inhibits oxidative stress by its antioxidant capacity and by promoting the endogenous antioxidant 
system. On the other hand, redox-inactive metals such as Cd, arsenic (As) and lead (Pb) form complexes with thiol groups, such as glutathione (GSH), in the 
cytoplasm and mitochondria. GSH level reduction, GSH inactivation, and GSH system deregulation increase metal toxicity. In addition, Cd can replace Fe and Cu 
in ferritin or apoferritin; thus, free Fe and Cu ions cause oxidative stress via the Fenton reactions and elevation of BCL2-associated X protein (Bax), Caspase 3 
(Cas3) and cytochrome (CYPc) proapoptotic proteins. Naringenin improves the antioxidant system by increasing SOD, catalase (CAT), glutathione peroxidase (GPx), 
glutathione transferase (GST) enzymes and GSH levels.
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acid or GSH; meanwhile, Cu(I) mediates H2O2 decom
position in OH• via the Fenton reaction[160]. The formed 
OH• reacts with lipids, proteins and DNA, as well as 
with practically any biological molecule, generating lipid 
radicals, protein carbonyls or DNA strand breaks and 
oxidation of bases; in fact, copper is more powerful that 
iron in enhancing DNA breakage[160,174]. Furthermore, 
copper binds directly to free thiols of cysteines, which 
can result in oxidation and subsequent crosslinks 
between proteins, leading to impaired activity of 
target enzymes[171]. In addition, copper induces LP and 
4-hydroxy-2-nonenal (HNE) formation. Importantly, 
HNE may increase the phosphorylation of JNK and p38, 
AP-1 activity and the expression of Col-I and TGF-β[160], 
resulting in the exacerbation of fibrosis (Figure 8).

As previously mentioned, naringenin may act as a 
metal chelator. In this regard, two studies have reported 
the chelating capacity of the flavonoid on copper. 
Fernández et al[164] showed that naringenin, at various 
stoichiometries (metal: flavonoid) with copper, 1:1, 1:2, 
2:2 and 2:3, produces several complexes, preferably 
with Cu(II). Additionally, comparing the 4-oxo and 5-OH 
arrangement with the 4-oxo and 3-OH arrangement, 
the first one seems to favor cooper chelation[164]. 
Meanwhile, Mira et al[175] reported that naringenin has 
higher reducing capacity for copper ions than for iron 
ions. Additionally, the copper reducing activity seems 
to depend largely on the number of OH groups. In 
addition, naringenin chelates Cu2+ at pH 7.4 and pH 5.5 
between the 5-OH and the 4-oxo groups, producing 
7.1 ± 1.1 mmol Cu+/mmol naringenin, indicating that a 
large number of copper ions per molecule of flavonoid 
were chelated[175] (Figure 8). 

It has been shown that copper induces the oxidation 
of low-density lipoproteins (LDL); as a consequence, 
PUFAs in the lipoprotein are rapidly converted to 
LOOH and aldehydic breakdown products[160,176,177]. It 
has been reported that when freshly isolated human 
LDL (50 μg protein/ml) was incubated with 2 μmol/L 
Cu2+ at 37 ℃, naringenin (25 μmol/L) slightly inhibited 
LDL oxidation, but prenylflavanones (25 μmol/L) 
such as 8-geranylnaringenin, 6-prenylnaringenin, 
8-prenylnaringenin and 6,8-diprenylnaringenin effec
tively inhibit LDL oxidation dienes formation. Then, 
Cu2+-mediated LDL oxidation was evaluated by 
measuring TBARS levels; the results showed that 
prenylflavanones significantly inhibited TBARS for
mation and were ranked as follows: 8-geranylnaringenin 
> 6,8-diprenylnaringenin, 6-geranylnaringenin, 
8-prenylnaringenin > 6-prenylnaringenin[177] (Figure 8).  

As seen, naringenin and its derivatives can inhibit 
the first steps of copper-induced damage by preventing 
the Fenton reaction and by preventing lipid and protein 
oxidation.

Cadmium
Unlike iron and copper, cadmium is a redox inactive 
metal; although it does not directly form R•, it can 

induce oxidative stress in other ways. In addition, there 
is no mechanism for cadmium excretion in humans; 
thus, cadmium accumulates in tissues indefinitely[160,178]. 

Cadmium is absorbed though the intestines, and 
in the liver, DMT1, ZIP8 and ZIP14 are responsible for 
Cd uptake into hepatocytes[178]. Once inside hepatic 
cells, cadmium follows two pathways to exert liver 
damage: (1) Cadmium forms complexes with thiol 
groups of proteins or small peptides, such as GSH, in 
the cytoplasm and mitochondria. GSH is the first line 
of defense against cadmium-induced damage; thus, 
GSH level reduction, inactivation, and GSH system 
deregulation increase cadmium toxicity. In mitochondria, 
thiol group inactivation causes oxidative stress, 
mitochondrial permeability transition, and mitochondrial 
dysfunction[178,179]. And (2) Cadmium can replace iron 
and copper in ferritin or apoferritin; thus, free iron and 
copper ions readily cause oxidative stress via the Fenton 
reaction[160,178]. Thereby, although cadmium is unable 
to generate R• directly, indirect formation of ROS, O2

•, 
OH• and NO has been reported. In addition, increased 
LP levels and antioxidant system deregulation has 
been observed during cadmium liver damage[160,178,179]. 
Because of oxidative stress induced from cadmium 
intoxication, Kupffer and HSCs cells can be activated, 
and thus, a large number of inflammatory and cytotoxic 
mediators can be produced[178,179] (Figure 8).

One of the first reports on the beneficial effect 
of naringenin on damage induced by cadmium was 
performed in kidney, and after 4 wk of CdCl2 admini
stration (5 mg/kg/d), TBARS, LOOH and protein 
carbonyl levels were elevated. Conversely, total 
sulfhydryl groups, GSH, vitamin C and vitamin E levels, 
as well as SOD, CAT, GPx, GST and GR, and glutathione-
6-phosphate dehydrogenase (G6PD) activities were 
decreased. Co-administration of naringenin (25 and 
50 mg/kg daily) resulted in the prevention of Cd-
induced LP and in the restoration of the endogenous 
antioxidant system. Histopathological analysis showed 
that naringenin markedly reduced CdCl2 toxicity and 
preserved the normal histological architecture of renal 
tissue[180]. 

Later, Renugadevi et al[65] reported that cadmium 
(5 mg/kg) administered orally for 4 wk induced liver 
damage. Increased activities of serum AST, ALT, AP, 
LDH, GGT and bilirubin were found. Furthermore, LP 
and protein carbonyl contents were elevated. Antio
xidant enzymes such as SOD, CAT, GPx, and GST as 
well as GSH, vitamin C and vitamin E concentrations 
were diminished. Naringenin (50 mg/kg) significantly 
prevented the elevation of serum hepatic marker 
enzymes. Additionally, the flavonoid significantly 
reduced LP and restored antioxidant defense levels. 
The histopathological studies showed that naringenin 
preserved normal histological architecture of the tissue[65]. 
The same working group reported that naringenina plus 
vitamins C and E improved the altered biochemical and 
histopathological changes in the liver of Cd-intoxicated 
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rats to a greater extent than naringenin or vitamins 
alone[72] (Figure 8).

In another work, naringenin (4 and 8 mg/kg) 
was orally administered to mice 30 min before oral 
administration of CdCl2 (12 mg/kg) for 11 consecutive 
days. Cotreatment with naringenin significantly 
prevented disarrangement in body and organ weights, 
hematological profiles, serum and hepatic altered 
biochemical parameters in Cd-intoxicated mice[181].

Naringin also displays protective effects in cadmium-
induced damage to HepG2 cells, where the glycoside 
maintained redox homeostasis, mitochondrial membrane 
potential, reduced Cas3 and CYPc and reduced apoptosis 
by regulating the Bax/Bcl2 ratio. Moreover, naringin 
prevented diminution of protein thiol levels, SOD, 
GST and CAT activities, and LP development through 
increasing Nrf2 and metallothionein (MT)[182] (Figure 8).

Most evidence concurs that naringenin prevents 
cadmium-induced liver damage by protecting enzymatic 
and non-enzymatic antioxidant systems and by safe
guarding GSH thiol groups. The antioxidant actions of 
naringenin may also be associated with its ability to 
chelate heavy metals, thus preventing the formation 
of ROS and with its ability to increase Nrf2. These data 
show that naringenin is effective in preventing damage 
induced by cadmium.

Arsenic
Arsenic is a highly distributed metal that is found in 
organic and inorganic forms; both forms are toxic, 
although inorganic arsenic is more toxic than organic 
arsenic[160]. This metal is metabolized by reduction 
and methylation reactions, which are catalyzed by 
glutathione-S-transferase omega-1(GSTO1) and arsenic 
(III) methyltransferase (AS3MT); it has been reported 
that during arsenic metabolism, high amounts of re
active species are generated[160,183]. 

Like cadmium, arsenic induces cellular damage 
through binding to sulfhydryl groups and inducing mito
chondrial dysfunction. Cadmium produces oxidative 
stress-generating species such as O2

•, singlet oxygen 
(1O2), ROO•, NO, H2O2, dimethylarsinic peroxyl 
radical [(CH3)2AsOO•] and dimethylarsinic radical 
[(CH3)2As•][160,184]. In general, an oxidative environment 
results in GSH depletion, LP elevation, protein oxidation, 
DNA damage, morphologic changes in mitochondrial 
integrity and a rapid decline of mitochondrial membrane 
potential[160,184,185]. Oxidative stress induces hepatocyte 
apoptosis as well as total bilirubin, ALT, and AST 
elevation and liver damage [183] (Figure 8). 

Since arsenic induces damage via oxidative stress, 
naringenin has been studied in arsenic-induced liver 
damage. Arsenic administration (2 mg/kg) for 28 d to 
rats or 14 d (3 mg/kg) to mice produced elevations 
in AST, ALT and AP activities, high LP markers, 
hepatic GSH depletion and reductions in SOD, CAT, 
GPx, GST and GR activities. In addition, arsenic 
exposure produced DNA fragmentation. However, the 

simultaneous administration of naringenin prevented 
hepatic injury by arsenic[68,74]. 

Jain et al[73] reported that NaAsO2 administration 
(8 mo) to male Wistar rats induced high levels of ROS 
in blood and liver and increased levels of hepatic LP; 
simultaneously, the endogenous antioxidant system was 
attenuated, leading to a reduction of GSH levels and 
to the inhibition of GPx, GST, SOD and CAT activities in 
liver. Once liver damage was established, naringenin 
was administered for two weeks; the flavanone was 
able to reverse oxidative stress, since ROS and TBARS 
levels were diminished. Moreover, the enzymatic 
antioxidant system was restored by naringenin[73]. 

Naringin also has been shown to prevent liver and 
kidney damage induced by NaAsO2 (5 mg/kg); the 
glycoside inhibited increased serum levels of ALT and 
AST as well as prevented SOD and GSH depletion. In 
addition, naringin downregulated the expression of 
TGF-β, Cas3 and TNF-α in kidney[186] (Figure 8). 

In summary, naringenin and naringin display hepa
toprotective effects in arsenic-induced liver injury mainly 
by improving the endogenous antioxidant system and 
probably by their chelating effect.

Lead
The mechanism of action of lead toxicity is similar 
to those of cadmium and arsenic. This heavy metal 
does not generate free radicals directly; instead, lead 
deactivates antioxidant pools by binding to sulfhydryl 
groups of protein or peptides. For instance, lead-
GSH interaction inactivates GSH antioxidant activity; 
moreover, lead reduces GSH levels bay blocking GR, 
GSG and δ-aminolevulinic acid dehydratase (ALAD), 
an enzyme in charge of preserving the GSH/GSSG 
balance[160,187-189]. The inhibition of the antioxidant GSH 
system produces R• such as O2

•, 1O2 and ROO•, which 
destabilize cellular membranes through LP processes, 
resulting in mitochondria and DNA damage leading 
to p53 upregulation, an imbalance of Bax/Bcl-2 and 
apoptosis. After oxidative damage caused by lead, 
proinflammatory pathways are activated, exacerbating 
preexisting liver damage[187,188] (Figure 8). 

Two reports have been published dealing with 
naringenin’s effects on lead-induced liver injury. Wang 
et al[58] and Ozkaya et al[144] reported that rats treated 
with lead acetate in drinking water showed significant 
increases in MDA and depletion of GSH levels and GPx 
activity. Elevated levels of ALT and AST in serum and 
decreased SOD activity in liver were also shown[58]. 
Furthermore, histopathological results showed that 
the livers of lead-intoxicated rats had periportal cell 
infiltration, sinusoidal congestion, hepatic steatosis, 
and capsular fibrosis[144]. Naringenin administration 
(50 mg/kg) prevented the disarrangement of most 
parameters studied, and histopathological abnormalities 
such as necrosis, hydropic degeneration, and hepatic 
cord disorganization were attenuated by naringenin 
treatment[58,144] (Figure 8). 

Hernández-Aquino E et al . Naringenin on liver damage



1697 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

These studies show that naringenin has hepa
toprotective effects against lead-induced liver damage; 
however, more studies are needed to further understand 
the naringenin mechanism of action. 

ANTIVIRAL PROPERTIES OF NARINGENIN
The study of hepatovirus has been an important issue 
in hepatology research in the last four decades. HBV 
and HCV are most studied, as they produce chronic 
liver damage, leading to cirrhosis and HCC[190]. As 
global causes of liver cirrhosis, HBV accounts for 
30%, HCV for 28%, alcohol for 27% and others for 
14% of cirrhosis cases. The etiology of liver cancer is 
HBV (45%), HCV (26%), alcohol (20%), and others 
(39%)[3]. Therefore, research on treatment for these 
infections is important for the prevention/reversion of 
chronic liver diseases.

HCV is a virus belonging to the Flaviviridae family; 
its genome consists of a positive-sense single-stranded 
RNA. Hepatocytes are the major site of HCV replication, 
but peripheral blood mononuclear cells and lymph 
nodes are also natural HCV targets[3,191,192]. 

HSC machinery processes three structural HCV 
proteins (core, E1 and E2), an ion channel protein (p7) 
and six non-structural proteins (NS) (NS2, NS3A, NS4A, 
NS4B, NS5A and NS5B)[191]. HCV adopts an icosahedral 
structure with a lipid envelope and glycoproteins E1 and 
E2 immersed in the envelope. Underneath the envelope 
is the nucleocapsid, composed of multiple copies of core 
forming the internal viral coat that encapsulates the 
genomic RNA[192] (Figure 9).  

E1 and E2 are responsible for receptor binding and 
HCV entry into hepatocytes. Among the receptors for 
HCV, CD81 is probably the best characterized; low-
density lipoprotein receptor (LDLR), scavenger receptor 
class B type I (SR-B1), human scavenger receptor, 
and glycosaminoglycans may also act as receptors for 
HCV[191,192]. After binding to its receptor, HCV endocytosis 
is activated, leading to the uptake of HCV particles 
across the cell plasma membrane[191]. After endocytosis, 
nucleocapsids are deposited into the cytoplasm via a 
low pH dependent mechanism; then, the nucleocapsids 
are uncoated, and their RNA is released[191,192] (Figure 9).  

Genomic RNA translation is mediated by an internal 
ribosome entry site (IRES) binding to the ribosome; 
then, the HCV polyprotein is produced in the rough 
endoplasmic reticulum (RER) membrane, and after 
that, viral proteins remain associated with intracellular 
membranes and gave rise to a seemingly ER-derived 
membranous web where NS proteins form the replication 
complex (RC)[191,192]. Within the RC, the positive-stranded 
RNA genome is used as a template for synthesis of 
negative-stranded RNA, which in turn serves as a 
template for new positive-stranded synthesis. New viral 
RNA is encapsulated within multiple copies of the core to 
form the nucleocapsid, and then, it acquires envelope; 
HCV virions are exported out the cell ready to infect 

healthy hepatocytes[192] (Figure 9).   
An interesting phenomenon is that HCV circulates 

in the blood in the form of a lipoprotein complex called 
lipoviroparticle (LVP); it has been reported that HCV 
may be associated with lipoproteins such as VLDL and 
low-density lipoprotein (LDL). Notably, the binding of 
lipoviroparticle to receptors as LDLR or SR-B1 enables 
the infectivity of HCV and its escape from the humoral 
immune response[190-193]. A relationship between the 
virion production process and lipoproteins, cholesterol, 
triglycerides and fatty acids has been suggested. HCV 
assembly appears to occur on lipid droplets, and the 
core protein clearly coats the surface of this organelle, 
but the lipid droplet not only serves as a site for viral 
assembly but also supplies lipoproteins that complex 
with HCV particles[191] (Figure 9). 

It has been reported that HCV core protein is bound 
to apolipoprotein (Apo) B-100 and, therefore, to VLDL 
in HCV secreted by infected cells in the JFH1/Huh7.5.1 
full viral life-cycle model. In addition, the HCV-VLDL 
complex is actively secreted by the cells; moreover, the 
colocalization of HCV’s core and ApoB100 was found in 
the cytoplasm of infected cells. Interestingly, silencing 
ApoB production by a SureSilencing shRNA in the cell 
downregulates HCV core protein secretion and HCV-
positive strand RNA secretion[193] (Figure 9).  

Naringenin was used as an ApoB100 inhibitor 
because the flavonoid reduces microsomal triglyceride 
transfer protein (MTP) and enzyme acyl-coenzyme A 
(CoA): cholesterol acyltransferase (ACAT) activity, whose 
expression is indispensable for ApoB synthesis[11,193]. 
The results showed that naringenin inhibits the se
cretion of HCV core and HCV-positive stranded RNA, 
as well as HCV secretion, more than ApoB10 silencing 
by the SureSilencing shRNA. Nevertheless, intracellular 
levels of HCV-positive strand RNA and intracellular HCV 
core protein expression remained unchanged; despite 
this, the ability of the secreted virus to infect cells was 
strongly inhibited following naringenin treatment. This 
inhibition by naringenin was mediated by a reduction 
in MTP activity and by the transcriptional inhibition of 
3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) 
and acyl-coenzyme A: Cholesterol acyltransferase 
(ACAT2)[193] (Figure 9). 

Inhibition of HCV secretion by naringenin is mediated 
by a reduction in ApoB100 synthesis because naringenin 
regulates proteins related with ApoB. Normally, cholesterol 
is synthetized in an HMGCR-dependent pathway which is 
the rate-limiting enzyme for cholesterol synthesis; then, 
cholesterol is converted to cholesteryl esters (CEs) by 
ACAT. CEs are very important to VLDL and LDL assembly. 
Another important element to VLDL and LDL assembly 
is MTP, which plays a key role in ApoB100 secretion by 
catalyzing the transfer of lipids to the nascent ApoB100; 
if ApoB-MTP binding is inhibited, ApoB is predicted to 
undergo degradation[11]. 

Naringenin improves metabolic imbalance by reducing 
the activity and mRNA levels of HMGCR, which explains 

Hernández-Aquino E et al . Naringenin on liver damage



1698 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

the finding that the flavanone can decrease hepatic 
cholesterol. In addition, naringenin possesses the ability 
to reduce the CE mass and cholesterol esterification 
by decreasing ACAT1 and ACAT2 activity[11,194-196]. 
The mRNA levels of MTP are significantly reduced by 
naringenin; therefore, ApoB-MTP binding is inhibited, and 
consequently, ApoB is degraded. In addition, although 
ApoB mRNA levels are not affected by naringenin, the 
protein does not accumulate in hepatocytes, suggesting 
that naringenin promotes the degradation of ApoB. 
Thereby, the reduction in the bioavailability of CEs, 
triglycerides and cholesterol by naringenin reduces 

MTP activity and ApoB-MTP binding, leading to ApoB 
degradation[11,197-203] (Figure 9). This seems to be the 
primary mechanism by which naringenin blocks ApoB 
secretion and VLDL and LDL assembly and, therefore, 
the inhibition of ApoB–dependent HCV secretion. 

In addition, the same group[204] reported that 
naringenin treatment did not lead to the intracellular 
accumulation of infectious HCV particles compared with 
brefeldin A (BFA), a toxin known to disrupt HCV mature 
Golgi-dependent export; hence, naringenin blocks the 
assembly of HCV prior to viral egress. The inhibition of 
MTP and BFA treatment in JFH1-infected Huh7.5.1 cells 
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Figure 9  Antiviral properties of naringenin. The Hepatitis C virus (HCV) genome consists of a positive-sense single-stranded RNA. HCV adopts an icosahedral 
structure with a lipid envelope and glycoproteins E1 and E2 immersed in the envelope. Underneath the envelope is the nucleocapsid, which is composed of multiple 
copies of core forming the internal viral coat that encapsulates the genomic RNA. HCV may be associated with lipoproteins such as very-low density lipoprotein (VLDL), 
forming a lipoprotein complex called lipoviroparticle. Binding of lipoviroparticle to very-low density lipoprotein receptor (VLDLR) results in virus endocytosis; after that, 
nucleocapsids are deposited into the cytoplasm. Then, nucleocapsids are uncoated, and the RNA is released. The genomic RNA is translated to the endoplasmic 
reticulum when HCV polyprotein is produced. The positive-stranded RNA genome is used as a template for synthesis of negative-stranded RNA; this new viral RNA is 
encapsulated within multiple copies of the core to form the nucleocapsid, and then, it acquires envelope and HCV virions, which are exported out of the cell in a Golgi-
dependent manner. Naringenin inhibits the secretion and assembly of HCV through regulating lipid metabolism via 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR), 
and acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibition. Cholesterol is synthetized in an HMGCR-dependent pathway; it is the rate limiting enzyme for 
cholesterol synthesis, and then, cholesterol is converted to cholesteryl esters (CEs) by ACAT. CEs are very important to VLDL assembly. In addition, microsomal 
triglyceride transfer protein (MTP) catalyzes the transfer of lipids to the apolipoprotein (Apo) B-100 ApoB100; if the ApoB-MTP binding is inhibited, VLDL assembly 
in inhibited. Reduction in the bioavailability of CEs, triglycerides and cholesterol by naringenin reduces MTP activity and apoB-MTP binding. In addition, naringenin 
decreased intracellular triglycerides through peroxisome proliferator activated receptor alpha (PPARα), a regulator of lipid metabolism. Through these mechanisms, 
naringenin leads to a reduction in VLDL assembly and to the inhibition of ApoB-dependent HCV secretion. Additionally, naringenin inhibits viral NS5A protein, a 
multifunctional HCV nonstructural protein. Furthermore, naringenin could be an NS2 protease and core protein inhibitor.
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blocks the accumulation of intracellular infectious HCV 
particles, indicating that MTP activity is essential for HCV 
assembly. Treatment of JFH1-infected Huh7.5.1 cells 
with naringenin (MTP inhibitor) and BFA decreased the 
accumulation of infectious particles, suggesting that the 
flavonoid inhibits the assembly of HCV LVP[204] (Figure 9).

MTP inhibition can lead to lipid accumulation and 
steatosis; however, treatment with naringenin decreased 
intracellular triglycerides, and this was mediated by 
activation of peroxisome proliferator-activated receptor 
alpha (PPARα), a regulator of lipid metabolism. 
Naringenin and WY14643 (a classical PPARα agonist) 
were compared to reduce ApoB and virus production 
in the HCV model. The results showed that both the 
flavonoid and the PPARα agonist caused a significant 
inhibition of MTP activity and ApoB secretion, as well 
as a significant inhibition of HCV RNA secretion without 
affecting the intracellular levels of the HCV core protein. 
In addition, the treatment with naringenin led to a rapid 
1.4 log reduction in secreted HCV in cell culture, but this 
effect was reversible by PPARα inhibitor treatment[204]. 
In summary, naringenin inhibits the assembly and long-
term production of infectious HCV particles through a 
PPARα-mediated mechanism that includes the inhibition 
of MTP and the inhibition of lipid accumulation (Figure 9).

Interestingly, Khachatoorian et al[205] compared the 
antiviral effects of naringenin, quercetin and catechin. 
The evidence demonstrated that in an HCV system, 
naringenin significantly reduced intracellular viral 
protein translation as well as viral protein production 
during one viral life cycle; however, quercetin showed 
better results, but the infectious virion secretion was 
not inhibited by any flavonoid. Naringenin significantly 
blocked infectious virion assembly; in this case, 
naringenin was more effective than quercetin[205].

NS5A is a multifunctional NS protein and viral RC 
component; it participates in HCV genome replication, 
viral protein translation, virion assembly, and viral 
secretion[191,192,205]. NS5A mRNA and protein levels 
were measured, finding that naringenin reduced both 
parameters. Then, in a cell culture-based bicistronic 
reporter system, catechin, naringenin, and quercetin 
were tested to measure levels of viral IRES-mediated 
translation; all bioflavonoids significantly decreased 
IRES-mediated translation, but quercetin completely 
blocked NS5A-augmented IRES activity in contrast 
to catechin and naringenin, which demonstrated only 
mild inhibition. According to these results, quercetin 
demonstrated a marked decrease in HSP70 expression 
in treated cells. A slight decrease in HSP70 was seen 
with naringenin and catechin treatments. The complex 
of HSP70 with NS5A, NS5A-HSP70, is important for 
viral protein production; therefore, the disruption of this 
complex results in a marked decrease of viral protein 
synthesis[206,207] (Figure 9).

On the other hand, in silico studies have been 
carried out to evaluate naringenin activity on the HCV 
particle. Mathew et al[208] in 2014 reported a docking 

interaction study between the 3D structure of capsid 
core protein of HCV-genotype 3 (G3) (Q68867) and 
its subtypes 3b (Q68861) and 3g (Q68865) from 
north India and naringenin. The results indicated that 
the flavonoid exhibited five, seven and nine H-bond 
interactions within the core protein of HCV-G3, subtypes 
3b and 3g, respectively. In HCV-G3, naringenin formed 
H-bonds individually with GLU69 and ASN115 and three 
H-bonds, with SER103 exhibiting the highest interaction 
energy (-129.636 kcal/mole). In the case of HCV-3b, 
naringenin formed three H-bonds with TRP90, two 
with GLN86, and one with GLY84 and TRP93, with an 
interaction energy of -145.682 kcal/mole. Finally, the 
flavanone binds to HCV-3g through two H-bonds with 
TRP73 and GLY77 and individually with ASN85, TYR78 
and TRP73 with an interaction energy of -159.483 kcal/
mole[208]. These results suggest that naringenin binds 
to the core protein of three important HCV genotypes 
in India, especially to HCV-3 based on their interaction 
energies; this ability of naringenin to bind core protein 
could be involved in the inhibition of viral particle 
assembly that was previously reported. Naturally, in vivo 
studies are needed to confirm predictions suggested by 
this docking study (Figure 9). 

NS2 is a transmembrane protein of 21-23 kDa that 
is not required for RNA replication but that is vital to 
produce infectious viruses in vitro, and it acts as an 
apoptosis inhibitor[191,209]. Using a docking analysis, 
it has been identified that naringenin could be an 
NS2 protease inhibitor. Molecular rigid docking of 
the modeled NS2 protease was performed with the 
naringenin molecule. The flavanone had a binding 
energy of -7.97 kcal/mol when interacting with amino 
acids such as LEU9, VAL27, LEU54, ASP6, ALA5, ILE31, 
ALA30, LEU2, PHE33, ILE34, VAL44, ALA47, ALA43, and 
LEU46. In addition, naringenin possesses lower binding 
energy than the commercially available drugs such as 
eltrombopag (-5.07 kcal/mol), ribavirin (-5.89), and 
telbivudine (-6.39 kcal/mol)[209] (Figure 9). Therefore, 
naringenin appears to be a strong NS2 protein inhibitor 
and, thus, prevents efficient HCV infection.

More in vivo and in vitro studies are needed to 
further investigate the effectiveness of naringenin to 
fight virus infection in the liver and to elucidate the 
action(s) mechanism(s) involved in such protection.

ANTIDIABETIC EFFECT OF NARINGENIN
In addition to its antioxidant, scavenger, anti-inflammatory, 
antiviral and antifibrotic properties, naringenin possesses 
antidiabetic effects. It has been reported that, in diabetic 
rats, the flavonoid reduced diabetic markers through 
PPARγ and glucose transporter type 4 (GLUT4) and 
increased their gene and protein expression levels in 
pancreas[210]. In the liver, naringenin increased glycogen 
content, decrease activities of glycogen phosphorylase 
and glucose-6- phosphatase[211] and ameliorated diabetes-
induced hepatotoxicity[212,213]. For more information see 
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Nyane et al[214].

NARINGENIN SAFETY AND TOXICITY 
The first study about the toxicity of naringenin was 
carried out in 1996, and it was found that in a model 
system of isolated rat liver nuclei, the flavonoid induced 
a concentration-dependent peroxidation of nuclear 
membrane lipids concurrent with DNA strand breaks[215]. 
It has been reported that the flavonoid can be oxidized 
to form naringenin phenoxyl radicals[216] and that the 
medium lethal dose (LD50) is > 5000 mg/kg[217]. 
Interestingly, embryos exposed to naringenin with 
hydroxyurea were significantly protected from growth 
and developmental retardation, and abnormalities 
induced by hydroxyurea[218]. Only a few studies on the 
safety, teratogenicity and toxicity of naringenin have 
been published, therefore use of this flavonoid in the 
clinical setting should be cautious.

CONCLUSION
Naringenin displays poor direct antioxidant properties 
as a free radical scavenger; however, due to its ability 
to induce the endogenous antioxidant system by upre
gulating Nrf2, this flavanone exerts important effects to 
maintain the normal redox of the cell, even in disease 
conditions where free radicals are generated as a 
mechanism of damage. In this scenario, throughout this 
review, we have described the benefits of this flavonoid 
in many types of liver damage in which oxidative stress 
plays a crucial role as causative agent. Of note, the anti-
inflammatory activity of naringenin by blocking NF-
κB, affords protection or relief to liver pathologies as 
inflammation is a common cause of damage. Moreover, 
naringenin displays a multitarget effect to fight fibrosis 
through both canonical and non-canonical TGF-β 
pathways and by regulating metalloproteinase activity. 
Additionally, this abundant citrus flavonoid has shown 
anticancer and antiviral activities. Even though NAR 
has disadvantages such as its low bioavailability, there 
are pharmaceutical formulations that can solve this 
problem. Given the evidence provided in this review, it is 
concluded that naringenin is a useful natural product for 
the treatment of many liver diseases by its antioxidant 
capacity, anti-inflammatory abilities, antifibrogenic 
properties, fibrolytic actions and anticancer and antiviral 
properties. However, more basic and clinical studies are 
needed to further support the use of this flavonoid in 
humans.

REFERENCES 
1	 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 

209-218 [PMID: 15690074 DOI: 10.1172/JCI24282]
2	 Pellicoro A, Ramachandran P, Iredale JP. Reversibility of liver 

fibrosis. Fibrogenesis Tissue Repair 2012; 5: S26 [PMID: 
23259590 DOI: 10.1186/1755-1536-5-S1-S26]

3	 Muriel P. The liver: General aspects and epidemiology. In Muriel 

P. Liver pathophysiology: therapies & antioxidants. Waltham, MA: 
Elsevier, 2017: 3-22

4	 Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans 
V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, 
Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour 
LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett 
D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, 
Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, 
Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun 
S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, 
Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, 
Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt 
L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, 
Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, 
Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, 
Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, 
Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring 
D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy 
D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns 
N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton 
LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, 
Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger 
L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, 
Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah 
GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, 
Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, 
Naldi L, Narayan KM, Nasseri K, Norman P, O’Donnell M, Omer 
SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, 
Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce 
K, Pope CA 3rd, Porrini E, Pourmalek F, Raju M, Ranganathan 
D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De 
León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, 
Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard 
DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, 
Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, 
Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang 
M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, 
Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez 
AD, Murray CJ, AlMazroa MA, Memish ZA. Global and regional 
mortality from 235 causes of death for 20 age groups in 1990 
and 2010: a systematic analysis for the Global Burden of Disease 
Study 2010. Lancet 2012; 380: 2095-2128 [PMID: 23245604 DOI: 
10.1016/S0140-6736(12)61728-0s]

5	 Mehal WZ, Schuppan D. Antifibrotic therapies in the liver. Semin 
Liver Dis 2015; 35: 184-198 [PMID: 25974903 DOI: 10.1055/
s-0035-1550055]

6	 Schuppan D. Liver fibrosis: Common mechanisms and antifibrotic 
therapies. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1: 
S51-S59 [PMID: 26189980 DOI: 10.1016/j.clinre.2015.05.005]

7	 Huebert RC, Rakela J. Cellular therapy for liver disease. Mayo 
Clin Proc 2014; 89: 414-424 [PMID: 24582199 DOI: 10.1016/
j.mayocp.2013.10.023]

8	 Poilil Surendran S, George Thomas R, Moon MJ, Jeong YY. 
Nanoparticles for the treatment of liver fibrosis. Int J Nanomedicine 
2017; 12: 6997-7006 [PMID: 29033567 DOI: 10.2147/IJN.
S145951]

9	 Girish C, Pradhan SC. Herbal drugs on the liver. In: Muriel P. 
Liver pathophysiology: therapies & antioxidants. Waltham, MA: 
Elsevier, 2017: 605-620

10	 Abenavoli L, Milic N. Silymarin for liver disease. In: Muriel P. 
Liver pathophysiology: therapies & antioxidants. Waltham, MA: 
Elsevier, 2017: 621-631

11	 Hernández-Aquino E, Muriel P. Naringenin and the liver. In: 
Muriel P. Liver pathophysiology: therapies & antioxidants. 
Waltham, MA: Elsevier, 2017: 633-651

12	 Vázquez-Flores LF, Casas-Grajales S, Hernández-Aquino E, 
Vargas-Pozada EE, Muriel P. Antioxidant antiinflammatory and 
antifibrotic properties of quercetin in the liver. In: Muriel P. Liver 
pathophysiology: therapies & and antioxidants. Waltham, MA: 
Elsevier, 2017: 653-674

Hernández-Aquino E et al . Naringenin on liver damage



1701 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

13	 Arauz J, Ramos-Tovar E, Muriel P. Coffee and the liver. In: Muriel 
P. Liver pathophysiology: therapies & antioxidants. Waltham, MA: 
Elsevier, 2017: 675-685

14	 Reyes-Gordillo K, Shah R, Lakshman, Flores-Beltrán RE, 
Muriel P. Hepatoprotective properties of curcumin. In: Muriel P. 
Liver pathophysiology: therapies & antioxidants. Waltham, MA: 
Elsevier, 2017: 687-704

15	 Ramos-Tovar E, Muriel P. Stevia as a putative hepatoprotector. 
In: Muriel P. Liver pathophysiology: therapies & antioxidants. 
Waltham, MA: Elsevier, 2017: 715-727

16	 Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Naringenin-loaded 
nanoparticles improve the physicochemical properties and the 
hepatoprotective effects of naringenin in orally-administered 
rats with CCl4-induced acute liver failure. Pharm Res 2009; 26: 
893-902 [PMID: 19034626 DOI: 10.1007/s11095-008-9791-0]

17	 Nait Chabane M, Al Ahmad A, Peluso J, Muller CD, Ubeaud G. 
Quercetin and naringenin transport across human intestinal Caco-2 
cells. J Pharm Pharmacol 2009; 61: 1473-1483 [PMID: 19903372 
DOI: 10.1211/jpp/61.11.0006]

18	 Bredsdorff L, Nielsen IL, Rasmussen SE, Cornett C, Barron D, 
Bouisset F, Offord E, Williamson G. Absorption, conjugation 
and excretion of the flavanones, naringenin and hesperetin from 
alpha-rhamnosidase-treated orange juice in human subjects. Br 
J Nutr 2010; 103: 1602-1609 [PMID: 20100371 DOI: 10.1017/
S0007114509993679]

19	 Scalbert A, Morand C, Manach C, Rémésy C. Absorption and 
metabolism of polyphenols in the gut and impact on health. 
Biomed Pharmacother 2002; 56: 276-282 [PMID: 12224598 DOI: 
10.1016/S0753-3322(02)00205-6]

20	 Simons AL, Renouf M, Murphy PA, Hendrich S. Greater apparent 
absorption of flavonoids is associated with lesser human fecal 
flavonoid disappearance rates. J Agric Food Chem 2010; 58: 
141-147 [PMID: 19921837 DOI: 10.1021/jf902284u]

21	 Xu H, Kulkarni KH, Singh R, Yang Z, Wang SW, Tam VH, Hu M. 
Disposition of naringenin via glucuronidation pathway is affected 
by compensating efflux transporters of hydrophilic glucuronides. 
Mol Pharm 2009; 6: 1703-1715 [PMID: 19736994 DOI: 10.1021/
mp900013d]

22	 Mata-Bilbao Mde L, Andrés-Lacueva C, Roura E, Jáuregui 
O, Escribano E, Torre C, Lamuela-Raventós RM. Absorption 
and pharmacokinetics of grapefruit flavanones in beagles. 
Br J Nutr 2007; 98: 86-92 [PMID: 17391560 DOI: 10.1017/
S0007114507707262]

23	 Zou W, Yang C, Liu M, Su W. Tissue distribution study of naringin 
in rats by liquid chromatography-tandem mass spectrometry. 
Arzneimittelforschung 2012; 62: 181-186 [PMID: 22270844 DOI: 
10.1055/s-0031-1299746]

24	 Choudhury R, Chowrimootoo G, Srai K, Debnam E, Rice-Evans 
CA. Interactions of the flavonoid naringenin in the gastrointestinal 
tract and the influence of glycosylation. Biochem Biophys Res 
Commun 1999; 265: 410-415 [PMID: 10558881 DOI: 10.1006/
bbrc.1999.1695]

25	 El Mohsen MA, Marks J, Kuhnle G, Rice-Evans C, Moore K, 
Gibson G, Debnam E, Srai SK. The differential tissue distribution 
of the citrus flavanone naringenin following gastric instillation. 
Free Radic Res 2004; 38: 1329-1340 [PMID: 15763957 DOI: 
10.1080/10715760400017293]

26	 Bolli A, Marino M, Rimbach G, Fanali G, Fasano M, Ascenzi P. 
Flavonoid binding to human serum albumin. Biochem Biophys Res 
Commun 2010; 398: 444-449 [PMID: 20599706 DOI: 10.1016/
j.bbrc.2010.06.096]

27	 Hu YJ,  Wang Y, Ou-Yang Y, Zhou J, Liu Y. Characterize the 
interaction between naringenin and bovine serum albumin using 
spectroscopic approach. J Lumin 2010; 130: 1394-1399 [DOI: 
10.1016/j.jlumin.2010.02.053]

28	 Khan MK, Rakotomanomana N, Dufour C, Dangles O. Binding 
of citrus flavanones and their glucuronides and chalcones to human 
serum albumin. Food Funct 2011; 2: 617-626 [PMID: 21952533 
DOI: 10.1039/c1fo10077g]

29	 Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: 

chemistry, metabolism and structure-activity relationships. J Nutr 
Biochem 2002; 13: 572-584 [PMID: 12550068 DOI: 10.1016/
S0955-2863(02)00208-5]

30	 Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant 
activity relationships of flavonoids and phenolic acids. Free Radic 
Biol Med 1996; 20: 933-956 [PMID: 8743980 DOI: 10.1016/0891-
5849(95)02227-9]

31	 Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism 
of action of haloalkanes: carbon tetrachloride as a toxicological 
model. Crit Rev Toxicol 2003; 33: 105-136 [PMID: 12708612 
DOI: 10.1080/713611034]

32	 Ratty AK, Das NP. Effects of flavonoids on nonenzymatic lipid 
peroxidation: structure-activity relationship. Biochem Med Metab 
Biol 1988; 39: 69-79 [PMID: 3355718 DOI: 10.1016/0885-4505(8
8)90060-6]

33	 Khanduja KL, Bhardwaj A. Stable free radical scavenging and 
antiperoxidative properties of resveratrol compared in vitro with 
some other bioflavonoids. Indian J Biochem Biophys 2003; 40: 
416-422 [PMID: 22900369]

34	 Rodriguez RJ, Miranda CL, Stevens JF, Deinzer ML, Buhler 
DR. Influence of prenylated and non-prenylated flavonoids on 
liver microsomal lipid peroxidation and oxidative injury in rat 
hepatocytes. Food Chem Toxicol 2001; 39: 437-445 [PMID: 
11313109 DOI: 10.1016/S0278-6915(00)00159-9]

35	 Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-
Mateos M, Muñiz P. Antioxidant properties, radical scavenging 
activity and biomolecule protection capacity of flavonoid 
naringenin and its glycoside naringin: a comparative study. J Sci 
Food Agric 2010; 90: 1238-1244 [PMID: 20394007 DOI: 10.1002/
jsfa.3959]

36	 van Acker FA, Schouten O, Haenen GR, van der Vijgh WJ, Bast 
A. Flavonoids can replace alpha-tocopherol as an antioxidant. 
FEBS Lett 2000; 473: 145-148 [PMID: 10812062 DOI: 10.1016/
S0014-5793(00)01517-9]

37	 Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F. 
Flavonoids as antioxidant agents: importance of their interaction 
with biomembranes. Free Radic Biol Med 1995; 19: 481-486 
[PMID: 7590397 DOI: 10.1016/0891-5849(94)00240-K]

38	 Arora A, Byrem TM, Nair MG, Strasburg GM. Modulation of 
liposomal membrane fluidity by flavonoids and isoflavonoids. Arch 
Biochem Biophys 2000; 373: 102-109 [PMID: 10620328 DOI: 
10.1006/abbi.1999.1525]

39	 Bombardelli E, Spetta M. Phospholipid-polyphenol complexes: a 
new concept in skin care ingredients. Cosm Toil 1991; 106: 69-76

40	 Kaneko T, Kaji K, Matsuo M. Protection of linoleic acid 
hydroperoxide-induced cytotoxicity by phenolic antioxidants. Free 
Radic Biol Med 1994; 16: 405-409 [PMID: 8063204]

41	 Wang K, Chen Z, Huang L, Meng B, Zhou X, Wen X, Ren D. 
Naringenin reduces oxidative stress and improves mitochondrial 
dysfunction via activation of the Nrf2/ARE signaling pathway in 
neurons. Int J Mol Med 2017; 40: 1582-1590 [PMID: 28949376 
DOI: 10.3892/ijmm.2017.3134]

42	 Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, 
Pinho-Ribeiro FA, Georgetti SR, Baracat MM, Casagrande R, Verri 
WA Jr. Naringenin inhibits superoxide anion-induced inflammatory 
pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-
PKG-KATP channel signaling pathway. PLoS One 2016; 11: 
e0153015 [PMID: 27045367 DOI: 10.1371/journal.pone.0153015]

43	 Podder B, Song HY, Kim YS. Naringenin exerts cytoprotective 
effect against paraquat-induced toxicity in human bronchial 
epithelial BEAS-2B cells through NRF2 activation. J Microbiol 
Biotechnol 2014; 24: 605-613 [PMID: 24561720 DOI: 10.4014/
jmb.1402.02001]

44	 Miler M, Živanović J, Ajdžanović V, Oreščanin-Dušić Z, 
Milenković D, Konić-Ristić A, Blagojević D, Milošević V, Šošić-
Jurjević B. Citrus flavanones naringenin and hesperetin improve 
antioxidant status and membrane lipid compositions in the liver 
of old-aged Wistar rats. Exp Gerontol 2016; 84: 49-60 [PMID: 
27587005 DOI: 10.1016/j.exger.2016.08.014]

45	 Ali R, Shahid A, Ali N, Hasan SK, Majed F, Sultana S. 

Hernández-Aquino E et al . Naringenin on liver damage



1702 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

Amelioration of benzo[a]pyrene-induced oxidative stress and 
pulmonary toxicity by naringenin in Wistar rats: a plausible role of 
COX-2 and NF-κB. Hum Exp Toxicol 2017; 36: 349-364 [PMID: 
27206700 DOI: 10.1177/0960327116650009]

46	 Fan R, Pan T, Zhu AL, Zhang MH. Anti-inflammatory and anti-
arthritic properties of naringenin via attenuation of NF-κB and 
activation of the heme oxygenase ﴾HO﴿-1/related factor 2 pathway. 
Pharmacol Rep 2017; 69: 1021-1029 [PMID: 28943290 DOI: 
10.1016/j.pharep.2017.03.020]

47	 Al-Dosari DI, Ahmed MM, Al-Rejaie SS, Alhomida AS, Ola MS. 
Flavonoid naringenin attenuates oxidative stress, apoptosis and 
improves neurotrophic effects in the diabetic rat retina. Nutrients 
2017; 9:  [PMID: 29064407 DOI: 10.3390/nu9101161]

48	 de Oliveira MR, Brasil FB, Andrade CMB. Naringenin attenuates 
H2O2-induced mitochondrial dysfunction by an Nrf2-dependent 
mechanism in SH-SY5Y Cells. Neurochem Res 2017; 42: 
3341-3350 [PMID: 28786049 DOI: 10.1007/s11064-017-2376-8]

49	 Ramprasath T, Senthamizharasi M, Vasudevan V, Sasikumar 
S, Yuvaraj S, Selvam GS. Naringenin confers protection against 
oxidative stress through upregulation of Nrf2 target genes in 
cardiomyoblast cells. J Physiol Biochem 2014; 70: 407-415 [PMID: 
24526395 DOI: 10.1007/s13105-014-0318-3]

50	 Al-Roujayee AS. Naringenin improves the healing process of 
thermally-induced skin damage in rats. J Int Med Res 2017; 45: 
570-582 [PMID: 28415935 DOI: 10.1177/0300060517692483]

51	 Sahin Z, Ozkaya A, Cuce G, Uckun M, Yologlu E. Investigation 
of the effect of naringenin on oxidative stress-related alterations 
in testis of hydrogen peroxide-administered rats. J Biochem Mol 
Toxicol 2017; 31:  [PMID: 28467669 DOI: 10.1002/jbt.21928]

52	 Pari L ,  Gnanasoundari  M. Influence of naringenin on 
oxytetracycline mediated oxidative damage in rat liver. Basic Clin 
Pharmacol Toxicol 2006; 98: 456-461 [PMID: 16635103 DOI: 
10.1111/j.1742-7843.2006.pto_351.x]

53	 Bodas R, Prieto N, Jordán MJ, López-Campos O, Giráldez FJ, 
Morán L, Andrés S. The liver antioxidant status of fattening lambs 
is improved by naringin dietary supplementation at 0.15% rates but 
not meat quality. Animal 2012; 6: 863-870 [PMID: 22558934 DOI: 
10.1017/S175173111100214X]

54	 Casas-Grajales S, Muriel P. The liver, oxidative stress and 
antioxidants. In: Muriel P. Liver pathophysiology: therapies & 
antioxidants. Walttham, MA: Elsevier, 2017: 583-604

55	 DeLeve LD, Kaplowitz N. Glutathione metabolism and its role 
in hepatotoxicity. Pharmacol Ther 1991; 52: 287-305 [PMID: 
1820580 DOI: 10.1016/0163-7258(91)90029-L]

56	 Kretzschmar M. Regulation of hepatic glutathione metabolism 
and its role in hepatotoxicity. Exp Toxicol Pathol 1996; 48: 
439-446 [PMID: 8765689 DOI: 10.1016/S0940-2993(96)80054-6]

57	 Yuan L, Kaplowitz N. Glutathione in liver diseases and 
hepatotoxicity. Mol Aspects Med 2009; 30: 29-41 [PMID: 
18786561 DOI: 10.1016/j.mam.2008.08.003]

58	 Wang J, Yang Z, Lin L, Zhao Z, Liu Z, Liu X. Protective effect of 
naringenin against lead-induced oxidative stress in rats. Biol Trace 
Elem Res 2012; 146: 354-359 [PMID: 22109809 DOI: 10.1007/
s12011-011-9268-6]

59	 Dong D, Xu L, Yin L, Qi Y, Peng J. Naringenin prevents carbon 
tetrachloride-induced acute liver injury in mice. J Funct Foods 
2015; 12: 179-191 [DOI: 10.1016/j.jff.2014.11.020]

60	 Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X. Naringenin 
protects against 6-OHDA-induced neurotoxicity via activation of 
the Nrf2/ARE signaling pathway. Neuropharmacology 2014; 79: 
380-388 [PMID: 24333330 DOI: 10.1016/j.neuropharm.2013.11.0
26]

61	 Gopinath K, Sudhandiran G. Naringin modulates oxidative 
stress and inflammation in 3-nitropropionic acid-induced 
neurodegeneration through the activation of nuclear factor-
erythroid 2-related factor-2 signalling pathway. Neuroscience 2012; 
227: 134-143 [PMID: 22871521 DOI: 10.1016/j.neuroscience.201
2.07.060]

62	 Han X, Pan J, Ren D, Cheng Y, Fan P, Lou H. Naringenin-7-O-
glucoside protects against doxorubicin-induced toxicity in H9c2 

cardiomyocytes by induction of endogenous antioxidant enzymes. 
Food Chem Toxicol 2008; 46: 3140-3146 [PMID: 18652870 DOI: 
10.1016/j.fct.2008.06.086]

63	 Esmaeili MA, Alilou M. Naringenin attenuates CCl4 -induced 
hepatic inflammation by the activation of an Nrf2-mediated 
pathway in rats. Clin Exp Pharmacol Physiol 2014; 41: 416-422 
[PMID: 24684352 DOI: 10.1111/1440-1681.12230]

64	 Jayaraman J, Veerappan M, Namasivayam N. Potential beneficial 
effect of naringenin on lipid peroxidation and antioxidant status in 
rats with ethanol-induced hepatotoxicity. J Pharm Pharmacol 2009; 
61: 1383-1390 [PMID: 19814872 DOI: 10.1211/jpp/61.10.0016]

65	 Renugadevi J, Prabu SM. Cadmium-induced hepatotoxicity in rats 
and the protective effect of naringenin. Exp Toxicol Pathol 2010; 
62: 171-181 [PMID: 19409769 DOI: 10.1016/j.etp.2009.03.010]

66	 Martinez RM, Pinho-Ribeiro FA, Steffen VS, Silva TC, 
Caviglione CV, Bottura C, Fonseca MJ, Vicentini FT, Vignoli JA, 
Baracat MM, Georgetti SR, Verri WA Jr, Casagrande R. Topical 
formulation containing naringenin: efficacy against ultraviolet B 
irradiation-induced skin inflammation and oxidative stress in mice. 
PLoS One 2016; 11: e0146296 [PMID: 26741806 DOI: 10.1371/
journal.pone.0146296]

67	 Shakeel S, Rehman MU, Tabassum N, Amin U, Mir MUR. 
Effect of naringenin (a naturally occurring flavanone) against 
pilocarpine-induced status epilepticus and oxidative stress in mice. 
Pharmacogn Mag 2017; 13: S154-S160 [PMID: 28479741 DOI: 
10.4103/0973-1296.20397]

68	 Roy A, Das A, Das R, Haldar S, Bhattacharya S, Haldar PK. 
Naringenin, a citrus flavonoid, ameliorates arsenic-induced 
toxicity in Swiss albino mice. J Environ Pathol Toxicol 
Oncol 2014; 33: 195-204 [PMID: 25272058 DOI: 10.1615/
JEnvironPatholToxicolOncol.2014010317]

69	 Davies KJ. Oxidative stress, antioxidant defenses, and damage 
removal, repair, and replacement systems. IUBMB Life 2000; 50: 
279-289 [PMID: 11327322 DOI: 10.1080/713803728]

70	 Jayaraman J, Namasivayam N. Naringenin modulates circulatory 
lipid peroxidation, anti-oxidant status and hepatic alcohol 
metabolizing enzymes in rats with ethanol induced liver injury. 
Fundam Clin Pharmacol 2011; 25: 682-689 [PMID: 21105911 
DOI: 10.1111/j.1472-8206.2010.00899]

71	 Hermenean A, Ardelean A, Stan M, Herman H, Mihali CV, 
Costache M, Dinischiotu A. Protective effects of naringenin on 
carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. 
Chem Biol Interact 2013; 205: 138-147 [PMID: 23845967 DOI: 
10.1016/j.cbi.2013.06.016]

72	 Prabu SM, Shagirtha K, Renugadevi J. Naringenin in combination 
with vitamins C and E potentially protects oxidative stress-
mediated hepatic injury in cadmium-intoxicated rats. J Nutr Sci 
Vitaminol (Tokyo) 2011; 57: 177-185 [PMID: 21697638 DOI: 
10.3177/jnsv.57.177]

73	 Jain A, Yadav A, Bozhkov AI, Padalko VI, Flora SJ. Therapeutic 
efficacy of silymarin and naringenin in reducing arsenic-induced 
hepatic damage in young rats. Ecotoxicol Environ Saf 2011; 74: 
607-614 [PMID: 20719385 DOI: 10.1016/j.ecoenv.2010.08.002]

74	 Mershiba SD, Dassprakash MV, Saraswathy SD. Protective effect 
of naringenin on hepatic and renal dysfunction and oxidative stress 
in arsenic intoxicated rats. Mol Biol Rep 2013; 40: 3681-3691 
[PMID: 23283742 DOI: 10.1007/s11033-012-2444-8]

75	 Ambros V. The functions of animal microRNAs. Nature 2004; 
431: 350-355 [PMID: 15372042 DOI: 10.1038/nature02871]

76	 Xu Y, Fang F, Zhang J, Josson S, St Clair WH, St Clair DK. 
miR-17* suppresses tumorigenicity of prostate cancer by inhibiting 
mitochondrial antioxidant enzymes. PLoS One 2010; 5: e14356 
[PMID: 21203553 DOI: 10.1371/journal.pone.0014356]

77	 Curti V, Di Lorenzo A, Rossi D, Martino E, Capelli E, Collina 
S, Daglia M. Enantioselective modulatory effects of naringenin  
enantiomers on the expression levels of miR-17-3p involved in 
endogenous antioxidant defenses. Nutrients 2017; 9: pii: E215 
[PMID: 28264488 DOI: 10.3390/nu9030215]

78	 Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, 
Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of 

Hernández-Aquino E et al . Naringenin on liver damage



1703 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

the transcription factor Nrf2 by redox stressors, nutrient cues, 
and energy status and the pathways through which it attenuates 
degenerative disease. Free Radic Biol Med 2015; 88: 108-146 
[PMID: 26122708 DOI: 10.1016/j.freeradbiomed.2015.06.021]

79	 Ooi BK, Goh BH, Yap WH. Oxidative stress in cardiovascular 
diseases: involvement of Nrf2 antioxidant redox signaling in 
macrophage foam cells formation. Int J Mol Sci 2017; 18: pii: 
E2336 [PMID: 29113088 DOI: 10.3390/ijms18112336.]

80	 Tang W, Jiang YF, Ponnusamy M, Diallo M. Role of Nrf2 
in chronic liver disease. World J Gastroenterol 2014; 20: 
13079-13087 [PMID: 25278702 DOI: 10.3748/wjg.v20.i36.13079]

81	 Wang H, Xu YS, Wang ML, Cheng C, Bian R, Yuan H, Wang 
Y, Guo T, Zhu LL, Zhou H. Protective effect of naringin against 
the LPS-induced apoptosis of PC12 cells: implications for the 
treatment of neurodegenerative disorders. Int J Mol Med 2017; 39: 
819-830 [PMID: 28260042 DOI: 10.3892/ijmm.2017.2904]

82	 Chen RC, Sun GB, Wang J, Zhang HJ, Sun XB. Naringin protects 
against anoxia/reoxygenation-induced apoptosis in H9c2 cells 
via the Nrf2 signaling pathway. Food Funct 2015; 6: 1331-1344 
[PMID: 25773745 DOI: 10.1039/c4fo01164c]

83	 Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, 
Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-
dependent cell survival. Mol Cell Biol 2003; 23: 7198-7209 [PMID: 
14517290 DOI: 10.1128/MCB.23.20.7198-7209.2003]

84	 Zipper LM, Mulcahy RT. Erk activation is required for Nrf2 
nuclear localization during pyrrolidine dithiocarbamate induction 
of glutamate cysteine ligase modulatory gene expression in HepG2 
cells. Toxicol Sci 2003; 73: 124-134 [PMID: 12657749 DOI: 
10.1093/toxsci/kfg083]

85	 Liu XM, Peyton KJ, Shebib AR, Wang H, Korthuis RJ, Durante 
W. Activation of AMPK stimulates heme oxygenase-1 gene 
expression and human endothelial cell survival. Am J Physiol 
Heart Circ Physiol 2011; 300: H84-H93 [PMID: 21037234 DOI: 
10.1152/ajpheart.00749]

86	 Lee SE, Yang H, Jeong SI, Jin YH, Park CS, Park YS. Induction of 
heme oxygenase-1 inhibits cell death in crotonaldehyde-stimulated 
HepG2 cells via the PKC-δ-p38-Nrf2 pathway. PLoS One 2012; 7: 
e41676 [PMID: 22848562 DOI: 10.1371/journal.pone.0041676]

87	 Wang K ,  Chen Z, Huang J, Huang L, Luo N, Liang X, 
Liang M, Xie W. Naringenin prevents ischaemic stroke 
damage via anti-apoptotic and anti-oxidant effects. Clin Exp 
Pharmacol Physiol 2017; 44: 862-871 [PMID: 28453191 DOI: 
10.1111/1440-1681.12775]

88	 Liu JD, Leung KW, Wang CK, Liao LY, Wang CS, Chen PH, Chen 
CC, Yeh EK. Alcohol-related problems in Taiwan with particular 
emphasis on alcoholic liver diseases. Alcohol Clin Exp Res 1998; 
22: 164S-169S [PMID: 9622397 DOI: 10.1097/00000374-199803
001-00019]

89	 Mandayam S, Jamal MM, Morgan TR. Epidemiology of 
alcoholic liver disease. Semin Liver Dis 2004; 24: 217-232 [PMID: 
15349801 DOI: 10.1055/s-2004-832936]

90	 Teli MR, Day CP, Burt AD, Bennett MK, James OF. Determinants 
of progression to cirrhosis or fibrosis in pure alcoholic fatty liver. 
Lancet 1995; 346: 987-990 [PMID: 7475591]

91	 Boye A, Zou YH, Yang Y. Metabolic derivatives of alcohol and 
the molecular culprits of fibro-hepatocarcinogenesis: Allies or 
enemies? World J Gastroenterol 2016; 22: 50-71 [PMID: 26755860 
DOI: 10.3748/wjg.v22.i1.50]

92	 Rocco A, Compare D, Angrisani D, Sanduzzi Zamparelli 
M, Nardone G. Alcoholic disease: liver and beyond. World J 
Gastroenterol 2014; 20: 14652-14659 [PMID: 25356028 DOI: 
10.3748/wjg.v20.i40.14652]

93	 Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: 
role of oxidative metabolism. World J Gastroenterol 2014; 20: 
17756-17772 [PMID: 25548474 DOI: 10.3748/wjg.v20.i47.17756]

94	 Seo HJ, Jeong KS, Lee MK, Park YB, Jung UJ, Kim HJ, Choi 
MS. Role of naringin supplement in regulation of lipid and ethanol 
metabolism in rats. Life Sci 2003; 73: 933-946 [PMID: 12798418 
DOI: 10.1016/S0024-3205(03)00358-8]

95	 Deenen MJ ,  Cats A, Beijnen JH, Schellens JH. Part 2: 

pharmacogenetic variability in drug transport and phase I 
anticancer drug metabolism. Oncologist 2011; 16: 820-834 [PMID: 
21632461 DOI: 10.1634/theoncologist.2010-0259]

96	 Porta EA. Dietary modulation of oxidative stress in alcoholic liver 
disease in rats. J Nutr 1997; 127: 912S-915S [PMID: 9164262]

97	 French SW. The pathophysiology of alcoholic liver disease. 
In: Muriel P. Liver pathophysiology: therapies & antioxidants. 
Waltham, MA: Elsevier, 2017: 141-157

98	 Jayaraman J, Jesudoss VA, Menon VP, Namasivayam N. Anti-
inflammatory role of naringenin in rats with ethanol induced 
liver injury. Toxicol Mech Methods 2012; 22: 568-576 [PMID: 
22900548 DOI: 10.3109/15376516.2012.707255]

99	 Szkudelska K, Nogowski L, Nowicka E, Szkudelski T. In vivo 
metabolic effects of naringenin in the ethanol consuming rat and 
the effect of naringenin on adipocytes in vitro. J Anim Physiol 
Anim Nutr (Berl) 2007; 91: 91-99 [PMID: 17355338 DOI: 10.1111/
j.1439-0396.2006.00647.x]

100	 Muriel P, Ramos-Tovar E, Montes-Páez G, Buendía-Montaño LD. 
Experimental models of liver damage mediated by oxidative stress. 
In: Muriel P. Liver pathophysiology: therapies & antioxidants. 
Waltham, MA: Elsevier, 2017: 529-546

101	 Ingawale DK, Mandlik SK, Naik SR. Models of hepatotoxicity 
and the underlying cellular, biochemical and immunological 
mechanism(s): a critical discussion. Environ Toxicol Pharmacol 
2014;  37 :  118-133  [PMID:  24322620 DOI:  10 .1016/
j.etap.2013.08.015]

102	 Facino RM ,  Carini M, Franzoi L, Pirola O, Bosisio E. 
Phytochemical characterization and radical scavenger activity 
of flavonoids from Helichrysum italicum G. Don (Compositae). 
Pharmacol Res 1990; 22: 709-721 [PMID: 2075159]

103	 Ikewuchi JC, Ikewuchi CC, Igboh NM, Mark-Balm T. Protective 
effect of aqueous extract of the rhizomes of Sansevieria liberica 
Gérôme and Labroy on carbon tetrachloride induced hepatotoxicity 
in rats. EXCLI J 2011; 10: 312-321 [PMID: 29033712]

104	 Kaurinovic B, Popovic M, Vlaisavljevic S, Schwartsova H, 
Vojinovic-Miloradov M. Antioxidant profile of Trifolium pratense 
L. Molecules 2012; 17: 11156-11172 [PMID: 22990457 DOI: 
10.3390/molecules170911156]

105	 Hermenean A, Ardelean A, Stan M, Hadaruga N, Mihali CV, 
Costache M, Dinischiotu A. Antioxidant and hepatoprotective 
effects of naringenin and its β-cyclodextrin formulation in mice 
intoxicated with carbon tetrachloride: a comparative study. J 
Med Food 2014; 17: 670-677 [PMID: 24611872 DOI: 10.1089/
jmf.2013.0007]

106	 Kawai T, Akira S. TLR signaling. Cell Death Differ 2006; 13: 
816-825 [PMID: 16410796 DOI: 10.1038/sj.cdd.4401850]

107	 Yamanishi R, Yoshigai E, Okuyama T, Mori M, Murase H, 
Machida T, Okumura T, Nishizawa M. The anti-inflammatory 
effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS 
One 2014; 9: e93818 [PMID: 24705335 DOI: 10.1371/journal.
pone.0093818]

108	 O’Neill LA, Kaltschmidt C. NF-κB: a crucial transcription factor 
for glial and neuronal cell function. Trends Neurosci 1997; 20: 
252-258 [PMID: 9185306]

109	 Czaja MJ. The future of GI and liver research: editorial 
perspectives. III. JNK/AP-1 regulation of hepatocyte death. Am J 
Physiol Gastrointest Liver Physiol 2003; 284: G875-G879 [PMID: 
12736142 DOI: 10.1152/ajpgi.00549.2002]

110	 Wang X, Xiang L, Li H, Chen P, Feng Y, Zhang J, Yang N, Li 
F, Wang Y, Zhang Q, Li F, Cao F. The role of HMGB1 signaling 
pathway in the development and progression of hepatocellular 
carcinoma: a review. Int J Mol Sci 2015; 16: 22527-22540 [PMID: 
26393575 DOI: 10.3390/ijms160922527]

111	 Pollard TD, Earnshaw WC, Lippincott-Schwartz J. Cell Biology. 
2th edition. Philadelphia: Elsevier, 2008: 433-435

112	 Hernández-Aquino E, Zarco N, Casas-Grajales S, Ramos-Tovar 
E, Flores-Beltrán RE, Arauz J, Shibayama M, Favari L, Tsutsumi 
V, Segovia J, Muriel P. Naringenin prevents experimental liver 
fibrosis by blocking TGFβ-Smad3 and JNK-Smad3 pathways. 
World J Gastroenterol 2017; 23: 4354-4368 [PMID: 28706418 

Hernández-Aquino E et al . Naringenin on liver damage



1704 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

DOI: 10.3748/wjg.v23.i24.4354]
113	 Kisseleva T, Brenner DA. Role of hepatic stellate cells in 

fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol 
2007; 22 Suppl 1: S73-S78 [PMID: 17567473 DOI: 10.1111/
j.1440-1746.2006.04658.x]

114	 Arauz J, Moreno MG, Cortés-Reynosa P, Salazar EP, Muriel P. 
Coffee attenuates fibrosis by decreasing the expression of TGF-β 
and CTGF in a murine model of liver damage. J Appl Toxicol 
2013; 33: 970-979 [PMID: 22899499 DOI: 10.1002/jat.2788]

115	 Matsuzaki K. Smad phospho-isoforms direct context-dependent 
TGF-β signaling. Cytokine Growth Factor Rev 2013; 24: 385-399 
[PMID: 23871609 DOI: 10.1016/j.cytogfr.2013.06.002]

116	 Yoshida K, Murata M, Yamaguchi T, Matsuzaki K, Okazaki 
K. Reversible human TGF-β signal shifting between tumor 
suppression and fibro-carcinogenesis: implications of smad 
phospho-isoforms for hepatic epithelial-mesenchymal transitions. J 
Clin Med 2016; 5:  [PMID: 26771649 DOI: 10.3390/jcm5010007]

117	 Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs 
and TIMPs in liver fibrosis - a systematic review with special 
emphasis on anti-fibrotic strategies. J Hepatol 2007; 46: 955-975 
[PMID: 17383048 DOI: 10.1016/j.jhep.2007.02.003]

118	 Imamura T, Oshima Y, Hikita A. Regulation of TGF-β family 
signalling by ubiquitination and deubiquitination. J Biochem 2013; 
154: 481-489 [PMID: 24165200 DOI: 10.1093/jb/mvt097]

119	 Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer 
prevalence for 27 sites in the adult population in 2008. Int J Cancer 
2013; 132: 1133-1145 [PMID: 22752881 DOI: 10.1002/ijc.27711]

120	 Tarocchi M, Polvani S, Marroncini G, Galli A. Molecular 
mechanism of hepatitis B virus-induced hepatocarcinogenesis. 
World J Gastroenterol 2014; 20: 11630-11640 [PMID: 25206269 
DOI: 10.3748/wjg.v20.i33.11630]

121	 Tarocchi M, Galli A. Oxidative stress as a mechanism for 
hepatocellular carcinoma. In: Muriel P. Liver pathophysiology: 
therapies & antioxidants. Waltham, MA: Elsevier, 2017: 279-287

122	 Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular 
carcinoma and hepatitis B virus. A prospective study of 22 707 
men in Taiwan. Lancet 1981; 2: 1129-1133 [PMID: 6118576]

123	 Higgs MR, Chouteau P, Lerat H. ‘Liver let die’: oxidative DNA 
damage and hepatotropic viruses. J Gen Virol 2014; 95: 991-1004 
[PMID: 24496828 DOI: 10.1099/vir.0.059485-0]

124	 Fisher AB. Redox signaling across cell membranes. Antioxid 
Redox Signal 2009; 11: 1349-1356 [PMID: 19061438 DOI: 
10.1089/ars.2008.2378]

125	 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology 
and molecular carcinogenesis. Gastroenterology 2007; 132: 
2557-2576 [PMID: 17570226 DOI: 10.1053/j.gastro.2007.04.061]

126	 Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, 
Smith MA. How important is oxidative damage? Lessons from 
Alzheimer’s disease. Free Radic Biol Med 2000; 28: 831-834 
[PMID: 10754280]

127	 Niu D, Zhang J, Ren Y, Feng H, Chen WN. HBx genotype D 
represses GSTP1 expression and increases the oxidative level 
and apoptosis in HepG2 cells. Mol Oncol 2009; 3: 67-76 [PMID: 
19383368 DOI: 10.1016/j.molonc.2008.10.002]

128	 Dröge W. Oxidative stress and aging. Adv Exp Med Biol 2003; 
543: 191-200 [PMID: 14713123]

129	 Ha HL, Shin HJ, Feitelson MA, Yu DY. Oxidative stress and 
antioxidants in hepatic pathogenesis. World J Gastroenterol 2010; 
16: 6035-6043 [PMID: 21182217 DOI: 10.3748/wjg.v16.i48.6035]

130	 Scott TL, Rangaswamy S, Wicker CA, Izumi T. Repair of 
oxidative DNA damage and cancer: recent progress in DNA base 
excision repair. Antioxid Redox Signal 2014; 20: 708-726 [PMID: 
23901781 DOI: 10.1089/ars.2013.5529]

131	 Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through 
dietary antioxidants: progress and promise. Antioxid Redox Signal 
2008; 10: 475-510 [PMID: 18154485 DOI: 10.1089/ars.2007.1740]

132	 Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 
Free radicals and antioxidants in normal physiological functions 
and human disease. Int J Biochem Cell Biol 2007; 39: 44-84 [PMID: 
16978905 DOI: 10.1016/j.biocel.2006.07.001]

133	 Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free 
radicals, metals and antioxidants in oxidative stress-induced cancer. 
Chem Biol Interact 2006; 160: 1-40 [PMID: 16430879 DOI: 
10.1016/j.cbi.2005.12.009]

134	 Kandaswami C, Middleton E Jr. Free radical scavenging and 
antioxidant activity of plant flavonoids. Adv Exp Med Biol 1994; 
366: 351-376 [PMID: 7771265]

135	 Russo M, Spagnuolo C, Tedesco I, Russo GL. Phytochemicals in 
cancer prevention and therapy: truth or dare? Toxins (Basel) 2010; 2: 
517-551 [PMID: 22069598 DOI: 10.3390/toxins2040517]

136	 Francis AR, Shetty TK, Bhattacharya RK. Modulating effect of 
plant flavonoids on the mutagenicity of N-methyl-N’-nitro-N-
nitrosoguanidine. Carcinogenesis 1989; 10: 1953-1955 [PMID: 
2676226]

137	 Ekambaram G, Rajendran P, Magesh V, Sakthisekaran D. 
Naringenin reduces tumor size and weight lost in N-methyl-N’-
nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. 
Nutr Res 2008; 28: 106-112 [PMID: 19083396 DOI: 10.1016/
j.nutres.2007.12.002]

138	 Leonardi T, Vanamala J, Taddeo SS, Davidson LA, Murphy ME, 
Patil BS, Wang N, Carroll RJ, Chapkin RS, Lupton JR, Turner ND. 
Apigenin and naringenin suppress colon carcinogenesis through 
the aberrant crypt stage in azoxymethane-treated rats. Exp Biol 
Med (Maywood) 2010; 235: 710-717 [PMID: 20511675 DOI: 
10.1258/ebm.2010.009359]

139	 Yoon H, Kim TW, Shin SY, Park MJ, Yong Y, Kim DW, Islam 
T, Lee YH, Jung KY, Lim Y. Design, synthesis and inhibitory 
activities of naringenin derivatives on human colon cancer cells. 
Bioorg Med Chem Lett 2013; 23: 232-238 [PMID: 23177257 DOI: 
10.1016/j.bmcl.2012.10.130]

140	 Subramanian P, Arul D. Attenuation of NDEA-induced 
hepatocarcinogenesis by naringenin in rats. Cell Biochem Funct 
2013; 31: 511-517 [PMID: 23172681 DOI: 10.1002/cbf.2929]

141	 Arul D, Subramanian P. Inhibitory effect of naringenin (citrus 
flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis 
in rats. Biochem Biophys Res Commun 2013; 434: 203-209 [PMID: 
23523793 DOI: 10.1016/j.bbrc.2013.03.039]

142	 Ta h a  M M ,  A b d u l  A B ,  A b d u l l a h  R ,  I b r a h i m  TA , 
Abdelwahab SI, Mohan S. Potential chemoprevention of 
diethylnitrosamine-initiated and 2-acetylaminofluorene-promoted 
hepatocarcinogenesis by zerumbone from the rhizomes of the 
subtropical ginger (Zingiber zerumbet). Chem Biol Interact 2010; 
186: 295-305 [PMID: 20452335 DOI: 10.1016/j.cbi.2010.04.029]

143	 Lee MH, Yoon S, Moon JO. The flavonoid naringenin inhibits 
dimethylnitrosamine-induced liver damage in rats. Biol Pharm Bull 
2004; 27: 72-76 [PMID: 14709902]

144	 Ozkaya A, Sahin Z, Dag U, Ozkaraca M. Effects of naringenin 
on oxidative stress and histopathological changes in the liver of 
lead acetate administered Rats. J Biochem Mol Toxicol 2016; 30: 
243-248 [PMID: 26929248 DOI: 10.1002/jbt.21785]

145	 Arul D, Subramanian P. Naringenin (citrus flavonone) induces 
growth inhibition, cell cycle arrest and apoptosis in human 
hepatocellular carcinoma cells. Pathol Oncol Res 2013; 19: 
763-770 [PMID: 23661153 DOI: 10.1007/s12253-013-9641-1]

146	 Zhong Z, Chen X, Tan W, Xu Z, Zhou K, Wu T, Cui L, Wang Y. 
Germacrone inhibits the proliferation of breast cancer cell lines 
by inducing cell cycle arrest and promoting apoptosis. Eur J 
Pharmacol 2011; 667: 50-55 [PMID: 21497161 DOI: 10.1016/
j.ejphar.2011.03.041]

147	 Giono LE, Manfredi JJ. The p53 tumor suppressor participates in 
multiple cell cycle checkpoints. J Cell Physiol 2006; 209: 13-20 
[PMID: 16741928 DOI: 10.1002/jcp.20689]

148	 Alshatwi AA, Shafi G, Hasan TN, Al-Hazzani AA, Alsaif MA, 
Alfawaz MA, Lei KY, Munshi A. Apoptosis-mediated inhibition 
of human breast cancer cell proliferation by lemon citrus extract. 
Asian Pac J Cancer Prev 2011; 12: 1555-1559 [PMID: 22126498]

149	 Park HS, Kim GY, Nam TJ, Deuk Kim N, Hyun Choi Y. 
Antiproliferative activity of fucoidan was associated with the 
induction of apoptosis and autophagy in AGS human gastric cancer 
cells. J Food Sci 2011; 76: T77-T83 [PMID: 21535865 DOI: 

Hernández-Aquino E et al . Naringenin on liver damage



1705 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

10.1111/j.1750-3841.2011.02099.x]
150	 Tan AC, Konczak I, Ramzan I, Sze DM. Native Australian 

fruit polyphenols inhibit cell viability and induce apoptosis in 
human cancer cell lines. Nutr Cancer 2011; 63: 444-455 [PMID: 
21391128 DOI: 10.1080/01635581.2011.535953]

151	 Chidambara Murthy KN, Jayaprakasha GK, Kumar V, Rathore 
KS, Patil BS. Citrus limonin and its glucoside inhibit colon 
adenocarcinoma cell proliferation through apoptosis. J Agric Food 
Chem 2011; 59: 2314-2323 [PMID: 21338095 DOI: 10.1021/
jf104498p]

152	 Patel S. Function and dysfunction of two-pore channels. Sci Signal 
2015; 8: re7 [PMID: 26152696 DOI: 10.1126/scisignal.aab3314]

153	 Scholz-Starke J, Carpaneto A, Gambale F. On the interaction of 
neomycin with the slow vacuolar channel of Arabidopsis thaliana. 
J Gen Physiol 2006; 127: 329-340 [PMID: 16505151 DOI: 
10.1085/jgp.200509402]

154	 Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang 
J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, 
Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu 
MX. NAADP mobilizes calcium from acidic organelles through 
two-pore channels. Nature 2009; 459: 596-600 [PMID: 19387438 
DOI: 10.1038/nature08030]

155	 Pafumi I, Festa M, Papacci F, Lagostena L, Giunta C, Gutla V, 
Cornara L, Favia A, Palombi F, Gambale F, Filippini A, Carpaneto 
A. Naringenin impairs two-pore channel 2 activity and inhibits 
VEGF-induced angiogenesis. Sci Rep 2017; 7: 5121 [PMID: 
28698624 DOI: 10.1038/s41598-017-04974-1]

156	 Fürstenberger G, Berry DL, Sorg B, Marks F. Skin tumor 
promotion by phorbol esters is a two-stage process. Proc Natl Acad 
Sci U S A 1981; 78: 7722-7726 [PMID: 6801661]

157	 Liu JF, Crépin M, Liu JM, Barritault D, Ledoux D. FGF-2 and 
TPA induce matrix metalloproteinase-9 secretion in MCF-7 
cells through PKC activation of the Ras/ERK pathway. Biochem 
Biophys Res Commun 2002; 293: 1174-1182 [PMID: 12054499 
DOI: 10.1016/S0006-291X(02)00350-9]

158	 Lee KH, Yeh MH, Kao ST, Hung CM, Liu CJ, Huang YY, Yeh 
CC. The inhibitory effect of hesperidin on tumor cell invasiveness 
occurs via suppression of activator protein 1 and nuclear factor-
kappaB in human hepatocellular carcinoma cells. Toxicol Lett 2010; 
194: 42-49 [PMID: 20138977 DOI: 10.1016/j.toxlet.2010.01.021]

159	 Yen HR, Liu CJ, Yeh CC. Naringenin suppresses TPA-induced 
tumor invasion by suppressing multiple signal transduction 
pathways in human hepatocellular carcinoma cells. Chem 
Biol Interact 2015; 235: 1-9 [PMID: 25866363 DOI: 10.1016/
j.cbi.2015.04.003]

160	 Jomova K, Valko M. Advances in metal-induced oxidative 
stress and human disease. Toxicology 2011; 283: 65-87 [PMID: 
21414382 DOI: 10.1016/j.tox.2011.03.001]

161	 Pietrangelo A. Iron and the liver. Liver Int 2016; 36 Suppl 1: 
116-123 [PMID: 26725908 DOI: 10.1111/liv.13020]

162	 Sikorska K, Bernat A, Wroblewska A. Molecular pathogenesis 
and clinical consequences of iron overload in liver cirrhosis. 
Hepatobiliary Pancreat Dis Int 2016; 15: 461-479 [PMID: 
27733315]

163	 Arthur MJ. Iron overload and liver fibrosis. J Gastroenterol 
Hepatol 1996; 11: 1124-1129 [PMID: 9034931]

164	 Fernandez MT, Mira ML, Florêncio MH, Jennings KR. Iron and 
copper chelation by flavonoids: an electrospray mass spectrometry 
study. J Inorg Biochem 2002; 92: 105-111 [PMID: 12459155]

165	 Cheng IF, Breen K. On the ability of four flavonoids, baicilein, 
luteolin, naringenin, and quercetin, to suppress the Fenton reaction 
of the iron-ATP complex. Biometals 2000; 13: 77-83 [PMID: 
10831228]

166	 Benherlal PS, Arumughan C. Studies on modulation of DNA 
integrity in Fenton’s system by phytochemicals. Mutat Res 2008; 
648: 1-8 [PMID: 18824181 DOI: 10.1016/j.mrfmmm.2008.09.001]

167	 Jagetia GC, Reddy TK. Alleviation of iron induced oxidative 
stress by the grape fruit flavanone naringin in vitro. Chem Biol 
Interact 2011; 190: 121-128 [PMID: 21345335 DOI: 10.1016/
j.cbi.2011.02.009]

168	 Jagetia GC, Reddy TK, Venkatesha VA, Kedlaya R. Influence 
of naringin on ferric iron induced oxidative damage in vitro. Clin 
Chim Acta 2004; 347: 189-197 [PMID: 15313158 DOI: 10.1016/
j.cccn.2004.04.022]

169	 Chtourou Y, Fetoui H, Gdoura R. Protective effects of naringenin 
on iron-overload-induced cerebral cortex neurotoxicity correlated 
with oxidative stress. Biol Trace Elem Res 2014; 158: 376-383 
[PMID: 24682942 DOI: 10.1007/s12011-014-9948-0]

170	 Chtourou Y, Slima AB, Gdoura R, Fetoui H. Naringenin mitigates 
iron-induced anxiety-like behavioral impairment, mitochondrial 
dysfunctions, ectonucleotidases and acetylcholinesterase alteration 
activities in rat hippocampus. Neurochem Res 2015; 40: 1563-1575 
[PMID: 26050208 DOI: 10.1007/s11064-015-1627-9]

171	 Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human 
health. Mol Aspects Med 2005; 26: 268-298 [PMID: 16112185 
DOI: 10.1016/j.mam.2005.07.015]

172	 Johncilla M, Mitchell KA. Pathology of the liver in copper 
overload. Semin Liver Dis 2011; 31: 239-244 [PMID: 21901654 
DOI: 10.1055/s-0031-1286055]

173	 Zhou B, Gitschier J. hCTR1: a human gene for copper uptake 
identified by complementation in yeast. Proc Natl Acad Sci U S A 
1997; 94: 7481-7486 [PMID: 9207117]

174	 Moriwaki H, Osborne MR, Phillips DH. Effects of mixing 
metal ions on oxidative DNA damage mediated by a Fenton-type 
reduction. Toxicol In Vitro 2008; 22: 36-44 [PMID: 17869055 DOI: 
10.1016/j.tiv.2007.07.011]

175	 Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, 
Jennings KR. Interactions of flavonoids with iron and copper ions: 
a mechanism for their antioxidant activity. Free Radic Res 2002; 
36: 1199-1208 [PMID: 12592672]

176	 Esterbauer H, Gebicki J, Puhl H, Jürgens G. The role of lipid 
peroxidation and antioxidants in oxidative modification of LDL. 
Free Radic Biol Med 1992; 13: 341-390 [PMID: 1398217]

177	 Miranda CL, Stevens JF, Ivanov V, McCall M, Frei B, Deinzer 
ML, Buhler DR. Antioxidant and prooxidant actions of prenylated 
and nonprenylated chalcones and flavanones in vitro. J Agric Food 
Chem 2000; 48: 3876-3884 [PMID: 10995285]

178	 Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of 
cadmium-induced toxicity: a review. Int J Environ Health Res 
2014; 24: 378-399 [PMID: 24117228 DOI: 10.1080/09603123.201
3.835032]

179	 Rikans LE, Yamano T. Mechanisms of cadmium-mediated acute 
hepatotoxicity. J Biochem Mol Toxicol 2000; 14: 110-117 [PMID: 
10630425]

180	 Renugadevi J, Prabu SM. Naringenin protects against cadmium-
induced oxidative renal dysfunction in rats. Toxicology 2009; 256: 
128-134 [PMID: 19063931 DOI: 10.1016/j.tox.2008.11.012]

181	 Das A, Roy A, Das R, Bhattacharya S, Haldar PK. Naringenin 
alleviates cadmium-induced toxicity through the abrogation of 
oxidative stress in swiss albino mice. J Environ Pathol Toxicol 
Oncol 2016; 35: 161-169 [PMID: 27481493 DOI: 10.1615/
JEnvironPatholToxicolOncol.2016015892]

182	 Rathi VK, Das S, Parampalli Raghavendra A, Rao BSS. Naringin 
abates adverse effects of cadmium-mediated hepatotoxicity: An 
experimental study using HepG2 cells. J Biochem Mol Toxicol 
2017; 31:  [PMID: 28422390 DOI: 10.1002/jbt.21915]

183	 Singh AP, Goel RK, Kaur T. Mechanisms pertaining to arsenic 
toxicity. Toxicol Int 2011; 18: 87-93 [PMID: 21976811 DOI: 
10.4103/0971-6580.84258]

184	 Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova 
D, Rhodes CJ, Valko M. Arsenic: toxicity, oxidative stress and 
human disease. J Appl Toxicol 2011; 31: 95-107 [PMID: 21321970 
DOI: 10.1002/jat.1649]

185	 Liu J, Waalkes MP. Liver is a target of arsenic carcinogenesis. 
Toxicol Sci 2008; 105: 24-32 [PMID: 18566022 DOI: 10.1093/
toxsci/kfn120]

186	 Adil M, Kandhare AD, Visnagri A, Bodhankar SL. Naringin 
ameliorates sodium arsenite-induced renal and hepatic toxicity in 
rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren 
Fail 2015; 37: 1396-1407 [PMID: 26337322 DOI: 10.3109/08860

Hernández-Aquino E et al . Naringenin on liver damage



1706 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

22X.2015.1074462]
187	 Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Ye BJ, Kim BG, 

Jeon MJ, Kim SY, Hong YS. Evaluation and management of lead 
exposure. Ann Occup Environ Med 2015; 27: 30 [PMID: 26677413 
DOI: 10.1186/s40557-015-0085-9]

188	 Matović V, Buha A, Ðukić-Ćosić D, Bulat Z. Insight into the 
oxidative stress induced by lead and/or cadmium in blood, liver 
and kidneys. Food Chem Toxicol 2015; 78: 130-140 [PMID: 
25681546 DOI: 10.1016/j.fct.2015.02.011]

189	 Pal M, Sachdeva M, Gupta N, Mishra P, Yadav M, Tiwari A. 
Lead exposure in different organs of mammals and prevention by 
curcumin-nanocurcumin: a review. Biol Trace Elem Res 2015; 168: 
380-391 [PMID: 26005056 DOI: 10.1007/s12011-015-0366-8]

190	 Fierro NA ,  Gonzalez-Aldaco K, Roman S, Panduro A. 
The immune system and viral hepatitis. In Muriel P. Liver 
pathophysiology: therapies & antioxidants. Waltham, MA: 
Elsevier, 2017:  129-139

191	 Tang H, Grisé H. Cellular and molecular biology of HCV infection 
and hepatitis. Clin Sci (Lond) 2009; 117: 49-65 [PMID: 19515018 
DOI: 10.1042/CS20080631]

192	 Penin F, Dubuisson J, Rey FA, Moradpour D, Pawlotsky JM. 
Structural biology of hepatitis C virus. Hepatology 2004; 39: 5-19 
[PMID: 14752815 DOI: 10.1002/hep.20032]

193	 Nahmias Y, Goldwasser J, Casali M, van Poll D, Wakita T, Chung 
RT, Yarmush ML. Apolipoprotein B-dependent hepatitis C virus 
secretion is inhibited by the grapefruit flavonoid naringenin. 
Hepatology 2008; 47: 1437-1445 [PMID: 18393287 DOI: 10.1002/
hep.22197]

194	 Bok SH, Shin YW, Bae KH, Jeong TS, Kwon YK, Park YB, Choi 
MS. Effects of naringin and lovastatin on plasma and hepatic 
lipids in high-fat and high-cholesterol fed rats. Nutr Res 2000; 20:  
1007-1015 [DOI: 10.1016/S0271-5317(00)00191-3]

195	 Kim SY, Kim HJ, Lee MK, Jeon SM, Do GM, Kwon EY, Cho 
YY, Kim DJ, Jeong KS, Park YB, Ha TY, Choi MS. Naringin 
time-dependently lowers hepatic cholesterol biosynthesis and 
plasma cholesterol in rats fed high-fat and high-cholesterol diet. 
J Med Food 2006; 9: 582-586 [PMID: 17201649 DOI: 10.1089/
jmf.2006.9.582]

196	 Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH, Kim 
JR, Han JI, Bok SH. Anti-atherogenic effect of citrus flavonoids, 
naringin and naringenin, associated with hepatic ACAT and aortic 
VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem 
Biophys Res Commun 2001; 284: 681-688 [PMID: 11396955 DOI: 
10.1006/bbrc.2001.5001]

197	 Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez 
CG, Edwards JY, Markle JM, Hegele RA, Huff MW. Naringenin 
prevents dyslipidemia, apolipoprotein B overproduction, and 
hyperinsulinemia in LDL receptor-null mice with diet-induced 
insulin resistance. Diabetes 2009; 58: 2198-2210 [PMID: 
19592617 DOI: 10.2337/db09-0634]

198	 Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW. Secretion of 
hepatocyte apoB is inhibited by the flavonoids, naringenin and 
hesperetin, via reduced activity and expression of ACAT2 and 
MTP. J Lipid Res 2001; 42: 725-734 [PMID: 11352979]

199	 Borradaile NM, de Dreu LE, Barrett PH, Behrsin CD, Huff MW. 
Hepatocyte apoB-containing lipoprotein secretion is decreased 
by the grapefruit flavonoid, naringenin, via inhibition of MTP-
mediated microsomal triglyceride accumulation. Biochemistry 
2003; 42: 1283-1291 [PMID: 12564931 DOI: 10.1021/bi026731o]

200	 Borradaile NM, de Dreu LE, Barrett PH, Huff MW. Inhibition 
of hepatocyte apoB secretion by naringenin: enhanced rapid 
intracellular degradation independent of reduced microsomal 
cholesteryl esters. J Lipid Res 2002; 43: 1544-1554 [PMID: 
12235187]

201	 Borradaile NM, de Dreu LE, Huff MW. Inhibition of net HepG2 
cell apolipoprotein B secretion by the citrus flavonoid naringenin 
involves activation of phosphatidylinositol 3-kinase, independent 
of insulin receptor substrate-1 phosphorylation. Diabetes 2003; 52: 
2554-2561 [PMID: 14514640]

202	 Allister EM, Borradaile NM, Edwards JY, Huff MW. Inhibition 

of microsomal triglyceride transfer protein expression and 
apolipoprotein B100 secretion by the citrus flavonoid naringenin 
and by insulin involves activation of the mitogen-activated protein 
kinase pathway in hepatocytes. Diabetes 2005; 54: 1676-1683 
[PMID: 15919788]

203	 Allister EM, Mulvihill EE, Barrett PH, Edwards JY, Carter LP, 
Huff MW. Inhibition of apoB secretion from HepG2 cells by 
insulin is amplified by naringenin, independent of the insulin 
receptor. J Lipid Res 2008; 49: 2218-2229 [PMID: 18587069 DOI: 
10.1194/jlr.M800297-JLR200]

204	 Goldwasser J, Cohen PY, Lin W, Kitsberg D, Balaguer P, Polyak 
SJ, Chung RT, Yarmush ML, Nahmias Y. Naringenin inhibits the 
assembly and long-term production of infectious hepatitis C virus 
particles through a PPAR-mediated mechanism. J Hepatol 2011; 
55: 963-971 [PMID: 21354229 DOI: 10.1016/j.jhep.2011.02.011]

205	 Khachatoorian R, Arumugaswami V, Raychaudhuri S, Yeh 
GK, Maloney EM, Wang J, Dasgupta A, French SW. Divergent 
antiviral effects of bioflavonoids on the hepatitis C virus life cycle. 
Virology 2012; 433: 346-355 [PMID: 22975673 DOI: 10.1016/
j.virol.2012.08.029]

206	 Gonzalez O, Fontanes V, Raychaudhuri S, Loo R, Loo J, 
Arumugaswami V, Sun R, Dasgupta A, French SW. The heat shock 
protein inhibitor quercetin attenuates hepatitis C virus production. 
Hepatology 2009; 50: 1756-1764 [PMID: 19839005 DOI: 10.1002/
hep.23232]

207	 Khachatoorian R, Arumugaswami V, Ruchala P, Raychaudhuri S, 
Maloney EM, Miao E, Dasgupta A, French SW. A cell-permeable 
hairpin peptide inhibits hepatitis C viral nonstructural protein 
5A-mediated translation and virus production. Hepatology 2012; 
55: 1662-1672 [PMID: 22183951 DOI: 10.1002/hep.25533]

208	 Mathew S, Faheem M, Archunan G, Ilyas M, Begum N, Jahangir 
S, Qadri I, Qahtani MA, Mathew S. In silico studies of medicinal 
compounds against hepatitis C capsid protein from north India. 
Bioinform Biol Insights 2014; 8: 159-168 [PMID: 25002815 DOI: 
10.4137/BBI.S15211]

209	 Lulu SS, Thabitha A, Vino S, Priya AM, Rout M. Naringenin and 
quercetin--potential anti-HCV agents for NS2 protease targets. Nat 
Prod Res 2016; 30: 464-468 [PMID: 25774442 DOI: 10.1080/147
86419.2015.1020490]

210	 Singh AK, Raj V, Keshari AK, Rai A, Kumar P, Rawat A, Maity 
B, Kumar D, Prakash A, De A, Samanta A, Bhattacharya B, Saha 
S. Isolated mangiferin and naringenin exert antidiabetic effect 
via PPARγ/GLUT4 dual agonistic action with strong metabolic 
regulation. Chem Biol Interact 2018; 280: 33-44 [PMID: 29223569 
DOI: 10.1016/j.cbi.2017.12.007]

211	 Ahmed OM, Hassan MA, Abdel-Twab SM, Abdel Azeem 
MN. Navel orange peel hydroethanolic extract, naringin and 
naringenin have anti-diabetic potentials in type 2 diabetic rats. 
Biomed Pharmacother 2017; 94: 197-205 [PMID: 28759757 DOI: 
10.1016/j.biopha.2017.07.094]

212	 Sirovina D, Oršolić N, Gregorović G, Končić MZ. Naringenin 
ameliorates pathological changes in liver and kidney of diabetic 
mice: a preliminary study. Arh Hig Rada Toksikol 2016; 67: 19-24 
[PMID: 27092635 DOI: 10.1515/aiht-2016-67-2708]

213	 Kapoor R, Kakkar P. Naringenin accords hepatoprotection 
from streptozotocin induced diabetes in vivo by modulating 
mitochondrial dysfunction and apoptotic signaling cascade. 
Toxicol Rep 2014; 1: 569-581 [PMID: 28962270 DOI: 10.1016/
j.toxrep.2014.08.002]

214	 Nyane NA, Tlaila TB, Malefane TG, Ndwandwe DE, Owira PMO. 
Metformin-like antidiabetic, cardio-protective and non-glycemic 
effects of naringenin: Molecular and pharmacological insights. Eur 
J Pharmacol 2017; 803: 103-111 [PMID: 28322845 DOI: 10.1016/
j.ejphar.2017.03.042]

215	 Sahu SC, Gray GC. Lipid peroxidation and DNA damage induced 
by morin and naringenin in isolated rat liver nuclei. Food Chem 
Toxicol 1997; 35: 443-447 [PMID: 9216742]

216	 Galati G, Moridani MY, Chan TS, O’Brien PJ. Peroxidative 
metabolism of apigenin and naringenin versus luteolin and 
quercetin: glutathione oxidation and conjugation. Free Radic Biol 

Hernández-Aquino E et al . Naringenin on liver damage



1707 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

Med 2001; 30: 370-382 [PMID: 11182292]
217	 Ortiz-Andrade RR, Sánchez-Salgado JC, Navarrete-Vázquez G, 

Webster SP, Binnie M, García-Jiménez S, León-Rivera I, Cigarroa-
Vázquez P, Villalobos-Molina R, Estrada-Soto S. Antidiabetic 
and toxicological evaluations of naringenin in normoglycaemic 
and NIDDM rat models and its implications on extra-pancreatic 

glucose regulation. Diabetes Obes Metab 2008; 10: 1097-1104 
[PMID: 18355329 DOI: 10.1111/j.1463-1326.2008.00869.x]

218	 Pérez-Pastén R, Martínez-Galero E, Chamorro-Cevallos G. Quercetin 
and naringenin reduce abnormal development of mouse embryos 
produced by hydroxyurea. J Pharm Pharmacol 2010; 62: 1003-1009 
[PMID: 20663034 DOI: 10.1111/j.2042-7158.2010.01118.x]

P- Reviewer: Abenavoli L, Chiu KW, Shimizu Y, Tarantino G    
S- Editor: Gong ZM    L- Editor: A    E- Editor: Huang Y

Hernández-Aquino E et al . Naringenin on liver damage



Naturally occurring hepatitis B virus reverse transcriptase 
mutations related to potential antiviral drug resistance and 
liver disease progression

Yu-Min Choi, So-Young Lee, Bum-Joon Kim

Yu-Min Choi, So-Young Lee, Bum-Joon Kim, Department 
of Microbiology and Immunology, Biomedical Sciences, Liver 
Research Institute and Cancer Research Institute, Seoul National 
University, College of Medicine, Seoul 110799, South Korea

ORCID number: Yu-Min Choi (0000-0003-4709-3155); 
So-Young Lee (0000-0002-9638-893X); Bum-Joon Kim 
(0000-0003-0085-6709). 

Author contributions: Kim BJ conceived participated in its 
design and coordination; Choi YM and Lee SY analyzed and 
interpreted the data.

Supported by the Korea Health Technology R&D Project 
through the Korea Health Industry Development Institute and the 
Ministry of Health and Welfare, South Korea, No. HI14C0955.  

Conflict-of-interest statement: There was no conflict of 
interest.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Bum-Joon Kim, PhD, Professor, Depart
ment of Biomedical Sciences, Microbiology and Immunology, 
and Liver Research Institute, Seoul National University College 
of Medicine, 103, Daehak-ro, Jongno-gu, Seoul 110799, 
South Korea. kbumjoon@snu.ac.kr
Telephone: +82-2-7408316
Fax: +82-2-7430881

Received: March 27, 2018
Peer-review started: March 27, 2018
First decision: April 3, 2018
Revised: April 10, 2018
Accepted: April 16, 2018

Article in press: April 16, 2018
Published online: April 28, 2018

Abstract
The annual number of deaths caused by hepatitis B 
virus (HBV)-related disease, including cirrhosis and 
hepatocellular carcinoma (HCC), is estimated as 887000. 
The reported prevalence of HBV reverse transcriptase 
(RT) mutation prior to treatment is varied and the 
impact of preexisting mutations on the treatment of 
naïve patients remains controversial, and primarily 
depends on geographic factors, HBV genotypes, HBeAg 
serostatus, HBV viral loads, disease progression, 
intergenotypic recombination and co-infection with 
HIV. Different sensitivity of detection methodology 
used could also affect their prevalence results. Several 
genotype-dependent HBV RT positions that can affect 
the emergence of drug resistance have also been 
reported. Eight mutations in RT (rtL80I, rtD134N, 
rtN139K/T/H, rtY141F, rtM204I/V, rtF221Y, rtI224V, 
and rtM309K) are significantly associated with HCC 
progression. HBeAg-negative status, low viral load, and 
genotype C infection are significantly related to a higher 
frequency and prevalence of preexisting RT mutations. 
Preexisting mutations are most frequently found in the 
A-B interdomain of RT which overlaps with the HBsAg 
“a” determinant region, mutations of which can lead 
to simultaneous viral immune escape. In conclusion, 
the presence of baseline RT mutations can affect drug 
treatment outcomes and disease progression in HBV-
infected populations via modulation of viral fitness and 
host-immune responses.

Key words: polymerase; hepatocellular carcinoma; 
reverse transcriptase; preexisting mutations; hepatitis 
B virus
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Core tip: The prevalence of preexisting reverse tran
scriptase (RT) mutations in treatment-naïve patients 
largely depends on geographic factors, HBV genotypes, 
HBeAg serostatus, hepatitis B virus (HBV) viral loads, 
disease progression, intergenotypic recombination, co-
infection with HIV and the method used for detecting 
the mutation. Genotype-dependent polymorphic amino 
acid substitutions in RT may affect the emergence of 
drug resistance, and genotype C exhibits relatively 
elevated spontaneous RT mutation rates. HBeAg-
negative status and low viral loads are significantly 
associated with a higher frequency and prevalence of 
HBV preexisting RT mutations. Preexisting mutations 
are most frequently found in the A-B interdomain of 
RT, mutations of which can lead to simultaneous viral 
immune escape.

Choi YM, Lee SY, Kim BJ. Naturally occurring hepatitis B virus 
reverse transcriptase mutations related to potential antiviral drug 
resistance and liver disease progression. World J Gastroenterol 
2018; 24(16): 1708-1724  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v24/i16/1708.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i16.1708

INTRODUCTION
Although an effective and safe vaccine against hepatitis 
B virus (HBV) has been available since 1982[1], app­
roximately 257 million people are chronic carriers of 
the virus. The annual number of deaths caused by HBV 
related diseases, including cirrhosis and hepatocellular 
carcinoma (HCC), was estimated as 887000 in 2015 
(WHO, 2017)[2]. 

Reverse transcriptase (RT) conducts the major enzy­
matic activity required for viral replication. Nucleos(t)ide 
analogs (NAs) such as lamivudine[3], adefovir dipivoxil[4], 
entecavir[5], telbivudine[6], and tenofovir[7], for treatment 
of HBV infection, mainly target RT and function as 
reverse transcriptase inhibitors by mimicking natural 
nucleosides and integrating within the DNA molecules 
to interfere with viral replication[8,9]. However, due to 
the lack of proof reading ability of RT, the error rate 
for viral genome replication is as high as 10-7 per 
nucleotide, which is 10-fold greater than that of other 
DNA viruses[10], resulting in the emergence of antiviral-
drug resistance mutations[11-15]. These NA-resistant (NAr) 
mutants are the greatest challenge for treatment of 
HBV because they change the conformational structure 
of RT and lower the effectiveness of NAs by impeding 
their binding[16]. In addition, RT partially overlaps with 
HBV surface antigen (HBsAg) and RT mutation may 
simultaneously generate HBsAg mutations, which can 
alter the antigenicity, immune recognition, replication 
capacity, and virulence of HBV[17-19].

The reported prevalence of preexisting HBV po­
lymerase RT mutations is varied and the impact of 

preexisting RT mutations on treatment-naïve patients 
remains controversial. In addition, the relationship 
between preexisting RT mutations and advanced liver 
diseases, such as cirrhosis and HCC, has not been 
fully investigated[20]. Therefore, this review focuses 
primarily on factors affecting the prevalence and types 
of preexisting RT mutations in treatment-naïve patients 
and the relationship between these mutations and 
disease progression.

DISTRIBUTION OF PREEXISTING HBV 
NAR MUTATIONS IN SAMPLES FROM 
TREATMENT-NAÏVE PATIENTS
Liu et al[21] identified pre-existing HBV RT mutations in 
42 potential NAr RT positions from 192 treatment-naïve 
Chinese patients and arranged them into following four 
mutation categories: primary drug resistance (Category 
1); secondary/compensatory mutation (Category 2); 
putative NAr (Category 3); and pretreatment (Category 
4) (Table 1). To understand the global prevalence of 
these 42 naturally occurring NAr resistance mutations of 
RT, we reviewed a total of 50 previous studies[12,20-68] and 
collated their results (Figure 1). These include 32 articles 
published from institutions based in Asia (12 published 
from China, four from Iran, four from Turkey, four from 
India, three from Japan, two from Taiwan, and one each 
from Korea, Jordan, and Indonesia), 11 articles published 
from institutions based in Europe (six from Italy, two 
from Germany, and one each from Austria, Ireland, 
and Spain), four articles published from institutions 
based in North America (three from United States 
and one from Canada), two articles published from 
institutions based in South America (both from Brazil), 
and one article published from an institution in South 
Africa (supplementary Table 1). Among the 50 studies, 
36[12,20,21,32-58,60-65] used direct PCR sequencing methods, 
11[22-28,59,66-68] used the INNO-LiPA line assay, and 3[29-31] 
detected RT mutations by ultra-deep pyrosequencing 
(UDPS). Seventeen articles[21,26,27,30,31,34,35,37-39,42,43,46-48,53,58] 
included treatment-naïve patients infected with 
genotypes B and C, one study[32] with genotypes 
A and D, eleven studies[22,28,29,36,50,51,55,56,60,63,68] with 
genotype D, one study[33] with genotype C, and fifteen 
studies[20,23-25,40,41,44,45,52,54,57,61,64,65,67] with more than three 
genotypes (e.g., A, C, and D or A, B, C, and D). In five 
studies, genotypes of patients were not mentioned. Our 
literature-based study demonstrated that preexisting RT 
mutations were also found in treatment-naïve patients 
at 40 of 42 preciously identified NAr RT positions, the 
two exceptions were rtF242A, a pretreatment mutation 
and rtF166L, a lamivudine (LMV)-associated putative 
mutation. The distribution and overall incidence of RT 
mutations is presented in Figures 1 and 2. 

Primary drug resistance mutations are amino acid 
changes that cause direct NA resistance by decreasing 
viral susceptibility to NAs[69-71]. Mutated RT positions 
known to induce primary drug resistance are rt169, 
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is 2.67%. Other studies, including Fung et al[24], 
Yamani et al[38], and Mirandola et al[25] reported that 
the prevalence rates of rtL180M were 10.0%, 2.08%, 
and 1.18% in Chinese, Indonesian, and Italian HBV 
carriers, respectively. The rtL80I/V mutation also occurs 
frequently in treatment-naïve patients. Yamani et al[38], 
Kim et al[33], and Mirandola et al[25] found pre-existing 
rtL80I/V mutation frequencies of 1.07%, 3.82%, and 
0.78%, respectively. Notably, Kim et al[33] reported 
that rtL80I/V was the most frequently encountered 
preexisting mutation of secondary drug resistance 
mutations in South Korea (3.8%, 5/131 patients), even 
higher than rtL180M frequency (2.3%, 3/131 patients). 
Another compensatory RT mutation, rtV173L, was also 
detected in several studies of treatment-naïve patients, 
where Zheng et al[20], Wang et al[39], and Mirandola et al[25] 
reported that it occurred in 0.6%, 0.56%, and 0.39% of 
their patients, respectively. 

RT mutations which have been identified as asso­
ciated with drug resistance, but have not been con­
firmed experimentally in vitro, are defined as putative 
NA resistant mutations[75-77]. A total of 26 types of RT 
mutations, including rtS53N, rtT54N, rtL82M, rtV84M, 
rtS85A, rtI91L, rtY126C, rtT128I/N, rtN139D, rtW153Q, 
rtF166L, rtV191I, rtA200V, rtV207I, rtS213T, rtV214A, 
rtQ215P/S, rtL217R, rtE218D, rtF221Y, rtL229G/
V/W, rtI233V, rtP237H, rtN238D/S/T, rtY245H, and 
rtS/C256G, are considered putative drug resistance 
mutations (Category 3) (Table 1)[21]. Other amino acid 
substitutions, which were detected before treatment, 
but for which the association between their occurrence 
and drug resistance has not been evaluated, are defined 
as pretreatment mutations, these include rtT38A, 
rtY124H, rtD134E/N, rtN139K/H, rtI224V, and rtR242A 
(Category 4) (Table 1)[21,38].  

Recently, it has been proven through in vitro 
and in vivo experiments that several putative or pre­
treatment mutations, including rtL229F, rtS13T, and 
rtI233V, can also contribute to the development of 
drug resistance[40,78,79]. In addition, several studies 
have reported that treatment-naïve patients with only 
putative RT mutations, and without primary or secondary 
changes, developed drug resistance since treatment 
initiation[41]. Our literature based pooled incidence data 
showed that several putative or pretreatment mutations, 
including rtI91L, mutations in 6 positions of A-B 
interdomain (rtY124H, rtY126C/R/H, rtT128I/N, rtD134E/
N, rtN139D/E/H/K/Q and rtW153Q/R/E), rtF221Y and 
rtI224V, were encountered with high frequency from 
the treatment naïve patients[20,21,33,38,39,42]. Of these, a 
RT mutation in the A-B interdomain, rtD134E/N, which 
also cause a simultaneous sI126N/S mutation of the 
HBsAg “a” determinant, was found to have the highest 
frequency in treatment-naïve patients (1.70%) (Figure 
2). Of note, the following four putative or pretreatment 
mutations found in treatment naïve patients, rtD134E/
N, rtN139D/E/H/K/Q, rtF221Y, and rtI224V, are also 
reported as associated with progression of severe liver 
diseases, such as HCC and cirrhosis (described below). 

rt181, rt184, rt194, rt202, rt204, rt236, and rt250. 
The mutations rtA181T/V, rtM204I, and rtM204V also 
cause the simultaneous HBsAg mutations, sW172 
stop, sW196S/L/Stop, and sI195M, respectively[17,72] 

(Table 1). Our literature based pooled incidence data 
showed that of primary drug resistance mutations, 
M204I/V is the most frequently encountered in 
treatment-naïve patients[14,28,33] (5.89%), which was 
far more than the pooled mutation rate of rtA181T/V, 
rtS202C/G/I and rtN236T (incidence: 1.16%, 0.85% 
and 0.81%, respectively). Mutation of rtI169T (0.12%), 
rtT184G (0.06%), rtA194T (0.07%), and rtM250V/L 
(0.20%) had a very low pooled incidence (Figure 
1). A systematic review by Zhang et al[73] revealed 
that the global incidence of rtM204I/V/S is 4.85%. 
Several other studies[24,28,34-37] have also reported 
the frequent incidence of rtM204I/V/S in treatment-
naïve patients. For examples, Kobayashi et al[34], Lee 
et al[35], Tuncbilek et al[36], Fung et al[24], and Huang 
et al[37] reported rtM204I/V/S mutation frequencies in 
Japanese, Taiwanese, Turkish, Canadian, and Chinese 
treatment-naïve patients reached of 27.8%, 57%, 
7.8%, 12%, and 26.9%, respectively. 

Secondary, or compensatory, mutations refer to 
amino acid substitutions that compensate for replication 
defects caused by primary drug resistance mutations 
and may reduce drug susceptibility by restoring viral 
replication fitness[38,69,74]. The mutations rtL80I/V, 
rtV173L, rtL180M are known for secondary resistance 
mutations. Our literature based incidence data showed 
that rtL180M had the highest natural incidence (2.96%), 
which was higher than the pooled mutation rate of 
rtL80I/V and V173L (incidence:0.46% and 0.15%, 
respectively) (Figure 1). Similarly, Zhang et al[73] 
reported that the overall frequency of rtL180M mutation 
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Figure 1  Pooled incidence and distribution of preexisting primary and 
secondary reverse transcriptase mutations compiled using data from 
50 previous studies. The distribution and overall incidence of RT region is 
presented; numbers indicate the pooled incidence rate of the RT mutation in a 
total of 8,435 treatment-naïve patients. aPre-existing RT mutation associated 
with the progression of HCC in treatment-naïve patients.
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Moreover, some of these mutations also overlapped with 
genotype-dependent polymorphic sites, as described in 
the next section.

DISTRIBUTION OF GENOTYPE-
DEPENDENT AMINO ACID POLYMORPHIC 
SITES IN TREATMENT-NAÏVE PATIENTS
To date, a total of 10 HBV genotypes (A-J) and several 
sub-genotypes have been identified; genotypes are 
separated from each other by sequence differences 
of more than 8% by phylogenetic analysis, based on 
whole genome sequences[80,81]. HBV genotypes, in­
cluding genotypes A-J and the various sub-genotypes, 
are associated with several distinct traits, including 
geographical distribution, host ethnicity, and patho­
genicity[82]. Since specific mutational patterns of muta­
tion can be restricted by structural/functional constraints 
to particular genotypes, HBV genotype can influence the 
evolution frequency, or types, of mutations associated 
with NAr in treatment-naïve patients, as described by 
Liu et al[21]. Moreover, HBV genotypes can affect LAM-
resistant mutations in the YMDD motif of viral RT in 
patients with chronic infections after long term drug 
treatment[42,43,83]. Two recent studies[83,84] reported 
that genotype A favors the rtM204V mutation, while 
HBV-B, C, and D select for rtM204I at higher rates, 
compared with rtM204V. Moreover, Liu et al[21] identified 
eight genotype-dependent AA polymorphic positions, 
(i.e., rt53, rt91, rt124, rt134, rt221, rt224, rt238, and 
rt256) useful as signature for B- and C-genotypes with 
mutations at the 42 positions associated with NAr, 
and which are important for the distinction between 
mutations and mere polymorphisms during genotypic 
mutation analysis of samples from infected patients. 
These specific, genotype-dependent AA polymorphic 
positions in RT functional domains, (i.e., rt91 in domain 

A, rt238 in domain D and rt256 in domain E) affect drug 
treatment outcomes[21,85]. Liu et al[21] also showed that 
rtL91 and rtI91 were generally favored by genotypes B 
and C, respectively, and that rtS256 was prevalent in 
both genotypes, with rtC256 more common in genotype 
C than in genotype B. rtL91 and rtC256 were also more 
closely correlated with failure of extended LMV therapy, 
compared with other polymorphisms (rtI91and rtS256) 
leading to the suggestion that they may represent 
potential pretreatment markers[86].   

Mirandola et al[83] further extended the eight 
genotype dependent polymorphic-sites suggested by Liu 
et al[21] into a total of 27 polymorphic-sites potentially 
affecting treatment, via sequence analysis of 200 
treatment-naïve chronically infected patients from north-
east Italy, infected with the six HBV genotypes; A, B, 
C, D, E, and F. In this study, substitutions at residues 
rt53, rt54, and rt91 of the 27 genotype-dependent 
polymorphic sites were the most frequent single AA 
substitutions, and HBV-DNA levels of patients with 
these mutations were significantly lower than those 
of patients with no mutations, suggesting that these 
changes contributed to reducing viral fitness during 
infections. The authors also found that patients with 
multiple mutations were mainly infected with genotype D, 
rather than other genotypes (A, B, C, E, or F), strongly 
supporting previous results indicating that HBV-D may 
have the highest genetic variability among all HBV-
genotypes[87]. 

Yamani et al[38] demonstrated that the distribution 
of primary and secondary drug resistance mutations 
was not significantly different between genotypes B 
and C; however, significant differences were identified 
in some genotype-dependent polymorphic sites. For 
example, rtL91I and rtY221F were more common in 
genotype C, compared to genotype B (p < 0.001) (Table 
2). Moreover, some genotype dependent mutations, 
such as rtM129L, rtD134N, rtM145L, and rtE263H/D/Q, 

Figure 2  Pooled incidence and distribution of preexisting putative and pretreatment reverse transcriptase mutations compiled using data from 50 previous 
studies. The distribution and overall incidence of RT region is presented; numbers indicate the pooled incidence rate of the RT mutation in a total of 8435 treatment-
naïve patients. aPre-existing RT mutation associated with the progression of HCC in treatment-naïve patients; bA-B interdomain region.
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were more frequent in in genotype C than genotype 
B viruses (p < 0.001). Notably, rtN226H/T was the 

only pretreatment mutation, which is more common in 
genotype B than genotype C (p < 0.001). Singla et al[44] 

RT position Drug resistance Mutations in RT region of four genotypes1 Polymorphism Ref.

A B C D
  38    T (4.4)4  T (14.0)4 A/T/T/A [83]
  53 LMV   D/T (1.8)4 I/N/S/N [21]
  54 ADV   N (2.2)2 T/T/T/H [83]
  84      I (0.5)2 V [127]

     I (1.5)2 [21]
  85     T (0.6)2 S [127]
  91 LMV   I (20.0)4   L (23.5)2   I (16.7)4 I/L/I/L [83]

 I (14.3)2 [44]
103   I (100)3       I (1.67)3 V [40]
122 H (47.0)2     H (6.66)2 F [40]

L/V/I(25.0)2 [44]
124   H (2.2)3 H (20.0)3  H (11.8)3 N/N/Y/H [83]

  H (3.6)3    H (6.6)3 [21]
  D (5.5)3

126   H (6.7)4  R (23.7)4 Y/H/H/H [83]
 R (17.9)4 [44]

   Y (1.4)4  Q (0.5)4 [83]
128 LMV   N (2.2)2 N (1.4)2  I (1.4)2 T [83]

    I (1.9)2 [38]
129   L (60.0)2   L (21.4)2 M [44]

   L (1.9)2   L (26.2)2 [38]
L (100.0)2     L (9.0)2    L (3.3)2 [40]

134  N (40.5)2 D/N/D/D [38,54]
  E (23.1)3    E (5.0)3 [21,54]

     I/S (1.8)3     E (5.8)3 [21]
139 LMV    K (3.7)2  K (11.9)2 Q/N/N/N [38]

  K (2.3)3 [83]
    K (1.5)3 [21]

145    L (3.7)2   L (40.5)2 M [83]
153 LMV Q (100)2 W/R/R/R [40]
191 LMV    V (8.3)2 V/I/I/V [39]

    I (4.6)2     F (7.7)2 [54]
200 LMV   V (2.2)2 A [83]
207 LMV M (6.0)2 L (2.3)2 V [26]

     I (5.9)2 [83]
I/L/G (2.1)2 [39]

214 LMV/ADV    A (5.9)2   A (2.3)2 V [83]
A (0.5)2 I (0.5)2      I (0.6)2  A (0.8)2 E (0.7)2 [127]

215 ADV     E (7.7)2 H (5.0)2 S (5.0)2 Q [54]
  H (0.9)2 H (3.0)2 S (4.3)2 [127]

  P (2.8)2  S (4.2)2 [83]
217    L (6.7)4    R (0.9)2 R/L/L/L [83]
221 ADV   F (40.5)2 Y/Y//F/F [38]

   Y (5.1)2 [83]
226 H/T (33.3)2 H/T (2.4)2 N [38]
237    T (6.4)2 P [127]
238 LMV, ETV H(1.0)2 W(1.0)2   Q (3.9)2     T (8.7)2   H (2.3)2 N/H/N/N [127]

    Q (1.82)2 S (2.19)2 T (0.73)2 [21]
      T (3.87)2 [39]

 D (2.2)2 T (2.2)2   D (1.4)2 [83]
245   H (1.4)2 Y [83]
248 ADV   H (7.4)3    H (4.8)3 N [38]
256 LMV  G (40.0)2 G (10.7)2 S/S/S/C [44]

G (20.0)2   G (3.7)2 [83]
    G (5.45)2 [21]

  G (3.7)2 [26]

Table 2  Genotype-dependent amino acid polymorphic sites and reverse transcriptase mutations in treatment-naïve patients 

A total of 29 reported genotype-dependent amino acid polymorphic sites in the RT region in treatment-naïve patients are shown. The first column contains 
the RT positions and the second column details the relationship between mutations and drug resistance. Column three to six indicate the prevalence of 
each mutation as percentages, according genotype.  Consensus amino acids are presented in column seven. 1Incidence (%) of mutations in the RT region; 
2Putative mutation; 3Pretreatment mutation; 4Novel mutation. ADV: Adefovir dipivoxil; ETV: Entecavir; Ldt: Telbivudine; LMV: Lamivudine; TNF: 
Tenofovir.
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also showed that rtL91I and rtM129L are more common 
in samples from genotype C, than genotype D, infected 
patients. Overall, these findings indicate that distribution 
of genotype dependent polymorphic sites in treatment-
naive patients could affect drug treatment outcomes via 
modulation of viral fitness or replication. The distribution 
of the 29 genotype-dependent polymorphic-sites in 
the HBV RT region among treatment naïve patients 
identified in other reports is summarized in Table 2.

GENOTYPE DISTRIBUTION OF PRIMARY 
RT MUTATIONS IN TREATMENT-NAÏVE 
PATIENTS
Mirandola et al[25] identified the different genotype 
different distributions of antiviral drug resistant RT muta­
tions using INNO LiPA line probe analysis of samples 
from treatment-naïve patients; RT mutations were 
detected in 13 (5%) of 255 HBV infected patients. 
Of these, 10 patients had mutations associated with 
primary resistance or reduced sensitivity, including three 
cases with a YMDD mutation (rtM204V), three with 
the mutation, rtM250L/V, which is associated with ETV 
resistance, and four with the mutation rtI233V, which 
is associated with reduced sensitivity to ADV. Notably 
all the three patients with the rtM204V mutation also 
had coexisting L180M compensatory mutations, and all 
were infected with HBV-C genotype viruses, suggesting 
that naturally occurring LMV-resistant HBV may be 
more frequent in patients infected with genotype C 
virus. This hypothesis is strongly supported by the 
recent report of Kim et al[33] of the high frequency of the 
YMDD mutation, (rtM204V/I) (6.87%, 9/131 patients), 
in Korean treatment-naïve patients with HBV genotype 
C2 infections. Wang et al[39] also reported that RT 
mutations were only found in genotype C treatment-
naïve patients; however, no primary or secondary 
RT mutations were found in genotype B patients. In 
addition, a systemic meta-analysis review by Zhang 
et al[73] showed that rtM204V/I had the highest incidence 
of 4.89% (95%CI: 4.13%-5.65%) among primary and 
secondary RT mutations. These authors also found, via 

the subgroup analysis by genotype, that HBV genotype 
C had a tendency of toward a higher spontaneous 
YMDD mutation frequency (19.32%) than genotype B 
(15.01%) or D (14.79%). The increased spontaneous 
mutations in the viral genome of HBV genotype C could 
translate to a higher risk of primary NA resistance in 
HBV endemic areas, where genotype C infections are 
prevalent, including China and South Korea.  

CLINICAL FACTORS (HBEAG 
SEROSTATUS AND HBV VIRAL LOADS) 
AFFECTING INCIDENCE OF PREEXISTING 
RT MUTATIONS IN TREATMENT-NATIVE 
PATIENTS
The majority of studies have consistently reported 
a significant association between the prevalence 
of preexisting RT mutations and lower HBV DNA 
loads, or HBeAg-negative status, in treatment-naïve 
patients[26,27,34-36,45-47,88] (Table 3). Vutien et al[26] reported 
that treatment-naïve patients with HBeAg-negative 
status had higher RT mutation frequencies (78.57%), 
compared with HBeAg-positive patients (21.42%). 
These authors also showed that HBeAg-negative 
patients had significantly lower HBV DNA viral loads 
compared with HBeAg-positive patients (5.65 log10 IU/
mL vs 7.82 log10 IU/mL, respectively). Zhao et al[27] also 
reported similar results showing that 75% of patients 
with RT mutations were HBeAg-negative and had lower 
HBV DNA levels (3.92 log10 IU/mL) whereas 25% of 
patients with RT mutations were HBeAg-positive with 
higher HBV DNA loads (5.54 log10 IU/mL). Similarly, 
Zhu et al[89] found that Chinese patients with chronic 
HBV carrying preexisting RT mutations had significantly 
decreased serum baseline HBV DNA loads (p = 0.0363) 
and blood platelet counts (p = 0.0181) compared with 
those without RT mutations.

Several other studies[34,45,88] also found RT mutations 
only in HBeAg-negative patients, and the patients were 
also more likely to have decreased HBV DNA levels 
compared with those who were HBeAg-positive[45]. 

HBeAg-positive HBeAg-negative HBV genotype (%) Location Ref.

Mutations1 HBV-DNA2 Mutations1 HBV-DNA2

  3/14 (21.4) 7.8 11/14 (78.6) 5.7 B, C, E California [26]
  6/24 (25.0) 5.5 18/24 (75.0) 3.9 B, C, B-C China [27]
  0/4 (0.0) 7.2   4/4 (100.0) 4.7 A, B, C, D, F California [45]
  3/6 (50.0) 8.0 3/6 (50.0) 3.2 D Turkey [36]
  8/12 (67.0) 7.9   4/12 (33.0) 6.9 NA Taiwan, China [35]
27/43 (62.8) 5.7 16/43 (37.2) 4.7 B, C China [46]
  8/13 (61.5) 6.3   5/13 (38.5) 5.4 B, C China [47]
  0/5 (0.0) NA   5/5 (100.0) NA NA Japan [34]
  0/4 (0.0) NA   4/4 (100.0) NA NA Japan [88]

1Number of patients with RT mutation (%); 2HBV-DNA level (log10 IU/mL).

Table 3  Positive relationships between HBeAg negative serostatus and preexisting reverse transcriptase mutation frequency in the 
treatment- naïve patients
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Kobayashi et al[34] reported that all asymptomatic 
HBV carriers with YMDD mutation were HBeAg-
negative and eAb-positive, suggesting that sustained 
host immune pressure may be a major force driving 
potential NAr mutations. Zhang et al[73] also reported 
a systemic meta-analysis finding that patients with 
chronic hepatitis B (CHB) and genotype C infections, 
who were male and HBeAg-negative tended to have 
higher spontaneous mutation rates in subgroup 
analysis. Xu et al[46] reported no significant correlation 
between pre-existing mutations and the majority of 
clinical factors including gender, age, HBV genotype, 
ALT, HBeAg, and HBV DNA loads, in a Chinese 
population; however, subgroup analysis indicated that 
pre-existing mutations were strongly associated with 
lower HBV DNA levels in HBeAg sero-negative, but not 
HBeAg sero-positive, patients (HBeAg+ vs HBeAg-: 
5.74 log10 IU/ml vs 4.72 log10 IU/ml, p = 0.0112). 
These findings suggest that preexisting RT mutations 
might lead to lower HBV viral loads in treatment-naïve 
patients with HBeAg-negative serostatus. Several other 
studies have reported similar positive associations 
between the frequency of pre-existing RT mutations 
and decreased HBV viral loads[33,42,83].

Taken together, there appears to be a clear causal 
link between preexisting RT mutations and HBeAg-
negative status, decreased HBV DNA load, or liver 
disease progression. This may be because mutations 
in the RT active domain, could impair enzyme activity, 
particularly at the HBeAg negative immune clearance 
stage, thus decreasing the efficacy of virus replication 
and, resulting in liver disease progression and poor 
treatment outcomes[17,42,90,91]. 

GENOTYPE DISTRIBUTION AND 
GEOGRAPHICAL FACTOR AFFECTING 
THE INCIDENCE OF PREEXISTING RT 
MUTATIONS 
Reports of the incidence of preexisting RT mutations 
in treatment-naïve patients are highly variable, 
ranging from 0% to 57%[25,26,28,32-35,48,92,93]. This huge 
discrepancy among studies may be due to differences 
in factors such as the geographical or ethnic 
backgrounds of studied patients, sample size, and 
viral genotype[27]. A number of studies have reported 
prevalence rate of preexisting RT mutations (primary 
and secondary RT mutations) of more than 5% in 
treatment-naïve patients (Table 4). Fung et al[24] found 
a higher rate of baseline RT mutations (12% M204I/V, 
10% L180M) by using the INNO-LIPA v.3 assay. In this 
study, many patients, most of whom were infected with 
genotype D, carried rtL180M, rtM204V/I, and rtL80V/I 
mutations. In addition, Nishijima et al[94] identified 
a high mutation rate (35.7%) in 14 treatment-
naive patients in Japan, using UDPS. Also, a recent 
study using direct sequencing[33] of samples from 

131 treatment-naïve patients infected with genotype 
C2 reported an overall rate of 12.98% for primary 
(rtT184A/C/F and rtM204I/V) or compensatory (rtL80I 
and rtL180M) mutations. According to a systemic 
meta-analysis review conducted by Zhang et al[73], the 
overall prevalence of spontaneous mutations among 
treatment-naïve patients worldwide was 5.73%. The 
highest pooled prevalence (8.00%) was identified in 
samples from China, followed by Japan, Turkey, Korea, 
South America, and Europe at 6.62%, 6.43%, 5.72%, 
3.89%, and 2.53%, respectively. Another study of 325 
genotype D infected treatment-naïve patients using 
direct PCR sequencing[50] reported overall incidence of 
15.69% for primary and secondary drug resistance 
mutations, including L80V/I, L180M, M204I/V, and 
S213T/N.

In contrast, several studies have reported prevalence 
rates of less than 5 % for pre-existing RT mutations 
(primary and secondary RT mutations) in treatment-
naïve patients (Table 4). For example, using direct 
sequencing of samples from treatment-naïve patients 
from the United States, Nguyen et al[45] demonstrated 
that only four (0.9%) of 472 patients were infected 
with viruses with primary and secondary mutations 
(rtA181A/S, rtA194S, and rtM250I). Similarly, Zollner 
et al[32] screened a total of 96 patients infected with 
HBV genotypes A and D (52.08% and 47.92%, 
respectively) using a direct sequencing assay, but found 
no primary or secondary resistance mutations. Another 
study by Salpini et al[51] using the direct sequencing 
method reported that, of 140 treatment-naïve patients 
infected with genotype D, only 1.4% had primary drug 
resistance mutations, while 2.1% carried secondary 
mutations.  

Overall, preexisting RT mutation prevalence 
clearly reflects the geographical distribution of HBV 
infection. For example, China is an area with high 
levels of endemic area of HBV infection (8%, according 
to a national survey in 2006) and also has higher 
prevalence of pre-existing RT mutations[73]. Meanwhile, 
in Europe, which has low levels of endemic HBV 
infection (approximately 2%), there is a low incidence 
of spontaneous mutations (2.53%)[73]. Since the HBV 
geographic distribution has also a close relationship 
with the genotype distribution, the majority of countries 
in Asia with prevalent genotype B and C infections 
have high rates of spontaneous RT mutation (≥ 
5%)[27,33-35,39,47,73], whereas countries in Europe, where 
genotype A and D infections are dominant, tended to 
have low incidences (≤ 5%)[32,49,51].

HBV INTERGENOTYPIC RECOMBINATION 
AND COINFECTION WITH HIV 
AFFECTING THE INCIDENCE OF 
PREEXISTING RT MUTATIONS 
HBV intergenotypic recombination between different 
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whereas detected in 10 out of 20 treatment-naïve 
HBV/HIV-coinfected patients. In contrast, a multi-
national study of HIV/HBV-coinfected individuals 
carried out by Thio et al[110] demonstrated that no 
subject had preexisting RT mutations in the majority 
population of the quasispecies, suggesting no need 
for HBV drug-resistance testing prior to starting anti-
HBV therapy in HIV-HBV co-infected individuals. It is 
also supported by a recent study of Ghana patients 
conducted by Archampong et al[111]. Taken together, 
geographical factors and HBV genotypes could 
have effects on the preexisting HBV RT mutation in 
treatment-naïve HBV/HIV-coinfected patients.

DIFFERENT SENSITIVITY OF DETECTION 
METHODOLOGY USED CAN AFFECT 
THE REPORTED PREVALENCE OF 
PREEXISTING RT MUTATIONS: 
LIMITATION OF THE STUDIES IN 
PREEXISTING RT MUTATIONS 
The detection methods used can also have a profound 
effect on the reported incidence results of preexisting 
RT mutations. The majority of studies have used 
direct sequencing methods, which can lead to the 
underestimation of preexisting RT mutations, due to the 
relative low sensitivity of these assays. Wang et al[39] 
reported that the sensitivity of direct sequencing-based 
protocols declined when circulating viral subspecies (AA 
substitutions) levels were at ratio below 20%-25%. 
Similarly, there were several studies have reported 
discordance in the incidence of pre-existing RT mutations 
detected by direct sequencing and other screening 
methods, such as the INNO-LiPA assay, or UDPS. For 
example, Margeridon-Thermet et al[52] reported that 
direct sequencing found an average of 5.9 mutations 
per sample, while UDPS identified an additional 4.6 
mutations per sample, which could not be detected by 
direct sequencing. In that study, two of 17 treatment-
naïve patients had mutations which were detected only 
by UDPS, but not by direct sequencing; one rtM204I 
mutation with (1.3% mutant ratio) and the other an 

rtA181T mutation (1.0% ratio). Similarly, Aberle et al[66] 
also compared the detection efficacies for preexisting 
RT mutations between the INNO-LiPA assay and direct 
sequencing. The former identified additional mutations 
in 8 (14%) of 56 patient samples, which could not 
be detected using the latter method, indicating the 
superiority of the former over the latter for RT mutation 
detection. Overall, these data demonstrate that the 
method used for detecting the mutations can affect the 
prevalence estimates of preexisting RT mutations in 
treatment-naïve patients, which may cause discrepancies 
among the results of different studies. 

PREEXISTING RT MUTATIONS ARE 
RELATED TO THE PROGRESSION OF 
LIVER DISEASES
Although the clear association between preexisting RT 
mutations and advanced liver disease has not been fully 
investigated, several types of HBV mutations in RT have 
previously been reported as related to the progression of 
liver diseases, such as cirrhosis and HCC (Table 5). Kim 
et al[33] compared types and frequencies of pre-existing 
RT mutations between CHB and HCC treatment-naïve 
patients. These authors found a significantly higher 
rate of RT mutations in HCC patients than in those with 
chronic hepatitis (3.17% vs 2.09%, p = 0.003) and 
also identified a total of three NAr mutations (rtL80I, 
rtN139K/T/H, and rtM204I/V) significantly associated 
with HCC progression. RT mutations rtN139K/T/H and 
rtM204I/V also cause simultaneous mutations in the 
overlapped HBsAg coding sequence (sT131N/P and 
sI195M, or sW196S/L/Stop)[17,21,72]. Of these, the YMDD-
motif mutation (rtM204I/V) was found in 9 patients 
of 131 patients (8 HCC and 1 CHB) with the other 
two types of mutation, rt204I and rt204V, in 8 and 1 
patients, respectively. The other HCC-related mutation 
(rtL80I) was first identified as a compensatory mutation 
associated with LMV resistance[69,112]. Its relationship 
with clinical deterioration is also corroborated by other 
reports that it was associated with increased viral loads, 
accompanied by an elevation in serum aminotransferase 
activity, and exacerbation of liver disease in every 

Type of mutation in RT Chang in HBsAg Genotype Location Disease progression P  value Ref.

rtL80I2 NC C South Korea HCC 0.036 [33]
rtD134N4 sI126S/N B, C China HCC 0.007 [114]
rtN139K/T/H4 sT131N/P C South Korea HCC 0.008 [33]
rtY141F5 sM307T Ce Taiwan HCC 0.029 [37]
rtM204I/V1 sW196L/S/W C South Korea HCC 0.021 [33]
rtF221Y3 NA B,C,D China HCC, poor survival rate 0.028/0.004 [20,115]
rtI224V4 NC C China HCC 0.005 [116]
rtM309K5 NA C China HCC 0.007 [116]

Table 5  Relationship of preexisting reverse transcriptase mutations with disease severity

HBV polymerase RT mutation; 1Primary; 2Secondary; 3Putative; 4Pretreatment; 5Novel RT mutation. HCC: Hepatocellular carcinoma; NA: Not available; 
NC: Not changed; RT: Reverse transcriptase.
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case[113]. Interestingly, Kim et al[33] also showed that 
rtL80I was combined with the rtM204I/V mutation in 
five of nine rtM204I/V cases, and that patients with 
L80I had increased HBV replication compared with 
those without this mutation, suggesting that, together 
with rtM204I/V, it may contribute to HCC generation 
in treatment-naïve patients by compensating for the 
defective replication of caused by rtM204I/V.

In another study, Yin et al[114] analyzed the as­
sociation of the mutations of HBV polymerase with 
postoperative survival in 92 patients with HBV-related 
HCC using direct sequencing. They discovered three 
nucleotide sites, one (31st nucleotide) in a spacer 
region and two [529th (p = 0.007) and 1078th (p = 
0.038)] in the RT region, which could be considered 
independent predictors of postoperative survival in 
HBV-related HCC. Of the two sites in RT related to HCC 
outcomes, rtD134N (mutation G529A) was associated 
with lamivudine resistance, further supporting previous 
findings of potential correlation between resistance 
to the anti-HBV nucleoside analog, lamivudine, and 
HCC prognosis[114]. Since rtD134N also causes an 
amino acid change in HBsAg (sI126N/V), it can induce 
changes in the antigenic properties of HBsAg. Further 
functional studies are necessary to determine whether 
the rtD134N mutation can induce HCC via modulation 
of RT activity or through its effects on HBV replication.

Huang et al[37] found seven viral single nucleotide 
polymorphisms (SNPs) in HBV polymerase, which 
enhance viral replication and liver disease progression 
in HBeAg negative subjects. Of these SNPs, rtY141F 
(Y487F), which is located in the RT region of HBV 
polymerase was associated with increased viral load 
and HCC (p = 0.0291). Moreover, rtY141F, a genotype 
C-related SNP, also led to a simultaneous amino acid 
change in the overlapping ’a’ determinant region of 
HBsAg (sM307T). In addition, Li et al[115] and Zheng 
et al[20] reported that the rtF221Y mutation was 
strongly related to HCC prognosis after liver resection 
(hazard ratio, 2.345; p = 0.001). Moreover, the 

rtF221Y mutation was also associated with poor overall 
survival (hazard ratio, 2.557; p = 0.004), suggesting 
that it is a potential independent risk factor and viral 
marker for HCC. Those results were consistent with 
the report of Li et al[115], which identified the rtF221Y 
mutant as an independent risk factor for recurrence 
of HCC and poor overall survival (p = 0.001 and p = 
0.004, respectively). Wu et al[116] also investigated 
preexisting RT mutations potentially related to HCC in 
Chinese patients and identified rtI224V and rtM309K 
as significant risk factors for HCC (p = 0.005 and p = 
0.007, respectively). 

In addition, the number of RT mutations is associated 
with the liver disease progression. Zhu et al[89] revealed 
that patients with multiple RT mutant sites showed a 
significantly higher rate of liver fibrosis (p = 0.0128), 
suggesting a link between viral mutation and clinical 
progression of chronic hepatitis, and also highlighting that 
the natural accumulation of RT mutations is a process 
involved in viral survival during chronic liver fibrosis.

Overall, eight mutations in the RT region, namely 
rtL80I, rtD134N, rtN139K/T/H, rtY141F, rtM204I/V, 
rtF221Y, rtI224V, and rtM309K, are significantly related 
to liver disease progression. The majority of HCC-
related RT mutations were reported from studies of 
treatment-naïve patients infected with genotype C HBV. 
This supports previous reports that HBV genotype C 
is more likely to lead to severe and aggressive liver 
disease than other HBV genotypes[112,117-122]. Of note, 
association of the following three mutations, rtM204V, 
rtL80I, and rtD134N, with disease progression provides 
a likely explanation for the positive relationship between 
lamivudine resistance and liver disease progression.   

DISTRIBUTION AND FREQUENCY 
OF PREEXISTING RT MUTATIONS IN 
DIFFERENT RT REGIONS
HBV RT consists of seven functional domains (G, F, A, B, 
C, D, and E) and five inter-domains (F-A, A-B, B-C, C-D, 
and D-E) which link the functional domains[18,31,123]. 
Previous studies[20,21,33,38] reported a higher frequency 
of preexisting RT mutations in the A-B inter-domain, 
compared with other regions.

Liu et al[21] revealed that all six sites in the A-B 
interdomain, rt124, rt126, rt128, rt134, rt139, and 
rt153, exhibit mutations (6/6, prevalence 100%), 
indicating high genetic variability of this region 
compared with other sites within RT domains (sites 
with mutations: 6/22, 27.27%; p = 0.0014). In 
this study, the mutation frequency of the A-B inter-
domain (44/1152, 3.82%) was also significantly higher 
than those in other RT domains (Table 6). This result 
is in line with that reported by Zheng et al[20], who 
demonstrated that A-B interdomain exhibits higher 
mutation frequencies (4.3%, 5.3%, 3.6%) than those 
of other RT domains (1.4%, 1.4%, 1.3%) in Chinese 

Mutation frequency (%)1 P  value5 Ref.

Domains2 A-B 
interdomain3

Non-A-B 
interdomains4

1.45   3.51 2.58 < 0.001 [38]
1.37 4.4 3.77 < 0.001 [20]
1.07 7.5 3.16 0.008 [33]
0.43 3.82 0.52 0.0014 [21] 

Table 6  Distribution of preexisting reverse transcriptase 
mutations among reverse transcriptase domains

1Mutation frequency was calculated as the number of mutations found in 
a specific RT domain divided by the total number of sites in the domain; 
2Domain including RT mutation sites; rt38, rt84, rt207, rt233, rt238, and 
rt256; 3A-B interdomain including RT mutations sites: rt53, rt191, rt213, 
rt218, rt229, and rt242; 4Non-A-B interdomains including RT mutation 
sites: rt124, rt126, rt128, rt134, rt139, and rt153; 5P-values of comparisons 
of mutation frequencies between A-B interdomain and other functional 
domains. 
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treatment-naive patients with CHB, cirrhosis, and HCC. 
Specifically, they found that there was a clear tendency 
toward frequent mutations of the A-B interdomain in 
patients with cirrhosis suggesting a relationship between 
mutations in the A-B inter-domain and the development 
of this condition. 

Similarly, Yamani et al[38] also reported that the A-B 
interdomain had the highest mutation prevalence and 
frequency (3.51% ± 2.53%) compared with functional 
domains and non-A-B interdomains (1.45% ± 1.05% 
and 2.58% ± 0.51%, respectively) in Indonesian 
treatment-naïve patients (Table 6). Moreover, they 
found that genotype C had substantially higher 
mutations rates in the A-B interdomain than genotype 
B (p < 0.001). Kim et al[33] also revealed that 
mutations within the A-B interdomain were most 
frequent in treatment-naïve Korean patients infected 
with genotype C2, compared with other domains, 
with 46 of 79 patients (58.22%) with preexisting RT 
mutations having changes in the A-B inter-domain. 
In this study, rtD134E/N/C was the most frequently 
encountered hot spot site among the six A-B inter-
domain sites and was mutated in 12/79 patients 
(15.2%). The authors also showed that the mutation 
frequency of A-B interdomain (59/786, 7.50%) was 
higher than that of non A-B interdomain (3.16%) (Table 
6). Our pooled incidence also supported the previous 
notion of higher frequency of persisting RT mutations 
in A-B interdomain compared with other region in RT 
(Figure 2). 

RT and HBsAg mutations can occur simultaneously, 
due to the overlap of RT region and HBsAg gene 
sequences[19,124]. Liu et al[21] reported that 14 of 18 
mutated positions in RT overlapped with HBsAg, and 
that RT mutations at 12 out of 14 RT positions (except 
those at rt124 and rt126) also led to simultaneous 
HBsAg mutations of 19 types in 16.67% (32/192) 
of isolates (Figure 1). Notably, these authors also 

found that RT mutations in the A-B interdomain could 
lead to simultaneous AA substitutions sI126A/N/S/, 
sG130N, sT131N/P, and sG145R of the overlapped ‘a’ 
determinant of HBsAg, including the most frequently 
described immune-escape mutation sG145R (1/192, 
0.52%)[125,126]. Similarly, Kim et al[33] demonstrated that 
RT mutations at 10 of 42 NAr positions could lead to 
15 types of simultaneous overlapped HBsAg mutations 
in 32.06% (42/131) patients. Of interest, they also 
found that the RT mutations at 3 NAr positions (rt134, 
rt139, and rt153) located in the overlapped HBsAg “a” 
determinant region from 22 treatment-naïve patients 
also had simultaneous “a” determinant mutations in 
two positions, S126 and S131, in 15 patients (15/22, 
68.2%) (12 patients with mutations at rt134, leading to 
10 changes of AA S126, and 8 patients with mutations 
at rt139, leading to 5 alterations of AA S131).  

Overall, preexisting RT mutations are distributed 
in a non-random manner, and most frequently found 
in the A-B interdomain, overlapped with the HBsAg 
“a” determinant region, than in other domains. 
Moreover, the A-B interdomain also contains the most 
abundant mutations, indicating that these positions 
might be preexisting mutation hotspots in treatment-
naïve patients. Of six positions’ mutation in the A-B 
interdomain, three RT mutations, rtD134E/N, rtN139D/
E/H/K/Q, and rtW153E/Q/R, that overlap with HBsAg “a” 
determinant region are hotspots found most frequently 
in treatment-naïve patients, which could contribute to 
HBV viral persistence via generation of immune escape 
“a” determinant mutants proteins. In general, A-B 
interdomain mutations are prevalent in patients with 
genotype C2 infections and could contribute to HBV-
associated disease, such as HCC and cirrhosis.

CONCLUSION
Preexisting HBV RT mutations in treatment-naïve 

Figure 3  Schematic representation indicating the role of preexisting hepatitis B virus reverse transcriptase mutations in liver disease progression and 
treatment outcomes. HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; ASC: Asymptomatic carriers; CHB: Chronic hepatitis B; HIV: Human immunodeficiency 
virus.
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patients are related to potential drug resistance and 
progression of liver disease, such as HCC or cirrhosis. 
In addition, genotype-dependent polymorphic amino 
acid substitution in RT can also affect the emergence of 
drug resistance and treatment outcomes. The reported 
prevalence of spontaneous RT mutations in treatment-
naïve patients is varied, and largely depends on 
geographic factors, HBV genotypes, HBeAg serostatus, 
HBV viral loads, disease progression, intergenoytpic 
recombination, and co-infection with HIV. Different 
sensitivity of detection methodology used could also 
affect their prevalence results. The INNO-LiPA assay 
and UDPS method detect higher prevalence rates of 
preexisting RT mutations compared with direct PCR 
sequencing in treatment-naïve patients. Genotype C 
infection, HBeAg-negative status, and low viral loads 
are significantly associated with higher frequencies 
and prevalence rate of pre-existing HBV RT mutations. 
Higher frequencies of preexisting RT mutations 
were also generally associated with liver disease 
progression, including of HCC and cirrhosis. Eight 
mutations in RT region, rtL80I, rtD134N, rtN139K/T/H, 
rtY141F, rtM204I/V, rtF221Y, rtI224V, and rtM309K 
were significantly associated with progression of 
HCC in treatment-naïve patients. Of RT domains, 
preexisting RT mutations occur most frequently in 
the A-B interdomain which overlaps with the HBsAg 
“a” determinant region, in which mutations can lead 
to simultaneous viral immune escape (Figure 3). In 
conclusion, the presence of baseline preexisting RT 
mutations can affect drug treatment outcomes and 
disease progression in populations by modulation of 
viral fitness and host-immune responses.
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Abstract
Nucleotide-binding oligomerization domain 1 (NOD1) 
is an intracellular innate immune sensor for small 
molecules derived from bacterial cell components. NOD1 
activation by its ligands leads to robust production of 
pro-inflammatory cytokines and chemokines by innate 
immune cells, thereby mediating mucosal host defense 
systems against microbes. Chronic gastric infection due 
to Helicobacter pylori  (H. pylori ) causes various upper 
gastrointestinal diseases, including atrophic gastritis, 
peptic ulcers, and gastric cancer. It is now generally 
accepted that detection of H. pylori  by NOD1 expressed 
in gastric epithelial cells plays an indispensable role in 
mucosal host defense systems against this organism. 
Recent studies have revealed the molecular mechanism 
by which NOD1 activation caused by H. pylori  infection 
is involved in the development of chronic gastritis and 
gastric cancer. In this review, we have discussed and 
summarized how sensing of H. pylori  by NOD1 mediates 
the prevention of chronic gastritis and gastric cancer.

Key words: Nucleotide-binding oligomerization domain 
1; Helicobacter pylori , gastritis; gastric cancer
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Core tip: Nucleotide-binding oligomerization domain 
1 (NOD1), an intracellular innate immune sensor, 
plays a role in mucosal host defense systems against 
Helicobacter pylori  (H. pylori ) infection. NOD1 activation 
is involved in the generation of T helper type 1 
responses against H. pylori  through activation of type 
I IFN signaling pathways. NOD1 activation prevents 
gastric carcinogenesis through negative regulation of 
caudal-related homeobox 2 expression.

MINIREVIEWS

1725 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

Submit a Manuscript: http://www.f6publishing.com

DOI: 10.3748/wjg.v24.i16.1725

World J Gastroenterol  2018 April 28; 24(16): 1725-1733

 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)



Minaga K, Watanabe T, Kamata K, Asano N, Kudo M. 
Nucleotide-binding oligomerization domain 1 and Helicobacter 
pylori infection: A review. World J Gastroenterol 2018; 
24(16): 1725-1733  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v24/i16/1725.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i16.1725

INTRODUCTION
Helicobacter pylori (H. pylori) is a Gram negative 
bacterium that preferentially colonizes the human 
gastric mucosa[1,2]. Infection due to this organism is 
usually established during childhood[1,2], which then 
causes various upper gastrointestinal (GI) disorders, 
including atrophic gastritis, peptic ulcers, gastric 
mucosa-associated lymphoid tissue lymphoma, and 
gastric cancer. Thus, it is now generally accepted that 
persistent H. pylori infection in the gastric mucosa 
is the highest risk factor for the development of the 
aforementioned diseases[3]. This notion is supported by 
recent studies indicating that successful eradication of H. 
pylori prevents the development of gastric cancer[4,5].

Colonization of the human stomach by H. pylori 
triggers innate and adaptive immune responses. As in 
the cases of other microbial infections, sensing of H. 
pylori by pattern recognition receptors (PRRs) expressed 
in innate immune cells, such as epithelial cells (ECs) 
and antigen-presenting cells (APCs), is an initial step 
for eradicating this organism. Toll-like receptors (TLRs) 
and nucleotide-binding oligomerization domain (NOD)-
like receptors (NLRs) are the prototypical PRRs and 
represent the first line of defense against H. pylori[6,7]. 
Indeed, gastric epithelial cells and APCs express 
functional TLRs and lipopolysaccharide (LPS)-mediated 
TLR4 activation is involved in the development of gastric 
mucosal inflammatory responses[8]. However, the 
ability to stimulate TLRs by H. pylori-derived antigens 
is much lower than that by other pathogenic bacteria. 
For example, H. pylori-derived LPS and flagellin exhibit 
low stimulatory activity toward TLR4 and TLR5[9,10]. 
Thus, H. pylori might evade the major innate immune 
system molecules, TLRs, to establish persistent gastric 
infection. Therefore, it is possible that PRRs other than 
TLRs might play a major role in mucosal host defense 
systems against H. pylori although roles played by TLRs 
need to be determined in future studies.

NOD1 is a prototypical innate immune receptor be
longing to the NLR protein family, which detects small 
molecules derived from Gram-negative bacteria[7,11]. NOD1 
activation induced by intestinal microflora is associated 
with lymphoid tissue genesis[12] and development of 
pancreatitis[13-15]. In 2004, Viala et al[16]. demonstrated that 
gastric mucosal host defense against H. pylori depends on 
the activation of NOD1 in gastric ECs. Many efforts have 
been made by gastroenterologists, microbiologists, and 
immunologists to elucidate the molecular mechanisms 
by which colonization of the human stomach by H. pylori 

induces the activation of NOD1 and such NOD1 activation 
mediates antimicrobial immune responses[11]. In this 
review, we have summarized and discussed how sensing 
of H. pylori by NOD1 mediates the prevention of chronic 
gastritis and gastric cancer.

Cytokine and chemokine 
responses in the gastric mucosa 
harboring H. pylori infection
Gastric inflammation caused by chronic H. pylori 
infection is mediated by gastric mucosal T helper type 
1 (Th1) and Th17 cells producing IFN-γ and IL-17, 
respectively[17]. Initial studies addressing the role of 
IFN-γ in H. pylori-induced gastritis revealed that lack 
of chronic gastritis in IFN-γ-deficient mice is associated 
with higher colonization of the gastric mucosa by this 
organism than in IFN-γ-intact mice[18]. In addition, 
gastric mucosal CD4+ T cells isolated from H. pylori-
infected patients have been reported to produce a high 
level of IFN-γ[19]. Thus, gastric mucosa harboring chronic 
H. pylori infection is characterized by Th1 responses that 
are involved in both eradication and inflammation[20]. 
In addition to a well-established role played by Th1 
cells, recent studies have highlighted the importance of 
another type of Th cells, Th17 cells, producing IL-17[20]. 
The development of chronic gastritis is significantly 
attenuated in IL-17-deficient mice in long-term H. 
pylori infection[20]. Moreover, treatment of mice with a 
neutralizing anti-IL-17 antibody reduced the H. pylori 
burden and inflammation in the stomach[21]. In line with 
these experimental studies, Serrano et al[22]. provided 
evidence that downregulation of Th17 responses is 
associated with reduced gastritis in H. pylori-infected 
patients. Therefore, both Th1 and Th17 cells are 
involved in the development of chronic gastritis caused 
by persistent H. pylori infection in the gastric mucosa.

Differentiation of Th1 and Th17 cells requires 
cytokines produced by APCs such as dendritic cells and 
macrophages[23]. Differentiation of Th1 cells depends 
on IL-12, whereas that of Th17 cells depends on IL-1β, 
IL-6, and IL-23. Expression of IFN-γ and IL-17 in the 
gastric mucosa of mice challenged with H. pylori was 
accompanied by IL-12 and IL-23 expression, derived 
from APCs[21]. Furthermore, the levels of APC-derived 
pro-inflammatory cytokines in the gastric mucosa, 
including IL-1β, IL-6 and TNF-α were significantly higher 
in H. pylori-positive patients than in H. pylori-negative 
patients[24]. Thus, it is likely that pro-inflammatory 
cytokines produced by APCs contribute to H. pylori-
induced gastric pathology through differentiation of Th1 
and Th17 cells. Consistent with this idea, the exposure of 
human APCs to H. pylori results in robust production of 
IL-6, IL-12, and TNF-α[25,26].

ECs are an important source of chemokines that 
attract immune cells to the lesions[27,28]. Yamaoka et al[28]. 
assessed chemokine responses in the gastric mucosa 
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of patients with H. pylori infection and found that H. 
pylori infection is associated with increased expression of 
C-X-C motif chemokine ligand 8 (CXCL8) and chemokine 
(C-C motif) ligand 5 (CCL5). In addition to CXCL8 and 
CCL5, the gastric mucosa of H. pylori-positive patients 
exhibited enhanced expression of CXCL9 and CXCL10[29]. 
Given the fact that CXCL8 is a strong attractant for 
neutrophils and that CXCL9 and CXCL10 are strong 
attractants for Th1 cells[28,29], these results suggest 
that EC-derived chemokines are also involved in the 
development of chronic gastritis caused by persistent H. 
pylori infection. Taken together, these findings suggest 
that cytokines and chemokines produced by immune 
cells and ECs play a substantial role in the development 
of H. pylori-induced gastric pathology.

Type IV secretion system of H. 
pylori and NOD1 activation
NOD1 is expressed in the cytosolic regions of innate 
immune cells, such as APCs and ECs[7,11]. Peptidoglycan 
(PGN) is a polymer consisting of sugars and amino 
acids that constitute the cell wall of both Gram-
positive and Gram-negative bacteria[7]. Small peptides 
derived from the PGN layer of Gram-negative bacteria 
activate intracellular NOD1[7,11]. γ-D-glutamyl-meso-
diaminopimelic acid (iE-DAP) is considered as the 
minimal motif of the NOD1 ligand, and NOD1-deficient 
mice exhibit impaired responses to iE-DAP[30]. Two 
models have been proposed by which H. pylori activates 
intracellular NOD1.

H. pylori is classified into two types according to 
the expression of cag pathogenicity island (cagPAI)[1]. 
cagPAI is a gene locus necessary to assemble type IV 
secretion system (T4SS), a syringe and needle-like 
structure[1,31]. The primary function of T4SS, encoded by 
cagPAI, is the injection of pathogenic factors, such as 
cytotoxin-associated gene A (CagA) into the host gastric 
ECs upon attachment to the epithelium[1,31]. Thus, 
cagPAI-positive H. pylori can cause gastric mucosal 
injury through injection of CagA mediated by T4SS. 
Hence, T4SS may enable H. pylori to deliver its cell 
wall components, such as PGN, into the host ECs. Viala 
et al[16]. addressed this possibility and demonstrated 
that intracellular NOD1 expressed in gastric ECs sense 
H. pylori-derived PGN delivered to the cytosolic region 
through T4SS. NOD1 activation is not observed in 
gastric ECs upon exposure to H. pylori harboring non-
functional cagPAI, which supports the idea that NOD1 
functions as an intracellular innate immune sensor for 
cagPAI-positive H. pylori. Interestingly, H. pylori burden 
in the stomach was much higher in NOD1-deficient mice 
than in the NOD1-intact ones, when they were orally 
challenged with cagPAI-positive H. pylori[16]. In contrast, 
H. pylori burden in the stomach was comparable 
between NOD1-intact and NOD1-deficient mice when 
mice were orally challenged with cagPAI-mutated H. 
pylori. Thus, these studies showed that NOD1 is an 

intracellular receptor for cagPAI-positive H. pylori and 
that NOD1 activation is necessary for eradication of this 
organism.

Outer membrane vesicle of H. 
pylori and NOD1 activation
Outer membrane vesicles (OMVs), which are released 
by Gram-negative bacteria during normal growth, 
contain bacterial cell components, including PGN[32]. 
Kaparakis et al[33]. addressed the possibility that 
OMVs released from H. pylori activate cytosolic NOD1 
through intracellular delivery of PGN. OMVs isolated 
from H. pylori activate nuclear factor kappa B (NF-
κB) in AGS cells, a gastric cancer cell line, in a cagPAI-
independent manner. Importantly, knockdown of NOD1 
expression by siRNA abrogated CXCL8 production in 
AGS cells upon exposure to H. pylori-derived OMVs. 
Furthermore, intragastrically delivered OMVs efficiently 
induced gastric mucosal expression of CXCL2, a 
murine chemoattractant for neutrophils, and antibody 
responses against OMVs. These innate and adaptive 
responses to OMVs depend on NOD1 activation 
because NOD1-deficient mice exhibit defective CXCL2 
expression and OMV-specific antibody responses. Thus, 
these data suggest that intracellular delivery of PGN 
as a form of OMVs activates NOD1 in gastric ECs in a 
cagPAI-independent manner.

A study has highlighted the role of autophagy to 
address the molecular mechanisms accounting for 
OMV-mediated NOD1 activation[34]. Irving et al[34]. first 
found that H. pylori-derived OMVs induce autophagy 
in ECs. Consistent with autophagy induction, mouse 
embryonic fibroblasts (MEFs) deficient in ATG5, a 
critical molecule for autophagy, exhibited diminished 
production of CXCL2 compared with ATG5-intact 
MEFs upon exposure to H. pylori-derived OMVs. 
Autophagosome formation was diminished in NOD1-
knockdown AGS cells stimulated with H. pylori-derived 
OMVs, suggesting the involvement of NOD1 activation 
in autophagy induction. Fluorescent labeling studies 
clearly demonstrated that EEA1 (early endosome 
antigen 1)-positive early endosomes containing both 
OMVs and PGN recruit NOD1 and its downstream 
kinase, receptor interacting protein 2 (RIP2). Such 
endosomal interactions between H. pylori-derived 
OMVs, NOD1, and RIP2 are necessary for chemokine 
production and autophagy induction, as RIP2 inhibitor 
efficiently blocks these responses. Collectively, these 
studies provide the evidence that NOD1 recognizes H. 
pylori-derived PGN within EEA1+ early endosomes and 
subsequently activates RIP2 to induce autophagy and 
pro-inflammatory chemokine responses[34]. However, 
it should be noted that involvement of RIP2 in the 
induction of NOD1-mediated autophagy requires future 
studies, as it has been previously observed that NOD1 
activation induces RIP2-independent autophagy in case 
of Shigella flexneri infection[35].
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in gastric ECs, such as AGS cells, upon exposure to H. 
pylori[36-38]. However, it remains controversial whether 
activation of NF-κB/MAPKs and production of CXCL8 are 
dependent upon the recognition of H. pylori by NOD1. 
Grubman et al[36] established a stable AGS cell line with 
diminished expression of NOD1 (NOD1 knockdown, 
NOD1 KD cells), and found that NF-κB activation and 
CXCL8 production are markedly reduced in NOD1 KD 
cells than in AGS cells with intact NOD1 expression. 
Moreover, H. pylori-induced CXCL8 production by 
gastric ECs is partially mediated by MAPK activation 
following the recognition of this organism by NOD1, 
as knockdown of NOD1 expression by siRNA results 
in reduced activation of MAPKs and MAPKs inhibitors 
efficiently blocks CXCL8 production[39]. These reports 
support the idea that activation of NF-κB/MAPK and 
production of CXCL8 induced by exposure to H. pylori 
are dependent on NOD1. On the other hand, Hirata 
et al[38] reported that knockdown of NOD1 or RIP2 
expression by specific siRNAs did not affect H. pylori-
induced NF-κB/MAPK activation or CXCL8 production 
in AGS cells. Future in vitro studies are required to 
determine the contribution of NOD1 in NF-κB activation 

Cytokine and chemokine 
responses against H. pylori by 
NOD1 activation 
NOD1 senses H. pylori-derived PGN that is delivered to 
the cytosolic region of gastric ECs via T4SS and/or OMV 
transport. The next question is how NOD1 activation 
leads to the induction of Th1 and Th17 responses, both 
of which are characteristics of chronic H. pylori infection 
(Figure 1).

NOD1 activation leads to the physical interaction 
between NOD1 and RIP2, its downstream effector 
molecule[7,11]. NOD1-induced RIP2 activation triggers 
the pro-inflammatory signaling cascade through nuclear 
translocation of NF-κB subunits[7,11]. In addition to NF-
κB, the interaction between NOD1 and RIP2 leads to 
the activation of mitogen-activated kinases (MAPKs), 
including extracellular signal-regulated kinase, c-JUN 
N-terminal kinase, and p38[7,11]. Thus, one major 
outcome of NOD1-mediated signaling pathways is the 
activation of NF-κB and MAPKs[7,11]. Activation of NF-κB 
and MAPKs as well as production of CXCL8 is induced 
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Figure 1  Nucleotide-binding oligomerization domain 1-mediated mucosal host defense against Helicobacter pylori infection. Nucleotide-binding 
oligomerization domain 1 (NOD1) recognizes Helicobacter pylori (H. pylori)-derived peptidoglycan (PGN) or outer membrane vesicles (OMVs). Sensing of H. pylori-
derived PGN or OMVs by intracellular NOD1 in the gastric epithelial cells induces production of type I IFN and C-X-C motif chemokine ligand 10 (CXCL10) through 
the receptor interacting protein 2 (RIP2)-TNF receptor-associated factor 3 (TRAF3)-interferon regulatory factor 7(IRF7)-IFN-stimulated gene factor 3 (ISGF3) pathway, 
thereby promoting T helper type 1 (Th1) responses. ISGF3 is a heterotrimeric complex composed of signal transduction and activator of transcription 1 (Stat1), Stat2, 
and IRF9. NOD1 activation also induces production of anti-microbial peptides (AMPs) through nuclear translocation of nuclear factor-kappa B (NF-κB) subunits. IFN-γ 
and AMPs exert bactericidal effects.
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in response to H. pylori infection.
Human gastric mucosa with persistent H. pylori 

infection is characterized by Th1 responses. CXCL9, 
CXCL10, and CXCL11 are EC-derived chemokines that 
play a pivotal role in the generation of Th1 responses 
through the attraction of Th1 cells expressing C-X-C 
chemokine receptor type 3 (CXCR3)[40]. High expression 
of CXCL9 and CXCL10 in the human gastric mucosa 
with chronic H. pylori infection strongly suggests 
that CXCL9 and CXCL10 contribute to the generation 
of Th1 responses[29,41]. We discerned from previous 
studies that stimulation of colon and gastric cancer 
cell lines (HT-29 and AGS cells) with NOD1 ligands 
lead to the robust production of CXCL9, CXCL10, and 
CXCL11[11,27,42]. Surprisingly, NOD1-induced CXCL10 
production by colonic and gastric ECs is not dependent 
on NF-κB or MAPK activation, because blockade of 
these pathways by specific pharmacological inhibitors 
or siRNA transfection did not alter the production 
of CXCL10[11,27,42]. Instead, NOD1-induced CXCL10 
production is markedly decreased by the addition of 
type I IFN receptor antibody, suggesting that type I 
IFN production is one of the major outcomes following 
NOD1 activation. Indeed, HT-29 cells produce a large 
amount of type I IFN upon stimulation with NOD1 
ligand.

Next, we focused on identifying the signaling 
pathways involved in type I IFN production through 
NOD1 activation. Detailed knockdown and over-
expression studies revealed the involvement of TNF 
receptor-associated factor 3 (TRAF3) in the induction 
of type I IFN[11,27,42]. The interaction between NOD1 and 
RIP2 initiates recruitment of TRAF3 to this complex 
and leads to the activation of downstream signaling 
molecules, TANK-binding kinase 1 (TBK1) and IκB 
kinase ε (IKKε), both of which play an indispensable 
role in the induction of type I IFN responses through 
nuclear translocation of interferon regulatory factor 
3 (IRF3) and IRF7[43,44]. Indeed, the RIP2-TRAF3-
TBK1-IKKε-IRF7 axis plays a key role in inducing the 
production of type I IFN by ECs[27,42]. Furthermore, 
NOD1-mediated type I IFN production promotes the 
transcription of CXCL10 through nuclear translocation 
of the heterotrimeric complex, IFN-stimulated gene 
factor 3 (ISGF3), composed of signal transduction and 
activator of transcription 1 (Stat1), Stat2, and IRF9, 
because gene silencing of Stat1 or Stat2 by siRNA 
leads to a marked reduction in CXCL10 production. 
Thus, these data suggest that NOD1 activation induces 
the production of type I IFN and CXCL10 through 
activation of the RIP2-TRAF3-TBK1-IKKε-IRF7-ISGF3 
pathway[11,27,42]. 

The relevance of NOD1-mediated type I IFN 
responses was examined in animal studies in which 
NOD1-intact and NOD1-deficient mice were challenged 
with H. pylori. As expected, NOD1-deficient mice 
exhibited a higher bacterial burden in the stomach 
two weeks after the infection, and the effects were 

accompanied by reduced expression of type I IFN-
related factors, such as IFN-β, IFN-γ and CXCL10, 
rather than NF-κB-related factors, such as TNF-α 
and CXCL2[11,27,42]. Reduced expression of phospho-
Stat1 (p-Stat1) and p-Stat2 is observed in the gastric 
mucosa of NOD1-deficient mice, when compared with 
that in NOD1-intact mice. However, comparable levels 
of NF-κB activation are observed in both mice. Finally, 
the blockade of type I IFN signaling pathways by Stat1 
siRNA increased bacterial burden in the stomach upon 
oral infection with H. pylori in NOD1-intact mice. Its 
effects were accompanied by reduced expression 
of IFN-γ and CXCL10 in the stomach. In contrast, 
blockade of NF-κB signaling pathways by NF-κB decoy 
oligonucleotide did not alter the bacterial burden or 
expression of IFN-γ or CXCL10 in the stomach, although 
these treatments reduced the gastric expression of 
TNF-α and CXCL2. Collectively, these data suggest 
that sensing of H. pylori-derived PGN by intracellular 
NOD1 in gastric ECs induces production of type I IFN 
and CXCL10 through the RIP2-TRAF3-TBK1-IKKε-IRF7-
ISGF3 pathway and thereby promotes Th1 responses. 
Because IFN-γ produced by Th1 cells enhances the 
expression of NOD1[27,42,45], we propose that the type 
I IFN-CXCL10-IFN-γ axis induced by NOD1 activation 
forms a positive feedback loop for the generation of 
Th1 responses in the gastric mucosa with persistent H. 
pylori infection.

Little is known about the molecular mechanisms 
accounting for NOD1-mediated Th17 responses in 
H. pylori infection. In this regard, a recent study has 
highlighted the importance of NOD1 activation in non-
hematopoietic cells, i.e. ECs, in the generation of Th17 
responses[46]. Therefore, it is possible that the sensing 
of H. pylori-derived PGN or OMVs by intracellular NOD1 
in gastric ECs is involved in Th17 responses.

Response of anti-microbial 
peptides against H. pylori by NOD1 
activation 
Antimicrobial peptides (AMPs) constitute a part of 
the innate host defense system[47]. AMPs released 
by APCs and ECs rapidly act to eradicate invading 
microorganisms[47]. Grubman et al[36] reported that 
AGS cells release β-defensins upon exposure to cagPAI-
positive H. pylori. Production of β-defensins by AGS 
cells is dependent on NOD1 activation, because stable 
NOD1-knockdown AGS cells exhibit reduced production 
of AMPs. Moreover, AMPs induced by exposure to 
H. pylori exhibit potent H. pylori eradicating activity. 
Consistent with this, the expression of β-defensin 4 in 
the stomach is markedly decreased in NOD1-deficient 
mice than in NOD1-intact mice following H. pylori 
infection[48]. Collectively, these in vitro and in vivo 
studies suggest the possible involvement of NOD1-
dependent production of AMPs in the mucosal host 
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defenses against H. pylori infection (Figure 1).

NOD1 polymorphisms and upper 
gastrointestinal diseases
Several reports have suggested an association between 
NOD1 gene polymorphisms and upper GI diseases[49-51]. 
Wang et al[51] identified the NOD1 rs7789045 TT 
genotype as an increased risk for gastric cancer in 
a Chinese population. Another Chinese cohort study 
reported that the risk of gastric cancer is high in H. 
pylori-infected subjects carrying the NOD1 rs 2709800 
TT genotype[52]. Moreover, Hofner et al[53] reported that 
the G796A NOD1 polymorphism is associated with 
peptic ulcers in H. pylori-infected patients. Although 
these studies support the correlation between NOD1 
polymorphisms and upper GI disorders caused by H. 
pylori, the mechanisms by which NOD1 polymorphisms 
lead to the development of H. pylori-associated diseases 
remain unknown. Because NOD1 deficiency increases 
gastric H. pylori burden in animals and its expression is 
lower in the cancerous tissues of the stomach than in 
the non-cancerous tissues[54], it would be interesting to 
study whether NOD1 function is impaired or enhanced 

in the presence of such polymorphisms associated with 
gastric cancer.

PREVENTION OF GASTRIC CANCER BY 
NOD1 ACTIVATION
NOD1 activation is required for mucosal host defense 
against H. pylori infection. This protective effect is 
partially mediated by the activation of type I IFN 
signaling pathways following the molecular interaction 
between NOD1 and TRAF3[11,27]. Suarez et al[54] have 
addressed the clinical relevance of NOD1-TRAF3 
interaction in human H. pylori-associated diseases. 
They reported that expression levels of NOD1 and 
TRAF3 are much weaker in gastric cancer tissues than 
in non-cancerous tissues. Thus, these studies utilizing 
human gastric cancer samples strongly suggest that 
impaired activation of NOD1 and TRAF3 is involved 
in the pathogenesis of gastric cancer and that NOD1-
TRAF3 interaction may play a protective role in the 
development of gastric cancer (Figure 2).

Thus, after confirming the possible involvement 
of NOD1 activation in the development of human 
gastric cancer, the next question is how NOD1 serves 

H. pylori

NOD1

RIP2

TRAF3

NF-kB NF-kB

TRAF3

RIP2

NOD1

Reduced CDX2 expression
Prevention of intestinal metaplasia

NOD1-intact gastric mucosa
Non-cancerous portion 

Enhanced CDX2 expression
Promotion of intestinal metaplasia

NOD1-deficient gastric mucosa 
Gastric cancer

Figure 2  Prevention of gastric cancer development by nucleotide-binding oligomerization domain 1. Sensing of Helicobacter pylori (H. pylori)-derived 
peptidoglycan (PGN) by intracellular nucleotide-binding oligomerization domain 1 (NOD1) in gastric epithelial cells induces activation of TNF receptor associated factor 
3 (TRAF3) as mentioned in Figure 1. TRAF3 activation by NOD1 negatively regulates expression of caudal-related homeobox 2 (Cdx2) via the inhibition of nuclear 
factor-kappa B (NF-κB) activation to prevent intestinal metaplasia and gastric cancer (left panel). On the other hand, lack of NOD1-mediated negative regulation on 
Cdx2 expression promotes the development of gastric cancer (right panel).
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as a protective factor for gastric cancer development. 
Intestinal metaplasia, wherein the gastric mucosa 
exhibits an intestinal phenotype, is a pre-neoplastic 
lesion of gastric cancer[55]. Aberrant expression of caudal-
related homeobox 2 (Cdx2)[55], a transdifferentiation 
factor, in the gastric tissue induces intestinal metaplasia 
and gastric carcinogenesis. We hypothesized that NOD1 
activation inhibits the development of gastric cancer 
through negative regulation of Cdx2[37]. To address this 
question, we performed a long-term infection study 
in which NOD1-intact and NOD1-deficient mice were 
challenged with cagPAI-positive H. pylori. Interestingly, 
formation of gastric intestinal metaplasia was observed 
in NOD1-deficient mice, eight months after initial 
challenge with H. pylori, but not in NOD1-intact mice. 
This effect was accompanied with higher expression of 
Cdx2 in the gastric mucosa of NOD1-deficient mice than 
in the NOD1-intact mice. On the contrary, expression 
of TRAF3 was lower in the gastric mucosa of NOD1-
deficient mice than in NOD1-intact mice. Furthermore, 
development of gastric intestinal metaplasia in the 
absence of intact NOD1 signaling pathways is associated 
with enhanced activation of NF-κB, because most gastric 
ECs are positive for nuclear p65 staining. Detection of H. 
pylori in gastric mucosa exhibiting intestinal metaplasia 
is difficult in human samples[56]. Consistent with this, H. 
pylori burden in the gastric mucosa was much lower in 
NOD1-deficient mice than in the NOD1-intact mice[37]. 
Thus, the results of our long-term H. pylori infection 
study support the data[54] obtained from human gastric 
cancer samples, demonstrating that impaired activation 
of NOD1-TRAF3 signaling pathways is involved in the 
development of intestinal metaplasia[37].

Regarding the molecular mechanisms by which 
NOD1 activation prevents the development of intestinal 
metaplasia and gastric cancer, we provided evidence 
that NOD1 activation upon exposure to H. pylori 
negatively regulates Cdx2 expression through activation 
of TRAF3[37]. Exposure to H. pylori upregulates 
Cdx2 expression in gastric cancer cell lines, and the 
effects are enhanced or diminished by gene silencing 
of NOD1 by siRNA or over-expression of TRAF3, 
respectively[37]. Furthermore, promoter gene and gel 
shift assays revealed that interaction between NOD1 
and TRAF3 inhibits the expression of Cdx2 through 
negative regulation of NF-κB activation. Thus, these in 
vitro studies have elucidated a part of the molecular 
mechanisms accounting for the prevention of intestinal 
metaplasia followed by gastric cancer via H. pylori-
induced NOD1 activation. Collectively, these two 
recent studies strongly suggest that NOD1 activation 
by H. pylori infection plays a protective role in the 
development of gastric cancer.

Conclusion
NOD1 contributes to mucosal host defense against 
H. pylori infection through the activation of type I 
IFN signaling pathways and production of AMPs. In 

addition, NOD1 activation negatively regulates Cdx2 
expression, and thereby inhibits the development of 
gastric cancer. Molecules involved in NOD1-mediated 
signaling pathways might be new therapeutic targets 
for treating chronic gastric diseases and gastric cancer.
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Abstract
Diversion colitis is characterized by inflammation of 
the mucosa in the defunctioned segment of the colon 
after colostomy or ileostomy. Similar to diversion colitis, 
diversion pouchitis is an inflammatory disorder occurring 
in the ileal pouch, resulting from the exclusion of the 
fecal stream and a subsequent lack of nutrients from 
luminal bacteria. Although the vast majority of patients 
with surgically-diverted gastrointestinal tracts remain 
asymptomatic, it has been reported that diversion 
colitis and pouchitis might occur in almost all patients 
with diversion. Surgical closure of the stoma, with 
reestablishment of gut continuity, is the only curative 
intervention available for patients with diversion disease. 
Pharmacologic treatments using short-chain fatty 
acids, mesalamine, or corticosteroids are reportedly 
effective for those who are not candidates for surgical 
reestablishment; however, there are no established 
assessment criteria for determining the severity of 
diversion colitis, and no management strategies to 
date. Therefore, in this mini-review, we summarize 
and review various recently-reported treatments for 
diversion disease. We are hopeful that the information 
summarized here will assist physicians who treat 
patients with diversion colitis and pouchitis, leading to 
better case management.

Key words: Diversion colitis; Diversion pouchitis; Ileitis; 
Inflammatory bowel disease

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Diversion colitis is characterized by inflam­
mation of the mucosa in the defunctioned segment 
of the colon after colostomy or ileostomy. The vast 
majority of diverted patients remain asymptomatic, 
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however diversion colitis occurs in almost all diverted 
patients. Pharmacologic treatment using short-chain 
fatty acids, mesalamine, or corticosteroids are reportedly 
effective for those who are not candidates for surgical 
reestablishment; however, there are no established 
assessment criteria for determining the severity of 
diversion colitis, and no management strategies to date. 
In this mini-review, we summarize and review various 
recently-reported diversion disease treatments. We 
hope this review will be useful for future treatment.

Tominaga K, Kamimura K, Takahashi K, Yokoyama J, Yamagiwa 
S, Terai S. Diversion colitis and pouchitis: A mini-review. World 
J Gastroenterol 2018; 24(16): 1734-1747  Available from: URL: 
http://www.wjgnet.com/1007-9327/full/v24/i16/1734.htm  DOI: 
http://dx.doi.org/10.3748/wjg.v24.i16.1734

INTRODUCTION
Diversion colitis was first described by Morson et al[1] in 
1974 as a non-specific inflammation in the diverted colon. 
Glotzer et al[2] labeled this inflammation “diversion colitis” 
in 1981. Since then, the disease has been reported in 
both retrospective[3-20] and prospective studies[21-27] which 
have described the characteristic clinical, endoscopic, and 
pathological findings. Surprisingly, the prospective study 
reported that almost all cases exhibit colitis, evidenced by 
endoscopic analyses, 3 to 36 mo after the colostomy[21]. 
Symptomatic cases make up only around 30% of all 
cases diagnosed via endoscopic studies, and the precise 
pathogenesis of this condition remains unclarified. 
Although a wide range of symptoms are reportedly asso
ciated with the disease, including abdominal discomfort, 
tenesmus, anorectal pain, mucous discharge, and rectal 
bleeding[3,4], there are no established diagnostic criteria 
for assessing disease severity. Diversion pouchitis is 
similar to diversion colitis, featuring inflammation of the 
ileal pouch that results from fecal stream exclusion and 
the subsequent lack of nutrients from luminal bacteria. 
Therefore, the difference between the pouchitis and 
diversion puchitis is whether the lesion is exposed to 
the fecal stream or not. Patients generally present with 
varying symptoms such as tenesmus, bloody or mucus-
like discharge, and abdominal pain[28]. The incidence of 
diversion pouchitis is unknown; however, it appears more 
commonly in patients with underlying inflammatory 
bowel disease (IBD). Nonsurgical approaches for the 
treatment of diversion pouchitis include the use of short 
chain fatty acids (SCFA), topical 5-aminosalicylic acids, 
and topical glucocorticoids. Unfortunately, efficacy study 
outcomes are conflicting, and the only curative approach 
is surgical re-anastomosis with the reestablishment of 
gut continuity[28-30].

In their 1989 examination of non-surgical treatment 
options procedure, Harig et al[5] reported the efficacy 
of short-chain fatty acids. The usefulness of the 5-ASA 
enema in patients with diversion colitis was reported for 

the first time by Triantafillidis et al[31] in 1991; Glotzer 
et al[2] reported the efficacy of steroid enemas in patients 
with diversion colitis in 1984, and similar results were 
subsequently reported by Lim et al[32] and Jowett et al[33]. 
Nonsurgical treatments include short-chain fatty acids, 
5-aminosalicylic acids, glucocorticoids, antibiotics, and 
so on. However, due to the lack established assessment 
methods, the efficacy of these treatments has not been 
clearly confirmed. Consequently, surgical re-anastomosis 
remains the most reliable and effective treatment 
option. There is an unmet need for a summary of these 
therapeutic options and information regarding the 
disease assessment, and this need informed the present 
literature review. We believe that the information 
summarized in this mini-review will help physicians treat 
cases and, by increasing the number of treated cases, 
we will support the establishment of novel criteria for 
disease assessments and therapeutic decision trees. 

LITERATURE ANALYSIS
A literature search was conducted using PubMed and 
Ovid, with the terms “diversion colitis” or “diversion 
proctitis” and “diversion pouchitis” used to extract 
studies published over the preceding 45 years. All 
appropriate English-language publications from relevant 
journals were selected. We summarized the available 
information on demographics, clinical symptoms, 
endoscopic and histological findings, treatment, and 
the clinical course. 

CLINICAL CHARACTERS
Epidemiology
A total of 69 articles, including 25 case reports, were 
matched to our definition of diversion colitis and 
pouchitis assessment; this information is summarized 
in Tables 1 and 2. Based on our review, the prevalence 
estimates of these conditions appear extremely high, 
reaching almost the entire population of interest if 
the phenomenon is followed prospectively, beginning 
at 3 to 36 mo after colostomy[21]. In a recent study, 
Szczepkowski et al[3] described more than 90% 
incidence of diversion colitis on endoscopy in a series 
of 145 patients. The study further reported that there 
were no significant associations between diversion 
colitis and age, sex, type of stoma, or mode of surgery 
performed. The frequency of disease occurrence ranged 
from 70%-74% in patients without pre-existing IBD[22] 
and 91% in patients with pre-existing IBD[6,21]. In 
patients with histories of Crohn’s disease chronic severe 
inflammation, often with transmural disease, has been 
described after defunctioning colostomies[34]. It has also 
been hypothesized that diversion colitis may be a risk 
factor for ulcerative colitis in predisposed individuals, 
and that ulcerative colitis can be triggered by anatomi
cally discontinuous inflammation in the large bowel[35]. 
Among the 46 reported cases of diversion colitis and 
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Table 2  Clinical course of case reports

Case (No) Ref. Age (yr) Gender 
(male/female)

Ineffective 
treatment Effective treatment Prognosis

1 Glotzer et al[2] 49 M N/A Closure 4 mo post-diversion
Asymptomatic. Proctoscopy and biopsy 

normal 2.5 and 30 mo postclosure.

56 F N/A Closure 3 mo post-diversion
Recurrent Ca. Mucosa not inflamed grossly 

or microscopically 18 mo post closure.
78 M N/A Closure 6 mo post-diversion Asymptomatic 1 yr postclosure.

70 F N/A Closure 5 mo post-diversion
Asymptomatic. Normal sigmoidoscopy 2 

mo postclosure.

43 F N/A Closure 2 yr post-diversion
Asymptomatic. Normal sigmoidoscopy 3 yr 

postclosure.
41 F N/A None Asymptomatic 2 yr after ileostomy.

65 M N/A None
Abdominal cramps purulent rectal 

discharge. Continued inflammation 8 yr 
after colostomy.

83 M N/A None
Asymptomatic. Continued mild 

inflammation 4.5 yr after colostomy.
26 M N/A Steroid enemas Inproved. Continued 8 yr after colostomy.

70 M N/A Steroid enemas
Tenesmus, discharge and fever 4 yr after 

colostomy. Resolved with steroid enemas. 
Continued inflammation at 8 yr.

2 Lusk et al[39] 28 M - Colostomy closure Normal at 16 mo follow-up.
68 M - Colostomy closure Normal at 7 wk after clousure.

3 Scott et al[46] 21 M - Colostomy closure

One month later, the patient was examined 
by flexible sigmoidoscopy, which 

demonstrated normal mucosa throughout 
with no sign of pseudopolyps.

4
Korelitz 
et al[42] 22 F Steroid enemas

Ileocolic reanastomosis (ileostomy 
closure)

3 mo (interval from reanastomosis to normal 
sigmoidoscopy), 7 yr (duration normal).

34 F - Ileostomy closure
1 mo (interval from reanastomosis to normal 

sigmoidoscopy), 2 yr (duration normal).

31 M - Ileostomy closure
3 mo (interval from reanastomosis to normal 
sigmoidoscopy), 18 mo (duration normal).

32 M - Ileostomy closure
2 mo (interval from reanastomosis to normal 
sigmoidoscopy), 14 mo (duration normal).

5
Fernand 

et al[40] 67 F -
Left hemicolectomy and left salpingo-

oophorectomy
She recoverd well and discharged 9 d later.

6 Frank et al[13] 38 M
Oral and topical 

steroids

Abdominoperineal resection of 
the diverted loop and permanent 

colostomy

No evidence of inflammatory bowel disease 
has developed. Barium study of the small 

bowel was normal 1 yr after surgery.
7 Harig et al[5] 63 M N/A Short-chain-fatty acid irrigation N/A

63 F N/A Short-chain-fatty acid irrigation N/A
54 M N/A Short-chain-fatty acid irrigation N/A
56 M N/A Short-chain-fatty acid irrigation N/A

8
Triantafillidis 

et al[31] 64 F -
5 aminosalicylic acid enemas 

comparison with Betamethasone 
enemas

There were no differences in the degree of 
clinical improvement, or in the endoscopic 
and histologic scores seen at the end of the 
trials, between betamethasone and 5-ASA.

9 Tripodi et al[43] 85 F - 5-aminosalicylic acid enemas
Clinically asymptomatic at a 6-mo follow-

up.

10 Lu et al[38] 45 F
Intravenous 

metronidazole
Colectomy of the diverted segment

Without complications and has been doing 
well postoeratively.

11 Lai et al[47] 49 M -
Daily 5-ASA suppository and total 

parenteral nutrition
6 wk of treatment with 5-ASA, the patient 
had decreased rectal pain and bleeding.

12 Lim et al[32] 60 F -
Oral prednisolone, oral mesalazine, 

and mesalazine enemas
PSL was tapered off over four months and 

she remained well.

0 M

Closure of the 
loop ileostomy→
oral prednisolone, 
oral olsalazine and 
oral metronidazole

→sigmoid loop 
colostomy

The defunctioned rectosigmoid 
was partially removed, leaving the 
lower rectum and anal canal; the 

loop colostomy was refashioned into 
an end colostomy→colectomy and 

removal of residual rectal stump and 
anal canal was performed and an end 

ileostomy fashioned

He subsequently made a good recovery and 
steroid therapy was discontinued.

13 Jowett et al[33] 75 F - Topical steroid enemas. UC
14 Lim et al[35] 66 M - Steroid enemas 6 mo later he developed ulcerative colitis.
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nutritional deficiencies, toxins, or disturbance in the 
symbiotic relationship between luminal bacteria and 
the mucosal layer[2]. Reportedly, concentrations of 
carbohydrate-fermenting anaerobic bacteria and patho
genic bacteria are reduced in de-functioned colons[5,23,53] 
and these reports indicate that the overgrowth of 
anaerobic bacteria or a pathogenic bacterium is 
unlikely to be an important etiological factor. On the 

other hand, there is an increase of nitrate-reducing 
bacteria in patients with diversion colitis[7] and nitrate-
reducing bacteria produce nitric oxide (NO) which plays 
a protective role in low concentrations, but at higher 
levels it becomes toxic to the colonic tissue[54]. Thus, it 
has been suggested that increases in nitrate-reducing 
bacteria may result in toxic levels of NO, leading to the 
diversion colitis. 

15 Kiely et al[36] 6 M PSL and AZA SCFA

Oral PSL was continued at the reduced rate 
of 5mg on alternate days until he underwent 

an uneventful rectal excision and J-pouch 
anal anastomosis 1 mo later. Two months 

after this, his ileostomy was closed.

3 M Salazopyrine SCFA
His ileostomy was closed 3 mo later, and he 

was remained symptom free.

8 F - SCFA

Her ulceration was virtually healed and 
showed a reduction in endoscopic index 
from 9 to 3. Treatment was maintained 

until her colostomy was reversed a month 
later. After stoma closure, SCFAs were 

discontinued with no further recurrence of 
symptoms.

3 M N/A SCFA For redo pull-through
10 M N/A SCFA Rectal excision

16
Komuro 

et al[41] 46 M - -
The post endoscopic course was uneventful 

without any treatment.

17 Tsironi et al[48] 40 M
Mesalazine 

suppository and 
steroid enemas

Metronidazole suppository
Improved quickly and remains well and 

asymptomatic 12 wk after treatment.

18 Boyce et al[37] 29 M - Completion proctectomy
Completion proctectomy was uneventful 

and from which the patient made an 
unremarkable recovery.

19
Haugen 
et al[49] 36 F

The water and 
vinegar solution 
enema, steroid 

enema, bismuth 
subsalicylate 

(standard treatment 
SCFA enmas was 
not option due to 

insurance and spina 
bifida)

Antegrade irrigations of her distal 
bowel with tap water

Weekly to twice weekly irrigations 
completely stopped the malodorous and 

troublesome discharge.

20
Talisetti 
et al[50] 19 F

SCFA enema, 
steroids, 

metronidazole

Colectomy(entire colon was ultimately 
resected, Since only 15 cm of jejunum 
appeared healthy, her mid and distal 

small bowel was also resected up to 15 
cm from the ligament of Treitz)

N/A

21
Kominami 

et al[51] 84 M
Short-chain fatty 

acid enema
5-aminosalicylic acid enemas

Undergoing 5-aminosalicylic acid enemas 
maintenance therapy.

22
Watanabe 

et al[44] 76 F

Oral mesalazine, 
corticosteroid, 

metronidazole, and 
ciprofloxacin

Leukocytapheresis, following 
low dose of metronidazole and 

ciprofloxacin

After 18 mo, her condition remains stable 
without the need for medication.

23
Gundling 

et al[45] 75 F

Enemas containing 
5-aminosalicylic 
acid and steroids 

and antibiotic 
therapy

Autologous fecal transplantation

All symptoms improved dramatically within 
5 d after the first treatment. Colonoscopy 28 
d after the first treatment showed no major 
signs of inflammation in the colonic stump.

24
Matsumoto 

et al[52] 65 M

Corticosteroid and 
mesalazine enemas, 

prednisolone 
injections.

A combined mesalazine plus 
corticosteroid enema

Finally proctectomy and ileal pouch-anal 
anastomosis were successfully performed.

25 Custon et al[29] 44 M -
Dextrose( hypertonic glucose ) spray 

endoscopically

The patient did not experience further 
episodes of recurrent bleeding during the 
6-mo follow-up. No prescribed medicines 
were given after the endoscopic therapy.
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Recently, ischemia has been proposed as a cause 
of diversion colitis[8]. The explanation surely lies in 
changes to the luminal flora consequent to fecal stream 
interruption. Normal luminal bacteria produce SCFA, 
such as butyric acid. Butyrate is the principal oxidative 
substrate for colonocytes[55] and patients with diversion 
colitis may improve following topical treatment with 
SCFA, especially with butyrate enemas[5,36]. This 
hypothesis is based on evidence that suggests SCFA 
relax vascular smooth muscle and that butyrate 
deficiencies may induce increased tone in the pelvic 
arteries, therefore leading to relative ischemia of the 
colorectal mucosa and intestinal wall[5]. It is obvious 
that additional, basic research is necessary in order to 
discern disease mechanisms. We have summarized the 
pathogenesis of this disease entity in Figure 1.

Symptoms
Most patients are asymptomatic[22], however about one 
third of patients may exhibit symptoms of diversion 
colitis[2,3,6,9]. Patients generally present with varying 
symptoms such as abdominal discomfort, tenesmus, 
anorectal pain, mucous discharge, and rectal bleeding. 
The most common symptoms include bloody, serous, 
or mucous discharge in 40% of the population, 
and abdominal pain and tenesmus in 15% of the 
population[3]. There have been several reports of severe 
rectal bleeding[24,29,56]. There is a report of massive 
rectal distension causing bilateral ureteric obstruction[37] 
and a case report of diversion colitis causing severe 
sepsis requiring a colectomy[38]. These symptoms can 
start within 1 mo to 3 years after surgery[22,24]. Our 

review also showed that clinical symptoms of rectal 
bleeding were seen in 25 cases, abdominal pain in 3 
cases, anal pain in 3 cases, and sepsis in 1 case[38]. 
On the other hand, 21 of 46 cases had no symptoms 
(Table 1), as previously reported[24]. Additionally, in the 
presence of Crohn’s disease and ulcerative colitis, the 
number of symptomatic patients rises to 33% and 87% 
respectively[53]. Our review showed cases with primary 
illness of diverticula with perforation (n = 11), fecal 
incontinence (n = 6), chronic constipation or ileus (n = 
5), ulcerative colitis (n = 5), Crohn’s disease (n = 4), 
carcinoma (n = 3), and various other diseases (Table 1). 

Macroscopic findings
Macroscopically, diversion colitis may involve the whole 
de-functioned colon or isolated segments. These findings 
include erythema, diffuse granularity, and blurring of 
vascular pattern in about 90% of the population. It is 
also associated with mucosal friability (80%) edema 
(60%), apthous ulceration, and bleeding, to varying 
degrees[2,3,8-12,39,40]. There is a case report of diversion 
colitis causing mucosal tears within the defunctioned 
colon[41]. Recently, Hundorfean et al[57] reported a first 
description and in vivo diagnosis of diversion colitis after 
surgery, by virtual chromoendoscopy and fluorescein-
guided confocal laser endomicroscopy. Our literature 
review showed that endoscopic findings were evidenced 
in 44 out of 46 cases, and severe inflammation with 
ulceration (endoscopic index ≥ 8) in 17 cases. 

Microscopic findings
The pathological finding of diversion colitis and pouchitis 

Figure 1  Schematic presentation of diversion colitis and pouchitis.
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usually vary with degree of severity, therefore, no 
specific microscopic findings have been noted. The 
histological features of diversion colitis can mimic those 
of IBD, even when a pre-existing IBD has not been 
documented[10,11,13-15]. The most notable feature often 
seen in diversion colitis is lymphoid follicular hyper
plasia[9,14,58]. Atrophy, crypt branching, mucin depletion, 
crypt distortion, regenerative hyperplasia, paneth cell 
metaplasia, thickening of muscularis mucosa, diffuse 
active mucosal inflammation with crypt abscesses, 
ulceration, and vacuolar and epithelial degeneration 
along with features of chronic inflammation (usually 
confined to the mucosa) are seen with varying degrees 
of severity[9-12,14,16,17,59]. More recently, features of 
ischemia, such as superficial coagulative necrosis and 
fibrosis, have been described[8]. Our review showed 
that 37 out of 46 cases exhibited pathological findings 
including 15 cases of crypt abscess or cryptitis[2], and 
14 cases of lymphoid follicular hyperplasia (which 
was not previously identified as a feature of diversion 
colitis). These features are non-specific and, to date, no 
characteristic feature or features of diversion colitis have 
been identified.

Treatment 
Because of the small number of patients and the 
unknown etiology, there is no established standard 
therapy for diversion colitis and pouchitis. Szczepkowski 
et al[4] proposed a management strategy for patients 
with de-functioned distal stomas. He divided patients 
with diversion colitis into three groups based on a study 
of 145 patients. These groups consisted of Group 1 
(no clinical, morphological or endoscopic evidence of 
diversion colitis), Group 2, (mild or moderate signs of 
diversion colitis), and Group 3 (severe diversion colitis). 
Group 1 can be treated conservatively, Group 2 can 
be treated using conservative management prior to 
restoration of colonic continuity and Group 3 should 
ideally undergo restoration of colonic continuity. If a 
surgical option is not feasible, pharmacologic treatment 
options should be tried to resolve the inflammation. A 
summary of the clinical courses of case reports is shown 
in Table 2.

Surgery
Treatment of diversion colitis should be primarily directed 
at restoring bowel continuity to restore the luminal 
flow. This will resolve the symptoms and assist the 
bowel to return to normal. Re-anastomosis has proven 
to be consistently effective in halting the symptoms of 
diversion colitis in a number of studies[2,10,25,39,42]. Re-
anastomosis of diverted segments in patients with 
preexisting inflammatory bowel disease is a more 
difficult decision because inflammation in the diverted 
segment could represent inflammatory bowel disease or 
diversion colitis, each of which dictate different courses 
of action[3,21,42]. Resection is not typically required. 
Indications for resection include uncontrolled perianal 

sepsis, perianal fistulous disease, anal incontinence, and 
uncontrolled symptoms related to diversion colitis.

Diet and lifestyle
Nutritional imbalance in the excluded colon is likely 
responsible for the pathologic changes and symptoms 
of diversion colitis. However, current evidence does not 
support the effectiveness of lifestyle modifications or 
nutritional imbalance[60].

Pharmacologic treatment is generally indicated for 
the temporary control of symptoms in preparation for 
surgery. It is used occasionally for patients who are 
not considered surgical candidates because of severe 
medical comorbidities, poor sphincter function, or 
reasons of technical difficulty.

Short-chain-fatty acid
Short-chain fatty acids, mainly butyrate, are the 
major fuel source for the epithelium. Their absence in 
the diverted tract may produce mucosal atrophy and 
inflammation. Bacteria produce SCFAs as byproducts 
of carbohydrate fermentation in the colonic lumen, and 
SCFAs provide the primary energy source for colonic 
mucosal cells[13]. In human neutrophils, SCFAs reduce 
the production of reactive oxygen species, which are 
the agents of oxidative tissue damage[61]. Treatment 
of diversion colitis with SCFA or butyrate has shown 
inconsistent results. Harig successfully improved 
symptoms and endoscopic inflammatory change by 
SCFA[5]. Komorowski et al[10] reported similar results in 
four patients with diversion colitis with SCFA irrigation. 
However, Guillmot et al[16,28]. failed to demonstrate 
either histological or endoscopic improvement The 
differences in response may be partially accounted for 
by disease groupings. In recent years, several studies 
on the usefulness of SCFA, including of butyrate, are 
reported[19,62]. Cristina et al[27] proposed that butyrate 
enemas may prevent the atrophy of the diverted colon/
rectum, thus improving the recovery of tissue integrity.

5-aminosalicylic acid
Usefulness of 5-aminosalicylic acid (5-ASA) enemas 
in diversion colitis was reported for the first time by 
Triantafillidis et al[31] in 1991. Tripodi et al[43] has also 
reported similar results in 1992. Caltabiano et al[63] 
reported that 5-ASA enema reduces oxidative DNA 
damage in colonic mucosa and reduces mucosal damage 
using rats in a diversion colitis model. It is considered 
that the mucosal disorder may be improved by protective 
action against oxidative DNA damage and the anti-
inflammatory action of 5ASA[64].

Corticosteroids
Glotzer reported on several patients with diversion 
colitis treated by steroid enemas in 1984[2]. Lim and 
Jowett also reported the efficacy of the steroid enemas 
in 2000[32,33]. Corticosteroids are first-line agents for 
symptomatic diversion colitis, with varying effectiveness.
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Irrigation with fibers
Resolution of diversion colitis, based on endoscopic and 
histologic examination, has been reported following 
irrigation of the diverted segment of the colon with 
fibers[65,66]. Joaquim et al[66] investigated the effect 
of irrigating the colorectal mucosa of patients with a 
colostomy using a solution of fibers. In 11 patients with 
loop colostomies, the diverted colorectal segment was 
irrigated with a solution containing 5% fibers (10 g/d) 
for 7 d. Irrigation with fibers improves inflammation 
within the defunctionalized colon, so this therapy 
may play a role in the preoperative management of 
colostomies, potentially decreasing the high incidence of 
diarrhea after reestablishment of the intestinal transit.

Leukocytapheresis
Watanabe et al[44] reported successful treatment of 

leukocytapheresis in a patient with chronic antibiotic-
refractory diversion pouchitis following IPAA for UC 
with diverting ileostomy. The mucosa of the diverted 
pouch is less exposed to the fecal stream and patho
gens. Therefore, altered immunity likely plays a major 
role in the maintenance of diversion pouchitis. Leukocy
tapheresis to address the altered immunity would 
seem a reasonable approach for antibiotic-refractory 
pouchitis following IPAA for UC with diverting ileostomy, 
and its effectiveness in the case suggests that altered 
immunity may be a key contributing factor compared 
with dysbiosis, bacterial pathogens, and ischemia.

Autologous fecal microbiota transplantation 
Fecal microbiota transplantation (FMT), which consists of 
transferring stool from a healthy donor to the patient’s 
colon, is an effective treatment for some diseases of the 

Table 3  Summary of pharmacologic treatments

Treatment Ref. Procedure/standard dosage Efficacy Complications/main side effects

Surgical 
anastomosis

[2,3,10,21,25,39,42] Mobilization of both ends of the 
bowel with either sutured or 

stapled anastomosis.

The most effective method 
of eliminating the signs and 

symptoms

Bleeding, infection, anastomotic 
leak, anastomotic stricture, 

anesthetic risks
Corticosteroids [2,32,33] Hydrocortisone (100 mg per 60 

mL bottle) enema is administered 
once daily for up to 3 wk.

Response to treatment is generally 
seen in 3 to 5 d.

Local pain and burning, 
occasionally rectal bleeding.

Occasional treatment may be 
given for 2 to 3 mo depending on 

clinical response.

Prolonged treatment may result 
in systemic absorption, causing 

systemic side effects.
5-aminosalicylic 
acid (5-ASA) 
enemas

[31,43,63,64] 4 g of mesalazine in 60 mL 
suspensions, administered rectally 

once-daily dose for 4 to 5 wk.

Varying effect Occasionally produces acute 
intolerance manifested by 

cramping, acute abdominal pain, 
bloody diarrhea, fever, headache, 

and rash.
Short-chain-fatty 
acid (SCFA)

[5,10,13,18,19,26,27,61,62] SCFA enema rectally twice a 
day for 2 wk, and then tapered 

according to response over 2 to 4 
wk.

Varying effect None

Irrigation with 
Fibers

[65,66] Solution containing 5% fibers (10 
g/d) for 7 d.

The endoscopic score which is 
used to quantify the intensity of 
the inflammation at the mucosa 
at the diverted colon diminished 

after treatment.

Probably none

Leukocytapheresis [44] Leukocytapheresis, at flow rate 
of 40 mL/min for 60 min, once 

weekly for 5 wk, following 
low dose of metronidazole and 

ciprofloxacin, another set of 
weekly leukocytapheresis was 

added.

Significant improvement in her 
pouchitis disease activity index 

(PDAI) from 14 to 1.

The common side effects were 
nausea, vomiting, fever, chills, 

and nasal obstruction.

Autologous fecal 
transplantation

[45] Feces were collected from the 
colostomy bag, diluted with 600 

ml of sterile saline (0.9 %), stirred 
and filtered three times using an 
ordinary coffee filter, irrigation 
endoscopically. This procedure 

was repeated 3 times within 4 wk 
(on day 0, day 10 and day 28).

All symptoms improved 
dramatically within 5 d after the 
first treatment. Colonoscopy 28 d 
after the first treatment showed 

no major signs of inflammation in 
the colonic stump

None, patient's tolerance required.

Dextrose spray 
(hypertonic glucose) 

[29] Endoscopically sprayed with 150 
mL 50% dextrose via a catheter.

Follow-up pouchoscopy 2 wk 
after the dextrose spray showed 
normal pouch mucosa with no 

evidence of bleeding or mucosal 
friability.

It has a very low chance of 
causing transient hyperglycemia 

because there is no direct injection 
of the hypertonic solution into 

blood vessels.

Tominaga K et al . Diversion colitis and pouchitis
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colon such as Crohn’s disease and recurrent Clostridium 
difficile infections[67]. Gundling et al[45] presented that 
autologous FMT might be an effective and safe option 
for relapsing DC after standard therapies have failed. 
Since the interruption of the fecal stream is central to 
the development of DC, FMT seems to be a hopeful 
treatment.

Dextrose spray
Custon et al[29] presented a patient with ulcerative colitis 
with severe hematochezia and diffuse mucosal bleeding 
in a diverted ileal pouch, which was successfully treated 
with endoscopic spray of hypertonic glucose (50% 
dextrose). Hypertonic glucose may work thorough 
osmotic dehydration and sclerosant effects, inducing long-
term mural necrosis and fibrotic obliteration of mucosal 
vessels[68,69]. Glucose spray is safe and inexpensive, and 
it carries a very low risk of complications. The approach 
has the potential to reduce recurrent bleeding and need 
for surgical interventions. 

SUMMARY OF PHARMACOLOGIC 
TREATMENTS 
The goal of treatment is the reduction or elimination of 
symptoms. Patients who desire stoma closure and have 
acceptable risks should undergo surgery to re-establish 
intestinal continuity. In their prospective study, Son et al[20] 
reported that the severity of DC is related to diarrhea 
after an ileostomy reversal and may adversely affect 
quality of life. Pharmacologic treatments are needed 
for symptomatic patients with permanent stomas and 
patients who are unable to undergo stoma closure for 
reasons of technical difficulty, poor anal sphincter function, 
or persistent perianal sepsis. In our review, SCFA[5,10,18,19,

26,27,36,62], 5-ASA enemas[31,43,47,51], steroid enemas[21,32,33], 
and irrigation with fibers[65,66] have been tried with various 
efficacies for mucosal inflammation. Only case reports 
of therapy involving leukocytapheresis[44], autologous 
fecal microbiota transplantation (FMT)[45] and dextrose 
(hypertonic glucose) spray[29] have been tried with some 
effect. We have summarized the method, advantages and 
disadvantages of each pharmacologic treatment in Table 3.

CONCLUSION
The vast majority of diverted patients remain asym
ptomatic, however diversion colitis occurs in almost all 
diverted patients. It generally resolves following colostomy 
closure. However, those patients with significant 
symptoms or histories of colitis or diarrhea should 
undergo a complete proximal and distal colonic evaluation 
prior to stoma closure, and some treatments need not 
be delayed in these patients. Patients with permanent 
diversions should undergo periodic pharmacologic 
treatment. This review of various treatments for diversion 
colitis will hopefully be useful for determining future 
treatments.
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Abstract
AIM
To comprehensively evaluate mitochondrial (dys) function 
in preclinical models of nonalcoholic steatohepatitis 
(NASH).

METHODS
We utilized two readily available mouse models of 
nonalcoholic fatty liver disease (NAFLD) with or without 
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progressive fibrosis: Lepob/Lepob (ob/ob) and FATZO mice 
on high trans -fat, high fructose and high cholesterol 
(AMLN) diet. Presence of NASH was assessed using 
immunohistochemical and pathological techniques, and 
gene expression profiling. Morphological features of 
mitochondria were assessed via  transmission electron 
microscopy and immunofluorescence, and function was 
assessed by measuring oxidative capacity in primary 
hepatocytes, and respiratory control and proton leak in 
isolated mitochondria. Oxidative stress was measured 
by assessing activity and/or expression levels of Nrf1 , 
Sod1, Sod2, catalase and 8-OHdG. 

RESULTS
When challenged with AMLN diet for 12 wk, ob/ob  
and FATZO mice developed steatohepatitis in the 
presence of obesity and hyperinsulinemia. NASH 
development was associated with hepatic mitochondrial 
abnormalities, similar to those previously observed 
in humans, including mitochondrial accumulation 
and increased proton leak. AMLN diet also resulted 
in increased numbers of fragmented mitochondria in 
both strains of mice. Despite similar mitochondrial 
phenotypes, we found that ob/ob  mice developed 
more advanced hepatic fibrosis. Activity of superoxide 
dismutase (SOD) was increased in ob/ob  AMLN mice, 
whereas FATZO mice displayed increased catalase 
activity, irrespective of diet. Furthermore, 8-OHdG, a 
marker of oxidative DNA damage, was significantly 
increased in ob/ob  AMLN mice compared to FATZO 
AMLN mice. Therefore, antioxidant capacity reflected as 
the ratio of catalase:SOD activity was similar between 
FATZO and C57BL6J control mice, but significantly 
perturbed in ob/ob  mice. 

CONCLUSION
Oxidative stress, and/or the capacity to compensate 
for increased oxidative stress, in the setting of mito
chondrial dysfunction, is a key factor for development 
of hepatic injury and fibrosis in these mouse models. 

Key words: Nonalcoholic steatohepatitis; Steatosis; 
Fibrosis; Mitochondrial function; Oxidative stress
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Core tip: ob/ob and FATZO mice developed nonalcoholic 
fatty liver disease/nonalcoholic steatohepatitis (NASH) 
when fed a high trans -fat, high fructose and high 
cholesterol diet, in the context of obesity and insulin 
resistance, but showed differences in liver disease 
severity including collagen deposition and monocyte/
macrophage infiltration. Mitochondrial dysfunction and 
increased numbers of mitochondria were observed in 
both models, similar to that reported in human NASH. 
Oxidative damage and antioxidant capacity were as
sociated with disease severity. FATZO mice displayed 
increased catalase activity and reduced oxidative DNA 
damage compared to ob /ob  mice, which may explain 
their lower disease burden. 

Boland ML, Oldham S, Boland BB, Will S, Lapointe JM, 
Guionaud S, Rhodes CJ, Trevaskis JL. Nonalcoholic steatohepatitis 
severity is defined by a failure in compensatory antioxidant 
capacity in the setting of mitochondrial dysfunction. World J 
Gastroenterol 2018; 24(16): 1748-1765  Available from: URL: 
http://www.wjgnet.com/1007-9327/full/v24/i16/1748.htm  DOI: 
http://dx.doi.org/10.3748/wjg.v24.i16.1748

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD), now the 
most common liver disease, encompasses a spectrum 
of disorders from benign simple fatty liver to the more 
severe non-alcoholic steatohepatitis (NASH) that can 
progress to liver cirrhosis and hepatocellular carcinoma. 
Given the strong association of NAFLD with obesity, 
type Ⅱ diabetes and other aspects of the metabolic 
syndrome, the current estimated NAFLD prevalence of 
20%-40% worldwide is expected to increase[1-3]. While 
no FDA-approved pharmacotherapies for NAFLD/NASH 
currently exist, more than 100 clinical trials are now 
targeting this highly significant unmet medical need. 

Insulin resistance is a major pathophysiological factor 
that underlies the strong association between obesity/
type Ⅱ diabetes and NAFLD. Increased circulating 
free fatty acids and de novo lipogenesis lead to excess 
lipid storage in the hepatocyte, and accumulation 
of intrahepatic lipid is linked to pathogenic insulin 
resistance and subsequent onset of type 2 diabetes. 
This lipid overload also places a unique burden on the 
mitochondria and promotes mitochondrial dysfunction 
in vitro and in animal models. Data from multiple 
studies suggest that while TCA cycle activity is increased 
in NAFLD, mitochondrial respiratory chain inefficiencies 
lead to increased generation of reactive oxygen species 
(ROS) and lipotoxic intermediates that further promote 
oxidative damage and inflammation[4-7]. Importantly, 
while increased hepatic mitochondrial respiration was 
observed in obese patients with and without fatty liver, 
this increase was lost in obese patients with NASH and 
was associated with increased mitochondrial content, 
proton leakage and oxidative stress[8]. 

While dysregulated mitochondrial metabolism has 
been implicated in NALFD pathogenesis and progression, 
the specific contribution to disease etiology remains 
an active area of investigation[9,10]. Multiple lines of 
evidence suggest that therapeutically targeting the 
mechanisms leading to mitochondrial dysfunction may 
improve liver disease[10,11]. The use of pre-clinical models 
that mimic human pathology in the context of known 
risk factors, including obesity and insulin resistance, 
are necessary to understand the clinical translatability 
of pharmacological interventions given the difficulty of 
studying humans with a slow progressing disease that 
cannot be confirmed non-invasively[12]. 

Hepatic mitochondrial function and oxidative stress 
in metabolically-relevant, pre-clinical models of simple 
fatty liver vs NASH have not been fully assessed. Here, 
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two pre-clinical mouse models of simple steatosis 
and NASH were investigated: ob/ob mice on NASH-
inducing AMLN diet[13], and the recently described 
polygenic FATZO mouse which develops high-fat diet-
induced obesity and impaired glucose tolerance and 
which retains an intact leptin axis[14,15]. Importantly, 
these models are readily available and rapidly and 
consistently develop clinically relevant disease. We 
characterized the contribution of mitochondria and 
oxidative stress to disease phenotype and demonstrate 
that a reduced ability to combat oxidative stress in the 
setting of mitochondrial dysfunction is associated with 
the progression to NASH with advanced fibrosis. These 
data highlight the utility of these models to dissect the 
underlying pathobiology of NAFLD disease progression 
and to predict pharmacological efficacy. 

MATERIALS AND METHODS
Animals
Animal studies were conducted in accordance with 
protocols approved by the Institutional Animal Care 
and Use Committee (IACUC) at MedImmune and 
in compliance with the applicable national laws and 
regulations concerning use of laboratory animals and 
the AstraZeneca Animal Welfare and Bioethics policies. 
Eight-week old male C57BL6J or Lepob/Lepob (ob/ob) 
mice (Jackson labs, Bar Harbor, ME, United States) 
and 8-week-old male FATZO mice (Crown Bioscience, 
Indianapolis, IN, United States) were housed in standard 
caging at 22 ℃ in a 12-h light: 12-h dark cycle at 
standard temperature and humidity conditions with ad 
libitum access to water and food. Mice were maintained 
on test diets for 12 wk. The following test diets were 
used: 2018 Tekland rodent diet (Envigo, United States), 
low-fat diet (LFD; 10% kcal/fat; D09100304, Research 
Diets, New Brunswick, NJ, United States) and the Amylin 
Liver NASH (AMLN) diet high in fat (40% kcal), fructose 
(22% by weight), and cholesterol (2% by weight) 
(D09100301 Research Diets). Study groups comprised 
C57BL6J chow fed (lean) mice (n = 6), ob/ob mice on 
LFD (n = 8) and ob/ob mice on AMLN diet (n = 10), or 
C57BL6J lean mice, FATZO mice on LFD, or FATZO mice 
on AMLN diet (all n = 5 per group).

Measurement of plasma ALT
Terminal blood was collected in EDTA-coated tubes 
and centrifuged at 10000 × g for 10 min. The plasma 
was collected and analyzed for ALT levels using a 
biochemistry analyzer (Cobas c-111, Roche Diagnostics, 
Indianapolis, IN, United States). 

Liver lipid quantification
Total lipids were measured in liver samples using a Bruker 
LF-90 minispec system (Bruker Biospin Corporation, 
Billerica, MA, United States). The data are expressed as 
the percent lipid relative to the total tissue mass. 

Plasma insulin and pancreatic insulin content
To isolate pancreatic insulin, the tissue was incubated 
in a 1.5% HCl/70% EtOH solution overnight at -20 ℃. 
The tissue was homogenized and frozen again overnight 
at -20 ℃. Following centrifugation at 2000 rpm for 15 
min, the aqueous layer was transferred to a new tube 
and neutralized upon the addition of 1 mol/L Tris, pH 
7.5 at a 1:1 ratio. Plasma and pancreatic insulin levels 
were measured via immunoassay (K152BZC, MesoScale 
Diagnostics, Rockville, MD, United States).

Histological analysis and quantification of liver tissue
Livers were fixed in 10% neutral buffered formalin for 
24 h. Paraffin-embedded tissue sections were stained 
with hematoxylin and eosin using standard procedures. 
Histological assessments were conducted by a pathologist 
under blinded conditions. A modified scoring system, 
based on the Brunt and Kleiner NAFLD activity score, 
previously developed and validated to enable a more 
reproducible and semi-quantitative assessment of murine 
liver was used to quantify various parameters of liver 
phenotype[16]. The following parameters were graded to 
generate the overall NASH score: macrovesicular stea
tosis (0: < 5%, 1: 5%-33%, 2: 34%-66%, 3: > 66%); 
ballooning degeneration (0 = absent, 1 = present); 
lobular inflammation (0 = no foci, 1 = rare foci, 2 = 
occasional foci, 3 = frequent foci); biliary hyperplasia (0 = 
none, 1 = mild, 2 = prominent); CD68 immunoreactivity 
(0 = normal, 1 = minimal increased, 2 = more than 
minimal increase). 

Customized algorithms (Definiens, Munich, Germany) 
were applied to the liver sections to quantify macro
steatosis per liver area, total collagen area and number 
of CD68-positive cells. White spaces, non-native liver 
tissues, large blood vessels and bile ducts were excluded 
from the analyses.

Immunohistochemistry
Immunohistochemistry was performed using a Ventana 
Discovery ULTRA Staining Module (Ventana Medical 
Systems, Tucson, AZ, United States). Formalin-fixed, 
paraffin embedded liver sections were stained with 
anti-CD68 (ab125212 Abcam, Cambridge, MA, United 
States), anti-collagen type 1 A1 (1310-01 Southern 
Biotech, Birmingham, AL, United States), or anti-catalase 
(PA5-29183, ThermoFisher).

Transmission electron microscopy
Freshly isolated liver was chemically fixed in 0.1 mol/L 
cacodylate buffer containing 4% paraformaldehyde and 
2% glutaraldehyde. Samples were resin-embedded, 
sectioned, and stained as previously described[17]. 
Samples were imaged using the FEI Tecnai G2 SPIRIT 
electron microscope equipped with a CCD camera 
(Pleasanton, CA, United States) at 120000 V. Images 
were acquired using GATAN digital micrograph software 
(Warrendale, PA, United States). Electron micrographs 
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proton leak, respectively[8]. Briefly, 5 μg of mitochondria 
were loaded per well of the seahorse plate in assay 
medium (70 mmol/L sucrose, 220 mmol/L mannitol, 10 
mmol/L KH2PO4, 5 mmol/L MgCl2, 2 mmol/L HEPES, 1 
mmol/L EGTA, 0.2% (w/v) fatty acid-free BSA, pH 7.2 
supplemented with complex Ⅱ substrate succinate at 
10 mmol/L). The following injections were performed: 
4 mmol/L ADP (state 3), 1 μmol/L oligomycin (state 
3o), 1 μmol/L FCCP (state 3U) and 4 μmol/L antimycin 
A/ 2 μmol/L rotenone. RCR is represented by the ratio 
of ADP-stimulated respiration (state 3) to respiration 
in the presence of oligomycin (state 3o), and LCR is 
represented by the ratio of respiration in the presence 
of oligomycin (State 3o) to FCCP-stimulated respiration 
(state 3U).

Citrate synthase activity
Mitochondrial content was quantified by citrate synthase 
activity (CSA) of freshly isolated primary hepatocytes 
or liver mitochondria using the Citrate Synthase Activity 
Colorimetric Assay Kit (BioVision, Milpitas, CA, United 
States) according to the manufacturer’s instructions and 
normalized to total protein assessed by the Pierce BCA 
protein assay kit (ThermoFisher). 

Isolation of liver mitochondria
Excised liver was rinsed in several changes of PBS and 
homogenized in ice cold isolation buffer (70 mmol/L 
sucrose, 210 mmol/L mannitol, 5 mmol/L HEPES, 1 
mmol/L EGTA, 0.5% w/v fatty acid-free BSA, pH 7.2) 
using a Wheaton™ Dounce Tissue Grinder (Fisher 
Scientific). After centrifugation at 800 x g for 10 min at 
4 ℃, the supernatants were collected and centrifuged at 
8000 × g for 10 min at 4 ℃. The resulting mitochondrial 
pellet was washed two times and resuspended in a 
minimal volume of isolation buffer. The isolated mitochon
dria were kept on ice until use. Protein concentration 
was determined using the Pierce BCA Protein Assay Kit 
(ThermoFisher).

RNA isolation and real-Time PCR
Total liver RNA and genomic DNA were isolated using 
standard procedures. Qiagen RNeasy® columns 
(Qiagen, United States) were used for RNA purification 
according to the manufacturer’s protocol, including 
an on-column DNA digestion using DNaseI. Equal 
amounts of RNA were reverse transcribed to cDNA 
using SuperScript Ⅲ First Strand cDNA synthesis kit 
(Invitrogen, Carlsbad, CA, United States) according to 
the manufacturer’s instructions. Real-Time PCR was 
performed on a QuantStudio-7 Flex System (Applied 
Biosystems, Foster City, CA, United States) using Applied 
Biosystems TaqMan Fast Universal PCR Master Mix and 
TaqMan probes. Each sample was assayed in triplicate 
and quantified using the ΔΔCT method normalized to 
endogenous control Ppia (mRNA) or nuclear encoded 
gene β-globin (gDNA). The following Taqman probes 
were used in qPCR assays: collagen type 1 alpha 1 
(Col1a1, Mm00801666_g1), collagen type 1 alpha 2 

were viewed in a blinded fashion using 3Dmod software[18] 
on a Wacom Cintiq 22HD art tablet (Vancouver, WA, 
United States). Mitochondrial area and number were 
quantified per total cytoplasmic area from ≥ 10 electron 
micrographs per group via manual tracing using the art 
tablet as previously described (N ≥ 3 biological replicates, 
≥ 1.5 mm2 total cytoplasmic area)[19]. 

Immunofluorescence
FFPE liver sections were deparaffinized followed by 
blocking of endogenous peroxidases. Antigen retrieval 
was carried out by heating samples at 119 C for 6.5 
min in citrate buffer solution (Dako Target Retrieval 
Solution, Agilent Technologies, Santa Clara, CA, United 
States). After blocking with 1.5% horse serum, slides 
were incubated overnight in anti-HSP60 (D6F1, Cell 
Signaling Technology, Danvers, MA, United States) in 
Dako antibody diluent (S3022, Agilent Technologies). 
Secondary antibody incubation with goat anti-rabbit 
Alexa 488 (ThermoFisher) was carried out at room 
temperature for 1 h. Slides were mounted using Prolong 
Gold plus DAPI (ThermoFisher). Slides were imaged 
using a Leica TCS SP5 X confocal microscope. Confocal 
images were viewed in a blinded fashion using 3Dmod 
software on a Wacom Cintiq 22HD art tablet (Vancouver, 
WA, United States). Mitochondrial length and number 
per total cytoplasmic area were quantified from ≥ 
15 images per group (n ≥ 3 biological replicates) via 
manual tracing of cell boundaries, nuclei, lipid droplets 
and mitochondria. Total cytoplasmic area was calculated 
as area within the cell boundary minus the nuclei and 
lipid droplet areas. 

Primary hepatocyte isolation 
Murine primary hepatocytes were isolated using a 
modified two-step non-recirculating perfusion method 
as previously described[20]. All assays were carried out 
within 18-24 h post-plating. 

Mitochondrial oxygen consumption 
Mitochondrial oxygen consumption was measured using 
the Seahorse Xfe96 analyzer (Agilent Technologies). 
Primary hepatocytes were plated at a density of 7500 
cells per well and allowed to recover overnight. The 
medium was exchanged (DMEM containing 5 mmol/L 
glucose, 4 mmol/L L-glutamine, 2 mmol/L sodium 
pyruvate, pH 7.4) and the plate was placed in a CO2-
free incubator for 30 min prior to being placed in the 
analyzer. The following compounds were used in the 
mitochondrial stress test: 1 μmol/L oligomycin (Sigma, 
St Louis, MO, United States), 0.5 μmol/L FCCP (Sigma), 
and 5 μmol/L antimycin A (Sigma). The data represent 
the average of three independent experiments each 
with a minimum of 8 replicates per group.

Mitochondrial coupling and proton leak
The respiratory control ratio (RCR) and leak control ratio 
(LCR) were quantified using freshly isolated hepatic 
mitochondria as an index of mitochondrial coupling and 
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(Col1a2, Mm00483888_m1), TIMP metallopeptidase 
inhibitor 1 (Timp1, Mm01341361_m1), interleukin 1 
beta (Il1b, Mm00434228_m1), cluster of differentiation 
68 (Cd68, Mm03047343_m1), tumor necrosis factor 
alpha (Tnf, Mm00443258_m1), PPARG coactivator 1 
alpha (Ppargc1a, Mm01208835_m1), nuclear respiratory 
factor 1 (Nrf1, Mm01135606_m1), transcription factor 
A, mitochondrial (Tfam, Mm00447485_m1), superoxide 
dismutase 1, soluble (Sod1, Mm1344233_g1), superoxide 
dismutase 2, mitochondrial (Sod2, Mm01313000_m1), 
catalase (Cat, Mm00437992_m1), glutathione per
oxidase (Gpx1, Mm00656767_g1), and peptidylprolyl 
isomerase A (Ppia, Mm02342430_g1). 

Oxidative stress assays 
Superoxide dismutase activity (7501-500-K, Trevigen, 
Gaithersburg, MD, United States) and catalase activity 
(707002, Cayman Chemical, Ann Arbor, MI, United 
States) were measured in freshly prepared liver homo
genates according to the manufacturer’s protocols. The 
levels of 8-hydroxydeoxyguanosine (8-OHdG) were 
measured via ELISA using approximately 20 μg of total 
hepatic genomic DNA (4380-096-K, Trevigen).

Statistical analysis
All statistical analyses were carried out using GraphPad 
Prism 7 (GraphPad Software, San Diego, CA, United 
States). The data were analyzed via one-way or two-
way ANOVA and Tukey’s post-test. Data are shown as 
the mean ± SE. Values of p ≤ 0.05 were considered 
significant. 

RESULTS
ob/ob mice develop NASH with fibrosis in the setting of 
obesity and insulin resistance 
NASH induction was assessed in ob/ob mice, a 
proposed NASH model when challenged with AMLN diet. 
C57BL6J mice served as healthy age-matched controls 
(lean) and were compared to ob/ob mice maintained 
on LFD (ob/ob LFD) or AMLN diet (ob/ob AMLN) for 12 
wk. After the 12-wk disease induction period, ob/ob 
LFD and ob/ob AMLN mice weighed significantly more 
than lean controls (p < 0.0001), but did not significantly 
differ from one another (Figure 1A). While non-fasting 
blood glucose was slightly reduced in ob/ob AMLN 
animals compared to lean controls (132 mg/dL vs 186 
mg/dL, p < 0.05; Figure 1B), plasma insulin levels (p 
< 0.05; Figure 1C) and pancreatic insulin content (p < 
0.01; Figure 1D) were concomitantly increased. 

We measured markers associated with NAFLD 
including liver weight, liver lipid, and plasma alanine 
aminotransferase (ALT). Liver weight was significantly 
greater in ob/ob LFD vs lean animals (8.6% vs 4.5%, 
p < 0.0001), and was further increased in ob/ob AMLN 
animals (12.7%, p < 0.0001; Figure 2A). Similarly, ob/
ob AMLN livers contained approxiately 34% intrahepatic 
lipid, which was significantly greater than livers from 
ob/ob LFD (25% lipid, p < 0.0001) and lean animals 

(5% lipid, p < 0.0001; Figure 2B). Plasma ALT was also 
significantly increased in ob/ob LFD vs lean animals (771 
U/L vs 160 U/L, p < 0.0001) and was further elevated 
in ob/ob AMLN animals (1160 U/L, p < 0.001 vs ob/ob 
LFD; Figure 2C).

Macrovesicular steatosis was prominent in both 
ob/ob LFD (60%) and ob/ob AMLN animals (67%, p 
< 0.001 vs ob/ob LFD; Figure 2D). Hepatic fibrosis 
assessed by quantification of type 1 collagen stained 
area was significantly greater in ob/ob LFD vs lean 
livers (p < 0.01) and even greater in ob/ob AMLN liver (p 
< 0.0001 vs ob/ob LFD) (Figure 2E). Immunolabeling 
with the monocyte/macrophage marker CD68 was also 
markedly elevated in ob/ob AMLN livers compared to 
ob/ob LFD and lean controls (p < 0.0001 vs ob/ob LFD; 
Figure 2F). 

We analyzed hepatic transcript levels of genes 
involved in fibrosis and inflammation that differentiate 
the more benign disease observed in ob/ob LFD liver 
histopathology from the steatohepatitis observed in ob/
ob AMLN livers. Transcripts encoding the most abundant 
form of liver collagen, type 1 (Col1a1 and Col1a2), in 
addition to type 3 collagen (Col3a1) were significantly 
elevated in ob/ob AMLN livers vs lean and ob/ob LFD 
livers (p < 0.001, p < 0.01, p < 0.0001, respectively, vs 
ob/ob LFD; Figure 2G). Timp1, another gene associated 
with increased extracellular matrix turnover, was 
significantly elevated in ob/ob AMLN compared to ob/ob 
LFD and lean livers (p < 0.001 vs ob/ob LFD; Figure 
2G). The expression of cytokines including Tgfb, Tnf, 
Il1b, and Il10, and chemokines including Ccl2, Ccl3, and 
Ccl11 were similarly upregulated in ob/ob AMLN livers 
compared to ob/ob LFD and lean controls (p < 0.01, p 
< 0.05, p < 0.05, p = 0.2; p < 0.01, p < 0.001, p < 0.01, 
respectively, vs ob/ob LFD; Figure 2H). Additionally, 
Lgals3, a marker associated with multiple inflammatory 
cell types and thought to contribute to fibrogenesis, 
was highly expressed in the livers of ob/ob AMLN but 
not lean or ob/ob LFD mice (30-fold induction vs lean 
controls, p < 0.001 vs ob/ob LFD; Figure 2H). 

The steatosis grade was significantly higher in 
ob/ob LFD (grade 2.5, p < 0.0001) and ob/ob AMLN 
(grade 3, p < 0.0001) compared to lean livers (grade 
0; Figure 3A). A significant increase in the number 
of inflammatory foci (Figure 3B), biliary hyperplasia 
(Figure 3C) and CD68-positive cells (Figure 3D) was 
observed in ob/ob AMLN vs lean (p < 0.0001) and 
ob/ob LFD livers (p < 0.0001). Ballooned hepatocytes 
were only observed in ob/ob AMLN livers (Figure 
3E). An integrated NASH score was generated by 
combining the grades of steatosis, inflammation, 
biliary hyperplasia, CD68 positive cells, and ballooning 
degeneration (Figure 3F), which reflected the clear 
distinction between ob/ob LFD and ob/ob AMLN liver 
histopathology. 

Fragmented mitochondria in ob/ob AMLN hepatocytes
We examined mitochondrial ultrastructure in livers from 
lean, ob/ob LFD and ob/ob AMLN mice by transmission 
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electron micrography (TEM; Figure 4A). Quantitative 
assessment of TEM images showed ob/ob AMLN 
hepatocytes had increased numbers of mitochondria 
(approximately 1.5-fold, p < 0.001 vs ob/ob LFD; Figure 
4B). While lean and ob/ob LFD hepatocytes contained 
a mixture of elongated and fragmented mitochondria, 
ob/ob AMLN hepatocytes contained smaller, more 
fragmented mitochondria (average area = 70 μm2 for 
lean controls vs 45 μm2 for ob/ob AMLN, p < 0.01; Figure 
4C); however, no overt defects in outer membrane 
integrity or cristae formation were observed. Similarly, 
quantification of mitochondrial length and number from 
HSP60 immunostained liver sections revealed increased 
numbers of mitochondria overall in ob/ob AMLN livers 
(p < 0.005 vs lean controls; Figure 4D) and a significant 
increase in shorter, more fragmented mitochondria 
(Figure 4E). Citrate synthase activity (CSA), another 
measure of mitochondrial content, was increased over 
2-fold in primary hepatocytes isolated from ob/ob AMLN 
mice vs lean controls (p < 0.05; Figure 4F). In line with 
smaller mitochondria in ob/ob AMLN hepatocytes, the 
expression of proteins required for mitochondrial fusion, 
mitofusin 1 (Mfn1) and dynamin-like 120 kDa protein, 
mitochondrial (Opa1), was significantly decreased in ob/
ob AMLN livers compared to lean controls (p < 0.01 and 
p < 0.05, respectively; Supplementary Figure 4G). 

To assess whether this increase in mitochondrial 
number was due to increased biogenesis, we quantified 
the expression of transcription factors required for 
mitochondrial biogenesis and components of the 
electron transport chain (ETC). While the expression of 
PPARγ-coactivator 1a (Ppargc1a) was slightly increased 
in ob/ob LFD livers (1.4-fold, p = 0.06 vs lean controls), 
it was unchanged in ob/ob AMLN vs lean livers (data 
not shown). Similarly, nuclear respiratory factor 1 (Nrf1) 
and mitochondrial transcription factor A (Tfam) mRNA 
levels were unchanged in ob/ob AMLN vs lean and ob/
ob LFD livers (data not shown). Additionally, expression 
of mitochondrial autophagy genes Bnip3, Park2 and 
Pink1 was not different between groups (Figure 4G). 
Although ob/ob AMLN hepatocytes displayed increased 
mitochondrial number, they contained significantly 
less mitochondrial DNA (mtDNA) as assessed by the 
expression of mitochondrially-encoded genes Cytb and 
Nd-1 relative to the expression of nuclear encoded 
β-globin (approximately 30% reduction, p < 0.05 vs 
lean controls; Supplementary Figure 4H). 

Hepatic ob/ob AMLN mitochondria have reduced 
respiratory capacity and increased proton leak
To assess mitochondrial function, oxygen consumption 
of intact primary hepatocytes from lean, ob/ob LFD 
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and ob/ob AMLN animals was measured (Figure 
5A). ob/ob AMLN hepatocytes displayed significantly 
reduced basal respiration that was approximately 

50% lower compared to lean (p < 0.01) and ob/ob 
LFD hepatocytes (p < 0.05) (Figure 5B). Maximal 
mitochondrial respiratory capacity was significantly 

Figure 2  Comparison of metabolic and hepatic abnormalities associated with diet-induced nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 
in ob/ob mice. Liver weight (A), liver lipid (B), and plasma alanine aminotransferase (ALT) levels (C) of lean (C57BL6J) and ob/ob mice maintained on control low-
fat diet (ob/ob LFD) or AMLN diet (ob/ob AMLN) for 12 wk; (D): Representative hematoxylin and eosin stained liver sections and quantification of percentage of liver 
area containing macrosteatosis; (E): Representative collagen type 1 alpha 1 stained liver sections and quantification of collagen area. Scale bar = 200 μm; (F): 
Representative CD68-stained liver sections and quantification of CD68-positive cells; G, H: Relative expression of genes associated with fibrosis and inflammation. aP 
≤ 0.05, bP ≤ 0.01, cP ≤ 0.001, dP ≤ 0.0001 vs C57BL6J; eP ≤ 0.05, fP ≤ 0.01, gP ≤ 0.001, hP ≤ 0.0001 vs LFD. LFD: Low-fat diet.
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increased in ob/ob LFD compared to lean hepatocytes 
(+45%, p < 0.05; Figure 5B). In contrast, ob/ob AMLN 
hepatocytes displayed significantly reduced maximal 
respiration compared to lean (-45%, p < 0.05) and ob/
ob LFD hepatocytes (-60%, p < 0.001; Figure 5B). 

We also assessed mitochondrial coupling and 
proton leak. The mitochondrial respiratory control ratio 
(RCR) and leak control ratio (LCR) were quantified 
using isolated mitochondria from lean, ob/ob LFD and 
ob/ob AMLN livers. Mitochondria from ob/ob mouse 
liver displayed slightly increased proton leak without a 
significant decrease in respiratory control[21], and AMLN 
diet further increased proton leak and reduced RCR. 
Mitochondrial coupling was decreased in ob/ob AMLN 
mice compared to mitochondria from lean mice (4.2 vs 
5.6; Figure 5C), although this difference did not reach 
statistical significance. ob/ob AMLN mitochondria also 
displayed a higher LCR compared to lean controls (0.35 
vs 0.23, p = 0.06; Figure 5D), indicating increased 
proton leak. 

FATZO mice fed AMLN diet display enhanced 
microvesicular steatosis and lobular inflammation but 
minimal fibrosis
While the ob/ob mouse exhibits key aspects of human 
metabolic disease and, importantly, develops diet-
induced NASH with consistent grade 2-3 fibrosis, most 
humans with NAFLD/NASH are likely hyperleptinemic as 
opposed to leptin-deficient. We therefore investigated 
the FATZO mouse, an inbred polygenic cross of AKR/J 

and C57BL6J strains with a predisposition to obesity and 
insulin resistance, but intact leptin axis[14,15]. 

After 12 wk on diet, FATZO mice fed LFD (FATZO 
LFD) weighed significantly more than lean (C57BL6J) 
controls (43 g vs 35 g, p < 0.0001), while FATZO mice 
fed AMLN diet (FATZO AMLN) weighed significantly 
more than both FATZO LFD and lean controls (50 g, p 
< 0.001 vs FATZO LFD; Figure 6A). Plasma glucose was 
slightly elevated in FATZO LFD (271 mg/dL) and FATZO 
AMLN mice (236 mg/dL) compared to lean controls (186 
mg/dL; Figure 6B). FATZO AMLN mice displayed severe 
hyperinsulinemia with average plasma insulin levels that 
were significantly greater compared to FATZO LFD and 
lean controls (p < 0.01 for ob/ob AMLN vs lean controls; 
Figure 6C). Both FATZO LFD and FATZO AMLN mice 
had increased pancreatic insulin content, which was 
significantly greater in FATZO AMLN mice compared to 
lean controls (+50%, p < 0.05; Figure 6D). 

Markers of liver disease including hepatomegaly, 
hepatic steatosis and elevated plasma ALT levels 
were present in both FATZO LFD and FATZO AMLN 
mice. Relative liver weight was significantly increased 
in FATZO LFD vs lean animals (7.3% vs 4.4%, p < 
0.0001), and was further increased in FATZO AMLN 
animals (10.6%, p < 0.001 vs FATZO LFD) (Figure 7A). 
Similarly, hepatic lipid content was significantly greater 
in FATZO LFD compared to lean controls (20% vs 6%) 
and was greatest in FATZO AMLN mice (30%, p < 
0.0001 vs FATZO LFD; Figure 7B). Plasma ALT was also 
significantly increased in FATZO LFD vs lean animals 

ED

CD
68

-p
os

iti
ve

 c
el

ls
 (

0-
2) 2.5

2.0

1.5

1.0

0.5

0.0

d, h

d

C5
7B

L6
J

ob
/ob

 LF
D

ob
/ob

 A
MLN

Ba
llo

on
in

g
de

ge
ne

ra
tio

n 
(0

-1
)

1.5

1.0

0.5

0.0

b, f

C5
7B

L6
J

ob
/ob

 LF
D

ob
/ob

 A
MLN

A

St
ea

to
si

s 
gr

ad
e 

(0
-3

)

4

3

2

1

0

d d, f

C5
7B

L6
J

ob
/ob

 LF
D

ob
/ob

 A
MLN

B

F

N
AS

H
 s

co
re

 (
0-

11
)

12

10

8

6

4

2

0

d

d, h

C5
7B

L6
J

ob
/ob

 LF
D

ob
/ob

 A
MLN

In
fla

m
m

at
io

n 
(0

-3
)

4

3

2

1

0

-1

d, h

C5
7B

L6
J

ob
/ob

 LF
D

ob
/ob

 A
MLN

C

Bi
lia

ry
 h

yp
er

pl
as

ia
 (

0-
2) 2.5

2.0

1.5

1.0

0.5

0.0

d, h

C5
7B

L6
J

ob
/ob

 LF
D

ob
/ob

 A
MLN

Figure 3  Histopathological grading of C57BL6J, ob/ob low-fat diet and ob/ob AMLN liver. Individual grades of steatosis (A), inflammation (B), biliary hyperplasia 
(C), CD68-positive cells (D) and ballooning degeneration (E) are shown; (F): Comparison of the total NASH scores representing the sum of all histologic parameters. 
bP ≤ 0.01, dP ≤ 0.0001 vs C57BL6J; fP ≤ 0.01, hP ≤ 0.0001 vs LFD. LFD: Low-fat diet.

Boland ML et al.  Mitochondrial and antioxidant capacity define NASH



1756 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

(260 U/L vs 50 U/L, p < 0.0001) and was further 
elevated in FATZO AMLN animals (370 U/L, p < 0.01 vs 
FATZO LFD; Figure 7C), but was nonetheless still much 
lower than levels observed in ob/ob AMLN mice (>1100 
U/L, Figure 1C).

Assessment of HE-stained liver samples revealed 
the presence of prominent steatosis, both micro- and 

macrovesicular, in both FATZO LFD and FATZO AMLN 
animals (Figure 7D). Increased macrophage/monocyte 
infiltration was also observed in FATZO LFD and 
FATZO AMLN mice (Figure 7E), paralleled by increased 
expression of hepatic Cd68 (3.5-fold in FATZO LFD and 
5.2-fold in FATZO AMLN; p < 0.05 FATZO LFD vs FATZO 
AMLN; Figure 7H). Mild collagen deposition was also 

Figure 4  ob/ob AMLN hepatocytes display increased numbers of fragmented mitochondria. (A) Transmission electron micrographs (TEM) showing 
mitochondrial morphology and ultrastructure in the liver. Scale bar = 0.2 μm. Quantification of the number of mitochondria (B) and mitochondrial area (C) from TEM 
images; (D): Confocal images of HSP60 stained liver sections and quantification of mitochondrial number per cytoplasmic area. Scale bar = 10 μm; (E): Histogram 
depicting the number of mitochondria per binned mitochondrial length as a percentage of total mitochondria per cell; (F): Mitochondrial content measured by citrate 
synthase activity in isolated primary hepatocytes; (G): Relative hepatic expression of genes associated with mitophagy; (H): Quantification of mitochondrial genome-
encoded CytB or Nd1 relative to nuclear-encoded β-globin from total genomic DNA extracted from the liver. aP ≤ 0.05, bP ≤ 0.01, vs C57BL6J; eP ≤ 0.05, fP ≤ 0.01, 
gP ≤ 0.001, hP ≤ 0.0001 vs LFD. LFD: Low-fat diet.
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apparent in FATZO animals but did not worsen upon 
AMLN diet feeding (Figure 7F). 

Transcriptional profiling of genes involved in 
hepatic fibrosis and inflammation revealed additional 
evidence of active liver disease in FATZO mice. 
Collagens including Col1a1, Col1a2 and Col3a1 were 
increased in FATZO LFD livers compared to lean 
controls (approximately 6-8-fold for each), and were 
further induced in FATZO AMLN livers (Figure 7G). All 

cytokines assayed including Tgfb, Tnf, Il1b, and Il10, 
and chemokines including Ccl2, Ccl3, and Ccl11 were 
similarly upregulated in FATZO LFD livers compared to 
lean controls and even further induced in FATZO AMLN 
livers (Figure 7H). Additional fibrosis related genes 
Timp1 and Lgals3 were significantly elevated in FATZO 
LFD livers compared to lean controls, with even further 
induction observed in FATZO AMLN livers (Figure 7G, 
H). Integrated NASH scores generated from combining 

Figure 5  Mitochondria from ob/ob AMLN livers display reduced respiratory capacity and increased proton leak. (A): Oxygen consumption of primary 
hepatocytes isolated from C57BL6J, ob/ob LFD and ob/ob AMLN livers normalized to mitochondrial content (citrate synthase activity, CSA). Changes in mitochondrial 
respiration in response to oligomycin, FCCP and antimycin A are shown. Light grey box = basal respiration, dark grey box = maximal uncoupled respiration; (B): 
Quantification of baseline oxygen consumption (basal respiration) and FCCP-stimulated oxygen consumption (maximal respiration) normalized to CSA; (C): 
Mitochondrial respiratory control ratio, a measure of mitochondrial coupling, defined as state 3/ state o respiration of mitochondria isolated from the livers of C57BL6J, 
ob/ob LFD and ob/ob AMLN mice; (D): Mitochondrial leaking control ratio, a measure of proton leak, defined as state o/ state 3U respiration. aP ≤ 0.05, bP ≤ 0.01, vs 
C57BL6J; fP ≤ 0.01, gP ≤ 0.001, vs LFD. LFD: Low-fat diet.

C D

B

O
CR

 (
pm

ol
/m

in
/C

SA
)

800

600

400

200

0

b , f
a , g

Basal Maximal

C57BL6J

ob/ob  LFD

ob/ob  AMLN

a

A
Oligomycin FCCP Antimycin A

O
CR

 (
pm

ol
 m

in
-1
/C

SA
)

800

600

400

200

0

0               2               4               6               8              10             12

Measurement

Basal

Maximal

C57BL6J

ob/ob  LFD

ob/ob  AMLN

Le
ak

 c
on

tr
ol

 r
at

io
(S

tat
e 3

o/S
tat

e 3
U
 )

0.5

0.4

0.3

0.2

0.1

0.0

C5
7B

L6
J

ob
/ob

 LF
D

ob
/ob

 A
MLN

Re
sp

ira
to

ry
 c

on
tr

ol
 r

at
io

(S
tat

e 3
/S

tat
e 3

o)

8

6

4

2

0

C5
7B

L6
J

ob
/ob

 LF
D

ob
/ob

 A
MLN

Boland ML et al.  Mitochondrial and antioxidant capacity define NASH



1758 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

grades of steatosis (Figure 8A), inflammation (Figure 
8B), biliary hyperplasia (Figure 8C), CD68-positive cells 
(Figure 8D) and hepatocyte ballooning (Figure 8E) were 
significantly greater for FATZO LFD and FATZO AMLN 
mice compared to lean controls, but did not significantly 
differ from one another (Figure 8F).

Increased mitochondrial fragmentation in FATZO mice is 
associated with mild mitochondrial dysfunction
Similar to ob/ob mice, FATZO AMLN mice displayed 
significantly increased numbers of fragmented mito
chondria (Figure 9A, B) and hepatic CSA (Figure 9C) 
compared to FATZO LFD and lean controls. In contrast, 
this increase was associated with a significant induction 
of mitochondrial biogenesis genes in FATZO mice. 
Nrf1 was consistently induced in both FATZO LFD and 
FATZO AMLN livers compared to lean controls (p < 
0.01 for FATZO LFD, p < 0.0001 for FATZO AMLN vs 
lean), Ppargc1a was significantly induced in FATZO LFD 
livers compared to lean controls (1.75-fold, p < 0.001) 
and Tfam was significantly induced in FATZO AMLN 
livers vs lean controls 1.4-fold, p < 0.01; Figure 9D). 
Additionally, decreased mitophagy may contribute to 
increased mitochondrial content, although only Bnip3 
expression was significantly reduced in FATZO LFD and 

FATZO AMLN livers compared to lean controls (-40%, p 
< 0.05 for FATZO LFD, -25%, p = 0.08 for FATZO AMLN 
vs lean) with no changes observed in Park2 or Pink1 
expression (Supplementary Figure 9E). No differences 
in the mitochondrial:nuclear DNA ratio were observed 
(Figure 9F), suggesting that mtDNA replication is 
occurring normally in contrast to that observed in the 
ob/ob AMLN model. 

To assess hepatic mitochondrial function in the 
FATZO mice we measured mitochondrial coupling and 
proton leak in isolated mitochondria. While there was 
a trend for reduced RCR in FATZO AMLN mitochondria 
compared to lean controls, this reduction was small 
and did not reach statistical significance (4.1 vs 4.9, p 
= 0.5; Figure 9G). Similar to the ob/ob models, both 
FATZO LFD and FATZO AMLN mitochondria displayed 
a trend for increased proton leak compared to lean 
controls (0.43 for both FATZO LFD and AMLN vs 0.32 
for lean controls; p = 0.08 and p = 0.07, respectively; 
Figure 9H). 

ob/ob mice display a reduced ability to manage 
oxidative stress compared to FATZO mice
The oxidative stress responsive transcription factor 
Nrf2 was significantly induced in both ob/ob and 
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FATZO mice on LFD and further induced by AMLN 
diet, indicating that the antioxidant response system 
was induced. Interestingly, when we quantified the 
expression levels of antioxidant enzymes that are 
collectively required for ROS detoxification, including 
superoxide dismustase 1 (Sod1), superoxide dismutase 
2 (Sod2) and catalase (Cat), we detected unchanged or 
reduced hepatic expression in all diseased livers. Sod1 
mRNA was significantly reduced in both ob/ob LFD and 
ob/ob AMLN livers compared to lean controls (-25%, p 
< 0.001 for both; Figure 6A), while Sod2 expression was 
significantly reduced in ob/ob AMLN livers compared to 
lean controls (-25%, p < 0.05; Figure 10A). All diseased 
livers displayed significantly reduced Cat expression 

compared to lean controls (-50%, p < 0.0001 for ob/
ob LFD and AMLN vs lean controls; -20%, p < 0.05 for 
FATZO LFD and AMLN vs lean controls; Figure 10A). 
FATZO AMLN livers, however, did display significantly 
increased glutathione peroxidase (Gpx1) mRNA levels 
(+50%, p < 0.01 vs C57BL6J, Figure 10A).

Despite reduced (ob/ob mice) or unchanged (FATZO 
mice) Sod1 and Sod2 mRNA, there was a trend for 
increased hepatic superoxide dismutase activity for 
ob/ob and FATZO mice compared to lean controls (p 
< 0.05 ob/ob AMLN vs lean; Figure 10B). Catalase 
activity was increased approximately 2-fold in both 
FATZO LFD (p < 0.001) and FATZO AMLN livers (p < 
0.01), but unchanged in ob/ob LFD and ob/ob AMLN 
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livers compared to lean controls (Figure 10C). We also 
detected increased catalase expression in liver sections 
from FATZO LFD and FATZO AMLN mice compared 
to lean controls (Figure 10D). Further, the ratio of 
hepatic catalase:SOD activity was reduced in ob/ob 
LFD mice and worsened by AMLN diet, but unchanged 
in FATZO animals compared to lean controls (Figure 
10E). Hepatic 8-hydroxydeoxyguanosine (8-OHdG), a 
marker of oxidative DNA damage, tended to be higher 
in ob/ob LFD animals compared to both lean controls 
and FATZO LFD mice (Figure 10F). In ob/ob AMLN 
mice, hepatic 8-OHdG levels were significantly higher 
than both FATZO mice and lean controls (2.5-fold, p < 
0.01 vs lean; Figure 10E). Additionally, we observed 
a negative correlation between catalase activity and 
hepatic 8-OHdG levels (Figure 10G). Taken together 
these data suggest that a reduced ability to manage 
ROS may be a key mechanism underlying the more 
severe liver phenotype observed in ob/ob AMLN mice. 

DISCUSSION
The increasing health and economic burden and lack 
of FDA-approved therapies underscore the importance 
of appropriate pre-clinical models for NAFLD/NASH[22]. 
Surprisingly, only a handful of animal models are av
ailable that reflect human disease with respect to 
metabolic status and liver pathology[23,24]. These models 
are similar in that their genetic background predisposes 
to diet-induced NASH, and include the DIAMOND 
model[25], the ob/ob mouse[13,26], and the LDLR knockout 

mouse[27]. To a lesser extent, C57BL6J mice fed a high-fat 
(AMLN) diet will also develop NASH when given enough 
time (> 24 wk), but this model does not develop as 
advanced fibrosis[28,29]. Other reported models of liver 
disease do not develop liver inflammation, such as the 
APOE2 knock-in mouse[27], or lack metabolic context, 
such as the CCl4 and MCDD models. 

We report herein that both the leptin-deficient ob/
ob mouse and hyperleptinemic FATZO mouse develop 
steatohepatitis within 12 wk of AMLN diet feeding. 
Despite similar levels of liver lipid and less severe 
hyperinsulinemia, ob/ob AMLN mice displayed a worse 
liver phenotype with increased inflammation and more 
advanced fibrosis relative to FATZO mice. Notably, 
hepatic expression of macrophage markers and related 
inflammatory chemokines were more prominently 
upregulated in ob/ob AMLN compared to FATZO AMLN 
mice, but were similar in ob/ob LFD and FATZO LFD 
animals, suggesting that the baseline inflammatory 
status and matrix deposition of the livers is similar in 
these models and that leptin deficiency per se does 
not predispose the liver to inflammation and fibrosis, 
but nonetheless may contribute to a proinflammatory, 
profibrotic phenotype upon dietary challenge. 

While the precise pathophysiology of NASH remains 
to be fully determined, one aspect that has emerged in 
recent years is the role of mitochondrial (dys)function 
in hepatocytes associated with NAFLD/NASH. Evidence 
from human studies has recently emerged[8,30], however 
similar analyses in mouse models of NASH has not 
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Figure 8  Histopathological scoring of FATZO mice. Individual grades of macrovesicular steatosis (A), lobular inflammation (B), biliary hyperplasia (C), CD68-
positive cells (D) and ballooning degeneration. (E) Composite NASH scores. aP ≤ 0.05, cP ≤ 0.001, dP ≤ 0.0001 vs C57BL6J.
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been reported. Multiple interconnected facets of 
mitochondrial biology including morphology, overall 
content (numbers and size), and respiratory capacity 
influence mitochondrial function. Our data show that 
ob/ob AMLN mice developed NASH associated with 
increased numbers of fragmented mitochondria with 

reduced respiratory capacity but without overt defects 
in mitochondrial membrane integrity or cristae struc
ture. Similarly, FATZO AMLN mice displayed fragment
ed mitochondria with a trend for reduced respiratory 
control, but nonetheless better responded to oxidative 
damage and presented less overall fibrosis. 

Figure 9  Mitochondrial content alterations in FATZO mice are associated with increased biogenesis and elevated proton leak. (A): Confocal images 
of HSP60 stained liver sections with quantification of mitochondrial number per cytoplasmic area. Scale bar = 10 μm; (B): Histogram depicting the number of 
mitochondria per binned mitochondrial length as a percentage of total mitochondria per cell; (C): Mitochondrial content measured by citrate synthase activity of 
isolated hepatic mitochondria; (D): Expression of hepatic mitochondrial biogenesis genes; (E): Relative hepatic expression of mitophagy-associated genes; (F): 
Quantification of mitochondrial genome-encoded CytB or Nd1 relative to nuclear-encoded β- globin from total genomic DNA extracted from the liver; (G): Mitochondrial 
respiratory control ratio; (H): Mitochondrial leak control ratio. aP ≤ 0.05, bP ≤ 0.01, cP ≤ 0.001, dP ≤ 0.0001 vs C57BL6J; eP ≤ 0.05, hP ≤ 0.0001 vs LFD. LFD: 
Low-fat diet.
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Mitochondrial morphology is appreciated to play an 
active role in regulating energy metabolism and cell 
death and can therefore influence NASH development 
at numerous stages[31,32]. Leptin has previously been 
shown to alter mitochondrial morphology and function. 
In primary mouse hepatocytes, leptin treatment induced 
mitochondrial fusion through induction of Ppargc1a 
and Mfn1 and was associated with protection from 
high-glucose induced fatty acid accumulation[33]. Com
plementary work demonstrated that inhibition of mito
chondrial fission reduced steatosis and development of 

NAFLD[34]. Mfn1 and Opa1 expression were significantly 
reduced in ob/ob mice when fed AMLN diet. Consistent 
with transcript levels, we observed smaller but more 
numerous mitochondria in both ob/ob AMLN and 
FATZO AMLN hepatocytes. Increased mitochondrial 
fragmentation and uncoupling have been proposed as 
adaptive mechanisms to reduce ROS levels and maintain 
energy balance by limiting ATP production in states of 
excess substrate supply which may explain the more 
fragmented, leaky mitochondria in ob/ob AMLN and 
FATZO AMLN livers. 
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Figure 10  Hepatic oxidative stress is mitigated by increased catalase activity in FATZO but not ob/ob mice. (A): Expression of antioxidant genes Nrf2, Sod1, 
Sod2, Cat and Gpx1 in ob/ob LFD, FATZO LFD, ob/ob AMLN and FATZO AMLN livers relative to lean controls. Superoxide dismutase activity (B) and catalase activity 
(C) in hepatic lysates from C57BL6J, ob/ob LFD, FATZO LFD, ob/ob AMLN and FATZO AMLN animals; (D): Representative images of catalase stained liver sections. 
Scale bar represents 100 µm; (E): Ratio of catalase: SOD activities; (F): Levels of 8-hydroxydeoxyguanosine (8-OHdG) in genomic DNA isolated from C57BL6J, ob/
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Reduced mitochondrial function assessed by cou
pling efficiency and proton leak was also observed in 
both models; however, only ob/ob AMLN livers displayed 
significantly reduced mtDNA levels, similar to patients 
with NAFLD[35,36], which may affect other aspects of 
mitochondrial function including ATP generation and 
ROS production. Moreover, ROS itself may promote 
mtDNA mutation and degradation[37], leading to a feed-
forward loop of continuous oxidative damage that leads 
to hepatocyte cell death, inflammation and fibrosis 
development. As such, targeting hepatic oxidative stress 
driven by chronic overnutrition could be an important 
therapeutic target for NASH prevention.

The capacity to manage oxidative stress was 
dissimilar between ob/ob and FATZO mice. Multiple 
antioxidant molecules within the cell are regulated 
by the transcription factor NRF2. While hepatic Nrf2 
expression was significantly upregulated in both ob/
ob and FATZO livers, indicative of increased oxidative 
stress, oxidative DNA damage was only detected in 
ob/ob livers. Increased hepatic superoxide dismutase 
activity was detected in both ob/ob and FATZO 
animals, suggestive of elevated hydrogen peroxide 
in these livers, but concomitantly increased catalase 
activity and Gpx1 expression was detected only in 
FATZO liver. Increased hepatic hydrogen peroxide 
levels have been reported for humans with NASH and 
correlated with catalase activity and oxidative DNA 
damage[8]. In line with these human studies, hepatic 
catalase activity was indeed negatively correlated with 
8-OHdG levels. 

In the clinic, single antioxidant therapy has shown 
mixed efficacy. Among these agents, vitamin E 
(despite its limited antioxidant efficacy) is the most 
investigated[38,39]. While the majority of studies showed 
improvements in select features, including steatosis, 
serum ALT and histopathology, none have demonstrated 
improvement in fibrosis, the key feature linked to 
disease progression[40]. Strategies to enhance antioxidant 
defenses are also being actively explored. One such 
target is NRF2, which can be activated by numerous 
natural products, including resveratrol and synthetic 
compounds[41]. Combination strategies that include the 
oxidant scavenging effects with an anti-fibrotic molecule 
such as the anti-galectin 3 drug GR-MD-02, currently in 
Phase 2 trials[42] may be informative. 

In summary, we have described convenient mouse 
models of NAFLD/NASH that accurately reflect human 
disease context (obesity and insulin resistance) and 
liver pathology (steatosis, ballooning degeneration, 
inflammation and fibrosis). Additionally, both models 
appear to mimic reported aspects of mitochondrial 
phenotype in human NASH, including elevated mitoch
ondrial numbers and increased proton leak. The unanti
cipated differences in disease severity may in part be 
due to an increased ability to manage oxidative stress 
in the FATZO mouse. These models may better predict 
therapeutic efficacy of putative NASH treatments in the 
clinic, particularly for agents targeting mitochondrial/

oxidative pathways. 

ARTICLE HIGHLIGHTS
Research background
Non-alcoholic steatohepatitis (NASH) is an unmet medical need with no 
approved therapies. Studies here characterize the hepatic phenotype of two 
different diet-induced mouse models of NASH with a focus on mitochondrial 
function and ability to regulate oxidative damage. 

Research motivation
Emerging evidence from cross-sectional human studies suggests a role for 
mitochondrial function in the development of NASH. As the pathogenesis 
of NASH remains largely unknown it is imperative to characterize potential 
therapeutic agents in a relevant preclinical model.

Research objectives
The primary objective was to characterize NASH histopathology (e.g., NASH 
activity score for steatosis, inflammation, ballooning and fibrosis) and function 
with a focus on mitochondrial biology and capacity to respond to oxidative 
stress. We contrast these endpoints in two distinct mouse strains (genetically 
obese Lepob/Lepob (ob/ob) and polygenic obesity-prone FATZO mice) on a 
previously validated NASH-inducing diet that is high in trans-fat, fructose and 
cholesterol (AMLN diet).

Research methods
Development of NASH was assessed using blinded qualitative (HE stained 
sections) and quantitative (% collagen-stained area) methods. Mitochondria 
were assessed via transmission electron micrography and immunofluorescent 
detection of HSP60. Mitochondrial function was assessed in primary 
hepatocytes using Seahorse. Activity of superoxide dismutase and catalase 
were measured from whole liver tissue homogenates. Candidate genes from 
total liver RNA were measured using quantitative PCR.

Research results
Both ob/ob and FATZO mice developed NASH with concomitant obesity 
and hyperinsulinemia when challenged with AMLN diet for 12 wk, and was 
associated with mitochondrial accumulation and reduced function. The degree 
of hepatic fibrosis, however, was markedly greater in ob/ob mice and was 
associated with increased activity of superoxide dismutase (SOD), whereas 
FATZO mice displayed increased catalase activity. Antioxidant capacity, 
reflected as the ratio of catalase: SOD activity, was significantly perturbed in 
ob/ob mice with diet-induced NASH. 

Research conclusions
Both of these commonly available mouse models develop AMLN diet-induced 
NASH after 12 wk, associated with reduced mitochondrial function and 
perturbed morphology. The intrinsic capacity of the FATZO mice to increase 
antioxidant capacity in the face of impaired mitochondrial function/increased 
oxidative damage due to diet may be contributory towards the reduced level of 
fibrosis in that model.

Research perspectives
The AMLN mouse model of NASH is gaining widespread academic and 
industry acceptance as a translatable model of NASH. These studies extend 
previous observations in the model to highlight mitochondrial dysfunction thus 
confirming the model as relevant for prosecution of therapeutic agents targeting 
improvement in mitochondrial function for NASH. Furthermore, the contrasting 
fibrosis between ob/ob and FATZO mice implicates the capacity to adapt to 
oxidative damage as a key regulator of liver fibrosis in diet-induced NASH. 
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Abstract
AIM
To explore the significance of corticotropin-releasing 
hormone (CRH)-receptor (R)2 in mucosal healing 
of dextran sulfate sodium (DSS)-induced colitis and 
the effect of Tong-Xie-Yao-Fang (TXYF) on CRH-R2 
expression and regulation.

METHODS
Ulcerative colitis was induced in mice by administration of 
3% (w/v) DSS for 7 d. Once the model was established, 

1766 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

ORIGINAL ARTICLE

Mucosa repair mechanisms of Tong-Xie-Yao-Fang mediated 
by CRH-R2 in murine, dextran sulfate sodium-induced colitis

Basic Study

Shan-Shan Gong, Yi-Hong Fan, Shi-Yi Wang, Qing-Qing Han, Bin Lv, Yi Xu, Xi Chen, Yao-Er He

Submit a Manuscript: http://www.f6publishing.com

DOI: 10.3748/wjg.v24.i16.1766

World J Gastroenterol  2018 April 28; 24(16): 1766-1778

 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)



mice were administered urocortin-2 (30 µg/kg), a peptide 
which binds exclusively to CRH-R2, or various doses 
of aqueous TXYF extracts (2.8-11.2 g/kg), a CRH-R2 
antagonist Astressin (Ast)2B (20 µg/kg), Ast2B + Ucn2, 
or Ast2B with various doses of aqueous TXYF extracts for 
9 d. Colonic mucosal permeability was then evaluated by 
measuring the fluorescence intensity in serum. The colitis 
disease activity index (DAI), histology, body weight loss 
and colon length were assessed to evaluate the condition 
of colitis. Terminal deoxynucleotidyl transferase dUTP 
nick-end labeling was used to detect apoptosis of the 
intestinal epithelial cells. The expression level of Ki-67 
represented the proliferation of colonic epithelial cells and 
was detected by immunohistochemistry. The expression 
levels of inflammation cytokines IL-6, TNF-α and CXCL-1 
were examined in colon tissues using real-time PCR and 
ELISA kits.

RESULTS
Compared with the DSS group, mice treated with the 
CRH-R2 antagonist Ast2B showed greater loss of body 
weight, shorter colon lengths (4.90 ± 0.32 vs  6.21 ± 
0.34 cm, P  < 0.05), and higher DAI (3.61 ± 0.53 vs  
2.42 ± 0.32, P  < 0.05) and histological scores (11.50 
± 1.05 vs  8.33 ± 1.03, P  < 0.05). Additionally, the 
Ast2B group showed increased intestinal permeability 
(2.76 ± 0.11 μg/mL vs  1.47 ± 0.11 μg/mL, P  < 0.001), 
improved secretion of inflammatory cytokines in colon 
tissue, and reduced colonic epithelial cell proliferation 
(4.97 ± 4.25 vs  22.51 ± 8.22, P  < 0.05). Increased 
apoptosis (1422.39 ± 90.71 vs  983.01 ± 98.17, P  
< 0.001) was also demonstrated. The Ucn2 group 
demonstrated lower DAI (0.87 ± 0.55 vs  2.42 ± 0.32, 
P  < 0.001) and histological scores (4.33 ± 1.50 vs 
8.33 ± 1.03, P < 0.05). Diminished weight loss, longer 
colon length (9.58 ± 0.62 vs  6.21 ± 0.34 cm, P  < 
0.001), reduced intestinal permeability (0.75 ± 0.07 vs  
1.47 ± 0.11 μg/mL, P  < 0.001), inhibited secretion of 
inflammatory cytokines in colon tissue and increased 
colonic epithelial cell proliferation (90.04 ± 15.50 vs  
22.51 ± 8.22, P  < 0.01) were all observed. Reduced 
apoptosis (149.55 ± 21.68 vs  983.01 ± 98.17, P  < 
0.05) was also observed. However, significant statistical 
differences in the results of the Ast2B group and Ast2B 
+ Ucn2 group were observed. TXYF was also found to 
ameliorate symptoms of DSS-induced colitis in mice 
and to promote mucosal repair like Ucn2. There were 
significant differences between the Ast2B + TXYF 
groups and the TXYF groups.

CONCLUSION
CRH-R2 activates the intestinal mucosal antiinflam
matory response by regulating migration, proliferation 
and apoptosis of intestinal epithelial cells in colitis-
induced mice, and plays an important antiinflammatory 
role. TXYF promotes mucosal repair in colitis mice by 
regulating CRH-R2.

Key words: Tong-Xie-Yao-Fang; Aqueous extracts; 
Corticotropin-releasing hormone receptor 2; Urocortin 2; 

Astressin 2B; Mucosal healing; Ulcerative colitis

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Mucosal healing is a desired therapeutic 
endpoint in the treatment of inflammatory bowel 
disease. However, it is difficult to treat inflammatory 
bowel disease thoroughly, and there are some adverse 
reactions. Studies have shown that corticotropin-
releasing hormone (CRH)-receptor (R)2 can activate 
the inflammatory response of intestinal mucosa and 
exert an antiinflammatory effect. Our preliminary 
study found that Tong-Xie-Yao-Fang could reduce the 
expression of CRH-R1, increase CRH-R2, and participate 
in reconstruction of the intestinal barrier. The aim of 
this study was to explore the significance of CRH-R2 in 
the mucosal healing of dextran sulfate sodium-induced 
colitis and study the effect of Tong-Xie-Yao-Fang on 
CRH-R2 expression and regulation.

Gong SS, Fan YH, Wang SY, Han QQ, Lv B, Xu Y, Chen X, He 
YE. Mucosa repair mechanisms of Tong-Xie-Yao-Fang mediated 
by CRH-R2 in murine, dextran sulfate sodium-induced colitis. 
World J Gastroenterol 2018; 24(16): 1766-1778  Available from: 
URL: http://www.wjgnet.com/1007-9327/full/v24/i16/1766.htm  
DOI: http://dx.doi.org/10.3748/wjg.v24.i16.1766

INTRODUCTION
Inflammatory bowel diseases (IBD), including Crohn’s 
disease and ulcerative colitis (UC), are a group of chronic 
inflammatory disorders of the gastrointestinal tract, 
characterized by intestinal inflammation and mucosal 
damage[1]. In traditional Chinese medicine theory, UC 
is known as the “changpi” and chronic dysentery[2]. 
Characterized by chronic mucosal inflammation and 
damage of the colon, UC presents with bloody diarrhea, 
tenesmus, abdominal pain, weight loss, anemia, and 
even toxic megacolon. Intestinal perforation, intestinal 
obstruction, intestinal bleeding and cancer are also 
observed, thus affecting an individual’s quality of life[3]. 

Treatment targets for IBD have changed over the 
recent years. Previous therapeutic strategies focusing 
on induction and maintenance of clinical remission have 
shown no effect on the natural course of the disease[4,5]. 
However, in the late 1990s, the advent of biologic 
agents for the treatment of IBD showed that while 
patients may be in clinical remission, ongoing mucosal 
inflammation may still be present, resulting in structural 
damage[6-11]. 

This finding has led to the concept of mucosal healing 
as a more meaningful therapeutic target in clinical 
practice. Indeed, emerging data suggests that mucosal 
healing is strongly associated with a reduction in steroid 
use, complications, hospitalizations, and surgeries[12]. 
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Mucosal repair of the intestinal barrier is a tightly 
coordinated response to injury that preserves homeo­
stasis and limits the adverse effects of inflammation. 
After damage to the epithelial tissue, intestinal epithelial 
cells migrate to the site of injury in a critical process 
known as epithelial restitution[13-15]. Restitution is fo­
llowed by epithelial cell proliferation and differentiation 
which is regulated by factors that promote cell viability 
and limit apoptosis[14,16]. IBD is a chronic relapsing 
inflammatory disorder that involves a defective epithelial 
barrier[17].

Corticotropin-releasing hormone (CRH), the primary 
mediator of the stress response, is expressed in both 
the central nervous system and the periphery, including 
the intestine[18]. The CRH family of peptides interacts 
with a variety of cell types in the intestinal mucosa, 
including epithelial cells, enteric neurons, and immune 
cells[19]. In addition to CRH, three distinct peptides 
known as urocortins (Ucn1, Ucn2, and Ucn3) bind to 
two types of G protein-coupled receptors to exert their 
effects, CRH receptor (R)1 and CRH-R2. Yet, Ucn1 has 
greater affinity for CRH-R2 than CRH-R1, and Ucn2 
and Ucn3 bind exclusively to CRH-R2[20]. Interactions 
between CRH-Rs and their ligands modulate several 
functional and pathophysiologic responses within the 
gut, including stress-induced alterations in motility, ion 
secretion, and visceral pain, and the development and 
maintenance of intestinal inflammation[21].

Studies from others have found that CRH may be 
involved in the maintenance of intestinal barrier integrity 
by regulating autophagy in the intestinal epithelial 
cells[18]. Our previous studies have also found that CRH 
could cause an increase in intercellular permeability in 
the intestinal epithelium[22]. Some studies have found 
that CRH-R2 can activate the antiinflammatory response 
of intestinal mucosa and exert an antiinflammatory 
effect[23]. In addition, activation of CRH-R2 can promote 
the migration and proliferation of colon cancer cells and 
gastric mucosa cells[24,25]. Furthermore, the expression 
of CRH-R2 was found to be down-regulated in the 
biopsy specimens of UC patients[26] and CRH-deficient 
mice are unable to initiate healing responses after acute 
experimental colitis[27], suggesting a role for the CRH 
peptide family, especially CRH-R2, in mucosal repair 
mechanisms.

Tong-Xie-Yao-Fang (TXYF) is a prescription in 
traditional Chinese medicine, used for relieving abdo­
minal pain and diarrhea. TXYF has also been shown 
to be involved in the reconstruction of the intestinal 
epithelial barrier and to promote the healing of mucosa 
in UC[28,29]. While the mechanism is not understood, it 
is thought to target and intervene with CRH-R2. This 
regulates the migration, proliferation and apoptosis of 
epithelial cells, like the role of Ucn2[30,31]. 

The overall aim of the present investigation was to 
determine whether CRH-R2 regulates mucosal repair 
on dextran sulfate sodium (DSS)-induced colitis in mice 
and to examine the relationship between TXYF and 

CRH-R2 signaling.

MATERIALS AND METHODS
TXYF composition and dosage preparation
TXYF was prepared with large head atractylodes 
rhizome (Rhizoma Atractylodis Macrocephalae), white 
peony root (Radix Paeoniae Alba), dried tangerine 
peel (Pericarpium Citri Reticulatae) and divaricate 
saposhnikovia root (Radix Saposhnikoviae)[32], which 
were used in a 15:12:6:10 proportion. Raw components 
were soaked in an 8-fold volume of distilled water for 1 
h and boiled twice for 0.5 h each time. Two of the boiled 
ingredients were filtered, mixed together, concentrated 
at a 1:1 ratio (100% concentration), and stored at 4 ℃ 
for later use.

Animal modeling and drug treatment
Male CD-1(ICR) mice (8-10 wk old) were purchased 
from Shanghai Xipuer-bikai Experimental Animal Co., 
Ltd., (Shanghai, China) and housed 1 wk under a 12 h 
light/dark cycle at 22-24 ℃ with 50%-60% humidity 
and a noise level < 50 d. Prior to experimentation, 
mice were allowed free access to food and tap water. 
All the procedures involving animals were conducted 
in accordance with the ethical principles adopted by 
the Animal Experimental Center of Zhejiang Chinese 
Medical University and were approved by the Ethics 
Committee on Animal Experiments at Zhejiang Chinese 
Medical University.

Mice (n = 110) were randomized into 11 assigned 
groups as follows: control group (n = 10), DSS group 
(n = 10), DSS + Astressin (Ast)2B group (Ast2B group; 
n = 10), DSS + Ucn2 group (Ucn2 group; n = 10), 
DSS + Ast2B + Ucn2 group (Ast2B + Ucn2 group; n 
= 10), DSS + Ast2B + low-dose (2.8 g/kg•d) aqueous 
TXYF extract group (Ast2B + TXYF-L group; n = 10), 
DSS + Ast2B + medium-dose (5.6 g/kg•d) aqueous 
TXYF extract group (Ast2B + TXYF-M group; n = 10), 
DSS + Ast2B + high-dose (11.2 g/kg•d) aqueous TXYF 
extract group (Ast2B + TXYF-H group; n = 10), DSS 
+ low-dose (2.8 g/kg•d) aqueous TXYF extract group 
(TXYF-L group; n = 10), DSS + medium-dose (5.6 
g/kg•d) aqueous TXYF extract group (TXYF-M group; 
n = 10), and DSS + high-dose (11.2 g/kg•d) aqueous 
TXYF extract group (TXYF-H group; n = 10). Colitis 
was induced in mice by administering 3% (w/v) DSS 
(MP Biomedicals, Inc., Aurora, OH, United States) in 
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Table 1  Criteria for disease activity index

Score Weight loss, % Stool consistency Bloodstain or gross bleeding

0 None Normal Negative
1 1-5 - -
2 5-10 Loose stool Positive
3 10-15 - -
4 > 15 Diarrhea Gross bleeding
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Immunohistochemistry and imaging
Formalin-fixed, paraffin-embedded colons were 
sectioned (1 µm) and stained with a Ki-67 antigen 
(dilution 1:100; AF0198; Affinity Biosciences, Cincinnati, 
OH, United States) or terminal deoxynucleotidyl 
transferase dUTP nick-end labeling (TUNEL) with the 
Apop-Tag Plus Peroxidase in situ cell death detection 
kit, POD (11684817910; Roche, Basel, Switzerland) 
according to the manufacturer’s instructions. To 
quantify Ki-67 immunoreactivity and TUNEL, pixel-
based quantification of staining intensity was performed 
with Image-ProPlus 6.0 software. Stained sections were 
observed under a 40 × objective lens. 

In vivo intestinal permeability
The intestinal permeability was measured by de­
termination of the amount of FITC-dextran (molecular 
weight 4.0 kDa; Sigma-Aldrich) in blood after oral 
administration, as described previously[36]. Briefly, mice 
were fasted overnight and FITC-dextran solution (4 
kDa, 600 mg/kg) was administered. Blood samples 
were obtained after 3 h, centrifuged at 10000× rpm for 
5 min, and serum was collected. Serum levels of FITC 
were read at 483 nm and 525 nm on a full wavelength 
multifunctional enzyme spectrometer (Varioskan Flash, 
Thermo Fisher Scientific, Waltham, MA, United States).

Real-time quantitative PCR
RNAiso Plus (9108; Takara Bio, Inc., Shiga, Japan) was 
used to extract RNA from frozen tissue samples, and 
the concentration of RNA was measured using a trace 
nucleic acid analyzer (Thermo Fisher Scientific). RNA 
was reverse-transcribed to cDNA using a PrimeScript 
RT reverse transcription kit (RR036A; Takara Bio, Inc.). 
Quantitative real-time PCR was carried out by ABI 7500 
real-time PCR system (7500; Applied Biosystems of 
Thermo Fisher Scientific). Primers were designed and 
synthesized by Shenggong Biology and Engineering 
Co., Ltd. (Shanghai, China) (Table 3). β-actin was used 
as the normalization control, and the 2-ΔΔCT method 
was used to calculate the relative expression of target 
genes.

TNF-α, CXCL-1 and IL-6 measurement
CXCL-1 level and IL-6 level were measured by mouse 
TNF-α enzyme-linked immunosorbent assay (ELISA) 
kit, mouse CXCL-1 ELISA kit and Mouse IL-6 ELISA 
kit (Shanghai WesTang Bio-Tech Co., Ltd., Shanghai, 

their drinking water for 7 d. On days 8 to 16, mice 
were switched to normal water. Additionally, the mice 
treated with Ast2B were injected daily with the CRH-R2 
antagonist Ast2B (Sigma-Aldrich, St. Louis, MO, United 
States) administered intraperitoneally (20 µg/kg). The 
mice treated with Ucn2 received an intraperitoneal 
injection of Ucn2 (Peptide Institute Inc., Osaka, 
Japan) (30 µg/kg). The mice treated with TXYF were 
administered the aqueous TXYF extract. The doses of 
2.8 g/kg•d, 5.6 g/kg•d, and 11.2 g/kg•d aqueous TXYF 
extract represented an equivalent of 0.5 ×, 1.0 × and 2.0 
× for the human adult dosage. 

Disease activity index
Intestinal disease activity was assessed based on weight 
loss, the presence of diarrhea accompanied by blood and 
mucus, and colonic shortening[33]. DAI was calculated by 
scoring weight loss, diarrhea and rectal bleeding, based 
on a previous scoring system (Table 1) described by 
Murthy et al[34] with little modification. Weight loss was 
defined as the difference between the initial and final 
weights. Diarrhea was defined by the absence of fecal 
pellet formation and the presence of continuous fluid 
fecal material in the colon. Rectal bleeding was assessed 
based on the presence of diarrhea containing visible 
blood and on the presence of gross rectal bleeding, and 
was scored as diarrhea. Disease activity index (DAI) 
values were calculated using the following formula: 
DAI = [(weight loss score) + (diarrhea score) + (rectal 
bleeding score)]/3. The clinical parameters used in the 
present study were chosen to represent the subjective 
clinical symptoms observed in human UC.

Histological process
Sections of colon fixed in 10% formalin, paraffin-
embedded and stained with hematoxylin and eosin 
were used for histological scoring. The sections were 
graded by two blinded investigators, using a range 
from 0 to 3 as to amount of inflammation (acute and 
chronic) and depth of inflammation and with a range 
from 0 to 4 as to the amount of crypt damage or 
regeneration, as indicated in Table 2[35]. These changes 
were also quantified as to the percent involvement by 
the disease process: (1) 1%-25%; (2) 26%-50%; 
(3) 51%-75%; (4) 76%-100%. Histological score was 
calculated using the following formula: histological 
colitis score = inflammation + depth of lesions + 
destruction of crypt + width of lesions.

Table 2  Histological score to quantify the degree of colitis

Score Inflammation Depth of lesions Destruction of crypt Width of lesions, %

0 None None None
1 Slight Mucosa Basal 1/3 damaged 1-25
2 Moderate Mucosa and submucosa Basal 2/3 damaged 26-50
3 Severe Transmural Intact epithelium only 51-75
4 - - Total crypt and epithelium 76-100

Gong SS et al . Mucosa repair mechanisms of UC
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Table 3  Primer sequences and amplification length

Gene Primer sequences Amplification length

TNF-α Forward: 5’-GCCTATGTCTCAGCCTCTTCTC-3’ 22
Reverse: 5’-TGGTGGTTTGCTACGACGTG-3’ 20

CXCL-1 Forward: 5’-TCACCTCAAGAACATCCAGAGC-3’ 22
Reverse: 5’-ACTTGGGGACACCTTTTAGCAT-3’ 22

IL-6 Forward: 5’-TCTCTGCAAGAGACTTCCATCC-3’ 22
Reverse: 5’-TTCCACGATTTCCCAGAGAACA-3’ 22

β-actin Forward: 5’-AGATCAAGATCATTGCTCCTCC-3’ 22
Reverse: 5’-GGTGTAAAACGCAGCTCAGTAA-3’ 22

TNF-α: Tumor necrosis factor-alpha; CXCL-1: Chemokine (C-X-C motif) ligand-1; IL-6: Interleukin-6; β-actin: Beta-actin.
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China), respectively. All assays were conducted by 
following the manufacturer’s instruction.

Statistical analysis
All analyses were performed using SPSS 24.0 statistical 
software (IBM Corp., Armonk, NY, United States). 
Comparisons between groups were performed using 
one-way analysis of variance (ANOVA), followed by 
Scheffe post hoc test for multiple comparisons, other­
wise a Dunnett’s T3 method was used. All data are 
expressed as the mean ± SD. P < 0.05 was considered 
statistically significant.

RESULTS
Inhibition of CRH-R2 signaling aggravates the symptoms 
of DSS-induced colitis in mice 
We first assessed the involvement of CRH-R2 signaling 
in mucosal repair after colitis by administering the 
CRH-R2 antagonist Ast2B to mice after induction of 
DSS colitis. Mice received an intraperitoneal injection of 
Ast2B daily for 9 d after withdrawal of DSS, and body 
weight loss, DAI, colon length and histological score 
were monitored. 

Compared with the DSS group, mice treated with 
the CRH-R2 antagonist Ast2B showed more body 
weight loss (P < 0.05) (Figure 1A) and shorter colon 
lengths (4.90 ± 0.32 cm vs 6.21 ± 0.34 cm, P < 0.05) 

(Figure 1B). DAI score and histological score were used 
to evaluate the severity of UC in mice. The mice in the 
Ast2B group exhibited significantly higher DAI scores 
(3.61 ± 0.53 vs 2.42 ± 0.32, P < 0.05) (Figure 1D) 
and histological scores (11.50 ± 1.05 vs 8.33 ± 1.03, 
P < 0.05) (Figure 1E) compared to the mice in the DSS 
group. 

Interestingly, mice treated with Ucn2 after DSS-
induced colitis showed a smaller degree of body weight 
loss (P < 0.001) (Figure 1A), longer colon length (9.58 
± 0.62 cm vs 6.21 ± 0.34 cm, P < 0.001) (Figure 1B), 
lower DAI (0.87 ± 0.55 vs 2.42 ± 0.32, P < 0.001) 
(Figure 1D) and improved histological scores (4.33 ± 
1.50 vs 8.33 ± 1.03, P < 0.05) (Figure 1E) compared 
to the mice in the DSS group. However, a significant 
statistical difference was found between the Ast2B + 
Ucn2 group and the Ucn2 group (Figure 1A-F).

Inhibition of CRH-R2 signaling increases secretion of 
inflammatory cytokines in colon tissues of DSS-induced 
UC mice
The levels of proinflammatory factors such as TNF-α, 
CXCL-1 and IL-6 in mouse colon tissues were detected 
by real time-PCR and ELISA. Compared with the 
DSS group, the Ast2B group showed significantly up-
regulated mRNA expression of TNF-α (6.19 ± 0.51 vs 
3.87 ± 0.98, P < 0.05) (Figure 2A), CXCL-1 (10.77 ± 
2.55 vs 5.08 ± 0.76, P < 0.05) (Figure 2B),and IL-6 

CON                                                                     Ast2B                                                              DSS

Ucn2                                           TXYF-H                                           TXYF-M                                            TXYF-L

Ast2B + Ucn2                                Ast2B + TXYF-L                                Ast2B + TXYF-M                                  Ast2B + TXYF-H

Figure 1  Inhibition of CRH-R2 signaling aggravates symptoms of DSS-induced colitis in mice. A: Mice body weights measured for 16 d, and shown as 
percentage of weight change; B: Colon length; C: Representative photographs of colon lengths; D: DAI; E: Histological scores were evaluated on the 16th day; F: 
Representative images of hematoxylin-eosin staining histology. Data are presented as mean ± standard deviation, n = 6-10 per group, scale bar = 200 μm. aP < 0.001 
vs control group; gP < 0.05, bP < 0.001 vs DSS group; cP < 0.001 vs Ucn2 group; hP < 0.05 vs TXYF-L group; fP < 0.01, dP < 0.001 vs TXYF-M group; iP < 0.05, eP < 0.001 
vs TXYF-H group. CRH-R2: Corticotropin-releasing hormone-receptor 2; DAI: Disease activity index; DSS: Dextran sulfate sodium; TXYF: Tong-Xie-Yao-Fang.
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Figure 2  Inhibition of CRH-R2 signaling increases secretion of inflammatory cytokines in colon tissues of DSS-induced ulcerative colitis mice. A-C: Real 
time-PCR-assessed mRNA level of TNF α (A), CXCL-1 (B) and IL 6 (C) in colon tissues. The mRNA level in each group was determined relative to the level in the 
control group (defined as 100%); E-F: Enzyme-linked immunosorbent assay-detected protein levels of TNF α (D), CXCL-1 (E) and IL 6 (F) in colon tissues. Data are 
presented as mean ± standard deviation, n = 6 per group. bP < 0.01, cP < 0.001 vs control group; dP < 0.05, eP < 0.01, fP < 0.001 vs DSS group; qP < 0.01, rP < 0.001 
vs Ucn2 group; mP < 0.05, nP < 0.01, oP < 0.001 vs TXYF-L group; gP < 0.05, hP < 0.01, iP < 0.001 vs TXYF-M group; jP < 0.05, kP < 0.01, lP < 0.001 vs TXYF-H group. 
CRH-R2: Corticotropin-releasing hormone-receptor 2; DSS: Dextran sulfate sodium; TXYF: Tong-Xie-Yao-Fang.
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(5.93 ± 0.99 vs 3.55 ± 0.62, P < 0.05) (Figure 2C). 
Meanwhile, the protein expression levels of TNF-α 
(Figure 2D), CXCL-1 (Figure 2E) and IL-6 (Figure2F) 
were increased markedly in the Ast2B group. 

However, compared with the DSS group, the 
Ucn2 group showed significantly decreased mRNA 
expression of TNF-α (Figure 2A), CXCL-1 (Figure 2B) 
and IL-6 (Figure 2C). Simultaneously, the Ucn2 group 
demonstrated reduced protein expression of TNF-α 
(Figure 2D), CXCL-1 (Figure 2E) and IL-6 (Figure 
2F). Interestingly, the Ast2B + Ucn2 group showed 
drastically increased mRNA and protein expression of 
TNF-α, CXCL-1 and IL-6 compared with the Ucn2 group 
(P < 0.05 for all).

Inhibition of CRH-R2 signaling promotes intestinal 
permeability in DSS induced colitis
To determine the effect of CRH-R2 signaling on epithelial 
permeability, we analyzed intestinal permeability in DSS-
induced colitis model by measuring the concentration 
of the serum FITC. The concentration of serum FITC-
dextran was higher in the Ast2B group than DSS group 
(2.76 ± 0.11 μg/mL vs 1.47 ± 0.11 μg/mL, P < 0.05) 
(Figure 3). However, the concentration of serum FITC-
dextran in the Ucn2 group was lower than DSS group 
(0.75 ± 0.07 μg/mL vs 1.47 ± 0.11 μg/mL, P < 0.05) 
(Figure 3). An obvious difference was observed between 
the Ast2B+Ucn2 group and the Ucn2 group.

Inhibition of CRH-R2 signaling promotes colonic 
epithelial cell apoptosis and reduces epithelial cell 
proliferation 
The effect of Ast2B on cell proliferation and cell death 
was then determined. TUNEL staining was significantly 
increased in the Ast2B group compared with the DSS 
group (1422.39 ± 90.71 vs 983.01 ± 98.17, P < 0.001) 
(Figure 4L). At the same time, the Ast2B group showed 
significantly decreased cell proliferation (4.97 ± 4.25 

vs 22.51 ± 8.22, P < 0.05) (Figure 5L). Interestingly, 
the Ucn2 group showed promoted colonic epithelial 
cell proliferation (Figure 5L) and reduced epithelial cell 
apoptosis (Figure 4L). However, significant statistical 
differences were found between the Ucn2 group 
and the Ast2B + Ucn2 group with regards to colonic 
epithelial cell apoptosis and proliferation (P < 0.01 for 
both).

TXYF promotes mucosal repair in colitis mice by 
regulating CRH-R2 signaling
To obtain insight into the underlying mechanism re­
sponsible for promoting mucosal repair of TXYF, DSS-
induced colitis mice were pretreated with the CRH-R2 
antagonist Ast2B, and later treated with various doses 
of aqueous TXYF extracts. 

Compared with the DSS group, the TXYF-H groups 
had lower DAI scores (Figure 1D) and histological 
scores (Figure 1E), and decreased body weight loss 
(Figure 1A). TXYF-M,H groups, on the other hand, 
had longer colon length (Figure 1B) and improved 
intestinal permeability (Figure 3). Furthermore, TXYF 
inhibited secretion of inflammatory cytokines in colon 
tissues (Figure 2A-F) and promoted colonic epithelial 
cell proliferation (Figure 5L), along with reducing 
apoptosis (Figure 4L). However, the Ast2B + TXYF 
groups showed significant statistical difference in DAI, 
body weight loss, colon length and histological scores, 
when compared with the TXYF groups. As for inhibiting 
secretion of inflammatory cytokines, the Ast2B + TXYF 
groups demonstrated significant differences within the 
TXYF groups. Additionally, the Ast2B + TXYF groups 
showed markedly improved intestinal permeability in 
DSS-induced colitis compared with the TXYF groups, 
respectively. In addition, the Ast2B + TXYF groups 
demonstrated significant differences with the TXYF 
groups in promoting colonic epithelial cell proliferation 
and reducing epithelial cell apoptosis. 

These results further confirm the idea that CRH-R2 
signaling is the main mechanism of TXYF-mediated 
mucosal repair in DSS-induced colitis in mice.

DISCUSSION
Mucosal healing is a desired therapeutic end-point 
in the treatment of IBD; interventions that promote 
restoration of the epithelial barrier are needed to limit 
inflammation and to prevent future injury. Mucosal hea­
ling consists of two processes[15]. Firstly, intact cells in 
the adjacent region migrate to the injured area; then, 
the cells compensate for damaged cells by proliferation 
and help to maintain normal thickness of the intestinal 
epithelium. Therefore, the migration and proliferation 
of intestinal epithelial cells are the key mechanisms for 
the healing of epithelial defects after mucosal injury. In 
addition, inhibiting apoptosis of intestinal epithelial cells 
can promote the healing process of mucosa[37]. It is 
well known that intestinal epithelial barrier defects are 
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characterized by increased intestinal permeability. 
In the present study, it was found that selective 

inhibition of CRH-R2 signaling can aggravate symptoms 
of DSS-induced colitis, destroy the impaired intestinal 
barrier function, promote colonic epithelial cell apoptosis 
and reduce epithelial cell proliferation. After treatment 
with Ucn2 and TXYF, DSS-induced mice demonstrated 
ameliorated symptoms of DSS-induced colitis, improved 
impaired intestinal barrier function, promoted colonic 
epithelial cell proliferation and reduced epithelial cell 
apoptosis. Moreover, Ucn2 and TXYF reduced the 
expression of the proinflammatory factors TNF-α, 
CXCL-1, and IL-6 in colon tissues. 

Cytokines play a central role in the regulation of both 
intestinal inflammation and mucosal repair mechanisms[38]. 
Treatments that neutralize the proinflammatory actions 
of TNF-α promote mucosal healing and are a standard 

of current IBD treatment paradigms[7,38]. In addition, 
production of the key proinflammatory cytokine IL-6 
correlates with the degree of active intestinal inflam­
mation in IBD patients[39], further supporting the concept 
that therapeutic interventions that modulate cytokine 
production and/or release may promote mucosal repair 
after inflammation. Taken together, these results indicate 
that Ucn2 and TXYF promote mucosal repair. 

Studies from others have found that CRH may be 
involved in the maintenance of intestinal barrier integrity 
by regulating autophagy in the intestinal epithelial 
cells[18]. Our previous studies also found that CRH could 
induce an increase in intercellular permeability in the 
intestinal epithelium[22]. Some studies have also found 
that CRH-R2 can activate the antiinflammatory response 
of intestinal mucosa and exert an antiinflammatory 
effect[23]. In addition, activation of CRH-R2 can promote 
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Figure 4  Inhibition of CRH-R2 signaling promotes colonic epithelial cell apoptosis in DSS-induced colitis. A-K: Representative images from TUNEL sections; L: 
Quantification of TUNEL data. Data are presented as mean ± standard deviation, n = 6 per group, scale bar = 50 μm. dP < 0.001 vs control group; aP < 0.05, bP < 0.01, 
cP < 0.001 vs DSS group; eP < 0.001 vs Ucn2 group; gP < 0.01 vs TXYF-L group; hP < 0.01 vs TXYF-M group; fP < 0.001 vs TXYF-H group. CRH-R2: Corticotropin-
releasing hormone-receptor 2; DSS: Dextran sulfate sodium; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick-end labeling; TXYF: Tong-Xie-Yao-Fang.
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the migration and proliferation of colon cancer cells and 
gastric mucosa cells[24,25]. Furthermore, the expression 
of CRH-R2 has been reported as down-regulated in 
biopsy specimens of UC patients[26] and CRH-deficient 
mice have been reported as unable to initiate healing 
responses after acute experimental colitis[27]. 

These results suggest a role for the CRH peptide 
family, especially CRH-R2, in mucosal repair mechanisms. 
It is known that Ucn2 is a peptide which binds exclusively 
to CRH-R2. Significant statistical differences were found 
between the Ast2B group and the Ast2B + Ucn2 group. 
Thus, a conclusion can be made that CRH-R2 activated 
the intestinal mucosal antiinflammatory response by 
regulating the migration, proliferation and apoptosis of 
intestinal epithelial cells in colitis mice. 

Subsequently, the efficacy of TXYF was assessed. 

According to the theory of traditional Chinese medicine, 
IBD belongs to “diarrhea, dysentery”. The principle of 
treatment is focused on relieving pain and eliminating 
dampness and diarrhea. TXYF is a classic formula in the 
Jing yue quan shu (Jingyue’s Complete Book), which 
consists of atractylodes rhizome (Rhizoma Atractylodis 
Macrocephalae) head groups, white peony root (Radix 
Paeoniae Alba), dried tangerine peel (Pericarpium 
Citri Reticulatae), and divaricate saposhnikovia root 
(Radix Saposhnikoviae). TXYF has been believed to be 
effective in improving disorders of the digestive system 
and alleviating abdominal pain, diarrhea, and has been 
used widely as a medication to treat inflammatory 
bowel syndrome and UC clinically, without inducing 
hepatomegaly or splenomegaly[40-42]. 

TXYF has also been shown to improve reconstruction 
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Figure 5  Inhibition of CRH-R2 signaling reduces epithelial cell proliferation in DSS-induced colitis. A-K: Representative images from Ki-67 immunoreactive 
sections; L: Quantification of Ki-67 immunohistochemistry data. Data presented as mean ± standard deviation, n = 6 per group, scale bar = 50 μm. cP < 0.05, dP < 0.01 
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CRH-R2: Corticotropin-releasing hormone-receptor 2; DSS: Dextran sulfate sodium; TXYF: Tong-Xie-Yao-Fang.
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of the intestinal epithelial barrier and promote the 
healing of mucosa in UC[28,29]. Our previous study found 
that TXYF down-regulated CRH-R1 and up-regulated 
CRH-R2. While the mechanism underlying TXYF pro­
motion of mucosal repair is not well understood, it is 
thought to intervene using CRH-R2 and to regulate the 
migration, proliferation and apoptosis of epithelial cells, 
like the role of Ucn2[30,31]. 

Herein, we describe the selective inhibition of 
CRH-R2 signaling in the intestinal mucosa of mice after 
experimental colitis, along with TXYF treatment, leading 
to exacerbated symptoms of DSS-induced colitis, 
delayed healing, increased expression of proinflam­
matory factors TNF-α, CXCL-1 and IL-6 in colon tissues, 
decreased epithelial cell proliferation and promoted cell 
apoptosis. These results suggest that TXYF promoted 
the mucosal repair process of colitis mice by regulating 
CRH-R2.

In conclusion, CRH-R2 activates the intestinal mucosal 
antiinflammatory response by regulating the migration, 
proliferation and apoptosis of intestinal epithelial cells 
in colitis mice, and exerts an antiinflammatory effect. 
The effects of TXYF on the mucosal repair process are 
focused on regulating CRH-R2 in colitis mice.

ARTICLE HIGHLIGHTS
Research background
Mucosal healing is a desired therapeutic end-point in the treatment of 
inflammatory bowel disease (IBD). However, thorough treatment of IBD 
is difficult and there are some adverse reactions. According to studies, 
corticotropin-releasing hormone (CRH)-receptor (R)2 can activate the 
inflammatory response of intestinal mucosa. Our preliminary study found that 
Tong-Xie-Yao-Fang could lower CRH-R1, increase the expression of CRH-R2, 
and participates in reconstruction of the intestinal barrier.

Research motivation
Mucosal healing is a desired therapeutic end-point in the treatment of IBD. 
However, the mechanism of mucosal healing is still unclear.

Research objectives 
To explore the significance of CRH-R2 in the mucosal healing of dextran sulfate 
sodium (DSS)-induced colitis and study the effect of Tong-Xie-Yao-Fang (TXYF) 
on CRH-R2.

Research methods
Ulcerative colitis (UC) was induced in mice by administration of 3% (w/v) DSS 
for 7 d. Then, mice were administered urocortin (Ucn)-2 or various doses of 
aqueous TXYF extracts, the CRH-R2 antagonist Astressin (Ast)2B, Ast2B + 
Ucn2, or Ast2B with various doses of aqueous TXYF extracts for 9 d. The colitis 
disease activity index (DAI) was assessed to evaluate the condition of colitis. 
The expression level of Ki-67 represented the proliferation of colonic epithelial 
cells. The expression levels of inflammation cytokines IL-6, TNF-α and CXCL-1 
were examined by PCR and enzyme-linked immunosorbent assay.

Research results
Compared with the DSS group, mice treated with the CRH-R2 antagonist 
Ast2B showed greater loss of body weight, shorter colon lengths, and higher 
DAI and histological scores. Additionally, the Ast2B group showed increased 
intestinal permeability, improved secretion of inflammatory cytokines in colon 
tissue and reduced colonic epithelial cell proliferation. Increased apoptosis was 
also demonstrated. The Ucn2 group demonstrated lower DAI and histological 

scores. Diminished weight loss, longer colon length, reduced intestinal 
permeability, inhibited secretion of inflammatory cytokines in colon tissue 
and increased colonic epithelial cell proliferation were all observed. Reduced 
apoptosis was also observed. 

Research conclusions
CRH-R2 activates the intestinal mucosal antiinflammatory response and plays 
an important antiinflammatory role. TXYF promotes the mucosal repair process 
in colitis mice.

Research perspectives
The CRH-R2 signaling pathway plays a pivotal role in mucosal healing in 
experimental UC in mice. Mucosal healing is a desired therapeutic end-point 
in the treatment of IBD. Thus, the findings of this study indicate a new potential 
mechanism by which CRH-R2 treats UC. TXYF, which has fewer side effects 
than other medicines, promotes the mucosal repair process of colitis mice 
by regulating CRH-R2. Therefore, TXYF can be used in patients with UC to 
promote their mucosal repair. 
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sulfate sodium (DSS)-induced colitis. Proinflammatory 
CD4+ cells in DSS- and NaCl-treated mice are mainly 
double-positive IL-17+IFN-γ+ T cells. Macrophage 
depletion significantly alleviates DSS-induced colitis. 
M1 macrophages play an important role in the 
proinflammatory effect of NaCl in the mouse gut. NaCl 
promotes M1 proinflammatory gene expression in 
lipopolysaccharide-activated peritoneal macrophage. 
The mechanism by which NaCl promotes DSS-induced 
colitis involves up-regulation of the p38/MAPK axis.

Guo HX, Ye N, Yan P, Qiu MY, Zhang J, Shen ZG, He HY, 
Tian ZQ, Li HL, Li JT. Sodium chloride exacerbates dextran 
sulfate sodium-induced colitis by tuning proinflammatory and 
antiinflammatory lamina propria mononuclear cells through 
p38/MAPK pathway in mice. World J Gastroenterol 2018; 
24(16): 1779-1794  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v24/i16/1779.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i16.1779

INTRODUCTION
Inflammatory bowel disease (IBD) is a chronic and 
recurrent disease, usually manifesting as ulcerative 
colitis and Crohn’s disease (CD)[1]. IBD is a high-risk 
factor for colorectal cancer and it is a serious threat 
to the human health globally. Although its etiology is 
presently unclear, findings yielded by extant studies 
indicate that IBD is a complex process involving 
heredity, environment and immunity[2-5].

Innate and adaptive immune cells play different roles 
in IBD pathogenesis. Results obtained in a large number 
of studies have shown that Th17, Th1, regulatory T 
cells (Tregs) and macrophages play important roles in 
IBD pathogenesis. For instance, the number of Th17 
cells increases significantly in mucosa lamina propria 
(LP) of colitis patients, whereby interleukin (IL)-17 is 
produced, resulting in mucosal damage and enhancing 
disease activity[6,7]. Th1 polarization is related to colonic 
inflammation, through its induction of IFN-γ and TNF-α 
production, whereas the differential propensity to 
develop colitis is linked to the inherent tendency of 
the immune system to give rise to Th1 or Th17/Treg 
responses[8]. Tregs, which are very important regulatory 
T cells, express IL-10 highly and inhibit inflammation 
in IBD[9]. Macrophages in the intestinal mucosa of 
colitis patients can secrete the cytokines TNF-α, IL-1 
and IL-6[10]. Intestinal macrophages are the major 
population of antigen presenting cells in intestinal 
mucosa and they shape the types of T cell response to 
luminal antigens[11]. 

Sodium chloride mediates the inflammatory effects 
of immune cells that are very important to IBD. NaCl 
exacerbates experimental autoimmune encephalo
myelitis in mice by promoting Th17 cell differentiation[12]. 
High salt content strengthens the lipopolysaccharides 
(LPS)-induced macrophage activation by activating 
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Abstract
AIM
To investigate the influence of high salt on dextran sulfate 
sodium (DSS)-induced colitis in mice and explore the 
underlying mechanisms of this effect.

METHODS
DSS and NaCl were used to establish the proinflammatory 
animal model. We evaluated the colitis severity. Flow 
cytometry was employed for detecting the frequencies 
of Th1, macrophages and Tregs in spleen, mesenteric 
lymph node and lamina propria. The important role of 
macrophages in the promotion of DSS-induced colitis 
by NaCl was evaluated by depleting macrophages 
with clodronate liposomes. Activated peritoneal 
macrophages and lamina propria mononuclear cells 
(LPMCs) were stimulated with NaCl, and proteins 
were detected by western blotting. Cytokines and 
inflammation genes were analyzed by enzyme-linked 
immunosorbent assay and RT-PCR, respectively.

RESULTS
The study findings indicate that NaCl up-regulates the 
frequencies of CD11b+ macrophages and CD4+IFN-
γ+IL-17+ T cells in lamina propria in DSS-treated mice. 
CD3+CD4+CD25+Foxp3+ T cells, which can secrete high 
levels of IL-10 and TGF-β, increase through feedback in 
NaCl- and DSS-treated mice. Furthermore, clodronate 
liposomes pretreatment significantly alleviated DSS-
induced colitis, indicating that macrophages play 
a vital role in NaCl proinflammatory activity. NaCl 
aggravates peritoneal macrophage inflammation by 
promoting the expressions of interleukin (IL)-1, IL-6 
and mouse inducible nitric oxide synthase. Specifically, 
high NaCl concentrations promote p38 phosphorylation 
in lipopolysaccharide- and IFN-γ-activated LPMCs 
mediated by SGK1. 

CONCLUSION
Proinflammatory macrophages may play an essential 
role in the onset and development of NaCl-promoted 
inflammation in DSS-induced colitis. The underlining 
mechanism involves up-regulation of the p38/MAPK axis.

Key words: inflammatory bowel disease; macrophage; 
NaCl; CD4+IFN-γ+IL-17+ T cell; p38/MAPK

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: NaCl, as an indispensable environmental 
factor, evokes both innate and adaptive immune proin
flammation cell activation in mice affected by dextran 
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signaling pathways of p38 and ERK1 to induce the 
production of proinflammatory factors[13]. Extant studies 
have shown that the high-salt diet promotes Th17 cell 
activation in LP and exacerbates experimental colitis 
in mice[14,15]. However, high-salt diet effect on other 
immune cells, such as Th1, Tregs and macrophages, 
which are also associated with pathopoiesis in IBD, is 
still unclear. Macrophage activation plays a pivotal role 
in inflammation initiation and progression in diverse 
pathological conditions. Findings obtained in our previous 
research indicate that, in mice treated with clodronate 
liposomes (MDP), gut macrophages were successfully 
depleted. Macrophage depletion could protect mice 
against colitis induced by dextran sulfate sodium (DSS), 
suggesting that the macrophages play an important role 
in colitis pathogenesis.

In the present study, we hypothesized that NaCl 
promotes the onset and course of DSS-induced colitis, 
as well as sustains the disease. The promotion effect 
may be due to monocyte-macrophages shifting the 
T cell response toward Th17, Th1 and Treg cells. We 
tested this hypothesis in a DSS-induced colitis mouse 
model, which shares many characteristics with human 
ulcerative colitis[16,17]. We found that NaCl promoted 
both macrophages and CD4+ proinflammatory cell 
immune response, whereby CD4+ proinflammatory cells 
were mainly CD4+IFN-γ+IL-17+ T cells. NaCl enhanced 
the proinflammatory gene expression and cytokine 
secretion in the colons of mice affected by colitis. 
Depletion of gut macrophages significantly alleviated 
DSS-induced colitis, suggesting that macrophages play 
a vital role in the NaCl proinflammation process. High 
NaCl enhanced M1 proinflammation gene expression 
in LPS-activated peritoneal macrophages. Therefore, 
colitis promoted by high NaCl levels may be a result of 
M1 macrophage polarization. M1 polarization shifts T 
cell response toward proinflammatory CD4+IFN-γ+IL-17+ 

T cells. High NaCl proinflammation in LPS- and IFN-γ-
activated lamina propria mononuclear cells (LPMCs) 
relies on up-regulation of the p38 mitogen-activated 
protein kinase (p38/MAPK) axis.

MATERIALS AND METHODS
Animal treatment
For this study, 8- to 10-wk-old female C57BL/6J mice 
were purchased from the Animal Center of Third Military 
Medical University (Army Medical University). Mice were 
housed at 24 ℃, under light-controlled cycle (12 h) and 
with free access to standard laboratory water and food. 
All processes were supported by the Committee on Use 
and Care of Laboratory Animals at Third Military Medical 
University (Army Medical University).

Establishment of the animal model with DSS and NaCl 
Mice purchased from the Animal Center were allowed 
at least 7 d to adapt to the environment before being 
randomly divided into four groups. They received water 

containing 2% NaCl (Sinopharm Chemical Reagent, 
China) and/or water containing 2.5% DSS (160110; 
MP Biomedicals, United States) for 10 d. The intestinal 
macrophages were depleted using MDP (van Rooijen 
and van Kesteren-Hendrikx, 2003, clodronateliposomes.
org, Holland)[18]. Briefly, 200 μL MDP was injected i.p. 
into mice 4 d prior to the onset of inflammation and 
on days -1, 1, 3 and 5 during the 2.5% DSS and 2% 
NaCl treatment. The disease activity index (DAI), which 
was used for the clinical scoring of stool consistency, 
bleeding and weight loss, served as the measure of 
colitis severity. The criteria for grading the DAI were 
adopted from elsewhere[19].

Cell isolation
Spleen (SP) and mesenteric lymph node (MLN) cells 
from each mouse in all groups were separated by 
grinding on filters. SP red blood cells were lysed using 
red blood cell lysis buffer (C3702; Beyotime, China). 
Single cell suspensions of SP and MLN were obtained 
through filters. Cells were washed twice with phosphate-
buffered saline (PBS) (Zhongshanjinqiao, China) 
containing 2% fetal calf serum (FBS; as 2% FBS/PBS) 
(Gibco, Life Technologies, United States) through 
centrifugation. 

Cell pellets were resuspended in the 2% FBS/PBS 
and were kept on ice for later use. Intestinal LPMCs 
were isolated in accordance with the Lamina Propria 
Dissociation Kit instructions (130-097-410; Miltenyi 
Biotec, Germany). Cell pellets were resuspended in 40% 
percoll (Ruitaibio, China) and added slowly to the upper 
part of centrifuge tubes, which had 5 mL of 80% percoll 
at the bottoms. LPMCs were obtained by washing twice 
with 2% FBS/PBS after density gradient centrifuging at 
420 g for 20 min. 

Flow analysis
The isolated cells from SP, MLN and LP from each 
experimental group were cultured in 96-well U plates 
in 0.2 mL 1640 medium containing 1% penicillin-
streptomycin (C0222; Beyotime) and 10% FBS 
with ionomycin (I) (1 μg/ml) (S1672; Beyotime), 
phorbol 12-myristate 13-acetate (PMA) (25 ng/ml) 
(S1819; Beyotime) and Brefeldin A (BFA) (10 μg/mL) 
(51-2092KZ; BD Bioscience, United States) for 6 h. The 
cells were collected and preblocked by Fc receptors for 
20 min. Cell-surface staining was performed using PE-, 
FITC-, APC- or percp-conjugated anti-CD4, CD3, CD25 
or CD11b (eBioscience, United States). Intracellular 
staining was performed using the FITC-conjugated anti-
mouse IFN-γ, PE-conjugated anti-mouse IL-17 or Foxp3 
(eBioscience). The intracellular or nuclear staining 
for IFN-γ, IL-17 and Foxp3 analysis was performed 
according to the BD Bioscience protocol. 

LPMC stimulation
Isolated LPMCs were cultured at a concentration of 
5 × 106 cells/mL for 24 h, after which the culture 
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were incubated at 37 ℃ for 2 h after being washed three 
times with PBS containing 0.05% tween-20 (PBST). 
Biotinylated antibodies were incubated at 37 ℃ for 1 h 
after being washed with PBST three times. Horseradish 
peroxidase-conjugated antibody was incubated at 37 ℃ 
for 30 min after being washed with PBST five times. The 
reaction of detection reagent at 37 ℃ required 15 min 
after the unbounded antibody was removed by washing 
with PBST five times. The plate was analyzed at 450 nm 
wavelength after terminating the reaction with the stop 
solution.

Histology and immunohistochemistry
Colon tissues were fixed with 4% paraformaldehyde 
before being embedding in paraffin. To assess 
inflammation, colon tissue cross sections were stained 
with hematoxylin and eosin (HE). Sections were 
incubated with rabbit anti-mouse inducible nitric oxide 
synthase (iNOS) antibody labeled with FITC (orb14179; 
Biorbyt, United Kingdom) and rabbit anti-mouse 
F4/80 antibody labeled with PE (123109; Biolegend). 
All immunofluorescence images were taken by a 
fluorescence microscope (Leica, Germany) under the 
same exposure and intensity settings.

Western blotting 
Proteins were extracted by RIPA lysis buffer containing 
protease inhibitor cocktail. The protein concentration 
was detected using the Protein Concentration Kits 
(P0012; Beyotime) and the samples were boiled for 5 
min at 98 ℃. Then, 30 μg of protein for each sample 
was separated with SDS-PAGE. Next, proteins were 
electrotransferred onto a nitrocellulose membrane (GE 
Healthcare, Sweden) and were blocked with 5% BSA in 
TBS-0.05% Tween-20 (TBST) at room temperature for 
2 h. The membrane was subsequently incubated with 
GAPDH (1:1000) (Santa Cruz Biotechnologies, United 
States), p38 or phosphorylated p38 (1:250) (Abcam, 
United States) at 4 ℃ for 16 h. The membrane was 
washed with TBST before being incubated at room 
temperature for 1 h with antibody conjugated with 
horseradish peroxidase (1:2000) (Zhongshanjinqiao, 
China). Antibody binding was detected with the ECL 
substrate (170-5060; Bio-Rad) after washing with 
TBST. The optical density of bands was analyzed using 
ImageJ 1.42 software (United States).

Statistical analysis
All data were expressed as mean ± SD. GraphPad Prism 
5.00 software for Windows (United States) was used for 
data analysis. Statistical results were evaluated using 
unpaired Student’s t-test or ANOVA, and P < 0.05 was 
considered statistically significant.

RESULTS
NaCl aggravates DSS-induced colitis in mice
To determine the influence of NaCl on enteritis, mice 

supernatants were collected and cytokine levels were 
analyzed by enzyme-linked immunosorbent assay 
(ELISA) or were stimulated using different NaCl con
centrations (5, 10, 20, 40, 60 or 80 mmol/L) in the 
presence of 100 ng/ml LPS (Sigma, United States) and 
20 ng/ml IFN-γ (Sigma) with SB20358 (p38 inhibitor) 
or DMSO (ST038; Beyotime) for 24 h. The cells were 
detected by western blot (WB) or real time-PCR (RT-PCR). 

Mouse peritoneal macrophage preparation
Mice were injected intraperitoneally with 2 mL of 4% 
sterile thioglycollate medium (Becton Dickinson, United 
States)[20]. Peritoneal macrophages were obtained by 
washing the peritoneal cavity with 8 mL PBS containing 
1% penicillin-streptomycin per mouse. Peritoneal 
macrophages were centrifuged and resuspended in 
DMEM (Gibco, Thermo Fisher Scientific, United States) 
containing 10% FBS and 1% penicillin-streptomycin. 
Next, peritoneal macrophages were seeded in 24-well 
plates (Corning, United States) and nonadherent cells 
were removed 4 h after seeding by washing with 
medium[21]. Once adhered to the culture plates, cells 
were stimulated with NaCl (10, 20, 40, 60 or 80 mmol/L) 
and 100 ng/ml LPS for 24 h. Finally, cells were collected 
for gene expression evaluation.

Colon culture
Colon tissues were cultured as previously described[22,23]. 
Briefly, after cutting longitudinally, colon tissues were 
washed with PBS for removing intestinal contents 
and were cut into 1-cm segments. These pieces were 
cultured in 24-well plates in 2 mL of RPMI1640 medium 
(Gibco, Life Technology, Shanghai, China) containing 
1% penicillin-streptomycin for 24 h. Supernatant was 
obtained by centrifuging at 10000 g at 4 ℃ for 10 min 
and was immediately stored at -80 ℃ until required for 
further ELISA detection.

RNA isolation and RT-PCR
RNAs of cells and tissues were extracted by Trizol 
(Ambion, Life Technology, United States). RNA was 
transcribed into cDNA using reverse transcription kits 
(RR047A; Takara, Japan). Quantitative RT-PCR was 
performed using Bio-Rad instruments (United States) 
in duplicates with the reagent SYBR Green (RR820A; 
Takara) to measure the products. Gene expression was 
analyzed using the comparative Ct method and was 
normalized to GAPDH, which served as internal control. 
The primer sequences are shown in Table 1.

ELISA
Cytokine content was expressed in pg/ml. Abs, 
including purified and biotinylated antimouse, and 
related reagents were purchased from eBioscience. 
Briefly, 2 μg/ml capture antibody diluted with coat 
buffering was incubated at 4 ℃ overnight in 96-well 
plates (Corning) and was blocked with 5% bovine 
serum albumin (BSA) (Sigma) at 37 ℃ for 2 h. Samples 
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were given 2.5% DSS and/or 2% NaCl. Mice that 
received both NaCl and DSS started losing weight from 
day 5 and subsequently exhibited greater weight loss 
compared to the DSS group (Figure 1A). Moreover, 
the death rate in the DSS + NaCl group was markedly 
higher than in the DSS group (Figure 1B). Compared to 
other groups, colons of mice in the DSS + NaCl group 
became shorter (Figure 1C). HE staining displayed 
obvious inflammatory cell infiltration in both groups, but 
the DSS + NaCl group exhibited more inflammatory cell 
infiltration in colon tissues than the DSS group (Figure 
1D). These findings suggest that NaCl aggravated 
inflammation in DSS-induced colitis.

NaCl up-regulates the frequency of CD4+IFN-γ+IL17+ 

T cells and promotes the secretion of inflammatory 
cytokines in mice with DSS-induced colitis
Increasing evidence indicates that CD4+ T cells play 
a crucial role in the pathogenesis of chronic intestinal 
inflammation, and related cytokines (such as IFN-γ, 
IL-6, IL-17A and TNF) are highly expressed in the 
inflamed mucosa of IBD patients[24,25]. To explore the 
influence of NaCl on CD4+ T cells in colitis-affected mice, 
the CD4+IFN-γ+IL-17+ T cell subsets were detected. 
Compared to the DSS group, the flow cytometry 
analysis indicated that frequencies of CD4+IL-17+ and 
CD4+IFN-γ+ T cell subsets were markedly up-regulated 
in the DSS + NaCl group (Figure 2A). NaCl promotion of 
the DSS-induced colitis development is associated with 
both CD4+IL-17+ and CD4+IFN-γ+ T cells in LP, MLN and 
SP. In addition, the frequencies of inflammatory CD4+ 
T cells (IL-17+ and IFN-γ+ single-positive T cells and 
IFN-γ+IL-17+ double-positive T cells) in the DSS + NaCl 
group were higher than in the DSS group. It is also 
noteworthy that the frequency of CD4+IFN-γ+ T cells 

was up-regulated the most (Figure 2B). These findings 
suggest that CD4+IFN-γ+IL-17+ T cells are crucial in the 
inflammation promotion by NaCl in DSS-treated mice. 

Cytokines IFN-γ, IL-17α, IL-1α, IL-6 and TNF-α 
secreted by colon tissues were detected by ELISA, and 
the gene expression of colon tissues from the animal 
model was measured by RT-PCR. Compared to the DSS 
group, IFN-γ, IL-17α, IL-1α, IL-1β, IL-6 and TNF-α were 
all higher in the DSS + NaCl group (Figure 2C and D). 
Therefore, high NaCl levels up-regulate inflammation 
gene expression and promote the secretion of multiple 
proinflammatory cytokines in mice affected by DSS-
induced colitis.

NaCl up-regulates macrophage frequency in DSS-
treated mice
Macrophages play a crucial role in the Th1 and Th17 
responses, and are also important regulators of salt 
homeostasis[26]. To determine the effect of NaCl on 
macrophages in mice affected by colitis, we detected 
the frequency of CD11b+ macrophages in mice that 
received DSS and/or NaCl by flow cytometry. We 
observed that the macrophages increased significantly 
in the LP, MLN and SP of the DSS + NaCl group com
pared to those of the DSS group (Figure 3A). The 
increased CD11b+ macrophages were mainly located 
in intestinal LP and MLN (Figure 3B). These findings 
indicate that the macrophages also participate in the 
NaCl proinflammation activities in DSS-induced colitis.

Tregs increase through feedback in the development of 
NaCl aggravating inflammation associated with DSS-
induced colitis
Tregs play an important role in the maintenance 
of intestinal mucosal homeostasis by suppressing 

Table 1  Primers used in the real time-PCR

Gene name Primer sequences

GAPDH Sense 5’-AGGTCGGTGTGAACGGATT-3’
Anti-sense  5’-AATCTCCACTTTGCCACTGC-3’

IL-1β Sense     5’-TGGTGTGTGACGTTCCCATTA-3’
Anti-sense     5’-CAGCACGAGGCTTTTTTGTTG-3’

IL-1α Sense        5′-CGCCAATGACTCAGAGGAAGA-3′
Anti-sense      5′-GGCGTCATTCAGGATGAATTC-3′

IL-6 Sense         5’-ACAACCACGGCCTTCCCTACTT-3’
Anti-sense             5’-CACGATTTCCCAGAGAACATGTG-3’

IFN-γ Sense    5’-CTGCTGATGGGAGGAGATGT-3’ 
Anti-sense        5’-ATTTGTCATTCGGGTGTAGTCA-3’ 

Arg1 Sense          5’-CTCCAAGCCAAAGTCCTTAGAG-3’
Anti-sense          5’-GGAGCTGTCATTAGGGACATCA-3’

iNOS Sense       5’-ACATCGACCCGTCCACAGTAT-3’
Anti-sense    5’-CAGAGGGGTAGGCTTGTCTC-3’

IL-10 Sense      5’-GCTCTTACTGACTGGCATGAG-3’
Anti-sense    5’-CGCAGCTCTAGGAGCATGTG-3’

TNF-α Sense    5’-CTGAACTTCGGGGTGATCGG-3’
Anti-sense           5’-GGCTTGTCACTCGAATTTTGAGA-3’

IL-17α Sense            5′-TGTGAAGGTCAACCTCAAAGTCT-3’
Anti-sense                 5′-GAGGGATATCTATCAGGGTCTTCAT-3′

SGK1 Sense   5′-CTGCTCGAAGCACCCTTACC-3′
Anti-sense        5′-TCCTGAGGATGGGACATTTTCA-3′

Guo HX et al . Sodium chloride exacerbates DSS-induced colitis in mice
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Figure 1  Mice treated with DSS and NaCl develop more severe colitis. A: Mice were given DSS and/or NaCl, and were weighed daily; B: Death status was 
recorded daily; C: Colonic tissues were collected from four groups of mice and colonic length was measured; D: Histological analyses show sections of the colon 
stained with HE for DSS- or NaCl-treated mice. In all the panels, data indicate three separate experiments, whereby 10 mice per group were used in each experiment. 
aP < 0.05; bP < 0.01; cP < 0.001. DSS: Dextran sulfate sodium.
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abnormal immune response against dietary antigens 
or commensal flora[8]. To explore the changes in Tregs 
in the mice that received DSS and NaCl, we detected 
CD3+CD4+CD25+Forp3+ T cells by flow cytometry and 
observed that their levels were higher in the DSS + NaCl 
group than in the DSS group (Figure 4A). The increased 
Tregs were mainly distributed in the LP and MLN, while 

their prevalence in SP did not change significantly (Figure 
4B). To explore the influence of NaCl on Tregs in DSS-
induced colitis, we evaluated cytokine levels in culture 
supernatants of LPMCs by ELISA. The results yielded 
by the analyses indicate that NaCl induces LPMCs to 
secrete TNF-α, IL-1α, IL-6 and IL-17, which are critical 
Th17 cell-related cytokines. Moreover, NaCl promotes 

Figure 2  NaCl promotes CD4+IFN-γ+IL-17+ T cell increase and inflammatory cytokine secretion in DSS-treated mice. A: The CD4+IFN-γ+IL-17+ T cells in LP, 
MLN and SP from mice treated with NaCl and/or DSS were detected by flow cytometry; B: Combined flow cytometry data of CD4+IL-17+, CD4+IFN-γ+ and CD4+IFN-
γ+IL-17+ T cell subsets distribution in LP, MLN and SP; C: Colon tissues collected from mice treated with DSS or DSS + NaCl, which were washed with phosphate-
buffered saline and cultured for 24 h, and the supernatants were collected and detected by enzyme-linked immunosorbent assay; D: Colon tissues collected from mice 
treated with NaCl and DSS (or only DSS) were detected by RT-PCR. The relative fold-change in DSS + NaCl-treated mice vs DSS-treated mice. In all the panels, data 
indicate three separate experiments, whereby 3 mice per group were used in each experiment. aP < 0.05; bP < 0.01; cP < 0.001. DSS: Dextran sulfate sodium; LP: 
Lamina propria; MLN: Mesenteric lymph node; SP: Spleen.
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Figure 3  CD11b+ macrophages are increased in DSS- and NaCl-treated mice. A: The CD11b+ cells in LP, MLN and SP from the four groups were detected by 
flow cytometry; B: Quantification of the flow cytometry data indicates the CD11b+ cell distribution in LP, MLN and SP. In the panels, data indicate three separate 
experiments, whereby 3 mice per group were used in each experiment. aP < 0.05; bP < 0.01; cP < 0.001. DSS: Dextran sulfate sodium; LP: Lamina propria; MLN: 
Mesenteric lymph node; SP: Spleen.

Water            2% NaCl          2.5% DSS   2% NaCl + 2.5% DSS

SS
C

CD11b

LP

MLN

SP

4.05% 2.26% 6.22% 11.7%

12.5% 14.1% 19.5%15.2%

8.46% 7.08% 7.27% 7.91%

B

c

Wate
r

NaC
l

DSS

DSS
 +

 N
aC

l

80

60

40

20

0

CD
11

b+
 %

SP
MLN
LP

A
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models were detected by flow cytometry; B: A summary of the percentages of CD3+CD4+CD25+Foxp3+ T cell distribution in LP, MLN and SP; C: LPMCs from the four 
groups were isolated and cultured for 24 h, and the levels of cytokines in the culture supernatants were collected and analyzed by enzyme-linked immunosorbent 
assay. In all the panels, data indicate three separate experiments, whereby 3 mice per group were used in each experiment. aP < 0.05; bP < 0.01; cP < 0.001 vs the 
DSS group. DSS: Dextran sulfate sodium; LMPCs: Lamina propria mononuclear cells; LP: Lamina propria; MLN: Mesenteric lymph node; SP: Spleen.
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the secretion of TGF-β and IL-10, which are significant 
antiinflammatory cytokines secreted by Tregs (Figure 
4C). These findings show that Tregs’ levels also increase 
as a result of inflammation promotion by NaCl in mice 
with DSS-induced colitis.

Macrophages play a critical role in NaCl aggravating 
DSS-induced colitis 
Extant studies have shown that MDP can deplete 
macrophages in mice[27]. We used MDP to deplete 
the macrophages in mice during the DSS and NaCl 
treatments to determine their role in the promotion of 
DSS-induced colitis by NaCl (Figure 5A). We observed 
that macrophage depletion by MDP could prevent colon 
shortening in the mice treated with NaCl and DSS (Figure 
5B). The DAI also showed that macrophage depletion 
alleviated inflammation in NaCl proinflammatory 
processes (Figure 5C). The levels of inflammatory 
cytokines IFN-γ, TNF-α, IL-1β, IL-17A, IL-6, MCP1 and 
MIP2 secreted by colon tissues were reduced in MDP-
treated mice (Figure 5D). The colon tissues from the 
DSS + NaCl group contained a greater number of F4/
80+iNOS+ macrophages compared to the DSS group. In 
addition, the MDP-treated mice had fewer F4/80+iNOS+ 
macrophages compared to the DSS + NaCl group 

(Figure 6). Thus, we posit that macrophage depletion 
can reduce colitis severity in mice. 

High NaCl promotes M1 macrophage polarization in 
vitro
Macrophages in both peritoneal cavity and gastroin
testinal tract are linked to IBD[28]. Different NaCl con
centrations (10, 20, 40, 60 and 80 mmol/L) were used 
to stimulate the macrophages from the abdominal 
cavity and the gene expression was detected by RT-
PCR. Our findings indicate that IL-1β, IL-6 and iNOS, 
which usually exhibit proinflammatory roles, gradually 
increased as the NaCl concentration increased (Figure 
7A-C). It is worth noting that IL-10 and Arg1, which 
are M2 macrophage markers, increased modestly at 
low NaCl concentrations, whereas their expression 
markedly increased at 40 mmol/L and above (Figure 7D 
and E). These results display that high NaCl levels pro
mote LPS-activated peritoneal macrophages toward M1 
polarization. 

NaCl promotes the inflammation response in LP, 
whereas LPS and IFN-γ activated LPMCs rely on p38/
MAPK
p38/MAPK is related to both IBD and hyperosmotic 

Figure 5  Depletion of macrophages reduces the severity of DSS-induced colitis promoted by NaCl. A: Clodronate liposomes (denoted as MDP) or control PBS-
liposomes (denoted as PBS) were administrated intravenously to all mice, as the schematic protocol indicated during DSS and NaCl treatment; B: The disease activity 
index was monitored daily; C: Colon length was measured in each group of mice (n = 10); D: Colon explants were cultured for 24 h and the inflammatory cytokines in 
supernatants were detected by enzyme-linked immunosorbent assay (n = 3). aP < 0.05; bP < 0.01; cP < 0.001 (clodronate liposomes + DSS + NaCl vs DSS + NaCl). 
DSS: Dextran sulfate sodium.
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stress[29,30]. Western blot analysis revealed that high NaCl 
levels significantly up-regulated phosphorylated-p38 of 
LPMCs stimulated with LPS and IFN-γ for different time 
periods (1 h, 6 h, 12 h, 24 h); however, they did not 
affect the total level of p38, and p38 phosphorylation 
reached the highest level after 12 h (Figure 8A). LPMCs 
were treated with NaCl at different concentrations (5, 10, 
20, 40, 60 and 80 mmol/L) in the presence of LPS and 
IFN-γ for 24 h. The western blotting revealed that p38 
phosphorylation increased in a dose-dependent manner 
(Figure 8B). Serum glucocorticoid regulated kinase 
1 (SGK1) increased in LPMCs activated by LPS and 
IFN-γ due to NaCl stimulation (Figure 8C). The results 
further indicated that p38 inhibitor can decrease high 
NaCl-promoted p38 phosphorylation in LPMCs (Figure 
8D). These findings confirmed that NaCl promotes in
flammatory response in the LPS and IFN-γ activated 

LPMCs, and the proinflammation effect depends on p38/
MAPK phosphorylation mediated by SGK1.

DISCUSSION
NaCl has been shown to exert a proinflammatory 
effect in many diseases, including experimental colitis, 
experimental autoimmune encephalomyelitis and 
cardiovascular disease[31-33]. In the present study, 
we observed that macrophages play an important 
role in the promotion of DSS-induced colitis by NaCl. 
Macrophages, as antigen-presenting cells, are important 
in regulating innate and adaptive immune responses 
and have a crucial role in resolving tissue injury and 
promoting tissue repair in IBD[34,35]. Even though the 
cause of IBD remains unclear, mice with lymphocyte 
deficiency developed more severe inflammation, 

Figure 6  iNOS+F4/80+ macrophages increase in the colon of DSS- and NaCl-treated mice. Macrophages in colon tissue obtained from mice injected 
intraperitoneally with PBS-containing liposomes (denoted as PBS), or clodronate liposomes (denoted as MDP) during the NaCl and DSS treatment were analyzed. 
The sections were stained with antibodies of anti-F4/80 (red) and anti-iNOS (green). Nuclei were stained with DAPI (blue). Laser confocal microscopy was used to 
detect fluorescence. (Scale bar = 50 μm). DSS: Dextran sulfate sodium; iNOS: inducible nitric oxide synthase.
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suggesting that innate immune cells are capable of 
triggering the onset and development of disease[36]. 
Activation of the innate immune system is regarded as 
the most direct cause of IBD because it can recruit cells 
of the adaptive immune system to the inflammatory 
site, thus resulting in inflammation[37].

Findings yielded by the present study further 
indicated that NaCl promoted the increase in the 
CD4+ T cell count, especially the IFN-γ+IL-17+ double-
positive T cells in DSS-treated mice. Extant research 
indicates that high-salt diet promotes the differentiation 
of CD4+ T cells into Th17 as well as Th1[32]. However, 
Wei et al[38] showed that, in 2,4,6-trinitrobenzene 
sulfonic acid (TNBS)-induced colitis, NaCl promoted 
Th17 polarization, but not Th1 polarization[15]. DSS and 
TNBS may involve different pathogenic mechanisms. 
Wei et al[38] used TNBS to induce colitis, which mainly 
simulated CD. However, we used DSS to induce colitis, 
which mainly simulated ulcerative colitis. In both CD 
and ulcerative colitis patients, activation and mucosal 
infiltration of CD4+ T lymphocytes has been reported[39]. 

Extant studies have revealed that blocking CD4+ T 
cell activation was capable of limiting the development 
of mucosal inflammation in experimental colitis 
models[40]. CD4+ IFN-γ+IL-17+ T cells, as an intermediate 
form between Th17 and Th1, are an easily observable 
crossover subset promoted by IL-12 signaling beyond 
IL-17[41,42]. Th17 cells play an important role in colitis 
pathogenesis by directly giving rise to Th1-like cell 
response[43]. Empirical evidence indicates that IBD is 

characterized by Th1 cell activation and subsequent 
over-expression of cytokines such as TNF-α, IL-6 and IL-
1β[44,45]. In addition, findings yielded by extant research 
suggest that Th1 cytokines are important promoters 
of continuous mucosal inflammation in DSS-induced 
colitis[46,47]. 

The results obtained in the present work confirmed 
the important role of CD4+IFN-γ+IL-17+ T cells in the 
promotion of inflammation by NaCl in DSS-treated 
mice. High NaCl content up-regulates inflammation 
gene expression and promotes the secretion of multiple 
proinflammatory cytokines for promoting intestinal 
inflammation in mice affected by DSS-induced colitis.

IL-6 and IL-17 are critical Th17 cell-related cytokines 
that are involved in inflammatory responses during IBD 
development[7,48]. In contrast, antiinflammatory TGF-β 
and IL-10, are mainly produced by Tregs[49]. Wei and 
colleagues[15] demonstrated that, while high-salt diet did 
not change Tregs’ percentage, it did inhibit the secretion 
of IL-10 and the suppressive function of Tregs in TNBS-
induced colitis. In our study, NaCl promoted an increase 
in Tregs’ frequency in MLN and LP, as well as enhanced 
IL-10 and TGF-β expression, in DSS-induced colitis. 
Tregs, as immune suppressing cells, are essential in 
maintaining intestinal homeostasis[50]. 

In DSS-treated beta7-deficient mice, in which colonic 
Tregs were depleted, excessive macrophage infiltration 
in colons occurred by up-regulation of colonic epithelial 
intercellular ICAM1, which promoted proinflammatory 
cytokine expression, aggravating DSS-induced colitis[51]. 
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Figure 7  High NaCl levels enhance proinflammation gene expression in LPS-activated peritoneal macrophage. A-E: Peritoneal macrophages were stimulated 
with different NaCl concentrations (10-80 mmol/L) in the presence of LPS for 24 h. mRNA expression was measured by RT-PCR for the indicated genes. In all the 
panels, data indicate three separate experiments. aP < 0.05; bP < 0.01; cP < 0.001. LPS: Lipopolysaccharide.
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Disruption in balance may allow T cells to proliferate 
in an increased fashion, thereby promoting chronic 
intestinal inflammatory development[52]. Therefore, 
continuous Tregs’ differentiation and trafficking in the 
gut is required to dampen immune responses to dietary 
antigens and commensal bacteria[53]. 

We also found that NaCl promoted an increase in 
CD11b+ cells in the LP and MLN from mice treated with 
DSS. Denning et al[54] have shown that CD11b+F4/
80+CD11c- macrophages in LP could induce Foxp3+ 
Tregs’ differentiation, while CD11b+ dendritic cells in LP 
elicited responses of IL-17-producing T cells[54]. Empirical 

evidence indicates that the intake of high dietary salt 
could boost Th17 response through activating the 
caspase-1 in macrophages[15,55]. Moreover, in reaction 
to NaCl, macrophages with enhanced expression of 
immune-stimulatory molecules promote proinflammatory 
cytokine production and T cell proliferation[10,56]. 

Human monocyte-derived granulocyte-macrophage 
colony-stimulating factors exhibit potent antigen-
presenting functions, produce IL-12p40 and IL-23p19, 
and promote development of Th1 immunity[57,58]. In our 
study, inflammation was relieved when the intestinal 
macrophages were depleted by MDP, which indicated 

Figure 8  NaCl promotion of inflammation relies on the p38/MAPK pathway. A: LPMCs were stimulated with 60 mmol/L NaCl in the presence of 100 ng/mL LPS 
and 20 ng/mL IFN-γ for 1 h, 6 h, 12 h and 24 h, and the p38 and phosphorylated-p38 proteins were detected by western blot; B: LPMCs were stimulated with different 
NaCl concentrations in the presence of 100 ng/mL LPS and 20 ng/mL IFN-γ for 24 h and phosphorylated p38 protein was detected by western blot; C: LPMCs were 
stimulated with different NaCl concentrations in the presence of LPS and IFN-γ, and the mRNA expression of SGK1 was measured by RT-PCR; D: LPMCs were 
pretreated with 10 µmol/L SB or DMSO for 2 h and were subsequently stimulated with 60 mmol/L NaCl along with 100 ng/mL LPS and 20 ng/mL IFN-γ in the presence 
of DMSO or 10 µmol/L SB for 24 h and the proteins of p38 and phosphorylated-p38 were detected by western blot. In all the panels, data indicate three separate 
experiments. aP  < 0.05; bP  < 0.01; cP  < 0.001. DSS: Dextran sulfate sodium; LMPCs: Lamina propria mononuclear cells; LP: Lamina propria; LPS: Lipopolysaccharide; 
MLN: Mesenteric lymph node; SB: SB20358; SP: Spleen.
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that the activation of Th17 and Th1 cells required 
macrophage participation.

Peritoneal macrophages from mice are among the 
best-studied macrophage populations and their role in 
the regulation of inflammatory responses and mucosal 
immunity is well understood[59,60]. Macrophages in 
peritoneal cavity, which are crucial in the regulation of 
inflammatory pathologies, are also related to IBD[28,61]. 
In the present study, we have shown that high NaCl 
content enhanced the expression of proinflammation 
genes for IL-1β, IL-6 and iNOS and antiinflammation 
genes for Arg1 and IL-10 in macrophages from the 
abdominal cavity of mice. 

Macrophages can be polarized to either classically 
activated (M1) or alternatively activated (M2) 
macrophages[62]. M1 macrophages are proinflammatory 
cells due to their high capacity for producing 
proinflammatory cytokines, such as IL-23, IL-12, IL-1β, 
TNF-α and iNOS[63,64]. M2 macrophages highly express 
IL-10 and Arg1, which are involved in antiinflammatory, 
antimicrobial response[62,65]. These cytokines promote 
the activation of the adaptive immune and T cell 
response[66]. 

In the present study, high NaCl content was found 
to boost M1 polarization and up-regulate expression of 
proinflammatory genes to promote inflammation. Under 
low NaCl concentrations, IL-1, IL-6 and iNOS mainly 
produced by M1 macrophages were up-regulated, while 
the negative adjustment factor expressions were low. 
When the NaCl concentration rose to a certain dose, high 
levels of proinflammatory factors IL-1, IL-6 and iNOS 
induced the cell protective response through feedback, 
and caused the up-regulation of negative adjustment 
factors IL-10 and Arg1. Thus, when the inflammation 
continues to worsen, the M2 macrophages will respond 
to balance inflammation with protective immunity, and 
inhibit the expression of proinflammatory factors.

We explored the influence of NaCl on LPS- and IFN-
γ-activated LPMCs and demonstrated that high NaCl 
enhanced phosphorylation of p38, as inflammation and 
salt intake are both linked to p38/MAPK. The p38/MAPK 
signaling pathway is important in IBD and the inhibition 
of p38/MAPK can effectively suppress the production of 
inflammatory mediators[29]. Available evidence indicates 
that p38/MAPK mediates intestinal inflammation gene 
expression, such as TNF-α, IL-1 and IL-6, and this up-
regulation occurs in multiple types of cells, especially 
monocytes and macrophages[67]. In addition, p38/MAPK 
can regulate the SGK1 activation[30]. 

High NaCl concentration promotes p38/MAPK phos
phorylation and activates SGK1[32]. SGK1 has been 
shown to control Na(+) transport and NaCl homeostasis 
in cells, and could trigger Th17 responses and promote 
tissue inflammation[12]. Human LPMCs exposed to high 
NaCl concentrations highly express IL-17A, IL-23R and 
TNF-α, and pharmacological inhibition of p38/MAPK has 
been shown to abrogate the effect of NaCl on LPMC-
derived cytokines[14]. In the present study, high NaCl 
content was shown to promote inflammation in LPS- 
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and IFN-γ-activated LPMCs. However, this process relies 
on the up-regulation of p38/MAPK and SGK1.

In summary, the study findings reported here 
indicate that NaCl induces alterations to both the innate 
and acquired immune system in mice with DSS-induced 
colitis. NaCl promotes M1 macrophage polarization, 
and M1 polarization may shift T cell response toward 
the proinflammatory CD4+IFN-γ+IL-17+ T cells’ 
aggravating colitis. The mechanism by which high NaCl 
concentrations promote inflammation relies on the up-
regulation of p38/MAPK and SGK1. Although results 
obtained in the present study indicate that excessive 
NaCl intake can promote the inflammation in mice 
with the DSS-induced colitis, the causality of high-
salt diet and IBD still needs to be confirmed by further 
investigations. More clinical and experimental studies 
are required to fully clarify the role of salt in IBD.
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At present, most diets are characterized by high salt content. Extant studies 
have shown that high salt intake contributes to inflammatory bowel disease (IBD) 
incidence and pathogenesis. However, the mechanism underlying these effects 
remains unclear.
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NaCl mediates the inflammatory effects of immune cells. Both innate and 
adaptive immune proinflammatory cells play important roles in IBD. Studies 
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The aim of the present study was to determine the impact of high NaCl 
concentration on dextran sulfate sodium (DSS)-induced colitis in mice and 
explore its influence on other immune cells, such as T helper 1 cells, regulatory 
T cells and macrophages, while attempting to elucidate the mechanism 
underlying this effect.
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DSS and NaCl were used to establish a proinflammatory animal model. The 
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High NaCl concentration exacerbated the DSS-induced colitis. Intestinal 
CD4+IFN-γ+IL-17+ T cells and macrophages both play crucial roles in the 
promotion of inflammation by NaCl in mice with colitis. NaCl promotes M1 
proinflammatory gene expression in lipopolysaccharide (LPS)-activated 
peritoneal macrophages. High NaCl concentrations promote the up-regulation 
of the p38/MAPK axis in the LPS and IFN-γ-activated LPMCs.

Research conclusions
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Abstract
AIM
To investigate the role of tacrolimus intra-patient 
variability (IPV) in adult liver-transplant recipients.

METHODS
We retrospectively assessed tacrolimus variability in a 
cohort of liver-transplant recipients and analyzed its 
effect on the occurrence of graft rejection and de novo  
donor-specific antibodies (dnDSAs), as well as graft 
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survival during the first 2 years posttransplantation. 
Between 02/08 and 06/2015, 116 patients that received 
tacrolimus plus mycophenolate mofetil (with or without 
steroids) were included. 

RESULTS
Twenty-two patients (18.5%) experienced at least one 
acute-rejection episode (BPAR). Predictive factors for 
a BPAR were a tacrolimus IPV of > 35% [OR = 3.07 
95%CI (1.14-8.24), P  = 0.03] or > 40% [OR = 4.16 
(1.38-12.50), P  = 0.01), and a tacrolimus trough level 
of < 5 ng/mL [OR=3.68 (1.3-10.4), P  =0.014]. Thirteen 
patients (11.2%) developed at least one dnDSA during 
the follow-up. Tacrolimus IPV [coded as a continuous 
variable: OR = 1.1, 95%CI (1.0-1.12), P  = 0.006] of > 
35% [OR = 4.83, 95%CI (1.39-16.72), P  = 0.01] and 
> 40% [OR = 9.73, 95%CI (2.65-35.76), P  = 0.001] 
were identified as predictors to detect dnDSAs. IPV did 
not impact on patient- or graft-survival rates during the 
follow-up. 

CONCLUSION
Tacrolimus-IPV could be a useful tool to identify patients 
with a greater risk of graft rejection and of developing a 
de novo  DSA after liver transplantation

Key words: Variability; Liver transplantation; Donor-
specific antibodies; Immunosuppression

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Tacrolimus intra-patient variability (Tac IPV) 
was associated with kidney-graft rejection and worse 
long-term outcomes, but until now, was not well studied 
after liver transplantation in adult recipients. We found 
that the coefficient of variability-IPV of tacrolimus was a 
predictive factor for acute rejection and the occurrence 
of de novo  donor-specific antibodies (DSA) after 
liver transplantation in a retrospective cohort of 116 
recipients treated with tacrolimus and mycophenolate 
mofetil. This could be a useful tool to identify patients 
with a greater risk of graft rejection and of developing a 
de novo  DSA after liver transplantation.

Del Bello A, Congy-Jolivet N, Danjoux M, Muscari F, Lavayssière 
L, Esposito L, Hebral AL, Bellière J, Kamar N. High tacrolimus 
intra-patient variability is associated with graft rejection, 
and de novo donor-specific antibodies occurrence after liver 
transplantation. World J Gastroenterol 2018; 24(16): 1795-1802  
Available from: URL: http://www.wjgnet.com/1007-9327/full/
v24/i16/1795.htm  DOI: http://dx.doi.org/10.3748/wjg.v24.
i16.1795

INTRODUCTION
Tacrolimus (Tac) is considered a cornerstone within 
immunosuppression protocols to prevent T-cell and 

antibody-mediated rejection after liver transplantation[1-3] 
However, this treatment presents a narrow therapeutic 
index: overexposure can lead to clinically serious events[4] 
thus necessitating regular therapeutic drug monitoring, 
whereas underexposure can lead to acute or chronic graft 
rejection[4-6] Inter-individual variability from Tac therapy 
may be explained by the polymorphism of cytochromes 
P450 3A4 and 5 (responsible for biotransformation of 
Tac)[7] and the drug transporter ABCB1[8], circadian 
rhythms[9] and also drug-drug interactions[10]. In addition 
to inter-individual variability, the pharmacokinetics of 
Tac can vary within individual patients. The concept of 
intra-patient variability (IPV) refers to the fluctuations in 
Tac blood concentrations (and consequently episodes of 
over- and under-immunosuppression) that some patients 
experience over time[11]. 

Several non-modifiable and modifiable factors 
contribute to Tac IPV (e.g., polymorphism in CYP3A 
genes, the circadian rhythm of Tac exposure, gas
trointestinal events such as diarrhea, cholestasis, 
changes in protein levels, anemia, but also drug-
drug interactions with macrolides or azole anti-fungal 
treatments, foods, or changes in formulation or generic 
substitution)[11], but non-adherence to Tac seems to be 
the main cause of IPV[12,13]. It was previously suggested 
that higher degree of Tac IPV was associated with kidney-
graft rejection and worse long-term outcomes after 
kidney transplantation[14,15]. Similar limited data have 
been reported after liver transplantation[16,17], mainly in 
pediatric cohorts. Moreover, little is known concerning the 
relationship between Tac variability and the occurrence 
of donor-specific antibodies (DSAs). Herein, we 
retrospectively assessed the variability of Tac in a cohort 
of liver-transplant recipients and analyzed its impact on 
the number of acute rejections, the occurrence of de 
novo DSAs, and patient- and graft-survival rates. 

MATERIALS AND METHODS
Patients
Between February 2008 (i.e., the date when the solid-
phase Luminex assay was set up in our institution) 
and June 2015, a total of 298 adult patients received 
a liver transplant from deceased donors (DDLT) in our 
center. Patients excluded from the study were those 
that died within the first month posttransplantation 
(n = 34), those that needed a re-transplant during 
the first month (n = 2), and those that received a 
transplant with a preformed DSA (mean fluorescence 
intensity cut-off > 1000) directed against human 
leukocyte antigen (HLA) A, B, Cw, DR, DQ, or DP (n 
= 37). In order to avoid confounding factors associ
ated with others immunosuppressive treatments, only 
patients that received and were maintained under Tac 
and mycophenolate mofetil (MMF) (with or without 
steroids) were included in this study (Figure 1). All pati
ents but five received Tac given twice daily (Prograf®). 
The other five received Tac once daily (Advagraf®). 
We excluded patients that had Tac or MMF withdrawn. 
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Moreover, to calculate intra-patient variability, at least 
three trough levels of Tac had to be available. Hence, 
116 patients with a functioning liver allograft at 1 mo 
posttransplantation were included in this study after 
having given their informed consent and after we had 
obtained Toulouse University IRB approval. 

The target concentration of Tac trough level was 7-10 
ng/mL during the first 3 mo, and 5-10 ng/mL thereafter 
during the follow-up. Each participant was followed for 
2 years or until re-transplantation (n = 3) or death (n = 
6). The median follow-up was 24 mo (range: 6-24). All 
rejection episodes were biopsy proven. Biopsies were 
only performed for cause during the study period and 
were analyzed according to the Banff criteria[18-20]. Graft 
failure was defined as the need for re-transplantation or 
as death from liver failure. 

Detection of cytomegalovirus was performed using 
real-time PCR, as previously described[21], at month 
3, 6, 12, and 24, and at any other time if clinically 
indicated. 

Intra-patient variability
Tac trough levels were routinely assessed using high-
performance liquid chromatography-linked tandem 
mass spectrometry (HPLC-MS) at discharge, then 
monthly between months 1-6, and thereafter at months 
9, 12, 15, 18, and 24. To calculate the IPV of Tac, at 
least three Tac trough levels from each patient had 
to be available. The median number of available Tac 
measurements was 10 (range: 4-12). 

Tac IPV was estimated using the coefficient of 
variability (CV). The CV-IPV was calculated as follows: 
CV-IPV (%) = (standard deviation/mean Tac trough-
level concentration) × 100. Because all patients 
received the same drug dose between discharge 
and M24, the obtained levels were corrected for the 
corresponding daily dose of tacrolimus (CV C0/D-IPV). 
In addition, because some patients were converted 
from one formulation to another during the follow-up, 
we calculated CV and CV C0/D-IPV after excluding the 
Tac trough levels obtained during the adjustment dose 
period, i.e., the month following a switch. 

To compare IPV with the two formulations of Tac, 

the Tac twice-daily CV-IPV was calculated using Tac 
trough levels obtained from patients that had received 
Tac twice daily since transplantation until last follow-up 
and those obtained in patients switched for Tac once 
daily before the switch. The Tac once-daily CV-IPV 
was calculated using Tac trough levels from patients 
that received Tac once daily since transplantation until 
the last follow-up, and those obtained from patients 
that were later switched from twice- to a once-daily 
formulation after the switch (this excluded Tac trough 
levels obtained in the month following the switch). 

Immunological analyses
All patients were screened for anti-HLA DSAs at 
transplantation, and at month 3 and 12, and annually 
thereafter. Additional screening was performed in case 
of graft dysfunction. Luminex® assays were used to 
determine the specificity of class Ⅰ HLAs in A/B/Cw and 
class Ⅱ in DR/DQ/DP IgG antibodies in the recipients’ 
sera (centrifuged at 10000 g for 10 min) using Labscreen 
single Ag HLA class-Ⅰ and class-Ⅱ detection tests (One 
Lambda, Canoga Park, CA, United States), according 
to the manufacturer’s instructions. The presence and 
specificity of antibodies were then detected using a 
Labscan 100®, and the mean fluorescence (baseline) 
value for each sample in each bead was evaluated. The 
baseline value was calculated as follows: [raw sample 
mean fluorescence intensity (MFI)-raw negative serum 
control MFI-negative-bead raw MFI sample-negative-
bead raw MFI negative serum control]. A baseline value 
of > 1000 was considered positive.

Statistical analyses
Categorical variables are expressed as percentages 
and comparisons between groups were made using the 
chi-squared test or, if appropriate, Fisher’s exact test. 
Continuous variables were expressed as medians and 
ranges, and compared using the Mann-Whitney test. 
Logistic regression analysis was used to determine 
the predictors for acute-rejection episodes and the 
occurrence of de novo anti-HLA DSAs. Variables with 
a P < 0.1 in the univariate analyses were included 
in the stepwise multivariable analyses. P < 0.05 was 
considered statistically significant.

RESULTS
The patients’ characteristics at transplantation are 
presented in Table 1. All liver transplantations performed 
in this study were performed from DDLT. The mean 
DDLT age was 51 ± 17 years. To note, one DDLT was < 
18 years, and 4 DDLT were > 80 years.

Tacrolimus levels and variability
During the follow-up, 44 (38%) patients were switched 
from Tac immediate-release given twice a day (Prograf®), 
to Tac once a day to improve quality of life. The switch 
was performed at a mean of 15 (range: 1-18) mo post
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298 Liver transplantation performed 
between 02/08-02/15

73 Patients excluded:
   Patient death during 
   the 1st month (n  = 34)
   Retransplantation during 
   the 1st month (n  = 2)
   Transplantation with 
   preformed DSAs (n  = 37)

109 Patients excluded: 
   Tac withdrawal (n  = 20)
   MMF withdrawal (n  = 89)

225 Liver transplant patients without 
preformed DSAs, alive 1 mo post Tx

116 Liver transplant patients included

Figure 1  Flow chart.
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4th quartiles were, respectively, 25%, 30.5%, 36.5%, 
and 80.6%. The mean Tac CV-IPV was 30% ± 11% in 
patients given Tac once daily and was 32% ± 12% in 
patients that received Tac twice daily (P = 0.10). The 
mean Tac CV- IPV in the five patients that had received 
Tac once-daily since transplantation was 30% ± 7%. 
In the 44 patients that were converted from Tac twice-
daily to once daily, the mean values of Tac CV-IPV were 
32.3% ± 12% and 30% ± 12% before and after the 
switch, respectively (P = 0.21).

transplantation. 
Mean tacrolimus trough level was 8 ± 3 ng/mL 

during the follow-up (Table 1). The mean dose of Tac 
was 6.8, 6.7, 6.4, 5.9, 5.4, 5.1, 4.8, and 4.6 mg/d, 
respectively, at discharge and at months 1, 3, 6, 9, 12, 
18, and 24. Forty-five (38.8%) patients presented with 
a Tac trough level of < 5 ng/mL at least once during 
the follow-up. The overall mean Tac CV- IPV was 32 ± 
12% [median CV-IPV 30.5% (7.6-80.6)]. Tac CV-IPV 
distribution is presented in Figure 2. The 1th, 2th, 3th, and 

Variable n  = 116

Donors’ age at transplantation, yr (range) 53 (9-85)
Recipients’ age at transplantation, yr (range)   57 (18-72)
Recipients’ gender: male, n (%)   96 (83)
Initial liver disease, n (%)
   Alcohol   49 (43)
   Viral (HCV, HBV)   36 (31)
   Autoimmune disease (AIH, PSC, PBC)   13 (11)
   Other1   18 (17)
Median MELD score at transplantation (range) (%) 22 (6-40)
Positive HCV RNA at transplantation, n (%)   21 (18)
Re-transplantation, yes (%)   3 (3)
Induction therapy, yes: n (%)   87 (75)
Polyclonal antibodies, n (%)   9 (8)
Interleukin-2 receptor blocker, n (%)   78 (67)
Conversion during the follow-up from twice-daily to once daily tacrolimus, n (%)   42 (36)
Number of patients receiving tacrolimus once daily, n (%)   5 (4)
At discharge
   Month 1   8 (7)
   Month 3   9 (8)
   Month 6   12 (10)
   Month 9   18 (16)
   Month 12   26 (31)
   Month 18   39 (34)
   Month 24   47 (41)
Tacrolimus trough level (ng/mL) 7.6 ± 3
At discharge
   Month 1 8 ± 3
   Month 3 8.4 ± 3
   Month 6 8.4 ± 3
   Month 9 7.4 ± 3
   Month 12 7.8 ± 3
   Month 18 7.5 ± 2
   Month 24 6.9 ± 3
Mycophenolate mofetil dose (mg/d) 1700 ± 600
At discharge
   Month 3 1250 ± 550
   Month 6 1100 ± 450
   Month 12 1000 ± 300
   Month 24 1000 ± 300
Steroids (mg/d)
At discharge: Yes (%)   116 (100)
   Dose (mg/d) 20 ± 12
Month 3: Yes (%) 114 (98)
   Dose (mg/d) 8 ± 4
Month 6: Yes (%) 110 (95)
   Dose (mg/d) 7 ± 5
Month 12: Yes (%) 104 (90)
   Dose (mg/d) 6 ± 6
Month 24: Yes (%)   97 (84)
   Dose (mg/d) 5 ± 2

Table 1  Characteristics of the liver-transplant recipients

1Polycystic disease (n = 7), NASH syndrome (n = 4), Wilson disease (n = 2), bile duct atrophia (n = 1), drug intoxication (n = 2), and cryptogenic cirrhosis (n = 1). 
HBV: Hepatitis B virus; HCV: Hepatitis C virus; AIH: Auto-immune hepatitis; PSC: Primary sclerosing cholangitis; PBC: Primary biliary cirrhosis.
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Overall mean CV C0/d- IPV was 73% ± 43%. It was 
69% ± 29% with Tac twice-daily compared to 79% ± 
50% for Tac given once daily (P = 0.9). 

Incidence of acute rejection and de novo donor-specific 
antibodies
During the follow-up, 22 patients (19%) presented 
with at least one episode of acute rejection. The time 
between transplantation and a diagnosis of acute 
rejection (i.e., the date of the biopsy) was 3.5 mo 
(range: 0.5-12). Fourteen patients (12%) experienced a 
T-cell steroid-sensitive acute rejection, and six patients 
(5%) presented with a T-cell steroid-resistant acute 
rejection, which was treated with polyclonal antibodies. 
One patient presented with an acute antibody-mediated 
rejection at 4 mo posttransplantation. The Tac CV-
IPV in this patient was high: CV-IPV of 63.2% and CV 
C0/d- IPV = 68.2%. The risk factors for acute rejection 

after liver transplantation are presented in Table 2. The 
predictive factors for a biopsy-proven acute rejection 
were a Tac trough level of < 5 ng/mL [OR = 3.68; 
95%CI (1.30-10.41), P = 0.014], the Tac CV-IPV 
(coded as a continuous variable) [OR = 1.1; 95%CI 
(1.01-1.11), P = 0.008], a CV-IPV of > 35% [OR = 3.07; 
95%CI (1.14-8.24), P = 0.03], and a CV-IPV of > 40% 
[OR = 4.16; 95%CI (1.38-12.50), P = 0.01]. Twenty-
one of the 22 patients that presented with an acute-
rejection episode were receiving Tac twice daily when 
the rejection was diagnosed.

Thirteen patients (11.2%) presented with at least 
one de novo DSA during the posttransplantation follow-
up (nine anti-HLA class Ⅱ, three anti-HLA class Ⅰ, one 
anti-HLA classⅠ and Ⅱ). Only one of these patients 
developed an antibody-mediated rejection. The 
median time between transplantation and detection 
of a de novo DSA was 3.5 mo (range: 1-12). The risk 

Variable Univariate analyses Multivariate analyses

OR 95%CI P  value OR 95%CI P  value
MELD score > 30 (n = 31) 0.55 0.12-1.90 0.42 -
Initial liver disease
(1) Alcohol cirrhosis (n = 49) vs (2, 3, 4) 0.58 0.18-1.68 0.34 -
(2) Viral disease (n = 36) vs (1, 3, 4) 1.34 0.44-3.90 0.61 -
(3) Auto-immune ILD (n = 13) vs (1, 2,4) 3.12 0.71-12.47 0.07 1.00 0.51-1.15 0.210
(4) Other (n = 18) vs (1, 2, 3) 0.49 0.05-2.37 0.52 -
Induction therapy, yes (n = 87) 0.66 0.22-2.15 0.42 -
Polyclonal antibodies (vs other) 3.89 0.70-20.13 0.06 2.87 0.61-13.47 0.180
IL2R blockers (vs other) 0.40 0.14-1.70 0.08 0.52 0.185-1.50 0.230
Donors’ age > 50 yr (n = 69) 0.98 0.35-2.88 1.00 -
Recipients’ age > 50 yr (n = 92) 0.61 0.20-2.01 0.41 -
HCV-RNA + At transplantation (n = 21) 1.96 0.54-6.45 0.22 -
Steroid withdrawal during the FU (n = 19) 2.30 0.63-7.82 0.20 -
De novo DSAs during the FU (n = 13) 2.80 0.64-11.19 0.13 -
Tacrolimus trough level < 5 ng/mL (n = 34) 3.00 1.05-8.96 0.02 3.68 1.30-10.41 0.014
CV-IPV tacrolimus (continuous variable) 2.70 1.88-13.45 0.01 1.10 1.01-1.11 0.008
CV-IPV > 35% 3.05 1.05-8.96 0.03 3.07 1.14-8.24 0.030
CV-IPV > 0% 2.97 0.91-9.30 0.04 4.16 1.38-12.50 0.010
CV-C0/d-IPV 1.89 0.67-5.74 0.24 -

Table 2  Risk factors for a graft-rejection episode

FU: Follow-up; ILD: Initial liver disease; HCV: Hepatitis C virus; CV-IPV: Coefficient of variability-intra-patient variability; CV-C0/d-IPV: Coefficient of 
variability corrected for the corresponding daily dose-intra-patient variability.
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Figure 2  Distribution of tacrolimus according to intra-patient variability.
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factors for a de novo DSA are presented in Table 3. 
The Tac CV-IPV [coded as a continuous variable: OR = 
1.1, 95%CI (1.0-1.12), P = 0.006), and a CV-IPV of > 
35% [OR = 4.83, 95%CI (1.39-16.72), P = 0.01] or of 
> 40% [OR = 9.73, 95%CI (2.65-35.76), P = 0.001] 
were identified as predictors for the occurrence of de 
novo DSAs detection. 

Survival of patients
During the follow-up, six patients died [at a mean of 
13 mo (range: 6-23) posttransplantation]. The causes 
of death were infections (n = 3), cardiovascular (n = 
2), and neoplastic (n = 1) complications. No difference 
in Tac CV- IPV was observed between patients that 
died during the follow-up (CV-IPV 33% ± 6%) and 
those that did not (CV-IPV 32% ± 12%; P = 0.70). 
Three patients required re-transplantation at month 5, 
10, and 14, respectively, for ischemic cholangitis that 
occurred posttransplantation. During the follow-up, 
24 patients presented with posttransplant replication 
of cytomegalovirus. No difference in Tac CV-IPV was 
observed between patients with replication of cyto
megalovirus (CV-IPV 32% ± 9%) and those without 
replication (32% ± 12%, P = 0.90).

DISCUSSION
High IPV has been previously associated with a greater 
risk of graft rejection, an accelerated progression 
of chronic histological lesions, and worse long-term 
survival after kidney transplantation[11,14,22,23]. In 
pediatric liver-transplants, Tac variability was associated 
with late acute rejection[16]. In the present study, we 
investigated the impact of Tac variability in 116 adult 
liver-transplant recipients. In order to avoid confounding 
factors, we focused on patients that received a graft 

without preformed DSAs and that had received Tac 
associated with MMF. Although the mean Tac trough 
level was 8 ± 3 ng/mL during the study period, nearly 
40% of patients had a Tac trough level of < 5 ng/mL at 
least once during the follow-up. Tac CV-IPV varied from 
7.6%-80.6% (median 30.5%), and median Tac CV C0/
d-IPV was 62% (18-147). Almost one-third of patients 
presented with a Tac CV-IPV of > 35%. This high 
value is similar to those reported in previous studies, 
mainly after kidney transplantation[24,25]. In kidney-
transplant[13,25] and pediatric liver-transplant patients[16], 
high CV-IPV was associated with an increased risk of 
acute rejection. In the present study, we found that a 
Tac trough level of < 5 ng/mL, the Tac CV-IPV (coded 
as a continuous variable), a CV-IPV of > 35%, and a 
CV-IPV > 40% were independent predictive factors for 
a biopsy-proven graft rejection. 

Posttransplant positive DSAs were associated with 
decreased graft survival and increased acute or chronic 
graft rejections[2,3,26]. It has been previously suggested 
that iterative transplantation, low levels of calcineurin 
inhibitors, the use of cyclosporine (compared to Tac), 
and non-adherence can promote the development of 
a de novo DSA after liver transplantation[2]. Herein, 
we found that the Tac CV-IPV (coded as a continuous 
variable), a CV-IPV of > 35%, and CV-IPV > 40% 
were independent predictive factors for the occurrence 
of a de novo DSA. Similar data, reported after kidney 
transplantation[24], from a cohort of 310 adult kidney-
transplant patients given Tac twice-daily during the first 
year posttransplant, showed that a history of acute 
rejection, re-transplantation and a Tac CV greater than 
30% were associated with the occurrence of a de novo 
DSA. In our study, one patient presented with an acute 
antibody-mediated rejection associated with an anti-
class Ⅱ de novo DSA at 3 mo after liver transplantation. 

Variable Univariate analyses Multivariate analyses

OR 95%CI P  value OR 95%CI P  value
MELD score > 30 (n = 31) 1.84 0.43-7.10 0.33 -
Initial liver disease
(1) Alcohol cirrhosis (n = 49) vs (2, 3, 4) 0.58 0.12-2.22 0.55 -
(2) Viral disease (n = 36) vs (1, 3, 4) 0.98 0.21-3.86 1.0 -
(3) Autoimmune ILD (n = 13) vs (1, 2, 4) 1.51 0.14-8.46 0.64 -
(4) Other (n = 18) vs (1, 2, 3) 2.79   0.55-11.83 0.64 -
Induction therapy, yes (n = 87) 1.61 0.41-7.61 0.55 -
Polyclonal antibodies (vs other) 0.59   0.70-18.00 0.60 -
IL2R blockers (vs other) 1.1 0.28-5.28 1.0 -
Donors’ age > 50 yr (n = 69) 0.78 0.20-3.00 0.77 -
Recipients’ age > 50 yr (n = 92) 0.36 0.09-1.58 0.10 0.2 0.07-0.85 0.3
HCV RNA + at transplantation (n = 21) 1.41 0.23-6.23 0.70 -
Steroid withdrawal during the FU (n = 19) 0.39 0.01-3.01 0.69 -
Tacrolimus trough level < 5 ng/mL (n = 34) 1.59 0.38-6.05 0.52 -
CV-IPV tacrolimus (continuous variable) 1.92  -1.28-21.39 0.08 1.1   1.0-1.12 0.006
CV-IPV > 35% 4.66   1.22-19.82 0.02 4.83   1.39-16.72 0.01
CV-IPV > 40% 9.10   2.28-40.63 < 0.001 9.73   2.65-35.76 0.001
CV-C0/d-IPV 3.15   5.47-27.31 0.005 1.0 0.97-1.02 0.09

Table 3  Risk factors for developing de novo  donor-specific antibodies after liver transplantation.

FU: Follow-up; ILD: Initial liver disease; HCV: Hepatitis C virus; CV-IPV: Coefficient of variability-intra-patient variability; CV-C0/d-IPV: Coefficient of 
variability corrected for the corresponding daily dose-intra-patient variability.
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Interestingly, this patient had high tacrolimus variability 
(CV-IPV 63.2%, CV C0/d-IPV 68.2%). None of the other 
12 patients that developed a DSA experienced an acute 
antibody-mediated rejection. However, it was suggested 
that patients with positive DSAs would present lower 
graft survival, consecutive to chronic antibody mediated 
rejection[27] rather than to acute antibody-mediated 
rejection episodes.

In several studies, but not all, the use of once-
daily tacrolimus compared to a twice daily formulation 
has been found to improve adherence and to reduce 
IPV[11,28-31]. In the present study, no difference between 
Tac formulations was observed. 

This study has several limitations. Because of its 
retrospective design, we could not evaluate the cause 
of Tac variability. It has been suggested previously that 
non-adherence is the main cause of Tac variability[11]. 
However, in our study, adherence was not evaluated 
using objective methods, such as those previously 
reported using electronic devices[28]. Moreover, we did 
not evaluate MMF variability in our study because we do 
not perform this analysis routinely in our center. Of note, 
conflicting results have been reported concerning the use 
of MMF variability after solid-organ transplantation[14,25]. 
It was also previously suggested that pre-transplant 
determination of CYP3A5 and MDR1 polymorphisms[32] 
allows more rapid achievement of therapeutic Tac 
trough level. However, no association between the 
pharmacogenomics parameters and Tac intra-patient 
variability is expected and was reported. 

In conclusion, we found that the CV-IPV of Tac was a 
predictive factor for acute rejection and the occurrence of 
a de novo DSA after liver transplantation. This could be a 
useful tool to identify patients with a greater risk of graft 
rejection and of developing a de novo DSA after liver 
transplantation. Future studies should investigate the 
role of Tac IPV on long-term outcomes, on chronic graft 
rejection, and over-immunosuppression-related diseases 
(cancer, and related immunocompromised infections).

ARTICLE HIGHLIGHTS
Research background
Tacrolimus (Tac) is considered a cornerstone within immunosuppression 
protocols to prevent T-cell and antibody-mediated rejection after liver 
transplantation. However, this treatment presents a narrow therapeutic index: 
overexposure can lead to clinically serious events, thus necessitating regular 
therapeutic drug monitoring, whereas underexposure can lead to acute or 
chronic graft rejection. The concept of intra-patient variability (IPV) refers to the 
fluctuations in Tac blood concentrations (and consequently episodes of over- 
and under-immunosuppression) that some patients experience over time.

Research motivation
Tac-IPV is an inexpensive assay to explore fluctuations in Tac blood 
concentrations. We investigated the potential usefulness of Tac-IPV to predict 
the incidence of donor specific antibodies and graft rejection episodes.

Research objectives
Our aim was to investigate the role of tacrolimus IPV in adult liver-transplant 
recipients.

Research methods
We retrospectively assessed tacrolimus variability and analyzed its effect on the 
occurrence of graft rejection and de novo donor-specific antibodies. 

Research results
Twenty-two patients experienced at least one acute-rejection episode (BPAR). 
Predictive factors for a BPAR were a tacrolimus IPV of > 35% or > 40%, and a 
tacrolimus trough level of < 5 ng/mL. Thirteen patients developed at least one 
dnDSA during the follow-up. Tacrolimus IPV and tacrolimus IPV of > 35%, and 
> 40% were identified as predictors to detect dnDSAs. IPV did not impact on 
patient- or graft-survival rates during the follow-up. 

Research conclusions
In our study higher Tac-IPV was associated with graft rejection and occurrence 
of DSAs.

Research perspective
Tacrolimus-IPV could be a useful tool to identify patients with a greater risk of 
graft rejection and of developing a de novo DSA after liver transplantation.
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Abstract
AIM
To compare the cannulation success, biochemical profile, 
and complications of the papillary fistulotomy technique 
vs catheter and guidewire standard access.

METHODS
From July 2010 to May 2017, patients were prospectively 
randomized into two groups: Cannulation with a catheter 
and guidewire (Group Ⅰ) and papillary fistulotomy 
(Group Ⅱ). Amylase, lipase and C-reactive protein at 
T0, as well as 12 h and 24 h after endoscopic retro
grade cholangiopancreatography, and complications 
(pancreatitis, bleeding, perforation) were recorded. 
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RESULTS
We included 102 patients (66 females and 36 males, 
mean age 59.11 ± 18.7 years). Group Ⅰ and Group Ⅱ 
had 51 patients each. The successful cannulation rates 
were 76.5% and 100%, respectively (P  = 0.0002). 
Twelve patients (23.5%) in Group Ⅰ had a difficult 
cannulation and underwent fistulotomy, which led to 
successful secondary biliary access (Failure Group). 
The complication rate was 13.7% (2 perforations and 
5 mild pancreatitis) vs  2.0% (1 patient with perforation 
and pancreatitis) in Groups Ⅰ and Ⅱ, respectively (P  = 
0.0597). 

CONCLUSION
Papillary fistulotomy was more effective than guidewire 
cannulation, and it was associated with a lower profile 
of amylase and lipase. Complications were similar in 
both groups. 

Key words: Catheterization; Complications; Endoscopic 
retrograde cholangiopancreatography; Therapeutic use; 
Common bile duct

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Biliary cannulation is the first step of therapeutic 
endoscopic retrograde cholangiopancreatography and 
can determine several complications. There are small 
numbers of papers regarding comparison between 
conventional cannulation vs  fistulotomy. Our study 
is a well-designed approach in its matter. In fact, we 
compare the cannulation success, biochemical profile 
and complications of the papillary fistulotomy techni
que versus  catheter and guidewire standard access. 
Papillary fistulotomy was more effective than guidewire 
cannulation, and it was associated with a lower profile 
of amylase and lipase, as the routine endoscopic access 
to the biliary tree, including difficult cases. Complications 
were similar in both groups. 

Furuya CK, Sakai P, Marinho FR, Otoch JP, Cheng S, 
Prudencio LL, de Moura EG, Artifon EL. Papillary fistulotomy 
vs conventional cannulation for endoscopic biliary access: 
A prospective randomized trial. World J Gastroenterol 2018; 
24(16): 1803-1811  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v24/i16/1803.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i16.1803

INTRODUCTION
Biliary tract cannulation is the critical step in diagnosis 
and treatment of biliopancreatic diseases during 
endoscopic retrograde cholangiopancreatography 
(ERCP). Catheter introduction through the papillary 
ostium fails in 5% to 20% of the patients[1,2]. Several 
alternatives can be used for difficult cases, such as 
double-guidewire, pancreatic stent, rendezvous, precut 

papillotomy, transpancreatic sphincterotomy and 
papillary fistulotomy (PF) techniques. Acute pancreatitis 
after ERCP is the most feared complication. It is also 
one of the most frequent, with an incidence of 1% up to 
10% or more, and a mortality of 0.1%-1%[3]. 

Selective cannulation of the biliary tract, thereby 
avoiding the pancreatic duct, can curb the mechanisms 
that trigger pancreatitis, and therefore prevent its 
occurrence. The precut sphincterotomy has been 
identified as an independent risk factor of postERCP 
pancreatitis (PEP). It is unclear whether prolonged 
cannulation attempts, or precut incisions are to 
blame. Studies suggest that an early precut is a 
protective factor, compared to persistent attempts at 
cannulation[4,5]. However, all protocols that found a lower 
risk of PEP with a precut technique were performed at 
specialized centers, and the use of pancreatic stents 
was limited and inconsistent. 

There are few investigations in which the precut 
and PF techniques were initially employed, to access 
the biliary tract[6-8]. The PF technique is based on 
accessing the bile duct far from the pancreatic duct, 
by sectioning the papilla proximally, and thus avoiding 
the ostium (proximal half of the papilla). PF was initially 
described by Osnes et al[9]. These authors observed a 
spontaneous choledochoduodenal fistula during ERCP. 
Contrast injection through the fistula detected bile 
duct stones. After enlargement of the fistula with a 
diathermic snare, the patients were observed for a few 
days with the spontaneous exit of the stones. Sakai 
et al[10] reported a pancreatitis occurrence rate of 7.6% in 
2001, particularly in the setting of previous manipulation 
of the papilla, and trauma to the pancreatic duct, after 
several frustrated attempts at biliary tract cannulation. 

The main objective of this study was to evaluate 
the success of the PF technique, in the cannulation of 
the biliary tract. The secondary objective was to assess 
the enzyme profile and ensuing complications, in 
comparison with direct cannulation. 

MATERIALS AND METHODS
From July 2010 to May 2017, candidates for ERCP 
due to choledocolithiasis were recruited at Ana Costa 
Santos Hospital and the Endoscopy Unit of the Clinical 
Hospital, Faculty of Medicine, University of Sao Paulo. 
Enrolled patients were randomized for conventional 
cannulation with a catheter and guidewire (Group Ⅰ) 
and PF (Group Ⅱ). 

Inclusion criteria were adult (both sexes) with 
choledocholithiasis and diagnosis by abdominal 
ultrasound, computed tomography (CT), cholangio 
resonance, or intraoperative cholangiography. Exclusion 
criteria were Billroth Ⅱ gastrectomy, duodenal 
obstruction, coagulopathy or anticoagulant use, 
pregnancy or lactation, acute pancreatitis, myocardial 
infarction in the last 6 mo, previous papillotomy, or 
refusal to participate in the study. 
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The protocol was approved by the institutional 
Ethical Committee, and also registered as a randomized 
trial at the University of Sao Paulo Registry-MA3: 
014/2010 and 0671/09. Informed consent was signed 
by all participants. Side-view endoscopes (Pentax ED-
3670TK, Olympus TJF-160, or Fujinon ED-250XT5) 
were used during the ERCP. WEM SS-200E, Erbe ICC 
200 and ValleyLab Force FX electrosurgical units were 
employed.

Group Ⅰ
Cannulation of the papillary ostium was performed 
using a 4.4 Fr sphincterotome (TRUEtome; Boston 
Scientific) with a 0.035-inch guidewire (Jagwire; Boston 
Scientific). A pure cut current (50 watts), applied 
in short-duration pulses, was adopted to perform 
papillotomy. A 30-watt pure cut current was indicated 
for intradiverticular papillae, and the complementation 
of fistulotomies (Figures 1 and 2).

A difficult cannulation was recognized if it took > 
10 min, required > 5 cannulation attempts, or when > 
2 pancreatic duct penetrations occurred. Difficult cases 
were referred to PF. Pancreatic plastic stents were 
placed in case of prolonged procedure.

Group Ⅱ
Incision was made on the mucosa, using a needle-
knife catheter (MicroKnife XL; Boston Scientific), in 
distal to proximal direction, aiming at the papillary 
apex. It involved the proximal two-thirds of the 
papillary protuberance, and above the papillary orifice 
(approximately 5 mm far from the ostium). A pure 

cutting current (30 watts) was used to section the 
mucosa and the choledochal sphincter. The dissection 
was stopped when biliary secretion, open bile duct 
mucosa, or bulging of the bile duct mucosa was 
identified. The fistula was cannulated into the bile 
duct with a guidewire and sphincterotome, and it was 
enlarged by cutting the sphincter, to the limit of the 
transverse mucosal fold. 

The PF procedure was stopped when there were 
signs of perforation, false route, major bleeding, loss 
of anatomy, or if cannulation of the bile duct was not 
achieved within 15 min. In these cases, the procedure 
was repeated after 5 to 7 d.

Enzymatic abnormalities (serum amylase and lipase) 
were documented up to 24 h before the examination 
(T0), as well as 12 h and 24 h after the endoscopic 
procedure. The diagnosis of acute pancreatitis was 
based on persistent or worsening abdominal pain 
24 h following ERCP and abnormal laboratory data, 
complemented by imaging methods. An amylase or 
lipase concentration of more than three times the upper 
limit of normal was considered diagnostic[11]. 

Hyperamylasemia was defined as amylase and/or 
lipase 3 times the upper limit of normal (> 300 U/L), 
without clinical features of pancreatitis. Inflammatory 
changes were monitored by serum C-reactive protein, 
collected at the same times.

A duodenal perforation was defined as gas or contrast 
accumulation in the retroperitoneum detected by simple 
X-ray of the abdomen. Endoscopic evidence, and clinical-
laboratory findings consistent with bleeding were carefully 
monitored. These included bloody vomit or stools. 
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Figure 1  Schematic sequence of papillary fistulotomy. A and B: Dissection of the major papilla; C: Sphincterotome in the bile duct; D: Radiological image.
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median, minimum and maximum, whenever appro
priate. Student’s t test and Mann-Whitney test were 
used for comparisons, depending on initial normality 
assessment. Qualitative characteristics were informed 
as absolute and relative frequencies, and compared by 
means of chi-square, Fisher’s exact test, and likelihood 
ratio test[12]. Pancreatic enzyme curves were compared 
by generalized estimating equations (GEE), with 
gamma marginal distribution and identity link function, 
within a first order autoregressive correlation matrix 
between the evaluation times. 

RESULTS
A total of 102 patients were selected and randomized 
into Group Ⅰ (51 patients) and Group Ⅱ (51 patients). 
There were no post hoc exclusions. Table 1 demon
strates that the demographic and preliminary clinical 
findings were comparable (P > 0.05).

As informed in Table 2, choledocholithiasis was 
confirmed in 80.4% and 62.7% of Groups Ⅰ and Ⅱ, 
respectively (P = 0.048). The success rate for biliary 
duct cannulation was higher in Group Ⅱ (100%) than in 
Group Ⅰ (76.48%) (P = 0.0002). PF was performed in 
a single session. Dilated intrahepatic and extrahepatic 
bile ducts, and placement of biliary stents, were not 
different between the groups (P > 0.05). No difference 
in the risk of pancreatitis could be accounted to either 
intrahepatic or extrahepatic dilatation. 

Intra- or peridiverticular papillae were observed in 
15.7% and 3.9% of the populations, respectively (P = 
0.046). Twelve cannulations (23.5%) were classified 

Whenever the problem was suspected, hemoglobin 
concentration was serially measured, starting at 12 h 
after the intervention, and compared with preprocedure 
values, with hemoglobin drop of 2 g/dL. 

Patients were admitted for 24 h after the endoscopic 
procedure and under fasting condition. Asymptomatic 
patients without laboratorial or radiological signs of 
pancreatitis or other complications were discharged 
after 24 h and contacted by phone call 36 h and 48 h 
after discharge to ensure there were no symptoms. Any 
symptomatic patient would be referred to the hospital 
for clinical and laboratorial assessment. If a complication 
occurred, the patient remained hospitalized until 
complete recovery was observed. All complications 
were managed using a multidisciplinary approach and 
according to international guidelines, with consensus 
between the Endoscopist and Surgeon.

Sample size calculation
Calculations were based on similar studies, reporting a 
biliary cannulation failure rate of 5% to 20%[1,2]. Adopting 
a 95% confidence interval of 3.65, a total population of 
90 patients, and a minimum method failure rate of 2% 
(total ERCP success of 98% as maximum), 35 patients 
were deemed necessary per group. For safety, 51 
patients were allocated to each group.

Statistical analysis
Analyses were performed with IBM SPSS for Win
dows version 20.0. The significance level was 5%. 
Randomization employed sealed envelopes, and 
descriptive statistics comprised mean ± SD as well as 

Figure 2  Sequence of papillary fistulotomy. A and B: Dissection of the major papilla; D: Sphincterotome in the bile duct; D: Radiological image.

A B

C D

Furuya CK et al . Papillary fistulotomy for biliary access



1807 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

Table 1  Patient characteristics and baseline laboratory tests

Variable Group Ⅰ, n  = 51 Group Ⅱ, n  = 51 Total, n  = 102 P value

Age in yr    0.3431

   Mean ± σ 57.4 ± 19.3 60.9 ± 18.1 59.1 ± 18.7
   Median (min; max) 56 (19; 91) 64 (22; 95) 58 (19; 95)
Sex, n (%) > 0.9992

   Female 33 (64.7) 33 (64.7) 66 (64.7)
   Male 18 (35.3) 18 (35.3) 36 (35.3)
AST   0.680
   Mean ± σ 116.3 ± 143.4 124.3 ± 168.3 120.1 ± 155.1
   Median (min; max) 44 (8; 691)    60 (13; 762) 50 (8; 762)
ALT   0.873
   Mean ± σ 163.6 ± 191.6 154.1 ± 169.3 159 ± 180.4
   Median (min; max) 83 (9; 776)   104 (11; 662) 90 (9; 776)
AP   0.585
   Mean ± σ 267.8 ± 329.7 301.9 ± 320.4 284.3 ± 323.9
   Median (min; max)    153.5 (8; 1567)    173 (32; 1320) 162 (8; 1567)
GGT   0.821
   Mean ± σ 532 ± 454.3 543.4 ± 578.2 537.5 ± 515.1
   Median (min; max)      466.5 (39; 1684)    284 (11; 2269)  382 (11; 2269)
Total bilirubin   0.994
   Mean ± σ 4.1 ± 4.9 5.3 ± 7.5 4.7 ± 6.3
   Median (min; max)       2 (0.1; 23.4)           2.1 (0.2; 29.2)         2.1 (0.1; 29.2)
Direct bilirubin   0.683
   Mean ± σ 3.6 ± 4.4 4.2 ± 6.3 3.9 ± 5.4
   Median (min; max)          1.6 (0.1; 20.9)           1.1 (0.1; 22.4)          1.5 (0.1; 22.4)

1Student’s t-test; 2Chi-square test, Mann-Whitney test. AST: Aspartate transaminase; ALT: Alanine transaminase; AP: Alkaline phosphatase; GGT: Gamma-
glutamyl transpeptidase; σ: Standard deviation.

Table 2  Endoscopic retrograde cholangiopancreatography findings and complications n  (%)

Variable Group Ⅰ, n  = 51 Group Ⅱ, n  = 51 Total, n  = 102 P value

Choledocolithiasis 0.048
   No 10 (19.6)   19 (37.3)   29 (28.4)
   Yes 41 (80.4)   32 (62.7)   73 (71.6)
Intrahepatic dilatation   0.6572
   No 36 (70.6)   38 (74.5)   74 (72.6)
   Yes 15 (29.4)   13 (25.5)   28 (27.4)
Extrahepatic dilatation   0.5512
   No   25 (49.02)   22 (43.1)   47 (46.1)
      Pancreatitis 2 (3.9)    1 (1.9))   3 (2.9) 11

   Yes   26 (50.98)   29 (56.9)   55 (53.9)
      Pancreatitis 3 0   3 (2.9)    0.09911

Intra- or peridiverticular papilla 0.046
   No 43 (84.3)   49 (96.1)   92 (90.2)
   Yes   8 (15.7)   2 (3.9) 10 (9.8)
Prosthesis 0.236
   No 42 (82.4)   37 (72.6)   79 (77.5)
   Yes   9 (17.6)   14 (27.4)   23 (22.5)
Biliary prosthesis 0.463
   No 42 (82.4)   39 (76.5)   81(79.4)
   Yes   9 (17.6)   12 (23.5)   21 (20.6)
Cholangitis  0.6781

   No 49 (96.1)   47 (92.2)   96 (94.1)
   Yes 2 (3.9)   4 (7.9)   6 (5.9)
Biliary access
   No 12 (23.5) 0    0.00021

   Yes 39 (76.5)   51 (100)
Complications,pancreatitis, bleeding or perforation    0.05371

   No 44 (86.3) 50 (98)   94 (92.2)
   Yes   7 (13.7) 1 (2)   8 (7.8)
      Pancreatitis 5 1
      Perforation 2 1
      Bleeding 0 0

Data are presented as n (%). 1Fisher’s exact test; Chi-square test.
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as difficult, thus migrating to the PF technique (Figure 
3). Groups Ⅰ and Ⅱ had complication rates of 13.7% 
and 2.0%, respectively, which barely failed to reach 
significance (P = 0.0597). Two perforations and five 
cases of pancreatitis were observed in the first group, 
compared to a single case of retroperitoneal perforation 
and pancreatitis in the second one.

Table 3 reveals that the number of cannulations, 
as expected, was significantly different in the difficult 
cannulation group (P < 0.001), unlike ERCP findings, 
stent placement or complications (P > 0.05).

In Table 4 it can be appreciated that both lipase and 

amylase differed between the groups and over time 
(P = 0.026 and P = 0.013, respectively). In contrast, 
no discrepancy for C-reactive protein was detected 
regarding groups (P = 0.189) or time (P = 0.07).

Figures 4-6 depict the amylase and lipase elevations 
in Group Ⅰ patients. C-reactive protein, as alluded to, 
failed to exhibit discriminant patterns.

DISCUSSION
Pancreatitis is the most frequent complication of ERCP, 
occurring in as many as 15.1% of the patients[6-8,13,14]. It 
is associated with considerable morbidity and mortality. 
Precut techniques have been associated with a high risk 
of PEP in previous studies[7,8,15-17].

A difficult cannulation is an independent risk factor[18,19]. 
The failure rate of primary biliary tract cannulation, with 
the use of a sphincterotome, was calculated as 2.5%-24% 
without a guidewire[20-23] and 1.5%-10%[21,23,24] adopting 
the wire. The American Society for Gastrointestinal 
Endoscopy benchmark for cannulation success during 
ERCP procedures of low to moderate complexity is > 90% 
for all indications[25]. 

In this study, the primary success rate was 76.5%, 
with 9.8% of PEP. Difficult cannulation occurred in 
12 patients, yet access was achieved via PF in all 
these individuals. The high failure rate (23.5%) may 
be explained by the participation of fellows, who are 
less experienced, thus making additional attempts 
by endoscopists with greater expertise required. 

Biliary cannulation
n  = 102

Group Ⅰ
(Conventional-Guidewire cannulation 

with sphincterotome)
n  = 51

Success
n  = 51

Group Ⅱ
(Papillary fistulotomy)

n  = 51

Papillary fistulotomy
n  = 12

Difficult cannulation
n  = 12

Success
n  = 39

Figure 3  Flowchart showing the sequence of procedures performed in the 
study. 

Table 4  Lipase, amylase and C-reactive protein measurements at the different evaluation times

Variable Group Ⅰ, n  = 51 Group Ⅱ, n  = 51 P value P  value P  value for

Pre 12 h 24 h Pre 12 h 24 h for time interaction
Lipase 0.006 < 0.001 0.026
   mean ±  69.4 ± 102.1 439.0 ± 1064.8 199.5 ± 528.3 41.4 ± 37.2 100.6 ± 183.3 85.2 ± 189.1
   median (min; max) 38 (9; 611) 52 (10; 5014) 48 (8; 3000) 32 (0; 239)  42.5 (8; 968) 40 (5; 1334)
Amylase 0.003 < 0.001 0.013
   mean ±  76.4 ± 57.8 453.5 ± 1287.4 304.0 ± 979.3 59.6 ± 36.2 98.1 ± 94.3 85.8 ± 102.6
   median (min; max)   59 (12; 310) 80 (14; 7900)   70 (13; 6721)   50 (14; 236) 69 (21; 624)    67.5 (12; 732)
C-reactive protein 0.189     0.070 0.353
   mean ±  126.6 ± 539.7 49.5 ± 89.7 45.4 ± 70.5 58.6 ± 104.8 41.4 ± 62.0 38.8 ± 52.9
   median (min; max) 11.1 (0.1; 3813) 15.5 (0.3; 486.1) 19.16 (0.5; 340.9) 12 (0.2; 549) 13.8 (0.3; 271) 16.6 (0.5; 223.1)

GEE with gamma distribution and identity link function. Not all patients were evaluated at all times. GEE: Generalized estimating equations; : Standard 
deviation.

Table 3  Endoscopic retrograde cholangiopancreatography findings and complications according to group and subgroup

Variable Groups Total, n  = 102 P value
Group Ⅰ, n  = 51 Group Ⅱ, n  = 51

GWC, n  = 39 Difficult cannulation, n  = 12
Complications, pancreatitis, bleeding or perforation   0.062
   No 34 (87.2) 10 (83.3) 50 (98) 94 (92.2)
   Yes   5 (12.8)   2 (16.7) 1 (2) 8 (7.8)
Number of cannulations < 0.0011

   Mean ± σ 3.3 ± 1.9 7.5 ± 2.8 4.3 ± 2.8
   Median (min.; max.)    3 (1; 10)       8.5 (3; 10)    3 (1; 10)

1Mann-Whitney test, Likelihood ratio test. GWC: Guidewire cannulation; σ: Standard deviation.

Furuya CK et al . Papillary fistulotomy for biliary access



1809 April 28, 2018|Volume 24|Issue 16|WJG|www.wjgnet.com

Nevertheless, papillary trauma eventually inflicted 
during the first intervention may hinder subsequent 
access, thus compromising the overall success rate. 

Common bile duct stones were not found in all cases 
during ERCP, possibly on account of the long period 
that had elapsed since the original diagnosis in the 
primary care institution. It is important to mention that 
per protocol, PF was conducted directly, without prior 
manipulation by conventional techniques. Cannulation 
of the bile duct using PF was accomplished in all 
patients in Group Ⅱ. Three previous studies with a 
similar design displayed 89.3%-96.5% success rates 
for fistulotomy[26-28]. In the control group (conventional 
technique), the corresponding values were 70.6% and 
88%[26-28].

The mean diameter of the common bile duct in this 
experience was 8.7 mm (5-18.2 mm). Sakai et al[10] in 
2001, suggested that PF be reserved mainly for patients 
with a dilated common bile duct. Jin et al[27] concluded 
in 2016, based on 55 interventions, that a bile duct < 
9 mm was a risk factor. Yet Khatibian et al[26] reported 
in 2008 that the diameter of the common bile duct was 
not relevant for need of PF. 

In the current series, PF (Group Ⅱ and Failures) was 
performed in 28 of 63 patients (44.4%; P = 0.834); 
for each, being performed through the common bile 
duct without dilatation. No difference in the risk of 
pancreatitis emerged when considering the caliber 
of the intra- and extrahepatic biliary tracts. Bile duct 
stones could not be removed in the first attempt in 
20.8% of the cases, due to large size; therefore, in 
these cases, a biliary stent was placed.

Hyperamylasemia was observed in 2 patients in 
Group Ⅰ (P = 0.49). Transient asymptomatic elevations 
in amylase, lipase, or both, range from 0 to 64% in the 
literature[29-31]. Asymptomatic hyperamylasemia, defined 
as amylase levels > 5 times the upper limit at 24 h after 
ERCP, has been reported in approximately 27% of the 
cases[32]. 

In our study, the number of cannulation attempts 
significantly correlated with increased lipase and 
amylase levels, at 12 h and 24 h after the procedure. 
In a series of 907 patients, the rates of PEP were 0.6%, 
3.1%, 6.1% and 11.9% following one, two, three to 
four, and more than five primary cannulation attempts 
that led to success, respectively. PEP risk increased 
to 11.5% if the primary cannulation method failed[19]. 
In our study, PEP occurred following the guidewire 
cannulation (GWC) technique in 5 patients (9.8%), of 
which 2 (3.9%) exhibited a difficult papillary access, 
which was only achieved by means of PF.

No significant increase in pancreatic enzymes was 
observed, and the incidence of PEP was not greater in 
the group that underwent PF as the initial procedure; 
neither did the 12 patients with PF as a rescue 
procedure exhibit a different pattern. This demonstrates 
the safety of PF, whenever performed or supervised 
by experienced physicians. In 2016, Zagalsky et al[33] 
compared early precut (PCP) techniques and use of 
a pancreatic duct stent in 101 patients who suffered 
difficult cannulations. The success rates of biliary 
cannulation (98% and 96%), and the occurrence of 
PEP (4% and 3.92%) were similar between the early 
PCP and stent groups, respectively. Two perforations 
and bleeds occurred in the early PCP group, which also 
demonstrates the safety of the procedure compared to 
standard PEP prevention technique after a failed GWC. 

Other recent studies have shown that precut 
techniques lead to an increased rate of successful 
deep biliary tract access and that their early use by 
experienced endoscopists results in a decrease in 
PEP[4,27,34]. Weerth et al[2] compared primary PCP and 
GWC for bile duct access and reported a success rate 
at the first attempt of 100% and 71%, respectively. 
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They observed mild to moderate PEP in 2.1% and 2.9% 
(P > 0.05), after primary PCP or GWC, respectively. 
Only 1 patient (in the GWC group) suffered from po
stpapillotomy bleeding. In our experience, a single 
patient presented a retroperitoneal perforation and pa
ncreatitis in Group Ⅱ, both of which were conservatively 
managed.

There were two perforations (3.9%) in Group Ⅰ, 
and the one (1.9%) in Group Ⅱ already alluded to, 
which were always conservatively treated. No bleeding 
was observed. The negligible incidence of bleeding is 
consistent with previous precut studies (0-3.4%)[2,17,26,28,35]. 
In regards to perforation (0-1.8%), our results are also 
quite acceptable[2,17,26,28,35]. 

In conclusion, PF was more effective than GWC, and 
it was associated with a lower profile of amylase and 
lipase, as the routine endoscopic access to the biliary 
tree, including difficult cases. Complications were similar 
in both groups. 

ARTICLE HIGHLIGHTS
Research background
Successfully cannulating the biliary tract is important in the diagnosis 
and treatment of biliopancreatic diseases with endoscopic retrograde 
cholangiopancreatography (ERCP), but it can be associated with severe 
complications and mortality.

Research motivation
The number of papers regarding comparison between conventional cannulation 
versus fistulotomy is small. Our study is a well-designed approach in its matter. 

Research objectives:
To compare the cannulation success, biochemical profile, and complications 
of the papillary fistulotomy technique versus catheter and guidewire standard 
access.

Research methods
Patients were prospectively randomized into two groups: cannulation with 
a catheter and guidewire (Group Ⅰ) and papillary fistulotomy (Group Ⅱ). 
Amylase, lipase and C-reactive protein at T0 as well as 12 h and 24 h after 
ERCP, and complications (pancreatitis, bleeding, perforation) were recorded. 
Comparison was made of the cannulation success, biochemical profile and 
complications of the papillary fistulotomy technique vs catheter and guidewire 
standard access.

Research results
We included 102 patients, and Groups Ⅰ and Ⅱ had 51 patients each. The 
successful cannulation rates were 76.5% and 100%, respectively (P = 0.0002). 
Twelve patients (23.5%) in GroupⅠ had a difficult cannulation and underwent 
fistulotomy, which led to successful secondary biliary access (Failure Group). 
The complication rate was 13.7% (2 perforations and 5 mild pancreatitis) in 
Group Ⅰ versus 2.0% (1 patient with perforation and pancreatitis) in Group Ⅱ (P 
= 0.0597).

Research conclusions
Papillary fistulotomy was more effective than guidewire cannulation, and it 
was associated with a lower profile of amylase and lipase. Complications were 
similar in both groups.

Research perspectives
The fistulotomy demonstrated safety similar to conventional cannulation and 
less local trauma into the ampulla, according to the levels of the amylase, lipase 

and C-reactive protein.
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reviewed the current evidence and found no significant 
differences in risk of transplant outcomes: primary non-
function (RR = 0.02, 95%CI: 0.01-0.03, p  = 0.36) and 
one-year post-transplant graft survival (RR = 0.80, 
95%CI: 0.80-0.80, p  = 0.37) between UW and the 
other examined solutions.

Szilágyi ÁL, Mátrai P, Hegyi P, Tuboly E, Pécz D, Garami A, 
Solymár M, Pétervári E, Balaskó M, Veres G, Czopf L, Wobbe 
B, Szabó D, Wagner J, Hartmann P. Compared efficacy of 
preservation solutions on the outcome of liver transplantation: 
Meta-analysis. World J Gastroenterol 2018; 24(16): 1812-1824  
Available from: URL: http://www.wjgnet.com/1007-9327/full/
v24/i16/1812.htm  DOI: http://dx.doi.org/10.3748/wjg.v24.
i16.1812

INTRODUCTION
Organ transplantation is inevitably associated with 
ischemia-reperfusion (IR) injury; several methods 
have thus been formulated to reduce IR-related 
morbidity and to maintain the viability of tissues[1,2]. The 
introduction of the University of Wisconsin (UW) solution 
in 1987 has led to significant clinical progress and 
increased cold ischemic tolerance and has become the 
most widely used, gold standard preservation solution 
for liver transplantation[3]. Nevertheless, in spite of the 
clinical success, it has many potential shortcomings 
(Table 1). UW is an intracellular colloid solution with 
high potassium and low sodium concentration that 
inhibits activity of Na-K-adenosine triphosphatase 
and the resultant depletion of adenosine triphosphate 
stores. However, its low sodium content promotes the 
accumulation of calcium during ischemia, resulting in 
calcium-dependent endothelial dysfunction in renal 
glomeruli and in bile ducts during reperfusion[4,5]. 
Additionally, the high potassium increases the risk for 
hyperkalemia-induced cardiac arrest, requiring liver 
flushing before reperfusion. Moreover, low temperature 
storage in the container bag may result in the formation 
of adenosine crystals[6]. Therefore, the use of UW has 
been intensively challenged, and alternative solutions 
with potentially more benefits were developed. Among 
them, histidine-tryptophan-ketoglutarate (HTK), Celsior 
(CS) and Institut George Lopez (IGL-1) are the most 
commonly used preservation solutions in transplantation 
centers[7].

A number of prospective trials have investigated the 
effects of these preservation solutions on liver transplant 
outcomes over many years with variable results. HTK, 
also known as Bretschneider’s solution, is mostly used 
in European liver transplantation centers, especially in 
Germany. It has very low viscosity, which is based on 
a histidine buffer system with two additional substrates 
(tryptophan and ketoglutarate). A lower index of 
viscosity allows faster cooling and, theoretically, an 

Published online: April 28, 2018

Abstract
AIM
To compare the effects of the four most commonly 
used preservation solutions on the outcome of liver 
transplantations.

METHODS
A systematic literature search was performed using 
MEDLINE, Scopus, EMBASE and the Cochrane Library 
databases up to January 31st, 2017. The inclusion 
criteria were comparative, randomized controlled trials 
(RCTs) for deceased donor liver (DDL) allografts with 
adult and pediatric donors using the gold standard 
University of Wisconsin (UW) solution or histidine-
tryptophan-ketoglutarate (HTK), Celsior (CS) and 
Institut Georges Lopez (IGL-1) solutions. Fifteen RCTs 
(1830 livers) were included; the primary outcomes 
were primary non-function (PNF) and one-year post-
transplant graft survival (OGS-1). 

RESULTS
All trials were homogenous with respect to donor 
and recipient characteristics. There was no statistical 
difference in the incidence of PNF with the use of UW, 
HTK, CS and IGL-1 (RR = 0.02, 95%CI: 0.01-0.03, 
p  = 0.356). Comparing OGS-1 also failed to reveal 
any difference between UW, HTK, CS and IGL-1 (RR 
= 0.80, 95%CI: 0.80-0.80, p  = 0.369). Two trials 
demonstrated higher PNF levels for UW in comparison 
with the HTK group, and individual studies described 
higher rates of biliary complications where HTK and CS 
were used compared to the UW and IGL-1 solutions. 
However, the meta-analysis of the data did not prove a 
statistically significant difference: the UW, CS, HTK and 
IGL-1 solutions were associated with nearly equivalent 
outcomes.

CONCLUSION
Alternative solutions for UW yield the same degree of 
safety and effectiveness for the preservation of DDLs, 
but further well-designed clinical trials are warranted.

Key words: Liver transplantation; Preservation solution; 
Primary non-function; One-year post-transplant graft 
survival; Systematic review; Meta-analysis

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The University of Wisconsin (UW) solution 
is the gold standard for static cold storage in liver 
transplantation. Numerous clinical trials have investi
gated the potential benefit of the most frequently 
used alternative solutions, histidine-tryptophan-
ketoglutarate, Celsior and Institut Georges Lopez, but 
their results have been variable. This meta-analysis has 
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improved washout of blood cells from the graft[8]. UW 
was first compared to HTK in a randomized fashion 
in liver transplantation in 1994, and these solutions 
were found to have similar outcomes in terms of initial 
non-function of the graft and 30-mo patient survival[9]. 
However, more recent studies with a larger liver 
transplant population from Europe and North America 
have provided different conclusions[10,11].

CS has initially been applied in heart transplantation 
and then for kidney and liver transplantation as well, 
with the idea of providing preservation for all organs 
with a single solution[12]. The use of CS is based on 
similar principles to those of UW and HTK, but certain 
aspects are different. CS and HTK are categorized 
as extracellular preservation fluids; however, their 
buffering systems and substrates, which provide high-
energy phosphates, are different. With its high sodium 
(above 70 mmol/L) and low potassium content, CS is 
specifically designed to limit calcium overload (Table 1). 
It contains reduced glutathione concentration together 
with the addition of mannitol and histidine to prevent 
reactive oxygen species-induced oxidative injury. Like 
HTK, CS is devoid of colloids, therefore resulting in 
decreased viscosity and improved perfusability, it is thus 
unnecessary to the liver prior to reperfusion[13]. Due 
to its characteristically low viscosity, high sodium, low 
potassium and antioxidant properties, CS is considered 
particularly suitable for preserving liver grafts.

There are promising preliminary reports on the 
recently introduced Institut Georges Lopez (IGL-1) 
solution, also known as the UW-polyethylene glycol 
(PEG) solution. IGL-1 combines a cationic inversion 
(lower concentration of potassium) and replacement of 
hydroxyethyl starch with PEG. These properties could 
improve hepatic microcirculatory changes, thereby 
decreasing IR- injury[14]. 

The aim of our study was to provide a systematic 
review of this topic. The goal was to update current 
knowledge and compare data evidence on the 
effectiveness of the most frequently used preservation 
solutions. The primary endpoint of the study was 
primary non-function (PNF) of the graft after liver 
transplantation. PNF is the most common cause of 
early graft loss, and it has been shown that the organ 
preservation method is an independent predictive 
factor of PNF[15]. The secondary endpoint was one-
year post-transplant graft survival (OGS-1), this being 

an appropriate period to evaluate the effect of the 
preservation solutions according to an expert consensus 
opinion[16]. Other outcomes, such as primary dysfunction 
(PDF), early retransplantation rate (RT), post-transplant 
death within 30 d (POD) and one-year post-transplant 
patient survival (OPS-1) were also evaluated together 
with donors and recipient characteristics.

It should be added that three previous systematic 
reviews and two registry data analyses have explored 
this topic, each with limitations[10,16-19]. In 2015, Adam 
et al[10] analyzed the efficacy of the four most commonly 
used preservation solutions based on the European 
Liver Transplant Registry (ELTR) database. The largest 
and most comprehensive study in recent times was 
performed by analyzing outcomes of 42869 (first) 
liver transplantations, including living and deceased 
donors, as well as partial liver graft transplantations. 
Although the study population in this registry data 
analysis was relatively large, non-selective groups of 
donors were included[10,18,20]. Two systematic reviews 
lacked sufficient sample sizes and therefore were 
underpowered to identify clinically relevant differences 
in important outcomes, such as PNF of the graft.[16,17] A 
systematic review by O’Callaghan et al[19] chose 16 RCTs 
for analysis; however, it included unpublished data and 
conference abstracts as well. Since then, new prospective 
trials have also been published, especially with the IGL-1 
solution[8,21]. 

Therefore, the aim of this systematic review was to 
evaluate, compare and update the evidence obtained 
in randomized controlled trials (RCTs) on the efficacy 
of the four most frequently used preservation solutions 
for static cold storage of deceased donor liver (DDL) 
allografts.

MATERIALS AND METHODS
This study was conducted in accordance with the 
PRISMA (Preferred Reporting Items in Systematic 
Reviews and Meta-Analysis) statement[22]. The review 
protocol was registered with the National Institute 
for Health Research PROSPERO system on January 
12th, 2017, and can be found online (Registration No. 
CRD42017054908)[23].

Literature search
A systematic literature search was performed using 
EMBASE/MEDLINE, PubMed, Scopus and Cochrane. 
Database searches were conducted with MeSH key
words, combined with various terms for organ trans
plantation and organ preservation solutions (Figure 1). 
No language limitation was applied. The end date for 
the literature search was January 31st, 2017.

Inclusion criteria
Inclusion criteria specified any RCT comparing two or 
more preservation solutions for the static cold storage 
of DDLs, from both adult and pediatric donors. Living 
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UW HTK CS IGL-1 

HES 0.25 - - -
PEG-35 - - - 0.03
Na+   27 15 100 120
K+ 125 10   15   25

Table 1  Ingredients in the investigated preservation solutions

Concentrations are expressed in mmol/L. HES: Hydroxyethyl starch; 
PEG-35: Polyethylene glycol 35 kDa.
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number of patients was used. Any questions in data 
extraction were settled by discussion with a third author.

Statistical analysis
The statistical analysis for this study was conducted 
by Péter Mátrai, Institute of Bioanalysis, University of 
Pécs, H-7624 Pécs, Hungary. Risk ratios (RR) from 
individual studies were pooled statistically by random 
effect model using the DerSimonian-Laird estimator 
and were displayed on forest plots. As RR allows for 
the comparison of two samples, the Celsior and HTK 
solutions were compared to UW. Summary RRs were 
calculated with 95% confidence intervals (CI) and p 
values to test if summary RR = 1 can be rejected. P < 
0.05 was defined as a significant difference between 
solutions. In the analysis of outcomes for PNF and PDF, 
we used a computational correction recommended in 
the Cochrane Handbook and proposed by Sweeting 
et al[24]. to overcome the difficulty of dividing by 0. 
Statistical heterogeneity was tested using the I2 statistic 
and the chi-square test to obtain probability-values; p < 
0.05 was defined to indicate significant heterogeneity. 
All statistical calculations were performed using Stata 
11 SE (Stata Corp) and Comprehensive Meta-analysis 
Software (Version 3, Biostat, Englewood). We sought 
signs of a small study effect with the funnel plot. To 
identify potential sources of heterogeneity, we defined 
a priori subgroup analyses with the model of end-stage 

donor transplantation, multiple organ transplantation, 
retransplantation, nonhuman and uncontrolled studies 
were excluded. Abstracts for inclusion were independently 
reviewed by two authors, and disagreements were 
resolved by discussion with a third author (Figure 1).

Outcomes
The primary outcome was PNF of the liver grafts. PNF 
is a life-threatening condition after transplantation that 
leads to death or to the need for retransplantation within 
seven days of transplantation. It is characterized by 
hepatic cytolysis, elevated fasting transaminase levels, 
diminishing or absent bile production, coalgulation 
deficit related to severely impaired liver function, 
high lactate levels, hypoglycemia, respiratory failure 
requiring ventilatory support, circulatory failure requiring 
catecholamines, and the onset of renal and multi-organ 
failure[15].

The secondary outcome was OGS-1, since the one-
year post-transplant time point was considered by an 
expert consensus opinion as most suitable to evaluate 
the effect of the preservation solutions[16]. 

Data extraction
Demographic, quality and outcome data were extracted 
independently into Microsoft Excel by two authors. Data 
were collected from all articles describing the studies; 
in the case of discrepancies, the article with the largest 
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Human, controlled study
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Figure 1  PRISMA flowchart of search strategy with inclusions and exclusions.
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liver disease (MELD) score and cold ischemia time (CIT). 
All other outcomes related to the solutions were also 
investigated by subgroup analysis. 

RESULTS
Demographic and clinical characteristics of donors and 
recipients were homogenous in all trials (supplementary 
Tables 1-3).

MELD score
The MELD score incorporates parameters of recipients 
(such as abnormal coagulation, creatinine and serum 
bilirubin levels and the etiology of cirrhosis) and serves 
as a predictor of mortality after liver transplantation[25]. 
MELD scores were reported in five studies (supple
mentary Table 2). Subgroup analysis showed no 
significant difference in MELD score between the four 
solutions (RR = 18.6, 95%CI: 15.7-21.5, p = 0.379) 
(supplementary Figure 1A).

CIT
CIT (time interval from the clamping of the donor 
aorta to the anastomosis of the organ to the recipient’s 
vascular system or organs disposal) was reported in five 
studies (supplementary Table 3). Subgroup analysis 
showed no significant difference in risk of CIT between 
the four solutions (RR = 484.7, 95%CI: 445.4-524.0, 
p = 0.1) (supplementary Figure 1B).

PNF
PNF rates were reported in 15 studies (Table 2)[8,9,12,13,21,26-35]. 
In four studies, PNF was defined as patient death or 
retransplantation in the first week. In eleven studies, 
PNF was undefined. Overall rates of PNF were very 
low (range 0-13.7%). Our meta-analysis showed no 
significant difference in risk of PNF between the UW and 
CS solutions (z = 0.41, p = 0.680) and between UW and 
HTK (z = 1.07, p = 0.284) (Figure 2A). We found only 
one RCT that dealt with IGL-1, which was not sufficient 
for a meta-analysis to compare IGL-1 with the UW 

Study Solution 1 Solution 2 RR P value

N n % N n %
Cavallari et al[13], 2003 UW   90 1   1.100 CS   83 0   0.000 2.77 0.53
Lopez-Andujar et al[26], 2009 UW 104 2   1.900 CS   92 2   2.200 0.88 0.90
García-Gil et al[33], 2006 UW   40 0   0.000 CS   40 0   0.000 1.00 1.00
Nardo et al[27], 2001 UW   60 2   3.333 CS   53 0   0.000 4.43 0.33
Duca et al[28], 2010 UW   51 0   0.000 CS   51 0   0.000 1.00 1.00
García-Gil et al[35], 2011 UW   51 4 11.100 CS   51 4 11.100 1.00 1.00
Lama et al[29], 2002 UW   10 0   0.000 CS   10 0   0.000 1.00 1.00
Rayya et al[30], 2008 UW   68 1   1.471 HTK   69 1   1.449 1.01 0.99
Meine et al[32], 2006 UW   65 2   3.070 HTK   37 1   3.030 1.14 0.91
Erhard et al[9], 1994 UW   30 2   6.660 HTK   30 0   0.000 5.00 0.29
Mangus et al[31], 2008 UW   98 5   5.102 HTK 111 3   2.703 1.89 0.38
Dondéro et al[37], 2010 UW   92 4   4.350 IGL-1   48 1   2.080 2.09 0.51
Meine et al[8], 2015 HTK   65 2   3.100 IGL-1 113 3   2.700 1.16 0.87
Wiederkehr et al[21], 2014 HTK 125 1   0.700 IGL-1   53 0   0.000 1.29 0.88
Nardo et al[12], 2005 HTK   20 1   5.000 CS   20 0   0.000 3.00 0.49

Table 2  Primary non-function rate in included studies

Studies are grouped by preservation solutions. PNF: Primary non-function; N: Indicates number in group; n: Number of PNF; RR: Relative risk; UW: 
University of Wisconsin solution; HTK: Histidine-tryptophan-ketoglutarate solution; CS: Celsior solution; IGL-1: Institut Georges Lopez solution.

Study Solution 1 Solution 2 RR P value

N n % N n %
Cavallari et al[13], 2003 UW   90 75 83.0 CS   83 71 85.0 0.97 0.69
Lopez-Andujar et al[26], 2009 UW 104 83 80.0 CS   92 75 81.0 0.98 0.76
García-Gil et al[33], 2006 UW   40 26 66.1 CS   40 31 78.0 0.84 0.22
Nardo et al[27], 2001 UW   60 54 90.0 CS   53 48 90.6 0.99 0.92
Duca et al[28], 2010 UW   51 31 60.6 CS   51 37 73.5 0.84 0.21
Rayya et al[30], 2008 UW   68 53 78.0 HTK   69 49 71.0 1.01 0.35
Meine et al[32], 2006 UW   65 61 94.0 HTK   37 35 94.0 0.99 0.88
Mangus et al[31], 2008 UW   98 82 84.0 HTK 111 95 86.0 0.98 0.70
Dondéro et al[37], 2010 UW   92 73 79.1 IGL-1   48 19 39.8 2.00 0.00
Meine et al[8], 2015 HTK   65 54 83.0 IGL-1 113 96 85.0 0.98 0.74
Nardo et al[12], 2005 HTK   20 15 75.0 CS   20 18 90.0 0.83 0.22

Table 3  One-year post-transplant graft survival rate in included studies

Studies are grouped by preservation solutions. OGS-1: One-year post-transplant graft survival; N: Number in group; n: Number of OGS-1; RR: Relative 
risk; UW: University of Wisconsin solution; HTK: Histidine-tryptophan-ketoglutarate solution; CS: Celsior solution; IGL-1: Institut Georges Lopez solution.
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Study RR (95%CI) Events, 
UW

Events,Comparison 
solution

% 
Weight

Celsior
Lopez-Andujar R. 2009 0.88 (0.13, 6.15)  2/104 2/92   21.45
Duca W. J. 2010   1.00 (0.02, 49.45)  0.5/52 0.5/52     5.30 
García-Gil F. A. 2006   1.00 (0.02, 49.20)  0.5/41 0.5/41     5.32
Lama 2002   1.00 (0.02, 46.05)  0.5/11 0.5/11     5.50 
García-Gil F. A. 2011 1.00 (0.26, 3.78)   4/51  4/51   45.60 
Cavallari A. 2003   2.77 (0.11, 67.05) 1.5/91 0.5/84    7.95
Nardo B. 2001   4.43 (0.22, 90.17) 2.5/61 0.5/54     8.88
Subtotal (I -squared = 0.0%, P  = 0.977) 1.21 (0.49, 2.96) 11.5/411 8.5/385 100.00 

HTK
Rayya F. 2008   1.01 (0.06, 15.90)   1/68  1/69   14.23
Meine M. H. 20064 obse   1.14 (0.11, 12.13)   2/65  1/37   19.24
Mangus 2008 1.89 (0.46, 7.70)   5/98   3/111   54.53
Erhard 1994   5.00 (0.25, 99.95)   2/30  0/30   12.00 
Subtotal (I -squared = 0.0%, P  = 0.857) 1.76 (0.62, 4.98)   10/261    5/247 100.00 

IGL-1
Dondéro F. 2010 2.09 (0.24, 18.16) 4/92 1/48 100.00 
Subtotal (I -squared = .%, P  = .) 2.09 (0.24, 18.16) 4/92 1/48 100.00 

NOTE: Weights are from random effects analysis

0.01                                       1                                       100
Comparison solution UW

A
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B
Study ES (95%CI) % Weight
Celsior
Cavallari A., 2003 0.01 (0.00, 0.09)    4.86
Nardo B., 2001 0.01 (0.00, 0.13)    2.18
Duca W. J., 2010 0.01 (0.00, 0.14)    2.04
García-Gil F. A., 2006 0.01 (0.00, 0.17)     1.35
Lopez-Andujar R., 2009 0.02 (0.01, 0.08)    6.22
Nardo B., 2005 0.02 (0.00, 0.29)    0.46
Lama, 2002 0.05 (0.00, 0.45)    0.19
García-Gil F. A., 2011 0.11 (0.05, 0.23)     1.14
Subtotal (I -squared = 0.0%, P  = 0.711)  0.02 (-0.00, 0.04)   18.45

HTK
Wiederkehr J.C., 2014 0.01 (0.00, 0.05)   12.96
Rayya F., 2008 0.01 (0.00, 0.10)    4.26
Erhard, 1994 0.02 (0.00, 0.21)     0.84
Mangus, 2008 0.03 (0.01, 0.08)    7.27
Meine M. H., 2006 0.03 (0.00, 0.17)     1.37
Meine M. H., 2015 0.03 (0.01, 0.12)     3.25
Nardo B., 2005 0.05 (0.01, 0.28)     0.49
Subtotal (I -squared = 0.0%, P  = 0.964)  0.02 (-0.00, 0.03)   30.44

IGL-1
Wiederkehr J. C., 2014 0.01 (0.00, 0.13)    2.18
Dondéro F., 2010 0.02 (0.00, 0.13)    2.19
Meine M. H., 2015 0.03 (0.01, 0.08)    7.45
Subtotal (I -squared = 0.0%, P  = 0.894)  0.02 (-0.01, 0.05)   11.82

UW
Duca W. J., 2010 0.01 (0.00, 0.14)    2.04
Cavallari A., 2003 0.01 (0.00, 0.07)    7.00
García-Gil F. A., 2006 0.01 (0.00, 0.17)     1.35
Rayya F., 2008 0.01 (0.00, 0.10)    4.14
Lopez-Andujar R., 2009 0.02 (0.00, 0.07)    7.94
Meine M. H., 2006 0.03 (0.01, 0.11)    3.26
Nardo B., 2001 0.03 (0.01, 0.12)    2.81
Dondéro F., 2010 0.04 (0.01, 0.11)    4.49
Lama, 2002 0.05 (0.00, 0.45)    0.19
Mangus, 2008 0.05 (0.02, 0.12)    4.11
Erhard, 1994 0.07 (0.02, 0.23)    0.82
García-Gil F. A., 2011 0.11 (0.05, 0.23)     1.14
Subtotal (I -squared = 0.0%, P  = 0.816) 0.03 (0.01, 0.04)   39.29

Overall (I -squared = 0.0%, P  = 0.992) 0.02 (0.01, 0.03) 100.00 
NOTE: Weights are from random effects analysis

0   0.1   0.2   0.3
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solution. We performed a subgroup analysis to compare 
the four solutions in the context of PNF. There was no 
significant difference between solutions (RR = 0.02, 
95%CI: 0.01-0.03, p = 0.356) (Figure 2B). We found 
no evidence of a small study effect using the funnel plot 
analysis of the meta-analyses for the primary outcome (p 
= 0.846) (Figure 2C).

OGS-1
OGS-1 was reported in eleven studies (Table 3). No 
study was individually powered for small differences 
in graft survival, and no study reported a difference 
related to the preservation fluid used. Meta-analysis of 
the data showed no significant difference in the risk of 
OGS-1 between the UW and CS solutions (z = 0.30, 
p = 0.763) (Figure 3A) or between the UW and HTK 
solutions (z = 0.01, p = 0.991) (Figure 3A). We also 
performed a subgroup analysis to compare all four 
solutions, including IGL-1. There was no significant 
difference between the solutions (RR = 0.80, 95%CI: 
0.80-0.80, p = 0.369) (Figure 3B). We found no 
evidence of a small study effect using the funnel plot 
analysis from either of the meta-analyses for the 
OGS-1 (p = 0.397) (Figure 3C).

PDF
PDF rates were reported in six studies: five of them 
compared UW with CS, and one compared UW with 
HTK (supplementary Table 4). Overall rates of PDF 
were very low (range 0-15.5%). The difference in PDF 

rate was found higher with the use of UW solutions in 
one study[32]. However, the subgroup analysis showed 
no increased risk of PDF in the UW group (RR = 0.1, 
95%CI: 0.0-0.1, p = 0.582) (supplementary Figure 2).

Early RT
Early RT was reported in seven studies and ranged 
from 0.9% to 20% (supplementary Table 4). None of 
the studies found a significant difference in early RT 
between groups; however, they were underpowered 
to detect such a low incidence outcome. Similarly, 
subgroup analysis showed no increased risk of early 
RT in the UW group (RR = 0.0, 95%CI: 0.0-0.1, p = 
0.698) (supplementary Figure 3). 

POD
POD rates were reported in seven studies (supplementary 
Table 4). Overall rates of POD were very low (range 
1.7%-14.4%). The difference in POD rate was higher 
with the use of the CS solution compared with the UW 
solution in two studies[12,33]; however, subgroup analysis 
showed no increased risk (supplementary Figure 4). In 
contrast, there was a significant difference when UW 
was compared to HTK or IGL-1 (RR = 0.07, 95%CI: 
0.04-0.09, p < 0.01). 

OPS-1
OPS-1 rates were reported in ten studies (supplementary 
Table 4). No study was individually powered for small 
differences in graft survival, and no study reported 
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Figure 2  Effects of preservation solutions on primary non-function. A: Meta-analysis of the relative risk (-RR-) of PNF comparing studies using different 
preservation solutions: UW vs Celsior and UW vs HTK; B: Forest plot for subgroup analysis of PNF; and C: Funnel plot for PNF in studies. Squares represent 
individual study effects, with the size of the box relating to the weight of the study in the meta-analysis. Each diamond represents a summary effect from meta-
analysis. Horizontal bars represent 95% CIs. There is no evidence of a small study effect in the test or the formal plot. PNF: Primary non-function; RCTs: Randomized 
controlled trials; ES: Effect size; UW: University of Wisconsin solution; HTK: Histidine-tryptophan-ketoglutarate solution; CS: Celsior solution; IGL-1: Institut Georges 
Lopez solution.
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Study RR (95%CI) Events, 
UW

Events,Comparison 
solution

% Weight

Celsior
Duca W. J. 2010 0.84 (0.63, 1.11) 31/51 37/51    6.24
García-Gil F. A. 2006 0.84 (0.63, 1.11) 26/40 31/40    6.04
Cavallari A. 2003 0.97 (0.86, 1.11) 75/90 71/83   29.39
Lopez-Andujar R. 2009 0.98 (0.85, 1.12)   83/104 75/92   25.56
Nardo B. 2001 0.99 (0.88, 1.12) 54/60 48/53   32.78
Subtotal (I -squared = 0.0%, P  = 0.639) 0.96 (0.90, 1.03) 269/345 262/319 100.00 

HTK
Mangus 2008 0.98 (0.87, 1.10) 82/98   95/111   36.73
Meine M. H. 20063 obse 0.99 (0.90, 1.10) 61/65 35/37   50.48
Rayya F. 2008 1.10 (0.90, 1.34) 53/68 49/69   12.79
Subtotal (I -squared = 0.0%, P  = 0.557) 1.00 (0.93, 1.07) 196/231 179/217 100.00 

IGL-1
Dondéro F. 2010 2.00 (1.39, 2.89) 73/92 19/48 100.00 
Subtotal (I -squared = .%, P  = .) 2.00 (1.39, 2.89) 73/92 19/48 100.00 

NOTE: Weights are from random effects analysis

0.3                                    1                                  3

Comparison solution UW

A

Study ES (95%CI) % Weight
Celsior
Duca W. J., 2010 0.7 (0.6, 0.8)     4.06
García-Gil F. A., 2006 0.8 (0.6, 0.9)     3.87
Lopez-Andujar R., 2009 0.8 (0.7, 0.9)     5.01
Cavallari A., 2003 0.9 (0.8, 0.9)     5.07
Nardo B., 2005 0.9 (0.7, 1.0)     3.41
Nardo B., 2001 0.9 (0.8, 1.0)     4.93
Subtotal (I -squared = 32.3%, P  = 0.194) 0.8 (0.8, 0.9)   26.36

HTK
Rayya F., 2008 0.7 (0.6, 0.8)     4.39
Nardo B., 2005 0.8 (0.5, 0.9)     2.74
Meine M. H., 2015 0.8 (0.7, 0.9)     4.73
Mangus, 2008 0.9 (0.8, 0.9)     5.36
Meine M. H., 2006 0.9 (0.8, 1.0)     4.75
Subtotal (I -squared = 65.8%, P  = 0.020) 0.8 (0.8, 0.9)    21.97

IGL-1
Dondéro F., 2010 0.4 (0.3, 0.5)     3.71
Meine M. H., 2015 0.9 (0.8, 0.9)     5.34
Subtotal (I -squared = 97.1%, P  = 0.000) 0.6 (0.2, 1.1)     9.05

UW
Duca W. J., 2010 0.6 (0.5, 0.7)     3.80
García-Gil F. A., 2006 0.7 (0.5, 0.8)     3.54
Rayya F., 2008 0.8 (0.7, 0.9)     4.58
Dondéro F., 2010 0.8 (0.7, 0.9)     4.95
Lopez-Andujar R., 2009 0.8 (0.7, 0.9)     5.09
Cavallari A., 2003 0.8 (0.7, 0.9)     5.07
Mangus, 2008 0.8 (0.8, 0.9)     5.18
Nardo B., 2001 0.9 (0.8, 1.0)     5.03
Meine M. H., 2006 0.9 (0.8, 1.0)     5.39
Subtotal (I -squared = 76.0%, P  = 0.000) 0.8 (0.7, 0.9)   42.62

Overall (I -squared = 77.3%, P  = 0.000) 0.8 (0.8, 0.8) 100.00 
NOTE: Weights are from random effects analysis
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a difference related to the preservation fluid used. 
Subgroup analysis showed no significant difference in risk 
of OPS-1 between the four solutions (RR = 0.9, 95%CI: 
0.8-0.9, p = 0.786) (supplementary Figure 5).

DISCUSSION
This study reviews the current evidence and updates 
knowledge on four frequently used preservation solutions 
for static cold storage of DDLs for transplantation. The 
treatment groups were homogenous in terms of donor 
and recipient characteristics; the prediction of primary 
and secondary outcomes (i.e., PNF and OGS-1) was thus 
likely independent of individual risk variables, patient 
selection or the overall severity of the disease at liver 
transplantation. More importantly, the analysis of 
outcome parameters (i.e., PNF and OGS-1) provided 
good evidence that UW is not outperformed by CS, 
HTK and IGL-1 solutions in maintaining organ function 
and viability of liver grafts in cold storage. 

PNF mainly depends on the organ preservation 
method[15]. It occurs in 2%-6% of transplants and is 
unrelated to any direct surgical, immunologic or other 
complications[34]. Our meta-analysis included eleven 
trials that evaluated the effectiveness of the UW 
solution as compared to either the CS or HTK solution. 
In accordance with the literature, the overall rates 
of PNF were very low, except in one trial (13%)[35]. 
When analyzing the single studies, we found two 
trials with a higher incidence of PNF in the UW group 
than in the HTK group[9,36], but the difference did not 
reach statistical significance upon meta-analysis. It 

should be added that a recent analysis of the ELTR 
database demonstrated that use of HTK represented an 
individual risk factor for the development of PNF when 
compared to the UW solution[10]. The contradictory 
conclusions can be explained with the selection bias of 
the database analysis[20]. In either case, we found no 
difference between UW and the other solutions with 
regard to the risk of PNF. As regards IGL-1 and HTK, 
two prospective randomized clinical studies with 356 
patients reported identical results[8,21]. Similar outcome 
was detected in a single-center study with 140 patients 
that compared IGL-1 and UW solutions[37]. This was 
confirmed in the current study, since IGL-1 showed a 
similar PNF risk to that of UW and HTK in our subgroup 
analyses. 

In our study, OGS-1 was the secondary endpoint. 
Graft survival rates were evaluated one, three and five 
years after liver transplantation in single studies. The 
one-year term was chosen as an appropriate period 
to evaluate the effect of the preservation solutions 
because other factors could have a greater impact on 
this outcome parameter after this time. A retrospective 
analysis of the ELTR database demonstrated that HTK 
preservation was independently associated with higher 
mortality than UW, CS and IGL-1 in a multivariate 
analysis[10]. Another analysis of a large national registry 
database (United Network for Organ Sharing, UNOS) 
has also demonstrated differences in graft survival 
rate between the HTK and UW solutions[18]. However, 
important risk factors among donors were not con
sidered in the ELTR analysis[20], and selected groups 
of transplant patients were not homogenous in the 
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Figure 3  Effects of preservation solutions on one-year post-transplant graft survival. A: Meta-analysis of the relative risk (-RR-) of OGS-1 comparing studies 
using different preservation solutions: UW vs Celsior and UW vs HTK; B: Forest plot for subgroup analysis of OGS-1; and C: Funnel plot for OGS-1 in studies. 
Squares represent individual study effects, with the size of the box relating to the weight of the study in the meta-analysis. Each diamond represents a summary effect 
from meta-analysis. Horizontal bars represent 95% CIs. There is no evidence of a small study effect in the test or the formal plot. OGS-1: One-year post-transplant 
graft survival; RR: Relative risk; RCTs: Randomized controlled trials; ES: Effect size; UW: University of Wisconsin solution; HTK: Histidine-tryptophan-ketoglutarate 
solution; CS: Celsior solution; IGL-1: Institut Georges Lopez solution.
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other analysis: HTK was utilized in allografts with more 
favorable recipient traits, as well as shorter CIT and 
less local and national export[18]. In accordance with 
the findings from numerous clinical trials, the meta-
analyses and subgroup analyses in this study did not 
show a significant difference in risk of OGS-1 between 
UW and any of the examined solutions. Similarly, there 
was no evidence for a difference between IGL-1 and UW 
solutions and between IGL-1 and HTK in the subgroup 
analyses. 

Apart from the preservation methods used to protect 
the organ from IR injury, the final outcome of trans
plantation can also be linked to factors such as donor 
age, general condition and CIT[38]. A recent UNOS study 
showed a more pronounced risk for graft loss with 
longer CIT and donors over 70 years[18]. In our study, 
subgroup analysis showed that the included trials did 
not vary significantly and that the mean CITs were 
beyond the critical 12 h[39]. Several experimental studies 
demonstrated that the use of the UW solution allows for 
longer CITs with better graft preservation; however, it 
remains to be determined whether any of the alternative 
solutions is better than UW when CIT is prolonged over 
12 h. 

Recipient morbidity and MELD scores are also 
important contributing factors to the outcome of liver 
transplantation. Recipient parameters are incorporated 
into the MELD score, which indicates the state of 
health of the recipient; the MELD score-based organ 
allocation algorithm could thus significantly influence 
the graft survival rate[40]. In the present study, there 
was no significant difference between the preservation 
solutions in the context of the MELD score and other 
recipient characteristics.

In recent times, the crisis in organ supply has made 
it necessary to extend the scope of potential donors 
by using extended criteria donors (ECD). Although 
there is no precise definition of ECD, frequently cited 
characteristics are donor age, steatosis, donation 
after cardiac death (DCD), donors with increased 
risk of disease transmission and transplantation after 
prolonged CIT, as well as the use of partial grafts 
(split grafts and living donor liver transplantation)[41]. 
Unfortunately, higher rates of graft failure were 
documented in this class of extended allograft; in 
addition, very little data is available on the influence 
of preservation solutions on their post-transplant 
outcomes[42]. A single-center study by Mangus et al[30] 
failed to find statistically significant differences in over
all graft survival when they compared UW to HTK in 
ECD transplantations. However, they suggested that 
HTK may be protective against biliary complications. 
In contrast, in 2009, the UNOS database analysis 
reported that HTK was associated with an increased 
risk of graft loss and early graft loss[18]. More recently, 
Adam et al[10] compared the four most frequently used 
preservation solutions and concluded that HTK is an 

independent risk factor for graft loss after ECD liver 
transplantations. The remaining three solutions, UW, CE 
and IGL-1, provided similar results in post-transplant 
outcomes after ECD transplantations. In the special 
condition of using a partially deceased donor liver graft, 
IGL-1 offered the best graft outcome[10]. In another 
study, it was suggested that IGL-1 was superior to 
other solutions for preserving fatty livers by protecting 
against PNF and early allograft dysfunction[43]. However, 
a prospective randomized study could not show any 
significant improvement in the subgroup of patients 
receiving IGL-1-preserved grafts[36]. In living donor 
liver transplantations, risk-adjusted analyses of single- 
and double-center studies consistently reported that 
UW and HTK were equally effective and safe for cold 
preservation[44-47]. There is currently no evidence-based 
recommendation on the optimal preservation solution 
in ECD liver transplantations because the number and 
quality of RCTs are not sufficient. However, based on 
the above data, differences in the indications of various 
preservation solutions are expected.

This study has some limitations. There are so far 
only three small RCTs that compare IGL-1 with UW or 
IGL-1 with HTK. Therefore, we could not run a meta-
analysis to compare IGL-1 with any of the solutions. In 
order to compare the risk of the four solutions for PNF, 
we had to perform a subgroup analysis. In addition, 
surgery time and hemoderivative transfusions due to 
recipient coagulation problems are often not cited in the 
literature as predictors of poor outcome[36]. This factor 
was not considered in the selected trials. Moreover, 
different trials presented some differences as regards 
the operative procedure. Furthermore, the included 
RCTs were homogenous with regard to donor and 
recipient parameters. On the one hand, this provided 
the possibility to exclude selection bias, but, on the 
other hand, the effects of preservation solutions in the 
case of longer CIT and involvement of expanded criteria 
donors could not be evaluated. 

In conclusion, elucidation of the role of preservation 
solutions in the outcome of liver transplantation is 
complicated by the intrinsic complexity of the clinical 
procedure, which is made up of many different, but 
interacting phases. This review evaluated the best 
available evidence from comparisons of the four most 
frequently used preservation fluids in DDL transplan
tation. A direct meta-analysis comparison was made 
and the sample size of included trials was large enough 
to estimate the risk of low-incidence outcomes such as 
PNF or OGS-1 correctly. Based on our results, there is 
good evidence that the UW, CS, HTK and IGL-1 solutions 
are associated with nearly equivalent outcomes. 
Additional studies on larger patient populations including 
marginal donors, longer cold ischemia time, multi-organ 
transplantations and economic aspects are needed to 
evaluate the superiority of any alternative solution over 
UW. 
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ARTICLE HIGHLIGHTS
Research background
The introduction of the University of Wisconsin (UW) solution for static cold 
storage of liver grafts was a breakthrough and has remained the conventional 
method of organ preservation. However, many alternative preservation 
solutions exist, and each is thought to offer an advantage over UW solution.

Research motivation
At present, 98% of liver transplantations use the UW, histidine-tryptophan-
ketoglutarate (HTK), Celsior (CS) or Institute Georges Lopez (IGL-1) solution for 
the cold preservation of grafts. Previously, prospective trials have investigated 
their effects on liver transplant outcomes, but with contradictory results. 
Furthermore, no systematic review reports the effect of IGL-1, which was first 
used by 2003, as compared to other solutions.

Research objectives
To provide an update and to compare the latest findings from clinical trials 
on the effects of the four most frequently used preservation solutions on liver 
transplant outcomes.

Research methods
A systematic review and meta-analysis were conducted on randomized 
controlled trials of deceased donor liver transplantations using UW and either 
HTK, CS or IGL-1 for cold storage of allografts. Primary and secondary 
outcomes were primary non-function (PNF) and one-year post-transplant graft 
survival (OGS-1).

Research results
In spite of differences found in individual studies, a meta-analysis of PNF and 
OGS-1 showed no statistical difference between groups. Subgroup analysis 
showed no increased risk for other outcomes, such as primary dysfunction, 
early retransplantation rate, post-transplantation death and one-year post-
transplant patient survival.

Research conclusions
This meta-analysis provided evidence that UW and alternative solutions 
are associated with almost the same transplant outcome. Further studies 
are needed with extended criteria donors to ascertain the superiority of any 
alternative solution over UW.
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