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Abstract
Betanodaviruses cause viral nervous necrosis, an infec-
tious neuropathological condition in fish that is char-
acterized by necrosis of the central nervous system, 
including the brain and retina. This disease can cause 
mass mortality in larval and juvenile populations of 
several teleost species and is of global economic im-
portance. The mechanism of brain and retina damage 
during betanodavirus infection is poorly understood. 
In this review, we will focus recent results that high-
light betanodavirus infection-induced molecular death 
mechanisms in vitro . Betanodavirus can induce host 
cellular death and post-apoptotic necrosis in fish cells. 
Betanodavirus-induced necrotic cell death is also cor-
related with loss of mitochondrial membrane potential 
in fish cells, as this necrotic cell death is blocked by the 
mitochondrial membrane permeability transition pore 
inhibitor bongkrekic acid and the expression of the anti-
apoptotic Bcl-2 family member zfBcl-xL. Moreover, this 
mitochondria-mediated necrotic cell death may require 
a caspase-independent pathway. A possible cellular 
death pathway involving mitochondrial function and the 
modulator zfBcl-xs is discussed which may provide new 
insights into the necrotic pathogenesis of betanodavirus.

© 2013 Baishideng. All rights reserved.

Key words: Nervous necrosis virus; Mitochondrial mem-
brane potential; Bongkrekic acid; zfBcl-xL; Caspase-
independent; Brain damage
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BETANODAVIRUS
Betanodaviruses cause viral nervous necrosis, an infec-
tious neuropathological condition in fish that is character-
ized by necrosis of  the central nervous system, including 
the brain and retina[1]. This disease can cause mass mor-
tality in larval and juvenile populations of  several teleost 
species and is of  global economic importance[2]. 

The family Nodaviridae is comprised of  the genera 
Alphanodavirus and Betanodavirus. Alphanodavirus predomi-
nantly infects insects, while Betanodavirus predominantly 
infects fish[3-7]. Nodaviruses are small, nonenveloped, 
spherical viruses with bipartite positive-sense RNA ge-
nomes (RNA1 and RNA2) that are capped but not poly-
adenylated[3]. RNA1 encodes a non-structural protein of  
approximately 110 kDa that has been designated RNA-
dependent RNA polymerase or protein A. This protein is 
vital for replication of  the viral genome. RNA2 encodes a 
42 kDa capsid protein that may also function in the induc-
tion of  cell death[8,9]. Nodaviruses also synthesize RNA3, 
a sub-genomic RNA species from the 3’ terminus of  
RNA1. RNA3 contains two putative open reading frames 
that potentially encode a 111 amino-acid protein B1 and 
a 75 amino-acid protein B2[3,10,11]. Recently, the betanoda-
virus B1 protein has been shown to have an anti-necrotic 
death function during the early replication stages[10]. In 
contrast, the betanodavirus B2 protein appears to func-
tion as a suppressor of  host siRNA silencing[12,13] or as a 
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necrotic death factor[14,15]. In addition, red-spotted grouper 
nervous necrosis virus (RGNNV) infection and expres-
sion can trigger the ER stress response, which results in 
the upregulation of  the 78 kDa glucose regulated protein 
at the early replication stage[16]. Very recently, RGNNV 
has been shown to induce the production of  reactive oxy-
gen species (ROS) during the early and middle replication 
stages[17]. 

NECROTIC CELL DEATH DURING 
BETANODAVIRUS INFECTION
Apoptosis and necrosis are two stereotyped mechanisms 
by which nucleated eukaryotic cells die[18,19]. Necrosis is 
considered a pathological reaction to major perturbations 
in the cellular environment such as anoxia[20], while apop-
tosis is a physiological process that preserves homeostasis 
by facilitating normal tissue turnover[21,22]. The mecha-
nisms leading to apoptosis are better understood[23-26].

Tumor necrosis factor-α (TNF-α) is a crucial regula-
tor of  the innate and adaptive immune response against 
microbial infection via its regulation of  cell death and 
survival[27]. TNF-α is a pro-inflammatory cytokine that 
plays important roles in diverse host responses, such as 
cell proliferation, differentiation, necrosis, apoptosis, and 
induction of  other cytokines. Recently, TNF-α has been 
shown to induce either nuclear factor κB-initiated surviv-
al or apoptosis, depending on the cellular context[28]. As 
such, many viruses have strategies to neutralize TNF-α 
either by direct binding and inhibition of  the ligand or 
receptor or by modulation of  various downstream signal-
ing events[29,30].

The death receptors (DRs), including TNF receptor-1 
(TNF-R1), Fas, DR3, DR4, DR5, and TRAIL, contain an 
intracellular “death domain” that influences downstream 
signaling pathways by means of  homotypic interactions 
with adaptor proteins, such as FADD, TRADD, and 
receptor-interacting protein-1 (RIP1)[31]. These DRs in-
duce apoptosis in many cell types through activation of  
caspase 8. Activated caspase 8 may act indirectly to induce 
apoptosis through cleavage of  Bid. The truncated Bid 
protein acts on the mitochondria to cause the release of  
cytochrome c, which further activates downstream caspase 
9. Furthermore, TNF-R1 is also involved in the initiation 
of  necrotic cell death (Figure 1)[32]. TNFα and other cyto-
kines that bind to receptors of  different-classes promote 
the generation of  ROS, which functions as a second mes-
senger in the necrotic cell death pathway[33,34].

RIP1 is an intracellular adaptor molecule with kinase 
activity[35]. The RIP1[36] and RIP3[37] proteins appear to 
be crucial for the initiation of  caspase-independent cell 
death. RIP1 is also necessary for the generation of  ROS 
by TNF-α[33,34]. 

Other research has shown that TNF-α activates RIP1 
kinase-mediated signaling, promoting the induction of  
downstream genes influencing necrosis or apoptosis[38]. 

In aquatic betanodavirus systems, RGNNV induces 
exposure of  phosphatidylserine (PS; an early apoptotic 

marker) at an early apoptotic stage[39], as determined by 
annexin-V assays. Secondary necrotic morphological chang-
es are also evident at middle and late stages under phase-
contrast microscopy in RGNNV-infected grouper cells 
using acridine orange (AO) and ethidium bromide (EtBr) 
to identify apoptotic and post-apoptotic necrotic cells; 
double-stained cells are often observed. Furthermore, 
RGNNV infection can induce ROS production in mito-
chondria at the early replication stage [24 h postinfection 
(p.i.)]. Viral expression during this stage leads to ROS pro-
duction, triggering an oxidative stress response[17], which 
may contribute to secondary necrotic cell death. In our 
system, RGNNV induces necrotic cell death, but whether 
or not this requires RIP1 kinase-mediated signaling is still 
unknown.

BETANODAVIRUS INFECTION AFFECTS 
MITOCHONDRIAL FUNCTION
Apoptosis is controlled at the mitochondrial level by the 
sequestration of  apoptogenic proteins in the mitochon-
drial intermembrane space and the cytosolic release of  
these factors on exposure to proapoptotic signals[39,40]. 
Disruption of  the mitochondrial membrane potential 
(MMP) initiates the caspase cascade, leading to down-
stream activation of  apoptosis[40,41]. MMP can affect both 
the inner and outer mitochondrial membranes, and this 
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Figure 1  Schematic working model for mitochondrial dysfunction caused 
by betanodavirus infection. Red-spotted grouper nervous necrosis virus 
infection and early replication causes an ER stress response upon entry in the 
early replication stage [12 h postinfection (p.i.)]. Subsequently, this ER stress 
signaling can affect a number of important events, including enhanced viral 
expression, induction of mitochondrial membrane potential (MMP) loss, mito-
chondrial breakdown, and cytochrome c release at the middle replication stage 
(48 h p.i.). Bcl-2 may also be downregulated at the middle replication stage, 
as overexpression of Bcl-xL prevents loss of MMP. In regard to downstream 
events, cytochrome c release is not required or caspases activation or trigger-
ing of necrotic cell death at the late replication stage (72 h p.i.).
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precedes the signs of  necrotic or apoptotic cell death, 
including the apoptosis-specific activation of  caspases[42]. 
Adenine nucleotide translocase (ANT) plays a role in 
the exchange of  ATP for ADP through the inner mito-
chondrial membrane, thus supplying the cytoplasm with 
ATP newly synthesized by oxidative phosphorylation. In 
a search for proapoptotic proteins, Bauer et al[43] identi-
fied the protein ANT1 as the main inducer of  apoptosis. 
The overexpression of  ANT1 produces rapid cell death, 
with a concomitant decrease in MMP and an increase in 
nucleosomal DNA degradation. Since this cell death is 
sensitive to caspase inhibitors and to inhibitors of  the 
mitochondrial permeability transition pore (MPTP), such 
as bongkrekic acid (BKA), apoptosis and the involvement 
of  MPTP are thus implicated[43]. Hence, the mitochon-
drion is appreciated as a central integrator of  pro-death 
stimuli, streamlining various types of  proapoptotic signals 
into a common caspase-dependent pathway[41].

In a betanodavirus system, secondary necrosis is cor-
related with loss of  MMP in grouper liver cells[44] and mi-
tochondrial breakdown at the middle and late apoptotic 
stages[11]. The loss of  MMP is dramatically inhibited by 
the ANT specific inhibitor BKA, which enhances host-
cell viability at the early and middle apoptotic stages[44]. 
Furthermore, RGNNV-induced mitochondrial cyto-
chrome c release is also blocked following BKA treat-
ment at the early (24 h p.i.) and middle (48 h p.i.) stages. 

THE ROLE OF ANTI-APOPTOTIC 
BCL-2 FAMILY MEMBERS DURING 
BETANODAVIRUS INFECTION
Apoptosis removes damaged, infected, and superfluous 
cells. In most circumstances, a cell’s decision to live or 
die rests largely with the Bcl-2 family of  interacting pro-
teins[45,46]. The Bcl-2 family of  proteins includes both anti- 
and pro-apoptotic molecules that act at a critical intracel-
lular decision point along a common death pathway[47]. 
The ratio of  antagonists (Bcl-2, Bcl- xL, Mcl-1, Bcl-W, 
and A1) to agonists (Bax, Bak, Bcl-xS, Bid, Bik, Bad, 
PUMA, and NOXA) dictates whether a cell responds to a 
proximal apoptotic stimulus[46,47]. The Bcl-2 family mem-
ber proteins also interact with mitochondria to regulate 
MMP[42]. Changes in MMP, which can include permeabi-
lization of  both the inner and outer membranes, precede 
necrotic or apoptotic cell death[40], highlighting the central 
role of  the mitochondrion as a integrator of  pro-death 
stimuli[41]. Cytochrome c release from mitochondria into 
the cytosol is initiated by the interaction of  mitochondria 
with one or more members of  the Bcl-2 family. Thus, 
Bcl-2 proteins, which critically regulate apoptosis, func-
tion prior to the irreversible damage of  cellular constitu-
ents[48-50]. 

In our fish system, we found that RGNNV infection 
can induce downregulation of  the anti-apoptotic Bcl-2 
genes at the middle apoptotic stage (48 h p.i.)[16]. Subse-
quently, mitochondrial damage and RGNNV-induced ne-

crotic cell death were assessed in stable cell lines produc-
ing the anti-apoptotic Bcl-2 proteins, zfBcl-xL or zfMcl-1a. 
Both zfBcl-xL and zfMcl-1a strongly inhibited RGNNV-
induced necrotic cell death and reduced the percentage of  
necrotic cells at 36 h p.i. by up to 90% (zfBcl-xL) and 93% 
(zfMcl-1a), respectively, when compared with the NNV-
infected control group. Cell viability was correspondingly 
enhanced at 36 h p.i. by 102% (zfBcl-xL) and 98% (zfMcl-
1a), respectively, when compared with the NNV-infected 
control group[11]. Furthermore, overexpression of  zfBcl-
xL dramatically blocked RGNNV viral death factor pro-
tein α[9] and B2[14] induction of  cell death.

CASPASE-INDEPENDENT DEATH 
PATHWAY IN BETANODAVIRUS-
INFECTED CELLS
The mitochondrion is seen as a central integrator of  pro-
death stimuli, streamlining various types of  proapoptic 
signals into a common caspase-dependent pathway[41], 
although the absolute requirement for caspase activation 
in apoptosis is no longer considered dogma[51,52].

The molecular cornerstones of  apoptosis are the fam-
ily of  cysteinyl aspartate-specific proteases, collectively 
known as caspases. At least 13 caspases have been identi-
fied[53], and members of  this family can be subdivided 
into two groups: initiators and executioners. Initiator cas-
pases serve to relay death signals from proapoptotic sig-
nals to executioner caspases, which then cleave key pro-
teins involved in cellular structure and function. Known 
initiators include caspase 8 and caspase 9, whereas known 
effectors include caspase 3[54], caspase 6, and caspase 7.

Our analysis of  caspase 3, caspase 8, and caspase 9 ac-
tivities revealed no significant differences relative to nor-
mal control cells at 0, 24, 48, and 72 h p.i. with RGNNV 
(MOI = 5), and cell death was not effectively blocked 
by treatment with a pan-caspase inhibitor[11]. The results 
of  these assays suggest that betanodavirus can induce 
caspase-dependent and caspase-independent death 
pathways that may be dependent on the specific cell line 
used. In grouper liver cells, RGNNV may preferentially 
induce caspase-independent death, but GGNNV induces 
caspase-dependent death in sea bass cells[8].

CONCLUSION
We have reviewed the cellular impact of  RGNN viral in-
fection on cell viability via modulation of  mitochondrial 
necrotic cell death in fish cells. Over recent years, our 
knowledge about mitochondria-mediated apoptotic cell 
death has expanded, but our understanding of  mitochon-
dria-mediated necrotic cell death is still limited, especially 
in lower vertebrates. In addition, we are beginning to 
uncover the physiological roles of  mitochondria-medi-
ated caspase-independent necrotic cell death. However, 
despite these recent advances, many questions remain 
largely unanswered. What signaling occurs upstream of  
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necrotic cell death following betanodavirus infection? 
Does induction of  autophagy affect necrotic cell death 
during viral replication? What parameters, in addition to 
mitochondria-shaping proteins, control mitochondrial 
fusion and fission[15,55]? Hopefully, future studies will in-
crease our understanding of  the mechanisms underlying 
mitochondria-mediated necrosis, its functions in multiple 
biological processes, and the regulatory signaling path-
ways that control its activation. This knowledge will be of  
great importance for validating mitochondria-mediated 
necrosis as an effective target for the treatment of  vari-
ous diseases, including RNA viral infections.
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Abstract
Until very recently, treatment for chronic hepatitis C vi-
rus (HCV) infection has been based on the combination 
of two non-viral specific drugs: pegylated interferon-α 
and ribavirin, which is effective in, overall, about 
40%-50% of cases. To improve the response to treat-
ment, novel drugs have been designed to specifically 
block viral proteins. Multiple compounds are under de-
velopment, and the approval for clinical use of the first 
of such direct-acting antivirals in 2011 (Telaprevir and 
Boceprevir), represents a milestone in HCV treatment. 
HCV therapeutics is entering a new expanding era, and 
a highly-effective cure is envisioned for the first time 

since the discovery of the virus in 1989. However, any 
antiviral treatment may be limited by the capacity of the 
virus to overcome the selective pressure of new drugs, 
generating antiviral resistance. Here, we try to provide 
a basic overview of new treatments, HCV resistance to 
new antivirals and some considerations derived from a 
Public Health perspective, using HCV resistance to pro-
tease and polymerase inhibitors as examples. 

© 2013 Baishideng. All rights reserved.
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INTRODUCTION
Hepatitis C virus (HCV) infects an estimated 170 million 
people worldwide, which represents around 2%-3% of  
the global population[1]. Chronic HCV infection causes a 
progressive liver disease associated with increased risk of  
liver cirrhosis and hepatocellular carcinoma[2]. When end-
stage liver disease is established, the only reliable thera-
peutic intervention, liver transplantation, is limited by the 
fact that a new chronic hepatitis is established in the graft, 
which can be lost in the early years post-transplantation[3]. 
The burden of  HCV disease varies throughout the world, 
with country-specific prevalence ranging from < 1% to 
> 10%. The epidemiology of  HCV infection is changing, 
and the transmission routes, demographics of  infected 
individuals, and HCV genotype distribution varies be-
tween countries[4,5]. Public Health policies will likely need 
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to be adapted to these differences. With the new avail-
ability of  highly effective therapies, there is now a time 
of  increasing opportunities to significantly reduce HCV-
related morbidity and mortality. Until very recently the 
standard treatment for chronic HCV infection was the 
combination of  pegylated interferon-α (Peg-IFNα) and 
ribavirin (RBV)[6]. Rather than targeting the virus directly, 
these drugs are immunomodulators, although RBV may 
also increase the mutation rate of  the HCV genome[7]. 
The majority of  responder patients remain virus-free after 
5 years of  follow-up and are considered to be cured[8]. 
However, the efficacy of  this therapy is variable, ranging 
from 40% to 80% depending on: viral genotype, stage of  
liver fibrosis, viral load, side effects and treatment discon-
tinuation, body-mass index, age, race, and host genetics[9]. 
Genome-wide association studies revealed single nucleo-
tide polymorphisms in the promoter region of  the IL28B 
gene, encoding interferon lambda-3, as the strongest 
predictors for treatment response[10]. Increasing response 
rates are expected due to the development of  numerous 
new direct-acting antivirals (DAAs) active against HCV 
(STAT-C: Specifically-Targeted Antiviral-Treatment for 
hepatitis C). Some of  these compounds are in advanced 
clinical trials to be used either as an adjunct to Peg-IFNα 
+ RBV, and/or combined with other DAAs. STAT-C 
drugs include inhibitors of  the viral proteins NS3/4A, 
NS4B, NS5A, and NS5B[11,12]. The well-defined virus-
specific enzymatic functions of  the NS3/4A serine pro-
tease and the NS5B RNA-dependent RNA-polymerase 
(RdRp) made them the initial focus for drug development 
and represent the most advanced STAT-C drugs, show-
ing potent antiviral efficacy in vitro and in vivo. In 2011, the 
NS3/4A protease inhibitors (PIs) Telaprevir (Vertex Phar-
maceuticals) and Boceprevir (Schering-Merck) became the 
first STAT-C compounds approved for clinical use; and 
NS5A inhibitors and several NS5B polymerase inhibitors 
entered phase Ⅱ of  development[11]. In addition, STAT-C 
drugs targeting other HCV proteins and drugs directed to 
host proteins that interact with the virus have also entered 
clinical development. There is a glimpse of  optimism in 
the field, hoping that new STAT-C medications will allow 
shorter treatment durations and increase the rates of  pa-
tients responding to antiviral treatment[13].

From a Public Health perspective, the extension of  
new, more effective, treatments including STAT-C com-
pounds will: (1) eventually reduce the disease burden of  
chronic hepatitis C in the near future; (2) reduce the long-
term costs of  delayed care by increasing efforts to screen 
undiagnosed cases, with the aim of  giving access to treat-
ment and preventing progression of  the disease; and (3) 
require a reinforcement of  Public Health surveillance[14].

However, this optimism may be tempered by evidence 
demonstrating that HCV variants resistant to STAT-C 
compounds are rapidly selected in vitro and in vivo[15-17]. 
Eventually all classes of  STAT-C, including NS3/4A pro-
tease and NS5B polymerase inhibitors, select for HCV 
resistant variants, although some nucleosidic inhibitors ex-
hibit a higher barrier to resistance[18]. This is not surprising, 

given the high error rate of  HCV replication and the rapid 
turnover of  circulating virions. In fact, resistant variants 
arise from preexisting subpopulations of  viral genomes al-
ready circulating in the infected individual, before therapy 
is started[19]. Selective drug pressure changes the balance 
between the different intra-individual HCV quasispecies; 
and resistant genomes dominate the circulating viruses in 
patients with treatment failure or suboptimal treatment 
response, as evidenced in patients treated with NS3/4 
PIs[20-22]. Fortunately, resistant variants remain sensitive 
to Peg-IFN + RBV, which still makes their elimination 
possible with the current Peg-IFN + RBV treatment[16]. 
However, these therapy regimens are complex, and sim-
plification is eagerly pursued. Finally, most of  the first-
generation STAT-C compounds have been designed using 
HCV proteins and replicon assays based in HCV subtype 
1b, and the efficacy in other viral subtypes may be sub-
optimal (lower genetic barrier), given the diversity of  this 
virus and the high number of  genotypes and subtypes[23]. 
Due to the low genetic barrier (the number of  nucleotide 
substitutions required for the virus to acquire resistance 
to a given drug) of  some compounds, there are concerns 
that high-level resistance will develop quickly, and the pos-
sibility of  transmission of  resistant strains among intra-
venous drug users[24]. From a Public Health perspective, it 
seems necessary: (1) to determine the prevalence of  major 
HCV resistant variants in the infected population; (2) to 
determine the efficacy of  STAT-C compounds on HCV 
subtypes other than 1b; and (3) to establish virology labo-
ratories for HCV genotypic resistance testing and surveil-
lance. Finally, because the distribution of  HCV subtypes 
varies in different geographical regions, policies may have 
to be refined locally to give access to treatment with opti-
mized STAT-C regimes.

HCV BIOLOGY AND THE BASIS FOR 
RESISTANCE
HCV is an enveloped virus, the only member of  the 
genus Hepacivirus within the family Flaviviridae, with a 
positive-sense, single-stranded RNA genome of  about 
9600 bases flanked by two highly-conserved non-coding 
regions[25]. The genome encodes a single polyprotein of  
around 3000 amino acids, processed by both host and 
viral proteases into the mature three structural and seven 
non-structural proteins, including the components of  
the capsid and envelope (core, E1 and E2) and the viral 
enzymes needed for replication and virion assembly (p7, 
NS2, NS3, NS4A, NS4B, NS5A and NS5B), respectively 
(Figure 1)[26]. Like other RNA viruses, the high error rate 
of  the RdRp makes HCV evolution very rapid, with a 
mutation rate estimated at 10-3 to 10-5 nucleotides per 
site[27]. 

Evolution of  the virus has led to the distinction of  six 
major genotypes and more than 40 subtypes. Genotypes 
1, 2 and 3 are more common in Western countries, geno-
types 1, 4 and 5 in Africa, and genotype 6 in Asia[23]. The 
distribution of  HCV genotypes and subtypes varies be-
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tween countries probably because of  the spread through 
different routes of  transmission, such as blood-transfu-
sion and healthcare-related practices (subtype 1b) or in-
travenous drug use (subtype 1a and genotype 3) which is 
now the main route of  infection in most countries[4]. For 
instance, the prevalence of  HCV subtype 1b varies from 
more than 50% of  infected individuals in Italy, Poland, 
Romania, Turkey, or Russia to less than 25% in Canada. 
Similarly, the prevalence of  non-1 genotypes is also very 
variable, accounting from less than 25% of  the infections 
in Romania, Turkey, or the Czech Republic to more than 
50% in Sweden, Norway, or the United Kingdom[4]. Local 
HCV genotype/subtype epidemiology may be relevant 
to the design of  optimal treatment strategies because the 
cross-genotype efficacy of  most STAT-C compounds is 
very limited (see below).

HCV displays another level of  genetic variability: in-
traindividual variation. The combination of  a high muta-
tion rate with the production of  around 1012 virions per 
day[28] results in every infected individual carrying a pool 
of  slightly variant viral genomes which can eventually 
contain every possible single (and maybe double) mu-
tants: a cloud of  variants common in RNA viruses, so-
called “quasispecies”[21,29]. 

This extensive genetic variability gives HCV the ca-
pacity to generate drug resistance. Mutations that change 
amino acids of  STAT-C target proteins, including NS3 
and NS5B, do occur in the absence of  the drugs, and can 
cause conformational changes that may interfere with 
drug-target interaction. If  DAA-resistant variants are 
already present before the start of  treatment, they will be 
rapidly selected and become dominant in the viral quasi-
species once the drug is administered, because they will 
be under positive selective pressure. In addition, unless 
the replication of  the virus is fully suppressed, even if  
resistance is not present prior to therapy, adaptive muta-
tions can eventually emerge during STAT-C administra-

tion, that reduce the susceptibility of  the virus to the 
drug. 

Not surprisingly, several mutations were soon identi-
fied in vitro to be associated with reduced susceptibility to 
NS3 and NS5B inhibitors[17], some of  these are present in 
natural isolates from naive individuals[30-35], and were later 
related to STAT-C treatment failure in clinical trials[18]. 

The role of  naturally-occurring variations in resistance 
to STAT-C inhibitors is therefore a focus of  intensive 
research. An example is the study of  HCV resistance to 
NS3/4A protease and NS5B polymerase inhibitors. Table 1 
shows a summary, extracted from several reviews, of  the 
most important amino acid variations in HCV NS3/4A 
protease, NS5A protein and NS5B polymerase associated 
with resistance to DAAs.

HCV resistance to NS3/4A PIs
The viral NS3 gene encodes amino acids 1027-1657 of  
the polyprotein (numbering on HCV-H77-1a strain), 
including a serine protease located in the N-terminal do-
main (amino acids NS3 1-181) and an NTPase/RNA heli-
case in the C-terminal part (amino acids NS3 182-623)[36]. 
The chymotrypsin-like protease requires a cofactor, the 
NS4A protein, and is responsible for critical steps in the 
virus lifecycle: (1) the cleavage of  the viral polyprotein in 
the NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-
NS5B junctions; and (2) the modification of  the cellular 
response, interfering with the interferon pathway[37-39]. 
Thus, blocking NS3/4A protease activity may inhibit both 
processing of  the viral polyprotein and viral down-regula-
tion of  the innate immune response. 

Clinical development of  the first-in-class HCV PI (Ci-
luprevir, BILN-2061) showed exceptional antiviral activity 
both in vitro and in vivo in phase Ⅰ Studies, but further de-
velopment was halted because cardiotoxicy was detected 
in animals[40]. These promising results were reproduced 
with other PIs, such as Telaprevir (VX-950), Boceprevir 
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Figure 1  Diagram of the hepatitis C virus genes and the viral polyprotein, with two non-coding regions in the 5’ and 3’ ends of the viral genome, structural 
(with) and non-structural (grey) proteins. The targets for the most-developed Specifically-Targeted Antiviral-Treatment for hepatitis C compounds are indicated, 
together with drugs in advanced development.
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(SCH-503034), and Danoprevir (ITMN-191). Several 
other PIs belonging to two inhibitor classes are in clinical 
trials: linear ketoamids, and macrocyclic compounds, in-
cluding Simeprevir (TMC435, Tibotec/Medivir), Asuna-
previr (BMS-650032, Bristol-Myers Squibb), Danoprevir 
(RG7227, Roche/InterMune), BI201335 (Boehringer-
Ingelheim), ACH-1625 and ACH-2684 (Achillion), Vani-
previr and MK-5172 (Merck and Co.)[11,12].

Two of  these have been approved recently for clinical 
use: Telaprevir and Boceprevir. HCV resistance to both 
linear and macrocyclic PIs by amino acid substitutions is 
well documented in vitro and in vivo[41]. The selection of  
resistant mutants is rapid (during the first weeks of  expo-
sure to the DAA), and compound-specific, although some 
resistant strains however may show a reduced fitness, 
which allows viral control using the standard Peg-IFN + 
RBV treatment[16]. A major concern of  HCV resistance to 
first-generation PIs is cross-resistance. Substitutions NS3-
R155K/T and NS3-A156S/T/V confer a high level of  
resistance to both Boceprevir and Telaprevir and cross-
resistance to most NS3 PIs. Substitutions NS3-V36A/M 
and NS3-T54A/S confer a low level of  resistance to both 
Telaprevir and Boceprevir, and NS3-V170A/T to Bo-
ceprevir. There is also some cross-resistance of  mutations 
in positions 36, 54 and 170 with other compounds, while 
changes in positions NS3-80, NS3-155 and NS3-168 are 
implicated in resistance to macrocyclic inhibitors[17,42]. 
Double mutants may also be selected by STAT-C treat-
ments, combining two resistance mutations for the same 
or different PI class, with a potential for broad resistance 
to both linear and macrocyclic inhibitors[43]. However, giv-

en the available experience with human immunodeficiency 
virus, the selection of  double or triple HCV mutants 
resistant to different drugs targeting different viral genes 
(i.e., protease and polymerase) seems unlikely. Selected 
resistant variants in the protease have been implicated in 
late relapse after cessation of  treatment, and may decline 
or remain detectable for years after treatment failure[44-46]. 
These resistance mutations may also revert to wild-type 
virus with time, but still some resistant viruses revert very 
slowly[47]. In addition, resistant variants exist, at differ-
ent levels, before treatment. First, the NS3/4 protease is 
polymorphic in sites associated with resistance between 
HCV genotypes 1-6, and between some subtypes. For in-
stance, variations in NS3-V170 are present in most HCV 
genotype 1 isolates, and polymorphism in NS3-D168 is 
characteristic of  HCV genotype 3[32]. As the development 
of  NS3/4A PIs was based in HCV genotype 1, subtype 
1b, their antiviral activity with non-1b genotypes, may be 
not as effective, although some PIs inhibit more than one 
HCV genotype[22,42,48-50]. Currently neither Boceprevir nor 
Telaprevir should be used in patients infected with HCV 
genotypes other than 1. First-generation PIs have some 
activity in HCV genotypes 2 and 4, but very limited activi-
ty in genotype 3-infected patients[51]. Among PIs in clinical 
development, Simeprevir showed potent activity against 
HCV genotype 1, but lesser activity against genotypes 2, 4, 
5, and 6[50]. 

Second, even within HCV genotype 1, large studies in 
several countries have found resistance in STAT-C naive 
patients (prevalence up to 5.5%)[33-35]. Thus, naturally-
occurring polymorphisms can modify the treatment 
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Table 1  Most important variations related to hepatitis C virus viral resistance to NS3 protease and NS5b 
polymerase in vitro  and/or in vivo

Inhibitor class Amino acid variations implicated in resistance 

First generation NS3/A PI 
   Ciluprevir (NS3) R155K/T/Q, A156V/T, D168A/V/T/H
   Telaprevir (NS3) V36M/A, T54A, R155K/T, A156V/T/S, V36M/A+R155K/T, V36M/A+A156V/T 
   Boceprevir (NS3) V36M/A/L, T54S/A, R155K, V55A, R155T, A156S, V158I, V170A, I170T
Second generation NS3/A PI 
   Danoprevir (NS3) R155K, D168E
   Simeprevir (NS3) Q80R/Q, R155K/T/Q, A156S/V/T, D168A/V/T/H
   Asunaprevir (NS3) R155K, A156V/T, D168A/E/T/V/Y
   Narlaprevir (NS3) V36A/M, R155K/T/Q, A156S/V/T, V170A
   MK5172 (NS3) A156V/T, D168A/V/T/H
NS5A inhibitors
   Daclatasvir (NS5A) Q30R, L31 M/V, Y93C/N 
NA polymerase inhibitors
   Mericitabine (NS5B) S282T in vitro, not reported in vivo
   PSI-7977 Not reported in vivo
   IDX-184 Not reported in vivo
   INX-189 Not reported
NNI polymerase inhibitors 
   Tegobuvir (NS5B) C316N, Y448H
   Filibuvir (NS5B) M423T/I/V, M426T, I482T
   Setrobuvir (NS5B) M414T/L, G554D, D559G
   VCH-759 (NS5B) L419M/V, M423T/I/V, I482L/V/T, V494I/A
   VCH-222 (NS5B) L419M, M423T, I482L
   ABT-072 (NS5B) C316Y, M414T, Y448H/C, S556G

Summary from[11,17,18,77-80]. PI: Protease inhibitors; NA: Nucleos(t)ide analogs; NNI: Non-nucleos(t)idic (allosteric) inhibitors.
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response to STAT-C. In addition, there are differences in 
the genetic barrier to resistance between viral subtypes. 
HCV subtype 1a has a low genetic barrier for approved 
PIs, and this is the reason for higher viral breakthrough 
rates and selection of  resistant variants observed in pa-
tients infected with subtype 1a during treatment with Bo-
ceprevir and Telaprevir. The resistance mutation R155K 
emerges from a single nucleotide substitution in subtype 
1a viruses; whereas two different substitutions are needed 
in the subtype 1b viruses[17,18]. Viral breakthrough and re-
lapse after treatment with Simeprevir is usually associated 
with signature resistance mutations at NS3 positions 80, 
122, 155, and/or 168 (positions 80 and 168 are polymor-
phic between subtypes), but the distribution of  mutations 
also varies significantly between subtypes 1a and 1b[52]. 
For Asunaprevir, the primary NS3 protease substitutions 
associated with high-level resistance identified in vitro oc-
cur predominately at the polymorphic amino acid residue 
D168 (D168A/G/H/V/Y). In addition, in single- and 
3-d multiple-ascending-dose studies in HCV genotype 
1a- or 1b-infected patients, a predominant pre-existing 
NS3 baseline polymorphism (NS3-Q80K) had ambigu-
ous effects, but no clinically-relevant resistance-associated 
variants emerged in these clinical studies[53]. Finally, the 
large turnover and population size, together with the 
high mutation rate of  the virus implicates that HCV vari-
ants resistant to new DAAs may be present as minority 
species (not detectable by direct population sequencing) 
within the complex pool of  viral genomes circulating in 
a single patient[33,54,55]. Pre-existing variants resistant to 
Boceprevir or Telaprevir may impair virologic response 
before treatment is initiated[56,57]. The role of  naturally-
occurring polymorphisms and minority variants in treat-
ment failure is just being elucidated, and clinical develop-
ment of  STAT-C compounds with pan-genotypic activity 
is needed.

HCV resistance to NS5A inhibitors
The HCV NS5A genomic region encodes a serine phos-
phoprotein of  448 amino acids (a.a. 2421-3011 of  the 
polyprotein, numbering on HCV-H77-1a strain), which 
seems to have a role in transcriptional activation and par-
ticipates in enhancing viral replication. NS5A has been 
linked to interferon sensitivity, and includes a variable re-
gion (V3), and PKR and zinc binding domains[26]. NS5A 
replication complex inhibitors undergoing clinical trials 
include Daclatasvir (BMS-790052, Bristol-Myers Squibb) 
and ACH-2928 (Achillion)[12]. Daclastavir is a potent oral 
NS5A inhibitor, studied in combination with the NS3 PI 
Asunaprevir alone (n = 11), or plus Peg-IFNα + RBV 
(n = 10) for 24 wk in genotype-1 infected patients[58]. 
Double and quad combination therapy produced SVR 
in 36% and 90% of  patients respectively. In the double 
therapy group, viral relapse occurred in one patient (HCV 
subtype 1a). An analysis of  baseline samples revealed a 
preexisting NS3 variant (R155K) conferring resistance 
to Asunaprevir at the time of  viral relapse, whereas the 
NS5A resistance variant Q30E was detected only at re-

lapse. All patients with viral breakthrough (n = 6, 55%) 
were infected with HCV subtype 1a. There was no resis-
tance variants at baseline and resistance variants to both 
Daclatasvir and Asunaprevir had emerged in all cases 
by the time of  viral breakthrough. Viral variants in the 
NS5A domain included Q30R, L31 M/V, and Y93C/N; 
and variants in the NS3 protease included R155K and 
D168A/E/T/V/Y[58]. Another phase Ⅱa study in Japan 
examined the combination of  Daclastavir with Asunapre-
vir, without Peg-IFN and RBV (n = 10, HCV genotype 
1b). All the nine patients who completed the full course 
of  treatment, achieved SVR (HCV-RNA was negative at 
weeks 12 and 24), and there as no viral breakthrough[59]. 
In a survey in Japan, resistance mutations to Daclatas-
vir NS5A-L31M and/or Y93H were detected in 11.2% 
of  307 untreated patients with HCV subtype 1b infec-
tion, and Y93H (8.2%) was more prevalent than L31M 
(2.7%)[60]. Fifteen patients (4.9%) were infected with 
NS3-protease variants harboring V36A, T54S, Q80R or 
D168E, resistance mutations. While mutations confer-
ring resistance to Daclatasvir or to NS3 inhibitors were 
frequent in this treatment-naive study population, double 
mutants with possible resistance to both drugs were rare. 
In addition, the cross-genotypic activity of  Daclatasvir 
is under investigation. Thus, there is a rationale for ex-
panding these double or quad therapy regimes including 
Dacaltasvir, but potential differences in efficacy between 
subtype 1a and 1b viruses should be further explored.

HCV resistance to NS5B polymerase inhibitors
The HCV NS5B genomic region encodes a 66 kDa pro-
tein composed of  591 amino acids (a.a. 2421-3011 of  
the polyprotein, numbering on HCV-H77-1a strain): an 
RdRp. The HCV RdRp resembles other viral polymer-
ases, with a GDD motif  and a right hand structure with 
palm, fingers and thumb domains[61]. The polymerase 
replicates the viral genome, in the catalytic sites located 
at the palm domain, from a negative strand RNA tem-
plate intermediate, using an active triphosphate (NTP) 
as primer[62]. Depending on their chemical structure and 
mechanism of  action, specific NS5B inhibitors can be 
divided into two groups: nucleoside/nucleotide analogues 
(NA) and non-nucleoside inhibitors (NNI). NA are al-
ternative NTP substrates for the polymerase, forming a 
structure in the catalytic site that prevents the addition 
of  new NTPs, resulting in premature chain-termination 
of  nascent RNA[61]. The NNI inhibitors, rather than 
competing with NTPs, act by blocking the enzyme in the 
initiation of  replication, preventing the conformational 
change necessary to elongate the nascent new copy of  
the RNA viral genome[63]. Four different allosteric NNI 
binding sites have been identified: NNI-Site A/thumb 
1, NNI-Site B/thumb 2, NNI-Site C/palm 1, and NNI-
Site D/palm 2; which are targets for benzimidazoles, 
dihydropyrones and thiophenes, benzothiazidines, and 
benzofurans, respectively[61]. Although the NS5B gene is 
less variable than other parts of  the HCV genome, viral 
genetic polymorphism and mutation may also limit the 
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efficacy of  NS5B-specific inhibitors[19,35,64,65].
The nucleos(t)ide inhibitors usually act at the catalytic 

site of  the RdRp, where the GDD motif  is located. In 
the replicon model, 2’-C-methyl-nucleosides select for 
the NS5B-S282T change, and some nucleotide inhibitors 
select for several other changes (S15G, R222Q, C223Y, 
C223H, L320I, V321I)[61,66,67]. However, a combination of  
at least three changes (S15G/C223H/V321I) was required 
to confer a high level of  resistance[68]. NA inhibitors show, 
in fact, a high genetic barrier for the emergence of  resis-
tance[69], and no resistance mutations have been observed 
in NA monotherapy[70], or in combination with a PI[71]. In 
addition, in combination with Peg-IFNα + RBV, no viral 
breakthroughs due to resistance mutations could be iden-
tified[70]. NA inhibitors are therefore the most promising 
drugs due to the limited number of  resistance mutations 
described[11], and the low frequency of  resistant viruses 
circulating in the population[19,72]. Unfortunately, drugs in 
development in this class are few, compared to NNI.

NNI exhibit a different range of  resistance profiles 
depending on the target site in the NS5B RdRp. Numer-
ous substitutions associated with resistance to NNI were 
found mainly in the four allosteric sites A, B, C and D. 
Some particular changes seem extremely important for 
resistance, such as NS5B-M423V/I, which increases 31 
times the resistance to the drug AG-02154[65]. In addition, 
secondary mutations may increase resistance profiles. 
When combined with the substitutions T19P, M71V, 
M423V or A442T, the change NS5B-A338V causes an 
increase of  up to 17 times the resistance to dihydropy-
rones and Thiophene[73]. Variable responses to NNI may 
be due to natural variation in baseline susceptibility[74]. 
The NS5B-C316N change is frequent in HCV subtype 
1b[32], and together with NS5B-Y448H, NS5B-D559G or 
NS5B-Y555C can increase resistance to benzofurans 30 
fold. 

NS5B polymerase inhibitors undergoing clinical tri-
als include Mericitabine (RG-7128, Roche), PSI-7977 
and Tegobuvir (Gilead), INX-189 (Inhibitex), Filibuvir 
(PF-00868554, Pfizer), VCH-222 (Vertex), ABT-072 
(Abbott), and Setrobuvir (ANA-598, Anadys)[12]. Among 
these, nucleos(t)ide analogs such as RG-7128, PSI-7977 
and INX-189 display a high genetic barrier to resistance 
and can be efficacious against several HCV genotypes, 
while non-nucleosidic inhibitors (Filibuvir, VCH-222, 
ABT-072, Setrobuvir, Tegobuvir) normally display a 
lower genetic barrier and a genotype-dependent antiviral 
effect (Table 1)[70,75].

CONCLUSION
Specifically-targeted antiviral therapies for HCV are en-
tering the clinics, and more than 50 compounds are in 
development. The first major targets are NS3/A protease 
and NS5B polymerase, but other viral and host targets 
are in of  drug development, such as the viral NS3 heli-
case, NS4A and NS5A proteins, or cyclophyllin inhibitors 
and modulators of  the innate immune response. In the 

near future, the rate of  sustained virological response will 
be much greater than with Peg-IFNα + RBV treatment. 
Due to the selective pressure of  DAAs, resistant viruses 
circulating in the infected population can lead to treat-
ment failure. A single mutation in the coding sequence 
of  the viral enzyme may be sufficient to confer different 
levels of  resistance to a particular drug. The emergence 
of  these resistant variants has been generally observed 
soon after starting treatment, especially in monotherapy, 
as a result of  the rapid decline of  wild-type virus and the 
dominance of  preexisting minority variants. Therefore, 
the selection of  resistant viral strains can compromise 
new STAT-C regimens, and clinicians must take into ac-
count this problem. 

In clinical trials with a single STAT-C drug, viral iso-
lates from patients with treatment failure have exhibited 
one, or more than one, resistance mutation and some 
of  them lasted for years. These results indicate that the 
success of  new treatments using a single STAT-C may 
be compromised, and will require a high genetic barrier 
to resistance, optimal drug exposure and strict adher-
ence. From a Public Health perspective, the allocation of  
resources needs to be maximized to treatment regimens 
ensuring success; this will depend on the effectiveness of  
drugs inhibiting all viral variants, minimizing the emer-
gence of  mutations. Maximum effectiveness to prevent 
the emergence of  resistance will probably rely on a com-
bination of  DAAs with a high genetic barrier to inhibit 
different viral targets simultaneously, ideally with each 
inhibitor linked to a different set of  resistance mutations. 

Several combinations of  DAAs, with or without con-
comitant Peg-IFNα + RBV administration, have obtained 
different efficacies in controlling HCV replication, with 
those regimens including compounds with a higher bar-
rier to resistance [like nucleos(t)ide analogues, or NS5A 
inhibitors] being the more promising in minimizing the 
emergence of  resistance[58,71,76]. To ensure the success 
of  future treatments, it will be important to evaluate the 
true frequencies of  naturally-occurring substitutions that 
may confer resistance to new DAA’s in HCV isolates cir-
culating in the infected population. At the Public Health 
level, it may be interesting to reinforce epidemiological 
surveillance to obtain specific data on the geographical 
distribution of  HCV genotypes/subtypes and their preva-
lence in different cohorts of  infected patients, because 
of  the differential response to currently approved and 
new STAT-C treatment regimes in development. Strate-
gies for increasing (or limiting) access to new treatments 
may require different approaches in different geographical 
regions. In addition, active HCV resistance surveillance is 
needed. Genotype sequencing on viral breakthrough (and 
also prior to treatment initiation) of  the HCV genomic 
regions targeted by DAAs may be useful to identify re-
sistance pathways, particularly in those patients in whom 
Peg-IFNα + RBV therapy has failed; the first candidates 
for newer STAT-C regimens.

Finally, the future availability of  highly potent STAT-C 
combinations can potentially decrease the global burden 
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of  HCV disease, and pave the way for HCV eradication. 
However, the high cost of  STAT-C drugs, their limited ef-
ficacy in non-1 HCV genotypes, the emergence of  resis-
tance, and the need for sophisticated monitoring of  new 
treatments makes them unreliable for resource-limited 
countries where the highest prevalence of  chronic infec-
tion is concentrated. Clinical development of  simple and 
affordable all-oral combination therapeutic regimes with 
antiviral activity to all HCV genotypes is required, and the 
development of  an effective vaccine is still a relevant un-
met goal.
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Abstract
Viruses and their hosts have co-evolved for million 
years. In order to successfully replicate their genome, 
viruses need to usurp the biosynthetic machinery of 
the host cell. Depending on the complexity and the 
nature of the genome, replication might involve or not 
a relatively large subset of viral products, in addition 
to a number of host cell factors, and take place in sev-
eral subcellular compartments, including the nucleus, 
the cytoplasm, as well as virus-induced, rearranged 
membranes. Therefore viruses need to ensure the cor-
rect subcellular localization of their effectors and to be 
capable of disguising from the cellular defensive mecha-
nisms. In addition, viruses are capable of exploiting 
host cell activities, by modulating their post-translational 
modification apparatus, resulting in profound modifica-
tions in the function of cellular and viral products. Not 
surprisingly infection of host cells by these parasites can 
lead to alterations of cellular differentiation and growing 
properties, with important pathogenic consequences. 
In the present hot topic highlight entitled “Reprogram-
ming the host: modification of cell functions upon viral 
infection”, a number of leading virologists and cell biolo-
gist thoroughly describe recent advances in our under-
standing of how viruses modulate cellular functions to 
achieve successful replication and propagation at the 
expenses of human cells. 

© 2013 Baishideng. All rights reserved.

Key words: Virus-host interaction; Pathogenesis; Post 
translational modification; Viral factories; Cancer; Dif-
ferentiation; Human immunodeficiency virus; Hepatitis 
C virus; RNAi

Core tip: Viruses are obliged intracellular parasites caus-
ing million causalities every year. In order to success-
fully replicate their genome, viruses need to usurp the 
biosynthetic machinery of the host cell. Depending on 
the complexity and the nature of the genome, replica-
tion might involve or not a relatively large subset of viral 
products, in addition to a number of host cell factors, 
and take place in several subcellular compartments, 
including the nucleus, the cytoplasm, as well as virus-
induced, rearranged membranes. We describe recent 
advances in our understanding of how viruses modulate 
cellular functions to successfully replicate at the expens-
es of human cells.
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Viruses and their hosts have co-evolved for million years. 
In order to successfully replicate their genome, viruses 
need to usurp the biosynthetic machinery of  the host 
cell. Depending on the complexity and the nature of  the 
genome, replication might involve or not a relatively large 
subset of  viral products, in addition to a number of  host 
cell factors, and take place in several subcellular compart-
ments, including the nucleus, the cytoplasm, as well as 
virus-induced, rearranged membranes. Therefore viruses 
need to ensure the correct subcellular localization of  their 
effectors and to be capable of  disguising from the cellular 
defensive mechanisms. In this hot topic highlight entitled 
“Reprogramming the host: Modification of  cell functions 
upon viral infection”, we describe recent advances in our 
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understanding of  how viruses modulate cellular functions 
to achieve successful replication and propagation at the 
expenses of  human cells. 

The first review of  this issue, by Amberkar et al[1] “High-
throughput RNA interference screens integrative analysis: 
Towards a comprehensive understanding of  the virus-
host interplay”, based on bioinformatic and statistical ap-
proaches, explains how high throughput technologies can 
help unveiling the complex relationship between viruses 
and host cell proteins, which might represent targets for 
potential therapeutic intervention. 

In “Architecture and biogenesis of  plus-strand RNA 
virus replication factories”, Paul et al[2] propose an innova-
tive classification of  positive strand RNA viruses accord-
ing to the morphology of  membrane rearrangements they 
are able to induce, and on which genome replication is 
believed to take place. The interplay of  viral and cellular 
factors in the biogenesis of  these replication factories is 
discussed. 

The relationship between viruses and the host cell de-
fensive system is the particular focus of  the two following 
reviews “Innate host responses to West Nile virus: Impli-
cations for central nervous system immunopathology”, by 
Rossini et al[3] and “Paramyxovirus evasion of  innate im-
munity: Diverse strategies for common targets” by Audsley  
et al[4], which both provide a simultaneously accurate and 
concise summary of  viral strategies to subvert the innate 
response at the molecular level, and the implication there-
of  in viral mediated pathogenesis.

In the following review “Viral proteins and Src fam-
ily kinases: Mechanisms of  pathogenicity from a ‘liaison 
dangereuse’”, Pagano et al[5], describe the mechanisms by 
which several viruses exploit protein-protein interactions 
to modulate the subcellular localization and enzymatic 
activity of  these cellular enzymes, thus promoting their 
replication and regulating cell survival. Indeed, viruses are 
known to efficiently modulate the cell post translational 
machinery for their own benefit. Similarly, Mattoscio et al[6], 
in “Viral manipulation of  cellular protein conjugation 
pathways: The SUMO lesson”, review the relationship 

between the Small Ubiquitin like MOdifier apparatus and 
a number of  DNA and RNA viruses. 

“Effects of  human immunodeficiency virus on the 
erythrocyte and megakaryocyte lineages” by Gibellini et al[7],  
deals with the ability of  human immunodeficiency vi-
rus-1 infection to affect the differentiation potential of  
different cellular types, including osteoclast and vessel 
stem cells, and its implication in pathogenesis.

Finally, the hot topic highlight is closed by an intrigu-
ing hypothesis formulated by Avanzi et al[8], “How virus 
persistence can initiate the tumorigenesis process” de-
scribing in detail how infection-reinfection/reactivation 
cycles of  viruses might contribute to the initiation of  
tumorigenesis.
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Abstract
Viruses are extremely heterogeneous entities; the size 
and the nature of their genetic information, as well as 
the strategies employed to amplify and propagate their 
genomes, are highly variable. However, as obligatory 
intracellular parasites, replication of all viruses relies on 
the host cell. Having co-evolved with their host for sev-
eral million years, viruses have developed very sophis-
ticated strategies to hijack cellular factors that promote 
virus uptake, replication, and spread. Identification of 
host cell factors (HCFs) required for these processes is 
a major challenge for researchers, but it enables the 
identification of new, highly selective targets for anti 
viral therapeutics. To this end, the establishment of 
platforms enabling genome-wide high-throughput RNA 
interference (HT-RNAi) screens has led to the identi-
fication of several key factors involved in the viral life 

cycle. A number of genome-wide HT-RNAi screens have 
been performed for major human pathogens. These 
studies enable first inter-viral comparisons related to 
HCF requirements. Although several cellular functions 
appear to be uniformly required for the life cycle of 
most viruses tested (such as the proteasome and the 
Golgi-mediated secretory pathways), some factors, like 
the lipid kinase Phosphatidylinositol 4-kinase Ⅲα in the 
case of hepatitis C virus, are selectively required for in-
dividual viruses. However, despite the amount of data 
available, we are still far away from a comprehensive 
understanding of the interplay between viruses and 
host factors. Major limitations towards this goal are the 
low sensitivity and specificity of such screens, resulting 
in limited overlap between different screens performed 
with the same virus. This review focuses on how statis-
tical and bioinformatic analysis methods applied to HT-
RNAi screens can help overcoming these issues thus 
increasing the reliability and impact of such studies.

© 2013 Baishideng. All rights reserved.
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than 3 million deaths per year worldwide (http://www.
cdc.gov/). Development of  highly efficient vaccines to 
prevent infection, or antiviral compounds to promote 
viral clearance from infected patients is hindered by their 
high variability and mutation rate[1]. Given the small size 
of  their genome, which can be as small as just a few 
kilobases[2], viruses necessarily rely on host cell factors 
(HCFs) in order to propagate their genetic information. 
Therefore key HCFs required for the viral life cycle might 
represent potential target for the development of  new 
anti-viral compounds[3]. Indeed these factors can be ab-
lated either pharmacologically or genetically, resulting in a 
drop of  viral replication[4,5]. While pharmacological abla-
tion necessarily relies on the availability of  highly specific 
inhibitors, the discovery of  RNA interference (RNAi) 
allows to genetically hinder the expression of  virtually any 
human gene, by reducing its mRNA levels and therefore 
protein expression[6,7]. The availability of  libraries of  small 
interfering RNAs (siRNAs) directed towards almost every 
human gene (genome-wide libraries) enables to perform 
large scale, high-throughput RNAi (HT-RNAi) screens to 
identify key HCF involved in virtually any measurable cel-
lular process. To this end, HT-RNAi technology has been 
extensively used to identify cellular factors involved in cell 
division[8], Wnt signaling[9], Janus kinase/signal transducers 
and activators of  transcription signaling[10], extracellular 
signal-regulated kinases signaling[11], caspase activation[12], 
mitochondrial function[13] and many others. A similar 
approach could also be undertaken to search for HCFs 
required for a certain step of  the life cycle of  any given vi-
rus, which is able to replicate in cell culture. Because viral 
infection is a multi-step process that starts with the interac-
tion between the parasite and the target cell and ends with 
the release of  newly generated infectious particles, any of  
these steps is a potential target of  therapeutic intervention 
through silencing of  the involved HCFs. Therefore, sev-
eral genome-wide HT RNAi screens have been performed 
to identify key factors involved in the life cycle of  a num-
ber of  viruses, including human major pathogens such as 
influenza virus (INF)[14-16], human immunodeficiency vi-
rus-1 (HIV-1)[17-19], and human hepatitis C virus (HCV)[20,21], 
the only constrain being the availability of  a robust cell 
culture system to assay the outcome of  infection. The very 
first genome-wide HT-RNAi screen performed on viruses 
was performed on Drosophila C virus (DCV)[22]. Indeed 
most of  the first genome wide HT-RNAi screens were 
performed in Drosophila cells because of  several reasons, 
including the fact that Drosophila Melanogaster’s genome 
was completely sequenced in 2000[23], allowing for synthe-
sis of  comprehensive Drosophila dsRNA libraries[24,25] and 
that long dsRNAs added to the medium of  Drosophila 
tissue culture cells are rapidly taken up by the cells in the 
absence of  any transfection reagents, mediating efficient 
and specific mRNAs knockdown[26]. The first genome-
wide screen for viral HCFs relied on a very simple experi-
mental set-up: cells were incubated with a single RNAi 
specific for each gene in 384 well plates for 3 d, infected 
with DCV, and 1 d later, processed for immunofluores-

cence against the capsid antigen before automated micro-
scopic imaging. By visual inspection, the authors identified 
210 dsRNA species that reduced the relative number of  
infected cells by > 40%. dsRNAs targeting these genes 
were re-synthesized and tested again for their ability to de-
crease DCV infection. This “validation” screening allowed 
identifying 112 host dependency factors (HDFs). Among 
them, 66 proteins were ribosomal proteins, specifically 
required for translation of  DCV polyprotein but not for 
vesicular stomatitis virus, a pathogen whose genome, in 
contrast to that of  DCV, does not contain a ribosomal en-
try site (IRES) mediating RNA translation in the absence 
of  a 5’ cap. The authors therefore concluded that the ribo-
somal genes identified in their study are essential for DVC 
IRES mediated genome translation.

Since this very first example, it became rapidly clear 
that many sources of  errors such as RNAi reagent de-
sign, an inhomogeneous staining, differences in cell 
growing properties as well as in transfection and infec-
tion efficiencies could negatively affect the outcome of  
such HT-RNAi screens. Therefore, HT-RNAi screens 
became more and more sophisticated (Table 1). Authors 
started to worry to strengthen the statistical reliability of  
their studies by including several replicas, and increasing 
the number of  oligos tested per gene. The most popular 
approach so far has been to test four different oligos 
per gene, pooled in a single well in a primary screen, to 
reduce the so called “off  targets effects”[27]. Subsequently 
hit genes from the primary screen are further tested in a 
secondary validation screen, where the four different oli-
gos used in the primary screen are tested individually for 
their ability to reproduce the original phenotype[17,20,21,28]. 
Several studies started to include the possibility to dis-
tinguish genes important early in the viral life cycle (en-
try/replication phases) from those involved later on (as-
sembly/release of  new viral particles), by implementing a 
two-step procedure, according to which cells are incubat-
ed with the siRNA library before infection with the virus 
of  interest. Measurement of  viral replication at a given 
time point enables to identify gene products important 
for early phases of  the viral life cycle such as virus entry 
and genome replication. Simultaneously, supernatants are 
collected from infected cells and used to re-infect naive 
cells, therefore enabling to identify genes important for 
late stages of  viral life cycle such as viral assembly and 
release[14,17,20]. As far as the readout is concerned, some 
authors preferred to utilize reporter viruses carrying 
either the GFP[29]-to avoid issues related to antigen stain-
ing and detection - or the Luciferase (Luc) genes in their 
genome[15,16,18,21], the latter solution enabling an easier and 
more quantitative analysis of  the levels of  viral replica-
tion. Interpretation of  HT-RNAi screening results is also 
complicated by the fact that different screens performed 
with the same virus yielded little overlap between HCFs, 
raising questions concerning the reliability and reproduc-
ibility of  this approach[30]. Hence, several authors have 
implemented interesting bioinformatics and statistical 
approaches (see below) to strengthen the significance and 
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reliability of  their results by integrating RNAi data with 
protein-protein interaction (PPI) databases[18,20]. 

Overall the picture emerging from the above-mentioned 
studies is that different viruses rely on some common 
structures, such as the proteasome proteolytic pathway, 
the spliceosome complex, and the Golgi secretory sys-
tem. Because of  the “housekeeping” nature of  the latter 
processes, these findings, although representing a crucial 
stating point to understand the molecular biology behind 
the virus-host cell interaction, might be of  limited impor-
tance to the identification of  anti-viral targets and to the 
understanding of  how specific viruses differentially ex-
ploit the cell for their own purposes. However, a few virus 
specific HCFs have also been identified. Among them, a 
lipid kinase, the phosphatidylinositol-4-kinase Ⅲα (PI4K-
Ⅲα) has been identified by several HT-RNAi screens as 
a crucial factor for HCV replication, in spite of  differ-
ences in the HCV genotypes used and the experimental 
setup[20,21,31-33]. A recently proposed model hypothesized 
that during HCV infection, a viral protein recruits PI4K-
Ⅲα to the sites of  viral replication to increase local levels 
of  phosphatidylinositol-4-phosphate, necessary for their 
integrity of  the membraneous replication compartment 
and hence viral replication[34]. Importantly, a recent study 
reported that AL-9, a 4-anilino quinazoline specifically 
inhibiting HCV replication[35], acts a selective inhibitor of  
PI4K-Ⅲα[36]. This inhibitor could therefore represent the 
basis for the development of  new-highly needed antiviral 
compounds to combat HCV infection. The next sections 
offer a brief  overview on how bioinformatics and statisti-
cal approaches can overcome most limitations connected 
with HT-RNAi screens applied to the study the virus-host 
interaction, resulting in a simple workflow for the analysis 
of  HT-RNAi screens aimed at identifying key host regula-
tors of  viral life cycles (Figure 1).

FROM EXPERIMENTAL SET-UP TO “HIT 
CALLING”: STATISTICAL ANALYSIS OF 
HT-RNAi SCREENS
Readout systems for HT RNAi screens are extremely het-
erogeneous, ranging from bulk readouts of  fluorescence 
reporters to high-content microscopy based assays. Basi-
cally any phenotype, either directly or indirectly measured 
through a reporter, can be used as readout in HT-RNAi 
screens. However, the main measurement types of  cell-
based screens in use are: Uniform well readouts: these as-
says usually use high throughput plate readers to produce 
their measurements. Absorbance, Luminescence, Fluores-
cence Intensity, Fluorescent Polarization and Resonance 
Energy Transfer are the most usual uniform well detection 
methods[37]; Reporter gene systems: these are mostly high 
throughput assays using Fluorescence-assisted cell sorting. 
They employ high throughput FACS to produce readouts 
of  GFP, Luc, etc.[38]; High-Content Imaging Screens: they 
are designed to identify those genes that alter the cellular 
phenotype in a desired manner (i.e., decreases in the pro-

duction of  cellular products, nuclear and cellular morphol-
ogy, proteins subcellular localization, etc.)[37,39].

The selection of  the type of  assay depends on the goal 
of  screen and practical constrains. The analysis of  arrayed 
screens can involve application of  image analysis software 
or custom programs, as well as various methods of  statis-
tical analysis and Bioinformatics (see below). The aim of  
statistical analysis is to identify “hit” genes that are robust 
up- and down-regulators of  viral replication. Overall, 
most of  the methods currently used for statistical analy-
sis of  RNAi screens are reminiscent of  those developed 
in the past for the statistical analysis of  cell-based small-
molecule screens, with considerable improvement having 
been implemented in several aspects - including data nor-
malization, replicate tests, and selection of  cut-off  thresh-
old to determine hits[40]. Cell death and cell clumping are 
among the most serious problems, which can be directly 
or indirectly linked to the silencing effect of  individual 
siRNAs[39]. These phenomena can create background or 
saturation effects in the corresponding wells. In addition, 
viral infection might induce even more data variation 
since it can lead to a different cellular behaviour[41]. Er-
rors of  unknown origin may also occur over the entire 
process. These adverse effects can often be minimized by 
quality control procedures and statistical corrections. Data 
variation caused by stochastic reasons can be minimized 
performing additional experimental replicas.

Successful data analysis heavily depends on careful 
experimental design and assay development prior to the 
primary screen[42]. Therefore, for example, the optimiza-
tion of  transfection conditions is crucial to the success 
of  experiments. Several factors play important roles in 
the development of  a good assay. The nature of  RNAi 
duplexes to be used (different companies offer RNAi 
with specific chemical modifications reducing off-target 
effects), the number of  unique individual RNAi duplexes 
targeting each gene, the number of  replicate tests, the 
number of  “no treatment” controls (negative controls), 
the individual plates layout design (including the place-
ment of  negative controls) are the most important fac-
tors which should be considered during the experimental 
design[38,43,44]. Testing of  two or more non-overlapping 
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Figure 1  A schematic workflow for the analysis of high-throughput RNA 
interference screens to identify host cell regulators of viral life cycle.
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RNAi reagents per gene is nowadays a general standard 
for primary screens[38]. Once RNAi concentration and 
transfection conditions have been established, checking 
the sensitivity to accurately differentiate between positive 
“hits” and negative controls can be very useful[45]. During 
this hit selection process, two kinds of  decision errors 
can occur, leading to “false positives” (FPs), experimental 
findings that cannot be subsequently confirmed, and to 
“false negatives” (FNs), factors which should have been 
identified were not. If  the assay is not sensitive enough, 
a high frequency of  FNs will be obtained. Conversely, 
if  the readout is too sensitive, a significant number of  
FPs will be identified. The best way to ascertain the rates 
of  FNs and FPs is to perform a pilot screen. For this 
purpose, two or more plates fully loaded with positive 
and negative controls should be used to test the outputs 
“robustness”[46]. Three measurements are commonly 
used to this end: signal-to-background ratio, coefficient 
of  variation (CV) and the Z’ factor[45]. As assay variability 
increases, the signal-to-background ratio must increase 
for a screen to be successful.

Some candidates identified through a screen might 
generate the phenotype of  interest; however, this might 
be due to the type of  assay used for the readout or to an 
off-target effect. To overcome such problems, one can 
use an alternative, or orthogonal, screening procedure. 
The selected candidate forms the basis for further in-
vestigations, for example a secondary screen (also called 
validation screen). Secondary screens test a much smaller 
number of  compounds (e.g., the 1% strongest hits from 
the primary screen) and typically use at least duplicate 
measurements. The magnitude of  the statistical artefact 
can be minimized, e.g., by obtaining replicate measure-

ments, and thus improving precision of  the overall es-
timate. The assumptions that RNAi duplexes targeting 
specific genes randomly plated and the most of  them 
do not have an effect on viral replication for secondary 
screens are not valid. Below, we present a sample work-
flow for analyzing RNAi screens.

Quality control
The goal of  HT-RNAi screens is normally to identify 
“hits”. To this aim, it is of  crucial importance to separate 
FPs from bona fide “hits”. This is largely related to the 
quality of  the assay used. It is therefore necessary to mon-
itor each step, checking the quality of  raw and normalized 
data. To increase the probability of  success, quality assess-
ment should be performed while the screen is in progress, 
and also after each step of  the analysis pipeline, thus 
allowing the detection of  potential issues as they occur. 
This will also help with the choice of  analysis methods. 
In case of  a failed quality control for individual wells or 
plates, these should be either removed from further analy-
sis or repeated.

In biological experiments the use of  controls - posi-
tive and negative - helps to assess the quality of  obtained 
data. Negative controls can be used to assess plate-to-
plate variability, and provide a means to measure back-
ground noise levels of  an assay. Positive controls provide 
an estimate of  expected effect strengths, and are used to 
establish if  effects are observed at all, and if  they are of  
the expected strength. Controls allow the calculation of  
several different quality metric such as signal to noise ra-
tios, the dynamic range[47], CV or the Z’ factor. In contrast 
to simple signal/noise ratio, the dynamic range and the Z’ 
factor calculate the separability of  positive and negative 

21 May 12, 2013|Volume 2|Issue 2|WJV|www.wjgnet.com

Table 1  List of  high-throughput RNA interference screens performed to identify host factors involved in viral life cycle

Family Virus Readout Viral life cycle step(s) studied Partition (primary/validation)

Flaviviridae (ssRNA+) DENV1[100] IF Single step Primary: single oligo; validation, single oligo 
(the same)

Picornavirus (ssRNA+) DCV1[22] IF Single step Primary: single, validation, single (the same)
Flaviviridae (ssRNA+) HCV[21] Luc (reporter virus) Single step (replicon) Primary: pools of 4 oligos; validation: the 4 

oligos forming the pool tested individually
Flaviviridae (ssRNA+) HCV[20] IF Two step (full virus): entry/

replication; assembly/release
Primary: pools of 4 oligos; validation: the 4 
oligos forming the pool tested individually

Retroviridae (dsRNA) HIV-1[17] Part Ⅰ: IF; part Ⅱ: Luc 
(reporter cell line)

Two steps: entry/replication; 
assembly/release

Primary: pools of 4 oligos; validation: the 4 
oligos forming the pool tested individually

Retroviridae (dsRNA) HIV-1[18] Luc (reporter virus) Single step Primary only: 3 pools of 2
Retroviridae (dsRNA) HIV-1[19] Beta-Gal activity Two steps, but without 

distinction between them
Primary: pools of 3; validation; independent 
poools of 3

Orthomixoviridae; 
(ssRNA- segmented)

INF[14] Part Ⅰ: IF; part Ⅱ: Luc 
(reporter cell line)

Two steps: entry/replication; 
assembly/release

Primary: 4 oligoes

Orthomixoviridae; 
(ssRNA- segmented)

INF[15] Luc (reporter virus) Single step Primary only: some genes 2 oligoes, other 
genes only one

Orthomixoviridae; 
(ssRNA- segmented)

INF1[16] Luc (reporter virus) Single step Primary only: a single sirna x gene

Rhabdoviridae (ssRNA-) VSV[29] IF Single step Primary: 2 pools of 2 oligos; validation: pool 
of 4 oligos from different vendor

Flaviviridae (ssRNA+) WNV[28] IF Single step Primary: pools of 4 oligos; validation: the 4 
oligos forming the pool tested individually

1Drosophila cells. HIV: Human immunodeficiency virus; IF: Immunofluorescence; Luc: Luciferase; DENV: Dengue virus; DCV: Drosophila C virus; HCV: 
Hepatitis C virus; VSV: Vesicular stomatitis virus; WNV: West Nile virus.
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controls and use this criterion to evaluate assay quality. 
CV measures the data quality based on the reproducibility 
of  results. In contrast to dynamic range and the Z’ factor, 
CV does not use controls and can be used in case that 
controls are not available or they did not work properly in 
some screens or at least on individual plates. Calculating 
the correlation among replicates by correlation measures 
such as Pearson’s correlation or Spearman’s rank also can 
be used to check the reproducibility and reliability of  the 
data.

Apart from quality metric, plate visualization is one of  
the most effective techniques to find systematic sources 
of  error or identify data with poor reproducibility due to 
suboptimal assay design or implementation[37,39,42,43,48,49]. 
Heat maps and plate-well scatter plots, which allow to 
display the overall screen performance, as well as replicate 
correlation plots to visualize overall reproducibility, are the 
most widely used methods used for plate visualization[43,48]. 
Box Plots of  readouts of  all plates can be used to detect 
systematic errors among the plates.

When RNAi duplexes are randomized between plates 
and experiments are performed under identical conditions, 
the box plots of  raw data should show approximately the 
same location and scale. However, it is possible due to 
systematic variability that some of  the plates have lower 
(higher) median intensities than the others, resulting in 
considerably higher (lower) hit rates on these plates. This 
can be the consequence of  pipetting issues resulting in al-
tered transfection or infection efficiencies: such deviations 
can be adjusted by normalization. For more details about 
the individual plots and their interpretation, please refer 
to[47,48,50,51]. Finally, wells with lowest and highest 1%-5% 
of  cell counts in the entire screen are sometimes excluded 
from further analysis in particular in the case of  image 
based screens, because of  potential interference with vi-
ral replication readout and errors in image segmentation 
when cells are very dens[39].

Data normalization
Readout of  each spot in a plate is a function of  at least 
two factors: the siRNA’s real activity and random error. 
There are many sources of  systematic errors (variations) 
that affect readouts of  HT-RNAi screens. The ability of  
combination and comparison of  all of  the plates in a pro-
duction run to each other is very important. Systematic 
errors can cause a high degree of  intra-plate and plate-
to-plate variability, which does not allow comparison and 
combination of  data from different plates. Data normali-
zation is a process intended to remove such variation 
from the data to allow comparison and combination of  
data from different plates of  the screen. Intra-plate spatial 
effects and correlation between cell numbers and signal 
intensity are the most important sources of  systematic 
errors[40]. A number of  normalization methods have been 
developed to address these issues[42,47]. Normalization 
is generally performed at two levels: per-plate and per-
experiment (intra- and between-plates normalization).

The per-plate (intra-plate) normalization aims at re-
ducing systematic errors on individual plates, such as dif-

fering cell numbers over the plate, or edge-effects affect-
ing the signal intensities. This can be the consequence of  
pipetting issues resulting in altered transfection or infec-
tion efficiencies, as well as of  evaporation of  media from 
the outer wells. The per-experiment (between-plate) nor-
malization removes systematic bias that occurs between 
different plates. This bias might be due to measurements 
performed using diverse microscope settings or under dif-
ferent environmental situations such as different levels of  
humidity. Since data is varying across specific experimental 
setups, a standard normalization strategy that is appropri-
ate for all of  them does not exist. For example, normal-
ization methods for primary and validation screens are 
different, due to the method of  selection and distribution 
of  the RNAi duplexes. Normalization methods can be 
categorized into two main groups: control-based and sam-
ple-based. Control-based normalization methods com-
pare individual experimental sample values to aggregated 
values of  negative controls, while sample-based method 
use the samples themselves as de facto negative controls[42]. 
The latter choice can provide more accurate measure-
ments, because on each plate the number of  experimental 
samples exceeds that of  the negative controls by several 
folds. This approach is based on the assumption that most 
experimental samples will not display a biological effect 
in the assay being analyzed. Obviously, this assumption is 
not valid in the case of  validation screens and therefore 
sample-based normalization methods should not be used 
in the case of  validation screens. In this case, plates are 
made comparable by control-based normalization meth-
od. Additionally, the use of  sample-based normalization 
methods is particularly problematic when dealing with 
statistical measures (such as mean and standard deviation) 
that are strongly sensitive to outliers in the data. 

Controls-based normalization
Including controls on every individual plate can help 
identifying plate-to-plate variability and establishing back-
ground levels of  an assay. One common approach to for 
plate-to-plate normalization is to scale the intensity values 
based on the controls. Whether for the normalization the 
negative or the positive controls shall be chosen, it de-
pends on the type of  experiment. For RNAi data, nega-
tive controls are used in most cases. It should be noted 
that in this approach, any inaccuracies and random mea-
surement errors in controls would lower the accuracy and 
precision of  the normalized values through error propa-
gation. Therefore, it is important to obtain as accurate 
and precise measurements as possible. Using a relatively 
large number of  control measurements and omitting out-
liers among the controls before normalizing can improve 
the quality of  normalized values.

In this approach, the mean or median of  the controls 
of  a plate is subtracted from the readout value of  each spot 
in the same plate and the result is divided by the controls 
standard deviation or median absolute deviation (MAD).

Sample-based normalization
As mentioned before, under the assumption that most 
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siRNAs in plate would not cause an effect, it is possible 
to use experimental samples as controls. Z-score normal-
ization is a well-known data scaling strategy, which uses 
this assumption. For each spot, the Z-score is defined as 
the number of  standard deviations from the mean of  the 
samples on the plate.

The readout of  each spot rescaled relative to intra-
plate variation by subtracting the average of  the plate 
values and dividing the difference by the standard devia-
tion estimated from all measurements of  the plate. In this 
approach, the mean of  all the samples on the plate is used 
instead of  that of  the negative controls, thus limiting the 
need for large numbers of  controls. Z-score gives explicit 
information on the strength of  each siRNA relative to the 
rest of  the sample distribution. An advantage of  Z-score 
is that it integrates information about the variability of  
replicate measurements in the score. The main disadvan-
tage of  this method is its non-robustness to outliers, that 
can strongly affect estimates of  the mean and standard 
deviation used in the Z-score.

A modified version of  it called the robust Z-score, is 
generally considered preferable for the analysis of  HT-
RNAi screens. It uses the median and MAD for mean and 
standard deviation in the Z-score calculation.

B-score normalization
The B-score is known as a robust analogue of  the Z-score. 
It is more robust to the presence of  outliers, and also dif-
ferences in the measurement error distributions of  the dif-
ferent spots on a plate. If  the quality control has identified 
the presence of  within-plate systematic errors, the B-score 
normalization[52] may be applied to remove row and col-
umn effects within a single plate. The systematic measure-
ment offsets for each row and column, row and column ef-
fects, is estimated using the Tukey median polish method. 
The resulting residuals within each plate are then divided 
by their MAD to standardize for plate-to-plate variability. 
This thus allows the comparison of  different plates, since 
it scales the data according to the overall plate median. 
The B-score has three advantages: it is nonparametric (that 
is, it makes minimal distributional assumptions), it mini-
mizes measurement bias due to positional effects, and it is 
resistant to statistical outliers[47].

Lowess normalization
Lowess (locally weighted least squares regression) normal-
ization performs intra-plate corrections. If  RNAi data is 
multi-parametric, different read-outs may depend on each 
other and these can cause a systematic bias. Lowess regres-
sion is a technique for fitting a smoothing curve to a data. 
Data points that are nearer to the estimated fit are weight-
ed higher than more distant points. The degree of  smooth-
ing is determined by the window width parameter. A larger 
window width results in a smoother curve, a smaller win-
dow results in more local variation. The normalized signal 
intensities are the difference of  the signal intensity values 
and the corresponding point on this curve[51]. For example, 
Lowess normalization can be applied to remove the corre-

lation between signal intensities and cell count by adjusting 
the signal intensities for the effect of  unequal cell numbers 
in wells. This should be done for each plate individually, 
since effects may be different from plate to plate[39].

Population context normalization
Very recently it was shown that different cells in a popula-
tion display heterogeneity in their cellular behaviours[53,54]. 
This heterogeneity implies that cellular responses to a 
particular stimulus or perturbation, such as virus uptake, 
may also be variable[41]. For example certain viruses prefer 
to infect cells that are in a less dense region, others prefer-
entially infect densely packed cells[54]. Therefore analyzing 
certain phenotypes at the single-cell level instead of  using 
population averages to measure an effect might com-
pletely change the results. Snijder et al[54-56] showed that the 
population context of  a cell strongly affects its behaviour: 
factors such local cells density, their position within an 
islet, size, distance from cell-colony edges and population 
size are the main determinants of  cell to cell variability in 
HT-RNAi screening. To address this issue they suggested 
normalizing data by considering the population context. 
They corrected population context effects using quantile 
multidimensional bin models[55]. Knapp et al[57] used a 
similar approach in normalizing data but they developed 
a statistical testing procedure that takes into account indi-
vidual cell measurements in hit-scoring. They used gene 
set enrichment analysis (EA) on sets defined not by genes 
but by cells coming from one spot, one siRNA or one 
gene. These approaches suggest that normalization for 
population context can lead to a substantial decrease in 
experimental variability, and may to some extent underlie 
the low gene overlap and lack of  reproducibility of  RNAi 
screens targeting even the same virus.

Hit calling
Once data have been pre-processed with quality control 
checks and normalization procedures, the next critical step 
is the hit identification procedure to decide which siRNAs 
should be further tested in a secondary screen. The iden-
tification of  “hits” or “screening positives” is the goal of  
any primary RNAi screen. Hit identification is, essentially, 
the selection process of  those samples whose measured 
values for a given phenotype differ significantly from that 
of  the negative controls[52]. A wide range of  hit identifica-
tion techniques is available. Hits can be identified as a per-
centage of  the genes that generate the highest measured 
activity (e.g., top 1%), or as those whose activity exceeds 
a fixed “percent of  control” threshold. Alternatively, the 
hit threshold may be defined as a number of  standard 
deviations (typically 2) beyond the mean of  the raw or 
processed data. This approach selects a standard deviation 
threshold relative to the mean or median normalized data 
and defines “hits” the samples that go beyond this thresh-
old. However, hits (outliers) may cause the distribution of  
the siRNAs measurements to be skewed. The use of  the 
median rather than of  the mean is more robust to outliers, 
and has been shown to more effectively enable the identi-
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fication of  weak hits from RNAi data[58].
The threshold methods assume a common magni-

tude of  random error for all measurements, but do not 
capture data variability effectively. To address this issue, 
researchers then turned to the Z-score method or strictly 
standardized mean difference (SSMD)[59], which can cap-
ture data variability in negative controls. According to 
the Z-score method, any compound whose score after 
Z-score normalization deviates from the bulk by a given 
threshold will be considered as hit. The Z-score method 
is based on the assumption that the measured values (usu-
ally fluorescent intensity in log scale) of  all investigated 
siRNAs in a plate have a normal distribution. SSMD also 
works the best under the normality assumption. The 
drawback common to all of  these metrics is that they rely 
on non-robust statistics, which may lead to inferential er-
rors in hit detection. Because of  the potential existence 
of  true hits and strong assay artefacts, outliers are not un-
common in HT screens. The regular versions of  Z-score 
and SSMD are sensitive to outliers[59]. In general, there are 
two major types of  approaches for hit selection: analytic 
metrics and hypothesis testing. The methods belonging 
to the first approach (such as fold change, mean differ-
ence, SSMD, percent activity, percent viability and percent 
inhibition) assess and rank the size of  RNAi effects, 
while the methods belonging to the second group (for 
instance t-test) test the null hypothesis that no difference 
exists among the means of  particular well and negative 
controls or mean of  plate[48,52,59,60]. If  enough replicates 
are available, a statistical approach can be applied to as-
sign a P value to each condition. If  the P value is smaller 
than a given significance level, the null hypothesis can be 
rejected. A common practice is to use the t-test. It is a 
parametric testing method (assuming normally distributed 
data), which assesses the difference of  the means between 
replicates for each condition.

If  siRNA duplexes are randomly distributed on a 
plate and if  it can be assumed that most of  them have 
no effect, replicates in the test can be compared with the 
overall population. If  this assumption is not valid, e.g., in 
a validation screen, the test is carried out against negative 
controls. This approach needs at least three replicates of  
each condition and that data follows a normal distribu-
tion[61]. In case of  non-normal distribution, the Mann-
Whitney test can be used as non-parametric test[39].

The methods for hit selection differ according to the 
experimental setup of  the HT-RNAi screen, depending on 
the fact that replicates have been performed or not. For 
example, the Z-score method is suitable for screens where 
replicates have not been performed, whereas the t-test is 
suitable for screens where three or more replicates have 
been performed. It is not possible to directly estimate the 
data variability for each siRNA in screens without replica-
tion. Instead, it is indirectly possible to estimate data vari-
ability by making the assumption that every siRNA has 
the same variability as a negative reference in a plate in the 
screen. The Z-score, the B-score and the SSMD rely on 
this strong assumption for cases without replicates[62].

BEYOND THE SCREEN: BIOINFORMATICS 
INTEGRATIVE APPROACHES FOR 
RELIABLE HIT IDENTIFICATION
A typical outcome of  any statistical analysis of  a genome- 
wide HT-RNAi knockdown screen is a list of  gene prod-
ucts that significantly differ from other genes in the same 
study, relatively to a given readout. Classically, these lists 
are then subjected to over-representation analysis (ORA) 
or EA over different known pathway datasets such as 
KEGG, Reactome, Wikipathways and gene ontologies 
(GO), in order to facilitate interpretation of  the hits func-
tional importance. A major caveat in such analyses is the 
fact that the datasets used for such analyses are far from 
being complete. Inconsistencies and lack of  concurrency 
between these pathway databases reduces their reliability, 
thus hampering the coverage of  ORA/EA. This problem 
is particularly evident in the case of  HT-RNAi screens 
concerning the same virus[17-19], where the overlaps over 
these ontologies are minimal[30]. In order to overcome this 
problem, network approaches have been implemented to 
analyze HT-RNAi screens. This section describes studies 
that exemplify the usage of  PPI network data for analyz-
ing RNAi screens. 

Integrating network data for analyzing RNAi screens
With the wealth of  public repositories housing PPI data, 
and exponentially growing computational power to ana-
lyze such data, the need to integrate the outcome of  HT-
RNAi screens with PPI data is pressing. Protein interac-
tions between viral and host proteins are a subset of  this 
data type that can be created by combining previously 
published and experimentally newly identified interac-
tions. VirHostNet[63], VirusMINT[64] and the HIV-1 Hu-
man Protein Interaction Database (HHPID) at National 
Institute of  Allergy and Infectious Diseases (NIAID)[65] 
are examples of  such resources.

A host of  analysis pipelines has been developed to 
integrate PPI data with the HT-RNAi screens hits, which 
can be applied to add depth and significance to latter re-
sults. An example is the SinkSource algorithm described 
in a recent study[66]. In the latter, the authors used a semi-
supervised machine learning approach to predict novel 
HIV-1 HDFs using known HDFs. In other words, by 
combining HDFs identified from recent studies[17-19] and 
PPI data, the authors developed a classification algorithm 
that would learn from the known HDFs in a network 
context to then predict novel ones. The host PPI network 
is modeled as a liquid flow network. Each node (protein) 
is a reservoir of  fluid while an edge (connection between 
2 nodes) is a pipe. The weight of  an edge indicates the 
amount of  fluid that can flow through the pipes per unit 
time. When the fluid network attains equilibrium (amount 
of  liquid flowing into each node equals amount flowing 
out), the reservoir height at each node denotes the con-
fidence that the node is a HDF. HDFs identified in three 
previously published HIV screens[17-19] were assigned a 
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reservoir level at of  1 unit while non-HDFs nodes had a 
reservoir level of  0. This algorithm is similar to the one 
formulated in a previous study[67] for functional predic-
tion of  genes, except that SinkSource also accepts nega-
tive values in the form of  non-HDFs which are non-
lethal. These non-lethal, non-HDFs formed the negative 
set while HDFs identified in the three studies and their 
intersection formed the 4 positive datasets used for pre-
diction of  novel HDFs through a two-fold cross valida-
tion. The latter involved splitting of  both the positive 
and negative datasets in halves and each half  was used 
for prediction of  the genes in the other half. SinkSource 
had higher specificity and precision-recall values when 
compared to six similar algorithms (used for functional 
gene prediction). SinkSource predicted 1394 HDFs in 
addition to the 908 from the above three screens, with 
an accuracy > 80% based on two-fold cross validation 
described earlier. After combining the known HDFs 
with those predicted by their algorithm, the authors then 
searched for dense subgraphs in an integrated protein 
network through MCODE[68]. Using this approach, they 
identified cellular processes and components essential for 
HIV replication. These included, as far as the GO cellular 
component are concerned: spliceosome, kinetochore and 
mitochondrion, whereas GTPase mediated signal trans-
duction, DNA replication initiation and MHC protein 
complex were identified as enriched cellular processes.

Another example of  a network based analysis between 
PPI and HT-RNAi data is from MacPherson et al[69]. In 
this study, the authors utilized the HIV-1 HHPID at NI-
AID[65] and applied a bi-clustering algorithm to identify 
clusters of  genes enriched for HIV-1-Human PPIs. In or-
der to establish a hierarchical overview of  functions from 
the clusters, they were further linked to form a cladogram. 
The distance between 2 clusters was based on the number 
of  overlaps between them; clusters with more overlaps 
were closer to each other than the ones with fewer over-
laps. GO enrichment of  these clusters then defined the 
cluster function and in turn allowed identification of  37 
host subsystems potentially important for HIV-1 infec-
tion. Interestingly, hits previously identified in three pub-
lished HIV HT-RNAi screens[17-19] were found in 10 of  
the 27 subsystems identified. These included proteasome 
core complex, regulation of  apoptosis, mRNA transport, 
endosome, RNA polymerase activity, peptidase activity, 
regulation of  transcription, ubiquitin camp-dependent 
protein kinase complex, and v-akt. Classically, the virus-
host interaction dataset used in this study would only 
provide information about how a viral protein interacts 
with a host protein and its mechanism, as extracted from 
literature. In this study, the authors showed how a viral 
protein interacts with host cellular systems in contrast to 
a single protein. A theoretical validation was provided by 
highlighting systems enriched with hits from the 3 HIV-1 
RNAi screens[17-19].

A very important consequence of  viral-based RNAi 
screens could be the discovery of  new potential targets for 
the development of  anti-viral agents. Over the years, re-

positories holding detailed information on various drugs, 
including their cellular targets, have been publicly made 
available. de Chassey et al[70] used the DrugBank database, 
one of  such resources (http://www.drugbank.ca) to iden-
tify potential drug targets for INF. By combining results 
from 6 different IFV HT-RNAi screens, the authors iden-
tified 925 essential host factors (EHFs), required for IFV 
replication[14-16,71-73]. Network analysis performed integrat-
ing these data with the PPI dataset from VirHostNet[63] 
revealed that 17 EHFs are directly targeted by a viral pro-
tein while the neighborhood of  EHFs (proteins physically 
interacting with EHFs) included 204 proteins that were 
targeted by at least one viral protein. 

In parallel, known drug molecules interacting with 
EHFs were further retrieved from DrugBank. This analy-
sis revealed that 100 EHFs could be targeted by 298 dif-
ferent molecules comprised of  204 FDA-approved drugs 
and 94 experimental drugs. These 100 EHFs were further 
filtered down to 33 proteins, based on their ability to ful-
fill at least one of  the following three criteria: the EHF 
was directly targeted by a viral protein, the EHF was con-
nected to at least another EHF, and the EHF was con-
nected to a non-EHF targeted by the virus. Of  these, 32 
EHFs could be targeted by 49 FDA approved molecules 
with an exception of  one target, HSP90AA1, fulfilling the 
first 2 criteria mentioned above, is also directly interact-
ing with a viral protein. Interestingly, the authors found 
that this EHF is the target of  1 FDA-approved molecule 
(Ribafutin) and 5 experimental molecules. Among the lat-
ter, Geldanamycin has already been proved to reduce IFV 
viral replication by 2 logs in cell culture[74]. Therefore the 
authors concluded that combination of  Geldanamycin 
with Ribafutin (which is also used as a first line of  treat-
ment in tuberculosis) could represent a novel strategy to 
identify antiviral drugs to combat IFV infection. 

As with any high-throughput study, the issue of  false-
positives and false-negatives also exist for HT-RNAi 
screens. FPs due to off-target effect of  RNAi are com-
mon in genome-wide screens and confer ambiguity to the 
final hit-list selected from a screen. Hence, it is recom-
mended to perform a multi-level validation and a func-
tional analysis for hit genes. Even more critical and tricky 
is the issue of  FNsof  a screen. These are typically genes 
that have an effect but are missed due to the statistical 
selection criteria. Wang et al[75] addressed these problems 
by developing an algorithm based on machine learning 
principles, utilizing protein interaction data and network 
topology. Considering network centralities such as direct 
neighbour, shortest path, diffusion kernel and association 
analysis-based transformation[76] along with gene simi-
larities, they developed a set of  scoring functions called 
Network RNAi Phenotype (NePhe). Utilizing the guilt-
by-association principle, Wang et al[75], reasoned that FNs 
would be scored higher by a scoring function over false-
positives FPs, as they would be linked by a greater num-
ber of  true hits. Thus, a near-ideal gene classifier would 
always rank FNs with a higher rank compared to a non-
hit. When this methodology was applied over the Wnt 
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and the Hedgehog signaling pathways, the NePhe scor-
ing system was able to identify all regulators, which were 
missed even by the follow-up validation screens. This 
algorithm was tested on 24 screens to study different 
molecular aspects of  the fruit fly, Drosophila. Its efficacy 
in recovering FN in screens devoted to identifying viral 
HDFs in human systems is yet to be determined.

In general, these studies highlighted how using virus-
host PPI databases to integrate the outcome of  HT-
RNAi data can maximize the relevance of  the latter 
results, reducing FPs and FNs, increasing number of  
HDFs identified and eventually lead to identification of  
new drugs to combat viral infection.

A minor shortcoming of  these studies has been that 
they have been largely biased towards a particular virus. 
For instance, all studies from[66,77-79] have been based on 
HIV screens while there has been only one meta-analysis 
on IFV screens[70]. It would be worthwhile and interest-
ing for the community to see these approaches applied to 
other viruses. With the availability of  several HT-RNAi 
screens for different viruses, a multi species meta-analysis 
can highlight similarities and differences between host-
virus interactions, based on RNAi screen hits. Therefore, 
much effort still needs to be done to perform reliable 
HT-RNAi hits for a large number of  viruses, including 
those such as hepatitis B virus, for which a reliable cell 
culture system is still not available.

Network properties of RNAi hits identified as viral HDFs
A complementary approach to integrate HT-RNAi with 
PPI datasets is to perform Network analyses. Particularly 
it is possible to characterize viral HDFs by computing 
several topological measures (network centralities) in ad-
dition to their biological function. These properties form 
the basis for interpreting the role of  such hits from a net-
work perspective. Furthermore, these scores also allow 
for a different level of  hit prioritization for subsequent 
analysis. As mentioned earlier, specialized repositories 
host-pathogen interaction databases such as Virus-
Mint, HIV-1-human protein interaction database, Host-
Pathogen Interaction Database, VirHostNet, PHIDIAS, 
etc.[63-65,70,80,81] have fuelled these studies and shed new light 
on host-pathogen interactions. This section summarizes 
results from such studies and provides an overview of  
topological properties of  viral HDFs. 

In this context, the most comprehensive study has 
been recently published by Dyer et al[82]. The authors 
highlighted properties of  host factors involved in the life 
cycle of  190 different pathogens from a network perspec-
tive. To this end, they collated experimentally identified 
human PPIs for 190 pathogen strains partitioned into 54 
groups (35 viral, 17 bacterial, and two protozoan) pooled 
from 7 public databases[62,68,83-87], to determine properties 
of  proteins targeted by most pathogens, including viruses. 
The main conclusion from this study was that pathogens 
preferentially target bottlenecks and hubs, implying that 
targeting central proteins is a common strategy shared 
by different pathogens. This study revealed that viral 

targeted host proteins also play a major role in different 
cancers of  which some are induced by a viral infection 
itself  (e.g., Herpesvirus and Papillomavirus). Gulbahce et 
al[88] showed that the neighborhood of  HDFs is as impor-
tant as the HDFs themselves. They formulated what they 
term as “local impact hypothesis” wherein they propose 
that genes associated with virally implicated diseases are 
located in the neighborhood of  viral targets. They tested 
their hypothesis by calculating the mean shortest path be-
tween genes that are viral targets and the ones implicated 
in a viral disease. This mean value was significantly shorter 
than between random samples. Scanning for genes within 
these path lengths, and subsequent experimental valida-
tion in human keratinocyte populations for HPV16 ex-
pressing E6, E7 proteins revealed 104 genes regulated by 
the 15 targets of  E6 and E7 (these genes were 2 connec-
tions or paths away from these 15 targets). Of  these 104 
genes, 22 were also differentially expressed in IMR90 cells 
expressing HPV16 E6 or E7 proteins. A novel link was 
predicted between HPV and Fanconi anemia, through the 
E6->TP53->FANCC pathway through the FANCC gene 
which was one of  the 22 genes described above.

Similar studies have been conducted recently with a 
specific focus towards HIV-1 host protein interactions. 
van Dijk et al[78] analyzed the HIV-1-Human protein inter-
action data and also highlighted the fact that viral products 
preferentially interact with host proteins that represent 
hubs or bottlenecks. Furthermore, they also determined 
enriched network motifs, statistically significant patterns 
of  interacting proteins, from this network that allowed dy-
namic interpretation of  interactions. For example, one of  
the enriched motifs included the 2 nodes feedback loop 
found in the HIV-host activation/inhibition network. This 
suggests the inhibitory nature of  HIV proteins on human 
proteins that in turn inhibit the HIV protein. This motif  
occurred mostly for HIV Tat and Gp120 proteins with 
the human interferon γ. GO enrichment of  the observed 
network motif  indicated that it is involved in immune re-
sponse. 

Another independent study, performed using the 
same HIV-1-Human protein interaction dataset, reiterat-
ed that HIV-1 proteins attack hubs and bottlenecks over 
others[77]. By implementing an ascertainment bias, that 
normalizes weightage given to the genes based on publi-
cation count in order to avoid false interpretations[89], the 
authors came to two striking conclusions. First, HIV-1 
interacting proteins and gene essentiality didn’t have a 
strong correlation. Secondly, HIV-1 interacting proteins 
didn’t tend to be disease-associated. Still, GO enrichment 
analyses of  HIV-1 interacting proteins suggested that 
proviral and antiviral interactions are highly complex. 

These studies thus have further enhanced our knowl-
edge of  the intricacies involved in HIV-1 infection, and 
opened new doors for the development of  novel hypoth-
eses. 

Similar studies have been performed to experimentally 
determine the virus-host interactome of  HCV, DENV 
and HTLV-1/2[90-92]. More recently a comprehensive study 
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focused on determining the interactome of  70 viral mod-
ulators of  the innate immune response from 30 different 
viruses[93].

The common outcome of  these studies is that viral 
proteins have the remarkable tendency to have signifi-
cantly more targets, to be more central to the networks, to 
participate in more cellular pathways and are more likely 
to hold key positions in these pathways, as compared 
to an average human protein. On the same lines, both 
experimental and computational approaches helped iden-
tifying some common features of  HDFs. These proteins 
have higher values of  degree and of  betweenness, which 
imply that viral proteins preferentially target proteins 
that are “central” to a given network. Smaller mean path 
length values of  the HDFs, relative to the whole network 
also indicate that viral proteins target subnetworks that 
are “closely bound”. Future studies in this direction might 
delve a bit deeper to uncover more topological features 
beyond what is already known. 

Indeed, given the limited size of  their genomes, vi-
ral products are required to interact with a high number 
of  host proteins, which usually represent key factors 
regulating several biological processes. Morever these ap-
proaches can also help us to identify new HDFs: using 
these topological features, computational algorithms can 
be formulated to predict potential “generic” HDFs. For 
e.g., PageRank centrality is one such feature. It is utilized 
by Google in order to decide the rank of  the search hits. 
In the simplest sense, a node’s importance is determined 
by the importance of  its neighbors. Thus, the more “im-
portant” a node is topologically, the more it might also be 
biologically important, and therefore likely to be the target 
of  viruses to overtake cellular functions. Jaeger et al[79], 
used this centrality measure to identify 21 surface mem-
brane proteins critical for HIV-1 infection of  which 11 are 
novel predictions, 3 are confirmed hits (chemokine recep-
tor CCR1, chemokine binding protein 2 and duffy antigen 
chemokine receptor) and 7 have been confirmed in other 
studies. These receptors are potentially involved in differ-
ent phases of  HIV infection and influence progression of  
AIDS. 

Degree, betweenness, pagerank and shortest-paths 
are just few of  the many network centralities that have 
been defined to date for HDFs. It would be interesting to 
compute some additional measures to characterize HDFs. 
Quantifying structural properties of  viral HDFs can help 
researchers in developing efficient machine learning al-
gorithms to predict novel HDFs with greater accuracy. 
In addition to such predictions, a further, crucial layer of  
analysis would be to check for mouse orthologs of  such 
predicted HDFs and verify if  they are lethal for mouse. 
This step allows filtering of  candidate HDFs, to be used 
for secondary validation, which can produce a lethal phe-
notype. Specificity and tissue localization of  these HDFs 
can then be determined by utilizing tissue specific expres-
sion data from Protein Atlas (http://www.proteinatlas.
org/)[94]. These steps would give a comprehensive over-
view of  all HDFs beyond function and thus would aid 

in hypothesizing regulatory mechanisms and interactions 
between viral proteins and HDFs. Moreover, this would 
also reduce time, effort and cost of  experimentalists and 
would serve as a guide to a more directed approach for hit 
validation.

All the above mentioned studies, both those consider-
ing RNAi hits and those which do not, strongly under-
lined the importance of  inclusion of  PPI network infor-
mation to propose better hypotheses as well as therapeutic 
targets. They also highlighted the fact that for increasing 
reliability and confidence in HT-RNAi screens, validation 
by computational approaches via multiple data-types and 
sources is as important as verification with biological as-
says. Indeed, combination of  data generated by different 
screens performed using the same virus, has evidently 
shown to strengthen the statistical significance of  hits 
and reduce FP. The upcoming virus-host interaction data-
bases, together with the availability of  expression data and 
powerful, public tools for integrating and analyzing HT-
RNAi screens will undoubtedly provide a comprehensive 
understanding of  virus-host interactions at a cellular level.

CONCLUSION
Despite the remarkable efforts done so far to apply the 
use of  HT-RNAi screening approaches to the study of  
the host cell-virus relationship, a great body of  work 
is still required before we reach a comprehensive over-
view of  how different viruses selectively exploit the host 
cell. This will finally lead to the design of  specific anti-
viral compounds targeting host cell functions, which are 
therefore less prone to the selection of  drug resistant 
viral strains. This process is strongly limited by the high 
number of  different human pathogenic viruses, and that 
identification of  HCFs required for viral replication nec-
essarily relies on the availability of  robust in vitro systems 
to propagate such viruses. Unfortunately, despite the 
tremendous advances made in the field, for example with 
the development of  systems to propagate HCV[95-97], we 
are still lacking a system to efficiently propagate in vitro 
other important human pathogens (the most striking ex-
ample being exemplified by Hepatitis B Virus, responsible 
for approximately 600 thousand causalities each year[98]. 

Beside this crucial shortcoming, it seems that the ini-
tial concerns related to the specificity and sensitivity of  
the HT-RNAi technology can be solved by combining 
data from different independent screens performed for 
the same virus, and by implementing sophisticated statis-
tical algorithms that take into account differences within 
a cell population - an approach that have been proposed 
to strongly limit variance[54-56], as well as integrating HT-
RNAi data with PPI datasets. In particular, the latter ap-
proach has been successfully used to reduce the number 
of  FNs and FPs[75], to identify new HDFs[66], and also to 
identify new potential drug targets for treatment of  viral 
infection[70]. Another major benefit of  such integrative 
approaches relies in the possibility to perform network 
analysis of  host factors and PPI datasets[77,82], thus en-
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abling study the connections of  viral products and the 
cellular effectors that are directly targeted by their action.

A third crucial point which needs to be considered is 
the growing need for in depth biochemical and biological 
characterization of  the newly described hits. Indeed it is 
important not only to know the name and the molecular 
function of  HDFs, but also the reason why exactly these 
factors are required for the life cycle of  a given virus, 
for example, by enabling the formation of  its replication 
compartments, or by being incorporated into the mature 
virion to mediate later on the recognition of  a cellular 
receptor, to cite just a couple of  examples of  two well 
characterized viral HDFs for HCV, namely PIK4α and 
ApoE[34,60,99]. This knowledge enables at the same time 
to understand more in detail the mechanisms behind the 
usurpation of  the host cell by viruses and to devise strat-
egies to prevent this process. 

In summary, progress still needs to be done in three 
directions before a complete understanding of  the virus-
host interplay: Development of  appropriate cell culture 
systems to enable in vitro culture of  human pathogenic 
viruses and their use to perform HT-RNAi screens, 
which should be rigorously analyzed by statistical analy-
sis methods. Integration of  data generated in different 
studies using the same virus, with other datasets, such as 
those deposited in PPI databases, to maximize sensitivity 
and specificity of  the results. In depth characterization 
of  identified hits of  major relevance, including potential 
targets for the development of  anti-viral drugs.
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Abstract
Plus-strand RNA virus replication occurs in tight associ-
ation with cytoplasmic host cell membranes. Both, viral 
and cellular factors cooperatively generate distinct or-
ganelle-like structures, designated viral replication fac-
tories. This compartmentalization allows coordination of 
the different steps of the viral replication cycle, highly 
efficient genome replication and protection of the viral 
RNA from cellular defense mechanisms. Electron to-
mography studies conducted during the last couple of 
years revealed the three dimensional structure of nu-
merous plus-strand RNA virus replication compartments 
and highlight morphological analogies between differ-
ent virus families. Based on the morphology of virus-
induced membrane rearrangements, we propose two 
separate subclasses: the invaginated vesicle/spherule 
type and the double membrane vesicle type. This re-
view discusses common themes and distinct differences 
in the architecture of plus-strand RNA virus-induced 
membrane alterations and summarizes recent progress 
that has been made in understanding the complex in-
terplay between viral and co-opted cellular factors in 
biogenesis and maintenance of plus-strand RNA virus 
replication factories.
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INTRODUCTION
As obligate intracellular parasites, all viruses depend on 
the host cell biosynthetic machinery in order to replicate 
their genome and generate progeny virus particles. A 
common feature among many different viruses is the in-
duction of  specialized membranous compartments, often 
forming organelle-like structures, within the cytoplasm 
of  an infected cell. The unique features of  those struc-
tures that facilitate virus propagation are best expressed 
by the commonly accepted term “viral replication fac-
tories”. This review focuses on animal plus-strand RNA 
virus induced replication compartments. However, the 
concept of  viral replication factories also applies to plant 
plus-strand RNA viruses as well as to other animal RNA 
viruses or some large DNA viruses such as vaccinia virus. 
These virus groups are covered by other reviews and will 
not be discussed here[1-3]. By analogy to an industrial man-
ufacturing unit, virus induced replication factories serve 
multiple purposes.

To increase the local concentration of all necessary 
factors thus ensuring high efficacy
Local enrichment of  the viral replication factors and co-
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opted cellular proteins, together with all required metabo-
lites, is the basis for highly efficient genome replication. 
This is achieved by reducing the three-dimensional (3-D) 
diffusion in the cytosol to two-dimensional diffusion on 
the surface of  a membrane, thus increasing local reaction 
efficacy presumably by several orders of  magnitude[4]. In 
fact, many replication enzymes encoded by plus-strand 
RNA viruses are membrane anchored as exemplified by 
the hepatitis C virus (HCV)[5]. In addition, also substrates 
such as ribonucleotides and metabolites providing energy 
for biosynthetic processes are enriched in replication 
compartments. Along these lines a recent study convinc-
ingly demonstrated locally elevated ATP levels at HCV 
replication sites[6]. 

To spatially coordinate different processes of the 
replication cycle such as RNA translation, replication 
and assembly
Compartmentalization allows the spatial separation and 
regulation of  RNA translation, replication and packaging 
of  the viral genome, thereby preventing an interference 
between these processes. Hence, ribosomes responsible 
for RNA translation and RNA-binding assembly factors 
are excluded from replication sites, thus avoiding interfer-
ence with the replication machinery. Indeed, replication 
factories of  all plus-strand RNA viruses are built up of  
ribosome-free membranes[7-11], and for all Flaviviridae 
(excess) amounts of  core/capsid protein, binding RNA 
with high affinity, are frequently targeted to other cellu-
lar organelles such as lipid droplets (LDs) in the case of  
HCV and dengue virus (DENV)[12-14], or to the nucleus 
as observed for DENV[15,16] Japanese encephalitis virus[17] 
and West Nile virus (WNV)[18].

To create a protected environment shielding viral RNA 
and eventually also proteins from a hostile degradative 
environment
The generation of  specialized membranous replication 
compartments protects viral replicase complexes and 
genomic RNA from degradation by cellular proteases 
or nucleases, respectively and “hides” the viral RNA ge-
nome from cytoplasmic sensors of  the innate immune 
response. The RigI-like receptors efficiently recognize 5’ 
triphosphorylated RNAs as well as double-stranded RNA 
(dsRNA) in a length-dependent manner[19,20], leading to 
mitochondrial antiviral signaling-mediated induction of  
interferons and nuclear factor κB-mediated inflamma-
tion[21]. Minimizing the exposure of  stimuli to the innate 
immune surveillance, by the induction of  innate sensor-
protected organelle-like replication factories, is therefore 
an important evolutionary conserved feature of  plus-
strand RNA virus infection. 

In the following we will summarize recent insights 
into the 3-D ultrastructure of  plus-strand RNA virus-
induced membrane rearrangements and discuss possible 
mechanisms of  their biogenesis. Furthermore, viral sub-
version of  host cell membrane biology, by interference 
with signaling pathways and recruitment of  host cell fac-

tors contributing to biogenesis and maintenance of  viral 
replication factories are highlighted. 

MORPHOLOGY OF PLUS-STRAND RNA 
VIRUS REPLICATION FACTORIES
In the last few years, electron tomography has been 
instrumental to decipher the 3-D architecture of  viral 
replication factories (for technical review see[22,23]). This 
accounts for evolutionary diverse plus-strand RNA vi-
ruses such as flock-house virus (FHV)[24], rubella virus 
(RUBV)[8], the two enteroviruses coxsackievirus B3 
(CVB3)[25] and poliovirus (PV)[26], severe acute respiratory 
syndrome coronavirus (SARS-CoV)[11], equine arterivirus 
(EAV)[27], the two flaviviruses DENV[10] and WNV[9] and 
HCV[28]. Despite many differences in host range, virion 
morphology, genome organization, or donor membrane 
usage (Table 1), these analyses revealed that plus-strand 
RNA viruses appear to induce one of  two different 
membrane alterations: the invaginated vesicle (InV) or 
spherule type and the double membrane vesicle (DMV) 
type. These morphologies that will be used in this review 
to group plus-strand RNA viruses might reflect the use 
of  different host cell pathways and factors exploited by 
these viruses to establish the membranous replication 
compartment.

Architecture of replication factories corresponding to 
the InV/spherule type
Viral replication factories of  the InV/spherule type are 
induced by alphaviruses such as Semliki Forrest virus 
(SFV)[29,30] and Sindbis virus[31], by FHV[24], RUBV[8], 
DENV[10] and WNV[9]. Although no 3-D reconstruction 
of  alphavirus replication factories has been published 
yet, pioneering classical electron microscopy (EM) stud-
ies from Grimley et al[29] describing SFV replication sites 
at modified membranous structures, date back to the 
1960s. Alphavirus infection induces so called cytoplasmic 
vacuoles (CPVs) (600-2000 nm in size), containing small 
invaginations called “spherules” with an average diameter 
of  approximately 50 nm[29,32-34]. Surprisingly, at early time 
points after alphavirus infection, spherules are frequently 
found at the plasma membrane[30,31]. These spherules are 
subsequently internalized and become part of  the endo-ly-
sosomal membrane system, giving rise to CPVs. The single 
membrane invagination of  spherules is continuous with 
its donor membrane and an approximately 8 nm small 
opening connects its interior with the cytoplasm[7]. Viral 
replicase proteins nsp1 to nsp4 as well as newly synthe-
sized viral RNA localize to spherules[29,30]. Interestingly, the 
spherules themselves are devoid of  ribosomes and viral 
capsid protein, which are frequently found juxtaposed to 
the spherule openings[7]. The first 3-D reconstruction of  
a plus-strand RNA virus replication factory was published 
by Kopek et al[24]. Electron tomography of  FHV-infected 
cells revealed InVs on the outer mitochondrial membrane 
(OMM) (Figure 1A). Similar to alphavirus spherules, InVs 
found in FHV-infected cells are approximately 50 nm in di-
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ameter[35]. The single membrane building up the spherule is 
continuous with the OMM and a membranous neck with 
an interior diameter of  approximately 10 nm connects the 
spherule lumen to the cytoplasm[24]. The sole viral replicase 
factor protein A as well as nascent viral RNA localize to 
spherules. By using high resolution electron tomography 
in combination with biochemical analyses, Kopek et al[24] 

determined that each spherule contains approximately 100 
copies of  protein A, covering the complete interior surface 

of  the spherule and one or two copies of  minus-strand 
RNA, the replication intermediate. RUBV induces replica-
tion factories with similar architecture. Replicase proteins 
p150 and p90, as well as nascent viral RNA localize to re-
modeled endosomes/lysosomes, termed cytopathic vacu-
oles[36-39]. Fontana et al[8] conducted electron tomography 
studies of  RUBV replicon cells and observed spherule-like 
membrane invaginations. In addition, the authors detected 
bigger vacuolar invaginations and rigid straight membrane 
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Table 1  Overview of plus-strand RNA viruses and induced replication factories

NS: Genes encoding nonstructural proteins; S: Genes encoding structural proteins; ER: Endoplasmic reticulum; PM: Plasma membrane; HFM: Hand-foot-
and mouth; SARS-CoV: Severe acute respiratory syndrome coronavirus; HMM: High mortality murine; DMVs: Double membrane vesicles; SMTs: Single 
membrane tubular vesicles; VPs: Vesicle packets; PV: Poliovirus; HCV: Hepatitis C virus; CVB3: Coxsackievirus B3; MHV: Mouse hepatitis virus; EAV: 
Equine arterivirus; CPV: Cytoplasmic vacuoles; RUBV: Rubella virus; SFV: Semliki Forrest virus; FHV: Flock-house virus; DENV: Dengue virus; WNV: 
West Nile virus; BMV: Brome mosaic virus; SINV: Sindbis virus. 

Invaginated vesicle/spherule type
   Superfamily/order Alphavirus like Alphavirus like Alphavirus like Alphavirus like
   Family Togaviridae Togaviridae Togaviridae Bromoviridae Nodaviridae Flaviviridae Flaviviridae
   Genus Alphavirus Alphavirus Rubivirus Bromovirus Alphanodavirus Flavivirus Flavivirus
   Species SFV SINV RUBV BMV FHV DENV WNV
   Genome ss(+) RNA ss(+) RNA ss(+) RNA tripartite ss(+) 

RNA
bipartite ss(+) 
RNA

ss(+) RNA ss(+) RNA

   Gene order NS-S NS-S NS-S NS-S NS-S S-NS S-NS
   Genome size (bases) 13000 12000 10000 8300 4500 10000 10000
   Virion size (nm) 70 70 70 27 30 50 50
   Envelope Yes Yes Yes No No Yes Yes
   Host Mosquitoes, 

humans
Mosquitoes, 
humans

Humans Plants, yeast Insects Mosquitoes, 
humans

Mosquitoes, 
mammals

   Disease Encephalitis Sinbis fever German 
measels

Plant disease Unknown Dengue 
fever

Mostly 
asymtomatic

   Type of 
   replication 
  factories

Spherules at 
PM and CPVs

Spherules at 
PM and CPVs

Invaginations 
at CPVs

Spherules at 
the ER

Spherules at 
mitochondria

Invaginated 
vesicles at 
the ER

Invaginated 
vesicles at 
the ER

   Diameter of 
   invaginations (nm)

50 50 80-500 50-70 50 90 50-150

   Primary 
   membrane source 

PM, 
endosomes

PM, 
endosomes

Endosomes ER Outer 
mitochondrial 
membrane

ER ER

   Proposed sites of 
   replication

Inside 
spherules

Inside 
spherules

Inside 
invaginated 
vesicles

Inside 
spherules

Inside 
spherules

Inside 
invaginated 
vesicles

Inside 
invaginated 
vesicles

Double membrane vesicle type
   Superfamily/order Picornavirales Picornavirales Nidovirales Nidovirales Nidovirales
   Family Flaviviridae Picornaviridae Picornaviridae Coronaviridae Coronaviridae Arteriviridae
   Genus Hepacivirus Enterovirus Enterovirus Coronavirus Coronavirus Arterivirus
   Species HCV PV CVB3 SARS CoV MHV EAV
   Genome ss(+) RNA ss(+) RNA ss(+) RNA ss(+) RNA ss(+) RNA ss(+) RNA
   Gene order S-NS S-NS S-NS S-NS S-NS S-NS
   Genome size 
   (bases)

9600 8000 8000 30000 30000 13000

   Virion size (nm) 50 30 30 80-160 80-160 40-60
   Envelope Yes No No Yes Yes Yes
   Host Humans Humans Humans Humans Mice Horses, donkeys
   Disease Hepatitis Poliomyelitis HFM disease SARS HMM illness Haemorragic fever
   Type of replication 
   factories

DMVs SMTs, DMVs SMTs, DMVs DMVs, VPs DMVs DMVs

   Length/diameter of 
   replication factories 

150 nm 100-200 nm, 
100-300 nm

650 nm, 
150 nm

150 nm, 
1-5 µm

200-350 nm 90 nm

   Primary membrane 
   source 

ER Golgi, ER Golgi, ER ER ER ER

   Proposed sites of 
   replication

Possible role of 
DMVs but 
largely unknown

On SMT/DMV 
outer 
membrane

On SMT/DMV 
outer 
membrane

Inside DMVs Inside DMVs Inside DMVs
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sheets, which are continuous with the outer membrane of  
the CPV and whose interior is connected to the cytoplasm 
(Figure 1B). Mitochondria localized in close proximity to 
CPVs and were probably engaged in supplying energy for 
viral replication. Importantly, CPV membranes were free 
of  ribosomes, but frequently surrounded by rough ER 
sheets and Golgi stacks, thus facilitating translation and 
encapsidation of  viral RNA, respectively[8,40]. In contrast to 
the replication compartments of  these plus-strand RNA 
viruses, replication factories of  Flaviviridae, exemplified 

by WNV and DENV, are most likely derived from the 
ER. Apart from the rather undefined convoluted mem-
branes (CMs) found in DENV-infected cells, our labora-
tory revealed by means of  electron tomography vesicular 
invaginations of  approximately 90 nm diameter in the 
rough ER, which are connected by approximately 10 nm 
diameter necked channel openings to the cytoplasm[10] 

(Figure 1C). Likewise, Gillespie et al[9] observed in WNV 
replicon-containing cells, InVs in the rough ER, which 
were connected via neck-like membranous pores to the 
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Figure 1  Classification and morphologies of plus-strand RNA virus-induced membrane alterations as revealed by electron tomography and three-dimen-
sional reconstruction. Morphological similarities of membrane structures belonging to the invaginated vesicle (InV)/spherule type (A-C) or the DMV type (D-F). A: 
Flock-house virus (FHV); B: Rubella virus (RUBV); C: Dengue virus (DENV); D: Poliovirus (PV); E: Severe acute respiratory syndrome coronavirus (SARS-CoV); F: 
Hepatitis C virus (HCV). A: FHV-induced spherules (white) in the outer mitochondrial membrane (OMM; blue); B: InVs (white) and rigid membrane sheets (dark brown) 
in a modified endosome (the cytopathic vacuole, CPV) (yellow) in cells replicating RUBV. The rough endoplasmic reticulum (ER) is shown in light-green and mitochon-
dria in red; C: Spherule-like invaginations (InVs) in the endoplasmic reticulum (ER) (brown) observed in DENV-infected cells. Newly formed progeny virions are shown 
in red; D: PV infection induces single membrane tubules (SMT) (blue), double membrane vesicles (DMVs) and multi membrane vesicles (MMVs). The DMV outer 
membrane is shown in green, the second membrane in yellow and a third membrane in case of MMVs in orange. These membranes are primarily derived from the 
Golgi; E: An interconnected network of ER-derived DMVs is found in SARS-CoV infected cells. The ER is colored in light-brown, interconnected outer membranes of 
DMVs in yellow and DMV inner membranes in blue; F: HCV-induced DMVs protruding from the ER (dark-brown). Outer membranes of DMVs are shown in light-brown 
and inner membranes in orange. Images are modified with permission from ©2007 Kopek et al[24] Plos Biol (A); ©2010 Elsevier Inc.[8] (B); ©2009 Elsevier Inc.[10] (C); ©
2012 American Society for Microbiology[26] (D); ©2008 Knoops et al[11] Plos Biol (E); ©2012 Romero-Brey et al[28] Plos Pathog (F).
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cytoplasmic space. For both viruses, replicase proteins and 
dsRNA, assumed to represent a replication intermediate, 
localized to InVs[10,41], whereas ribosomes were excluded 
from the InVs, but localized in close proximity on ER 
membranes[9,10]. Interestingly, DENV virion budding was 
observed frequently close to or directly opposite of  pore-
like vesicle openings[10], highlighting the spatial orchestra-
tion of  replication and assembly steps in the DENV repli-
cation cycle.

Architecture of DMV-like replication factories
DMV-like replication factories are formed by the entero-
viruses CVB3[25] and PV[26], SARS-CoV[11], EAV[27] and 
HCV[28]. For PV, probably the best studied plus-strand 
RNA virus, structural alterations of  cellular membranes 
were observed already more than 50 years ago. They were 
first described as membranous vesicles of  heterogeneous 
size and termed clear vacuoles and U-bodies[42]. Recent 
electron tomography studies of  PV-infected cells by Belov 
et al[26] revealed apparently empty and heterogeneous single 
membrane-branching tubular structures (100-200 nm di-
ameter) that were detected at very early time points after 
infection. As infection progresses, these tubular structures 
developed into DMVs (100-300 nm in diameter), filled 
with presumably cytoplasmic material (Figure 1D). The 
very early membrane alterations were derived from the 
Golgi[26], but PV-induced vesicles were earlier shown to 
“bud” from the ER in a COPⅡ-dependent manner and to 
contain lysosomal markers[43,44]. Replicase proteins 2C and 
3A as well as nascent viral RNA localize to the outside of  
both single and double membrane structures[26,44]. A similar 
3-D architecture of  virus-induced membrane alterations 
was recently described for CVB3, another member of  
the Picornaviridae family. By using electron tomography, 
Limpens et al[25] observed interconnected single membrane 
tubular structures (approximately 650 nm in length and ap-
proximately 80 nm in diameter) at the onset of  infection. 
These structures transformed into DMVs (approximately 
160 nm in diameter) and multimembranous structures by 
an enwrapping process. Immunofluorescence analyses 
showed co-localization of  CVB3 replicase proteins 3A and 
3D with dsRNA[25] during the log phase of  viral replica-
tion, when predominantly single membrane tubules were 
present in infected cells. However, the exact localization 
of  viral proteins and RNA with respect to the rearranged 
membranes remains to be determined. In contrast to pi-
cornavirus-infected cells, Knoops et al[11] revealed that early 
after infection SARS-CoV replication factories appear as 
presumably ER-derived CMs and interconnected DMVs 
(250 nm in diameter) (Figure 1E), which subsequently 
merge into vesicle packets (VPs) (1-5 μm in size), most 
likely by fusion of  the DMV outer membranes. Electron 
tomography analysis showed that SARS-CoV-induced 
DMVs do not exist as isolated structures, but their outer 
membrane is continuous to other DMVs, CMs, or the 
rER, thus explaining the transition from DMVs to VPs[11]. 
Viral replicase proteins nsp3, 5 and 8 were sporadically 
found in DMVs, whereas the majority localized to CMs. 

In contrast, dsRNA a marker for viral replication interme-
diates, was predominantly found inside DMVs or inside 
the vesicles of  VPs[11]. The DMV interior was devoid of  
ribosomes, which were found on the outer membranes of  
DMVs or rER sheets in close proximity to DMVs. Virus 
budding was detected at the outer membrane of  VPs, ar-
guing for spatial organization of  the different steps of  the 
SARS-CoV replication cycle[11]. A comparable architecture 
of  virus-induced membrane rearrangements was observed 
for EAV, a SARS-CoV related virus that also belongs to 
the order Nidovirales. By means of  electron tomography, 
Knoops et al[27] unraveled a reticulovesicular network of  
interconnected DMVs in EAV-infected cells. However, in 
contrast to SARS-CoV induced DMVs, those observed 
for EAV were smaller in diameter (approximately 90 nm), 
but also exhibited continuous outer DMV membranes. 
Replicase proteins nsp3 and 9 associated with DMVs and 
surrounding membranes and as in case of  SARS-CoV, 
dsRNA was prominently found inside DMVs[27]. In ad-
dition to the reticulovesicular DMV network, membrane 
tubules with approximately 43 nm diameter were associ-
ated with the EAV capsid protein N and frequently found 
in close proximity to DMVs[27], thus providing another 
example for the spatial coordination of  replication and 
assembly steps. Although belonging to the Flaviviridae that 
includes DENV and WNV, HCV-induced viral replication 
factories are very different from the InV/spherule type, 
but more comparable to those of  unrelated Picornaviridae or 
Coronaviridae. Electron tomography of  HCV-infected cells 
conducted in our laboratory, revealed ER-derived DMVs 
as the predominant structures, which partially develop into 
MMVs at later stages of  infection[28] (Figure 1F). HCV-
induced DMVs have an average diameter of  approximately 
150 nm. Around 50% of  DMVs were linked to the ER via 
the outer membrane giving rise to a neck-like structure, 
but later on DMVs seem to detach from their donor mem-
brane. Only a small subset (approximately 10%) exhibited 
a pore-like opening to the cytoplasm, whereas the vast ma-
jority showed “sealed” inner and outer membranes. 

By using correlative-light-EM, DMVs were shown to 
contain the viral replicase protein non-structural protein 
(NS)5A, which co-localizes with dsRNA as shown by flu-
orescence microscopy[28]. However, direct detection of  the 
HCV replication site at the ultrastructural level was not 
successful. DMVs localized in close proximity to the rER 
and LDs, an important organelle for HCV assembly[13], 
arguing for a compartmentalization of  viral RNA transla-
tion, replication and assembly steps[28]. 

TOPOLOGY OF PLUS-STRAND RNA 
VIRUS REPLICATION SITES 
In order to identify viral replication sites, various meth-
ods have been applied to detect viral RNA at the ultra-
structural level. Initial studies employed metabolic radio-
labeling of  nascent viral RNA with 3H-labeled uridine 
or adenosine and subsequent EM-based detection by 
autoradiography using film emulsions[29,33]. Others applied 
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in situ hybridization methods by using nucleic acid probes 
and detection via colloidal gold particles[45], labeling of  
dsRNA replication intermediates by using a dsRNA-
specific antibody[10,11,27,41], or antibody-based detection of  
bromouridine, incorporated into nascent viral RNA[24,26,30]. 
Importantly, for identification of  viral replication sites 
the detection of  metabolically labeled viral RNA is the 
only reliable method; hybridization techniques do not dis-
criminate between replicating RNA or RNA used e.g., for 
translation or virion formation. The same applies to de-
tection of  viral RNA with the dsRNA-specific antibody 
that can bind to RNA structures present in genomes of  
plus-strand RNA viruses, thus excluding specificity for 
detection of  active viral RNA replication. Indeed, by us-
ing the incorporation of  ethynyl-uridine (EU) into active-
ly replicating coronavirus RNA and subsequent detection 
via click-chemistry, Hagemeijer et al[46] observed a loss of  
overlap of  the EU- signal with dsRNA labeling during 
the course of  infection. For replication factories of  the 
InV/spherule type it is commonly accepted that viral 
replicase complexes reside on the invaginated membrane 
and thus, RNA replication takes place in the spherule lu-
men[9,10,24,30,36,41,47] (Figure 2A). The neck-like connection 
to the cytoplasm allows import of  all required metabo-
lites (e.g., ribonucleotides) and export of  newly synthe-
sized RNA destined for translation or packaging into the 
capsid. By using bromouridine labeling of  nascent viral 
RNA, this assumption has been confirmed for RUBV[36] 
alphaviruses[30], FHV[24] and brome mosaic virus (BMV)[47]. 
However, identification of  flavivirus replication sites 
(DENV and WNV) up to now relies only on the im-
muno-detection of  dsRNA[10,41]. DMV-type replication 
factories exhibit a topologically more complex situation, 

as both membranes of  the DMV are often sealed and no 
connection to the cytosol is obvious[11,25-28]. Hence, for 
this group of  plus-strand RNA viruses different topolo-
gies of  replication sites are currently proposed (Figure 
2B). In case of  enteroviruses, replication is thought to 
occur on the cytoplasmic side of  single and double-
membrane structures[26,48]. However, the fact that during 
the log phase of  viral replication predominantly single 
membrane tubules are found in PV-or CVB3-infected 
cells[25,26] suggests that active enteroviral replicase com-
plexes primarily reside on these membrane structures. In 
this case one might speculate that RNA replication ceases 
after membrane enwrapping and DMV sealing, but this 
remains to be determined. In case of  SARS-CoV and 
EAV, the bulk of  viral RNA is found inside the lumen of  
DMVs as determined by dsRNA labeling[11,27]. Moreover, 
nascent EAV and mouse hepatitis virus (MHV) RNA is 
associated with DMV membranes as shown by bromou-
ridine labeling[49,50] arguing that DMVs are sites of  viral 
replication. However, if  replication takes place inside the 
DMV lumen, it is unclear how import of  metabolites and 
export of  viral RNA occurs. Even with high resolution 
electron tomography, neck-like membrane discontinuities 
of  approximately 10 nm, as observed for InV/spherule 
like replication factories, have not been found[11,27]. Thus, 
proteinaceous channels or transporters might be respon-
sible for linking DMV interior to the cytosol. In fact, 
proteins such as the ER translocon complex or the mi-
tochondrial transporter outer membrane and transporter 
inner membrane complexes mediating transport across 
one or two membranes, respectively (reviewed in[51,52]), 
have not been visualized by electron tomography so far. 
Thus, an up to now unidentified enzymatic function of  
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viral proteins containing multiple transmembrane pas-
sages and/or recruitment of  a cellular factor executing 
this transport function is in principle possible. 

Another hypothesis is discussed for HCV-induced 
DMVs, which accumulate during the log phase of  vi-
ral RNA replication[28]. Only a small fraction of  DMVs 
has an opening to the cytoplasm, whereas the majority 
exhibits entirely closed membranes. It is speculated that 
replication might occur in the interior of  DMVs as long 
as they are linked to the cytosol, but upon membrane 
sealing DMVs would contain dead end replication com-
plexes that are no longer active. Apart from this possibil-
ity, the other models described above also apply to HCV, 
but further studies are required to define the exact site of  
RNA replication. 

MECHANISMS OF MEMBRANE 
ALTERATIONS INDUCED BY VIRAL 
PROTEINS 
Given the highly complex architecture of  plus-strand 
RNA virus replication factories on one hand and the 
small genetic coding capacity of  these viruses on the other 
hand, it is obvious that membrane alterations are induced 
by the concerted action of  viral and cellular factors. In 
this section we will discuss the intrinsic membrane-active 
properties of  viral proteins; host cell factors contributing 
to formation of  replication factories are summarized in 
section 6 of  this article. In principle, membrane bending 
can be achieved by (1) local alterations of  membrane lipid 
composition; or (2) asymmetric interaction of  proteins 
with membranes (Figure 3). The latter includes scaffold-
ing of  the membrane by peripheral proteins, insertion of  
asymmetric proteins or protein complexes into the mem-
brane, insertion of  amphipathic helices into one leaflet of  
the lipid bilayer or interactions of  the membrane with the 
cytoskeleton (reviewed in[53-55]) (Figure 3C-H). Negative 
membrane curvature is predominant for the InV/spher-
ule like replication factories (Figure 3A), with spherules 
bending the membrane away from the cytoplasm, whereas 
DMV-like replication factories exhibit positive membrane 
curvature, i.e., the outer DMV membrane is bent towards 
the cytosol (Figure 3B). However, regions of  positive 
membrane curvature are also present in neck like openings 
of  spherules (Figure 3A) and the inner membranes of  
DMVs exhibit negative membrane curvature (Figure 3B), 
respectively, highlighting the complexity of  membrane 
bending events in the induction of  plus-strand RNA virus 
replication factories. 

Several viral proteins were identified that play crucial 
roles in the induction of  membrane rearrangements. 
For instance, the membrane-associated protein nsp1 of  
alphaviruses interacts with anionic phospholipids via an 
amphipathic helix (AH) (Figure 3G)[56] and is addition-
ally tethered to membranes via a palmitic acid residue 
in the carboxy-terminal region of  the protein[57]. AH-
mediated nsp1 membrane association proved crucial 

for SFV replication[58], whereas palmitoylation mutants 
could be rescued by second site compensatory mua-
tions in vitro[59] but are attenuated in vivo[60]. Nonetheless, 
only expression of  the P123 protein precursor induced 
spherule-like structures as seen in SFV-infected cells[61], 
demonstrating the need of  nsp1 to recruit and inter-
act with other viral and/or cellular proteins to induce 
spherule-like membrane rearrangements. The FHV repli-
case factor protein A exhibits binding affinity to specific 
anionic phospholipids, namely phosphatidic acid, phos-
phatidylglycerol and cardiolipin[62], which are enriched in 
mitochondrial membranes. Protein A is inserted into the 
OMM by an N-terminal mitochondria-targeting trans-
membrane sequence[63]. Self-interaction of  protein A is 
required for FHV replication and mediated by multiple 
domains (Figure 3F)[64]. Nevertheless, protein A is not 
sufficient to induce spherule like membrane invaginations 
in the OMM, which requires in addition a replication-
competent template RNA and protein A’s polymerase 
activity[65]. Interestingly, these requirements do not apply 
to the FHV-related plant virus BMV, for which expres-
sion of  protein 1a is sufficient to induce spherule-like 
membrane invaginations[47]. All flaviviral proteins are as-
sociated directly or indirectly with membranes either by 
amphipathic helices or transmembrane domains or both 
(Figure 3E-G). Fully processed DENV and WNV NS4A 
is sufficient to induce rearrangements of  the ER mem-
brane[66,67], although membrane structures induced by 
sole NS4A expression are morphologically distinct from 
those induced in infected cells. Studies of  the membrane 
topology of  DENV NS4A revealed an ER luminal helix 
in the central region of  the protein, lying in plane in the 
luminal membrane leaflet[66]. This topology is compatible 
with the negative curvature of  InVs, arguing that NS4A 
increases the surface area of  the ER membrane on the 
luminal side. However, the role of  NS4A self-interaction 
and a possible interplay with other viral (e.g., NS4B) and 
cellular factors, in membrane remodeling remain to be 
determined. Also for HCV that in contrast to DENV 
and WNV induces DMV-type replication factories, mem-
brane remodeling activity has been attributed to viral pro-
teins, most prominently to NS4B. It has been proposed 
that expression of  this protein is sufficient to induce the 
membranous HCV replication compartment (the “mem-
branous web”)[68]. NS4B is a highly hydrophobic protein 
that contains at least four transmembrane passages[69]. It 
is palmitoylated at its C-terminus[70] and in addition con-
tains multiple AHs in its N-and C-terminal domains[71-73] 
(Figure 3E-G). The membrane-associated C-terminal 
domain of  NS4B or the AH within it have been reported 
to alter membrane integrity (Figure 3G)[74,75], corroborating 
membrane remodeling activity of  NS4B. In addition, NS4B 
self-interacts in a homo- and heterotypic fashion[76], which 
is required for HCV RNA replication[76,77] (Figure 3F). In-
terestingly, mutations in NS4B that inhibit HCV RNA 
replication also alter NS4B self-interaction and morphol-
ogy of  HCV-induced DMVs[77], implying a functional 
relationship between DMV morphology and HCV RNA 
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replication. Inspite of  the membrane remodeling activity 
of  NS4B, we recently found that only an NS3-5A poly-
protein fragment is sufficient to induce DMV structures 
with morphological similarity to those observed in HCV-
infected cells[28]. In fact, MMVs and a small number of  
DMVs were observed in cells over-expressing just NS5A, 
which is a dimeric and eventually oligomeric replicase 
factor with an N-terminal AH[78-82] (Figure 3G). Based 
on these observations we assume that a concerted action 
of  HCV replicase factors is required for the biogenesis 
of  the membranous web. Similar observations have been 
made for Nidovirales. For instance, coronavirus nsp3, 4 
and 6 contain multiple membrane-spanning domains[83-85]. 
These proteins appear to play a central role in membrane 

remodeling (Figure 3E), because mutations e.g., in nsp4 
exhibit impaired viral replication and altered DMV mor-
phology[86]. Nsp3 of  the related EAV also contains mul-
tiple transmembrane segments and is another key player 
in the induction of  DMVs. Expression of  nsp2-3 suffices 
to induce DMVs[87] and their morphology is dramati-
cally altered by nsp3 mutations affecting an ER luminal 
loop[88]. 

In case of  enteroviruses, proteins 2B, 2C or 3A are 
membrane-associated via transmembrane passages or 
AHs[89-91] and the expression of  2BC either alone[92] or 
in concert with 3A[93] induces structures similar to those 
in infected cells. Interestingly, expression of  only 2C 
induces more dramatic membrane remodeling including 
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tubular membrane swirls inside a highly dilated ER[92], 
implying a regulatory role of  2B in 2C membrane remod-
eling. Taken together these data suggest that membrane-
associated proteins of  plus-strand RNA viruses have 
intrinsic membrane remodeling properties. However, in 
most cases more than one viral factor, eventually in con-
cert with recruited cellular proteins are involved in gen-
eration of  viral replication factories. Further studies using 
e.g., recombinant viral proteins and model membranes are 
required to elucidate the intrinsic membrane remodeling 
properties of  these viral proteins. 

POSSIBLE ROLE OF AUTOPHAGY IN THE 
FORMATION OF DMV LIKE REPLICATION 
FACTORIES 
Autophagy is an evolutionary conserved catabolic mecha-
nism for degradation of  long-lived organelles and cyto-
plasmic material and is crucial for cell homeostasis (re-
viewed in[94]). Virus-host co-evolution has shaped multiple 
mechanisms involving autophagy that either promote or 
restrict viral replication (reviewed in[95]). Due to morpho-
logical similarities between DMV-like replication factories 
and the also double-membrane nature of  autophago-
somes, it has been suggested that autophagy plays a role 
in biogenesis of  viral replication compartments of  this 
type as induced by enteroviruses[44,96,97], coronaviruses[98,99] 
and HCV[100,101]. Indeed, lipidation of  microtubule - as-
sociated protein 1 light chain 3 (LC3), a key event in the 
induction of  autophagy, was observed after enterovirus 
infection[96,97,102] or over-expression of  2BC[102]. Interest-
ingly, knock-down of  central autophagy components or 
pharmacological inhibition of  the pathway decreased viral 
replication only slightly, whereas generation of  progeny 
virus was clearly reduced arguing that autophagy contrib-
utes primarily to virus assembly and release[103]. In case of  
PV, electron tomography studies of  infected cells revealed 
primarily single membrane structures during the log phase 
of  viral replication, which subsequently developed into 
DMVs by collapsing and/or enwrapping events[26]. These 
data argue against a central role of  autophagy per se in PV 
replication, although some factors of  this pathway might 
contribute to heterogeneity of  vesicular structures at later 
stages of  infection. Similar observations have been made 
for the Coronaviridae. MHV infection induces lipidation 
of  LC3 that co-localizes with nsp2/3 in infected cells[99]. 
Moreover, the non-lipidated form of  LC3 is prominently 
found on isolated membrane fractions from MHV-
infected cells, together with components (e.g., EDEM1) 
of  the ER-associated degradation pathway[99]. However, 
functional studies based on knockouts of  central au-
tophagy factors led to contradictory results. In one study, 
ATG5 knockout decreased virus propagation dramati-
cally[98], whereas others found that MHV replication is 
independent of  ATG5[104] or ATG7[99]. Hence, a central 
role of  the complete autophagy pathway in generation of  
coronavirus DMVs seems unlikely, although some single 
factors such as LC3 might add to it. Conflicting observa-

tions concerning a role of  autophagy in virus propagation 
have also been made in case of  HCV. One study claims 
that autophagy is implicated in translation of  incoming 
viral RNA, but is dispensable for RNA replication[105]. 
Other studies suggest that autophagosomes are sites of  
active replication[101] or promote assembly and release of  
progeny virus[106]. In addition, a recent study showed an 
autophagy-mediated down-regulation of  innate immune 
response[107]. In this case, knock-down of  autophagy com-
ponents reduces HCV RNA replication due to a stronger 
innate immune response. The reasons for these discrepant 
results are not known, but might be due, at least in part, to 
the use of  different Huh7 cell clones, which are known to 
differ in their capacity to mount innate antiviral defenses. 
Although LC3 lipidation is observed upon HCV infec-
tion[105] and the protein is associated with HCV membrane 
fractions[100], EM-based studies of  membrane remodel-
ing events argues for a role of  autophagy in formation 
of  MMVs eventually as part of  a cellular stress response 
induced by massive membrane alterations[28]. Taken to-
gether, the role of  autophagy in biogenesis of  DMV like 
replication factories remains rather elusive. Single compo-
nents of  the conventional cellular autophagy are possibly 
involved, whereas a direct contribution of  the complete 
pathway in generation of  DMV replication compartments 
is rather unlikely. Finally, autophagy might be an epiphe-
nomenom, being activated as a cellular stress response to 
tremendous amounts of  virus induced cytoplasmic mem-
brane alterations, engaged in cell homeostasis and survival 
during viral infection. 

PLUS-STRAND RNA VIRUS SUBVERSION 
OF CELLULAR MEMBRANE BIOLOGY
Since plus-strand RNA viruses induce massive remodel-
ing of  cytoplasmic membranes, but most often have very 
limited genetic coding capacity it is not surprising that 
these viruses utilize membrane-active host cell factors 
and exploit cellular pathways involved in membrane ho-
meostasis. 

Viral utilization of co-opted membrane-active proteins of 
the host cell 
Enteroviruses and the plant virus BMV co-opt cellular 
reticulon proteins, which are required for membrane re-
modeling and viral RNA replication[108,109]. The evolution-
ary conserved reticulon protein family is characterized by 
a common reticulon homology domain (RHD) involved 
in shaping the ER by inducing and stabilizing highly 
curved ER tubules[110,111]. Morphogenic properties can be 
attributed to elongated hydrophobic, partially membrane-
spanning hairpin structures within the RHD[112], which in 
concert with its oligomerization properties[113] increases 
the surface on the cytoplasmic membrane leaflet, thereby 
inducing positive curvature (Figure 3E and F). Reticulon 
3 has been shown to directly interact with the enterovi-
rus 2C protein[108] and is thus likely engaged in induction 
and/or stabilization of  positive membrane curvature of  
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enterovirus replication factories. BMV replicase protein 
1a directly binds to and recruits reticulon proteins to 
spherule-like membrane invaginations and might stabi-
lize positive membrane curvature in neck-like openings 
to the cytoplasm or facilitate expansion of  the spherule 
volume by partially neutralizing overall negative mem-
brane curvature[109]. It remains to be determined whether 
reticulon proteins are co-opted also by other plus-strand 
RNA viruses, especially those deriving their replication 
compartments from the ER. Another example of  cellular 
membrane-shaping proteins are amphiphysins that are in-
volved in formation of  alphavirus replication factories[114]. 
These Bin-Amphiphysin-Rvs (BAR) domain containing 
proteins play pivotal roles in endocytosis and intracellular 
membrane trafficking (reviewed in[115]). Structural analyses 
revealed dimerization of  the BAR domain mediated by 
helical coiled-coil interactions[116], giving rise to a concave 
banana-shaped structure. This complex has a positively 
charged inner surface, which interacts with negatively 
charged membrane phospholipids (reviewed in[117]). Thus, 
BAR domain-containing proteins sense and stabilize 
membrane curvature by scaffolding mechanisms, to which 
in case of  N-terminal amphipathic helix containing BAR 
proteins membrane insertion of  N-terminal amphipathic 
helices contributes (Figure 3D and G). Alphavirus nsp3 
binds to SH3 domains in amphiphysin via a proline-rich 
sequence and mediates the recruitment to viral replication 
factories. Knock-down experiments proved an impor-
tant role of  amphiphysins in alphavirus replication[114]. 
Although their contribution to membrane remodeling 
during alphavirus infection remains to be discovered, one 
could envisage a similar mechanism as proposed for BMV 
and reticulon proteins. Proline-serine-threonine phospha-
tase interacting protein 2 (PSTPIP2) also belongs to the 
BAR protein superfamily (Figure 3D) and was recently 
shown to be involved in membrane alterations induced 
by HCV[118]. PSTPIP2 binds to NS4B and NS5A and 
thereby is recruited to the membranous replication com-
partment[118]. In fact, knockdown experiments showed the 
crucial role of  PSTPIP2 in HCV membrane remodeling 
and RNA replication[118]. Interestingly, upon over-expres-
sion PSTPIP2 induces cytoplasmic tubular membranes[118], 
highlighting its ability to induce positive membrane cur-
vature. Hence, PSTPIP2 is probably engaged in inducing 
and/or stabilizing positive membrane curvature of  HCV 
replication factories. Another mechanism by which viruses 
can rearrange intracellular membranes has become evi-
dent for enteroviruses. PV appears to hijack components 
of  the cellular secretory pathway, explaining why PV repli-
cation is sensitive to brefeldin A (BFA) treatment[119]. Viral 
proteins 3A and 3CD recruit the ADP ribosylation factor 
(Arf)-GEFs (GTP exchange factors) Golgi-specific BFA-
resistance guanine nucleotide-exchange factor 1 (GBF1) 
and BFA-inhibited guanine nucleotide-exchange protein 
1/2 (BIG1/2) to replication sites, leading to elevated levels 
of  activated Arf-GTP in infected cells[120]. Arf  proteins 
are central regulators of  membrane dynamics and vesicle 
budding in the secretory pathway. Upon activation by Arf-

GEFs, the GTP-bound form exerts its function on target 
membranes by recruitment of  effector proteins such as 
lipid modifying enzymes and coat complexes, thus facilitat-
ing vesicle budding (reviewed in[121,122]). GBF1-mediated 
Arf  activation is crucial for PV replication, although typi-
cal membrane alterations can be observed in BFA-treated 
cells that over-express viral proteins[123]. Nevertheless, PV 
replication factories of  BFA-treated cells were shown to 
be inactive, implying a functional difference of  remodeled 
membranes independent from morphological abnormali-
ties[123]. Hence, PV subversion of  cellular Arf-GEFs is im-
portant for maintenance of  functional replication factories, 
rather than primary membrane remodeling. In summary, 
plus-strand RNA viruses recruit and utilize membrane-
active host cell proteins in order to generate and/or main-
tain replication factories. Donor membrane usage defines 
engaged cellular factors, as enteroviruses employ Arf-
GEFs from the Golgi, alphaviruses subvert amphiphysins 
localized at the plasma membrane and enteroviruses and 
BMV utilize ER-resident reticulon proteins (Figure 4). 

Viral exploitation of pathways regulating homeostasis of 
cellular membranes 
Apart from remodeling existing intracellular membranes, 
virus infection often induces de novo lipid and membrane 
biosynthesis in order to increase membrane surface area, 
which is required for the formation of  viral replication 
factories. Indeed, alteration of  cellular lipid homeosta-
sis and virus-induced lipogenesis has been reported for 
a broad range of  plus-strand RNA viruses, including 
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FHV[124], BMV[125], RUBV[126], DENV[127,128], WNV[129], 
enteroviruses[130] and HCV[131-133]. FHV mainly stimulates 
glycerophospholipid metabolism[124] and inhibition of  
phospholipid synthesis leads to destabilization of  protein 
A and decreases viral replication[134]. In case of  DENV, 
high-throughput analysis revealed multiple changes in 
the cellular lipidome of  infected cells, including specific 
up or down regulation of  main structural lipids species, 
highlighting the link to virus-induced membrane remod-
eling[128]. Additionally, DENV NS3 recruits fatty acid 
synthase (FASN), which catalyzes the rate limiting step 
in lipid biosynthesis at the sites of  viral replication[127]. 
Thus, DENV appears to subvert FASN for de novo lipid 
synthesis in order to generate new membranes for the 
formation of  viral replication factories. This feature is 
also observed for the closely related flavivirus WNV[129], 
stressing the impact of  this particular virus host interac-
tion to generate flavivirus replication factories. 

HCV induces lipogenesis via the sterol regulatory 
element-binding protein (SREBP) pathway[131]. SREBPs 
are major transcription factors for expression of  genes 
required for lipid biosynthesis. SREBPs reside as inac-
tive membrane-bound precursors in the ER, which upon 
stimulation traffic to the Golgi. There they are proteolyti-
cally activated by site 1 protease (S1P) and S2P and sub-
sequently stimulate gene transcription (reviewed in[135]). 
Proteolytic cleavage of  SREBP and transactivating phos-
phorylation has been observed in HCV-infected cells or 
upon over-expression of  NS4B, leading to elevated levels 
of  transcripts involved in lipogenesis such as FASN[131,136]. 
However, by using S1P-specific inhibitors SREBP-me-
diated lipogenesis was found to be dispensable for HCV 
replication but required for assembly and release of  prog-
eny virus[137]. In addition, the HCV replicase complex was 
shown to reside in detergent-resistant membranes[138]. 
These membrane micro domains, designated lipid rafts, 
are enriched for cholesterol, sphingolipids and certain 
proteins and they form nanoscale-ordered protein-lipid 
assemblies (reviewed in[139]). Sphingolipid synthesis is 
stimulated upon and required for HCV replication[140] and 
it was shown that the NS5B RdRP is activated by sphin-
gomyelin in a genotype-specific manner[141]. A shared 
feature of  plus-strand RNA viruses inducing DMV-like 
replication factories is their dependence on members 
of  the phosphatidylinositol-4-kinase (PI4K) family and 
their product, phosphatidylinositol-4-phosphate (PI4P). 
Both enteroviruses and HCV rely on PI4P for functional 
replication factories, which is generated by recruitment 
of  PI4KⅢβ in case of  enteroviruses[130] and PI4KⅢα in 
case of  HCV[142]. In non-infected cells PI4P localizes to 
the Golgi and the inner leaflet of  the plasma membrane, 
where it fulfills important functions by providing “sig-
natures” to distinct membrane compartments and by re-
cruiting multiple factors involved in vesicle budding and 
lipid biosynthesis[143,144]. Subversion of  PI4KⅢβ by en-
teroviruses is executed via 3A-GBF1 interaction, activat-
ing Arf  that in turn recruits PI4KⅢβ to viral replication 
factories[130]. Locally elevated PI4P levels allow specific 

binding of  the viral 3D RdRp to the membrane favoring 
viral replication. Knock-down as well as pharmacological 
inhibition of  PI4KⅢβ dramatically decreases enteroviral 
replication[130]. 

In case of  HCV, the replicase proteins NS5A and 
NS5B directly interact with PI4KⅢα, which is thereby re-
cruited to HCV replication sites[142]. Importantly, in HCV-
infected cells PI4P that is usually enriched at the Golgi 
and the plasma membrane, is prominently enriched at the 
ER-derived sites of  HCV replication[142,145]. Numerous 
siRNA screens identified PI4KⅢα as a major host depen-
dency factor for HCV replication[142,146-149], and pharma-
cological inhibition of  PI4KⅢα activity efficiently blocks 
viral replication[145]. In the absence of  PI4KⅢα, expres-
sion of  HCV proteins NS3-5B still induces DMVs, but 
these vesicles are smaller in diameter, very homogeneous 
and tend to cluster[142]. This morphological change of  the 
overall structure of  the membranous web correlates with 
impaired replication although DMV morphology per se is 
only moderately affected. This phenomenon is reminis-
cent to what has been shown for BFA-treated cells over-
expressing PV proteins[123]. These findings argue for a role 
of  PI4P in recruiting viral factors such as PV 3D RdRp 
or so far unidentified cellular proteins, rather than acting 
as a structural lipid building up membranous replication 
factories. Importantly, the closely HCV-related flaviviruses 
DENV and WNV, which form replication factories of  
the InV/sperule type, do not depend on PI4KⅢα/β or 
PI4P[129,142], highlighting a functional relationship between 
PI4P and DMV-like replication factories. Therefore it 
would be very interesting to investigate the dependence of  
EAV and coronavirus replication on PI4P. We note that 
for the latter PI4KⅢβ was shown to be required for virus 
entry[150]. 

Taken together, the strong dependence of  positive 
strand RNA viruses on cellular membrane-active proteins 
and on pathways implicated in cellular membrane ho-
meostasis, renders those host cells factors very attractive 
targets for future antiviral drug development.

CONCLUSION
Although important discoveries on the 3D architecture 
of  plus-strand RNA virus replication factories have been 
made, current knowledge is largely descriptive and im-
portant information about mechanisms is missing. For 
instance, the exact topology of  RNA replication sites for 
DMV-type replication factories is elusive. Identification 
of  these sites will require novel experimental techniques 
such as metabolic labeling of  nascent viral RNA and its 
visualization by using microscopy methods with high res-
olution and specificity. Likewise, membrane remodeling 
events responsible for the biogenesis of  replication fac-
tories are mostly unknown. They are probably mediated 
by a complex interplay of  viral and cellular factors, but 
precise contributions of  individual factors and their tem-
poral and spatial coordination remain to be discovered. 
Studying the impact of  single proteins or combinations 
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thereof  on model membranes in vitro or on membranes 
in cellulo by using correlative light-EM based methods as 
described recently for studies of  membrane remodeling 
events during endocytosis[151] are possible ways to address 
this topic. Furthermore, determining the proteome and 
lipidome of  purified viral replication factories will shed 
light on viral and host cell factors involved in biogenesis 
and activity of  these membranous compartments. This 
approach has been used with great success for small in-
tracellular vesicles such as COPⅠ vesicles or neuronal 
transport vesicles[152,153] providing insight into individual 
membranous structures with unprecedented detail. An-
other emerging field is the specific in-membrane interac-
tion of  proteins with certain lipids, as recently shown 
for COPⅠ machinery protein p24 and the sphingolipid 
SM 18 being implicated in regulation of  COPⅠ vesicle 
budding[154]. The tight membrane association of  proteins 
of  plus-strand RNA viruses suggests that such specific 
protein-lipid interactions also occur for this large virus 
group. Finally, time-resolved (imaging) techniques might 
shed light onto coupling of  viral RNA translation and 
replication as recently shown for HCV[155] and further-
more onto transport processes of  viral and cellular com-
ponents inside and outside replication factories. These 
studies will be instrumental to integrate their functional 
role into the complete viral replication cycle. 
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Abstract
West Nile virus (WNV) is an emerging neurotropic flavi-
virus that has recently spread to America and Southern 
Europe via  an enzootic/epizootic bird-mosquito-bird 
transmission cycle. The virus can occasionally infect 
humans through mosquito bites, and man-to-man 
transmission has also been reported via  infected blood 
or organ donation. In the human host, WNV causes 
asymptomatic infection in about 70%-80% of cases, 
while < 1% of clinical cases progress to severe neu-
roinvasive disease; long-term neurological sequelae are 
common in more than 50% of these severe cases. The 

pathogenesis of the neuroinvasive form of WNV infec-
tion remains incompletely understood, and risk factors 
for developing severe clinical illness are largely un-
known. The innate immune response plays a major role 
in the control of WNV replication, which is supported by 
the fact that the virus has developed numerous mecha-
nisms to escape the control of antiviral interferons. 
However, exaggerated inflammatory responses lead to 
pathology, mainly involving the central nervous system. 
This brief review presents the salient features of innate 
host responses, WNV immunoevasion strategies, and 
WNV-induced immunopathology. 

© 2013 Baishideng. All rights reserved.
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INTRODUCTION
West Nile virus (WNV) is a lipid-enveloped virus that 
contains a single stranded, positive sense RNA genome. 
The virus is introduced into the host by an infected vec-
tor (mosquitoes generally belonging to the genus Culex) 
during its blood meal. WNV was originally found in 
Africa and in the Middle East but has recently reached 
America[1,2], where it has spread throughout the United 
States. In the last 15 years, WNV has also caused several 
human outbreaks in southern Europe[3-5]. 

Most individuals infected with WNV remain asymp-
tomatic. In 20%-30% of  cases, WNV causes a mild flu-
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like illness. In such cases, symptoms appear suddenly 
and may include malaise, eye pain, headache, myalgia, 
gastrointestinal discomfort and rash[6]. Less than 1% of  
infected individuals develop neurological symptoms, in-
cluding aseptic meningitis, febrile convulsion in children, 
encephalitis or myelitis, the last of  which causes acute 
flaccid paralysis[7-9]. Long-term neurological sequelae are 
common in more than 50% of  neuroinvasive cases. The 
virus can infect neurons in areas as diverse as the cerebral 
cortex, basal ganglia and thalami, as well as the brainstem 
and cerebellum. Currently, risk factors for developing se-
vere clinical illness are unknown. However, it is clear that 
WNV central nervous system (CNS) disease occurs with 
increased frequency in immunocompromised individuals 
and the elderly[10-12].

Innate immune responses are believed to be crucial 
for the control of  WNV replication, as a potent and rapid 
type Ⅰ interferon (IFN) response is essential for the suc-
cessful control of  WNV infection in mice[13]. As a first 
line of  defence, the host cell senses the presence of  the 
virus by pathogen recognition receptors (PRRs), such as 
toll-like receptors (TLRs) and retinoic acid-inducible gene 
(RIG)-Ⅰ like receptors. Binding of  viral components to 
these receptors activates adaptor proteins, which in turn 
activate transcription factors, and induces a release of  sol-
uble mediators, including type Ⅰ IFNs[14,15]. Members of  
RIG-Ⅰ like receptor family (RIG-Ⅰ and melanoma differ-
entiation-associated gene, MDA5) and TLR family (TLR3 
and TLR7) are the major innate host sensors of  WNV 
infection. RIG-Ⅰ and MDA5 are cytosolic RNA helicases 
that recognize ssRNA and dsRNA. RIG-Ⅰ and MDA5 
transmit their signal through a common adaptor mol-
ecule, IFN-promoter stimulator (IPS)-1, thus activating 
transcription factors such as IFN regulatory factor (IRF) 
3 and IRF7 to induce the transcription of  type Ⅰ IFN and 
antiviral genes. TLR3 and TLR7 are expressed primarily 
in endosomes and are activated by dsRNA and ssRNA, 
respectively. Engagement of  TLR7 leads to the activation 
of  a signalling pathway involving an intracellular adaptor 
protein, myeloid differentiation primary response gene 
88 (MyD88), the activation of  IRF7 and the induction of  
type Ⅰ IFNs. TLR3 activates the adaptor molecule TIR-
domain-containing adapter-inducing IFN-β and induces 
alternative pathways that lead to the activation of  the 
transcription factors IRF3 and nuclear factor κB (NF-κB), 
which consequently induce type Ⅰ IFNs and inflamma-
tory cytokines, respectively.

Antigen presenting cells (APCs) are among the first 
cells that encounter the virus after infection; WNV is 
injected intradermally by a mosquito bite and most likely 
initially replicates in Langerhans dendritic cells (DCs). 
The infected Langerhans cells migrate to draining lymph 
nodes from which the virus enters the bloodstream[16]. 
Primary viremia disseminates the virus to the reticuloen-
dothelial system (macrophagic cells), where replication 
further augments viremia (secondary viremia), followed 
by spread in various organs including the brain. Mono-
cytes and polymorphonuclear leukocytes (PMNLs) are 

readily recruited and activated following infection in ro-
dent models[17]. 

Thus, cells of  the innate immune system and their 
receptors are the first to encounter WNV after infection 
in the host, and the interaction between the virus and 
factors of  innate immunity likely determines the outcome 
of  the infection. In addition, macrophages (Mφs) consti-
tute an important fraction on the inflammatory infiltrate 
observed in the CNS of  WNV infected patients[18], sug-
gesting that cells of  innate immunity can also contribute 
to immunopathology in the course of  WNV infection.

Interplay between cells of innate 
immunity and WNV 
Despite the potentially critical role of  APCs during WNV 
infection, few studies have addressed the effect of  WNV 
infection on APCs obtained from humans. Human my-
eloid DCs (mDCs) have been shown to be among the 
targets of  WNV infection. Production of  tumor necrosis 
factor (TNF)-α and IFN-α in infected mDCs requires 
viral replication[19,20] (Figure 1). Conversely, plasmacytoid 
DCs (pDCs) are resistant to infection but are clearly acti-
vated upon contact with the virus through stimulation of  
endosomal TLRs. Upon activation with WNV, pDCs re-
lease higher amount of  IFN-α than mDCs[19]. It has been 
demonstrated that glycosylated strains of  WNV use DC-
SIGN (a C-type lectin that binds high-mannose N-linked 
glycans present on the surface of  viral glycoproteins) as 
an attachment receptor to bind mDCs, leading to en-
hanced infection in cell cultures[20]. This finding suggests 
that glycosylated strains of  WNV, mainly belonging to 
lineage I, exhibit an increased capability to infect mDCs 
and thus higher pathogenicity. 

Human monocytes and monocyte-derived Mφs also 
undergo productive infection upon in vitro incubation 
with WNV[21]. Interestingly, these cells are infected with-
out gross cytopathic effects, suggesting that they possess 
effective defence mechanisms against WNV[22]. The lack 
of  cell deterioration upon WNV infection in monocytes/
Mφs also suggests that these cells play a significant role 
as a reservoir in initial (or secondary) viral replication 
and dissemination. Upon WNV infection, monocyte-
derived Mφs release interleukin (IL)-8, IFN-α, IFN-β and 
TNF-α[22,23]. However, in Mφ cultures activated by LPS 
and IFN-γ, WNV infection down-modulates the secre-
tion of  IL-1β and IFN-β and inhibits the JAK/STAT 
signalling pathway[23], as a potential strategy employed by 
the virus to evade the host response (see below). 

Notably, monocyte-derived Mφs from elderly individ-
uals show increased susceptibility to WNV infection and 
augmented expression levels of  TLR3 upon infection, as 
compared to young subjects. Once stimulated with the 
virus, cells from the elderly also secrete higher levels of  
IFN-β and IL-6[24]. This in vitro model of  WNV infection 
suggests that the age-associated impairment of  the innate 
immune response to WNV may contribute to increased 
severity of  this viral infection in older individuals. 
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IFNs and WNV
Type Ⅰ IFNs represent a major innate immune control 
and comprise various IFN-α and one IFN-β, which are 
secreted by leukocytes and parenchymal cells during viral 
infections[25]. These cytokines induce an antiviral state by 
up-regulating genes with direct and indirect antiviral func-
tions. Type Ⅰ IFNs also link innate and adaptive immunity 
by inducing DC maturation and by directly activating B 
and T cells[26].

As mentioned in the previous section, human mDCs, 
pDCs and monocyte-derived Mφs secrete type Ⅰ IFNs 
upon contact with WNV[19-21]. The role of  these antivi-
ral mediators upon WNV infection and the role of  the 
pathways involved in IFN secretion have been elucidated 
only in animal models. Studies in mice indicate that 
type Ⅰ IFNs play a crucial role in the early control of  
WNV infection. Mice lacking IFN-α/β receptor are high-
ly vulnerable to WNV, and uncontrolled viral replication 
occurs with rapid dissemination to the CNS and 100% 
mortality[13]. In addition, it has been observed that pre-
treatment or treatment with type Ⅰ IFNs in vitro inhibits 
WNV replication in Vero cells[27,28]. Additionally, treatment 
of  primary murine neurons in vitro with IFN-β either 
before or after infection increased neuronal survival inde-
pendent of  its effect on WNV replication[13]. Altogether, 
these findings in animals and in vitro cultured cells support 
a crucial role for type Ⅰ IFNs in the early phases of  WNV 
infection by preventing viral replication and protecting 
infected neurons from death. 

Cells recognize WNV and respond by producing 
type Ⅰ IFNs through the endosomal receptors TLR3 and 
TLR7, thus activating the adaptor MyD88 and transcription 
factors IRF3 and IRF7 (Figure 2). This response has been 
demonstrated in rodent models of  infection, as mice with 
genetic defects in any one of  these receptors[29,30], adaptor[31] 
or transcription factors[32,33] have a higher mortality rate 
with experimental WNV infection (reviewed in[34]). 

WNV RNA can also induce the release of  type Ⅰ IFNs 
by triggering RIG-Ⅰ, which appears to be involved in 

the early phases of  response to the virus[35]. MDA5, be-
longing to the RIG-Ⅰ receptor family, is also involved 
in sensing WNV RNA; abrogation of  both RIG-Ⅰ and 
MDA5 pathways blocks activation of  the antiviral re-
sponse to WNV, while such an effect is not as evident if  
only one of  the two pathways is ablated[36]. In line with 
these findings, infected mice lacking IPS-1, the central 
adaptor for RIG-Ⅰ and MDA5, display uncontrolled 
inflammation that is coupled with the failure to protect 
against WNV infection[37]. Thus, TLR3 and TLR7, as well 
as RIG-Ⅰ and MDA5, are activated by WNV and appear 
to induce redundant IFN-mediated responses that trigger 
downstream effective adaptive responses. 

The regulation of  IFN responses could be more com-
plex than indicated by the present understanding. Increasing 
evidence indicates a crucial antiviral role for the inflamma-
some, a cytoplasmic multi-protein complex that recruits 
inflammatory caspases and triggers their activation[38]. 
For example, recent evidence shows that caspase-12, an 
important component of  the inflammasome signalling, 
plays an important role in WNV infection by influencing 
RIG-Ⅰ activity and type Ⅰ IFN release[39]. The role of  
other inflammasome complex proteins in influencing the 
release of  type Ⅰ IFNs during WNV infection has not 
been investigated. 

IFN type Ⅱ, i.e., IFN-γ, is mainly produced by CD8+ 
T cells, it is also secreted by γδ T cells and natural killer 
cells and may contribute to innate immune control of  vi-
ral infections. In vivo, IFN-γ restricts early WNV dissemi-
nation to the CNS; mice deficient in either IFN-γ or the 
IFN-γ receptor show a higher peripheral viral load, aug-
mented entry into the CNS and increased lethality[40,41]. 
Notably, no major deficits of  adaptive immunity were 
found in these studies, suggesting that IFN-γ plays mainly 
an early innate role in the control of  WNV infection. 
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In recent years, a third type of  IFN has been described. 
Originally termed IL-28a/b and IL-29, these proteins have 
been re-classified as IFN-λs, based on the similar modes 
of  induction and the antiviral activities that they share with 
the type Ⅰ and type Ⅱ IFNs[25]. In support to their anti-
viral role, IFN-λ3 has recently been identified as key cy-
tokine in the control of  a flavivirus infection, i.e., hepatitis 
C virus[42]. The role of  these mediators during the course 
of  other flaviviruses is relatively unknown; only one study 
has examined the role of  IFN-λ in the control of  WNV 
to date. Similar to type Ⅰ IFN, IFN-λ prevents infection 
by WNV virus-like particles in susceptible cells but fails to 
inhibit viral replication in cells infected prior to the addi-
tion of  this cytokine[43]. 

Inhibition of IFN-induced responses 
by WNV
WNV has successfully evolved countermeasures to over-
come host innate immunity and productively infect host 
cells by using a combination of  two strategies: (1) passive 
evasion of  the interaction with cellular PRRs and/or (2) 
active inhibition of  different steps of  the intracellular path-
ways that lead to type Ⅰ IFN production and signalling.

Passive evasion of PRR activation
WNV may regulate the time of  induction of  the host cell 
antiviral response by modulating the activation of  IRF3 
during early phases of  infection. WNV does not actively 
inhibit the RIG-Ⅰ pathway but rather delays IRF3 activa-
tion, possibly by preventing host cells from sensing viral 
replication shortly after infection[35,44], thus allowing the 
virus to replicate to high titers before the host cells can 
mount an effective antiviral response. 

Active inhibition of type Ⅰ IFN production and signalling
WNV attenuates type Ⅰ IFN response by targeting mul-
tiple steps of  the induction and signalling cascade, and 
a number of  nonstructural viral proteins (NSs), such as 
NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 have 
been implicated in this process[45,46]. WNV NS1, a protein 
secreted from infected cells, inhibits TLR3 signalling by 
preventing IRF3 and NF-κB nuclear translocation[47], and 
NS2A has been identified as an inhibitor of  IFN-β gene 
transcription[48]. 

WNV also targets essential elements of  the IFN sig-
nalling pathway and thus prevent the induction of  antivi-
ral genes. Type Ⅰ IFN signalling initiates when IFNα/β 
bind to type Ⅰ receptors (IFNRs) on the cell surface. 
This process results in the activation of  JAK1 and Tyk2, 
phosphorylating STAT1 and STAT2, which, in association 
with IRF9, form a heterotrimeric complex known as IFN-
stimulated gene (ISG) factor 3. This complex translocates 
to the nucleus where it induces hundreds of  ISGs. The 
expression of  WNV NSs prevents the accumulation of  
IFNR1 in multiple cells through a non-canonical protein 
degradation pathway, contributing to the inhibition of  the 
IFN response[49].

The NS5 codified by the virulent lineage Ⅰ strains of  
WNV can function as an efficient IFN antagonist by pre-
venting the phosphorylation and nuclear translocation of  
STAT1[50], while NS4B inhibits JAK1 and TyK2 phosphor-
ylation thus blocking the STAT1 and STAT2 signalling cas-
cade and the subsequent ISG expression. WNV infection 
actively promotes a redistribution of  cholesterol within 
the cells, which contributes to the down-regulation of  the 
IFN-stimulated JAK-STAT antiviral response to infection 
and thus facilitates viral replication and survival[51]. Fur-
thermore, characteristic membranous structures induced 
during WNV replication are connected to viral immune 
evasion mechanisms, providing partial protection from the 
IFN-induced antiviral protein MxA[52].

However, viral control of  the IFN signalling cascade is 
not complete, as demonstrated by occurrence of  IFNα/
β induction and ISG expression during WNV infection. 
WNV may attenuate or modulate the innate antiviral re-
sponse, and the ability of  only pathogenic lineage I WNV 
isolates to inhibit the JAK/STAT signalling pathways 
indicates the importance of  this fine modulation as a fea-
ture of  WNV pathogenesis[53].

Role of innate immunity in the 
pathogenesis of the neuroinvasive 
form of WNV infection
Despite its severity, the pathogenesis of  the neuroin-
vasive form of  WNV infection remains incompletely 
understood. Knowledge in this field relies almost com-
pletely on studies in murine models, while the roles of  
innate mechanisms in inducing protection or causing 
pathology in human WNV disease are still poorly known. 
The increased risk of  severe WNV infections for immu-
nosuppressed patients[12,54] and the successful infection 
outcome in a transplant recipient by the modulation of  
the immunosuppressive regimen[55] suggest that an intact 
immune system is essential for the control of  WNV in-
fection. On the other hand, it is generally recognized that 
a major hallmark of  WNV pathogenesis is neuroinflam-
mation[56,57], which is caused by exaggerated innate and 
acquired immune responses. 

WNV is believed to first multiply in mDCs and mono-
cytes/Mφs before spreading to the brain[58], and recent 
evidence indicates that early viral replication in myeloid 
APCs has a crucial pathogenetic role; silencing such rep-
lication in Mφs and mDCs effectively suppresses virus-
induced encephalitis in mice[59]. Mechanisms underlying 
this clear-cut effect could rely on (1) an increased viral 
burden induced by infected APCs, which would be suf-
ficient for the virus to cross the blood-brain barrier, or 
(2) WNV-infected Mφs acting as “Trojan horses” to carry 
the virus into the brain[60]. Accumulation of  inflammatory 
monocytes into the brain and their differentiation to Mφs 
and microglia can also worsen neuroinflammation and 
CNS injury, as demonstrated in a murine model of  non-
lethal WNV infection[61]. As an additional pathogenetic 
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role of  infected APCs, recognition of  WNV nucleic acid 
in monocytes/microglia by TLR3 leads to the produc-
tion of  TNF-α, which results in a loss of  tight junctions, 
allowing the entry of  WNV and immune cells into the 
perivascular space of  the brain in mice[56]. Further, in-
creased levels of  macrophage migratory inhibitory factor 
(MIF) (a potent pro-inflammatory mediator and chemo-
tactic factor that is produced by activated Mφs) have been 
found in the serum and CSF of  WNV-infected patients, 
and abrogation of  MIF in WNV-infected mice mitigates 
clinical disease by inducing a remarkably reduced number 
of  infiltrating WNV-infected leukocytes in the CNS[62]. 
Thus, activation of  cells of  the monocyte/Mφ system 
by WNV appears to result in important neuropathologi-
cal consequences, and exaggerated innate responses may 
cause inflammation, altering the blood brain barrier per-
meability and allowing the virus to enter the CNS. 

On the other hand, early monocytosis induced by 
WNV in a murine model of  infection appears to be pro-
tective against lethal disease[63]. Further murine studies on 
WNV infection indicate a protective role for Mφs[64] and 
for TLR3, the latter being essential for restricting WNV 
replication in neurons and protecting the host from lethal 
encephalitis[29]. Finally, CCR5, a chemokine receptor ex-
pressed on Mφs and T cells, is a critical antiviral agent and 
survival determinant in WNV infection in mice that acts 
by regulating the trafficking of  leukocytes to the infected 
brain[65]. These controversial studies suggest that mono-
cyte/Mφ involvement and TLR simulation may contrib-
ute to inducing protection or causing immunopathology 
during WNV neuroinvasive disease in mice. 

In addition to monocytes/Mφs, other cells belong-
ing to the innate immune system may contribute to the 
pathogenesis of  neuroinvasive WNV infection. For ex-
ample, PMNLs predominate in the CSF of  patients with 
WNV meningitis and encephalitis in 40% of  cases[8] and 
are recruited shortly after infection into the CNS in an 
experimental model of  WNV infection[17]. In infected 
mice, the expression of  PMNL-recruiting chemokines 
was dramatically elevated in early phases after infection 
and PMNLs were quickly recruited to sites of  WNV in-
fection. Depletion of  PMNLs prior to WNV challenge 
paradoxically lowered viremia and enhanced survival[66], 
suggesting that these cells have a pathogenic role in the 
early phases of  WNV infection. Mechanisms that under-
lie the contribution of  PMNLs to the pathogenesis of  
WNV infection may include the efficient replication of  
WNV in PMNLs; these cells may act as a virus reservoir, 
as PMNLs are the predominant cell type recruited to the 
site of  infection and carry the highest amount of  virus[66]. 

As part of  the innate response, two important cell 
types within the CNS respond to infection, i.e., microglia 
and astrocytes. These cells have been found to be in-
fected in tissue sections from patients with WNV menin-
goencephalitis[67]. WNV-infected human astrocytes are 
capable of  releasing matrix metalloproteinase 1, 3 and 9, 
which contribute by disrupting the blood brain barrier 
and degrading tight junction proteins[68]. 

In addition to glial cells, which are classically consid-
ered to be the predominant source of  pro-inflammatory 
mediators in the CNS during WNV infection, WNV-
infected neurons release pro-inflammatory mediators, 
contributing to neuronal cell death and glial cell activa-
tion[69]. Additionally, pro-inflammatory chemokines, such 
as IFN-γ inducible protein 10, monocyte chemoattractant 
protein-5 and monokine induced by IFN-γ, are important 
triggers of  inflammation in the brain, and their early up-
regulation in the CNS is followed by the up-regulation 
of  TNF-α at the same site in a rodent model of  WNV 
infection[57]. Further, treatment of  infected neuronal cells 
with antibodies blocking TNF-α and other pro-inflam-
matory mediators results in a significant reduction of  
WNV-mediated neuronal death[69], suggesting that such 
mediators play a major role in the pathogenesis of  WNV 
infection in the CNS. 

However, pro-inflammatory factors also possess a 
crucial role in defence against WNV, and leukocyte traf-
ficking into the brain induced by TNF-α protects mice 
against lethal infection[70]. Altogether, contradictory find-
ings regarding the role of  innate responses to WNV 
infection in mice have been reported; early responses ap-
pear to be beneficial or harmful depending on the model. 
Different experimental settings, including the virus pas-
sage history, virus inoculation route and dose, time be-
tween the infection and the experiments and potential di-
verse inflammatory response to WNV in different murine 
strains, may account for these contradictory findings. 
Early control of  WNV by innate responses would likely 
effectively restrict WNV dissemination, while continuous 
triggering and/or excessive reactivity of  innate receptors 
to the virus may contribute to enhanced inflammation, 
which is known to be a main contributor to WNV neu-
ropathology as a result of  CNS invasion. 

Conclusion
The innate immune response is considered to be a major 
controller of  WNV replication, a notion that is also sup-
ported by the fact that the virus has developed numer-
ous mechanisms to escape the control of  antiviral IFNs. 
However, exaggerated innate immune responses appear to 
be detrimental and lead to neuropathology. Importantly, 
the role of  aging in enhancing the WNV-induced innate 
immune response has recently been clarified in an in vitro 
model of  infection[24]. Nevertheless, the mechanisms trig-
gering protection or pathology during natural WNV infec-
tion are largely unclear.

The interplay between WNV and innate responses 
has been mainly studied in animal models, while studies 
on the effect of  WNV on human cells of  innate im-
munity are restricted to in vitro cultured cells. All of  the 
abovementioned models have a common limitation, i.e., 
the transmission of  the virus does not occur by a typical 
route. This limitation leads to two major biases: (1) a lack 
of  transmission of  saliva and potential symbionts with 
the mosquito bite, and (2) a lack of  “natural” stimulation 
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of  Langerhans DCs and/or antimicrobial peptides at the 
inoculation site. Thus, further immunological studies in 
individuals undergoing natural infection are required to 
better understand the immunopathogenesis of  WNV dis-
ease, as elucidating the immunopathological mechanisms 
is essential to inform novel approaches to combat this 
infection. 
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systems. Importantly, recent studies using recombinant 
virus systems and animal infection models are begin-
ning to clarify the importance of certain mechanisms of 
IFN antagonism to in vivo  infections, providing impor-
tant indications not only of their critical importance to 
virulence, but also of their potential targeting for new 
therapeutic/vaccine approaches.

© 2013 Baishideng. All rights reserved.
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Core tip: The paramyxoviruses are a family of > 30 vi-
ruses that variously infect humans, other mammals and 
fish to cause diverse outcomes, ranging from asymp-
tomatic to lethal disease, with the zoonotic paramyxo-
viruses Nipah and Hendra showing up to 70% case-
fatality rate in humans. Here, we review the interferon 
antagonism strategies of paramyxoviruses, highlighting 
mechanistic differences observed between individual 
species and genera. We also discuss potential sources 
of this diversity, including biological differences in the 
host and/or tissue specificity of different paramyxovi-
ruses, and potential effects of experimental approaches 
that have largely relied on in vitro  systems.
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Abstract
The paramyxoviruses are a family of > 30 viruses that 
variously infect humans, other mammals and fish to 
cause diverse outcomes, ranging from asymptomatic 
to lethal disease, with the zoonotic paramyxoviruses 
Nipah and Hendra showing up to 70% case-fatality 
rate in humans. The capacity to evade host immunity 
is central to viral infection, and paramyxoviruses have 
evolved multiple strategies to overcome the host inter-
feron (IFN)-mediated innate immune response through 
the activity of their IFN-antagonist proteins. Although 
paramyxovirus IFN antagonists generally target com-
mon factors of the IFN system, including melanoma dif-
ferentiation associated factor 5, retinoic acid-inducible 
gene-I, signal transducers and activators of transcrip-
tion (STAT)1 and STAT2, and IFN regulatory factor 
3, the mechanisms of antagonism show remarkable 
diversity between different genera and even individual 
members of the same genus; the reasons for this di-
versity, however, are not currently understood. Here, 
we review the IFN antagonism strategies of paramyxo-
viruses, highlighting mechanistic differences observed 
between individual species and genera. We also discuss 
potential sources of this diversity, including biological 
differences in the host and/or tissue specificity of dif-
ferent paramyxoviruses, and potential effects of experi-
mental approaches that have largely relied on in vitro  
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interferons (IFNs) as the principal mediators of  mamma-
lian innate antiviral responses, it has become increasingly 
evident that infection by viruses depends on the capac-
ity to counteract host cell IFN responses. Viruses have 
evolved diverse strategies to antagonise IFN responses, 
often by hijacking and modifying cellular regulatory path-
ways through the activity of  specific viral IFN-antagonist 
proteins. Among the best-studied viruses in this respect 
are the paramyxoviruses, which include established hu-
man pathogens such as measles virus (MeV) and mumps 
virus (MuV), and emerging zoonotic viruses such as 
the henipaviruses Nipah virus (NiV) and Hendra virus 
(HeV). Although effective vaccines are available for MeV, 
it remains a leading cause of  fatalities in children, with 
almost 140000 human deaths globally in 2010[1], while the 
henipaviruses show remarkable pathogenicity, with case-
fatality rates between 40%-70% in humans[2-5].

The paramyxoviruses are a subfamily of  the Paramyxo-
viridae family [order Mononegavirales (MNV)] of  enveloped, 
non-segmented negative-strand RNA viruses (NNSV), 
which also includes the Pneumovirus subfamily[6,7]. Based 
largely on antigenic cross-reactivity and neuramidase ac-
tivity paramyxoviruses are currently classified into seven 
genera[6,7]: Rubulavirus, Avulavirus, Henipavirus, Morbillivirus, 
Respirovirus, Ferlavirus and Aquaparamyxovirus (Table 1). 
Members of  the paramyxovirus family show diverse tis-
sue tropism and infect a variety of  species in a fashion 
that does not appear to be specific to genus classification 
(Table 1). Because their relatively small genomes lack ded-
icated IFN-antagonist genes, paramyxoviruses generally 
encode IFN-antagonists as accessory protein isoforms 
encoded within their conserved P genes, another factor 
in genus classification[6]. These IFN antagonists broadly 
target several members of  a select group of  signalling 
molecules of  the IFN system, including melanoma differ-
entiation associated factor 5 (MDA5), retinoic acid-induc-
ible gene-Ⅰ (RIG)-Ⅰ, IFN regulatory factor (IRF)-3, and 
signal transducers and activators of  transcription (STAT)1 
and STAT2, but use diverse mechanisms including pro-
teosomal degradation, inhibition of  phosphorylation, and 
subcellular mis-localisation. Intriguingly, the mechanisms 
can vary significantly between different genera and, in 
some cases, different species of  the same genera.

Here we review the mechanistic data relating to para-
myxovirus IFN antagonism with a focus on common and 
distinct features within the family, before discussing pos-
sible origins of  the diversity within the family. Although 
much of  the available research on paramyxovirus IFN 
antagonism has been restricted to in vitro studies, recent 
findings using in vivo infection and recombinant virus 
systems point to a pivotal role in pathogenicity that may 
provide potent targets for the development of  new vac-
cines/antiviral therapeutics.

PARAMYXOVIRUS P GENE
While viruses with large genomes can encode dedicated 

IFN-antagonist proteins, the high error rates of  the RNA-
dependent RNA polymerase means that RNA viruses gen-
erally have restricted genome sizes, with the paramyxovirus 
genome containing only six principal genes to express es-
sential structural/replication factors, specifically M (matrix), 
G/HN/H (attachment), F (fusion), L (polymerase), N/NP 
(nucleocapsid) and P (phosphoprotein) (Figure 1A). Thus 
the IFN-antagonists of  RNA viruses are often encoded as 
“accessory” protein isoforms within one or more of  the 
conserved genes[8,9]; in paramyxoviruses up to 9 proteins 
are encoded in the P gene, including V, C, and P proteins 
and a protein variously named W, D or I, which have es-
tablished IFN antagonist functions. 

Isoform expression from the paramyxovirus P gene is 
variously achieved by a conserved RNA-editing mecha-
nism, and through the use of  internal start codons and 
alternate open reading frames (ORFs). RNA editing is 
mediated by the viral RNA-dependent RNA polymerase 
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Table 1  Genus classification and major host species of the 
Paramyxovirinae subfamily

Genus Virus Major host

Morbillivirus Measles virus1 Human
Canine distemper virus Canine
Rinderpest virus Bovine
Peste-des-petits-ruminants virus Caprine
Phocine distemper virus Phocine
Cetacean morbillivirus Cetacean

Rubulavirus Mumps virus1 Human
Parainfluenza virus 5 (previously, 
Simian virus 5)

Human

Human parainfluenza virus 2, 4a 
and 4b

Human

Mapuera virus Chiropteran2

Porcine rubulavirus Porcine
Respirovirus Sendai virus1 Murine

Human parainfluenza virus 1, 3 Human
Bovine parainfluenza virus 3 Bovine

Avulavirus Newcastle disease virus1 Avian
Avian paramyxoviruses 2-9 Avian

Henipavirus Hendra virus1 Chiropteran/
equine 
/human3

Nipah virus Chiropteran/
porcine/
human3

Cedar virus Chiropteran2

Aquaparamyxovirus Atlantic salmon paramyxovirus1 Piscine
Ferlavirus Fer-de-Lance virus1 Serpentine
Unassigned J-virus Murine

Beilong virus Murine
Tailam virus Murine
Menangle virus Porcine
Tioman virus Chiropteran2

Tupaia virus Chiropteran2

Salem virus Chiropteran2

Mossman virus Chiropteran2

Nariva virus Chiropteran2

Pigeon paramyxovirus 1 Avian

1Type species for each genus; 2Virus isolated from chiropteran hosts, but 
pathology and broader host range is unknown; 3Virus is highly pathogenic 
in humans, but humans are not a major host.
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through the insertion of  additional non-coded guanosine 
(G) nucleotides into P gene mRNA transcripts at a pre-
determined purine rich editing site. This causes a +1 or 
+2 frameshift in the downstream ORF[10-12] which results 
in the generation of  two or three distinct proteins (P, V 
and W/D/I), which have common N-terminal sequences 
but unique C-termini (Figure 1B). A comparable editing 
process is used by Ebolavirus of  the Filovirus family to 
produce isoforms from its G gene[13]. This mechanism is 
conserved among all paramyxoviruses examined except 
human parainfluenza virus (hPIV) 1 and the recently dis-
covered cedar virus[14,15]. 

P protein, the polymerase cofactor essential to genome 
transcription/replication processes, is usually generated 
from the unedited ORF as the principal P gene prod-
uct, with the production of  edited RNA varying in a 
broadly genus-specific fashion (Figure 1B), although the 
+1 frameshift commonly encodes V protein and the +2 
frameshift W/D/I[16,17]. Members of  the Rubulavirus ge-
nus uniquely encode V protein in the unedited transcript, 
with P protein expression requiring editing (Figure 1B)[9], 
with c. 63% of  the P gene mRNA transcribed unedited 
by the rubulavirus MuV, indicative of  a particular require-
ment for high levels of  V protein by these viruses[9]. The 
henipaviruses have the highest editing frequency of  the 

paramyxoviruses: 66% to 94% of  transcripts are edited, 
compared with c. 42% for MeV (Morbillivirus genus), and 
c. 31% for Sendai virus (SeV) (Respirovirus genus)[18-21]. 
Henipaviruses insert up to 11 additional G nucleotides[18], 
and in NiV-infected cells P transcripts are detected at the 
highest levels (c. 60%-100%) early in infection, with V and 
W transcripts peaking between 9.5-24 h post-infection (up 
to 59% and 37% respectively). This suggests that editing 
is regulated to enable particularly important roles for V 
and W late in infection[18], although other factors such as 
mRNA/protein stability are likely to affect the final levels 
of  protein.

Henipaviruses, morbilliviruses, and respiroviruses use 
a start codon within the P gene in an alternate ORF to 
produce a C protein (Figure 1B), while the SeV P gene 
encodes up to five proteins other than P, V and W: four 
C proteins encoded by overlapping sequences in the +1 
reading frame, and X protein, a truncated version of  P 
protein translated from an internal start site[11,22,23]. HeV, 
but not NiV, encodes a putative SB (short basic) protein, 
homologous to SB of  several viruses of  other MNV 
families[21]. These differences in P gene coding capacity in-
dicate different requirements of  specific viruses for acces-
sory proteins, possibly due to host/tissue specific aspects 
of  IFN signalling (see below).

The V proteins are generally considered the principal 
IFN-antagonists of  paramyxoviruses, and are the best 
studied of  the P gene accessory proteins. However, there 
is increasing evidence that P, W, or C proteins of  para-
myxoviruses including NiV, MeV, and SeV play important 
roles in IFN antagonism by distinct mechanisms. Thus, it 
seems that most if  not all P gene accessory proteins have 
evolved for roles in immune evasion as important patho-
genicity factors[24-28]. Consistent with important roles in in-
fection, V proteins show high conservation in the unique 
C-terminal region (Figure 2)[29-31], including absolute 
conservation of  seven conserved cysteine residues and a 
histidine, which form a zinc-finger domain (highlighted in 
Figure 2). In the parainfluenza virus 5 (PIV5) V protein 
(Rubulavirus genus), two zinc atoms are coordinated by 
two loops, incorporating V residues H171, C190, C215, 
C218, and C194, C206, C208, C211 respectively[31,32], and 
mutations of  these residues disrupt certain IFN inhibi-
tory functions (see below), although the role of  zinc-
binding is not known. The C-terminal region is also im-
portant to the formation of  oligomeric structures of  V 
proteins and certain innate immune factors important to 
IFN antagonism[33]. 

TYPE Ⅰ IFN SYSTEM
Mammalian cell responses to infection depend on the 
detection of  pathogen-associated molecular patterns 
(PAMPs) produced during microbial infection and rep-
lication, such as single-stranded RNA (ssRNA), double-
stranded RNA (dsRNA) and RNA with exposed/un-
capped 5’ triphosphates that are generated by RNA 
viruses[34,35]. Detection of  virus components is principally 
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Respirovirus P/V/C  gene

+0 P
+1 V

Morbillivirus P/V/C  gene
C

+0 P
+1 V

C (1-4)

+2 W/D

Avulavirus P/V  gene
+0 P
+1 V
+2 W

Avulavirus P/V  gene
+0 V
+1 W/I
+2 P

Henipavirus P/V/C gene
+0 P
+1 V

C

+2 W

RNA editing site

B

A
N or NP P/V/C M F G, HN or H L

Figure 1  Coding strategies of paramyxovirus P genes. A: Genome organi-
sation of the Paramyxovirinae subfamily; B: Paramyxoviruses express multiple 
proteins from the P gene through RNA editing to insert additional non-coded 
G nucleotides into P gene transcripts at the editing site (indicated), causing a 
frameshift in the downstream open reading frame (ORF) to generate distinct 
C-termini. Editing strategies of the 5 best-studied genera are shown, with pro-
teins produced from unedited (+0), or edited (+1 or +2 frameshift) mRNA indi-
cated below the P gene. Several members of the henipavirus, respirovirus and 
morbillivirus genera, but not the rubulaviruses or avulaviruses, produce one or 
more C proteins by translation from internal start codon(s) in alternate ORF(s) 
(indicated as a white bar above the P gene). 



mediated by three types of  PAMP-recognition-receptors 
(PRRs): Toll-like receptors (TLRs) and RIG-Ⅰ-like recep-
tors (RLRs), thought to be the main receptors responsible 
for type Ⅰ IFN (IFNα/β) induction, and nucleotide-
oligomerisation domain-like receptors[36].

TLRs are trans-membrane proteins expressed at the 
plasma membrane or on intracellular structures such as 
endosomes and the endoplasmic reticulum[37,38] to detect 
extracellular viral nucleic acids such as dsRNA (TLR3)[37-40] 
and G/U-rich ssRNAs (TLR7)[38]. By contrast, the almost 
ubiquitously expressed RLR helicases RIG-Ⅰ and MDA5 
detect viral dsRNA in the cytoplasm of  infected cells[36,41-47]; 
RIG-Ⅰ also recognises cytoplasmic 5’ tri-phosphorylated 
and uncapped viral ssRNA[48-50]. RNA-activated MDA5 
and RIG-Ⅰ interact with the mitochondrial membrane-
associated adaptor protein IFNβ promoter stimulator 1 
(IPS-1, also known as MAVS, VISA, or CARDIF) via their 
caspase activation and recruitment domains (CARDs) to 
trigger downstream signalling (Figure 3). TLRs activate 
distinct pathways (Figure 3), but RLR and TLR signalling 
converges with the phosphorylation of  the constitutively 
expressed cytoplasmic transcription factors IRF-3, as well 
as nuclear factor κB (NF-κB), causing their transloca-
tion into the nucleus to activate the transcription of  early 
type Ⅰ IFNs (IFNβ and IFNα4)[36,51-56]. Most human cell 
types can produce type Ⅰ IFNs in response to infection, 
with “professional” IFN-producing immune cells includ-
ing plasmacytoid DCs and macrophages being major pro-
ducers during infection, due to constitutive expression of  
IRF-7 (which requires induction in other cell types) and the 
use of  alternative TLR-9 pathways[57]. Importantly, para-
myxoviruses can induce type Ⅰ IFN expression through 

RIG-Ⅰ, MDA5 and TLR pathways (Figure 3)[42,58,59]. 
Type Ⅰ IFNs signal in autocrine and paracrine fashion, 

binding to the ubiquitously expressed IFNα/β receptor 
(IFNAR) to activate the Janus kinase (JAK)/STAT signal-
ling pathway (Figure 4), resulting in the phosphorylation 
and nuclear translocation of  STAT1 and STAT2 proteins. 
In the form of  a heterotrimeric complex [IFN-stimulated 
gene factor 3 (ISGF3)] which incorporates IRF-9, STAT1 
and STAT2 trans-activate hundreds of  IFN-stimulated 
genes, many of  which encode known antiviral proteins 
including protein kinase R, which inhibits translation of  
mRNAs[60]; 2’5’-oligoadenylate synthetase, which activates 
RNase L to effect degradation of  ssRNA[60]; Mx GTPase 
proteins that interfere with the growth of  certain viruses 
including the paramyxoviruses[52]; and PML, which has 
antiviral properties but with unresolved mechanisms[52]. 
IRF-7 is also up regulated to activate a positive feedback 
loop by forming heterodimers with IRF-3 (Figure 3) in-
ducing “late” IFNα subtypes for prolonged responses to 
infection[61]. 

Although signalling through STAT1/2 heterodimers 
is essential to type Ⅰ IFN responses, type Ⅰ IFN activates 
other complexes including homodimers of  STAT1 and 
STAT3 and STAT1-STAT3 heterodimers, which have dif-
ferent gene specificity or regulatory roles[62], and recent 
data suggest that STAT2 can also effect STAT1-indepen-
dent antiviral functions[63]. Thus, type Ⅰ IFN activation can 
affect diverse gene expression through distinct pathways. 
STATs are also critical to signalling by type Ⅱ and Ⅲ 
IFNs and various other cytokines[54,64] such as interleukin 
(IL)-6[65,66], presenting potential targets for viral inhibition 
of  several immune signalling systems.
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Figure 2  Conserved residues in the paramyxovirus V C-terminal domain. Paramyxovirus V protein C-terminal sequences are aligned with identical and similar 
residues highlighted. Asterisks indicate absolutely conserved histidine and cysteine residues involved in zinc-binding (see text for details). Residue numbers are 
indicated in the sequence titles. MuV: Mumps virus; PIV5: Parainfluenza virus 5; hPIV: Human PIV; MPRV: Mapuera virus; PoRV: Porcine rubulavirus; SeV: Sendai 
virus; MeV: Measles virus; CDV: Canine distemper virus; RPV: Rinderpest virus; PDV: Phocine distemper virus; NDV: Newcastle disease virus; APMV2: Avian para-
myxovirus 2; HeV: Hendra virus; NiV: Nipah virus; ASPV: Atlantic Salmon Paramyxovirus; FDLV: Fer-de-Lance virus; SalV: Salem virus; MoV: Mossman virus; MenV: 
Menangle virus; PPV-1: Pigeon paramyxovirus 1; BeV: Beilong virus; J-V: J-virus; TioV: Tioman virus; NarPV: Nariva virus.
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CELLULAR TARGETS OF 
PARAMYXOVIRUS IFN ANTAGONISTS
A large body of  evidence indicates that viruses/IFN-an-
tagonist proteins generally target multiple steps in the IFN 
system[52,67,68]. The requirement for this broad targeting 
probably relates to factors such as differences in the kinet-
ics of  viral IFN-antagonist expression compared with the 
mounting of  IFN responses, the contribution of  infected 
cells and non-infected professional IFN producing cells, 
and the overall antiviral potency of  the IFN system. Most 
paramyxoviruses can inhibit both IFN induction and sig-
nalling by targeting several cellular proteins. Intriguingly, 

although paramyxoviruses generally target common fac-
tors including MDA5, IRF-3 and STATs, the mechanisms 
of  inhibition show significant divergence between differ-
ent viruses.

Targeting of MDA5
The V proteins of  at least 13 paramyxoviruses tested bind 
to MDA5 to inhibit IFN induction[32,69-71]. Rinderpest vi-
rus (RPV) may differ, as it appears to use the C protein 
rather than V to inhibit MDA5 signalling, although the 
binding of  RPV V to MDA5 has not been examined[72]. 
The V proteins of  PIV5, hPIV2, MuV, MeV, NiV, HeV, 
SeV, Mapuera virus (MPRV), Menangle virus (MenV) 
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terns (PAMPs) generated during virus infection, such as dsRNA, are recognised by PRRs including endosomal/surface expressed Toll-like receptor 3 (TLR3) and cy-
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virus; MenV: Menangle virus; PoRV: Porcine rubulavirus; LGP2: Laboratory of genetics and physiology 2.
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and Salem virus (SalV) were shown to bind a specific re-
gion within/proximal to residues 701-816 of  the MDA5 
helicase domain, independently of  the MDA5 ligand 
dsRNA[70,71,73], thereby blocking dsRNA-MDA5 interac-
tion[70]. Although a recent study of  PIV5 V identified a 
change in the dsRNA-binding properties of  MDA5 when 
V was co-expressed, rather than a complete inhibition, 
suggesting that V may still allow non-cooperative dsRNA 
binding[74]. In addition, the V proteins of  PIV5, MenV, 
and SalV might have further specialist antagonistic func-
tions, as yeast two-hybrid assays indicated that they inter-
acted with multiple distinct regions of  MDA5[70]. A crystal 
structure of  PIV5 V in complex with MDA5 has dem-
onstrated that V unfolds the ATPase domain of  MDA5, 
which allows it to bind a region normally hidden beneath 
the helicase fold[74]. This unfolding disturbs the ATPase 
hydrolysis site, and it was shown using MeV V that in-
creasing concentrations of  V correlate with decreasing 
ATPase activity[74]. 

The MDA5 binding site has been mapped to the C-ter-
minal region of  the V proteins of  PIV5, MeV, MuV, New-
castle disease virus (NDV), NiV, HeV and SeV[32,69-71,75,76], 
with conserved residues of  the zinc-finger critical to the 
interaction. However, the precise molecular details dif-
fer between specific paramyxoviruses, with conserved 
cysteine residues in the large zinc finger loop, but not the 
smaller loop, of  PIV5 V and NiV V dispensable for an-
tagonism of  IFN induction[32], whereas MuV V and MeV 
V required all conserved cysteine residues[32]. A crystal 
structure of  MDA5:PIV5 has shown PIV5 V to have six 
residues (174, 175, 177, 179, 184 and 197) involved in 
forming the interface with MDA5, only some of  which 
are conserved with other paramyxovirus V proteins[74]. 

Targeting of RIG-Ⅰ via laboratory of genetics and 
physiology 2 protein
In contrast to MDA5, V proteins do not bind directly to 
RIG-Ⅰ, nor inhibit RIG-Ⅰ oligomersation or dsRNA-
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binding[70], which has been assumed to indicate that they 
have no direct role in inhibiting RIG-Ⅰ activation, but 
rather target downstream signalling components such as 
IRF-3 (see below). However, recent data has indicated that 
V proteins can inhibit RIG-Ⅰ by interaction with another 
cellular helicase, the laboratory of  genetics and physiology 
2 (LGP2)[73], via a region of  LGP2 homologous to the V 
protein binding region in MDA5[71,73]. The interaction ap-
pears to be dependent on the unique C-terminal domain 
of  V protein, as PIV5 P protein did not bind to LGP2, 
but the C-terminal domains of  MeV and MuV V proteins 
were necessary and sufficient for the interaction[71,73]. Im-
portantly, V proteins were able to inhibit RIG-Ⅰ signalling 
only in cells where LGP2 was coexpressed[73], and RIG-Ⅰ- 
LGP2 interaction was detected only in cells expressing V 
protein, suggesting that V facilitates or mediates this inter-
action to shutdown RIG-Ⅰ activation[73]. Because LGP2 is 
homologous to RIG-Ⅰ and MDA5, but lacks the CARD 
domain to activate downstream signalling, it is thought 
to be a negative regulator of  IFN induction, consistent 
with the inhibitory effects of  V protein expression. How-
ever, there is evidence that LGP2 can positively regulate 
IFN induction under some conditions[77-80], so the precise 
mechanisms of  V protein/LGP2 antagonism of  RIG-Ⅰ  
remain to be determined. 

Inhibition of IRF-3 activation
In addition to inhibition of  PRRs, paramyxoviruses target 
downstream signalling components to prevent activation 
of  IRF-3, potentially as a mechanism to inhibit signal-
ling by both RLRs and TLRs (Figure 3). Rubulaviruses 
including MuV, hPIV2, and PIV5 use V protein as a decoy 
substrate for the IRF-3 kinases TANK-binding kinase 1 
(TBK-1) and inhibitor of  NF-κB kinase (IKK)ε (Figure 3), 
both inhibiting phosphorylation of  IRF-3 and facilitating 
IKKε/TBK-1 polyubiquitination and degradation to pre-
vent further signalling[81]. 

Henipavirus V proteins do not cause IKKε/TBK-1 
degradation[81] or block TLR-3/IRF-3 dependent signal-
ling[76,81]. For henipaviruses, this appears to be a function 
of  the W protein, as NiV W, although having no effect 
on MDA5 signalling, inhibited TLR-3-dependent phos-
phorylation of  IRF-3[82]. It is possible this is due to bind-
ing and sequestration of  inactive IRF-3 in the nucleus 
where NiV W localises, to prevent interaction with 
cytoplasmic IKKε/TBK-1[82]. This model is consistent 
with the reported importance of  NiV W protein nuclear 
localisation to its inhibition of  TLR3-dependent IFN 
induction[82]. MeV C protein also inhibits IFN induction, 
correlating with its nuclear localisation[83], although MeV 
C does not affect IRF-3 directly, and appears to have an 
undetermined nuclear target[83]. By contrast, cytoplasmic 
NDV and SeV V protein bind directly to IRF-3, thereby 
preventing its nuclear translocation[76]. Thus, paramyxo-
virus targeting of  IRF-3-mediated signalling involves 
mechanisms that appear to differ significantly between 
species.

Targeting of STATs by rubulaviruses: degradation and 
mis-localisation
Almost all rubulavirus V proteins target STAT1 or STAT2 
for degradation by the host-cell proteosomal pathways[84-87] 
through assembly of  a V-degradation complex (VDC) 
containing V protein, STAT1, STAT2, and components 
of  an E3 ubiquitin ligase complex, specifically the UV 
damage-specific DNA binding protein 1 (DDB1), and 
Cul4A[88-92], which likely mediate the STAT1/2 polyu-
biquitination[93]. In vitro studies/crystallographic analysis 
of  the PIV5 V-DBB1 complex have indicated that both 
the N-terminal and unique C-terminal regions of  PIV5 
V are required for VDC assembly and STAT1 degrada-
tion[33,88,93,94]. Intriguingly, although some rubulaviruses 
target only STAT1 or STAT2 for degradation (see Figure 4  
for details)[95,96], both STATs are required, with the non-
degraded STAT acting as a “co-factor”[97,98]. 

The MuV V protein VDC polyubiquitinates and de-
grades not only STAT1, but also STAT3[84,99], such that 
MuV V protein can inhibit STAT3-dependent transcrip-
tional activation by IL-6 and v-Src[99]. MuV targeting of  
STAT3 is independent of  STAT1 targeting, as a point 
mutation abrogating targeting of  STAT3 did not affect 
STAT1[100], and STAT3 degradation does not require the 
STAT2 “cofactor”[99]. STAT3 targeting by the V protein 
of  MuV is also highly specific to this species, as the V 
proteins of  the rubulaviruses MPRV, hPIV2 and hPIV4 
do not reduce cellular levels of  STAT3[87,101,102].

Intriguingly, the V proteins of  hPIV4a and hPIV4b 
do not degrade STATs or measurably affect their localisa-
tion or phosphorylation, but still bind to STAT1, STAT2 
and other VDC components[101]. While these viruses 
appear to lack the ability to antagonise STAT signalling, 
the specific binding capacity of  the proteins is suggestive 
of  a previous role in STAT antagonism, which may have 
been lost due to changes in selective pressures[101].

MPRV V protein, by contrast with those of  other ru-
bulaviruses, binds to STAT1 and STAT2 to prevent their 
nuclear translocation without inducing degradation[102]. 
This is similar to reports for the V proteins of  the henipa-
viruses and morbilliviruses (see below), except in that 
MPRV V does not inhibit STAT1 phosphorylation and 
can bind to STAT1 and STAT2 independently[102]. A 
similar mechanism may be used by the MuV NP protein, 
which co-localises with STAT2 in punctate aggregates in 
the cytoplasm of  infected cells[99], indicating that NP pro-
tein, like P protein, can mediate both replication and IFN 
antagonist functions.

Targeting of STATs by avulaviruses
In common with rubulaviruses such as PIV5, the avula-
virus NDV targets STAT1, but not STAT2, for degrada-
tion. Deletion of  the C-terminal region of  V protein, or 
deletion of  both V and W C-termini by disruption of  
the RNA editing site, prevented STAT1 degradation by 
recombinant NDV[95]. As little difference was observed 
between virus deleted for both V and W, and virus deleted 
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for the V protein C-terminal domain alone, V protein 
appears to be the major player, and consistent with this, 
NDV V but not NDV W degraded STAT1 in transfected 
cells[95]. 

Targeting of STATs by morbilliviruses
MeV V binds STAT1 and STAT2 through distinct sites 
in its N-terminal and C-terminal regions[103], respectively, 
indicating that targeting of  STAT2 independently of  
STAT1 is important to this virus. MeV V protein does 
not degrade STATs[104], but has been reported by differ-
ent laboratories to use several distinct mechanisms, in-
cluding inhibition of  STAT nuclear translocation without 
affecting STAT phosphorylation[103-105], and inhibition 
of  STAT1 and STAT2 phosphorylation due to interac-
tion of  its N-terminal domain with JAK1[106,107]. Canine 
distemper virus (CDV) and RPV V proteins also inhibit 
IFN-activated STAT1/STAT2 nuclear import[108,109], with 
RPV V protein, but not that of  CDV, inhibiting STAT1/2 
phosphorylation. 

MeV V also interacts with IRF-9, which is likely to af-
fect ISGF3 formation (Figure 4)[104], and with STAT3[104], 
a property thus far restricted in the paramyxovirus family 
to MeV and MuV V proteins[99,100,104,110]. HeV V and PIV5 
V have been shown to lack STAT3 binding function, and 
while SeV infection can inhibit IFNα-dependent STAT3 
phosphorylation, this appears to relate to upstream ef-
fects on Tyk2 rather than STAT3 directly[111]. STAT3 
binding by other paramyxovirus V proteins, however, has 
not been investigated.

MeV N protein also inhibits STAT1/2 signalling[112], 
indicating a particular importance of  STAT inhibition 
to MeV, and co-localises with STAT1 in cytoplasmic ag-
gregates in infected cells, analogously to MuV NP[99,104]. 
STAT2 also co-localised with MeV N in aggregates, but 
with reduced frequency compared with STAT1[104].

STAT targeting by respiroviruses: the importance of C 
proteins
STAT targeting by respiroviruses differs significantly 
from other paramyxoviruses, due to the expression of  
additional proteins from the P gene (Figure 2), including 
four C proteins by hPIV1[14,113], which does not express 
V or W. The C’ protein of  hPIV1 binds and sequesters 
STAT1 in perinuclear aggregates, suggesting that the C 
proteins may be sufficient for IFN antagonism by this 
virus[114]. SeV C proteins (C’, C, Y1 and Y2), also bind to 
STAT1 and prevent signalling and, importantly, the func-
tions of  the individual C proteins appear non-redundant, 
as knockout of  all four proteins is required to completely 
prevent IFN antagonism in infected cells[115,116]. Data re-
garding the mechanisms of  SeV C proteins activity are 
conflicting[116-121], with some reports suggesting that C 
and C’, but not Y1 or Y2, cause STAT1 mono-ubiqui-
tination/degradation[116,117] dependent on the C protein 
N-termini[118,119], while others reported no reduction in 
STAT1 expression but indicated inhibition of  STAT1 

and STAT2 phosphorylation by the C proteins, indepen-
dently of  their N-termini[120,121]. 

STAT targeting by henipaviruses: the roles of P, V and W
The henipavirus P, V and W proteins can bind to STAT1 
and STAT2 through the shared N-terminal region[122,123] 
to prevent STAT1/2 phosphorylation and activation 
by holding them in high molecular weight complex-
es[110,123-125]. Transfection studies indicate that P, V and 
W have differing capacities to inhibit STAT signalling, 
with P protein the least effective[125]. This is consistent 
with the hypothesis that the V and W accessory proteins 
have evolved to enable specific, distinct roles as IFN-
antagonists, sequestering STATs in the cytoplasm and the 
nucleus, respectively[82,122,125], whereas P protein functions 
principally as the polymerase cofactor, but can arrest 
STATs in the cytoplasm. Mutation of  the shared G121 
residue was found to specifically ablate STAT1 binding by 
V, W and P, without affecting P protein polymerase co-
factor function, enabling the production of  recombinant 
NiV impaired for STAT antagonistic functions to con-
firm that inhibition of  STAT1 phosphorylation in NiV 
infected cells is due to P/V/W binding[122,126]. In wild-type 
NiV-infected cells, but not those infected with the mutant 
NiV, unphosphorylated STAT1 localised exclusively to 
the nucleus, similar to cells expressing W protein alone, 
suggesting NiV W has the predominant role in blocking 
STAT signalling in infected cells[122]. 

DIFFERENT MECHANISMS OF IMMUNE 
EVASION: EVOLUTION OR EXPERIMENT?
Although there is abundant evidence that paramyxovirus 
P gene-encoded proteins can antagonise IFN responses 
by diverse species-specific/genera-specific mechanisms, 
the source of  this diversity is currently unclear. A major 
caveat of  the available data is its heavy reliance on in vitro 
studies, particularly transfection studies of  single IFN-
antagonist proteins. Although these approaches enable 
highly specific analyses of  the properties of  particular 
IFN-antagonists, including mapping/mutagenesis stud-
ies, the potential to generate artefactual data due to the 
absence of  other viral factors and/or non-physiological 
expression levels is a significant concern. Indeed, several 
transfection studies in different laboratories have gener-
ated conflicting mechanistic data for the same viral pro-
tein, including SeV C and MeV V protein[103-107,116,117,120,121], 
suggesting that some reported differences between IFN 
antagonists of  different paramyxovirus species/genera 
might arise from experimental rather than biological dif-
ferences. Importantly, however, recent studies comparing 
in parallel the functions of  V proteins from panels of  
paramyxoviruses have confirmed clear divergence in spe-
cific mechanisms/interactions[70,71,76], indicating genuine 
divergence at the molecular level.

Recent studies have also directly compared IFN-an-
tagonist protein expression/functions in transfected and 
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infected cells, identifying clear differences. Notably, one 
study reported that while henipavirus V and W proteins 
profoundly inhibit IFN/STAT signalling in transfected 
cells, no inhibition was apparent in infected cells, which 
appeared to relate to the higher expression of  V/W pro-
teins in transfected cells[127]. This suggested that STAT 
inhibition by V and W does not have significant roles in 
infected cells, but it seems unlikely that viruses would 
evolve proteins that can specifically target factors of  the 
IFN response and impede their function by sophisticated 
mechanisms were this not important at some stage of  
infection. While in vitro infection approaches are clearly 
closer to natural infection than transfection, they also use 
controlled in vitro conditions including the inoculation of  
cultured monolayers of  specific cell types with precise 
multiplicities of  infection, and treatments with specific 
concentrations of  IFNs. By contrast, in natural infection 
the kinetics of  viral protein expression and induction of  
the IFN system is highly dynamic, involving both infect-
ed cells and professional IFN-producing cells, and fac-
tors such as the infectious dose, route of  infection, host 
species, and infectious spread to specific tissues can vary 
greatly, significantly affecting requirements for IFN an-
tagonism and the disease outcome[128]. Thus, the diverse 
mechanisms of  IFN antagonism identified in transfection 
studies may have vital roles in infection in vivo.

Importantly, IFN antagonism has been implicated 
as a key factor in host and tissue specificity, with PIV5 
showing limited host range dependent on the capacity 
of  the V protein to bind to STAT2 from different spe-
cies[129-132], whereas NiV V blocks IFN signalling in cells 
of  many species, consistent with its broad infectious 
range[82,110,124,126]. Tissue-specific antagonism of  IFN has 
also been reported for NiV, which induces an IFN re-
sponse in endothelial but not neuronal cells, correlating 
with differential subcellular localisation of  NiV W[133]. 

A genuine appreciation of  the importance of  specific 
IFN-antagonistic mechanisms to pathogenicity, however, 
requires the use of  recombinant virus systems and in vivo 
pathogenicity models. Recent advances in this area include 
reports that recombinant hPIV2 impaired for V protein 
antagonism of  MDA5 is attenuated in rhesus mon-
keys[134-136], and that the severity of  clinical signs in MeV-
infected monkeys was reduced by mutation of  the P/V 
proteins to prevent inhibition of  STAT1[137]. In addition, 
the deletion of  V or C proteins from MeV caused attenu-
ation in mice, but V deletion alone resulted in restricted 
spread in the brain[138], supporting the hypothesis that 
specific mechanisms of  IFN-antagonism are important to 
infection of  certain tissues. Deletion of  the V C-terminal 
domain in recombinant NiV also reduced pathogenicity in 
a hamster model[123-125,139], possibly due to IFN-antagonist 
functions of  the V C-terminal domain, such as the target-
ing of  MDA5.

Of  paramount importance to delineating the roles of  
specific mechanisms of  IFN antagonism in pathogenicity 
will be the extension of  in vivo studies to include geneti-

cally modified animals deficient in specific IFN signalling 
processes. For example, recent research indicated that SeV 
pathogenicity is increased in MDA5 knockout mice[140], 
suggesting that this might provide a useful model to in-
vestigate the importance of  MDA5 antagonism in in vivo 
infection. 

CONCLUSION
A substantial body of  data from the past c. 15 years has 
provided key insights into the immune evasion strategies 
of  paramyxovirus IFN-antagonists, indicating that they 
employ a remarkable array of  mechanisms to target es-
sential factors of  the IFN response, with the limited in vivo 
infection data indicating that these functions are essential 
to pathogenicity. However, as much of  the current mecha-
nistic data comes from in vitro transfection approaches, 
their importance to natural infection remains largely unre-
solved. Future studies employing in vivo infection models, 
recombinant virus systems and genetically modified ani-
mals should begin to unravel in detail the interactions of  
paramyxoviruses with the IFN system in vivo. This is likely 
to result in the identification of  new potential targets for 
the development of  vaccines and antivirals required for 
the treatment of  established prolific human pathogens 
such as MeV, as well as emerging zoonotic threats includ-
ing NiV and HeV.
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Abstract
To complete their life cycle and spread, viruses inter-
fere with and gain control of diverse cellular processes, 
this most often occurring through interaction between 
viral proteins (VPs) and resident protein partners. 
Among the latter, Src family kinases (SFKs), a class of 
non-receptor tyrosine kinases that contributes to the 
conversion of extracellular signals into intracellular sig-
naling cascades and is involved in virtually all cellular 
processes, have recently emerged as critical mediators 
between the cell’s infrastructure and the viral demands. 
In this scenario, structural or ex novo  synthesized 
VPs are able to bind to the different domains of these 
enzymes through specific short linear motifs present 
along their sequences. Proline-rich motifs displaying the 
conserved minimal consensus PxxP and recognizing the 
SFK Src homology (SH)3 domain constitute a cardinal 
signature for the formation of multiprotein complexes 
and this interaction may promote phosphorylation of 
VPs by SFKs, thus creating phosphotyrosine motifs that 
become a docking site for the SH2 domains of SFKs or 
other SH2 domain-bearing signaling molecules. Impor-
tantly, the formation of these assemblies also results 
in a change in the activity and/or location of SFKs, and 
these events are critical in perturbing key signaling 

pathways so that viruses can utilize the cell’s machinery 
to their own benefit. In the light of these observations, 
although VPs as such, especially those with enzyme 
activity, are still regarded as valuable targets for thera-
peutic strategies, multiprotein complexes composed of 
viral and host cell proteins are increasingly becoming 
objects of investigation with a view to deeply charac-
terize the structural aspects that favor their formation 
and to develop new compounds able to contrast viral 
diseases in an alternative manner. 
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INTRODUCTION
Although not strictly meeting the definition of  living or-
ganisms, viruses can replicate and spread, provided that they 
infect host cells to produce a new offspring. In this regard, 
viruses are obligate intracellular parasites that have evolved 
complex strategies to complete their life cycle, consisting 
of  contrasting and even evading innate defense mecha-
nisms of  the host cell for which they have a tropism so as 
to take control over key cell pathways[1,2]. Therefore, they 
interfere with diverse cellular processes, especially those 
involving replication of  genetic material, protein transla-
tion and trafficking, with viral structural and non-struc-
tural proteins undergoing post-translational modifications, 
such as phosphorylation, ubiquitination, glycosylation and 
cleavage prior to or after interacting with a vast part of  
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the host’s proteome, thereby forming new multiprotein 
assemblies[2]. Indeed, much effort has been made over the 
last few decades to dissect the cellular signaling pathways 
hijacked by viruses and the underlying molecular mecha-
nisms, leading to the identification of  several host cell 
factors playing a major role in the viral life cycle. Among 
these, Src family kinases (SFKs), a class of  non-receptor 
tyrosine kinases comprising of  eight members (Src, Yes, 
Fyn, Fgr, Lyn, Hck, Lck and Blk), have emerged as criti-
cal mediators between the cell infrastructure and the viral 
demands. Although traditionally known as molecular 
switches situated right beneath the plasma membrane, 
from there relaying extracellular cues and governing signal 
transduction, SFKs localize to virtually all the other cell 
compartments, thereby regulating a wide spectrum of  
cellular processes, such as growth, viability, cell cycle and 
metabolism[3,4]. To gain a deeper understanding of  how 
SFKs exert their function and how viruses can benefit 
from the interplay with SFKs, it is necessary to bear in 
mind the complexity of  the multidomain organization and 
the mechanisms of  activation of  SFKs themselves. From 
the N- to the C-terminus, their structure consists of: (1) 
the Src homology (SH) 4 domain, a unique region that be-
comes myristoylated and/or palmitoylated for membrane 
association of  SFKs; (2) the SH3 domain, which binds 
specific proline-rich motifs (PRMs); (3) the SH2 domain, 
which recognizes phosphotyrosine motifs; (4) the SH2-
kinase linker; (5) a catalytic SH1 domain; and followed by 
(6) a C-terminal tail implicated in the downregulation of  
SFKs (Figure 1). The activity of  SFKs is mainly modulated 
by the phosphorylation state of  2 critical tyrosine residues, 
Tyr416 and Tyr527 (based on the amino acid numbering 
of  chicken c-Src and corresponding to Tyr419 and Tyr530 
in humans), with opposing effects: the former, which lies 
in the activation loop, is subjected to autophosphorylation 
when the SFK is activated, whereas the latter is targeted 
by C-Src tyrosine kinase[5], resulting in the inactivation of  
the tyrosine kinase. The latter event is induced by a closed 
conformation of  the SFK through 2 major intramo-
lecular inhibitory interactions, binding of  the C-terminal 
phosphotyrosine (Tyr527) itself  to the SH2 domain and 
interaction of  a polyproline type Ⅱ helical motif  (PPⅡ)  
in the SH2-kinase linker with the SH3 domain. On the 
other hand, multiple events can induce disruption of  such 
inhibitory mechanisms, such as dephosphorylation of  the 
tail, with its displacement from the SH2 domain and/or 
displacement of  the PPⅡ motif  from the SH3 domain, 
ultimately resulting in the full activation of  SFKs[6]. All 
these features, either functional or structural, can be ex-
ploited one at a time or in combination by most, if  not all, 
viruses to take over the cell machinery, from the cell entry, 
all through the genome replication until the release of  new 
particles. As to internalization, viral particles induce, upon 
interaction of  cognate membrane receptors, activation 
of  SFKs, which, as apical cellular transducers in receptor-
mediated cellular signaling, take part in the activation of  
clathrin-, caveolin-dependent endocytic pathways, or the 
alternate mechanism based upon macropinocytosis and 

are subsequently taken up by host cells for uncoating and 
genome replication[7-10]. Another different mode of  viral 
uptake into the host cell occurs in polarized cells and is 
mediated by SFKs, which are activated upon virus attach-
ment to the plasma membrane, so that tight junction bar-
rier function is perturbed to allow viruses to reach their 
specific receptors at the baso-lateral side of  epithelial cells. 
As a result, viral particles can be endocytosed[9] or partici-
pate in relocalizing viral receptors from the baso-lateral 
to the apical membrane surface in response to cytokines 
released by infected macrophages with subsequent entry 
into the epithelial cells[10]. 

Thus, regardless of  the viral species, it can be stated 
that SFKs are involved in the cell entry of  viral particles 
simply by “doing their duty” as a component of  signalo-
somes, that is, by relaying the extracellular cues, in this 
case consisting in viral ligands that bind to cell receptors, 
to downstream effector molecules and preparing the cellu-
lar environment to take up virions by the different mecha-
nisms of  endocytosis. An actual interaction between SFKs 
and viral proteins (VPs) does not occur in this early phase 
of  infection, instead taking place only after uncoating and 
ex novo synthesis of  viral gene products. This association 
can be mediated by the non-catalytic (SH3 and SH2) and 
catalytic (SH1) domains of  SFKs, thereby resulting in 
directing the localization or affecting the activity of  SFKs 
themselves, in order to best support genome replication, 
particle assembly and spread. 

This review offers a brief  summary of  the current 
knowledge of  the molecular mechanisms underlying the 
interactions between SFKs and VPs, as well as the con-
sequences thereof, so as to highlight common or rather 
specific structural motifs that might become molecular 
targets for disrupting such associations and to provide a 
new perspective in managing viral infections. 

INTRACELLULAR VIRAL HIJACKING OF 
SFKS
It has been largely described that a plethora of  viruses, 
once they enter the cell, utilize SFKs to foster the differ-
ent steps of  the viral life cycle, although the molecular 
mechanisms have not been elucidated in many cases. 
However, accumulating evidence indicates that direct 
interaction of  VPs with SFKs results in the activation of  
SFKs with subsequent (1) phosphorylation of  VPs, which 
acquire new functional properties (Figure 2A-C), or (2) 
delocalization of  SFKs to cell compartments targeted 
by specific VPs, where SFKs can exert their catalytic and 
non-catalytic action (Figure 2D), all these events often be-
ing well intertwined with one another. Although involved 
as apical molecular switches orchestrating virtually all cel-
lular signaling pathways and sharing a highly similar struc-
tural arrangement, the single SFKs often demonstrate 
a differentiated responsiveness to VPs, which depends 
on the inbuilt properties of  the kinase structure and the 
mode of  interaction with VPs, especially with respect 
to the SH3 and SH2 domains, resulting in remarkably 
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diverse effects on their non-redundant functions in a cel-
lular scenario. This can be exemplified by VPs that can 
activate certain SFKs, but inhibit or leave unaffected oth-
ers in the same cell type, as long as they are co-expressed. 
Hence, this observation, if  considered in the more com-
plex framework of  the virus-host relationship, may help 
devise therapeutic strategies aimed at developing drugs 
capable of  selectively disrupting VP-SFK interactions 
without altering signaling networks essential for the host 
cell life.

VPS AS SUBSTRATES FOR SFKS
The number of  tyrosine phosphorylated VPs is, for the 
time being, rather small and these mostly include mol-
ecules from classes of  viruses that can establish chronic 
infections, such as herpesviridae, polyomaviridae and ret-
roviridae, among others (Table 1). 

The polyoma middle-T (MT) antigen, an early prod-
uct of  the viral lytic cycle of  the polyomavirus, which is 

known to contribute to the onset of  multiple tumors, is 
phosphorylated by Src and Fyn at tyrosines that become 
docking sites for molecules essential for downstream sig-
naling [e.g., PLCγ, phosphatidylinositol 3-kinase (PI3K) 
and Shc][11]. This multiprotein complex then mimics a 
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Table 1  List of the viral proteins described in this review

Protein Virus Src family kinase Phosphorylation sites (tyrosines)

Polyoma middle-T antigen Polyomavirus Src and Fyn Y250, Y315 and Y322
Tyrosine kinase interacting protein Herpesvirus saimiri Lck Y114 and Y127
Tegument protein VP11/12 Herpes simplex virus Lck Y not identified 
Accessory viral protein X Human immunodeficiency viruses and 

Simian immunodeficiency viruses
Fyn Y66, Y69 and Y71

Latent membrane protein 2A Epstein-Barr virus Lyn Y74 and Y85
Non-structural protein 5A Hepatitis C virus Src Y not identified 
Accessory protein Nef Human immunodeficiency viruse-1 SFKs None
Non-structural 1 Avian influenza virus Src None
Accessory protein p13 Human T-cell leukemia virus type 1 SFKs None
RNA-dependent RNA polymerase 
non-structural protein 5B 

Hepatitis C virus Src None

SFKs: Src family kinases; VP: Viral protein.

Myristoylation and/or
palmitoylated region

Autophosphorylation site
in the activation loop

PPⅡ-containing
sequence

Unique SH2-KL C-tSH3 SH2 SH1SH
4

Pro-rich 
binding 
domain
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binding 
domain C-terminus containing 

the negative regolatory 
phosphorylation site for Csk

Catalytic domain

Y527
Y416

Figure 1  Diagram representing the domain organization of Src fam-
ily kinases. As reported in the text, the C-terminus (C-t in the figure) when 
phosphorylated at Tyr527 binds to the Src homology (SH)2 domain and the 
polyproline type Ⅱ helical motif (PPⅡ) motif in the SH2 kinase linker (SH2-KL 
in the figure) engages the SH3 domain, thus inducing an inactive conformation. 
Disruption of these inhibitory interactions, in the case of viruses mostly induced 
by proteins bearing tyrosine phosphorylated or proline-rich motifs, leads to the 
full activation of Src family kinases. 
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Figure 2  Models of mechanisms connecting viral proteins and Src family 
kinases and downstream effects. Viral proteins bind to the various modular 
domains of Src family kinases (SFKs), with (A) or without (B-D) concurrent as-
sociation with other host proteins, resulting in the subsequent phosphorylation 
of the viral proteins (VPs) by which they are engaged (A, B), ultimately confer-
ring new functional properties to VPs, or of different VPs to stabilize multiprotein 
complexes (C); Moreover, VPs may delocalize SFKs to different cell compart-
ments, where SFKs in the activated form can process local substrates or act as 
non-catalytic mediators of the action of VPs themselves (D) (see text for further 
details regarding how specific VPs fit into each model. Solid lines indicate bind-
ing, arrows indicate downstream event. HP: Host protein; pY: Phosphotyrosine. 
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constantly activated growth factor receptor at the plasma 
membrane. Importantly, a preliminary step for SFKs to 
phosphorylate the MT is their activation, which occurs 
upon binding of  their SH1 domain to the MT itself  and 
concurrently to the dimeric core of  the serine/threonine 
protein phosphatase 2A, which acts as a scaffold between 
the MT and SFKs[12,13] (modeled in Figure 2A). 

Another VP that associates to the plasma membrane 
and exhibits a transforming ability owing to phosphory-
lation by the SFK Lck is the tyrosine kinase interacting 
protein (Tip), an oncoprotein encoded by the genome of  
herpesvirus saimiri, a T-lymphotropic monkey herpes vi-
rus. Importantly, Lck phosphorylates Tip at different tyro-
sines responsible for binding the SH2 domains of  various 
signaling molecules, among which are Lck itself, STAT3 
and STAT6, all required for promoting the transformed 
phenotype[14,15]. Also in this case, the essential require-
ment for phosphorylation is the initial interaction be-
tween the SFK and the substrate, here mediated by Tip’s  
sequence homologous to the C-terminus of  SFKs and 
SH3-binding PRM with Lck[16]. The plasma membrane 
also serves as the anchoring site for VP11/12, a tegument 
protein residing between the capsid and the envelope of  
the herpes simplex virus immediately after viral entry, this 
VP being strongly phosphorylated by SFKs and hence 
modulating cellular signaling pathways[17]. Of  note, the 
function of  VP11/12 as a component of  a signalosome 
differs from that exerted by VP11/12 itself  in the virion 
assembly at the perinuclear cytoplasmic foci of  the in-
fected cells, whereby it also massively localizes. During 
T cell infection, VP11/12 behaves as an activator and a 
substrate of  Lck, which phosphorylates VP11/12 at a 
number of  tyrosines serving as docking sites for, at least 
as documented thus far, the SH2 domain of  Lck itself  
and the PI3K regulatory subunit p85[18]. It is to be under-
lined that under these conditions Lck does not operate as 
a transducer of  TCR signaling but triggers cellular pro-
cesses peculiarly directed by VP11/12, which are still be-
ing investigated. Other aspects that remain to be explored 
are the mechanism of  Lck activation and the mode of  
recognition of  VP11/12 as a substrate by Lck, for which, 
on the basis of  the examples mentioned above, an inter-
action between linear binding motifs in VP11/12 and the 
non-catalytic domains of  the SFK may be required. In-
deed, the primary sequence of  VP11/12 exhibits several 
PRMs, which might provide an anchorage for the SFK-
SH3 domain with subsequent structural changes from the 
inactive close to the active open conformation of  SFKs, 
to the catalytic pocket of  which the access of  VP11/12 
as substrate is then favored. That the phosphorylation of  
VPs and the interaction between specific motifs harbored 
by VPs and the modular domains of  SFKs may be con-
nected seems to be further confirmed by the findings 
regarding Vpx, an accessory protein of  the human im-
munodeficiency virus type 2 (HIV-2) and the simian im-
munodeficiency virus[19]. This VP, which is coupled to the 
preintegration complex and localizes to the nuclei of  in-
fected cells, shuttles to the cytoplasm to be incorporated 

into the viral core and ensures efficient viral replication 
only if  it becomes phosphorylated by the SFK Fyn (espe-
cially at Y66, 69 and Y71)[20]. This event is made possible 
by a preliminary interaction between Vpx PRMs and Fyn 
SH3 domain, which may bring Vpx to the Fyn catalytic 
domain[21]. 

The nature of  the binding of  other VPs that are tyro-
sine phosphorylated and bind to SFKs remains unclear, 
requiring in-depth examination. One instance may be 
latent membrane protein 2A (LMP2A), a VP encoded 
by Epstein-Barr virus genome in infected B cells, which, 
by sequestering proteins normally associated with the B 
cell receptor (BCR) in the absence of  BCR-triggering 
antigens, mimics the latter with subsequent activation of  
downstream survival signaling pathways, hence altering 
normal B cell development[22]. In particular, it has recently 
ascertained that phosphorylation of  LMP2A by Lyn, the 
most expressed SFK in B lymphocytes, exerts a dual role, 
namely as (1) an early requirement for the formation of  
the LMP2A-based signalosome through creation of  dock-
ing sites for the Spleen tyrosine kinase (Syk), the SH2 do-
main-containing adapter protein B (Shb) and Lyn itself[23]; 
and as (2) a key regulatory event in the modulation of  
LMP2A-dependent signaling by degradation of  various 
components of  this multiprotein complex (Lyn and even 
LMP2A itself)[24]. Also in the case of  LMP2A, it is not 
clear how Lyn becomes activated before phosphorylating 
the VP. In this respect, of  the several PXXP motifs along 
the sequence of  LMP2A, the N-terminal ones have only 
been tested for binding SH3 domains, proving unable to 
do so and thus leaving open the possibility that the C-ter-
minal PPⅡ helical motif  may be a site of  interaction and 
activation for Lyn[23] (the basic mechanisms demonstrated 
or thought to underlie interaction and downstream effects 
of  Tip, VP11/12, Vpx and LMP2A with SFKs are illus-
trated in Figure 2B).

An even more intricate case is represented by the non-
structural protein 5A (NS5A) encoded by the genome of  
the hepatitis C virus (HCV), which is essential for HCV 
replication and virion assembly in hepatocytes[25]. This VP 
has recently been found to be phosphorylated at tyrosines 
within SH2-binding motifs, in addition to being highly 
phosphorylated at serine residues[26-28]. It also bears a 
conserved C-terminal PRM that has been shown to bind 
to the recombinant SH3 domains of  Hck, Lck, Lyn and 
Fyn, but not Src, negatively affecting the activity of  Hck, 
Lck and Lyn but stimulating that of  Fyn[29]. Although not 
binding to Src via the SH3 domain thereof, NS5A inter-
acts with the SH2 domain of  this SFK after being phos-
phorylated in HCV-infected hepatocytes, an event which 
is critical for viral replication, and whereby Fyn, the only 
SFK activated by NS5A upon interaction mediated via 
SH3 domain, proves dispensable[27]. A possible mecha-
nism for the phosphorylation of  NS5A and subsequent 
SH2 domain-mediated interaction with Src is set forth in 
the next section and modeled in Figure 2C. Besides, in B 
cells, whereby infection by HCV causes mixed cryoglobu-
linemia and B cell non-Hodgkin’s lymphoma, Fyn inter-

74 May 12, 2013|Volume 2|Issue 2|WJV|www.wjgnet.com

Pagano MA et al . Viral proteins hijacking SFKs



acts with NS5A through both its SH2 and SH3 domains 
in a tyrosine phosphorylation-dependent manner and by 
recognition of  a PRM of  NS5A itself, respectively, result-
ing in inhibition of  viral replication in parallel with Fyn 
enhanced activity[28]. These data again confirm that VPs 
need to specifically select SFKs, whose non-redundant 
functions can be exploited to dictate the different steps 
of  viral replication.

EFFECTS ON LOCATION AND ACTIVITY 
OF SFKS MEDIATED BY INTERACTION 
WITH VPS
The mechanisms leading to the phosphorylation of  VPs 
described above seem to mainly point to the earlier bind-
ing of  VPs to the SH3 domain of  SFKs as the activation 
event for SFKs themselves, the newly phosphorylated 
tyrosines providing an anchorage for signaling molecules 
utilized by the virus for its own benefit, even for SFKs, 
among others. We shall hereafter illustrate a set of  VPs 
that are still able to interact with the SH3 domain of  
SFKs and function as activators of  SFKs without being 
their substrates (a general diagram is shown in Figure 2D). 
From this list, the well-characterized HIV-1 accessory pro-
tein Nef  stands out, it being essential for virus replication 
and acquired immunodeficiency syndrome pathogenesis 
by interacting with various host cell proteins involved in 
immune recognition and survival, among which SFKs are 
targeted with high selectivity[30-32]. Among the many in-
teraction motifs along its sequence, Nef  harbors a highly 
conserved PxxPxR motif, which, together with a hydro-
phobic pocket in the core region[33], takes part in the inter-
face between Nef  and the SH3 domain of  a few of  SFKs, 
namely Hck and Lyn[33], thus causing disruption of  the 
negative regulatory interaction between the SH2-kinase 
linker and the SH3 domain itself  on the back of  the ki-
nase domain and subsequent activation. Of  note, in spite 
of  the high conservation of  Nef ’s regions for binding to 
these SFKs, other determinants have emerged as critical in 
this function and also in influencing replication of  HIV-1 
variants. As an example, the R71T mutation occurring im-
mediately upstream of  the PRM has been correlated with 
a lower ability of  Nef  to bind SFKs as well as a decreased 
capability of  the HIV-1 strain bearing this mutation of  
replicating[34]. At the cellular level, Nef  activates and re-
routes specific SFKs to the Golgi apparatus, the preferen-
tial subcellular localization of  this VP, thereby optimizing 
the environmental conditions for viral replication and 
provoking severe alterations of  the immune response. In 
macrophages, Nef  is described as hijacking and activating 
Hck, localizing it to the Golgi apparatus and perturbing 
the N-glycosylation/trafficking processes by triggering 
the MAP kinase ERK-GRASP65 cascade[35,36]; instead, in 
T lymphocytes, Lck is directed by Nef  from the plasma 
membrane to the trans-Golgi network, which prevents 
Lck from being recruited to the immunological synapse, 
whose altered formation in turn results in interfering with 

TCR signaling[37]. In contrast to Nef, whose role has been 
and still is being deeply explored, the pathophysiological 
consequences of  the interaction of  other VPs with SFKs 
are far from being totally clarified. 

The non-structural 1 (NS1) protein of  the avian in-
fluenza virus (AIV), a multifunctional protein with inter-
feron-antagonistic properties, is a further example of  the 
interaction between the SH3 domain of  SFKs through 
PRMs of  specific VPs as a means to mediate pathogenic-
ity by viruses[38]. First being isolated in poultry and having 
exhibited high virulence and pathogenicity, it was also 
shown to cross the species barrier, involving human fatali-
ties, especially in the Far East. The possibility that such a 
viral strain or new reassortants might cause severe pan-
demics generated a new interest in evaluating the pathoge-
nicity determinant in the spread and pathogenesis of  the 
disease[39,40]. NS1 possesses two functional domains, the 
N-terminal RNA-binding domain containing one nuclear 
localization signal as well as a SH2- binding motif  targeta-
ble after phosphorylation of  the tyrosine residue, and the 
C-terminal effector domain, with two PRMs, a further nu-
clear localization sequence and a PDZ binding motif. Of  
the PRMs, the first is generally conserved in all influenza 
genotypes and harbors the structural determinants for 
binding the SH3 domain of  the PI3K regulatory subunit 
p85 (PI/LPxxP)[41], whereas the C-terminal has a certain 
variability that parallels its capability of  interacting with 
the SH3 domain of  and activating the SFK Src[42]. In this 
respect, only NS1 bearing the consensus sequence type 
2 for binding SH3 domains of  Src (PXXPXK/R), was 
able to enhance the SFK activity, which occurred in virus 
genotypes that caused the most severe human influenza 
pandemics in 1918 and killed turkeys in Italy in 1999 with 
heavy economic losses, whereas the viral strains that were 
mutated in this region did not affect SFK activity. To date, 
the function of  an activated form of  Src in AIV-infected 
cells is not fully clear, although it is thought that it may be 
related to the localization of  the Src-NS1 complex. 

Another prototype for the change in subcellular lo-
calization of  SFKs induced by VPs is represented by the 
human T-cell leukemia virus type 1 accessory protein p13, 
although the data refer to experimental approaches in vitro 
or in cultured cells transfected with the single SFKs or 
p13 itself. p13 is known to localize to mitochondria thanks 
to its N-terminal mitochondrial localization signal, where 
it brings about an inward K+ current across the inner mi-
tochondrial membrane, leading to swelling, depolarization 
and increased respiratory chain activity[43]. Recently, p13 
has been found to bind to the SH3 domain of  SFKs by 
a well-defined C-terminal PRM and to act as a carrier for 
SFKs themselves into mitochondria, this new localization 
of  SFKs resulting in (1) a sharp rise in intramitochondrial 
tyrosine phosphorylation; and (2) a significant mitigation 
of  p13’s aforementioned effects on mitochondria[44]. This 
observation seems to be in line with recent findings that 
strongly suggest a new role for SFKs as factors that help 
preserve mitochondrial structural and functional integ-
rity under stressful conditions[45], thus further providing 
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novel insights into the catalytic and non-catalytic role of  
SFKs in virus-infected cells[46,47]. The complex relationship 
between such functions of  SFKs and the physical interac-
tion thereof  with VPs fits into another model represented 
by the events that lead to the formation of  the HCV 
replication complex, in which the RNA-dependent RNA 
polymerase NS5B and the above mentioned substrate 
for SFKs, NS5A, together with the SFK Src, take part[27]. 
The integrity of  this multimolecular complex, which is 
essential in HCV replication, requires Src as a scaffold for 
promoting a tighter interaction between NS5A and NS5B, 
with both the modular SH2 and SH3 domains as well as 
the catalytic activity of  Src being implicated. Interestingly, 
Src is the only SFK that does not bind to NS5A through 
its SH3 domain[26], whereas it recognizes the C-terminal 
proline-rich region containing a non-canonical SH3 
binding motif  within NS5B[27]. On the other hand, the 
SH2 domain of  Src interacts with a yet-to-be-identified 
tyrosine phosphorylated binding motif  within NS5A, re-
spectively. Although the molecular mechanism underlying 
the formation of  the complex is unknown, it is tempting 
to speculate that Src stabilizes the weak interaction be-
tween NS5A and NS5B by firstly recognizing the PRM of  
NS5B, although it does not display an optimal consensus 
for binding to the SH3 domain of  SFKs, thus becoming 
activated and enabled to phosphorylate NS5A. Phospho-
tyrosines on NS5A can then be targeted as docking sites 
by Src, further strengthening the stability of  the hetero-
trimer (Figure 2C). What we hereby again underscore is 
that VPs and cellular proteins, such as SFKs, complexed 
into a new operative unit can serve as a key to interpreting 
the intricate relationship between host cells and viruses 
in order to elaborate novel strategies to disrupt aberrant 
multiprotein associations.

CONCLUDING REMARKS AND 
PERSPECTIVES
The significance of  SFKs as critical mediators in the life 
cycle of  viruses has been widely shown by the effects of  
the inhibition of  their enzymatic activity or of  their ex-
pression as well as by those related to the interaction with 
specific VPs, as hereby briefly reviewed. Indeed, this latter 
issue has become a new important field of  investigation, 
with great efforts aimed at dissecting the structural aspects 
that favor such interactions, in order to develop thera-
peutic strategies capable of  disrupting them to hamper 
viral replication. Although the different domains of  SFKs 
exhibit various potential anchorage sites for VPs, includ-
ing the SH2 and the catalytic domain, these preferentially 
target the SH3 domain of  SFKs by their PRMs (usually 
a class Ⅱ motif), which generally displays the consensus 
sequence PxΦPxK/R (where Φ stands for a hydrophobic 
residue). The PRM-bearing protein can then compete with 
and displace the PPⅡ within the SH2-kinase linker of  
SFKs, thus directly interacting with the SH3 domain and 
inducing the transition from the “closed” to the “open” 
conformation, with three possible outcomes: (1) altered 

localization of  SFKs; (2) phosphorylation of  the VP with 
generation of  docking sites available for further interac-
tions; and (3) hyperactivation of  the kinase activity. This 
latter effect has been explained for Hck bound to Nef, 
but not thus far for other SFKs, through kinetic studies, 
which have highlighted that Nef ’s PRM induces a change 
in the conformation of  the active site of  Hck by an al-
losteric mechanism with a decrease in the KM for ATP[48]. 
Of  note, even if  all SFKs share a common domain struc-
ture and a mode of  regulation, VPs may display different 
abilities to interact with each single SFK and to affect their 
catalytic activity by their PRM. This wide variability in the 
response of  the single SFKs demands a further effort 
to extend our knowledge on the structural determinants 
of  the SH3 domain also outside of  the interface binding 
the viral PRM, this possibly providing the ground for the 
prediction of  recognition elements. From a therapeutic 
perspective, two main schools of  thought have surfaced 
in addressing this issue, one arguing for the use of  bio-
engineered polypeptides capable of  interfering with SH3 
binding of  SFKs to VPs[49-51] and the other supporting the 
implementation of  non-toxic kinase inhibitors that bind 
the catalytic groove of  SFKs only if  the VP:SFK complex 
is formed (e.g., Nef:Hck)[52,53]. This latter approach would 
be remarkably useful in preventing unpleasant or harmful 
side effects, since such drugs would not affect the pool of  
uncomplexed SFKs involved in other cellular activities.

The data hereby summarized lead us to assume that, 
despite the widespread occurrence of  PRMs on VPs 
and the existence of  over 200 SH3 domains, PRMs are 
directed to specific host targets, among which SFKs are 
crucial actors in sustaining virus survival[54-56]. Besides, the 
interaction between SFKs and PRMs of  VPs seems to be 
emerging as a novel issue of  special interest in the light 
of  their association with virulence of  viral strains and the 
level of  pathogenicity, as reported for AIV NS1[42] and 
HIV-1 Nef[33,34], with the enhancement of  the kinase ac-
tivity being a sort of  epiphenomenon related the severity 
of  disease. In this respect, retrospective studies on highly 
pathogenic virosis and structural analysis of  PRM-bear-
ing proteins as well as their effect on SFKs would open 
new perspectives and provide further hints for pharma-
ceutical research and clinical applications.
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Abstract
Small ubiquitin-like modifier (SUMO)ylation is a key post-
translational modification mechanism that controls the 
function of a plethora of proteins and biological process-
es. Given its central regulatory role, it is not surprising 
that it is widely exploited by viruses. A number of viral 
proteins are known to modify and/or be modified by the 
SUMOylation system to exert their function, to create a 
cellular environment more favorable for virus survival 
and propagation, and to prevent host antiviral respons-
es. Since the SUMO pathway is a multi-step cascade, 
viral proteins engage with it at many levels, to advance 
and favor each stage of a typical infection cycle: rep-
lication, viral assembly and immune evasion. Here we 
review the current knowledge on the interplay between 
the host SUMO system and viral lifecycle. 
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INTRODUCTION
Pathogenic organisms possess the remarkable ability to 
hijack the cellular machinery of  host cells to their advan-
tage. Viruses in particular manipulate several physiologi-
cal cellular pathways to prevent antiviral responses and to 
create an environment that facilitates their survival and 
propagation.

A common strategy to create a more conducive milieu 
to viral development consists in exploiting cellular post-
translational modifications (PTMs) mechanisms.

Between the numerous PTMs occurring in cells, small 
ubiquitin-like modifier (SUMO)ylation is emerging as 
a key PTM that controls the function of  a plethora of  
proteins and biological processes. Hence, given its central 
regulatory role, the SUMOylation pathway is widely ex-
ploited by viruses, whose proteins can either modify and/
or be modified by the SUMOylation system with various 
consequences.

The aim of  this review is therefore focused on the 
mechanisms through which viruses exploit the SU-
MOylation pathway and the implications for viral infec-
tions and diseases. First, we will describe the general 
characteristics of  the SUMO cycle and the enzymes 
involved in this pathway. Next, we will give a compre-
hensive overview on the latest findings on viral proteins 
and SUMOylation interplay, focusing in particular on the 
mechanisms that can promote viral infections by altering 
the SUMO system.

SUMO Pathway
The SUMO is a member of  the ubiquitin-like proteins 
(Ubls) family. The common feature of  Ubls is that they 
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are attached to a target protein amino group of  a lysine 
residue through similar but distinct enzymatic cascades[1]. 
After conjugation, Ubls reversibly alter protein functions, 
without the need for new protein synthesis, thus provid-
ing cells with a rapid and versatile mechanism to quickly 
respond to changes in the surrounding environment.

SUMOylation was identified as a reversible PTM in 
1996[2,3]. There are four different genes in the human ge-
nome coding for the different SUMO modifiers: SUMO-1, 
-2, -3 and -4. SUMO-2 and -3 are nearly identical in se-
quence, differing from each other by only three N-terminal 
residues, and are therefore collectively referred to as 
SUMO-2/3[4]. On the contrary, SUMO-2/3 significantly 
diverge from SUMO-1, sharing only about 45% similarity 
with its sequence[5]. Finally, a SUMO-4 isoform has been 
described[6], which shares 86% homology with SUMO-2. 
In humans, while SUMO-1 and SUMO-2/3 are ubiqui-
tous, SUMO-4 expression seems to be restricted to kid-
neys, lymph nodes and spleen[6].

SUMO-1 conjugation has been implicated in the regu-
lation of  physiological processes because it is virtually all 
bound to target proteins, while SUMO-2/3 appears to be 
more widely expressed as a pool of  free non-conjugated 
proteins, readily available for stress responses[4]. SUMO-4 
is probably not conjugated under normal conditions and 
its biological role is still unclear[7]. Moreover, the different 
SUMO paralogs do preferentially conjugate some sub-
strates[4,8,9], although other proteins can be equally modified 
by SUMO-1 or SUMO-2/3[8,10,11].

SUMO attachment to target proteins is mediated by 
enzymatic reactions (schematized in Figure 1) that catalyze 
the formation of  an isopeptide bond between the SUMO 
C-terminus and the e-amino group of  an internal lysine 
in the target, generally but not necessarily found within a 
SUMO modification consensus motif, yKxE[12,13] (where 
y is a bulky aliphatic residue, X is any residue).

Interestingly, SUMO-2/3 also bear the yKxE motif  
and therefore can be SUMOylated, forming chains on 
substrate proteins through their internal lysine residue[14]. 
Although the formation of  SUMO-1 chains has also been 
observed both in vitro and in vivo via non canonical con-
sensus sites[15-17], usually SUMO-1 acts as terminator of  
SUMO-2/3 polymeric chains[15]. Although target proteins 
are predominantly conjugated to monomeric SUMO, 
SUMO chains also play roles in replication, turnover of  
SUMO targets, mitosis and meiosis[18].

SUMO proteins are 11 kDa and, similarly to most other 
Ubls, are synthesized as inactive precursor proteins carry-
ing an extension of  variable length (ranging from 2 to 11 
amino acids). These primary translated products undergo 
a C-terminal cleavage to expose the diglycine motif  that 
will be linked to the target proteins. Removal of  this 
C-terminal end is mediated by a specific protease belong-
ing to the sentrin-specific proteases (SENPs) family[19]. In 
addition to its role in SUMO processing, SENP activity is 
also required for SUMO depolymerization and deconju-
gation from its substrates[19], as detailed below. 

The mature form of  SUMO is conjugated to the target 

proteins by a three-step enzymatic cascade, very similar to 
the ubiquitin pathway but involving different enzymes: E1 
activating enzyme, E2 conjugating enzyme and E3 ligases 
(Figure 1). 

SUMO E1 is a 110 kDa protein, composed of  a het-
erodimer of  SUMO-activating enzyme subunit (SAE) 1/2 
subunits (also known as AOS1-UBA2[20,21]). During each con-
jugation cycle, SAE1/2 activate SUMO proteins[20] through  
the formation of  a high-energy thioester bond between 
SAE2 and the C-terminal portion of  SUMO[22]. Activated 
SUMO is then transferred[22] to the E2 enzyme ubiquitin-
conjugating 9 (Ubc9). Opposite to the ubiquitin path-
way, where numerous conjugating enzymes have been 
described, Ubc9 is the only known SUMO-conjugating 
enzyme[23,24] and is essential for viability in most eukary-
otes[25]. Although Ubc9 itself  can transfer SUMO to tar-
gets[26], specific SUMO E3 ligases are required for efficient 
modification.

SUMO E3 ligases can be classified into three groups 
on the basis of  their similarity to the ubiquitin E3 ligases 
and in their mechanism of  action, but they share the abil-
ity to act as a bridge between the Ubc9-SUMO complex 
and the target protein, functioning as substrate recogniz-
ers[27]. The first group encompasses members of  the pro-
tein inhibitor of  activated STAT (PIAS) family (PIAS1, 
PIAS3, PIASxα, PIASxβ and PIASy, reviewed in[28]). In 
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Figure 1  Schematic representation of the small ubiquitin-like modifier 
conjugation enzymatic cascade. The cartoon schematically represents the 
enzymatic steps of small ubiquitin-like modifier (SUMO) protein conjugation on 
lysines of substrate proteins. 1: SUMO protein precursors are processed by 
SUMO proteases (SENP) that remove the C-terminal tetrapeptide (X) and free 
the diglycine motif (-GG); 2: The mature form of SUMO is activated by adenyl-
ation at the C-terminal diglycine motif by the E1 enzyme (the SUMO activating 
enzyme, SAE1-SAE2 or AOS1-UBA2) promoting a thioester bond with a con-
served Cys of the E1 enzyme; 3: SUMO is then transferred to a Cys on the E2 
conjugating enzyme (Ubc9) forming an E2-SUMO thioester; 4: An isopeptide 
bond is formed between the diglycine motif of SUMO and a lysine (K) residue 
in the substrate. E3 ligases are dispensable in vitro but most likely required in 
vivo; 5: SUMO proteins are removed from substrates by the action of SUMO 
proteases (SENPs) or DeSumoylating-isopeptidase (DeSI) and free SUMO 
proteins are available for another cycle of conjugation. 
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addition to the PIAS proteins, other secretory protein (SP)-
RING domain-containing proteins function as SUMO E3 
ligases (TOPORS[29], MUL1[30] and MMS21[31]). All these 
members contain a RING domain (SP, Siz/PIAS-RING) 
similar to the one found in ubiquitin E3 ligases. The sec-
ond group is represented exclusively by the nucleoporin 
RanBP2 that seems to act as a composite E3 ligase in the 
RanBP2/RanGAP1*SUMO1/Ubc9 complex[32]. The third 
group comprises E3 ligases lacking the RING-domain 
such as the polycomb member Pc2[33], histone deacetylase 
(HDAC)4[34], HDAC7[35], the G-protein Rhes[36], the RNA-
binding protein translocated in liposarcoma[37] and tumor-
necrosis-factor-associated protein 7[38]. Moreover, members 
of  the diverse tripartite motif  (TRIM) family have been 
very recently discovered as a new group of  SUMO E3 
ligases, requiring TRIM (defined by a RING domain, one 
or two zinc-binding domains and a coiled-coil dimerization 
region) to stimulate the conjugation of  both SUMO-1 and 
SUMO-2/3 to target proteins[39,40].

SUMOylation is a reversible process, governed by SU-
MO-specific proteases belonging to the SENP family and 
by the recently found DeSumoylating-isopeptidase (DeSI) 
proteins. Six true human SENP proteins have been de-
scribed so far (SENP1, 2, 3, 5, 6, 7), differing in their 
cellular distribution, selectivity for SUMO maturation 
and deconjugation towards different SUMO paralogs[41]. 
SENP1 and SENP2 are specific for both SUMO-1 and 
SUMO-2/3 processing and deconjugation, while SENP3 
and SENP5 act preferentially on SUMO2/3. SENP6 and 
SENP7 seem involved mainly in deconjugating SUMO2/3 
chains (see[41] and citations therein). Finally, SENP8 shows 
substrate specificity to another Ubl, NEDD8[42]. All the 
SENPs localize to the nucleus or nucleus-associated struc-
tures; on the contrary, DeSI (-1 and -2) proteins localize 
also in the cytoplasm and show deSUMOylating but not 
processing activity for SUMO1 and for both monomeric 
and polymeric SUMO2/3 chains[43].

Most cellular SUMO targets are transcription factors 
and usually SUMOylation exerts an inhibitory effect on 
their transactivating activity[44], by sequestering the tran-
scription factor in ProMyelocyticLeukemia nuclear bodies 
(PML-NBs)[45], a nuclear domain whose assembly requires 
an active and efficient SUMOylation pathway[46].

Usually, after undergoing SUMOylation, the substrate 
protein is recognized by a binding partner containing a 
SUMO-interaction motif  (SIM)[47]. This interplay can lead 
to an altered binding with interacting proteins or DNA, 
promotes the recruitment of  another SIM-containing ef-
fector, and affects the stability, localization or enzymatic 
activity of  the SUMOylated protein. Through these mecha-
nisms, SUMOylation regulates a number of  cellular pro-
cesses, such as transcriptional regulation, mRNA matura-
tion, meiosis, mitosis, chromatin remodeling, ion channel 
activity, cell growth and apoptosis (reviewed in[48]).

Therefore, because of  SUMOylation marked involve-
ment in the regulation of  cell functions, it is easy to under-
stand why viruses have evolved a variety of  mechanisms to 
exploit this system to their advantage.

Manipulation of the SUMO 
pathway: a versatile switch to 
promote viral lifespan
Many different viral proteins have been characterized for 
their ability to interact with the SUMO pathway. Since 
the SUMO pathway is a multi-step cascade, viral proteins 
can interact with and exploit it at many levels, in order to 
promote each stage of  a typical infection cycle (Table 1). 
Indeed, viruses can utilize the SUMO cellular machinery 
to support viral persistence and replication, assembly of  
the virus, and to avoid the host immune system. 

In the following sections we will detail some examples 
of  the current knowledge about the interplay between 
SUMO dysregulation and viral lifecycle. 

SUMOylation and viral replication
Viruses lack some of  the components required to repli-
cate their genetic material and therefore need to redirect 
cell activities to promote their own reproduction. A large 
body of  evidence supports a role for SUMOylation in 
replication of  many viruses. In particular, viruses can 
subvert the transcriptional profile or the proliferation 
activity of  the host cell, dysregulate the host cell cycle 
or interfere with the apoptotic process, or exploit SU-
MOylation to regulate the transcriptional activity of  viral 
proteins involved in virus replication (Figure 2). Here 
we will describe only some illustrative examples of  the 
strategies used by viruses to promote their own replica-
tion using the SUMOylation machinery. In fact, there are 
many other viral proteins known to interact with and/or 
modify the SUMO pathway and in many cases the bio-
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Figure 2  Viral proteins exploit small ubiquitin-like modifier at different 
steps of virus lifecycle. Scheme representing the different stages of viral in-
fection (entry, replication, assembly, release) in host cells. Viral proteins interact 
with the small ubiquitin-like modifier (SUMO) machinery to promote different 
steps of viral life cycle, as represented. Viral proteins are designed with their 
acronym. The asterisk (*) indicates that the marked viral protein has not been 
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but indications of a mechanistic link are known. See text for further details on 
exploitation of the SUMO machinery by single viral proteins.
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logical significance of  this interplay is still obscure.
A hallmark of  viral infection is the increase of  host 

transcription to sustain viral replication. Gam1 is an early 
gene expressed by chicken embryo lethal orphan (CELO) 
Adenovirus that has the remarkable ability to inhibit glob-
al SUMOylation. Work from our group demonstrated that 
Gam1 decreases the overall SUMOylation by interaction 
and consequent degradation of  the E1 heterodimer[49,50]. 
Specifically, Gam1 recruits both SAE1 and SAE2 into 
Cul2/5-EloB/C-Roc1 ubiquitin ligase complexes and 
subsequently targets SAE1 for ubiquitylation and degrada-
tion. SAE2 depletion is not tightly related to Gam1, but is 
rather an effect of  SAE1 disappearance[50].

We also observed that Ubc9 levels are reduced upon 
Gam1 expression, by a yet undefined mechanism[49]. Fur-
thermore, Gam1 disperses PML-NBs concomitant to a 
strong loss of  SUMO-1 from the nucleus[51]. As SUMO 
conjugation to many transcription factors represses their 
activities[48], the overall decrease in SUMO conjugation 

caused by Gam1 could increase cellular transcriptional ac-
tivity, which in turn could facilitate viral replication. Gam1 
also interferes with SUMOylation of  endogenous proteins 
such as HDAC1[51]. HDAC1 SUMOylation has an impact 
on the transcriptional repressive potential of  the deacety-
lase[52,53]. Moreover, HDAC1-containing chromatin remod-
eling complexes are known to be exploited by viruses to 
regulate the progression of  their infection[54]. Interestingly, 
a replication deficient ∆Gam1 CELO virus[55] can be res-
cued by HDAC inhibitors treatment[56], suggesting the ex-
istence of  a cross talk between cellular SUMOylation and 
acetylation that can be subverted and exploited by Gam1, 
an essential gene for CELO replication[55].

While Gam1 promotes broad changes in the global 
SUMOylation pattern of  the host cell, AL1 protein 
encoded by the plant pathogen Geminivirus alters the 
SUMOylation status of  only selected proteins[57]. AL1 is 
the only plant pathogen protein described so far as in-
teracting with the SUMO pathway[58], by associating with 
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Table 1  Viral life cycle and small ubiquitin-like modifier pathway

Virus Protein Interaction with SUMO Proposed impact on viral or cellular 
activity

Ref.

Chicken embryo lethal 
orphan Adenovirus

Gam1 Overall SUMOylation decrease through SAE1/2 
degradation and reduced Ubc9 expression

Cellular transcriptional activation [49,50]

PML-NBs dispersion [51]
Interference with HDAC1 SUMOylation Cellular transcriptional activation [51]

Geminivirus AL1 Promotes SUMOylation of selected host factors Viral replication [57,58]
Adenovirus E1B-55K E3 ligase SUMO-1 specific Regulator of cell cycle and apoptosis [59,60]

SUMOylated Cellular transformation [63]
Interaction with PML-NBs [62,64]

Kaposi’s sarcoma-associated 
herpesvirus

K-bZip E3 ligase SUMO-2/3 specific Regulator of cell cycle and apoptosis [66]
SUMOylated Cellular transcriptional repression [65,66]

K-Rta E3 ubiquitin ligase activity against SUMOylated proteins PML-NBs dispersion [119]
Vaccinia E3 SUMOylated Regulator of apoptosis [69]

A40R SUMOylated Viral replication [74]
Bovine papillomavirus E1 SUMOylated Viral replication [71,72]
Human papillomavirus L2 SUMOylated Viral capsid assembly [93]

Increase in cellular SUMO 2/3 conjugation [93]
Moloney murine leukemia CA SUMOylated Viral replication [75]
Influenza A NS1 SUMOylated Viral replication [78]
Cytomegalovirus IE1 SUMOylated Viral replication [80,81]

Interaction with selected host factors PML dispersion [123]
SUMOylated

IE2 Interaction with SUMOylated proteins Viral replication [82]
SUMOylated Viral replication [83]

UL44 Interaction with Ubc9 Viral replication [84]
Epstein-Barr BZLF1 SUMOylated Reactivation of latent infections [85,86,88]

Rta SUMOylated Reactivation of latent infections [89]
BGLF4 Interaction with SUMOylated proteins Viral replication and reactivation of 

latent infections
[91]

PML-NBs dispersion
Hantaan NP Interaction with Ubc9 and SUMO-1 Virus assembly [95,96]
Mason-Pfizer; 
human immunodeficiency

Gag Interaction with Ubc9 Virus assembly [97]
[98-100]

Influenza A M1 SUMOylated Virus assembly [102,103]
Ebola Zaire VP35 Promotes SUMOylation of selected host factors IFN inhibition [109,111]
Herpes simplex type-1 ICP0 E3 ubiquitin ligase activity against SUMOylated proteins PML-NBs dispersion [115-117]
Varicella zoster ORF61 Interaction with SUMOylated proteins PML-NBs dispersion [120,121]
Encephalomyocarditis 3C Interaction with selected host factors PML degradation [122]

The table schematizes known viral proteins interacting with the small ubiquitin-like modifier (SUMO) pathway, with a brief description of their relationship 
with the SUMOylation machinery and the proposed biological outcome. References are also reported (see text for further details). SAE: SUMO-activating 
enzyme subunit; HDAC: Histone deacetylase; PML-NBs: ProMyelocyticLeukaemia nuclear bodies; IFN: Interferon.
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the plant E2 conjugating enzyme SCE1. As mentioned, 
AL1-SCE1 complex in plants does not produce an over-
all alteration of  host proteins, but seems to modulate the 
SUMOylation level of  selected host factors to create an 
environment suitable for viral infection.

E1B-55K is an Adenoviral early protein that functions 
as an E3 SUMO ligase that specifically conjugates SUMO-1 
but not SUMO-2/3 to p53, inhibiting its transcriptional 
activity[59]. Indeed, expression of  E1B-55K protein induces 
p53 SUMOylation[60] and E1KB-55K/p53 co-localization 
to PML-NBs, thus restricting p53 nuclear mobility in liv-
ing cells[59]. p53 sequestration in PML-NBs seems to be 
a prerequisite to the altered p53 localization and activity 
observed in Adenovirus infected cells, preceding and 
addressing its ubiquitin-proteasome dependent degrada-
tion in cytoplasmic aggresomes[61]. Notably, E1B-55K 
associates with PML-NBs at early times after infection[62], 
as does p53[61]. Hence, since p53 is one of  the most rec-
ognized regulators of  cell cycle arrest and apoptosis, the 
p53-SUMO-1 conjugation could be a key event in the 
oncogenic transformation of  primary cells induced by 
Adenoviruses. Interestingly, E1B-55K is also itself  SU-
MOylated by all SUMO paralogs in a phosphorylation-
dependent mechanism[63] and both SUMOylation[64] and 
phosphorylation[63] are required for its activity. In addi-
tion, the recent findings that E1B-55K itself  interacts 
with Ubc9 strongly highlight that this viral protein exten-
sively cooperates with the SUMO pathway to promote 
Adenovirus lifespan[63].

The K-bZIP protein encoded by Kaposi’s sarcoma-
associated herpes virus (KSHV) is another viral protein 
that utilizes the SUMO pathway to alter the host cell 
cycle. K-bZIP is a strong transcriptional repressor whose 
activity, similarly to E1-55K, depends on SUMOylation[65], 
catalyzed by K-bZip itself[66]. Other similarities to the ad-
enoviral protein include the PML-NBs localization[65] and 
the ability to recruit p53 to PML-NBs[67]. Finally, K-bZIP 
also exhibits E3 SUMO ligase activity but, unlike E1-
55K, shows preferential selectivity towards SUMO-2/3 
paralogs[66]. Notably, p53 SUMO-2/3 conjugation cata-
lyzed by K-bZIP enhances p53 transcription factor abil-
ity, suggesting a p53-mediated growth arrest by prolonga-
tion of  the G1 phase of  the cell cycle[66]. Growth arrest 
is a common outcome of  herpes viruses infection[68], that 
poses the cell in a specific phase of  the cell cycle, encour-
aging viral replication and protecting the host cells from 
undergoing apoptosis.

An additional viral protein that takes advantage of  
the SUMO pathway to regulate the cellular apoptotic 
process is the E3 protein encoded by Vaccinia virus. In-
deed, recent findings[69] demonstrate that E3 SUMO-1 or 
SUMO-2 modification has a negative effect on E3 tran-
scriptional transactivation of  the p53-upregulated modula-
tor of  apoptosis and APAF-1 genes. Therefore, these re-
sults could indicate that SUMO conjugation is a negative 
regulator of  the transcriptional activation of  p53 by E3.

Also, bovine papillomavirus (BPV) E1, the major ini-
tiator protein for BPV replication[70], is SUMO modified 

but, opposite to Vaccinia virus E3, only by the SUMO-1 
paralog[71]. This covalent modification is required for E1 
intranuclear localization and influences viral replication 
activity[72]. 

A40R is another Vaccinia virus protein that interacts 
with the SUMO system to accomplish its function. Vac-
cinia are unique among DNA viruses because DNA 
replication occurs entirely in discrete cytoplasmic struc-
tures enveloped by endoplasmic reticulum (mini-nuclei) 
membrane, rather than in the nucleus of  the infected 
host cell[73]. A40R gene product is SUMO-1 modified, but 
unlike what has been described so far, this modification 
appears to be very stable and not subjected to SENP de-
conjugating activity[74]. Consistently, all other viral proteins 
SUMO-1 modified are localized into the nucleus, while 
A40R-SUMO-1 expression has been found in the cyto-
solic side of  endoplasmic reticulum, the same membranes 
that wrap the virus replication sites. The specific localiza-
tion of  A40R strongly suggests a role for SUMOylation in 
Vaccinia replication[74].

Also, Moloney murine leukemia retrovirus capsid pro-
tein (CA) utilizes a similar mechanism. In fact, this protein 
interacts simultaneously with both Ubc9 and E3 ligase 
PIASy[75], resulting in covalent transfer of  SUMO-1 to CA. 
Surprisingly, suppression of  SUMO-1 attachment by CA 
mutations at Ubc9 or PIASy binding sites blocks virus rep-
lication in vivo, but does not affect late stages of  viral gene 
expression or virion assembly[75]. On the contrary, Rous 
sarcoma virus (RSV) CA-Ubc9 interaction and SUMO-1 
conjugation does not influence RSV replication[76].

Nonstructural protein 1 (NS1) is one of  the major fac-
tors involved in Influenza A virus replication[77]. NS1 is able 
to interact with human Ubc9 and is preferentially modified 
by SUMO-1[78]. This characteristic seems to be conserved 
among most Influenza virus strains, underlining the impor-
tance of  SUMO modification in Influenza virus infection. 
SUMO-1 modification enhances the stability of  NS1 and 
its ability to suppress host protein expression causing an 
acceleration in viral replication rate[78].

Cytomegalovirus (CMV) immediate early 1 (IE1) is 
a viral protein that acts as a key regulator of  early events 
in virus infection cycle together with IE2. While IE2 ac-
tivates a wide range of  viral and cellular promoters, IE1 
only modestly promotes both cellular and viral transcrip-
tion[79]. However, SUMO modification of  IE1 contributes 
to efficient CMV replication by enhancing the expression 
of  IE2 mRNA derived from the same transcription unit, 
by a yet unidentified post-translational mechanism[80,81]. 
Furthermore, IE2 is also SUMOylated by both non-
covalent and covalent SUMO-modification[82]. IE2 
SUMOylation is necessary for the function of  this viral 
transcription factor and for human CMV replication[82], 
opposite to the activities of  most transcription factors 
that are regulated in a negative manner by SUMO attach-
ment[44]. Importantly, IE2 also contains a SIM motif  to 
interact with other SUMOylated partners, such as TAF12, 
a component of  the transcription factor IID complex[83]. 
This interaction enhances the transactivation activity 
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of  IE2, playing a further role in the progression of  the 
CMV lytic cycle[83].

Recently, Loregian’s group reported the first evidence 
of  SUMOylation of  a viral DNA-polymerase processiv-
ity factor: the UL44 protein from human CMV[84]. UL44 
strongly binds to cellular Ubc9 and is widely SUMOylat-
ed during CMV infection, with accumulation at a later 
time post-infection. Interestingly, UL44 SUMOylation is 
dependent on its correct dimerization and proper DNA 
binding. CMV infection in cells overexpressing SUMO1 
protein results in increased viral replication and viral titer, 
as well as a faster relocalization of  UL44 from replicative 
foci, suggesting that UL44 SUMOylation could perhaps 
support later functions important for viral propagation[84].

Finally, other interesting examples of  viral proteins 
SUMO-modified are Epstein-Barr virus (EBV), BZLF1 
(also known as Zta), Rta and BGLF4 proteins. 

EBV is usually maintained under latent conditions in 
B lymphocytes and to proliferate it must enter the lytic 
cycle driven by BZLF1 and Rta. BZLF1 is post-transla-
tionally modified by both SUMO-1[85] and SUMO-2/3[86]. 
BZLF1 is a transcriptional activator involved in the re-
activation of  EBV[87], allowing its switch from latent to 
lytic stage, characteristic of  the EBV infection cycle. SU-
MOylation of  BLZF1 plays a key role in this mechanism, 
negatively affecting its transcriptional activity. In fact, 
SUMOylated BLZF1 associates with HDAC3 and this 
association allocates HDAC3 to BLZF1-responsive pro-
moters, repressing the transcription of  BLZF1-induced 
genes[88]. Furthermore, the SUMO-mediated repression 
of  BLZF1 is reverted by the action of  a specific protein 
kinase (EBV-PK) that, by inhibiting BLZF1 SUMO-
conjugation, promotes the transcription of  BLZF1 target 
genes and replication of  the viral genome[86]. 

Similarly, also Rta SUMOylation, mediated by the adap-
tor cellular protein RanBPM, enhances its transactivation 
activity and promotes viral replication of  the latent EBV 
virus[89].

BGLF4 is a protein kinase that phosphorylates both 
viral and host proteins[90], strongly contributing to the 
EBV infection cycle. BGLF4 carries SIM motifs respon-
sible for its binding to SUMO-2 conjugated proteins. The 
SUMO binding function of  BGLF4, among others, is 
also required to enhance the production of  extracellular 
virus during EBV lytic replication and to disperse PML-
NBs[91]. Indeed, BGLF4 seems to inhibit SUMOylation, 
thus promoting activation of  the EBV BZLF1 protein 
(see above), probably by SIM-mediated recruitment and 
phosphorylation on SUMOylated BZLF1[91]. 

SUMO and virus assembly
Virus assembly is the result of  a series of  protein-protein 
and protein-lipid interactions that permits localization 
of  different viral components at sites of  virus budding. 
Although specific for each virus strain, virus assembly 
typically involves the expression of  late genes that direct 
capsid assembling and enveloping. Besides its key role in 
the activity of  the early expressed viral proteins that drive 

viral replication, SUMOylation also plays fundamental 
roles in viral assembly processes (Figure 2). 

L2, together with L1, is a structural protein of  the hu-
man papillomavirus (HPV) capsid critical for the genera-
tion of  infectious viral particles as well as in early events 
of  HPV infection[92]. L2 is preferentially modified by 
SUMO2/3, affecting its stability[93]. In fact, SUMOylated 
L2 has an increased half-life compared to the non-SU-
MOylated mutant. Moreover, the effect of  SUMOylation 
negatively affects L2 capacity to interact with its physi-
ological interactor L1, suggesting a mechanism by which 
capsid assembly may be modulated in HPV infected 
cells[93]. Moreover, L2 also increases the overall SUMO-2/3 
conjugation of  host proteins[93].

Nucleocapsid protein (NP) of  Hantaan virus (HTNV) 
is a structural protein that, through its oligomerization and 
ability to bind RNA[94], is involved in viral assembly in the 
infected cell. Ubc9 and SUMO-1 interaction with NP[95] 
determines its localization at the perinuclear region where 
viral replication occurs[96] and, therefore, could regulate the 
assembly of  the HTNV. Notably, Ubc9 was also identified 
as a cellular protein that interacts with the Gag protein 
of  Mason-Pfizer monkey[97] and Human Immunodefi-
ciency viruses[98-100], regulating viral assembly, trafficking 
and Env incorporation. However, these activities are not 
dependent on Ubc9 conjugation activity, indicating that 
SUMOylation may not be strictly required for assembly of  
these viruses[97,99]. 

A large body of  evidence shows that Influenza A virus 
M1 protein is essential for viral assembly and budding[101]. 
M1, together with other viral proteins are SUMOylated 
during Influenza virus infection[102,103]. Moreover, abolish-
ment of  M1 SUMOylation resulted in dramatic reduction 
of  the virus titer in the culture fluid, accompanied by ac-
cumulation of  intracellular viral proteins and viral RNA, 
indicating that SUMOylation of  M1 modulates the assem-
bly of  Influenza A virus. On the other hand, other steps 
of  the viral life cycle, such as virus entry, RNA replication 
and translation, are not affected by M1 SUMOylation[103].

SUMOylation and viral host immune evasion
Multicellular organisms normally fight infections via their 
immune system. The immune system recognizes and com-
bats invading foreign agents through two main canonical 
pathways, the innate and adaptive immunity. In addition, 
intrinsic cellular defenses are also employed by the host to 
clear viral infections[104]. Intrinsic resistance represents the 
first line of  intracellular antiviral defense that employs the 
classical pathogen recognition receptors (PRRs), shared by 
the innate immunity response, to sense viruses and to rap-
idly produce antiviral molecules in order to limit the initial 
stages of  infection. Consequently and not surprisingly, vi-
ruses have evolved a variety of  mechanisms to overcome 
cellular defenses and SUMO represents one of  the most 
exploited pathways to this end (Figure 3). 

The intrinsic and innate immune responses are primed 
by the activation of  PRRs, such as the toll-like receptors 
and retinoic acid-inducible gene Ⅰ which, in turn, lead to 
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interferons (IFNs) production by IFN regulatory factor 
(IRF)-dependent mechanisms[105]. 

Ebola Zaire virus (EBOV) is a human pathogen that 
infects initially dendritic cells and macrophages[106], inhibit-
ing the production of  the pro-inflammatory IFN type Ⅰ  
(IFN-Ⅰ)[107]. Namely, EBOV VP35 protein potently in-
hibits IFN-Ⅰ transcription[108] using the cellular SUMO 
machinery in dendritic cells. Indeed, VP35 increases 
SUMOylation of  IRF7[109], the principal cellular factor re-
quired for IFN-Ⅰ transcription[110], in a PIAS1 dependent 
manner. VP35 forms a complex with the SUMO ligase 
PIAS1 and IRF7, thus increasing PIAS1-mediated IRF7 
SUMO-1 and SUMO-3 conjugation[109]. Interestingly, 
IRFs SUMOylation appears to be a physiological process 
orchestrating INFs production after viral infection[111], al-
lowing clearing of  the infecting virus. Therefore, VP35 
exploits SUMO to turn off  IFN-Ⅰ production by den-
dritic cells, probably worsening the maturation of  these 
cells[112] and weakening the host innate immunity against 
EBOV infection.

Taken together, these reports strongly suggest the ex-
istence of  a correlation between SUMO pathway exploi-
tation by viruses and escape from the host innate immune 
system. However, viruses also possess a large number of  
mechanisms to escape the intrinsic immune system. This 
is not surprising, considering that the intrinsic response is 
the first host defense to fight viral infections. 

PML-NBs are nuclear inclusions rich of  SUMOylated 
proteins, known to be crucial organelles involved in in-
trinsic anti-viral response. In fact, PML-NBs seem to be 
implicated in the downstream effect of  INF-mediated 
antiviral action[113]. Notably, PML-NBs are disassembled 

during most viral infections at very early stages, indicating 
that targeting PML-NBs could be an efficient viral strate-
gy to evade IFN action[113]. Therefore, most of  the mech-
anisms developed by DNA viruses to overcome cellular 
defense disperse PML-NBs: one rapid way to achieve this 
goal is by hijacking the SUMOylation pathway.

Herpes simplex virus type-1 (HSV-1) protein ICP0 
structure encompasses a RING finger domain that acts as 
an E3 ubiquitin ligase, redirecting specific cellular proteins 
for proteasome-dependent degradation[114]. Earlier during 
infection, PML-NBs components are quickly recruited at 
sites closely associated with the viral genome in a SUMO-
dependent manner[115,116], promoting the transcription of  
anti-viral genes. However, ICP0 counteracts this PML-
NBs response targeting SUMOylated proteins for degrada-
tion, thanks to its E3 ligase activity[115]. This HSV-response 
is strictly required for its infection cycle, since in this way 
ICP0 inhibits cellular mechanisms that would otherwise re-
press viral transcription[114]. Interestingly, it has been shown 
that ICP0 falls in the SUMO targeted ubiquitin ligases 
(STUbLs) family[117], a class of  RING finger ubiquitin 
ligases that contains SIMs[118]. Therefore, through its SIM 
motifs, ICP0 binds to important SUMOylated transcrip-
tion factors in PML-NBs that, in turn, are degraded by the 
E3 ubiquitin ligase activity of  its RING motif. This dual 
action of  ICP0 efficiently counteracts intrinsic antiviral re-
sistance to HSV-1 infection[117].

Like ICP0, KHSV K-Rta protein also belongs to the 
STUbLs family. Indeed, K-Rta contains SIM motifs and 
conjugates ubiquitin to SUMO and SUMO-chains, disrupt-
ing PML-NBs in a ubiquitin ligase dependent fashion[119].

A similar mechanism is also conducted by Varicella 
Zoster virus protein ORF61. Indeed, ORF61 colocalizes 
and disperses PML-NBs shortly after virus entry in its 
target cell[120]. It also contains three SIM motifs through 
which it counteracts intrinsic SUMO-promoted anti-viral 
control by PML-NBs[121]. Consistently, ORF61 SIM mu-
tants are unable to disperse PML and the overall degree 
of  virus infection is dramatically impaired when SUMO-
conjugation is inhibited[121]. As for ICP0, PML-NBs 
dispersal by ORF61 is a two-step process accomplished 
by different protein domains: the ORF61 SIMs that rec-
ognize SUMOylated PML protein in PML-NBs and the 
RING domain that executes their dispersal[121]. However, 
ORF61 RING domain does not share the E3 ligase activ-
ity with ICP0 and is thus not able to degrade PML-NBs. 
A similar PML-NBs disruption mechanism seems to be 
also carried out by the already described EBV BGLF4 
protein[91]. 

While in all the examples described above viruses ex-
tensively interact with a number of  proteins in PML-NBs, 
encephalomyocarditis virus (EMCV) counteracts antiviral 
pathway targeting the PML protein alone[122]. In fact, dur-
ing infection, PML is first transferred by EMCV from 
the nucleoplasm to the nuclear matrix and then the viral 
protease 3C induces PML degradation. Both PML delo-
calization and degradation are a consequence of  covalent 
SUMO-1, -2 and -3 conjugation promoted by EMCV[122].

ICP0
K-Rta(*)
ORF61
3C
IE1(*)
BGFL4(*)
Gam1(*)

VP35

IRF7
S

IFN

IFN

PML-NBs

Inhibition of IFN
transcription

PML-NBs
disassembly

Figure 3  Viral proteins exploit small ubiquitin-like modifier to promote im-
mune escape from innate and intrinsic responses. Schematic representa-
tion of the strategies used by viral proteins to counteract host innate and intrin-
sic responses through small ubiquitin-like modifier (SUMO). Viral proteins are 
designated with their acronym. S stands for SUMO. The asterisk (*) indicates 
that the marked viral protein has not been formally shown to directly influence 
cellular antiviral activity by exploiting SUMOylation, but indications of a mecha-
nistic link are known. See text for further details on exploitation of the SUMO 
machinery by single viral proteins. IFN: Interferon; IRF: IFN regulatory factor; 
PML-NBs: ProMyelocyticLeukemia nuclear bodies.
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In addition to the ability to be itself  SUMOylated (see 
above) for its transactivation functions, CMV IE1 also ef-
ficiently inhibits the intrinsic antiviral response by prevent-
ing the accumulation of  SUMOylated forms of  PML[123]. 
In this regard, CMV seems to behave as EMCV, since IE1 
does not induce PML degradation.

CONCLUSION
In recent years, SUMOylation has emerged as a major 
regulator system involved in a variety of  cellular processes. 
SUMO is indeed conjugated to a number of  proteins that 
in turn can interact with many other partners through 
the SUMO interacting (SIM) motifs. Therefore, the SU-
MOylation machinery virtually affects and directs most of  
cellular activities, crucially regulating cellular homeostasis. 
Thus, exploiting SUMOylation represents a very conve-
nient way to quickly promote and sustain pathogen sur-
vival in the host. 

Viruses, in particular, exploit SUMOylation in several 
key steps of  their intracellular life and, importantly, they 
also use the SUMO pathway to subvert the immune re-
sponse of  the host (Table 1). Both DNA and RNA viruses 
can use SUMOylation to promote viral genes transcription, 
virus assembly (Figure 2) and immune evasion (Figure 3), 
using apparently different mechanisms. Some viral pro-
teins (i.e., E3, E1, L2, A40R, CA, IE1, IE2, BLZF1, Rta, 
BGLF4, M1, E1B-55k, K-bZip, UL44) are modified by 
SUMO in order to activate their function; alternatively, they 
can influence the SUMOylation level of  a specific target 
protein (AL1, VP35) or the global SUMOylation status of  
infected cells (Gam1, ICP0, K-Rta, L2). Finally, other viral 
products could interact with SUMO components or with 
host SUMO-containing proteins (NP, Gag, 3C, ORF61), 
usually through a SIM motif, or mimicking SUMOylation 
enzymes (K-bZIP, E1B-55K). Remarkably, the same vi-
rus (KSHV, CMV, EBV, Vaccinia Virus, Papillomavirus) 
can exploit the SUMO pathway through various proteins, 
as well as the same protein (Gam1, IE1, IE2, E1B-55K, 
K-bZIP, BGLF4) can interact with SUMO using several 
mechanisms perhaps also to promote different steps of  
viral infection.

It is interesting to note that the vast majority of  viral 
proteins known to interact with the SUMOylation system 
are immediate-early or early proteins, suggesting a crucial 
role for SUMO in counteracting viral infection.

What we can learn from the complex network of  
interplay between the SUMO pathway and viruses in the 
virus-host interactions is that the same crucial pathway 
can be hijacked by different pathogens in very different 
ways to obtain a common goal, i.e., sustaining viral infec-
tion. More studies are required to define the global picture 
but the findings presented here can strongly indicate the 
SUMO pathway as a promising target for specific antiviral 
therapies.
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Abstract
Anaemia and thrombocytopenia are haematological 
disorders that can be detected in many human immu-
nodeficiency virus (HIV)-positive patients during the 
development of HIV infection. The progressive decline 
of erythrocytes and platelets plays an important role 
both in HIV disease progression and in the clinical and 
therapeutic management of HIV-positive patients. 
HIV-dependent impairment of the megakaryocyte and 
erythrocyte lineages is multifactorial and particularly af-
fects survival, proliferation and differentiation of bone 
marrow (BM) CD34+ haematopoietic progenitor cells, 
the activity of BM stromal cells and the regulation of 
cytokine networks. In this review, we analyse the ma-

jor HIV-related mechanisms that are involved in the 
genesis and development of the anaemia and thrombo-
cytopenia observed in HIV positive patients.
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INTRODUCTION
Human immunodeficiency virus (HIV) is the causative 
agent of  acquired immunodeficiency syndrome (AIDS), 
which is characterised by the progressive and fatal im-
pairment of  immune system function and the occurrence 
of  opportunistic infections and tumours[1]. Although 
the dysfunction of  the immune system and the decline 
in the number and activity of  CD4+ T cells represent 
the hallmark of  HIV infection, it is noteworthy that 
HIV can also interfere with other cell lineages and tis-
sues[2-5]. In addition to progressive depletion of  CD4+ T 
lymphocytes, peripheral blood cytopenias, such as anae-
mia, neutropenia and thrombocytopenia, occur in most 
patients with AIDS[6,7] and in some HIV-positive naive 
individuals during the early phases of  disease progres-
sion, especially when high plasma levels of  HIV RNA 
are detectable. Interestingly, isolated thrombocytopenia 
can represent the first clinical manifestation in otherwise 
asymptomatic HIV positive patients[8] whereas anaemia 
and neutropenia are more common in the late stages of  
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HIV disease[9]. These peripheral blood cytopenias have 
been observed even in the absence of  tumours, chemo-
therapeutic treatment or opportunistic infections suggest-
ing that HIV infection may be directly associated with the 
induction of  these haematological abnormalities[10]. The 
progressive depletion of  these cell lineages in the blood 
has been related to several HIV-driven mechanisms: (1) 
the impairment of  survival and proliferation of  haemat-
opoietic progenitor cells (HPCs); (2) the inhibition of  the 
differentiation of  HPCs into certain cell lineages or direct 
action on mature cells; (3) the impairment of  stromal 
cells; and (4) the dysregulation of  cytokine production 
and the appearance of  autoimmune responses. In this 
report, we analyse several aspects of  these major HIV-
related mechanisms that are involved in the impairment 
of  the erythrocyte and megakaryocyte (MK) lineages. 

HIV AND CD34+ HPCs
The bone marrow (BM) forms a suitable environment 
for stem cell survival, growth and differentiation. The 
cellular components of  BM include HPCs, HPC-derived 
cell lineages and stromal cells. HPCs represent a hetero-
geneous CD34+ cell population in the BM that includes 
the most primitive CD34+ haematopoietic stem cells 
(HSCs), which are characterised by pluripotency and a 
high capacity for self-renewal, and the CD34+ multi-po-
tent progenitors (MPPs), which originate from HSCs and 
are multipotent but have a more limited capacity for self-
renewal (Figure 1). MPPs can differentiate into common 
lymphoid progenitors (CLPs) and common myeloid pro-
genitors (CMPs). CLPs can differentiate into B and T cells, 
natural killer cells and plasmacytoid dendritic progenitor 
cells. T cell differentiation occurs in the thymus whereas 
CMPs differentiate in the BM, through specific differentia-
tion stages, into several cell lineages including granulocytes, 
erythrocytes, MKs and monocytes[11]. CMP-derived cell lin-
eages migrate into the blood with the exception of  MKs, 
which are maintained in the BM. The differentiation of  
HSCs is regulated by specific haematopoietic growth fac-
tors that induce the survival, proliferation and maturation 
of  specific cell lineages. These factors share several com-
mon properties and act hierarchically at different stages of  
differentiation, and they often show synergistic or additive 
interactions with other growth factors. Stromal cells are 
the major source of  these factors with the exceptions of  
erythropoietin (EPO) and thrombopoietin (TPO), which 
are largely produced in the kidneys and the liver, respec-
tively. 

The incidence of  peripheral blood cytopenias in HIV 
positive individuals has led to hypothesis that HIV can 
impair BM homeostasis and affect the biology and ac-
tivity of  HPCs. Early studies have observed that HIV 
infection is correlated with the depletion of  HPCs and a 
significant reduction in the in vitro growth of  HPCs that 
have been purified from HIV-infected patients[12-17], sug-
gesting that the multiple peripheral cytopenias may be 
related, at least in part, to a productive HIV infection of  

BM HPCs. HIV infection may determine a progressive 
HPC depletion due to cell lysis, which in turn leads to the 
derangement of  the differentiation towards various cellu-
lar lineages. This hypothesis of  a potential HIV infection 
of  HPCs may further imply an important feature in the 
dynamics of  HIV disease: long-lived HPCs may harbour 
proviral HIV DNA genomes in their own genomes and 
act as an additional reservoir of  HIV. Interestingly, cel-
lular HIV receptors and co-receptors can be detected on 
HPC cell membrane. Flow cytometry analyses showed 
that 25%-65% of  CD34+ HPCs that had been puri-
fied from the BM of  healthy donors, expressed detect-
able levels of  CD4 protein on their cell membranes[18,19]. 
Moreover, the CD4 protein was functionally active, and 
it effectively bound the HIV-1 gp120 anti-receptor[19]. 
The major co-receptors CXCR4 and CCR5 were also 
expressed on HPC cell membranes[20-22], and CXCR4 and 
CCR5 proteins were expressed in 53% and 35% of  iso-
lated CD34+ HPCs, respectively[23]. However, the analysis 
of  CXCR4 and CCR5 expression was dependent on 
the differentiation stage. When the expression levels of  
CXCR4 and CCR5 were determined in CD34+/CD38- 
and CD34+/CD38+ HPC subsets, the CXCR4 protein 
expression level was relatively constant in both subsets 
whereas CCR5 was detected in 2% of  more primi-
tive CD34+/CD38- cells and in 35% of  more mature 
CD34+/CD38+ subset, which indicated that CCR5 but 
not CXCR4 is up-regulated during differentiation from 
HSC into MPP[23]. The expression of  HIV receptors and 
co-receptors on the cell membranes of  CD34+ HPCs 
suggested that these cells could be considered a possible 
target of  HIV infection.

To explore this hypothesis, two major experimental 
approaches were undertaken by several groups: (1) the 
challenge of  BM or cord blood CD34+ HPCs, isolated 
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Figure 1  Human haematopoiesis. HSC: Hematopoietic stem cell; MPP: 
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cyte/erithrocyte progenitor; BFU-E: Burst forming unit-erythroid; CFU-E: Colony 
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from uninfected donors, with HIV strains; and (2) the 
detection of  HIV nucleic acids and/or viral proteins in 
BM CD34+ HPCs isolated from HIV-positive patients. 
These studies were based on the isolation and purifica-
tion of  CD34+ HPCs that represent a heterogeneous 
cell population[24,25] because the CD34+ marker could be 
detected not only on HSCs and MPPs but also on more 
committed myeloid progenitors such as CFU-GEMM, 
CFU-GM, BFU-E and CFU-MK progenitors.

Several reports showed that CD34+ BM HPCs, pu-
rified from uninfected donors, were resistant to HIV 
infection. Polymerase chain reaction (PCR) or reverse 
transcriptase-PCR analysis of  proviral HIV DNA or HIV 
RNA in HPCs that had been challenged with different 
HIV-1 strains did not reveal significant evidence of  HIV 
infection[9,12,26-29]. In partial contrast to these data, Chelucci 
and coworkers[30] have purified CD34+ HPCs from the 
peripheral blood of  healthy donors, cultured them with 
EPO + granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), interleukin-3 (IL-3) and SCF and then 
challenged with different HIV-1 strains. The analysis of  
p24 protein showed that 12% of  CFU-GM and less than 
1% of  BFU-E colonies were positive whereas the CFU-
GEMM progeny were negative.

Interestingly, early stem cells in the CD34+ HPCs, 
which are arrested in the G0 phase of  the cell cycle, were 
not permissive for HIV infection[23], and other reports 
showed that the more primitive CD34+/CD38- HPC 
subset was not susceptible for HIV-1 or HIV-2 infec-
tion[31,32]. However, a limited infection was revealed in 
the first weeks of  long-term culture in CD34+/CD38+ 
HPCs, which suggested that HIV infects at low extent 
only the more committed HPC subset but not the more 
primitive HPCs[31].

The analysis of  HIV infection in BM HPCs, purified 
from HIV-positive patients, was carried out to determine 
whether these patients could harbour proviral HIV DNA 
in HPCs. Two studies[33,34], based on PCR assays to detect 
proviral HIV DNA in BM HPCs, reported that 1 out of  
14 patients and 1 out of  11 patients, respectively, were 
HIV DNA positive. Similar percentages of  HIV provi-
ral DNA positive samples were detected in subsequent 
reports[12,13,35]. In contrast with these results, a higher 
percentage of  HIV-1 infection of  CD34+ HPCs was ob-
served in some groups of  HIV-1 positive individuals es-
pecially in patients with the more advanced stages of  the 
disease[36,37]. This discrepancy could be related to the use 
of  different PCR assays with different sensitivities, and 
the possible presence of  contaminating HIV-infected BM 
stromal cells. 

Notwithstanding these controversial results, the con-
sensus on HPC susceptibility to HIV infection, was that 
in vitro infection of  HPCs occurred, under some experi-
mental conditions, in a low fraction of  HPCs, and these 
HPCs were the more committed HPCs, whereas the more 
primitive HPCs were not considered a significant HIV 
target. Moreover, in vivo infection of  HPCs was infrequent 
suggesting a negligible role of  HIV-infection of  HPCs in 

BM derangement and the induction of  cytopenias[7]. 
Several mechanisms have been proposed to explain 

HPC resistance to HIV infection. HPCs secrete the 
CCR5 ligands macrophage inflammatory protein-1α 
(MIP-1α), MIP-1β, and regulated on activation normal 
T cell expressed and secreted (RANTES)[37,38] and the 
CXCR4 ligand stromal-derived factor 1 (SDF-1)[22], which 
may compete with R5- or X4-tropic HIV-1 strain infec-
tion by interfering with gp120/co-receptor-binding. In 
addition, an analysis of  the interference between gp120 
and mAb directed against CXCR4 in HPCs, suggested 
the lack of  a real CD4/CXCR4 complex on HPC mem-
branes, which excluded the formation of  the trimeric 
complex with gp120, essential for HIV binding and in-
fection[22]. Zhang and coworkers have also showed that 
the cellular cyclin-dependent kinase inhibitor p21 protein 
restricts HPC infection and interferes with the integration 
of  the proviral HIV-1 genome[39]. 

However, recent studies have challenged the con-
sensus about HPC resistance to HIV infection[40-44]. A 
report has described the HIV-1 subtype C infection in 
CD34+ HPCs, and the analysis of  proviral HIV DNA 
in peripheral blood CD34+ cells showed that 12 out of  
19 patients were positive. Interestingly, HIV-1 subtype B 
strains were not able to infect HPCs, suggesting that only 
specific HIV subtypes could be associated with direct 
infection of  HPCs[40]. Carter et al[41] challenged purified 
HPCs with a molecular HIV clone p89.6 derived from the 
dual tropic HIV strain 89.6. A small percentage (1%-6%) 
of  HPCs exhibited HIV-1 gag protein expression 72 
h post infection. A similar infection rate was found, in 
contrast with previous studies, even in the more primi-
tive CD133+CD34+CD38- HPC subset. However, the 
methodological approach of  this study was subsequently 
criticised for the choice of  the sole criterion of  gag 
analysis, the infection protocol and the pseudo-viruses 
that were used[45]. These results were substantially con-
firmed by the same group in a subsequent study[42] that 
showed HIV infection in approximately 2% of  primitive 
CD133+CD34+high HPC subset cells. HIV infection was 
detectable when X4-tropic HIV subtype B strains were 
used, whereas R5-tropic HIV strains were ineffective on 
CD133+CD34+CD38- HPC subset cells, suggesting that 
the infection of  HPCs might be detectable when X4-
tropic HIV strains appear during the progression of  HIV 
infection. These X4-tropic HIV strains are generally ob-
served in the late stages of  HIV infection and are related 
to more rapid disease progression and a poorer prognosis. 

Carter et al[41] have also studied BM HPCs, isolated 
from six HIV-positive patients with high HIV RNA load. 
HIV-1 gag protein was detected in three of  the six sam-
ples. When these cells were cultured with GM-CSF and 
tumour necrosis factor-α (TNF-α) to induce myeloid dif-
ferentiation, all six of  the samples were positive for the 
gag protein. In the same report, fresh BM HPCs, isolated 
from nine combination antiretroviral therapy (cART)-
treated HIV positive individuals with undetectable viral 
loads for longer than 6 mo, were analysed using a quan-
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titative real time PCR assay for integrated proviral HIV 
DNA. Four of  the nine samples were positive with the 
number of  proviral HIV genomes ranging between 2.5-40 
copies/10000 CD34+ HPCs. These data suggested a new 
interpretation of  the interaction between HIV and HPCs, 
in which a low number of  HSCs and HPCs are suscepti-
ble to HIV infection and may represent an HIV reservoir. 
The rate of  infection could be under-recorded because 
the data from Carter et al[41] indicate that HIV challenge is 
cytotoxic for HPCs. Moreover, their studies showed that 
even HIV-1 subtype B strains could infect these HPC 
subsets, which is in contrast to the previous study indi-
cated above[40], suggesting that the HIV-1 subtype B cy-
totoxicity could explain this phenomenon. The infection 
of  HPCs indicated that these cells could be a reservoir 
of  HIV. Unfortunately, the hypothesis of  HPCs as a viral 
reservoir was not confirmed by two subsequent analyses 
on proviral HIV-1 DNA in HPCs[46,47]. In these studies, 
CD34+ HPCs were purified from 11 and 8 HIV-positive 
patients treated with long-term suppressive cART. High 
sensitivity PCR assays demonstrated no HIV-1 proviral 
DNA in these cells[46,47]. 

Altogether, these recent studies have reconsidered 
the relationship between HIV infection and HPCs, but 
the data still remain controversial and further studies are 
needed to evaluate whether HIV infection of  HPCs may 
be associated with the onset of  blood cytopenias or may 
represent an additional HIV infection reservoir.

In addition to analyses of  the direct infection of  HPCs 
by HIV, several studies have been performed on granulo-
cyte-macrophage CFUs (CFU-GMs), mixed lineage CFUs 
(CFU-GEMMs) or erythroid burst-forming units (BFU-
Es). In this context, HPCs from HIV-1 infected patients, 
showed impaired in vitro BFU-E, CFU-GM and BFU-
MK growth[12,25,27,34,36,48,49]. These results were confirmed 
even in HPCs purified from HIV-negative individuals 
and challenged with HIV even though other studies did 
not observe growth inhibition[26,30,50,51] probably due to 
the different HIV strains and cell culture conditions that 
were used. The significant reduction of  CFU-GEMM, 
CFU-GM, BFU-E, and BFU-MK growth suggested an 
alteration of  HPC proliferation with the possible involve-
ment of  apoptosis in the induction of  cytopenias. Apop-
tosis plays an important role in the depletion of  CD4+ T 
lymphocytes even through the interaction of  HIV gp120 
and CD4. HIV gp120 is also able to induce the activation 
of  apoptosis in endothelial cells, osteoblasts, and neu-
rons[52-54], and several studies have been performed on the 
effects of  heat-inactivated HIV and certain viral proteins 
such as gp120 and Tat on the myelosuppression ob-
served in HIV-positive patients. HIV-1 gp120 and heat-
inactivated HIV-1[28,31,55,56] impaired the in vitro clonogenic 
capacity and induced apoptosis. This negative regulation 
of  proliferation and survival was associated with trans-
forming growth factor β1 (TGFβ1) increased production 
by HPCs and the occurrence of  a Fas-dependent mecha-
nism[57,58]. This reduction in survival and proliferation due 
to apoptosis could at least partially explain the decrease 

of  HPCs and circulating precursors that has been noted 
in HIV-positive patients[13,34,36,56-62]. 

HIV AND BM STROMAL CELLS
The cellular components of  the BM include HPCs at all 
stages of  differentiation and stromal cells. BM stromal 
cells are a mixed population composed of  mesenchymal 
stem cells (MSCs), endothelial cells, macrophages, fibro-
blasts, adipocytes, osteoblasts and osteoclasts, as well as 
dendritic cells and B and T lymphocytes that migrate 
from the blood to the BM. Stromal cells are essential 
for proper homeostasis and the regulation of  BM hae-
matopoiesis through a complex cellular cross-talk that is 
modulated by cytokines. In vitro experiments using long-
term BM cultures showed that HIV-infected BM stroma 
was unable to support uninfected CD34+ HPC growth 
and differentiation compared to uninfected cultures[49,63,64]. 
In addition, the stromal structure of  the BM in HIV 
patients shows morphological variations including an in-
creased number of  macrophages and a decreased number 
of  fibroblasts[10,65]. This impairment of  stromal activity 
and structure affects HPC differentiation and growth and 
it is due to the complex interaction between HIV and the 
different BM stromal cells that lead to a derangement of  
cytokine regulation. In particular, certain cell types, such 
as T cells, MSCs, macrophages and endothelial cells, are 
targeted, directly and indirectly, by HIV and its proteins 
including Tat and gp120[66-69]. BM MSCs can differentiate 
towards several cell lineages such as osteoblasts, adipo-
cytes, fibroblasts, etc. In vitro experiments have demon-
strated that HIV, gp120 and Tat can elicit a derangement 
of  the clonogenic capacity of  BM MSCs. In particular, 
the osteoblast differentiation is inhibited whereas adi-
pocyte differentiation is increased. The alteration of  the 
clonogenic activity may also explain the decreased num-
ber of  fibroblasts that are detectable in the BM of  HIV 
patients[10,65]. T cells, macrophages, endothelial cells and 
MKs are productively infected by HIV to different de-
grees in the BM. Endothelial cells are permissive for HIV 
infection and BM endothelial cells are infected in HIV 
patients at every stage of  HIV disease. Endothelial cell 
infection was related to BM impairment in HIV-positive 
subjects because they exhibited a reduced ability to re-
spond to BM micro-environmental regulatory signals that 
positively up-regulated the number of  blood cells[69].

CD4+ T cells and macrophages are the major targets 
of  HIV replication, and the release of  specific cytokines 
and haematopoietic factors is affected by HIV infection. 
TNFα, TGFβ1, interferon-γ (IFN-γ), IL-1, IL-6, IL-10, 
IL-18, TNF-related apoptosis-inducing ligand and mono-
cyte colony-stimulating factor are dysregulated by HIV 
in T cells and monocyte models[70-75]. Similarly, viral pro-
teins such as Tat and/or gp120 increase the expression 
of  IL-6, TNFα and IL-1[76-81]. The impairment of  several 
cytokines during HIV infection was confirmed by clini-
cal studies in which higher levels of  IL-1, IL-18, TNFα 
and IL-6 in the plasma of  HIV-positive patients were 
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detected compared to uninfected individuals[82-85]. It is 
noteworthy that the pro-inflammatory cytokines TNFα, 
IL-1, and IL-6 and the chemokines MIP-1α, MIP-1β and 
RANTES were up-regulated in the BM of  HIV-positive 
patients[65,86]. TNFα involvement in the HIV-1-induced 
suppression of  haematopoiesis, was also suggested in 
neutralisation studies[87]. Tat is able to elicit a significant 
activation of  the TGFβ1 expression in macrophages that 
have been isolated from BM. BM macrophage culture su-
pernatants were added to BM HPC cultures thus induc-
ing an inhibition of  HPC growth in the liquid cultures[88]. 
This chronic derangement of  cytokine modulation can 
elicit several negative effects on HPCs and their dif-
ferentiation into various cell lineages, cooperating in the 
pathogenesis of  anaemia and thrombocytopenia in HIV-
infected patients.

HIV AND THE MK LINEAGE
Chronic thrombocytopenia is detectable during HIV dis-
ease in approximately 10% of  HIV positive patients and 
15%-60% of  patients with AIDS[89-92]. This haematologi-
cal disorder may represent the first manifestation of  HIV 
infection and it may progress over time and lead to severe 
bleeding[91]. HIV-associated thrombocytopenia is related 
to reduced platelet survival, ineffective platelet produc-
tion and the impairment of  the survival of  BM MKs 
and their precursors. HIV targets the MK cell lineage by 
interfering throughout the differentiation of  mature MKs  
(Figure 2A). As described above, HIV decreases the number 
and activity of  HPCs and induces a growth deficit in 
CFU-MKs in HIV patients. An analysis of  the impact 
of  HIV-1 and gp120 during TPO-induced cord blood-
derived HPC differentiation into MKs has demonstrated 
that gp120 treatment led to the induction of  apoptosis in 
the CD41+ and CD61+ subsets due to TGFβ1 increase 
and APRIL down-regulation[55]. These data confirmed the 
induction of  apoptosis through the gp120 engagement of  
CD4, observed in BM GPⅡb/Ⅱa+ (CD41+) megakary-
ocytic cells and in megakaryocytic cell line models[93-95]. 
Moreover, a reduction of  c-mpl expression in the MK 
lineage due to V3 loop region of  gp120 was observed in 
MK lineage thus indicating a further mechanism involved 
in the impairment of  megakaryocytopoiesis[96]. 

HIV and gp120 altered the maturation of  MKs, and 
decreased the number of  MKs with higher ploidy[55]. 
Electron microscopy analysis of  MKs from HIV-infected 
individuals with thrombocytopenia clearly demonstrated 
ultrastructural abnormalities, such as blebbing of  the 
surface membrane and vacuolisation of  the peripheral cy-
toplasm[97]. Mature MKs can be infected by HIV through 
binding the CD4 receptor[97-102], and HIV genomes have 
been detected in MKs purified from BM of  HIV-positive 
patients[103]. The infection of  MKs is not strain-restricted 
because both R5- and X4-tropic HIV-1 strains are able to 
infect MKs thus indicating that the infection may occur 
early in the development of  HIV infection[99]. In addition 
to these direct effects of  HIV on the MK cell lineage, 

HIV also supports chronic thrombocytopenia through 
autoimmune mechanisms[89-92], particularly evident in early 
stages of  the disease[104,105]. Autoimmune mechanisms are 
related to anti-HIV antibodies cross-reacting with platelet-
membrane glycoproteins, supporting the basic role of  mo-
lecular mimicry in the induction of  these antibodies[106-110]. 
In particular, an autoantibody directed against integrin GP
Ⅲa49-66 induced a platelet lysis[110] and cross-reacted with 
some peptides derived from Nef  and gp120[111]. The anti-
GPⅢa49-66 antibody isolated from HIV-1 patients down-
regulated MK proliferation in in vitro culture of  human 
cord blood CD34+ cells driven by TPO[112].

Platelets can bind HIV-1 gp120 through its CXCR4 
and fibronectin surface receptors, and platelet-bound 
HIV may infect permissive cells suggesting a possible 
role for platelets as carriers in the spread of  HIV infec-
tion[113]. The interaction between platelets and HIV leads 
to the activation of  platelets and an altered platelet mor-
phology, which is likely due to CXCR4 binding because 
this protein is the receptor of  SDF-1, a factor involved in 
enhancing platelet activation by agonists[114]. Platelet ac-
tivation was detected in HIV patients and the degree of  
activation in circulating platelets was higher in AIDS pa-
tients than patients in earlier stages of  HIV infection[115]. 
Activated platelets also represent a source of  some pro-
inflammatory cytokines. Their activation led to a strong 
induction of  IL-1β and IL-18 secretion eliciting a further 
cytokine regulation derangement[114,116]. These alterations 
of  platelet activity were also related to the impairment of  
coagulation homeostasis, thus increasing the complexity 
of  the HIV/MK/platelet/coagulation interactions. These 
studies demonstrated that the MK lineage is a direct and 
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Figure 2  The mechanisms involved in human immunodeficiency virus-
related thrombocytopenia and anaemia. A: Human immunodeficiency virus 
(HIV)-related thrombocytopenia; B: HIV-related anaemia. EPO: Erythropoietin; 
HPC: Haematopoietic progenitor cell; MK: Megakaryocyte.
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indirect target of  HIV and its proteins throughout their 
entire differentiation and development. This targeting 
affects platelet maturation and activity, explaining why 
thrombocytopenia is a major cytopenia in HIV-positive 
patients.

HIV AND THE ERYTHROCYTE CELL 
LINEAGE
Anaemia is a clinical complication detectable in many HIV 
patients[117]. The overall incidence of  anaemia in HIV-
positive individuals is 10% in asymptomatic patients and 
up to 92% in patients with AIDS[6,117]. cART treatment 
has reduced but not solved the problem of  anaemia in 
HIV patients. In a cohort of  1624 patients in the Eu-
roSIDA study, the prevalence of  anaemia during HAART 
decreased from 65% in naive patients to 53% after 6 mo 
of  therapy and 45% after 1 year of  therapy[118]. Although 
anaemia does not generally cause death in HIV patients, 
it is well known that anaemia can increase morbidity in 
these subjects. HIV patients with anaemia have a higher 
risk of  reduced survival compared to non-anaemic in HIV 
positive patients[117,119]. The symptoms of  anaemia during 
HIV infection are not different from the symptoms that 
are observed in HIV negative patients, and the diagnosis 
of  anaemia is often a laboratory diagnosis based on a re-
duction of  the haemoglobin (Hb) value and erythrocyte 
count. The anaemia is generally mild with Hb concen-
trations between 8-14 g/dL for men and 8-12 g/dL for 
women, although the degree of  anaemia is dependent 
on the immunosuppressive context and disease stage[120]. 
The erythrocyte morphology does not exhibit consist-
ent variations in the peripheral blood[121]. Microcytosis is 
rarely observed, whereas macrocytosis is found in HIV-
positive patients treated with zidovudine (AZT). AZT 
treatment was related to BM suppression, and the HER 
and WIHS studies observed a significant increase in anae-
mia in AZT-treated patients[122,123]. Some reports indicated 
the presence of  poikilocytosis, anisocytosis and ruleaux 
formation, but, in general, HIV-associated anaemia is 
characterised by normocytosis, low reticulocyte counts 
and an ineffective erythropoiesis with an hyporegen-
erative BM[6,124]. The pathogenesis of  anaemia in HIV-
positive patients is multifactorial (Figure 2B): the different 
mechanisms that are involved in the anaemia induction 
are characterised by the impairment of  erythrocyte pro-
duction and increased erythrocyte destruction[120]. HIV is 
directly involved in the induction of  anaemia even though 
neoplastic diseases, vitamin deficiencies, iron metabolism 
impairment, pharmacological treatments and opportunis-
tic infections are implicated in anaemia onset during HIV 
infection. The involvement of  HPCs in the cytopenias 
has been illustrated above, however, it is noteworthy that 
Cleveland and coworkers observed the expression of  
CD4 on the cell membranes of  erythroid differentiating 
cells. The co-expression of  CD4 and glycophorin A indi-
cates that some erythroid-committed cells could represent 
a target for HIV infection[125]. In addition, the expression 

of  functional CXCR4[37] was detected in CD34+ BFU-
Es even though its expression level decreased during 
erythroid differentiation. Interestingly, Tat treatment of  
cord blood-isolated HPCs up-regulated CXCR4 protein 
expression indicating a complex effect of  HIV activity on 
erythrocyte lineage survival and differentiation[126]. Moreo-
ver, the dysfunction of  erythroid differentiation could be 
related to BM microenvironment damage and stromal 
cell impairment[7,71]. IL-1β, IFN-γ, TGFβ1 and TNFα 
suppress the growth of  progenitor cells in vitro and may 
play an important role in the induction of  HIV-associated 
anaemia[116,126,127]. Some papers have suggested that HIV 
could impair the EPO-related feedback mechanisms that 
regulate the red blood cell homeostasis. Decreasing the 
Hb concentration induces EPO production, whereas in 
many HIV patients the presence of  anaemia is coupled 
with a decrease in the serum EPO concentration that is 
independent of  kidney damage[121,128,129]. Moreover, in vitro 
experiments demonstrated that HIV-1 reduced EPO syn-
thesis[130]. Different mechanisms have been considered to 
explain this EPO reduction. HIV-related up-regulation of  
pro-inflammatory cytokines IL-1β and TNF-α directly 
down-regulates EPO expression in vitro[131] through the 
cytokine-mediated formation of  reactive oxygen spe-
cies, which in turn impair the binding affinities of  EPO-
inducing transcription factors. In addition, circulating 
antibodies to EPO are detectable in approximatively 23% 
of  HIV-infected patients, and a prospective study on 
113 patients showed that anti-EPO antibodies could be 
considered an independent risk factor for anaemia[132,133]. 
The presence of  these auto-antibodies, directed against 
several targets, was associated with molecular mimicry 
and the dysregulation of  the immune system. Recent 
reports demonstrated that the anti-EPO antibodies rec-
ognised three major EPO molecule epitopes that span 
three regions including the amino acids domains 1-20 
(EP1), 54-72 (EP5) and 147-166 (EP12) of  which EP1 
and EP12 are the domains that are involved in the EPO-
EPOR interaction[134]. The region corresponding to EP1 
shows a 63% sequence homology with the 34-52 amino 
acid sequence of  HIV gag p17, and a cross-reaction be-
tween anti-EP-1 auto-antibodies and the gag fragment 
was detected suggesting a role for mimicry by this protein 
in the occurrence of  anaemia[134]. HIV-associated anaemia 
could also be induced by haemolysis. In HIV patients, 
cases of  haemolysis have been observed that are linked to 
CID, glucose-6-dehydrogenase deficiency, auto-antibodies 
against red blood cells, thrombotic thrombocytopenia 
purpura and pharmacological treatment. Furthermore, 
some HIV positive patients exhibited the presence of  a 
broad panel of  specific and non-specific anti-erythrocyte 
antibodies, and, in some cases, erythrocyte lysis was me-
diated by complement activation. Although consistent 
haemolysis is rare in HIV patients, the damage and lysis 
of  red blood cells by auto-antibodies can be considered an 
additional mechanism of  HIV-associated anaemia[135-137].

In conclusion, the occurrence of  thrombocytopenia 
and anaemia represent major pathological manifestations 
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in HIV patients. The pathogenesis of  these cytopenias 
is multifactorial, and several targets such as HPCs, cell 
lineage differentiation, cytokine dysregulation and stro-
mal cell impairment cooperate in the occurrence of  
these haematopoietic defects. The investigation of  the 
different mechanisms that are involved in the genesis 
of  these cytopenias has provided important findings on 
HIV pathogenesis even though some pivotal items such 
as the susceptibility of  HPCs to HIV infection and their 
role as HIV infection reservoirs are still under debate and 
deserve additional experimental analysis. Further studies 
will be essential to better characterise these mechanisms 
and to identify useful targets for supportive therapy and 
management of  HIV-positive patients.
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rus first hits the cell, before latency is established. Cells 
surviving virus generated damage would consequently 
become more sensitive to further damage mediated by 
the otherwise insufficient transforming activity of virus 
products expressed in latency, or upon episodic reacti-
vations (viral persistence). Cells with a combination of 
genetic and epigenetic damage leading to a cancerous 
phenotype would emerge very rarely, as the probability 
of such an occurrence would be dependent on severity 
and frequency of consecutive hit and rest cycles due to 
viral reinfections and reactivations.

© 2013 Baishideng. All rights reserved.
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Core tip: Current models for viral driven oncogenesis 
cannot explain why tumor development in carriers of 
tumorigenic viruses is a very rare event, occurring de-
cades after virus infection. Considering that viruses are 
mutagenic agents per se  and human oncogenic viruses 
additionally establish latent and persistent infections, 
we attempt here to provide a general mechanism of 
tumor initiation both for RNA and DNA viruses, sug-
gesting viruses could be both necessary and sufficient 
in triggering human tumorigenesis initiation.
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TUMORS AND VIRUSES
According to currently accepted estimates, viruses are 
etiologically linked to 15%-20% of  all cancer cases world-
wide[1-3]. Although many animal and human viruses can 
transform cells upon infection, only six human viruses are 
consistently associated with the onset of  tumors in man, 

Online Submissions: http://www.wjgnet.com/esps/
wjv@wjgnet.com
doi:10.5501/wjv.v2.i2.102

World J Virol  2013 May 12; 2(2): 102-109
ISSN 2220-3249 (online)

© 2013 Baishideng. All rights reserved.

World Journal of 
VirologyW J V

How virus persistence can initiate the tumorigenesis process

Simone Avanzi, Gualtiero Alvisi, Alessandro Ripalti

Simone Avanzi, Alessandro Ripalti, Department of Oncology, 
Hematology and Laboratory Medicine, Operative Unit of Mi-
crobiology, A.O-U. di Bologna Policlinico S. Orsola-Malpighi, 
40138 Bologna, Italy
Gualtiero Alvisi, Department of Molecular Medicine, Microbiol-
ogy Section University of Padua, 35100 Padua, Italy
Author contributions: Ripalti A formulated the hypothesis; 
Avanzi S and Alvisi G criticized and revised the hypothesis; 
Avanzi S, Alvisi G and Ripalti A wrote the article.
Correspondence to: Dr. Alessandro Ripalti, Department of 
Oncology, Hematology and Laboratory Medicine, Operative 
Unit of Microbiology, A.O-U. di Bologna Policlinico S. Orsola-
Malpighi, via Massarenti 9, 40138 Bologna, 
Italy. alessandro.ripalti@unibo.it
Telephone: +39-51-4290921  Fax: +39-51-307397
Received: December 5, 2012  Revised: April 4, 2013
Accepted: April 10, 2013
Published online: May 12, 2013

Abstract
Human oncogenic viruses are defined as necessary but 
not sufficient to initiate cancer. Experimental evidence 
suggests that the oncogenic potential of a virus is effec-
tive in cells that have already accumulated a number of 
genetic mutations leading to cell cycle deregulation. Cur-
rent models for viral driven oncogenesis cannot explain 
why tumor development in carriers of tumorigenic vi-
ruses is a very rare event, occurring decades after virus 
infection. Considering that viruses are mutagenic agents 
per se  and human oncogenic viruses additionally estab-
lish latent and persistent infections, we attempt here to 
provide a general mechanism of tumor initiation both for 
RNA and DNA viruses, suggesting viruses could be both 
necessary and sufficient in triggering human tumorigen-
esis initiation. Upon reviewing emerging evidence on the 
ability of viruses to induce DNA damage while subvert-
ing the DNA damage response and inducing epigenetic 
disturbance in the infected cell, we hypothesize a gener-
al, albeit inefficient hit and rest mechanism by which vi-
ruses may produce a limited reservoir of cells harboring 
permanent damage that would be initiated when the vi-
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namely human papillomavirus (HPV), human T-cell lym-
photropic virus 1 (HTLV-1), Epstein-Barr virus (EBV), 
human herpesvirus 8 (HHV-8), hepatitis B virus (HBV) 
and hepatitis C virus (HCV) (Table 1). A large share of  
what is known about the molecular mechanisms of  onco-
genesis is due to studies of  tumor viruses, defined thereof  
as viruses carrying in their genome one copy of  an on-
cogene or of  an anti-oncogene or viruses that can alter 
the expression of  the cellular version of  one such gene[4]. 
Viruses have been shown to influence tumor sustainment 
and progression and induce escape pathways from apop-
tosis and immune surveillance[1,4], however in no case has 
it been proven that a virus can be the initiator, the primum 
movens, and not merely an “influential passenger” of  a 
tumor (Figure 1).

TUMORS AND GENES
Tumor development is believed to be a multistep pro-
cess leading to the accumulation of  permanent genetic 
damage[5], affecting either oncogenes, tumor suppressor 

genes, or stability genes[6,7]. Cancer is therefore essentially 
a genetic disease, and a crucial observation in understand-
ing multistep carcinogenesis is that the vast number and 
the coarse/crude nature of  chromosomal defects that are 
present in the majority of  tumor cells[8], are not amenable 
to an altered mutation rate in these cells[9,10]. In fact, most 
human solid tumors are characterized by an abnormal 
chromosome content, aneuploidy, which can be caused by 
genetic instability[8,11,12]. In addition, distinct and inheritable 
gene expression and phenotypic states that arise indepen-
dently from changes in DNA sequence, known as epigen-
etic modifications, are also linked to tumor formation and 
progression[13,14]. On the whole, mechanisms for the initia-
tion of  tumorigenesis leading to genetic instability are on 
the whole poorly understood, both for virus induced and 
virus unrelated tumors[6].

CAN VIRUSES INITIATE GENETIC 
INSTABILITY?
It has been known for more than four decades that 
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Figure 1  Viral infection and tumorigenesis. Viruses have been shown to encode functions that can modulate all crucial steps towards tumor development, with the 
exception of the initiation step(s). Recognized contributions of viral infection are mentioned in blue letters. V: Virus. Red arrowheads up, stimulation; down, inhibition.

Table 1  Oncogenic viruses are latent/persistent viruses

Virus EBV HHV-8 HPV HBV HCV HTLV-1

Associated  
tumor(s): viral 
protein(s) 
expressed

BL: EBNA-1 KS: vFLIP, vCYC, LANA-1 Anogenital, oral, skin 
and laryngeal cancers: 
E6, E7

HCC: HBx HCC: CP10, NS3, NS5 ATL: tax
NPC, TCL: 
EBNA1 + LMP1

PEL, MCD: vFLIP, vCYC, 
LANA-1, LANA-2, vIL-6

HL: EBNA1 + 
LMP1-2
PTLD: EBNA1-6 + 
LMP1-2

Persistency Always Always 20% infected subjects 90%-95% infected 
newborns

70%-85% infected 
subjects

Always

5% infected adults
Period between 
infection and 
tumor onset

10-20 yr 10-20 yr 5-20 yr 10-30 yr 10-30 yr 20-30 yr

EBV: Epstein-Barr virus; HHV-8: Human herpesvirus 8, also named Kaposi sarcoma virus; HPV: Human papillomavirus; HBV: Hepatatis B virus; HCV: 
Hepatitis C virus; HTLV-1: Human T-cell leukemia virus 1; BL: Burkitt lymphoma; NPC: Nasopharyngeal carcinoma; TCL: T cell lymphoma; HL: Hodgkin 
lymphoma; PTLD: Posttransplant lymphoprolipherative disorder; KS: Kaposi sarcoma; PEL: Primary effusion lymphoma; MCD: Multicentric Castleman’s 
disease; HCC: Hepatocellular carcinoma; ATL: Adult T-cell leukemia.



members of  different virus families can induce chromo-
some damage in infected cells in vitro[15], and chromosome 
breakages have been observed in leukocytes isolated from 
patients experiencing systemic viral active infections[16,17]. 
In recent years evidence has accumulated indicating the 
ability of  different viruses to induce aberrant mitosis, 
genetic instability and interfere with cellular DNA repair 
pathways, which has confirmed early reports[18-21]. Recent 
data suggest that viruses induce permanent damage in the 
genome of  infected cells in the context of  their natural 
infection[22,23], and are capable of  chromatin manipulation 
and epigenetic reprogramming of  host expression pat-
terns[24,25]; it remains to be seen whether this could stimu-
late tumor initiation.

It is well known that viruses can transform non-per-
missive cells and several human viruses cause tumors if  
introduced in experimental animals. Interestingly all of  the 
six human oncogenic viruses are able to establish latent 
and persistent infections (Table 1). Chronic HBV, HCV 
and EBV infections, persistent infection with HTLV-1, 
prolonged exposures or frequent reactivations of  HPV 
and HHV-8 associated with clinical conditions, are all epi-
demiologically linked to increased risk of  developing virus 
related malignancies[26-32]. Failure to eliminate emerging 
tumor cells because of  impaired immune function alone 
cannot account for this increased risk, since tumors devel-
op in a minority of  immune depressed patients. Further-
more tumor cells emerge very rarely from in vitro virally 
transformed cell lines, growing in the absence of  immune 
selective pressure[33]. When they do, these tumors are not 
associated with genetic instability[34]. Therefore there is a 
missing causative factor acting in the setting of  persistent 
infections, generally thought of  as non viral carcinogens or 
host responses[35]. We propose that reiteration and sever-
ity of  infections/reactivations is a key factor that possibly 
generates primary genetic and epigenetic damage on which 
viral oncogenes may add up their own oncogenic activities.

A MECHANISM FOR TUMOR INITIATION 
IN VIRAL PERSISTENCE
Viral persistence can be achieved by continuous replica-
tion, latency or both. Several virus-encoded products have 
been associated with transforming and/or oncomodulato-
ry activities[4], and with the ability to induce chromosome 
damage, abnormal mitosis and genetic instability when 
expressed in cell cultures (Table 2)[18,36-38]. Recent find-
ings point to viral proteins interfering with the epigenetic 
milieu of  the infected cells, leading to the transcriptional 
repression of  tumor suppressor genes, and interference 
with cell cycling control[39] (Table 3). However in vivo these 
activities must be particularly inefficient if  one considers 
that the majority of  the human population carries a num-
ber of  resident viruses, but only a minority among infect-
ed individuals will develop tumors that can be correlated 
with persistent viral infections, and generally after very 
long latency periods (years to decades)[4,35]. It should be 
noted that latency is characterized by a relatively low viral 
transcriptional rate[40,41], that one can define as “a virus at 
rest”: this could explain why damaging and/or destabiliz-
ing activities of  latent gene products have little chance to 
induce permanent effects in cells equipped with an intact 
set of  caretaker genes, antioncogenes, and non activated 
oncogenes. Consistently, subjects with Fanconi’s anemia, 
an inherited disease with defective DNA repair, have up 
to 4000 times increased risk of  developing solid papillo-
mavirus-associated tumors[4]. In fact cell immortalization 
has been achieved experimentally only following expres-
sion of  latent genes in the context of  previously accumu-
lated mutations in the cellular genome[18,20]. On the other 
hand, lytically infected cells are typically characterized by 
massive transcription of  the viral genome, a “hit”. These 
cells develop virus induced chromosome damage and 
can undergo abnormal mitosis (Table 2), both in vitro and  
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Table 2  Viral proteins inducing genetic damage

Virus EBV HHV-8 HPV HBV HCV HTLV-1

Latent proteins EBNA-1 LANA-1[64] E6, E7[66,67] Naturally occurring pre-S mutants[68] - -
EBNA-3C v-CYC[65]

LMP-1[63]

Lytic proteins BZLF-1[69] - E1, E2[71,72] HBx[73,74] Core Tax[76,77]

BGLF-5[70] NS3[23,62]

NS5[75]

EBV: Epstein-Barr virus; HHV-8: Human herpesvirus 8, also named Kaposi sarcoma virus; HPV: Human papillomavirus; HBV: Hepatatis B virus; HCV: 
Hepatitis C virus; HTLV-1: Human T-cell leukemia virus 1.

Table 3  Virus products controlling cellular epigenetic modifications

Virus EBV HHV-8 HPV HBV HCV HTLV-1

EBNA-3A, EBNA-3C[78] LANA-1[81] E6[83] HBx[85,86] Core[87] Tax[88]

LMP-1[79] microRNA[82] E7[84]

LMP-2[80]

EBV: Epstein-Barr virus; HHV-8: Human herpesvirus 8, also named Kaposi sarcoma virus; HPV: Human papillomavirus; HBV: 
Hepatatis B virus; HCV: Hepatitis C virus; HTLV-1: Human T-cell leukemia virus 1.
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in vivo[16]. So here we have two observations where there 
is apparently little if  any effect on the genetic stability of  
healthy cells in vivo: (1) latency functions can transform 
cells but cause genetic instability only in already genetically 
damaged cells; and (2) lytic functions may induce genetic 
instability but kill the cells. Is there a setting in which these 
two phenomena may lead to an outcome that has been 
overlooked? The phase immediately following virus entry 
into a permissive cell, before the fate of  the infection (lytic 
or latent) is set (green cells in Figure 2), may be crucial in 
this regard. 

Latency is defined as an infection where the produc-
tion of  infectious virus does not occur immediately but 
the virus retains the potential to initiate productive infec-
tion at a later time, and is characterized by a unique tran-
scriptional and translational state of  the virus, the latency 
expression program, in which the productive replication 
cycle is not operative[4]. Hence latency can be regarded 
as a transitory state of  resistance of  the infected cell to a 
virus, and the latency program as the result of  a negotia-
tion between virus and host, after a battle between cel-
lular functions reacting to the incoming virus and virus 
encoded functions, expressed at early stages following vi-
rus entry into the host cell. The first consequence of  this 
definition is that latency is not a default life program for a 
virus, but a survival condition that a virus is forced to opt 
for when the infected cell does not allow progression of  
the lytic cycle. A second consequence is that there is not 
one strictly planned latency program for any given virus, 
but the latency program is defined depending on the con-
text of  host cell gene expression, after the cell succeeds 
converting a viral hit into a virus at rest by resisting to the 
initial round of  lytic cycle gene transcription, and forces 
the virus into the latency state, for some time. This state 
of  resistance can last for very different periods of  time, 
depending on the moment viral reactivation will be al-
lowed by the infected cell, and can be long lasting, when 

reactivation occurs upon transition into a new cell dif-
ferentiation state, or last an unpredictable period of  time, 
as in cells entering a particular metabolic state triggered 
by an infrequent external signal (ultraviolet radiations, 
stress, etc.), or cells being in a particular phase of  the cell 
cycle[42], which could be a frequent event for rapidly repli-
cating cells or a very infrequent event for slowly replicat-
ing cells, as for liver cells. Recent evidence reveals that in 
an EBV latency model lytic genes can be transcribed to 
considerable levels[43], contrary to what had been thought 
previously. Similarly in Kaposi sarcoma virus associated 
tumors, subpopulations of  cells express lytic gene prod-
ucts within a general latency setting[44], suggesting the 
distinction between latency and lytic transcription is less 
clear cut than expected. But what happens between viral 
entry into a cell and the establishment of  latency in that 
cell? Very few studies have addressed this issue, but avail-
able data indicate that during this time lapse the majority 
of  the viral genome is transcriptionally active, with many 
lytic genes being expressed in very much the same way 
as during early phases of  lytic infection, before transcrip-
tions are silenced by the host cell[45,46]. This delicate, vastly 
unexplored resistant period may represent a particularly 
vulnerable setting for the infected host, acting as a non-
permissive cell, a well known target for virus transforma-
tion[1,47]. Therefore the actual phase between virus entry 
and the establishment of  latency is a stage where some 
viral genes, whether belonging to the latent or the lytic ex-
pression program, can be expressed to various levels. Ad-
ditionally, this is a time where the structure of  the incom-
ing virus disaggregates within the cell, releasing dozens of  
structural proteins and enzymes, genomic nucleic acids, 
coding and non coding RNAs, encapsidated in infectious 
particles. In fact it is now clear that the presence of  in-
coming viral genomes relocates DNA repair proteins at 
sites of  viral genome deposition[48]. Several virus products 
are able to induce genetic damage (Table 2), and examples 
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Figure 2  Tumor initiation events mediated by virus induced genetic damage. Virus entry into permissive genetically intact cells (green cells), can result in lytic 
replication or latency. In the latter setting the oncogenic potential of latent genes appears ineffective in vivo. Before silencing of most virus specific transcription is 
achieved, various viral functions are expressed which could induce genetic/epigenetic damage in a fraction of the infected population (red arrows, genetic damage 1). 
Cells surviving to sustainable damage (orange cells) could experience reactivation of the virus, host the virus genome in a latent state, or lose it after uneven segrega-
tion of their genetic material. In damaged cells latent gene products could now represent an effective oncogenic threat if cellular caretaker genes have been affected (red 
arrow, genetic damage 1, 2, 3…). Reinfection or reactivation of latent virus in damaged cells could result in further genetic offense, eventually leading to genetic insta-
bility, immortalization and tumor development. V: Virus; Lat: Latent; Lyt: Lytic. Blue arrows: Infection; Grey arrows: Consequences of infections; Black arrows: Death.
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of  encapsidated DNA nicking activities with a potential 
role in chromosomal damage have been reported[49,50]. 
Other viral proteins can interfere with the cellular DNA 
repair machinery (see[51] for a detailed review) or intro-
duce transcriptional-silencing marks[39]. All these activities 
could in this context generate primary damage events, 
leaving the cell with permanent genetic and epigenetic 
damage before entering into latency. The ensuing latency 
program would now run in a cell bearing a modified ge-
nome. 

Although it would be reasonable to expect that the 
majority of  damaged cells could not survive the insult, it 
would be equally reasonable to expect that cells with sus-
tainable damage may survive, as it is documented in vitro 
in non-permissive cells[19,52] and in cells undergoing chemi-
cally induced DNA breaks and chromosome pulveriza-
tion[53]. 

A surviving cell could be imagined as acquiring a 
genotype with no phenotypic consequences on the virus, 
in which case the virus would either proceed with the lytic 
cycle and kill the cell or enter a latent state (rest), accord-
ing to the virus and the type of  infected cell (Figure 2). 
Alternatively genetic/epigenetic damage could modify 
the permissivity of  the cell to the infecting virus, either 
further supporting viral expression programs or restrict-
ing them. The consequences on lytic infections would be 
either more productive lytic cycles or their inhibition with 
possible elimination of  the virus, respectively. On latent 
infections the expression profile of  the genome could be 
affected, either positively, as observed in EBV positive 
NK/T-cell lymphoma[54], or negatively as it is observed 
when EBV latently infected B cells switch from the laten-
cy Ⅲ (whole set of  latency products expressed) to latency 
I (EBNA-1 only) following transformation into lympho-
blastoid cells. Viral gene expression would now take place 
in the context of  a genetically modified cell, and in some 
instances this combination could provide damaged cells 
with a selective advantage in their environment, mak-
ing them fitter to survive such damage and ready for the 
accumulation of  future genetic modifications, in other 
words placing them on the road to malignancy.

IS THE VIRUS LATENCY/REACTIVATION 
CYCLE AN ONCOGENIC THREAT?
While a single hit and rest event has little chance to set 
the stage for cancer initiation, repeated cycles of  viral 
infection or reactivation and latency would increase the 
number of  possibly genetically damaged cells in the host 
and eventually produce cells accumulating a number of  
chromosomal abnormalities, as recently observed in an 
in vitro model by Fang et al[55]. If  the damage has modified 
or abolished the activity of  caretaker genes, oncogenes or 
anti-oncogenes, then the genome damaging and/or desta-
bilizing activities of  viral latent gene products could now 
meet the requirements for the introduction of  additional 
permanent damage, eventually leading to genetic instabil-
ity. When the combination of  hit and rest related damage 

reached a critical point, let’s say telomerase activation, the 
cell could become immortal and virus functions may be-
come dispensable. Further damage due to genetic insta-
bility could lead finally to the emergence of  a tumor cell 
(Figure 2). If  the present hypothesis was confirmed, one 
consequence would be that the number of  viruses with 
potential for tumor initiation would be larger than that 
currently accepted. A further consequence of  the present 
hypothesis is that preventing virus reactivations, where 
possible by pharmacologic prophylaxis or medical modu-
lation of  the immune response, should counteract cancer 
development.

TESTING THE HYPOTHESIS
The demonstration that genetic and epigenetic damage 
occurs in latently infected cells and that some damaged 
cells survive in the setting of  natural infections is crucial 
in validating our hypothesis. It would therefore be im-
portant to investigate the process whilst it is occurring. 
It is conceivable to plan prospective studies of  patient 
populations at risk for recurrent or persistent viral infec-
tions. The genetic integrity of  cells latently or persistently 
infected by a given virus could be studied using methods 
applicable to a large number of  samples and correlated 
with virus shed at the site of  sampling. For example the 
analysis of  DNA damage could be associated with HPV 
isolation at the time of  pap test screening, or with EBV 
viral load determination in the follow-up of  transplant 
patients[28]. Retrospective and prospective studies could 
be implemented, analyzing possible correlation between 
frequency of  different virus reactivations, severity of  
these reactivations, evidence of  genetic damage in cells 
that harbor latent viruses and development of  malignan-
cies, in order to better define the importance of  evocative 
findings[56]: ideal candidates for these studies would be 
populations of  immunocompromised patients such as 
those in post-transplant settings[57]. Chronic infections, 
clinically manifest or subclinical, are an additional inter-
esting condition for virus related DNA damage investiga-
tion[37]. In this setting the measurement of  chromosomal 
abnormalities in peripheral blood lymphocytes should 
result particularly fruitful, if  one considers that circulat-
ing cells are exposed to infectious agents even in localized 
infections during tissue perfusion[23,58,59].

Precious information would be generated through 
the analysis of  pre-tumoral and tumoral banked samples, 
where the observation of  abnormal mitosis and genetic 
abnormalities can be associated with the identification of  
virus related antigens or nucleic acids[60], while prospec-
tive studies could include virus isolation. As an example, 
hepatic biopsies from non-responders to anti-HCV 
treatment could be analyzed for the presence of  genetic 
abnormalities and the findings would be compared to 
responders in relation to incidence of  hepatocarcinoma 
development over time. In vitro studies should be devised 
choosing experimental settings that guarantee the closest 
simulation of  authentic in vivo situations, cautiously choos-
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ing animal models and transformed cell lines, avoiding 
non human cell cultures, and laboratory strains of  vi-
ruses[61]. Ideally fresh clinical virus isolates should be used 
to infect cells that are the authentic sites of  latency in vivo, 
looking for consequences of  virus infection on mitosis, 
chromosome integrity and the epigenetic stage.
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Abstract
Nuclear domain 10 (ND10) are spherical bodies dis-
tributed throughout the nucleoplasm and measuring 
around 0.2-1.0 μm. First observed under an electron 
microscope, they were originally described as dense 
bodies found in the nucleus. They are known by a 
number of other names, including Promyelocytic Leuke-
mia bodies (PML bodies), Kremer bodies, and PML on-
cogenic domains. ND10 are frequently associated with 
Cajal bodies and cleavage bodies. It has been suggest-
ed that they play a role in regulating gene transcrip-
tion. ND10 were originally characterized using human 
autoantisera, which recognizes Speckled Protein of 100 
kDa, from patients with primary biliary cirrhosis. At the 
immunohistochemical level, ND10 appear as nuclear 
punctate structures, with 10 indicating the approximate 
number of dots per nucleus observed. ND10 do not co-
localize with kinetochores, centromeres, sites of mRNA 
processing, or chromosomes. Resistance of ND10 
antigens to nuclease digestion and salt extraction sug-
gest that ND10 are associated with the nuclear matrix. 

They are often identified by immunofluorescent assay 
using specific antibodies against PML, Death domain-
associated protein, nuclear dot protein (NDP55), and 
so on. The role of ND10 has long been the subject of 
investigation, with the specific connection of ND10 and 
viral infection having been a particular focus for almost 
20 years. This review summarizes the relationship of 
ND10 and viral infection. Some future study directions 
are also discussed.

© 2013 Baishideng. All rights reserved.

Key words: Nuclear domain 10; Promyelocytic Leu-
kemia; Speckled protein of 100 kDa; Death domain-
associated protein; Virus; Viral replication

Core tip: We, for the first time, discussed the function 
of nuclear domain 10 (ND10) as a nuclear structure. 
Although the ND10 components, especially Promyelo-
cytic Leukemia bodies, Speckled Protein of 100 kDa 
and death domain-associated protein, have been widely 
investigated for their roles in viral gene expression and 
viral replication, individual virus interacts with ND10 dif-
ferentially as we summarized up in this review. This re-
view is expected to guide readers especially virologists 
and cell biologists to understanding the interaction of 
ND10 with viruses.

Rivera-Molina YA, Martínez FP, Tang Q. Nuclear domain 10 of 
the viral aspect. World J Virol 2013; 2(3): �10-122  Available 
from: URL: http://www.wjgnet.com/2220-3249/full/v2/i3/110.
htm  DOI: http://dx.doi.org/10.5501/wjv.v2.i3.110

ND10: GENERAL INFORMATION
Mammalian cells contain differentially functional com-
partments called organelles, which are separated from 
the cytoplasm by a lipid bilayer membrane. The nucleus 
is an extremely dynamic organelle and highly organized 
compartment with multiple functions (reviewed in Dundr 
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et al[1], Dundr et al[2], and Zhao et al[3]) the nucleoplasm 
consists of  soluble and insoluble materials that keep the 
genomic structure intact and host the complicated process 
of  gene transcription. Some insoluble and soluble materi-
als congregate together to form shaped structures such 
as nuclear domain 10 (ND10 can also refer to nuclear dot 
10)[4]. When analyzed by indirect immunofluorescence 
microscopy, many nuclear proteins are seen to localize 
in distinct structures with punctate staining patterns[5,6]. 
Nuclear structures, such as speckles, paraspeckles, nucleoli, 
Cajal bodies, polycomb bodies, and ND10, are formed pri-
marily by protein-protein, protein-RNA, or protein-DNA 
interactions[1]. Each nuclear body has a matrix protein that 
is essential for the formation of  the specific nuclear body. 
ND10 are subnuclear structures that gather many different 
SUMOylated nuclear proteins (such as Daxx and SP100). 
The formation of  ND10 depends on Promyelocytic Leu-
kemia (PML) protein. Past observations confirm that PML 
knockout cells lack ND10 and that transfecting exogenous 
PML into PML knockout cells results in the restoration 
of  ND10[7,8]. Most DNA viruses replicate DNA and tran-
scribe genes in the nucleus after their genomic DNA en-
ters the nucleus by facilitated transport through the nuclear 
pore complex[9]. Once inside the nucleus, viral genomes 
distribute randomly, but it appears that only those at ND10 
replicate and transcribe predominantly[10-13], suggesting 
specifically that the environment at ND10 is particularly 
advantageous for the virus. However, the ND10 proteins 
[such as PML, Speckled Protein of  100 kDa (SP100), and 
Daxx] are interferon-upregulated and have repressive ef-
fects on viral replication[14-25]. Moreover, most DNA vi-
ruses encode an immediate-early protein that induces the 
dispersion of  ND10[10,26-29], and in the absence of  these 
viral proteins, replication is severely retarded[13,29,30]. These 
findings have led to the hypothesis that ND10 are also part 
of  nuclear defense mechanism[4]. At this point, the effects 
of  ND10 on viral replication remain to be settled.

A HISTORIC OVERVIEW OF ND10
There are five hallmark events in the history of  study-
ing ND10. First, a French paper in 1960 described an 
unknown nuclear structure in rabbit cells with the Papil-
lomavirus as an electron-dense body[31]. It was the earliest 
description of  the nuclear structure, but it left everything 
unexplained, other than providing that observation. Sec-
ond, there was not any other information that could lead 
to a deeper investigation of  these nuclear structures until 
they were first identified (by immunofluorescence analy-
sis, using specific antibodies that were later revealed to be 
against SP100 and NDP55) as ND10 in 1991 by Ascoli et al[32]. 
SP100 was later proved to be essential for the formation 
of  ND10[33]; NDP55 has not been characterized so far. 
Ascoli et al[32] investigated the structure in different types 
of  cells. A combination of  immunofluorescence analysis 
and electronic microscopy confirmed that ND10 are the 
structures that were previously observed in 1960. Third, 
in the process of  investigating the function of  ND10, 

ND10 were found to be related to herpes simplex virus 
type 1 (HSV-1) infection[26,34] in 1993 and 1994; these 
studies (by Maul GG, the Wistar Institute, the United 
States of  America, and Everett RD, the MRC Virology 
Unit, Glasgow, United Kingdom) awakened the interest 
of  virologists with regard to the interaction of  ND10 
and many different viruses. The interactions of  ND10 
and a variety of  viruses will be discussed in this review. 
Fourth, it was determined that PML knockout mice lack 
ND10, which provided direct evidence that supported 
the hypothesis that the protein PML is essential to the 
formation of  ND10. It was confirmed, as well, by the ex-
perimental results that demonstrate that the transfection 
of  PML into PML-/- cells restores ND10[26,35]. PML-/- 
mice live normally, which further obscured the function 
of  PML, though later studies were able to determine that 
PML-/- have a greater tendency to develop cancer than 
do their PML+/+ counterparts[36]. Fifth, ND10 compo-
nents were identified. Even though more than 60 nuclear 
proteins have been shown to be more-or-less related to 
ND10[37,38], three components are thought to be the pri-
mary ND10 proteins (called the prototype proteins of  
ND10): PML, Daxx, and SP100. Other important events 
relating to the study of  ND10 will be discussed in the 
following sections.

MOLECULAR ASPECT OF ND10
Promyelocytic leukemia
The molecular mechanism of  the biogenesis of  ND10 
was a complete mystery until PML was identified as form-
ing the matrix of  ND10. PML is a tumor-suppressor pro-
tein that in both humans and mice is encoded by the PML 
gene. This gene was found to be involved in translocation 
with the retinoic acid receptor alpha (RARalpha) gene, 
causing acute promyelocytic leukemia (APL) (see the re-
view by de Thé et al[39]). The protein encoded by this gene 
was therefore named after PML. PML is also called tripar-
tite motif  (TRIM) 19 because it is a member of  the TRIM 
family[40]. The TRIM motif  includes three zinc-binding 
domains, a RING, two B-boxes, and a coiled-coil region. 
Phosphorylation is required for the high SUMOylation 
of  PML; SUMOylated PML localizes to ND10, where 
it functions as a transcription factor and tumor suppres-
sor[41]. Its expression is cell-cycle related; therefore ND10 
morphology and number in the nucleus are dependent on 
the cell cycle[42]. It regulates the p53 response to oncogenic 
signals, which might explain how the translocation of  
PML with RARalpha causes APL. Right after its identifi-
cation, ND10 were shown to be important in cell differ-
entiation and cell growth; this was first indicated in studies 
of  promyelocytes from patients suffering from APL[43-45]. 
In the promyelocytes from these patients, ND10 cannot 
be detected. When cells are treated with retinoic acid (RA) 
or with arsenic trioxide, ND10 are restored and the APL 
phenotype is reversed and the patients can be cured with 
these agents (reviewed by Melnick and Licht[46]). PML 
has about 11 isoforms that are caused by the extensive 
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alternative splicing of  this gene. PML isoforms vary in 
the protein’s central and C-terminal regions; all variants 
encode the same N-terminus[47]. Some isoforms of  PML 
are cytoplasmic, but most of  the isoforms are nuclear 
proteins important for ND10 formation.

Speckled protein of 100 kDa
SP100 was first identified by immunofluorescence us-
ing autoantibodies from patients with primary biliary 
cirrhosis, and its cDNA was then isolated and cloned; it 
was found to encode a human nuclear antigen distribut-
ing in the nucleus as speckles[48]. SP100 is a single-copy 
gene sited in human chromosome 2q37 and, like PML, it 
is IFN upregulated. The SP100 gene needs to be spliced 
and gives rise to a number of  speckled protein of  100 kDa 
(SP100) isoforms: SP100A, -B, -C, and -HMG[48-52]. The 
four SP100 isoforms share a homologous 476 N-terminal 
amino acid, but differ in their C-terminal part. The most 
abundant isoform is SP100A, which has 480 amino ac-
ids and migrates to 100 kDa on SDS-PAGE[51]. SP100A 
most likely does not bind to DNA alone because it 
lacks all other domains of  SP100B, -C, and -HMG. It 
may be recruited to DNA via association with DNA-
binding proteins such as hHMG2/DSP1[53], the B-cell-
specific transactivator Bright[54], or ETS-1[55]. SP100B 
contains a SAND domain (SAND stands for SP100, 
AIRE, NucP41/75, and DEAF1), SP100HMG contains 
a SAND domain and an HMG box, and newly described 
SP100C contains SAND, PHD, and Bromo domains[52,56]. 
SP100 is one of  the prototypical proteins of  ND10, and 
it colocalizes with Daxx and PML in ND10. SP100B, 
-C, and -HMG isoforms contain SAND, PHD, Bromo, 
and HMG domains and are highly SUMOylated. All the 
domains are suggestive of  a role in chromatin-mediated 
gene regulation. The three minor isoforms contain a 
SAND domain that binds to DNA and is required if  
SP100 is to have transcriptional regulating activity.

Death domain-associated protein
Upon its discovery, death domain-associated protein 
(Daxx beta) was found to be a protein of  the classical 
death receptor[57]. It was found to bind specifically to the 
Fas death domain via its C-terminal portion. Overexpres-
sion of  Daxx enhances Fas-mediated apoptosis through 
activating the Jun N-terminal kinase (JNK) pathway. It 
was later found that Daxx interacted with CENP-C, one 
of  the few known intrinsic proteins of  the human cen-
tromere[58]. CENP-C is thought to play structural as well 
as regulatory roles crucial to proper chromosome segre-
gation and mitotic progression. The interaction between 
CENP-C and Daxx was then confirmed by an immuno-
fluorescence assay that found the colocalization of  these 
two proteins at discrete spots in the nuclei of  some inter-
phase cells[58]. The other Daxx-binding proteins include 
the transcription factor Pax3[59] and DNA methyltrans-
ferase Ⅰ[60]. They both are related to centromeres such 
as CENP-C and are not related to ND10. Therefore, 
Daxx is a protein of  centromere. However, Ishov et al [7] 

found that PML recruited Daxx to ND10. Interestingly, 
in PML-/- cells, Daxx totally stays in the centromere. 
Therefore, Daxx might travel from centromere to ND10 
or from ND10 to centromere. Ishov et al [42] also found 
that Daxx and the SWI/SNF protein ATRX are both 
associated with two intranuclear domains: ND10 and het-
erochromatin. The accumulation of  ATRX at ND10 was 
mediated by its interaction with the N-terminus of  Daxx. 
Although ATRX was present in heterochromatin during 
the entire cell cycle, Daxx was actively recruited to this 
domain at the end of  the S-phase. Daxx functions as an 
adapter for ATRX accumulation at ND10[42]. Daxx can 
be highly SUMOylated, and SUMOylation was found to 
be crucial for targeting Daxx to PODs and for the trans-
repression of  several SUMOylated transcription factors, 
including the glucocorticoid receptors (GR)[61]. Recently, 
two variants of  Daxx were identified. The two novel vari-
ants of  Daxx were termed Daxx- and Daxx-γ, and these 
variants are generated by alternative splicing. They have a 
truncated regulatory C terminus, and Daxx- and Daxx-γ 
show markedly decreased affinities to PML and have a 
different nuclear distribution[62]. 

In summary, all three of  the prototypical proteins 
(PML, SP100, and Daxx) of  ND10 share some similar 
characteristics: (1) They colocalize with ND10. Their 
colocalization in ND10 depends on PML[7,8], and SP100 
can also affect ND10 formation[33]. These proteins are 
prototypical components of  ND10; (2) They can be up 
regulated by interferon, which provided the first evi-
dence to support the hypothesis that ND10 are defensive 
against viral infection[4]; (3) The prototypical proteins 
of  ND10 are all highly SUMOylated, SUMOylation is 
important for the formation of  ND10, Daxx function, 
and the interaction of  the three proteins; (4) They are all 
cancer gene repressors. Although PML-/- mice can still 
live normally, they are shown to have a higher chance of  
developing cancer[63]; (5) All three genes produce differ-
ent isoforms via alternative splicing; and (6) They are all 
viral replication inhibitors, which will be discussed in the 
review below.

ND10 function
ND10 came to the forefront because it was found that 
t(15; 17) translocation causes the fusion of  PML and 
RARA (generating PML/RARA) and the dysfunction of  
both PML and RARA (consequently resulting in APL). 
The oncogenic PML/RARA protein disrupts ND10 in a 
reversible manner upon being treated with retinoic acid 
and/or arsenic, either of  which treatment can cure the 
patients with APL[64-68]. ND10 number and size are regu-
lated in several cellular responses: viral infection[69], DNA-
damage, transformation[70-72], and oxidative stress[73,74]. The 
transcriptions of  PML, SP100, and Daxx are dramatically 
enhanced by interferons. However, PML-/- mice develop 
normally and live well without the formation of  ND10, 
demonstrating that ND10 are not required for most basic 
biological functions. Nevertheless, recent data have impli-
cated PML in the control of  cellular senescence and stem 
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cell self-renewal, extending the fields of  the investigation 
of  PML function[75,76]. 

ND10 studies have been so intense in recent years 
that novel information about these structures is being 
uncovered continuously; however, the function of  PML 
bodies is still not fully understood. Three models have 
been proposed: the Depot or Sequestration model; the 
Hotspot model, and a site of  specific nuclear activities. 
These models are described in the following paragraphs.

Depot or sequestration model
The nuclear domains are proposed to be aggregations 
of  excess nucleoplasmic protein[77]. This model suggests 
that the ND10 components in the nucleoplasm have a 
dynamic nature, that is, they move from ND10 to the 
functional sites where they are needed. In other words, 
the aggregated proteins in ND10 are sequestered. This 
sequestration is evidenced by the fact that the PML 
partners in ND10 vary significantly between individual 
partners and levels of  PML expression, as well as SU-
MOylation. A well-studied sequestered component in 
ND10 is Daxx, a potent repressor that forms partitions 
between SUMOylated proteins, including PML and many 
transcription factors. Sequestration of  Daxx by ND10-
associated, SUMOylated PML releases transcriptional 
repression by DNA-bound SUMOylated transcription 
factors[61,78-80]. 

Hotspot model
This model proposes that ND10 are the sites of  the post-
translational modification and the degradation of  pro-
teins. It is supported by the facts that SUMO-1 molecules 
aggregate in ND10 and ND10 might be the hot sites for 
SUMOylation, that the acetylation and phosphorylation 
of  p53 at PML bodies enhance the activity of  p53[16,81,82], 
and that the 19S and 20S proteasome subunits localize at 
some PML bodies[83]. 

Third model 
Proposes ND10 to be sites of  specific nuclear activities, 
such as transcriptional regulation and DNA replication. 
This model is supported by the detection of  nascent 
RNA around ND10[84], the association of  ND10 with 
regions of  high transcriptional activity[85], and the non-
random nature of  PML body assembly (based on the 
conservation of  their size and position) following disso-
ciation and re-formation as a result of  cellular stress[86].

INTERACTIONS OF ND10 AND VIRUSES
Herpesviruses
Human herpesviruses are divided into three subfamilies: 
alpha, beta, and gamma. The alpha subfamily includes 
Herpes Simplex Virus 1 and 2 (HSV-1 and HSV-2) and 
the Varicella Zoster Virus (VZV). The beta subfamily has 
cytomegalovirus (CMV) and human herpesvirus 6 and 7 
(HHV-6 and HHV-7). Kaposi’s sarcoma-associated her-
pes virus (KSHV) and the Epstein-Bar virus (EBV) are 

in the gamma subfamily. These viruses are characterized 
by their practice of  setting up latency in the host after 
primary infection. After entering to the nucleus through 
nuclear pores, these DNA viruses replicate their DNA 
and transcribe their genes inside the nucleus, preferably at 
ND10[4]. Therefore, the interaction of  ND10 and herpes-
viruses occurs at the very early stage of  infection.

Herpes simplex
The first virus found to be connected to ND10 was her-
pes simplex (HSV)-1. In 1993, Maul et al[28] were the first 
to discover that Vmw110 (ICP0-infected cell protein 0) 
localizes to ND10. Interestingly, they also showed that 
the C-terminal portion of  ICP0, when linked to a het-
erologous protein, disrupts the normal distribution of  
PML. These observations presented the first link between 
processes involved in the control of  cell growth and viral 
infection and latency. Later, Maul and Everett[11,26,34,87] sys-
temically collaborated on the investigation of  the interac-
tion of  ND10 and HSV-1, which collaboration typically 
combined the views from a cell biologist (Maul) and a 
virologist (Everett) on the direction to revelation of  the 
phenomenal interaction of  viral molecules and ND10. 
This, according to the authors’ opinion, could be the 
most important contribution to the ND10 field.

It is now known that ICP0 disrupts ND10 through 
mediating the loss of  the SUMO-1-modified forms of  
PML and the subsequent proteasome-mediated deg-
radation of  the PML protein[14-15,88-90]. The results were 
consistent with the finding that PML residue lysine 160 
is the SUMOylation site and the mutation of  this residue 
makes PML resistant to degradation by ICP0[91]. ND10 
function might not be so critical for HSV-1 lytic infection 
because ICP0-deleted HSV-1 can replicate well, especially 
at a high multiplicity of  infection (MOI). 

It was visualized that both parental and replicated 
HSV-1 amplicon genomes were in association with ND10 
in live cells[92]. It is likely that the genomes situated at 
ND10 preferentially form viral replication compartments. 
Tang et al[12] further figured out that there exist minimal 
viral DNA sequences and viral proteins that are essen-
tial and sufficient for the replication of  DNA and the 
transcription of  RNA at ND10 by the virus. For HSV-1 
we found that a specific viral DNA sequence, OriS, and 
the viral immediate-early proteins ICP4 and ICP27 are 
sufficient for a reporter gene placed in cis at the OriS 
sequence to transcribe RNA at ND10[12]. HSV-1 DNA 
replication results in formation of  compartments in the 
nucleus; it has been shown that some, but not all, PML 
isoforms are recruited to the replication compartments[93]. 
Viral DNA replication compartments also contain many 
other viral and cellular proteins that have different func-
tions, many of  which are required for DNA replication, 
DNA repair, and DNA stabilization[94]. However, the 
function of  ND10 proteins in the DNA replication com-
partments is not fully understood.

HSV-1 with deleted ICP0 has an obvious defect in vi-
ral gene expression and plaque formation in limited-pas-
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sage human fibroblasts (though not in mouse fibroblast 
cells)[95,96]. This suggests both that ND10 have defensive 
effect on HSV-1 infection and that ICP0 can abolish the 
defensive effect of  ND10 in human fibroblasts. ICP0 is 
a RING finger E3 ubiquitin ligase that induces the deg-
radation of  PML. Depletion of  PML from human fibro-
blasts increases ICP0-null mutant HSV-1 gene expression 
but not to wild-type levels[96]. Another major ND10 pro-
tein, SP100, has a similar effect on ICP0-deleted HSV-1 
gene expression[96]. It has been shown that all four SP100 
isoforms stabilize ND10 and protect PML from ICP0-
based hydrolysis[18]. Depletion of  either all PML isoforms 
or all SP100 isoforms reduces the other constituent 
ND10 protein, suggesting that different ND10 proteins 
use different mechanisms to inhibit virus infection at the 
immediate-early stage of  HSV-1 infection[18]. Simultane-
ous depletion of  both PML and SP100 proteins comple-
ments the mutant virus to a greater degree, implying that 
PML and SP100 could have additive or synergistic effects 
on viral replication[96]. 

HSV-1 ICP0 might be important for the activation 
of  lytic infection and the countering of  the cell-mediated 
repression of  viral gene expression by HSV-1. This re-
pression is defended by preexisting cellular proteins, and 
those proteins function as intrinsic antiviral resistance 
or intrinsic defense. PML and SP100, as we discussed 
above, are two of  the core components of  ND10 and 
contribute to intrinsic resistance. But how about other 
ND10 proteins, such as, ATRX and Daxx? ATRX and 
Daxx are known to comprise components of  a repres-
sive chromatin-remodeling complex. It has been shown 
that the infection of  ICP0-deleted HSV-1 (not wild-type 
HSV-1) can replicate at a greater level in both ATRX- and 
hDaxx-depleted cells than it can in normal cells[97], sug-
gesting that ATRX and hDaxx act as a complex to play 
intrinsic antiviral resistance to HSV-1 infection, which is 
counteracted by ICP0.

Cytomegalovirus
Cytomegalovirus (CMV) infection differs from that of  
HSV-1 in host range and replication. HCMV can infect 
only human cells productively and causes diseases in hu-
mans only, and it replicates slowly in cell culture. HCMV is 
similar to HSV-1 in many ways: (1) setting up latency after 
primary infection in host; (2) sequential viral gene expres-
sion; and (3) viral DNA replication at ND10, preferential-
ly. Following the studies of  ND10 and HSV-1 interaction, 
many ND10 components have been demonstrated to 
have a repressive effect on CMV gene expression and viral 
replication (reviewed by Saffert and Kalejta[98]). The first 
ND10 protein investigated for its role in HCMV gene 
expression and viral replication was Daxx. In that study, 
Daxx was found to interact functionally with HCMV 
tegument protein pp71[16]. The Stamminger group[99] also 
investigated PML to see whether PML could have any ef-
fects on viral gene expression or on viral replication. After 
comparing HCMV replication in PML-kd or hDaxx-kd 
cells with that in normal cells, they revealed that immedi-

ate-early (IE) gene expression increased to a similar ex-
tent, regardless of  whether PML or Daxx was depleted[98]. 
Their experimental results suggest that PML and Daxx 
might function using different mechanisms to suppress 
HCMV replication; double-knockdown cells depleted of  
both PML and hDaxx support the additive enhancement 
of  HCMV infection in the replication efficacy of  HCMV 
compared to that of  single-knockdown cells[99]. Finally, 
they also found that the infection of  SP100 knockdown 
(kd) cells with HCMV resulted in a significantly increased 
plaque-forming ability[99,100].

Like HSV-1, HCMV infection can also disrupt ND10, 
but the mechanisms of  dispersing ND10 might be dif-
ferent. HSV-1 ICP0 induces the loss of  the SUMO-
1-modified forms of  PML and the proteasome-mediated 
degradation of  the PML protein[14,15,88-90]. However, in 
CMV-infected cells, PML is not degraded[13,101]. For cyto-
megaloviruses (including MCMV and HCMV), IE1 has 
been identified to disperse ND10 by an as yet unknown 
mechanism, but it is not able to degrade PML[27,101-104]. 
HCMV IE1’s induction of  PML deSUMOylation, report-
ed by Lee et al[101], needs to be investigated for MCMV IE1.

Species-specificity is one of  the major characteristics 
of  cytomegaloviruses (CMVs) and is the primary reason 
for the lack of  a mouse model for the direct infection of  
human CMV (HCMV). It has been determined that CMV 
cross-species infections are blocked at the post-entry lev-
el by intrinsic cellular defense mechanisms[105,106], but few 
details are known. We discovered that ND10 of  human 
cells is not disrupted by murine CMV (MCMV) and that 
the ND10 of  mouse cells is not disrupted by HCMV[107], 
although the ND10-disrupting protein, immediate-early 
protein 1 (IE1), also colocalize with ND10 in cross-species 
infections[107]. In addition, we found that the UL131-
repaired HCMV strain AD169 (vDW215-BADrUL131) 
can infect mouse cells to produce immediate-early (IE) and 
early (E) proteins but that neither DNA replication nor 
viral particles are detectable in mouse cells. Unrepaired 
AD169 can express only IE1 in mouse cells. In both 
HCMV-infected mouse cells and MCMV-infected human 
cells, the knocking-down of  ND10 components (PML, 
Daxx, and SP100) resulted in significantly increased viral-
protein production. Our observations provide evidence 
to support our hypothesis that ND10 and ND10 compo-
nents might be important defensive factors against CMV 
cross-species infection.

EPSTEIN-BARR VIRUS AND KAPOSI’S 
SARCOMA-ASSOCIATED HERPESVIRUS 
The relationship of  Epstein-Barr Virus (EBV) or Kaposi’
s sarcoma-associated herpesvirus (KSHV) with ND10 has 
been less investigated than has that of  HSV-1 or CMV (with 
ND10). The first study of  the interaction of  EBV and 
ND10 also came from the Maul group. Bell et al[108] studied 
the effect of  the EBV on ND10, and its (EBV’s) spatial 
distribution in the nucleus of  cells during latency and lytic 
reactivation. In EBV, latently-infected Burkitt’s lymphoma, 
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lymphoblastoid, and D98/HR1 cells, ND10 were intact. 
Fluorescent in situ hybridization (FISH) revealed no asso-
ciation between viral episomes and ND10 during latency, 
implying that the maintenance replication of  EBV, which 
depends on host cell proliferation, occurs independently 
of  ND10. Upon lytic activation, ND10 become dispersed 
in cells expressing lytic proteins. Thus, latency does not 
require or induce the interaction of  EBV and ND10 for 
transcription or replication, whereas lytic replication trig-
gers the dispersion of  ND10 proteins and occurs in close 
association with PML aggregates. The required movement 
of  chromosome-attached latent EBV episomes to ND10 
after reactivation from latency might include the physical 
release of  chromosome-bound episomes. Only episomes 
that come in contact with ND10 after such a release might 
be able to begin the process of  lytic replication[108]. The 
dispersion of  ND10 by EBV in lytic infection might be 
through molecular and functional interactions between the 
EBV BZLF1 protein and the PML[109].

There are many fewer functional studies of  ND10 
proteins in EBV infection or reactivation than there are 
of  those proteins in HSV-1 or CMV. So far, SP100 ap-
pears to be an effective ND10 protein that is related to 
EBV gene expression and viral reactivation. The EBV 
EBNA-LP protein is a potent gene-specific coactivator of  
the viral transcriptional activator, EBNA2. Ling et al[17] found 
that EBNA-LP interacts with ND10 protein SP100 and 
displaces SP100 and heterochromatin protein 1alpha 
(HP1alpha) from ND10. Their experimental results sug-
gest that SP100 is a major mediator of  EBNA-LP co-
activation[17]. Recently, Tsai et al[110] showed that the EBV 
major tegument protein BNRF1 interacts with host-cell 
ND10 proteins and promotes viral early gene activation. 
Specifically, they demonstrated that BNRF1 interacts 
with the Daxx at ND10 and interferes with the formation 
of  the Daxx-ATRX chromatin remodeling complex. Fur-
thermore, the knockdown of  Daxx and ATRX induces 
the reactivation of  EBV from latency in infected lympho-
blastoid cell lines, suggesting that Daxx and ATRX play 
a role in the regulation of  viral gene expression and viral 
replication.

KSHV interacts with ND10 at the very early stage 
after reactivation. Although EBV and KSHV are so 
similar in many aspects that they are classified into the 
gama-herpesviral subfamily, they are different in many 
other characteristics. For example, KSHV might not be 
able to disrupt ND10, even though that particular claim 
is arguable. Wu et al[111] first studied the interaction of  
ND10 and KSHV and found that the KSHV protein, 
K8, interacted with PML; nevertheless, they clearly dem-
onstrated that KSHV infection (latent or lytic) cannot 
disrupt ND10[111,112]. Our unpublished data also support 
their conclusion that ND10 are not dispersed by KSHV 
infection. However, this has been recently challenged by 
other studies[111,112]. In one such study, Marcos-Villar et al[113] 
stated that the KSHV protein LANA2 increased the lev-
els of  SUMOylated PML and induced the disruption of  
ND10 by a proteasome-mediated mechanism. They also 

reported that ND10 disruption needs both the integrity 
of  a SUMO interaction motif  (SIM) in LANA2 and the 
lysine 160 from PML. Moreover, they showed that the 
depletion of  LANA2 in PEL cells led to an increase in 
the PML levels[111,112]. Arguably, KSHV’s dispersion of  
ND10 was not clearly shown in the published pictures. In-
terestingly, the authors didn’t cite the paper by Wu et al[111] 
that is intimately related to the subject.

As for the molecular and functional interaction of  
KSHV and ND10 proteins, only a few publications 
have been presented. First, Murakami et al[114] reported 
that Daxx is a LANA-binding protein and that interac-
tion made LANA inhibit the repressive effect of  Daxx 
on VEGF expression. Their results suggest that LANA 
contributes to the high expression of  the vascular endo-
thelial growth factor (VEGF) receptors in KS lesions by 
interfering with the interaction of  Daxx and Ets-1[114]. 
Other studies showed the existence of  an interaction 
between PML and KSHV proteins (including K8 and 
LANA2)[111,115]. The biological significance of  this interac-
tion is still unclear.

OTHER DNA VIRUSES 
Adenovirus
Adenovirus (Adv) is another virus that interacts with 
ND10. It was found that Adv infection changed the 
morphology of  ND10 from being spherical punctate 
structures to being fibrous ones. This morphological 
change is caused by the molecular interaction of  the Adv 
protein, E4 ORF3, and PML[116]. The other Adv protein 
found to interact with PML was E1A, which is an onco-
protein[116]. This study suggests that PML in ND10 might 
be involved in the cancerous consequence of  Adv infec-
tion. More recently, a study by Hoppe et al[117] showed 
the PML isoform interacting directly and specifically with 
Adv E4 Orf3 in vitro and in vivo. Moreover, Hoppe et al[117] 
reconstructed ND10 in PML-null cells by inducing the 
transient transfection of  different PML isoforms. They 
observed that only those ND10 formed from PML 
isoform Ⅱ were morphologically changed by E4 Orf3. 
Their data suggest that the interaction of  E4 Orf3 and 
PML isoform Ⅱ is required for ND10 rearrangement[117].

The E4 ORF3 protein is required for Adv DNA 
replication when the cells are in the interferon (IFN)-
induced antiviral state. ND10 prone proteins are all IFN-
upregulated. This may reflect the fact that PML, Daxx, 
and SP100 are encoded by an interferon-stimulated 
gene. If  so, can the interaction of  E4 ORF3 and ND10 
have any effect on Adv replication or viral gene expres-
sion? Ullman et al[118] demonstrate that the interaction 
of  E4 ORF3 and ND10 antagonizes an innate antiviral 
response mediated by both PML and Daxx. Depleting 
any one of  these proteins makes it possible to restore 
the replicative capacity of  the virus using the E4 ORF3 
protein deleted in the IFN-induced antiviral state. The 
interaction of  Adv and ND10 has been also investigated 
with respect to SP100. Obviously, SP100 SUMOylation 
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is also affected by E4 ORF3, which in part contributes 
to the morphological change of  ND10[89]. We think that 
it is critical to investigate whether E4 ORF3’s interaction 
with ND10 plays a role in the oncogenesis of  Adv. The 
interaction of  E1A (an oncoprotein of  Adv) and ND10 
might be more important in the field of  ND10 and vi-
ruses.

Human papillomavirus
Using indirect immunofluorescence in combination with 
fluorescence in situ hybridization, Swindle et al[119] found 
that human papillomavirus (HPV) DNA replication is 
targeted to host nuclear domains that are active during the 
late S phase, when such domains are limited in number. It 
was also observed that E1 and E2 partially or completely 
colocalize with ND10. The observation suggests that HPV 
DNA amplification might be partially coupled to virion 
assembly[119]. Interestingly, Florin et al[120] showed that the 
minor capsid protein L2 of  HPV interacted with ND10-
associated proteins. They observed that (1) the PML was 
unaffected by L2; (2) SP100 was released from ND10 upon 
L2 expression; and (3) In contrast to SP100, Daxx was re-
cruited to ND10 by L2 expression. These studies suggested 
that ND10 might be involved in HPV capsidation.

Simian virus 40
Simian virus 40 (SV40) is a small DNA virus. Like other 
DNA viruses, SV40 starts transcription and replication 
adjacent to ND10. In an early study, we identified a spe-
cific viral DNA sequence and its binding protein that 
determine the location of  these synthetic activities at 
such restricted nuclear sites[121]. A beta-galactosidase gene 
was introduced into an expression vector that contains 
partial and overlapping SV40 sequences. Transcripts de-
rived from control plasmids were found throughout the 
nucleus and at highly concentrated sites but not at ND10. 
SV40 genomic segments supported ND10-associated 
transcription only when the origin and the coding se-
quence for the large T antigen were present. When the 
large T-antigen coding sequence was eliminated but the 
T antigen was constitutively expressed in COS-7 cells, 
the viral origin was sufficient to localize transcription and 
replication to ND10. Large T antigen expressed from 
plasmids without the viral core origin did not bind or lo-
calize to ND10. Blocking of  DNA replication prevented 
the accumulation of  transcripts at ND10, indicating 
that only sites with replicating templates accumulated 
transcripts. Transcription at ND10 did not enhance total 
protein synthesis of  plasmid transcripts. These findings 
suggest that viral transcription at ND10 may only be a 
consequence of  viral genomes directed to ND10 for rep-
lication. Although plasmid transcription can take place 
anywhere in the nucleus, T-antigen-directed replication is 
apparently restricted to ND10[121].

RNA VIRUSES
The first RNA virus studied for its interaction with 

ND10 was the lymphocytic choriomeningitis virus 
(LCMV), a single strand RNA virus, but interestingly, the 
interaction occurs in the cytoplasm. In cells infected with 
LCMV, the viral zinc-finger (Z) protein forms large bod-
ies primarily in the cytoplasm. Z protein can redistribute 
PML from the nucleus to the cytoplasm, and PML and 
Z protein colocalize in the cytoplasm[35,122]. The similar 
function of  Z protein was also found in other viruses 
of  Arenaviridae[35,122]. The interaction of  PML and Z 
proteins may influence certain unique characteristics of  
arenavirus infection. 

Another RNA virus is hepatitis delta virus (HDV). 
HDV is a single-stranded RNA virus and has only one 
coding region producing the hepatitis delta antigen 
(HDAg). HDAg is expressed in two isoforms, small (S-
HDAg) and large (L-HDAg). S-HDAg is required for the 
replication of  HDV, while L-HDAg inhibits viral repli-
cation and is required for the envelopment of  the HDV 
genomic RNA by hepatitis B virus proteins[123]. Bell et al[124] 
found that over half  of  the L-HDAg domains were local-
ized beside ND10. At later times, ND10-associated pro-
teins such as PML were found in larger HDAg complex-
es, in which PML was found chiefly in the rims of  the 
spheres. Other ND10 components (SP100, Daxx, and 
NDP55) were found in the centers of  the spheres. HDV 
genomic RNA was distributed more uniformly through-
out the nucleus, but nascent viral RNA colocalizes with 
L-HDAg and the transcriptional repressor PML. These 
results suggest that this RNA virus, like DNA viruses, 
can alter the distribution of  ND10-associated proteins 
and preferably transcribe mRNA at ND10. It is not clear 
whether the ND10-associated proteins (PML) play a role 
in the regulation of  HDV RNA synthesis.

As for human immunodeficiency virus (HIV), the 
results have been controversial. Bell et al[125] reported that 
no significant relationship was observed between ND10 
or any of  the following: HIV-1 DNA, transcription foci, 
and integrated DNA. Their results showed that HIV-1 
did not modify ND10 at early or late times of  infec-
tion[125]. However, Turelli et al[126] reported that incoming 
retroviral preintegration complexes trigger the exporting-
mediated cytoplasmic export of  PML. They further 
described how the HIV genome associates with PML be-
fore nuclear migration. Further experiments are needed 
to reveal the detailed interaction of  HIV and ND10. 

VIRAL DISPERSION OF ND10
During viral infection, viruses and ND10 interact differ-
ently. The modification of  ND10 structure can include (1) 
an increase in the size and number of  ND10 per nucleus 
by double strand RNA viruses because their infection can 
induce IFN; (2) a change to the shape of  ND10; (3) a de-
crease in the size or the number (of  ND10) per nucleus; 
and (4) a total dispersal of  ND10. Only CMV, EBV, and 
HSV have been clearly shown to disperse ND10. Here 
we take the MCMV infection as an example to show the 
real dispersing of  ND10 (Figure 1). As we stated above, 
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CMV infection is species-specific. Interestingly, we dis-
covered that murine CMV (MCMV) infection in human 
cells cannot disperse ND10[107], suggesting the involve-
ment of  ND10 in species-specificity. We performed 
comparative IFA to analyze the ability of  IE1 to disperse 
ND10 in cross-species-infected cells as opposed to in 
natively infected (mouse) cells. We infected wt-MCMV 
into both Mrc-5 cells and NIH3T3 cells for 24 h. Cells 
were fixed and permeabilized and stained with anti-PML 
to show ND10 (red, Figure 1A, D) and with anti-IE1 to 
show the distribution of  IE1 (green, Figure 1B, E). As 
can be seen in the MCMV-infected mouse cells, IE1 was 
diffusely distributed in the nucleus at 24 hpi. Interest-
ingly, the IE1 of  MCMV formed domains (Figure 1E) in 
human cells and lost the ability to disperse ND10, their 
distribution being different from that found in MCMV-
infected mouse cells (Figure 1A-C). There is no standard 
for judging the level of  viral effect on ND10 structure 
because ND10 number or size can vary in different cell 
cycles. Therefore, one has to be careful to make conclu-
sions of  dispersing or disrupting ND10 by any viral in-
fection or transient transfection.

FUTURE DIRECTIONS FOR 
INVESTIGATIONS INTO THE VIRAL 
ASPECT OF ND10
A great deal of  progress regarding the interaction of  

ND10 and viruses has been made in the past decades. A 
lot of  questions are still left behind us, which makes the 
future direction of  studies in the ND10-viruses field: (1) 
ND10 structure and ND10 protein are clearly related to 
cancer development (at least to some types of  cancers). 
Therefore, the interaction of  tumor viruses and ND10 
should be the future focus of  research in this field; (2) 
ND10 aggregate a lot of  nuclear proteins that have dif-
ferent functions; we already know that SUMOylation is 
important for the formation of  ND10. Are there any 
other nuclear functions needed for ND10 formation? 
Why do so many nuclear proteins meet in this place? (3) 
ND10 have been shown to be positioned beside SC35; 
SC35 is also related to transcribed RNA. What is the 
functional connection between ND10 and RNA? and (4) 
HIV DNA locates at SC35, not at ND10. HIV DNA is 
replicated and not integrated DNA (leftover). Given the 
fact that ND10 are located next to SC35, is it possible 
that they have any role with regard to HIV DNA?
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Figure 1  Immunofluorescent assay to show cytomegalovirus infection and nuclear domain 10. A: After murine cytomegalovirus (MCMV) infection in NIH3T3 
cells for 24 h, cells were stained with anti-Promyelocytic Leukemia bodies (PML) antibody (rabbit) to show nuclear domain 10 (ND10) (in red); B: Anti-IE1 antibody 
(mouse) was used to show IE1 (in green); C: The merged picture is shown in; D: After MCMV infection in Mrc-5 cells for 24 h, cells were stained with anti-PML anti-
body (rabbit) to show ND10 (in red); E: Anti-IE1 antibody (mouse) was used to show IE1 (in green); F: The merged picture is shown. 
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Abstract
AIM: To search for the presence of cis elements in 
hepatitis D virus (HDV) genomic and antigenomic RNA 
capable of promoting nuclear export. 

METHODS: We made use of a well characterized 
chloramphenicol acetyl-transferase reporter system 
based on plasmid pDM138. Twenty cDNA fragments 
corresponding to different HDV genomic and anti-
genomic RNA sequences were inserted in plasmid 
pDM138, and used in transfection experiments in Huh7 
cells. The relative amounts of HDV RNA in nuclear and 
cytoplasmic fractions were then determined by real-
time polymerase chain reaction  and Northern blotting. 
The secondary structure of the RNA sequences that 
displayed nuclear export ability was further predicted 
using a web interface. Finally, the sensitivity to lepto-
mycin B was assessed in order to investigate possible 
cellular pathways involved in HDV RNA nuclear export.

RESULTS: Analysis of genomic RNA sequences did not 
allow identifying an unequivocal nuclear export ele-
ment. However, two regions were found to promote the 
export of reporter mRNAs with efficiency higher than 
the negative controls albeit lower than the positive con-
trol. These regions correspond to nucleotides 266-489 
and 584-920, respectively. In addition, when analyzing 
antigenomic RNA sequences a nuclear export element 
was found in positions 214-417. Export mediated by 
the nuclear export element of HDV antigenomic RNA is 
sensitive to leptomycin B suggesting a possible role of 
CRM1 in this transport pathway.  

CONCLUSION: A cis-acting nuclear export element 
is present in nucleotides 214-417 of HDV antigenomic 
RNA. 

© 2013 Baishideng. All rights reserved.

Key words: Hepatitis D virus; Genomic RNA; Antig-
enomic RNA; Nuclear export; Nuclear export element

Core tip: Hepatitis D virus (HDV) replicates in the 
nucleus and export of HDV RNPs to the cytoplasm is 
thought to be mediated by cis-elements present in vi-
rus RNA. We used a chloramphenicol acetyl-transferase 
reporter system in an attempt to identify the RNA se-
quences that mediate export to the cytoplasm. Several 
cDNA constructs coding for different HDV RNA (genomic 
and antigenomic) sequences were tested. Our results 
show that a cis-acting nuclear export element is pres-
ent in positions 214-417 of antigenomic RNA. Two re-
gions in genomic RNA were found to promote nuclear 
export with efficiency higher than the negative control 
although lower that the positive control. 
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INTRODUCTION
Hepatitis D virus (HDV) is the only member of  the 
Deltavirus genus and is considered to be a satellite virus 
of  the hepatitis B virus (HBV)[1]. When compared with 
HBV alone, infection of  human hepatocytes with both 
viruses increases liver damage and the risk of  cirrhosis 
and fulminant disease[2,3]. The two viruses are associated 
due to the fact that the outer envelope of  HDV consists 
of  HBV surface antigens (HBsAgs) which are necessary 
for virus packaging and propagation of  infection[4]. 

The HDV genome consists of  a circular, closed ss-
RNA molecule of  approximately 1.7 kb and negative 
polarity. It is estimated that about 70% of  this RNA mol-
ecule is internally base-paired resulting in the formation 
of  a rod-like structure similar to plant viroids[5]. There is 
still a considerable lack of  information, and even some 
controversy, concerning the mechanisms and host factors 
involved in HDV RNA replication. It seems to be gener-
ally accepted that replication occurs through a double 
rolling-circle mechanism involving the participation of  
at least host RNA polymerase Ⅱ, and resulting in the 
synthesis of  multimeric antigenomic molecules[6,7]. Sub-
sequently, these multimeric antigenomic molecules are 
self-cleaved and ligated at precise monomeric intervals 
by the HDV RNA ribozyme activity[8]. The monomeric 
antigenomes serve as templates for a second round of  
replication, by a similar mechanism, thus resulting in the 
synthesis of  monomeric genomic RNA molecules. The 
HDV genome contains a single ORF that codes for a 24 
kDa protein, the so-called small delta antigen (S-HDAg)[9]. 
As a consequence of  an editing mechanism that converts 
an amber stop codon UAG into a tryptophan codon 
UGG in the antigenome, the ORF is extended by 19 ad-
ditional aminoacids[10]. As a result, a 27 kDa protein, the 
large delta antigen (L-HDAg) is produced. These two 
proteins are thought to play different roles in the HDV 
replication cycle. S-HDAg is necessary for accumulation 
of  virus RNA[11] and positively regulates ribozyme activ-
ity[12], and L-HDAg inhibits replication and interacts with 
HBsAgs to promote virus packaging[13,14]. HDV packag-
ing occurs in the cytoplasm where the newly synthesized 
RNPs meet the HBsAgs to assemble mature virions. 
It has been previously shown that HDV RNPs shuttle 
continuously between the nucleus and the cytoplasm[15]. 
While nuclear import of  virus RNPs is mediated by a 
nuclear localization signal in HDAgs[16], the export to the 
cytoplasm is believed to be mediated by a cis element 
present in the RNA molecule. This is supported by the 
fact that export of  both genomic and antigenomic HDV 
RNAs was found to be independent of  the presence of  
HDAgs[15]. Furthermore, Macnaughton and Lai reported 
that both genomic and antigenomic RNAs (gRNA and 
agRNA, respectively) are exported with similar efficiency 
at early times during replication[17]. Although cells ex-
pressing L-HDAg, HBsAgs, and agRNA were found to 
secret virus-like particles containing HDV agRNA[18], it 
is widely accepted that only gRNA molecules are pack-
aged into newly synthesized virions. This observation led 

to the hypothesis that packaging is restricted to gRNA 
molecules due to the nuclear retention, and eventual 
further degradation, of  HDV antigenomes. However, to 
our knowledge, no experimental evidences were obtained 
supporting this idea. 

Simple retroviruses such as simian type D retroviruses 
have evolved mechanisms of  RNA export based on the 
direct interaction of  a cis-acting transport element [con-
stitutive transport element (CTE)] with cellular transport 
receptors. The TAP protein, the human homologue of  
yeast Mex67p, is one of  best studied host factors shown 
to interact with the CTE to promote nuclear export of  
unspliced simian retrovirus type D mRNAs[19]. TAP was 
also identified as one of  the proteins responsible for ex-
port of  cellular mRNAs[20]. On the other hand, complex 
retroviruses were shown to use a different pathway for 
export of  intron-containing mRNAs. This pathway in-
volves the participation of  the cellular protein CRM1[21]. 
In the case of  human immunodeficiency virus-1 (HIV-1), 
the association of  CRM1 with intron-containing mRNAs 
is mediated by the virus protein Rev which recognizes a 
specific sequence named rev-responsive element (RRE)[22]. 
Additionally, the HBV posttranscriptional regulatory ele-
ment (PRE), which was reported to play a crucial role in 
export of  virus mRNAs to the cytoplasm, seems to use a 
distinct, not yet identified nuclear export pathway[23].

In an attempt to clarify whether HDV gRNA and 
agRNA contain cis elements capable of  promoting the 
export to the cytoplasm, we made use of  a chloranpheni-
col acetyl-transferase (CAT) reporter system, in transfec-
tion experiments, to identify and characterize putative 
nuclear export elements.

MATERIALS AND METHODS
Cell culture and transfection
HuH-7 cells were cultured in RPMI 1640 medium (Sigma) 
supplemented with 10%FBS (Invitrogen). Cells were 
grown as monolayers at 37 ℃, in a humidified atmo-
sphere containing 5%CO2. Transfection assays were per-
formed using the Fugene6 Transfection Reagent (Roche) 
and 1 µg plasmid DNA per 35-mm well, according to 
the manufacturer’s instructions. To control for transfec-
tion effiency in CAT assays, 20 ng of  plasmid pSV-β-
galactosidase (Promega) were cotransfected with 100 ng 
of  reporter CAT constructs, and 1.88 µg pUC19. Cells 
were analysed 24 h post-transfection. In some experi-
ments, 10 nmol/L leptomycin B was added to the me-
dium 18 h after transfection and cells were subsequently 
incubated for 6 h before analysis as earlier described[24].

Plasmid constructs
Plasmid pDM138[25,26] was a kind gift of  Tristram Parslow 
(Emory University School of  Medicine, Atlanta, United 
States). Plasmids pDM138-PRE(+) and pDM138-PRE(-) 
were generously provided by Benedict Yen (University 
of  California, San Francisco, United States). Plasmids 
pDM138-PRE(+) and pDM138-PRE(-) contain a DNA 
fragment of  approximately 570 bp that codes for the 
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HBV post-transcriptional regulatory element (PRE). 
This fragment was inserted in the unique ClaⅠ site of  
pDM138 in both sense and antisense orientations, origi-
nating plasmids pDM138-PRE(+) and pDM138-PRE(-), 
respectively[27].

Twenty vectors containing cDNA inserts correspond-
ing to 10 different regions of  the HDV agRNA cloned, 
in both orientations, in the unique ClaⅠ site of  pDM138 
were generated by polymerase chain reaction (PCR), us-
ing the primers listed in Table 1, and plasmid pDL481[18] 
as template. This plasmid was designed to code for full-
length HDV antigenomic RNA and was a kind gift of  
John Taylor (Fox Chase Cancer Center, Philadelphia, 
United States). The primers were designed in order to 
include a ClaⅠ site in the 5’ end. The obtained PCR 
fragments were purified using the GFX PCR and Gel 
Band kit (GE Healthcare) and ligated with ClaⅠ digested 
pDM138 using the Rapid DNA Ligation kit (Roche) ac-
cording with the instructions of  the manufacturer. The 
correct insertion in sense or antisense orientations of  the 
fragments was first monitored by restriction endonucle-
ase analysis with BanⅡ, EcoRⅠ, BanⅡ and NheⅠ, PstⅠ, 
XhoⅠ, BglⅡ, and BamHI (Fermentas) followed by DNA 
sequencing. 

Additionally, we constructed eight pDM138 derived 
vectors containing different portions of  the cDNA 

complementary to the HDV agRNA sequence comprised 
between nt 214 and 417. The strategy was similar to the 
one described above and the primers used in PCR reac-
tions are listed in Table 2.

Plasmid pDL481ΔNEE, containing full-length HDV 
agRNA from which the sequence corresponding to the 
putative nuclear export element (NEE) was removed (nt 
2473-2696), was constructed as follows: first we digested 
plasmid pDL481 with ApaⅠ (Invitrogen) which cuts 
at positions 2696 and 3208. The two resulting 5762 bp 
and 512 bp fragments were separated by electrophoresis, 
and the 5762 bp fragment was recovered and purified 
using the GFX PCR DNA kit (GE Healthcare). Sub-
sequently, this fragment was further digested with Nhe
Ⅰ (GE Healthcare). Two fragments were obtained with 
5539 bp and 223 bp, respectively. The 5539 bp fragment 
was purified as above. The next step consisted of  the 
amplification of  the 2696-3208 nt region of  plasmid 
pDL481. To do this, we used the following primers: Fwd 
5’GGGCCCGCTTAGCGCCCCTTTTTCTTCCACCTT 
3’ in which a ApaⅠ and a NheⅠ restriction sites were 
included in the 5’ end, and Rev 5’ GGGCCCACCG-
GTGCCCCCTCTCCATCCTTAT 3’ in which a ApaⅠ 
(underlined) and a AgeⅠ (grey box) restriction sites were 
also added at the 5’ end. The amplified 512 bp fragment 
was purified as above, and the two 512 bp and 5539 bp 
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Table 1  Primers used to amplify hepatitis delta virus cDNA fragments

HDV cDNA 
fragments

Forward primer  5'→3' Reverse primer  5'→3' Fragment 
length 
(bp)

Genome 
location
(Sense)

Antigenome
location

(Antisense)

A1 CGCATCGATACTCCCTGCAGATTGGGGA CGCATCGATATTCACCGACAAGGAGAGGC 243 360-602 1078-1320
A2 CGCATCGATGCCTCTCCTTGTCGGTGAAT CGCATCGATGAGACCTCCGGAAGACAAAGA 204 176-379 1301-1504
A3 CGCATCGATTTCCGGAGGTCTCTCTCGAGT CGCATCGATTCTCCTCGCTCGGAACTTG 214 1654-679/188 1492-1679/26
A4 CGCATCGATTTCCTCGGTCAACCTCCTGA CGCATCGATATAAGGATGGAGAGGGGGCT 224 266-489 1191-1414
A5 CGCATCGATCCCCTCTCCATCCTTATCCT CGCATCGATAGGGAGAGAAGAGATCCTCGA 172 114-285 1395-1566
A6 CGCATCGATCGAATGGGACCCACAAATCT CGCATCGATTCCCCAATCTGCAGGGAGT 337 584-920   760-1096
A7 CGCATCGATCCCAATCCCAGATCTGGAGA CGCATCGATTTTGCTTTCCTCCTCGCTTC 204 1263-1466 214-417
A8 CGCATCGATAAAGAAAGCAACGGGGCTAG CGCATCGATGGGAGTCGGAATCGAGCAT 199 1067-1265 415-613
A9 CGCATCGATATGCTCGATTCCGACTCCC CGCATCGATCCTAGAGAGATTTGTGGGTCCC 191   895-1085 595-785
A10 CGCATCGATCAAGTTCCGAGCGAGGAGAC CGCATCGATTCTCCAGATCTGGGATTGGG 227 1446-1672     8-234

Nucleotide sequence of the primers used in PCR reactions to amplify hepatitis delta virus (HDV) cDNA fragments. The ClaⅠ restriction site is underlined. 
The size of the amplicon and the corresponding location in the genome, when cloned in sense and antisense orientations, are indicated.

Table 2  Primers used to amplify truncated forms of the A7AS agRNA sequence

HDV cDNA fragments Forward primer  5'→3' Reverse primer  5'→3' Fragment length (bp)

269-417 CGCATCGATGGGAGGAATCCACTCGGAGA CGCATCGATTTTGCTTTCCTCCTCGCTTC 149
214-379 CGCATCGATCCCAATCCCAGATCTGGAGA CGCATCGATGCATCTCCTCCTATCGCTATGG 166
214-403 CGCATCGATCCCAATCCCAGATCTGGAGA CGCATCGATGCTTCGGTCTCCCCCTACTC 190
244-417 CGCATCGATCCCGAAGGGTTGAGTAGCAC CGCATCGATTTTGCTTTCCTCCTCGCTTC 174
244-403 CGCATCGATCCCGAAGGGTTGAGTAGCAC CGCATCGATGCTTCGGTCTCCCCCTACTC 160
314-417 CGCATCGATACCCCTTCAGCGAACAAGAG CGCATCGATTTTGCTTTCCTCCTCGCTTC 104
214-322 CGCATCGATCCCAATCCCAGATCTGGAGA CGCATCGATTGAAGGGGTCCTCGGAGGT 109
269-379 CGCATCGATGGGAGGAATCCACTCGGAGA CGCATCGATGCATCTCCTCCTATCGCTATGG 111

Nucleotide sequence of the primers used to amplify eight truncated forms of the A7AS sequence localized in position 214-417 in the hepatitis delta virus 
(HDV) antigenomic cDNA. The underlined sequence corresponds to a ClaⅠ restriction site.



fragments were then ligated using the Rapid DNA Liga-
tion kit (Roche) according to the specifications of  the 
manufacturer. The correct construction of  the recombi-
nant vector was tested by digestion with XhoⅠ followed 
by DNA sequencing.

Plasmid pDL481Δδ was constructed by removing a 
189 bp sequence, comprised between nucleotides 3208 
and 3397 in pDL481. This sequence is complementary 
to the putative NEE in the HDV antigenome. To do this 
we first digested plasmid pDL481 with BpiⅠ (Fermen-
tas) which cuts at positions 3098 and 3397 generating 
two 5975 bp and 299 bp fragments, respectively. Next, 
the two fragments were purified and incubated with 5 U 
Klenow enzyme (Fermentas), 0.05 mmol/L dNTPs, and 
Klenow buffer (Fermentas), for 10 min at 37 ℃ to gener-
ate blunt ends. The resulting blunt-ended fragments were 
digested with ApaⅠ (Fermentas) and 4 fragments were 
obtained with 110, 189, 402 and 5573 bp, respectively. 
The 5573 bp fragment was purified as above and used in 
ligation reactions with the 512 bp fragment of  pDL481 (nt 
2696-3208) which was amplified by PCR as described be-
fore. Prior to ligation, compatible ends were generated in 
the 512 bp amplified DNA fragment. To do this, we first 
digested this fragment with AgeⅠ. Following incubation 
with Klenow and dNTPs to generate blunt ends, as above 
described, this fragment was next digested with ApaⅠ. 
After digestion, the DNA was purified using the GFX 
PCR DNA kit (GE Healthcare), and subsequently used 
in ligation reactions with the 5573 bp fragment. Liga-
tions were performed using the Rapid DNA Ligation kit 
(Roche) following the instructions of  the manufacturer. 
The correct construction of  the recombinant vector was 
monitored by restriction endonuclease analysis with Xho
Ⅰ followed by DNA sequencing.

Plasmid pDL481ΔNEEδ, from which the putative 
NEE and the corresponding complementary sequence 
in the HDV antigenome were deleted, was generated 
by removing a 223 bp sequence between positions 2473 
and 2696 and a 189 bp sequence comprised between 
nucleotides 3208 and 3397 in plasmid pDL481. The first 
approach consisted of  digesting plasmid pDL481 with 
BpiⅠ followed by generation of  blunt ends with Klenow 
enzyme, as above described for plasmid pDL481Δδ. 
Next, we digested the two resulting fragments with NheⅠ. 
Three fragments of  299, 625 and 5350 bp, respectively, 
were obtained and separated by agarose gel electropho-
resis. The 5350 bp fragment was purified from the gel 
using the GFX PCR DNA kit (GE Healthcare) and used 
in subsequent ligation reactions. Before ligation with the 
512 bp fragment of  pDL481 (nt 2696-3208) obtained 
by PCR, compatible ends were generated. This was per-
formed by digesting the 512 bp fragment with AgeⅠ. 
After filling the resulting cohesive ends with dNTPs, as 
above described, the obtained blunt fragment was fur-
ther digested with NheⅠ. After purification, this DNA 
fragment was finally ligated with the previously obtained 
5350 bp DNA fragment, as described. Finally, we tested 
the correct construction of  the recombinant plasmid by 

digestion with XhoⅠ followed by DNA sequencing. 

In situ hybridization
In situ hybridization was performed on pDL481 and 
pDL542 transfected HuH-7 cells essentially as de-
scribed[15]. After transfection, cells were incubated at 37 ℃ 
for 24 h. All fixation, permeabilization, and denaturation 
steps were exactly as described[15]. Plasmid pSVL(D3) was 
labeled by nick-translation with digoxigenin-11-dUTP and 
used as a probe.  This plasmid contains a trimer of  full-
length HDV cDNA cloned in pSVL (GE Healthcare). 
Hybridization was performed overnight at 37 ℃ and the 
probe was detected using a monoclonal anti-digoxigenin 
antibody conjugated with FITC (Roche) and a secondary 
anti-FITC antibody conjugated with Alexa-488 (Jackson 
ImmunoResearch Laboratories). Samples were analyzed 
under a Zeiss META LSM 510 microscope calibrated 
with multicolor fluorescent beads (Molecular probes). 
Green fluorescence was detected using a 488 nm Argon 
laser.

Northern blotting
For Northern blotting, cytoplasmic mRNA was extracted 
from HuH-7 cells using the Oligotex Direct mRNA Mini 
kit (Qiagen). For each obtained sample, 10 µg mRNA 
was separated by formaldehyde agarose gel electrophore-
sis and transferred to Nylon membranes (Hybond-N, GE 
Healthcare) using standard protocols[28]. Hybridization 
was performed using a digoxigenin-11-dUTP (dig-11-
dUTP) labeled DNA probe. Plasmid pDM138 was used 
as template to amplify and label, by asymmetric PCR, a 
481 bp region in the ORF of  the CAT protein (nucleotide 
position 109-590). The primers used in PCR reactions 
were: Fwd 5’ GTTCAGCTGGATATTACGGCC 3’ 
and Rev 5’ TCACAGACGGCATGATGAAC 3’. Typi-
cally, reaction mixtures contained 2 mmol/L MgCl2, 0.2 
mmol/L dATP, dCTP and dGTP, 0.13 mmol/L dTTP, 
0.07 mmol/L dig-11-dUTP (Roche), 0.1 µmol/L forward 
primer, 1 µmol/L reverse primer, 10 ng template DNA, 
2.5 U Taq DNA polymerase (Fermentas), in PCR buf-
fer for a final volume of  50 µL. After amplification and 
labeling, probes were purified using the GFX PCR DNA 
kit (GE Healthcare), and used for hybridization.

Hybridization was performed according to standard 
protocols[28] and the hybridized probe was detected with 
a monoclonal anti-digoxigenin antibody conjugated 
with peroxidase (Roche). Membrane development was 
achieved with the Lumi-lightPLUS Western Blotting Kit, 
Mouse/Rabbit (Roche) under the conditions indicated by 
the manufacturer.

Real-time PCR
Nuclear and cytoplasmic HuH-7 cell fractions were ob-
tained according to a previously described method[29], and 
used for isolation of  RNA with the NucleoSpin® RNA/
protein kit (Macherey-Nagel) following the manufacturer’
s specifications. The RNA samples were then treated with 
DNase Ⅰ using the DNA-free™ kit (Ambion), also ac-
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cording to the instructions of  the manufacturer, and used 
as templates for synthesis of  cDNA. cDNA synthesis re-
actions typically contained approximately 5 µg total RNA, 
0.2 µg random primers, 2 mmol/L dNTPs, 200 U Revert 
Aid™ M-MuLV Reverse Transcriptase (Fermentas), and 
20 U RNase inhibitor (Fermentas) in a final volume of  20 
µL. Reactions were performed at 42 ℃, for 1 h, and the 
obtained cDNA was finally purified using the GFX PCR 
DNA and Gel Band purification kit (GE Healthcare).

Real-time PCR experiments were performed es-
sentially as described[30]. The qPCR Core kit for SYBR® 
Green Ⅰ (Eurogentec) was used following the specifica-
tions of  the manufacturer. Reaction mixtures typically 
contained 3.5 mmol/L MgCl2, 200 µmol/L each dNTP, 
300 nmol/L each primer, 0.025 U/µL HotGoldStar 
enzyme, and reaction buffer in a final volume of  20 µL. 
Reactions were performed in 96-well plates with optical 
caps in a GeneAmp® 5700 Sequence Detector System 
(all from Applied Biosystems). The PCR program used 
for amplification was: 10 min at 95 ℃, 40 cycles with 15 
s at 95 ℃ and 1 min at 60 ℃. Each sample was assayed 
in triplicate and analysed with the GeneAmp® 5700 SDS 
v1.1 software and Microsoft Excel.

The relative quantification of  RNA was performed 
according to the 2-ΔΔCt method earlier described[31]. The 
β-2-microglobulin gene (β 2MG; GenBank accession 
number NM_004048) was used as reference gene to 
which all the samples were compared with. The program 
Primer Express™ (Applied Biosystems) and the bio-
informatics tool Oligonucleotide Properties Calculator 
(http://www.basic.northwestern.edu/biotools/oligocalc.
html) were used to design primers for the reference 
gene and target HDV cDNA sequence (GenBank ac-
cession number M21012). Melting temperature, GC 
content, length, and secondary structure were taken in 
consideration for primer design. The cDNA sequences 
were obtained from GenBank database from NCBI. The 
primers used in these experiments were, respectively: 
HDV Fwd 5’ CAGAGATTCTCCGGCGTTGT 3’, Rev 
5’ CGGTAAAGAGCATTGGAACG 3’; β2MG Fwd 5’ 
GGCTATCCAGCGTACTCCAA 3’, Rev 5’ TCACACG-
GCAGGCATACTC 3’.

Western blotting
For western blot, protein extracts were prepared us-
ing with the NucleoSpin® RNA/protein kit (Macherey-
Nagel) according to the manufacturer’s instructions and 
dissolved in sample buffer. Proteins were separated by 
electrophoresis on 12%SDS-polyacrylamide gels, and 
subsequently electroblotted onto nitrocellulose mem-
branes (Schleicher and Schuell) as previously described[32]. 
Membranes were blocked with 5% low fat milk powder 
in PBS, and incubated for 1 h with 1 µg/mL of  a primary 
mouse monoclonal antibody anti-GAPDH (Ambion). 
After washing with 2% low fat milk powder in PBS, 
membranes were further incubated with a secondary anti-
mouse IgG antibody conjugated with horseradish per-
oxidase (BioRad). After washing, membranes were rinsed 

with PBS and subsequently developed using the ECL™ 
Western blotting analysis system (GE Healthcare). 

CAT assay
Determination of  CAT expression was performed using 
a commercial enzyme-linked immunosorbent assay (ELI-
SA) kit (Roche). Briefly, 24 h post-transfection HuH-7 
cells were washed with ice-cold PBS and incubated with 
500 µL lysis buffer for 30 min, at room temperature. 
After centrifugation, the supernatants were collected, 
and 200 µL were added to individual wells of  the ELISA 
plate. CAT detection was performed with a polyclonal 
anti-CAT antibody conjugated with digoxigenin followed 
by incubation with a monoclonal anti-digoxigenin anti-
body conjugated with peroxidase (Roche), as indicated by 
the manufacturer. The concentration of  unknown sam-
ples was determined from a standard curve constructed 
from 1:2 serial dilutions of  the standards.  

To normalize for transfection efficiencies HuH-7 cells 
were cotransfected with plasmid pSV-β-galactosidase 
(Promega) and β-galactosidase (β-Gal) expression was 
monitored using a commercial ELISA kit (Roche). Brief-
ly, 200 µL of  the same cell lysis supernatants obtained as 
above described were loaded onto individual wells of  the 
ELISA plate. The ELISA assay was performed accord-
ing to the specifications of  the manufacturer and β-Gal 
concentrations were determined from a standard curve 
obtained from 1:2 serial dilutions of  the standards. All as-
says were performed in triplicate.

RESULTS
HDV gRNA and agRNA are exported to the cytoplasm
It was earlier reported that both HDV gRNA and agRNA 
are exported to the cytoplasm in HuH-7 cells[15,17]. This 
export is independent of  the presence of  HDAgs, and 
thus it is likely to rely on the direct interaction of  the 
virus RNA with host factors[15]. Furthermore, Northern 
blot analysis of  HuH-7 transfected cells seemed to indi-
cate that the relative amounts of  gRNA and agRNA in 
the nucleus and cytoplasm remained nearly equimolar up 
to 28 h after transfection[17].  

In order to confirm that HDV agRNA is efficiently 
exported to the cytoplasm of  HuH-7 cells we made use 
of  plasmid pDL481[18], which codes exclusively for HDV 
agRNA, in transfection experiments. Plasmid pDL542[18], 
which codes exclusively for gRNA, was used in paral-
lel experiments. Preliminary in situ hybridization analysis 
confirmed that both HDV gRNA and agRNA can be 
detected in the nuclear and cytoplasmic compartments of  
HuH-7 cells (Figure 1) 24 h post-transfection. 

Since this approach did not allow us to determine if  
gRNA and agRNA are exported to the cytoplasm with 
similar efficiency with decided to quantify, by Real-time 
PCR, the amounts of  both molecules in the nuclear and 
cytoplasmic compartments. To do this, HuH-7 cells were 
transfected with plasmids pDL481 and pDL542 respec-
tively. After 24 h incubation, RNA samples were obtained 
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from nuclear and cytoplasmic fractions for subsequent 
use in Real-time qPCR experiments. The possible cross 
contamination of  nuclear and cytoplasmic fractions was 
monitored by Western blotting using an anti-GADPH 
antibody (Figure 2B). The reference gene in qPCR ex-
periments was β-2-microglobulin (Genbank accession 
number P61769).The obtained results are displayed, as 
the cytoplasm to nuclear ratio of  gRNA and agRNA, re-
spectively, in Figure 2A. The HDV agRNA was found to 
be distributed in equimolar amounts between the nucleus 
and cytoplasm of  HuH-7 cells 24 h after transfection. 
At the same time point the HDV gRNA was found in 
slightly higher amounts in the cytoplasm. These results 
are consistent with previously reported data and clearly 
indicate that the virus agRNA is efficiently exported to 
the cytoplasm. 

Identifying nuclear export elements in HDV genomic and 
antigenomic RNA
After establishing that HDV gRNA and agRNA are ex-
ported to the cytoplasm, in the absence of  HDAgs, with 
similar efficiency, until at least 24 h after transfection, 
we decided to investigate the eventual presence of  a cis-
acting nuclear export element in both RNA molecules. 
To do this, we made use of  plasmid pDM138[25,26]. This 
plasmid codes for the second half  of  the HIV-1/SF2 
genome under the control of  the SV40 promoter. The 
DNA sequence coding for the CAT gene was inserted in 
the HIV-1 envelope gene intron, and the RRE was sub-

stituted by a linker containing a unique ClaⅠ restriction 
site. Nuclear export of  mRNAs derived from pDM138, 
and subsequent expression of  the reporter CAT protein, 
is thus dependent on the insertion of  a functional trans-
port element in the ClaⅠ restriction site.

Initially, we amplified by PCR 20 cDNA fragments 
covering the entire HDV genome (10 fragments) and 
antigenome (also 10 fragments). The size of  the obtained 
fragments ranged from 167 to 337 nt and the respective 
location in the genome is displayed in Table 1. Each frag-
ment was subsequently cloned in the unique ClaⅠ site 
of  plasmid pDM138 in both sense and antisense orienta-
tions. We thus obtained 20 different constructs which, 
after being sequenced to confirm the correct insertion 
and orientation, were used to transfect HuH-7 cells. As 
positive and negative controls in these experiments we 
used plasmids pDM138-PRE(+) and pDM138-PRE(-), 
respectively. These plasmids contain the HBV post-
transcriptional regulatory element, cloned in sense and 
antisense orientations, respectively[27]. In all experiments, 
plasmid pSV-β-Gal (Promega) was used to cotransfect 
HuH-7 cells in order to normalize for transfection ef-
ficiencies. Twenty four hours after transfection, total pro-
tein extracts were prepared and the production of  CAT 
and β-Gal was determined by ELISA. Figure 3 displays 
the obtained results. 

When analyzing gRNA all the tested sequences were 
found to be unable to promote the export of  CAT 
mRNAs with efficiency as high as that determined for the 
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Figure 1  Intracellular localization of hepatitis delta virus  
gRNA (A) and agRNA (B). HuH-7 cells were transfected 
with plasmids pDL542 and pDL481, respectively, and virus 
RNA was detected by in situ hybridization with a dig-11-dUTP 
labeled probe. Both gRNA and agRNA can be observed in the 
nucleus and cytoplasm (green).
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B Figure 2  Nucleo-cytoplasmic distribution of hepatitis 
delta virus gRNA and agRNA. HuH-7 cells were trasnfected 
with plasmids pDL542 and pDL481, respectively. A: The rela-
tive quantification of HDV RNA was performed by real time-
polymerase chain reaction using the 2-∆∆Ct method. Results 
are presented as the cytoplasmic /nuclear ratio (C/N) and cor-
respond to the mean of three independent experiments. Bars 
indicate the standard deviation; B: Western blotting analysis of 
nuclear and cytoplasmic HuH-7 cell protein fractions. Equiva-
lent amounts of nuclear (lanes 1 and 3) and cytoplasmic (lanes 
2 and 4) protein fractions used for quantification of gRNA (lanes 
1 and 2) and agRNA (lanes 3 and 4) were separated in 12% 
SDS-PAGE gels. The possible contamination of nuclear frac-
tions was monitored by using an anti-GAPDH antibody. 



positive pDM138-PRE(+) control. Nevertheless, two of  
the analyzed gRNA sequences, corresponding to nucleo-
tides 266-489 and 584-920 (A4S, and A6S, respectively), 
showed an export-promoting ability slightly lower than 
the positive control albeit clearly higher than the negative 
control pDM138-PRE(-). 

The analysis of  agRNA coding sequences, however, 
showed that in HuH-7 cells transfected with plasmid 
pDM138-A7AS, which contains the HDV agRNA se-
quence corresponding to nucleotides 214-417, the expres-
sion levels of  the reporter CAT protein are higher than 
those detected for the pDM138-PRE(+) positive control.

With the exception of  A7AS and A2AS sequences, all 
the remaining tested constructs were found to be unable 
to promote the export of  heterologous intron-containing 
mRNAs since the detected CAT expression levels were 
comparable or even lower than those observed in nega-
tive pDM138-PRE(-) transfected HuH-7 cell controls. 
The CAT expression values obtained for the A2AS se-
quence, however, were found to be intermediate between 
those obtained for the positive pDM138-PRE(+) and 
negative pDM138-PRE(-) controls.

According to what has been previously reported for 
the HBV PRE[27], the export promoting activity of  the 
identified A7AS sequence in the HDV antigenome is de-
pendent on its orientation relative to the ORF of  the re-
porter gene. In fact, when cloned in opposite orientation 
(A7S), the A7AS sequence (nt 214-417) was not function-
al, since the observed CAT expression levels were similar 
to those found for the pDM138-PRE(-) negative control 
(data not shown). 

Since the quantification of  CAT expression levels by 
ELISA represents an indirect approach for the deter-
mination of  intron-containing mRNAs accumulation in 
the cytoplasm, we decided to investigate the presence of  
CAT mRNAs in cytoplasmic fractions, after transfec-
tion, by Northern blot. To do this, HuH-7 cells were 
transfected with plasmid pDM138-A7AS or plasmids 
pDM138-PRE(+) pDM138-A9AS as positive and nega-
tive controls, respectively, and after 24 h incubation total 
and cytoplasmic fractions were prepared and used for 
further mRNA extraction. After electrophoresis, the 
mRNA samples were transferred to nylon membranes, 
and a single-stranded dig-11-dUTP labeled DNA probe, 
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Figure 3  Analysis of chloranphenicol acetyl-transferase expression in HuH-7 cells transfected with plasmids pDM138, pDM138 (PRE+), pDM138 (PRE-), 
pDM138 A1S-pDM138 A10S (A), and pDM138 A1AS-pDM138 A10AS (B). In order to normalize for transfection efficiency, cells were co-transfected with plasmid 
pSV-β-Gal (Promega). Chloranphenicol acetyl-transferase (CAT) and β-Gal expression levels were determined by ELISA.  Normalization of CAT expression levels was 
calculated by dividing the values obtained for the CAT protein by the values obtained for the β-Gal protein. The results correspond to the mean of three independent 
experiments. Bars represent the standard deviation.
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which specifically hybridizes with CAT mRNA, was used 
in Northern blot assays. As expected, it was possible to 
detect the presence of  CAT mRNA in cytoplasmic frac-
tions of  pDM138-PRE(+) and pDM138-A7AS trans-
fected HuH-7 cells but not in pDM138-A9AS transfected 
cells (Figure 4). 

The absence in Northern blot experiments of  de-
tected CAT mRNA in total and cytoplasmic fractions 
of  pDM138-A9AS transfected cells is compatible with 
the data obtained by ELISA. The A9AS sequence in-
cludes the agRNA autocatalytic ribozyme domain. It is, 
thus, possible that CAT mRNAs that include the A9AS 
sequence are degraded in the nucleus before export to 
the cytoplasm. In conclusion, these results indicate that 
the HDV agRNA sequence located between nucleotides 
214-417 can efficiently promote the export of  heterolo-
gous intron-less RNAs. Moreover, the increase in CAT 
expression levels observed in pDM138-A7AS transfected 
cells is a consequence of  the export and accumulation of  
the respective reporter mRNAs in the cytoplasm. 

Analysis of the structure of the nuclear export element 
in agRNA
Having established that the HDV agRNA sequence 
corresponding to nucleotides 214-417 (A7AS) is able 
to promote the nuclear export of  heterologous intron-
containing RNAs, we next decided to analyze it in more 
detail. First, we generated by PCR eight truncated forms 
of  the A7AS motif  and cloned them in the unique Cla
Ⅰ site of  plasmid pDM138. These truncated forms 
correspond to the A7AS sequence from which several 
nucleotides were removed from the 5’ and 3’ ends. The 
constructs were subsequently used to transfect HuH-7 
cells, and after 24 h CAT expression was determined by 
ELISA. The obtained CAT expression values were nor-
malized for transfection efficiency by cotransfection with 
plasmid pSV-β-Gal followed by determination of  β-Gal 
expression. The obtained results allowed us to conclude 
that the agRNA sequences comprised between nucleo-

tides 214-322, 214-379, 214-403, 244-403, and 244-417 
induce an increase in CAT expression comparable to the 
observed for the HBV PRE(+) positive control (Figure 5) 
suggesting that these sequences are sufficient to promote 
export of  heterologous RNAs. 

Additionally, the first 30 nucleotides localized 3’ in the 
A7AS sequence seem not to be crucial to promote nucle-
ar export since its deletion did not significantly affect the 
detected amounts of  CAT expression. All the remain-
ing analyzed sequences, 269-417, 314-417, and 269-379 
were found to be considerably less efficient in promoting 
nuclear export.

Analysis of the NEE function in the context of the full-
length agRNA
The identified NEE is localized in the central region of  
the rod-like full-length agRNA molecule. It could be pos-
sible that the complementary RNA sequence that pairs 
with the NEE in the antigenome is possibly also involved 
in the nuclear export of  the agRNA. To test this hypoth-
esis we constructed three deletion mutants of  plasmid 
pDL481, which codes for the complete HDV agRNA 
molecule: pDL481ΔNEE in which the NEE was deleted 
(nt 214-417), pDL481Δδ in which the complementary 
to the NEE sequence was deleted (nt 1179-1385), and 
pDL481ΔNEEδ which does not contain the NEE and 
the corresponding complementary sequence (nt 214-417 
and 1179-1385, respectively).  

Plasmids pDL542, pDL481, and the obtained de-
letion constructs were used to transfect HuH-7 cells. 
Twenty four hours post-transfection, nuclear and cyto-
plasmic fractions were prepared and the RNAs derived 
from pDL542, pDL481, pDL481ΔNEE, pDL481Δδ, 
and pDL481ΔNEEδ, respectively, were quantified by 
qRT-PCR. Possible cross contaminations of  nuclear and 
cytoplasmic fractions were monitored by western blot 
using an anti-GAPDH antibody as described before. The 
obtained results confirmed that both gRNA and agRNA 
are efficiently exported to the cytoplasm 24 h post-
transfection. Additionally, the RNA derived from plasmid 
pDL481Δδ, in which the sequence coding for the region 
complementary to the NEE was deleted, showed to be 
efficiently exported (Figure 6). In contrast, the RNAs 
coded by plasmids pDL481ΔNEEδ and pDL481ΔNEE 
were mostly retained in the nucleus. Only about 40% of  
the total amount of  these RNAs was found in the cyto-
plasm of  transfected cells when compared to wt pDL481. 
These results indicate that the complementary to the 
NEE sequence in the HDV antigenome (nt 1179-1385) 
is not involved in nuclear export since its deletion did not 
reduce the amounts of  agRNA detected in the cytoplasm.

HDV agRNA export is sensitive to leptomycin B
Export of  cellular RNAs is accomplished using differ-
ent pathways which involve the participation of  distinct 
transport receptors. Typical examples include the export 
of  mRNAs, which is mediated by members of  NXF 
family of  proteins, namely the TAP protein, and the 
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Figure 4  Northern blotting analysis of reporter chloranphenicol acetyl-
transferase mRNA in total (A) and cytoplasmic (B) fractions of HuH-7 cells 
transfected with plasmids pDM138 (PRE+), pDM138 A7AS, and pDM138 
A9AS (lanes 1, 2 and 3 respectively). Hybridization was performed using a 
dig-11-dUTP labeled probe. A peroxidase conjugated anti-digoxigenin antibody 
was used to detect the hybridized probe.



export of  UsnRNAs which is mediated by the exportin 
CRM1[20]. This specific export pathway can be inhibited 
in the presence of  leptomycin B (LMB)[33]. In order to 
investigate whether HDV agRNA is exported to the cyto-
plasm using the pathway mediated by CRM1, we decided 
to analyze the effect of  LMB on CAT protein expression 
in pDM138-A7AS transfected HuH-7 cells. To do this, 
10 nmol/L LMB was added to the culture medium 18 
h after transfection, and cells were further incubated for 
6 h. Total protein extracts were then prepared and used 
to determine the concentration of  CAT by ELISA. As 
negative control pDM138-PRE(+) transfected HuH-7 
cells were used since it was previously reported that ex-
port of  HBV PRE(+) is not sensitive to LMB[23,34]. Figure 
7 displays the obtained results. As expected, in the ab-

sence of  LMB both the HDV agRNA A7AS and HBV 
PRE(+) sequences promote the export of  CAT mRNA 
thus confirming our previous data. In the presence of  
LMB the export capacity of  the HBV PRE(+) sequence 
is not affected, and we could detect a slight increase in 
CAT expression. This observation is in accordance with 
the data obtained by others when measuring CAT en-
zyme activity in similar experiments[34]. In contrast, the 
export promoting activity of  the HDV agRNA A7AS se-
quence was found to be affected in the presence of  LMB. 
In fact, we observed a 60% reduction in CAT produc-
tion when HuH-7 cells were transfected with pDM138-
A7AS in the presence of  10 nmol/L LMB. These results 
seem to indicate that the nuclear export mediated by the 
A7As agRNA sequence is dependent, at least partially, on 
CRM1 activity and suggest the involvement of  this cel-
lular protein in HDV agRNA export.

DISCUSSION
Although HDV RNA replication occurs in the nucleus 
of  liver cells, virus packaging takes place in the cytoplasm 
where HDV RNPs meet HBsAgs to assemble newly syn-
thesized virions. Noteworthy, only gRNA molecules were 
found, until now, to be packaged into mature hepatitis 
delta virions. This restriction could be due to a possible 
impairment of  export of  agRNA molecules to the cyto-
plasm.  However, agRNA was found in HDV virus-like 
particles secreted by cells expressing agRNA, L-HDAg, 
and HBsAgs[18].

A previous work showed that HDV RNPs are export-
ed to the cytoplasm independent of  the presence of  HB-
sAgs[15]. Additionally, it was demonstrated that export of  
HDV RNPs is not mediated by a putative nuclear export 
signal present in delta antigens but is rather promoted by 
cis elements in virus RNA. In fact, both HDV gRNA and 
agRNA are exported to the cytoplasm in the absence of  
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Figure 5  Analysis of chloranphenicol acetyl-transferase  expression in HuH-7 cells transfected with plasmids pDM138, pDM138 (PRE+), pDM138 (PRE-), 
pDM138 A7AS (214-417), pDM138-314-417, pDM138-214-322, pDM138-269-379, pDM138-244-379, pDM138-269-417, pDM138-214-403, pDM138-244-403, 
and pDM138-244-417. Chloranphenicol acetyl-transferase (CAT) and β-Gal expression levels were determined by enzyme-linked immunosorbent assay. The CAT 
expression values were normalized for transfection efficiency by transfecting HuH-7 cells with plasmid pSV-β-Gal (Promega) followed by determination of β-Gal 
expression. CAT expression values were divided by the corresponding β-Gal expression values, and the displayed results correspond to the mean of three indepen-
dent experiments.
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Figure 6  Nucleo-cytoplasmic distribution of hepatitis delta virus RNA 
in HuH-7 cells transfected with plasmids pDL481, pDl542, pDL481ΔNEE, 
pDL481ΔNEEδ, and pDL481Δδ. The RNA in nuclear and cytoplasmic cell 
fractions was determined by real time-polymerase chain reaction using the 2-∆

∆Ct method. Results are presented as the cytoplasmic /nuclear ratio (C/N) and 
correspond to the mean of three independent experiments. Bars indicate the 
standard deviation.



HDAgs, an observation also reported by Macnaughton et 
al[17]. 

Our first approach was designed to confirm that both 
HDV genomic and antigenomic RNA molecules are ex-
ported to the cytoplasm of  HuH-7 cells. Using plasmids 
pDL542 and pDL481 which express exclusively HDV 
gRNA and agRNA, respectively, we were able to detect 
both molecules, by in situ hybridization, in the nuclear and 
cytoplasmic compartments of  HuH-7 transfected cells. 
Furthermore, nuclear export of  HDV gRNA and agRNA 
seems to occur with the same efficiency since similar 
amounts of  genomic and antigenomic RNA molecules 
could be detected, by real time-PCR, in the nuclear and 
cytoplasmic compartments of  HuH-7 cells transiently 
transfected with plasmids pDL542 and pDL481. The 
finding that both genomic and antigenomic HDV RNA 
molecules are exported with similar efficiency suggests a 
possible biological function associated with the presence 
of  HDV agRNA in the cytoplasm.  However, further 
research is mandatory to clarify the biological significance 
of  these findings.

The above described observations are suggestive of  
a possible presence of  cis-acting nuclear export elements 
in HDV RNA, both genomic and antigenomic. In an at-
tempt to identify putative cis elements in the HDV gRNA 
and agRNA capable of  mediating the export to the cyto-
plasm, we used a well characterized CAT reporter system 
previously used by others to investigate the role of  the 
HBV PRE in export of  intronless mRNAs[27]. This sys-
tem is based on plasmid pDM138 which was generated in 
order to contain the second half  of  HIV-1 cDNA under 
the control of  the SV40 promoter[25,26]. This vector was 
further engineered in order to remove the initiation co-
dons for the Rev and Env proteins, to include the cDNA 

sequence coding for the CAT protein, and to substitute 
the HIV-1 RRE sequence by a linker containing a ClaⅠ 
restriction site. After transcription, an mRNA containing 
the ORF for the CAT protein inserted in the intron of  
the HIV-1 Env proteins is produced. As positive and neg-
ative controls we used plasmids pDM138-PRE(+) and 
pDM138-PRE(-), respectively. These plasmids contain 
the HBV post-transcriptional regulatory element (PRE) 
inserted in the unique ClaⅠ site of  pDM138, in sense 
and antisense orientations, respectively[27]. We cloned sev-
eral cDNA fragments, covering the entire HDV gRNA 
and agRNA, in plasmid pDM138. After transfection of  
HuH-7 cells, CAT production was determined by ELISA. 
This approach did not allow identifying unequivocally a 
nuclear export element in gRNA. Although two gRNA 
fragments corresponding to nucleotides 266-489 and 
584-920, (A4S and A6S, respectively) were found to pro-
mote export of  CAT mRNAs, the efficiency was in all 
experiments lower than the determined for the positive 
control pDM138-PRE(+). This could be possibly due to 
the lack of  crucial nucleotides in the ends of  the analyzed 
sequences. Clearly, additional experiments are mandatory 
to clarify this point. 

However, we were able to identify a region (A7AS) 
in the HDV agRNA, located between positions 214-417, 
which promoted the export of  CAT mRNA with 
slightly higher efficiency than that observed for the 
pDM138-PRE(+) positive control. This result was fur-
ther confirmed by Northern blot analysis of  total and 
cytoplasmic mRNAs prepared from pDM138-PRE(+) 
and pDM138A7AS transfected HuH-7 cells. Moreover, 
when inserted in the opposite orientation in pDM138, 
the fragment A7AS was not able to mediate export of  
CAT mRNAs (data not shown). All the other fragments 
tested were not capable of  promoting export of  CAT 
mRNA at levels comparable to those observed for the 
pDM138-PRE(+) positive control. In particular, the 
fragment A9AS which includes the HDV RNA ribo-
zyme sequence displayed a CAT mRNA export capacity 
significantly lower than the calculated for the negative 
control. This may be a consequence of  instability of  the 
produced mRNA molecules due to the self-cleavage ac-
tivity of  the HDV ribozyme. Besides the A7AS sequence, 
the only exception to the low export promoting capacity 
of  the analyzed fragments, concerns a cDNA fragment 
corresponding to positions 1301-1514 in the antigenome 
(A2AS). This agRNA fragment was able to promote 
CAT mRNA export with efficiency higher than the nega-
tive control but still lower than the determined for the 
positive control. This fragment, A2AS, includes part of  
the HDAg ORF. This observation may allow speculating 
about a possible presence of  a cis element in the HDV 
mRNA involved in export to the cytoplasm. Huang and 
Carmichael have previously shown that export on intron-
less histone H2a mRNAs is mediated by a signal present 
in the coding region[35]. However, further experiments are 
needed to clarify the possible involvement of  a similar 
signal in export of  HDAg mRNA.  
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Figure 7  Analysis of chloranphenicol acetyl-transferase expression in 
HuH-7 cells transfected with plasmids pDM138 (PRE-), pDM138 (PRE+), 
and pDM138 A7AS, in the absence (black columns) and presence of 10 
nmol/L leptomycin B (grey columns). In order to normalize for transfection ef-
ficiency, cells were co-transfected with plasmid pSV-β-Gal (Promega). Chloran-
phenicol acetyl-transferase (CAT) and β-Gal expression levels were determined 
by enzyme-linked immunosorbent assay. Normalization of CAT expression 
levels was calculated by dividing the values obtained for the CAT protein by the 
values obtained for the β-Gal protein. The results correspond to the mean of 
three independent experiments. Bars represent the standard deviation.



In an attempt to analyze in more detail the A7AS se-
quence in the HDV agRNA we generated, by PCR, eight 
truncated forms of  this motif  which were subsequently 
cloned in pDM138 and used in transfection experi-
ments to determine CAT expression by ELISA. These 
truncated forms corresponded to nucleotides 314-417, 
269-417, 244-417, 244-403, 214-403, 269-379, 214-379, 
and 214-322. The obtained results showed that deletion 
of  the first 30 nucleotides in the 5’ end of  the A7AS se-
quence did not significantly affect the export promoting 
capacity. However, deletion of  the first 55 nucleotides 
in the 5’ end results in loss of  the export capacity of  the 
A7AS sequence. In contrast, deletions in the 3’ end of  
the A7AS motif, did not significantly affect the ability to 
promote nuclear export. In fact, removal of  as much as 
the first 95 nucleotides in the 3’ end still resulted in the 
production of  the CAT protein at intermediate levels be-
tween the negative and positive controls. Noteworthy, all 
the analyzed A7AS truncated forms were less efficient in 
promoting RNA export when compared to the wild-type 
sequence. 

However, analysis of  the secondary structure of  the 
entire agRNA molecule did not allow predicting a similar 
branched structure in the region where the A7AS motif  
is located. In order to clarify a possible role of  a, at least 
partially, complementary to the A7AS motif  sequence in 
the antigenome, in nuclear export, we constructed dele-
tion mutants of  plasmid pDL481. These constructs were 
designed as follows: pDL481ΔNEE lacks the nuclear 
export element (A7AS sequence), pDL481Δδ lacks the 
complementary to the NEE sequence in the antigenome, 
and pDL481ΔNEEδ lacks both the NEE and the re-
spective complementary sequence. After transfection of  
HuH-7 cells, the relative amounts of  agRNA in nuclear 
and cytoplasmic fractions were determined by qRT-PCR. 
The obtained results showed that deletion of  the NEE 
(pDL481ΔNEE) reduces export of  agRNA by 60% 
when compared with wt pDL481. Additionally, deletion 
of  both the NEE and the respective complementary se-
quence (pDL481ΔNEEδ) results in a similar reduction 
(62%) of  detected cytoplasmic RNA. Finally, deletion of  
only the complementary to the NEE sequence did not 
impair the capacity of  the agRNA to be exported to the 
cytoplasm. Taken together, these results indicate that the 
identified NEE is important to promote nuclear export 
of  the HDV antigenome, and that export efficiency is 
not diminished by deletion of  the respective putative 
complementary sequence.   

Nuclear export of  host and virus RNAs may be 
promoted by several cellular factors that participate in 
distinct pathways. One of  these pathways is mediated by 
the exportin CRM1 which belongs to the kariopherin-β 
family of  proteins. CRM1 mediates the export of  the 
majority of  proteins containing a nuclear export signal 
(NES) and of  two classes of  cellular non-coding RNAS, 
rRNAs and UsnRNAs[21]. The CRM1 export pathway 
may be specifically inhibited in the presence of  LMB 
which binds to a cysteine residue in the central region of  

the protein[33]. In order to investigate a possible involve-
ment of  CRM 1 in export of  HDV agRNA we used 
LMB to inhibit this pathway in pDM138-A7AS trans-
fected HuH-7 cells. As positive and negative controls we 
used plasmids pDM138-PRE(+) and pDM138-PRE(-), 
respectively, since export of  the HBV PRE was previ-
ously reported to be insensitive to LMB. The obtained 
results showed that RNA export mediated by the NEE 
of  HDV agRNA is partially inhibited in the presence of  
LMB, displaying a 50% reduction of  CAT expression 
when compared with the parental pDM138 vector. This 
suggests an involvement of  the CRM1 protein in export 
of  HDV agRNA. However, since CRM1 binds to RNA 
molecules indirectly through interaction with other NES-
containing proteins this implies the participation of  other 
not yet identified host factors in HDV agRNA export. 
Not surprisingly, using coimmunoprecipitation assays 
we couldn’t detect complexes between HDV RNPs and 
CRM1 (our unpublished data).

In this work we attempted to identify nuclear export 
elements present HDV gRNA and agRNA. Although 
two regions in gRNA were found to be able to promote 
export of  heterologous RNAs, an unequivocal NEE 
could not be identified in gRNA. However, it was pos-
sible to identify a NEE in HDV agRNA located in 
positions 214-417. This cis element is not only capable 
of  promoting the nuclear export of  heterologous in-
tronless RNAs but is also involved in export of  HDV 
antigenomes. Analysis of  the export capacity of  several 
truncated forms of  the NEE showed that the two mini-
helices seem to play a crucial role in mediating RNA 
export. Cytoplasmic export of  HDV agRNA was found 
to be sensitive to leptomycin B suggesting a possible in-
volvement of  a CRM1 mediated pathway.
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Abstract
Human immunodeficiency virus (HIV) is rapidly increas-
ing in both high risk groups and the general population. 
In this study, silent routes of propagation in teenaged 
Pakistanis are discussed. In order to promote sexual 
activity in youths, regular clients write contact details 
of sex workers on the doors of public washrooms. HIV 
prevalence is much higher among Hijra sex workers. 
Hijra sex workers have apparently stepped into the 
profession of begging at public places, where they earn 
money by both begging and distributing visiting cards 
offering unsafe sex. In many educational institutes, sex 
education is lacking or absent; if delivered via  teachers, 
government agencies and nongovernmental organiza-
tions this could prevent a future epidemic of sexually 
transmitted infections in Pakistan. 

© 2013 Baishideng. All rights reserved.
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Core tip: Human immunodeficiency virus (HIV) is an 

emerging threat for rising generations in Pakistan. The 
prevalence of HIV is gradually increasing in different 
high risk populations due to the rapid increase of sexual 
activity among Pakistani youth. Increased sexual des-
peration among Pakistani youngsters has outranked the 
rest of the world. The rate of HIV spread in Pakistan 
is much greater than in any of the western countries, 
therefore adequate preventive measurements should 
be implemented as soon as possible, otherwise it will 
be too late.
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TO THE EDITOR
Human immunodeficiency virus (HIV) is an emerging 
threat for rising generations in Pakistan. The prevalence 
of  HIV is gradually increasing in different high risk pop-
ulations due to rapid increase of  sexual activity among 
Pakistani youth. Maximum viral spread and stable main-
tenance in the environment depends upon effectively 
penetrating protecting barriers[1]. Prevalence of  sexu-
ally transmitted diseases was limited to certain areas but 
unfortunately, now, its prevalence has rapidly increased 
in different cities. Pakistan is an Islamic republic, where 
religion, law, culture and society strictly forbid sex outside 
marriage. Despite the recognition of  sex outside marriage 
as a crime, commercial sex is being offered secretly in 
various brothels, kothikhana, client homes, rental houses 
near truck stops and market places, massage parlors and 
hotels. Strict punishments against sex outside marriage, 
if  implemented by any nation, could prevent individuals 
from extra marital sexual activity. 

We have identified silent routes stimulating sexual 
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activity among teenaged Pakistanis. Most of  the regular 
clients of  sex workers write sexually attractive sentences 
about female sex workers on the doors of  public toilets 
(in public places such as markets, parks, picnic places, 
hotels and bus stands)  in order to promote sex in the 
younger generation. Contact details of  female sex work-
ers are randomly distributed in public washrooms. Sexu-
ally desperate youngsters, introduced to the opportunity, 
indulge in risky sexual activities which expose them to 
sexually transmitted infections like HIV and acquired im-
munodeficiency syndrome. At the moment, fortunately, 
the prevalence of  HIV in the general population is very 
low. However, if  unsafe sexual practices stimulated by 
this rapid advertisement route, were to be carried out by 
youngsters then this would probably generate an HIV ep-
idemic in society which could create an extra burden on 
the economy. Another highly dangerous route of  sexual 
advertisement is through Hijra sex workers. In Pakistan, 
the prevalence of  HIV is highest among injecting drug 
users (IDUs) and Hijra sex workers. The greatest HIV 
prevalence (37.8%) was found in IDUs from different 
cities of  Pakistan[2,3]. An extremely high HIV prevalence 
(27.6%) was observed in Hijra sex workers of  Larkana 
Sindh, Pakistan[4]. Similarly another study conducted in 
Rawalpindi (the city adjoining Pakistan’s capital) reported 
a high prevalence of  HIV (21.6%) among transgender 
men[5]. The rate of  HIV spread in Pakistan is much 
higher than in any of  the western countries, therefore ad-
equate preventive measurements should be introduced as 
soon as it is possible. 

Hijra is a distinct type of  gender role which includes 
Khusras (true hermaphrodites), Zananas (crossdressers) 
and Narnbans (eunuchs)[6]. We have identified that the 
majority of  Hijra sex workers have started promoting 
sexual activity in the younger generation by distributing 
various visiting cards among shop keepers and youth as 
sexual advertisements. Mobile numbers and visiting ad-
dresses are written on those cards. Sexually active people 
usually make a phone call and arrange a time and place 
for unsafe sexual activities. Hijra sex workers have also 
stepped into begging at various public sectors including 
bus stands, markets and traffic signals, where they not 
only earn money by begging but also promote sex work 
by contacting youths. Hijras usually flatter the physical 
beauty and power of  their clients thus promoting sexual 
relationships. Most of  the youngsters who indulge in 
risky sexual relationships are illiterate and have a poor 
understanding of  sexually transmitted diseases and their 
consequences. Most of  them lack awareness and knowl-
edge, and are therefore unable to comprehend the seri-
ousness of  this issue. 

In educational institutes such as schools and colleges, 
sex education is mostly avoided. Teachers are often reluc-
tant to educate students with knowledge about awareness 
and prevention of  sexually transmitted disease. If  appro-
priate seminars were arranged for teenaged students this 
would be a positive step towards awareness and preven-
tion of  HIV and other sexually transmitted diseases. In 

order to reduce any future epidemic of  sexually transmit-
ted infections, harm reduction strategies must be imple-
mented rather than intimidation by law enforcement 
agencies. The mysterious sex industry is based upon the 
principle of  demand and supply. Sexually desperate un-
employed youths, tourists, business men, public officials, 
migrant workers, truck drivers and traders with conspicu-
ous wealth create a strong demand for sexual services. 
On the other hand, various social and economic factors 
like acute poverty, unemployment, limited knowledge 
and skills and the opportunity of  a high income through 
sex, usually compel poor individuals towards offering 
sex. In such circumstances, suppressing measures via law 
enforcement agencies could further aggravate the spread 
of  hidden risky behavior in society. It has been observed 
that Hijra sex workers have a strong wish to earn money 
by positive means but unfortunately our society does not 
accept them in either the private or public sector. The 
majority of  Hijra sex workers are unable to earn money 
by positive means due to problems of  sexual harassment 
from sexually active people. By arranging positive sup-
port for sex workers, via assistance from government sec-
tors and nongovernmental organizations (NGOs) to earn 
an honorable livelihood, their risky sexual activities and 
behaviors can be reduced significantly. 

Policy makers should not only provide wider oppor-
tunities for the dissemination of  awareness and knowl-
edge about risk factors associated with viral transmission 
among populations at risk; but also focus on identifica-
tion of  epidemiological patterns associated with sexually 
transmitted infections among various high risk popula-
tions in Pakistan. At the moment, an inadequate surveil-
lance system for sexually transmitted infections exists 
with inadequate identification of  subpopulations where 
deadly pathogens are secretly propagating. There is very 
little knowledge in the general and high risk populations 
about access to anti-retroviral therapy clinics. Expanded 
scientific research is also an important factor for suc-
cessful surveillance of  sexually transmitted infections. 
Among target populations, simple diagnostic tests against 
HIV could provide information regarding prevalence and 
trend of  HIV infection. If  the serum sub-samples are 
screened against other sexually transmitted infections (like 
hepatitis C virus and herpes simplex virus 2) after record-
ing valuable basic demographic and behavioral data, this 
would help to identify behavior risk trends over time 
and aid surveillance. Another possible way towards harm 
reduction in Pakistan is by supporting community organi-
zations and NGOs. The mysteries of  complex HIV (and 
other sexually transmitted infection) dynamics could also 
be investigated using molecular epidemiology studies and 
mathematical modeling. 
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Abstract
Depression is often a side effect of interferon-alpha 
treatment for hepatitis C, and is recognized as a cause 
for treatment discontinuation. When detected, antide-
pressant treatment begins promptly. In contrast to this 
rescue approach, prophylactic antidepressant treat-
ment has been considered as a superior approach. 
While studies indicate that depression is lower with 
prophylaxis, no study has prospectively evaluated the 
degree that treatment completion might be boosted by 
the prophylactic strategy. A structured literature search 
was conducted to discover all trials of antidepressant 
prophylaxis for patients undergoing antiviral treatment 
for chronic hepatitis C. Selection criteria included: an-
tidepressant prophylaxis study; report of depression 
treatment outcome; report of numbers discontinuing 
and reason for discontinuation (including any of the 
following: discontinuation data for medical side effects 
(i.e. , thrombocytopenia); discontinuation due to lack 
of antiviral response; discontinuation due to lack of 
antidepressant effect; discontinuation due to antide-
pressant side effects; discontinuation due to patient 
preference; discontinuation due to loss to follow-up; or 
unspecified discontinuation). Across the studies, total 
enrollees were determined for the prophylaxis arms 
and the rescue arms, and then, again across studies, 

those discontinuing for reasons other than lack of an-
tiviral response or medical side effect were summed 
for each of these two arms. Twelve studies were dis-
covered. One was a retrospective chart review, one 
was an uncontrolled trial, and ten were controlled tri-
als. Discontinuation of antiviral therapy was not less 
common in the prophylaxis arms: of the 396 patients 
treated by the prophylaxis strategy, 47 (11.9%) dis-
continued; of the 380 patients in the rescue strategy, 
45 (11.8%) discontinued. While the prophylaxis strat-
egy seems to manage depression symptoms, it does 
not seem to boost treatment completion. Rescue was a 
very successful strategy when indicated. While antide-
pressant prophylaxis has benefit in antiviral treatment, 
it should not generally be valued for boosting the likeli-
hood of treatment completion.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Depression; Therapy; Clinical; Psychiatry

Core tip: To inform clinical practice, this narrative re-
view summarizes existing evidence regarding the de-
gree that antidepressant prophylaxis boosts hepatitis 
C antiviral treatment completion compared to a rescue 
approach.

Rowan PJ. Does prophylactic antidepressant treatment boost 
interferon-alpha treatment completion in HCV? World J Vi-
rol 2013; 2(4): 139-145  Available from: URL: http://www.
wjgnet.com/2220-3249/full/v2/i4/139.htm  DOI: http://dx.doi.
org/10.5501/wjv.v2.i4.139

INTRODUCTION
Although pegylated interferon-alpha may provide a sus-
tained viral response from chronic hepatitis C infection[1,2], 
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this lengthy regimen is challenging to tolerate. Depres-
sive symptoms, one of  the more difficult side effects, can 
lead to discontinuation. Discontinuation rates for factors 
other than antiviral non-response range from 10% in 
well-conducted clinical trials[1,2] to 30% or more in clinical 
settings[3]. If  depressive symptoms emerge, they must be 
clinically managed, including suspension of  antiviral treat-
ment as a last resort. Direct-acting antiviral agents may 
eventually supplant interferon-alpha/ribavirin regimens as 
standard of  care[4], but interferon-alpha-based regimens 
have recently been re-affirmed as standards of  care[5,6].

To reduce the threat of  treatment-related depression, 
the idea of  prophylactic depression treatment emerged[7]: 
when beginning interferon-alpha (and ribavirin) treat-
ment, the patient would be started on an antidepressant 
with the goal of  preventing, or attenuating, depressive 
symptoms. Initial case studies and case series noted suc-
cess of  this strategy. For example, antiviral treatment was 
restarted in a cohort of  eight chronic hepatitis C patients 
who previously had discontinued due to emergent de-
pressive episodes; all eight were able to fully complete the 
second course of  treatment[8]. A precedent for this strat-
egy was noting the success of  antidepressant prophylaxis 
for interferon-alpha treatment of  malignant melanoma[8,9].

Compared to prophylaxis, traditional practice can be 
termed “rescue” when depressive symptoms emerge in a 
patient undergoing antiviral treatment, depression treat-
ment is quickly initiated so that those symptoms can be 
managed. The advantage to the prophylactic strategy is 
that depression and the threat of  discontinuation can 
be avoided; the advantage to the rescue strategy is that 
patients are not unnecessarily treated, and so are not 
experiencing the additional treatment burden and side ef-
fects. Antidepressants may have quite adverse side effects 
in some patients, including retinal or gastroenterological 
bleeding[10,11]. Thus, clinicians are faced with a challeng-
ing clinical management strategy where risks and benefits 
must be considered.

Can prophylactic antidepressant treatment boost 
interferon-alpha treatment completion in patients with 
chronic hepatitis C virus (HCV)? No study has pro-
spectively answered this question. This review has been 
conducted to discern an answer by reviewing antiviral 
therapy discontinuation data reported in trials evaluating 
the efficacy of  antidepressant prophylaxis for managing 
depression. This review is presented in order to enhance 
the evidence available for clinical decision-making.

LITERATURE SEARCH 
A Pubmed literature search was designed to discover tri-
als that might have the data necessary to assess relative 
treatment completion between prophylaxis arms and con-
trol arms. A set of  search terms was developed to capture 
studies relevant to hepatitis C. This included: “hepatitis”, 
“HCV”, “Hep C”, “Hep-C” and “chronic hepatitis C”. 
This was crossed with each of  two other sets. The first 
was a set to capture depression-related studies: “depres-

sion”, “depressed”, “depressive”, “psychiatric”, “mental”. 
The other was a set to capture prophylactic strategies: 
“prophylaxis”, “prophylactic” or “prevention”.

From this search, all study titles would be reviewed to 
detect promising abstracts. All promising abstracts would 
be read, and likely studies would be pulled and assessed 
for necessary information. References of  those studies 
would be checked manually.

The necessary information for selection into this 
review was established as the following: patients with 
chronic hepatitis C who were candidates for interferon-
alpha treatment (whether including ribavirin or not, as 
this treatment strategy emerged as the prophylactic strat-
egy emerged); recognized treatment regimen (i.e., interfer-
on-alpha with ribavirin); no concurrent treatment such as 
for human immunodeficiency virus, since symptoms and 
treatment side effects would be significant confounders; 
at least two study arms where one included prophylactic 
treatment with an antidepressant, whether open-label or 
blinded, and the other is a control arm, whether placebo-
controlled or not; sustained treatment of  at least 8 wk 
in order to observe emergence of  depressive symptoms 
from interferon-alpha and assess differential depres-
sion response between arms; and data on the numbers 
of  patients in each arm that discontinued, or were lost 
to follow-up, for reasons other than medical side effects 
(thrombocytopenia, etc.) or non-response to antiviral 
therapy. Thus, the discontinuation group of  focus would 
be those who medically could have completed treatment 
but discontinued for a reason other than a medical rea-
son. To the degree that discontinuation reasons, such as 
psychiatric side effects, would be specifically reported, 
these would be tabulated and compared between the 
intervention-arm participants and the control-arm par-
ticipants. The reporting of  discontinuation for psychiatric 
reasons, specifically, was thus not an inclusion criterion.

For each eligible study, the number of  patients dis-
continuing would be noted for each of  the arms of  the 
study. A descriptive analysis would be developed based 
on those results. The goal would be to describe the de-
gree, if  any, that antiviral treatment completion might 
be superior for the prophylactic strategy, compared side-
by-side with the rescue strategy. Since the data sources 
for this study consisted of  previously-published research 
studies, ethics approval for this narrative review was not 
sought from an institutional review board.

SEARCH RESULTS
For the “prophylaxis” search term set, “pretreatment” 
was soon discovered as a synonym, so this was added 
to that set. The “prophylaxis” set returned 1302661 ab-
stracts; the “hepatitis C” set returned 184063 abstracts; 
and the “depression” set returned 869174 abstracts. The 
intersection of  these three sets returned 419 abstracts. Ti-
tles of  all were reviewed, leading to a set of  38 abstracts 
to review. This led to a set of  12 studies[8,12-23] in which 
the prophylactic strategy was evaluated, and discontinua-
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tion data were reported.
These studies are listed, with relevant study charac-

teristics, in Table 1. All but one were prospective trials; 
one was a retrospective chart review study that composed 
a cohort of  patients who were taking an antidepressant 
before the initiation of  interferon-alpha treatment, and 
composed a control group of  patients who required 
some kind of  psychiatric treatment during interferon-
alpha treatment. For the sake of  completeness, this chart 
review study was included. One of  the 12 studies (Gleason 
et al[20], 2007), among the first chronologically, did not 
have a control group; this study simply investigated treat-
ment completion when a prophylactic strategy was tri-
aled. This was included for completeness. For one study, 
the manuscript reporting the preliminary study design 
was available, and results have just recently been present-
ed as a poster at a scientific conference; it is assumed that 
a more complete analysis will be forthcoming. For the 

sake of  completeness, results based on this conference 
poster were included.

Clinical Interventions
All studies were conducted in the era of  prescribing 
ribavirin along with interferon-alpha. Nearly all were 
conducted in the era of  pegylated interferon, with the 
exception of  some of  the earlier-initiated participants in 
the Morasco et al[21] (2007) and Raison et al[22] (2007) stud-
ies. Likewise, antidepressant dosages were normative, with 
typical strategies for increasing or augmenting dosage 
when clinically indicated, and typical medication switching 
strategies when clinically indicated. All studies used anti-
depressants from the selective serotonin re-uptake inhibi-
tor class, including paroxetine (one study), paroxetine or 
citalopram (one study), citalopram (five studies), and es-
citalopram (four studies). This usage followed the pattern 
of  Food and Drug Administration approval and clinical 
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  Study Leading exclusion criteria Prophylactic Medication Randomized: Blinded: Follow-up point, Discontinued/Total in Arm:2

intervention run-in period Yes/No Yes/No in wk1 Prophylaxis Rescue
  Schaefer et al[12] Psychiatric history, 

interferon treatment
Escitalopram 2 wk Yes Yes 24/48 2/90 3/91

  Klein et al[13], 
  Klein et al [14]4

Active psychiatric disorder 
in the recent six months

Citalopram 3 wk Yes Yes 12 3/29 1/30

  de Knegt et al[15] Current Axis I disorder 
or current psychiatric 

prescription

Escitalopram 2 wk Yes Yes 24 2/34 2/37

  Morasco et al[16] Recent 3 mo psychiatric 
disorder

Citalopram 2 wk Yes Yes 24 N/A3 N/A3

  Diez-Quevedo 
  et al[17]

Active psychiatric disorder 
in the recent two months

Escitalopram 2 wk Yes Yes 24/48 4/51 6/48

  Liu et al[18]5 Alcohol use during 
treatment

Specific 
antidepressants 

not reported

Not reported No No 24/48 11/23 2/25

  Neri et al[19] Substantial psychiatric 
history, interferon 

treatment

Individual, 
family, and 

marriage 
counseling

N/A Yes No 24 14/106: 9/106 
for lack of 

compliance, 5/ 
for psychiatric 

reasons

28/105: 11/105 
for lack of 

compliance, 
17/105 for 
psychiatric 

reasons
  Gleason et al[20] Depression not yet in 

remission
Escitalopram 4 wk N/A N/A 24/48 2/10 No control group

  Morasco et al[21] Active psychiatric disorder 
in recent six months

Citalopram 4 wk Yes Yes 24 3/13 3/15

  Raison et al[22] Psychiatric disorder or 
prescription within recent 

six months

Paroxetine 2 wk Yes Yes 24 0/18 6/18

  Kraus et al[8] Active substance abuse Paroxetine or 
citalopram

3 wk No 15 0/8 Not reported for 
control group of 9

  Schaefer et al[23] Current or recent 
psychiatric diagnosis or 

prescription

Citalopram 2 wk N/A N/A 24 0/14 0/11

Totals: 47/396 45/380

Table 1  Study characteristics and discontinuation data: Antidepressant prophylaxis for interferon-alpha treatment of hepatitis C virus

1If 24/48, then treatment period accorded to interferon alpha regimen according to genotype, typically 24 wk for genotypes 2 and 3, and 48 wk for 
genotypes 1 and 4; 2Denominator is total, including those lost to follow-up, who could have dropped out due to psychiatric reasons, and excludes those 
without this possibility, which would include the following: non-response to antiviral therapy, drop-out after randomization but before beginning 
antiviral therapy, or medical adverse events such as thrombocytopenia; 3Three of 39 altogether discontinued antiviral therapy, but study report did not 
distinguish between active treatment and placebo for medical or other discontinuations; 42008 study was a trial design report, and 2012 was poster of 
initial results recently presented at a conference; 5Retrospective observational chart review study; analysis limited to the two of four study arms that 
constitute a prophylaxis vs rescue comparison; 19 of the 23 in the prophylaxis arm were already taking antidepressants and the remaining 3 were started 
prophylactically before starting antiviral therapy.
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treatment. There was no overall statistical difference 
when tested by Chi-Squared test with Yates’ correction (c2 
= 0.00, P = 0.99).

One study (Raison 2007) seemed to yield a desired ef-
fect for prophylaxis: none of  the 18 prophylaxis patients 
discontinued, while 6 of  the 18 rescue patients discontin-
ued. A review of  this study in the context of  other stud-
ies did not reveal any clear aspect of  study design, mea-
surement, or sampling that would indicate an explanation 
for this divergent result from the other, similar studies.

The Liu et al[18] study (2010) had greater discontinua-
tion in the prophylaxis arm, but the psychosocial inter-
vention used in this study, close monitoring and various 
counseling modalities, and psychopharmacotherapy only 
in certain cases where this psychosocial intervention was 
not successful, was very different from the other studies. 
Aside from this differential in discontinuation, the psy-
chosocial intervention used in the Liu et al[18] study oth-
erwise was successful in managing psychiatric symptoms, 
and doing so with less dependence on psychopharmaco-
therapy, compared to the usual care arm with rescue psy-
chopharmacology. In this Liu study, with a psychosocial 
strategy for prophylaxis rather than psychaopharmaco-
therapy, the number of  patients experiencing severe psy-
chiatric symptoms was lower in the intervention group, 
with five meeting this criterion, vs 17 in the control group. 
Psychiatric symptomatology at less severe levels, likewise, 
was less frequent for the intervention arm compared to 
the control arm, with only six of  the intervention patients 
eventually receiving antidepressant treatment compared 
to 19 in the control arm.

There were nine studies with data that permitted a 
Fisher’s Exact Test to test whether the discontinuation 
rate differed between prophylaxis arm and rescue arm. Of  
these nine, only four had results that were statistically sig-
nificant. Three modestly favored prophylaxis. These were: 
Diez-Quevedo et al[17] 2010 (7.8% discontinuation in pro-
phylaxis arm, 12.5% rescue arm, Fisher’s P = 0.02), Neri 
et al[19] 2010 (8.5% discontinuation in prophlylaxis arm, 
10.5% discontinuation in rescue arm, Fisher’s  P = 0.02), 
and Raison et al[22] 2007 (0.0% prophylaxis arm, 33.3% res-
cue arm, Fisher’s P = 0.02). The one study favoring rescue 
was Liu et al[18] 2010 (47.8% discontinuation in prophylaxis 
arm, 8.0% discontinuation in rescue arm, Fisher’s P = 0.02). 
With five studies having no statistical difference in discon-
tinuation, three favoring prophylaxis  by varying portions, 
and one favoring rescue by a strong portion, there seems 
to be no consistent pattern favoring either strategy.

Since these studies were focused upon the pres-
ence and severity of  depressive symptoms, but not on 
reasons for failure to complete a full course of  therapy, 
reasons for not completing therapy were not systemati-
cally reported, and those reporting did not use consistent 
criteria. For those that did report, the stated reasons for 
discontinuation are listed in Table 2. Predominant rea-
sons for not completing therapy included: Lost to follow-
up, psychiatric side effects, and non-adherence. These 
reasons are likely quite overlapping, such as a person 

adoption of  these drugs, with paroxetine favored in earlier 
studies, citalopram favored in the studies conducted in the 
middle of  this time span, and escitalopram favored in later 
studies. A range of  strategies were used to assess depres-
sion level before and during treatment. These generally 
included: standardized clinical interview, clinical interview, 
a depression questionnaire, or combination. In some stud-
ies, patients could be started on antiviral therapy even if  
some level of  depressive symptoms was present.

Clinical outcomes
The overwhelming majority of  patients were able to com-
plete interferon-alpha treatment. Sustained viral response 
results were in line with other well-managed intervention 
studies using interferon-alpha and ribavirin (e.g., approxi-
mately 40% sustained viral response for those with geno-
type 1, approximately 75% for those with genotypes 2 
or 3). Some patients failed to show a treatment response, 
and so interferon-alpha was discontinued due to lack of  
response. Some patients had treatment-related adverse 
events, such as thrombocytopenia, requiring discontinua-
tion of  therapy. To the degree that these data were avail-
able, the current study did not include these patients in 
the denominator at risk of  discontinuing due to psychiat-
ric difficulties, since they had discontinued due to medical 
reasons. Patients who were lost to follow-up or discon-
tinued for other preference or discretionary reasons, or 
for unidentified reasons, were included in the numbers 
of  patients who discontinued treatment for some reason 
other than antiviral non-response or medical side effect. 
This strategy was chosen because it can be challenging, 
especially from limited data included in published stud-
ies, to determine the leading reason for discontinuation 
or loss to follow-up, and the clinical question is whether 
prophylaxis boosts study completion.

Generally, providing antidepressant treatment resulted 
in amelioration of  depressive symptoms. For the groups 
receiving antidepressant treatment prophylactically, aver-
age levels of  depressive symptoms, or the portion of  pa-
tients with an emergent depressive disorder, were lower 
in those receiving prophylactic treatment vs rescue treat-
ment. Generally, problems with depression were worse 
for those at baseline with any depressive disorder history, 
or with higher initial depression severity.

Despite the clinical efficacy of  antidepressant pro-
phylaxis in controlling depressive symptomatology, there 
seemed to be no indication that the prophylactic strat-
egy boosted treatment completion rates compared to 
the rescue strategy. Table 1 presents these data by study, 
including a summation of  the total number of  patients 
in the denominator, at risk for discontinuation, for both 
prophylactic and rescue arms, and the number for both 
arms that discontinued therapy. Of  396 patients in the 
prophylaxis arms altogether, who did not discontinue due 
to medical adverse events or clinical non-response, 47 
(11.9%) discontinued interferon treatment before a rec-
ognized stopping point (e.g., 24 or 48 wk); of  380 patients 
in the rescue arms, 45 (11.8%) discontinued interferon 
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choosing to fail to continue in treatment due to psychiat-
ric symptoms.

DISCUSSION
Emergence of  depressive symptoms is a challenging side 
effect when treating chronic hepatitis C with interferon-
alpha. Rates of  depression may be as high as 30% or 
more. It has been established that monitoring patients 
for the emergence of  depression, and rescuing those in 
whom depression emerges, is a successful strategy for 
limiting treatment discontinuation or poor adherence. 
Because of  this high incidence of  treatment-related 
depression, the idea of  prescribing an antidepressant 
prophylactically to all patients at the initiation of  antiviral 
therapy is attractive. This search revealed 12 studies that 
have evaluated the benefits of  prophylactic treatment. 
From these studies, it is clear that prophylactic treatment 
serves to reduce the emergence of  depression, and serves 
to manage the level of  depressive symptomatology.

This review was undertaken to investigate the degree 
that the prophylactic strategy might boost treatment 
completion. There is no clear indication that the pro-
phylactic strategy generally serves to boost treatment 
completion, compared to a monitor-and-rescue strategy. 
Where noted, nearly all patients in the rescue arms were 
successfully rescued from the emergence of  depression. 
Review of  study parameters does not suggest any treat-
ment strategy or patient profile where prophylaxis yields 
a boost in treatment completion.

Advantages to prophylaxis are the superior manage-
ment of  depression during treatment in some portion 
of  patients. This advantage needs to be weighed against 
the negatives of  this strategy, which include the increased 
treatment burden on the patient, increased cost, and the 
risk of  adverse events from the antidepressant. Two of  
the reviewed studies indicate some likely applications for 
prophylaxis. The study by Schaefer et al[12] (2005) dem-
onstrated lower rates of  treatment-related depression in 
the prophylactically treated arm, compared to the arm 
with no prophylaxis, in a cohort of  patients with chronic 
hepatitis C who also had a history of  a mental disorder 
(predominantly affective and dependence disorders) but 
with no active symptomatology and not currently receiv-
ing any psychiatric medication. The Kraus et al[13] (2005) 
study demonstrated successful interferon-alpha retreat-

ment with antidepressant prophylaxis for a cohort of  pa-
tients who had previously discontinued interferon-alpha 
treatment due to the emergence of  depressive symptoms, 
while the control arm experienced, on average, even 
higher depressive symptom levels in the second attempt 
at interferon-alpha treatment (possibly due to the use, 
for all, of  pegylated interferon-alpha in the second but 
not first treatment attempt). So, certain subgroups with 
recognized psychiatric difficulties may benefit from anti-
depressant prophylaxis.

While psychopharmacology is effective for managing 
depression in interferon-alpha treatment of  hepatitis C, it 
is interesting to note the positive results of  the Liu study, 
with a psychosocial intervention including individual 
counseling, family counseling, and couples counseling. 
The exact design of  this intervention was not reported, 
such as how counseling needs were discovered, or data 
on the number of  sessions delivered, or the specific clini-
cal issues addressed, or whether any component included 
comprehensive chronic illness management training (dis-
ease education, treatment education, stress management, 
physician-patient communication skills, etc.), which has 
been shown to improve treatment adherence along with 
health-related quality of  life.

Why didn’t the prophylaxis approach have superior 
treatment completion, along with superior depression 
management, compared to rescue approach? It is pos-
sible that, in these trials, the rescue strategy worked as 
well as prophylaxis because clinical trials often have clini-
cal management practices (answering patient questions, 
establishing clear lines of  communication, systematic 
symptom monitoring, recruitment of  motivated patients) 
that is stronger than usual care. If  this is the case, then 
those delivering interferon-alpha treatment for chronic 
hepatitis C should be sure to parallel the symptom moni-
toring strategy of  these trials. The monitoring of  depres-
sion is a topic that has already been covered well in the 
literature concerning antiviral therapy, and has long been 
incorporated into treatment guidelines. The results of  the 
Neri et al[19] (2010) study support this possibility: strong 
psychosocial monitoring led to better affective symptom 
control, with only a small portion of  that advantage due 
to the use of  antidepressants. At the same time, it is valu-
able to note that, in the Liu et al[18] (2005) study, interfer-
on-alpha treatment conclusion or discontinuation led to 
a reduction in the emergent depressive symptom levels 
seen, leading the authors to conclude that “depression 
was specifically related to IFN therapy”.

One indirect benefit of  antidepressant treatment may 
be the management of  treatment side effects other than 
psychiatric side effects. Raison et al[22] (2007) found stron-
ger completion rates in the prophylaxis arm, and this was 
noted as being related to lower antiviral side effect dif-
ficulties. The study by Diez-Quevedo et al[17] (2010) also 
noted lower levels of  antiviral side effects in those receiv-
ing antidepressants. Antidepressants are used in a range 
of  clinical indications beyond depression, such as man-
agement of  pain and management of  fibromyalgia symp-

  Reason for discontinuation Prophylactic arm Rescue arm

  Lost to follow-up 21 19
  Psychiatric side effects   8 18
  Non-adherence 11 14
  Did not complete therapy   3   3
  Noncompliant or loss to follow-up   0   6
  Other side effects   0   4

Table 2  For studies reporting discontinuation data, number 
discontinuing interferon-alpha therapy, and reason for 
discontinuation, summed across studies
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toms. In antiviral therapy, antidepressants may somehow 
reduce a range of  symptoms. This could explain an un-
usual finding regarding depression in a larger hepatitis C 
study[24] that used a rescue strategy for emergent depres-
sion: while depression emerged for 90 patients in this 
study of  nearly 400, discontinuation rates were lower for 
those patients (6%) than for those in whom no depres-
sion emerged (15%). The antidepressant intervention, or 
the related social support experienced in the course of  
clinical response, may have served to ameliorate the expe-
rience of  treatment side effects. Data were not sufficient 
in the studies reviewed here to investigate more fully the 
possibility that antidepressant treatment in antiviral treat-
ment may ameliorate antiviral-related side effects.

Another treatment characteristic suggesting that 
prophylaxis has limited clinical benefit was the necessity 
of  monitoring and rescuing patients in the prophylaxis 
group, as well as the rescue group. In the de Knegt et 
al[15] study (2011), with 40 patients in the escitalopram 
group and 39 in the placebo group, four in the prophy-
laxis group needed rescue (increase or augmentation 
of  dose, or new medication) while seven patients in the 
placebo group needed rescue depression treatment. In 
the Schaefer et al[23] (2012) study, three in the prophylaxis 
group needed rescue by another antidepressant, while 16 
in the rescue arm required rescue. In the Morasco et al[21] 
(2010) study, approximately 30% in each arm had to have 
medication dosage adjusted, with some of  those in the 
prophylaxis arm entering “rescue” treatment. This need 
to monitor and adjust pharmacotherapy is a limit to the 
treatment efficiency to be gained by prophylaxis; prophy-
laxis does not reduce the necessity of  monitoring patients 
for the emergence of  depression symptoms, and so does 
not greatly lighten the task of  clinical care required to 
manage depression.

Because the influences of  cytokines upon the central 
nervous system are quite varied, it is not quite clear how 
interferon-alpha causes depression in some patients. 
Pro-inflammatory cytokines can experimentally induce 
“sickness behavior” in non-human animals. It is hypoth-
esized that this malaise might serve a valuable function: 
when the body needs to fight off  infection, it is advan-
tageous to have a healing period of  increased sleep, 
lower activity level, and lower appetite; pro-inflammato-
ry cytokines promote inflammatory responses, and also 
may simultaneously be registered in the brain, leading 
to the coincident sickness behavior[25]. Research in hu-
mans has revealed that interferon-alpha has an array 
of  effects in the central nervous system, and elevated 
cytokine activity, especially tumor-necrosis factor-alpha 
and interleukin-6 can be noted in some portion of  cases 
of  major depression[26,27]. Further, serotonin-acting anti-
depressants have an effect upon tumor-necrosis factor-
alpha and interleukin-6, as well as other inflammatory 
markers[28].

Providers should be clear about desired purpose when 
considering prophylactic antidepressant for hepatitis C 
patients about to begin antiviral therapy. Antidepressant 

prophylaxis does not seem to boost treatment comple-
tion, so other goals, such as managing depression, should 
be clarified when considering the strengths and weak-
nesses of  this strategy. Discontinuation of  interferon-
alpha for chronic hepatitis C is a great treatment chal-
lenge, and anything that interferes with completion of  
treatment should be well investigated.
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Abstract
Porcine reproductive and respiratory syndrome (PRRS) 
is one of the most important diseases of swine industry. 
The causal agent, PRRS-virus (PRRSV), is able to evade 
the host immune response and survive in the organism 
causing transient infections. Despite all scientific ef-
forts, there are still some gaps in the knowledge of the 
pathogenesis of this disease. Antigen presenting cells 
(APCs), as initiators of the immune response, are locat-
ed in the first line of defense against microorganisms, 
and are responsible for antigen recognition, processing 
and presentation. Dendritic cells (DCs) are the main 
type of APC involved in antigen presentation and they 
are susceptible to PRRSV infection. Thus, PRRSV repli-
cation in DCs may trigger off different mechanisms to 
impair the onset of a host effective immune response 
against the virus. On the one side, PRRSV may impair 
the basic functions of DCs by regulating the expres-
sion of major histocompatibility complex class Ⅱ and 
CD80/86. Other strategy followed by the virus is the 
induction of cell death of APCs by apoptosis, necrosis 
or both of them. The impairment and/or cell death of 

APCs could lead to a failure in the onset of an efficient 
immune response, as long as cells could not properly 
activate T cells. Future aspects to take into account are 
also discussed in this review.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Porcine reproductive and respiratory syn-
drome; Antigen presenting cells; Dendritic cells; Im-
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Ⅱ; CD80/86; Cell death; Apoptosis

Core tip: Porcine reproductive and respiratory syn-
drome virus (PRRSV) is able to evade the host immune 
response and survive in the organism causing transient 
infections. PRRSV interacts with antigen presenting 
cells, specifically with dendritic cells, causing a regula-
tion of major histocompatibility complex class Ⅱ and/or 
CD80/86 and cell death by apoptosis and/or necrosis.

Rodríguez-Gómez IM, Gómez-Laguna J, Carrasco L. Impact of 
PRRSV on activation and viability of antigen presenting cells. 
World J Virol 2013; 2(4): 146-151  Available from: URL: http://
www.wjgnet.com/2220-3249/full/v2/i4/146.htm  DOI: http://
dx.doi.org/10.5501/wjv.v2.i4.146

INTRODUCTION
Porcine reproductive and respiratory syndrome (PRRS) 
is caused by PRRS-virus (PRRSV)[1,2]. This virus belongs 
to the genus Arterivirus[3] and has a high genetic vari-
ability[4]. Two genotypes of  PRRSV can be distinguished: 
PRRSV-1, which comprises strains from Europe; and 
PRRSV-2, which includes strains from America[3]. Indeed, 
PRRSV-1 is subdivided into three different subtypes, 
subtype 1, which includes strains from Western Europe, 
and subtypes 2 and 3, which comprise strains from 
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Eastern Europe[4]. Moreover, PRRSV-1 strains can also 
be classified in accordance with the capability to induce 
different patterns of  tumour necrosis factor α (TNF-α), 
interleukin-10 (IL-10) after infection of  peripheral blood 
mononuclear cells, porcine alveolar macrophages, periph-
eral blood SwC3+ cells and bone marrow dendritic cells 
(BMDCs) into: IL-10+-TNF-α+, IL-10–-TNF-α+, IL-10+-
TNF-α- and IL-10–-TNF-α--inducing strains[5].

Host immune response against the virus is weak and 
erratic and fails to control PRRSV. Different studies 
point out that type 1 interferons are insufficiently pro-
duced, which has been related to an inhibition of  inter-
ferons by nonstructural proteins 1α, 1β, 2, 11, as well as, 
N protein[6-9]. Indeed, proinflammatory cytokines are also 
mildly produced[7,10,11] being associated nonstructural pro-
tein 2 to a decreased release of  IL-1β and TNF-α[12,13]. 
Some in vitro evidences in the literature also point out 
that PRRSV can induce a suppression of  NK cells[14]. 
Although PRRSV may induce the induction of  cytotoxic 
T lymphocytes[15], these cells seem to suffer an impair-
ment to exert their cytotoxic activity to PRRSV-infected 
macrophages[16]. Furthermore, the number of  interferon-
γ-secreting cells is not enough to control PRRSV[17-20] and 
neutralizing antibodies (NAs) are delayed and not pro-
duced in a vast extent[17]. Two to four weeks after infec-
tion, NA-response takes place, resulting in very low titers 
(1/32-1/64 or even lower)[17,18,20,21].

Antigen presenting cells (APCs) are located in the 
first line of  defense against microorganisms attack. These 
cells recognize, process and present antigens to T cells in 
order to trigger an effective immune response[22-25]. While 
B cells can directly recognize antigens by means of  its B 
cell-antigen receptor, T cells need the involvement of  dif-
ferent molecules through two mandatory signals. The first 
signal consists on the binding between the T-cell antigen 
receptor (TCR) and the major histocompatibility complex 
class Ⅱ (MHC-Ⅱ) molecule. For the second signal, the 
CD28 molecule from T cells interacts with co-stimulatory 
molecules (CD80/86) from APCs. The correct linking of  
these molecules in the presence of  antigens will suitably 
activate T cells[26,27].

Dendritic cells (DCs) are the main type of  APC in-
volved in antigen presentation. However, macrophages 
and B cells, although less efficiently, can also act as 
APCs[26,28-30]. Interestingly, it has been shown that differ-
ent types of  DCs and macrophages can suffer PRRSV 
replication in vitro[31-37]and in vivo[38-43]. However, in an ex 
vivo experiment, Loving et al[44] showed that lung-DCs 
were not permissive for PRRSV infection. A reasonable 
explanation for this result is that these lung-DCs could 
lack the receptors that PRRSV uses to go into the cell (i.e., 
CD163, sialoadhesin, heparan sulphate)[45], while other 
types of  DCs conserve these receptors. Furthermore, 
PRRSV replication directly impairs the basic functions 
of  infected macrophages, including phagocytosis, antigen 
presentation and production of  cytokines, and also induce 
cell death[46]. Therefore, changes in the number of  APCs 
and/or a downregulation on the expression of  MHC-Ⅱ 

and CD80/86 may lead to suppose an impairment in the 
onset of  an effective immune response against PRRSV.

Other strategy followed by PRRSV to evade the host 
immune response might be the induction of  cell death 
of  APCs by apoptosis, necrosis or both of  them[47-52]. 
Apoptosis is a regulated process modulated by both pro-
apoptotic and anti-apoptotic cellular factors and it can 
be considered an active process[53], while necrosis is the 
passive death of  cells[54]. In any case, APCs death could 
also cause a failure in the onset of  an efficient immune re-
sponse, owing to cells could not properly activate T cells.

WHAT DO WE KNOW ABOUT THE 
INTERACTION BETWEEN PRRSV AND 
APCS?
PRRSV and the expression of active (MHC-Ⅱ ) and 
co-stimulatory (CD80/86) molecules
Due to the complexity in the isolation and culture of  
DCs from different porcine organs[55,56], the vast majority 
of  conducted studies are in vitro studies.

After the infection of  monocyte-derived dendritic 
cells (MoDCs) with either PRRSV-1 or PRRSV-2 strains, 
the expression of  MHC-Ⅱ decreased[32,34,35] or remained 
unaltered[37]. The expression of  MHC-Ⅱ in BMDCs in-
fected with a PRRSV-2 strain did not show any change in 
its expression[33,36]. Nevertheless, according to Gimeno et 
al[5] in which 4 selected PRRSV-1 strains were used (one 
IL-10+-TNF-α+ strain, one IL-10–-TNF-α+ strain, one 
IL-10+-TNF-α- strain and one IL-10–-TNF-α- strain), 
infected-BMDCs exhibited either an increased expres-
sion of  MHC-Ⅱ or no changes. Three out of  four of  
these strains induced high expression of  SLA-Ⅱ, while 
the IL-10–-TNF-α+-prototype strain did not evidence any 
change. Therefore, the use of  different genotypes on dif-
ferent or the same subpopulation of  APCs leads to dif-
ferent outcomes[5]. 

With regard to the expression of  CD80/86 molecules, 
some authors pointed out a decrease in the expression of  
these molecules on MoDCs[34], while others mentioned 
an increased expression on these cells[35]. With regard 
to BMDCs, a decrease[5], no changes[5] and an increased 
expression of  CD80/86[5,33,36] have been reported. In-
terestingly, in the article published by Peng et al[36], it was 
observed that both, bystander and PRRSV-infected cells, 
showed high expression of  CD80/86 which may be asso-
ciated with the release of  soluble factors by infected cells 
or the engulfment of  infected and/or apoptotic DCs. 
In fact, in the above mention study from Gimeno et al[5], 
the IL-10–-TNF-α- prototype strain leads to the highest 
increase in the expression of  CD80/86 in BMDCs while 
the double positive one, induced a decrease in CD80/86 
compared to mock-infected group. It demonstrates that 
the behaviour of  each strain can vary depending on the 
induced-cytokine profile.

The diminished expression of  MHC-Ⅱ has also been 
linked to a lack of  proliferation of  leucocytes when co-
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cultured with PRRSV-infected DCs, suggesting that 
PRRSV might modulate the immune stimulatory func-
tion of  porcine DCs[35]. Moreover, in most of  the above 
mentioned studies, only one of  the two molecules (either 
MHC-Ⅱ or CD80/86) was increased and both of  them 
are mandatory for the correct activation of  T cells[26,27]. 
These findings highlight the complexity of  the immune 
response against PRRSV, which may be triggering off  
different mechanisms to evade the host immune response 
not only in PRRSV-infected cells but also in bystander 
non-infected cells.

The in vivo expression of  MHC-Ⅱ, as well as, 
CD80/86 on APCs has been poorly studied. In a study 
carried out by our research group, pigs which had been 
infected with a PRRSV-1 strain showed a decrease in the 
number of  macrophages, as well as, the expression of  
MHC-Ⅱ in the tonsil, retropharyngeal and mediastinal 
lymph nodes compared to uninfected pigs[43]. In addition, 
a significant negative correlation was found between the 
expression of  PRRSV antigen and the number of  human 
leucocyte antigen-DR (HLA-DR) positive cells. Studying 
consecutive immunohistochemical sections, we observed 
that most of  PRRSV antigen-positive cells were negative 
for HLA-DR antigen[43], pointing out a downregulation 
of  MHC-Ⅱ in PRRSV infected cells.

PRRSV and cell death 
Not only PRRSV could alter the expression of  molecules 
involved in antigen presentation. Other way to abrupt 
antigen presentation is causing the death of  APCs. Thus, 
concerning this point, several in vitro and in vivo studies 
have been conducted.

Concerning in vitro experiments, some authors ob-
served apoptosis in bystander non-infected cells of  
American Type Culture Collection CRL11171 cell 
line[49] at the same time that other authors perceived co-
localization of  both, apoptotic and PRRSV antigens on 
macrophages and MARC-145 cells[57]. According to these 
authors, PRRSV is first able to provoke an anti-apoptotic 
state on cells suffering viral replication, inducing apopto-
sis later when the replication cycle has taken place. How-
ever, not only death has been observed during PRRSV 
infection, but also necrosis of  MARC-145 cells[58,59].

Regarding MoDCs and BMDCs, cell death after 
PRRSV infection has been poorly studied. Both, apop-
tosis[32,34] and necrosis[32] phenomena have been noticed, 
although no co-localization of  apoptotic or necrotic 
markers with PRRSV antigen were studied.

In vivo studies have evidenced apoptotic cells in 
testis[48], lungs and lymphoid organs of  PRRSV-1 and 
PRRSV-2 infected pigs[49-52]. Although apoptosis has been 
associated with GP5 of  PRRSV in infected cells[47,60], cell 
death has also been reported in non-infected bystander 
cells[49,50,52]. However, no co-localization of  apoptotic 
markers and PRRSV expression has been analysed. This 
approach suggests that besides a direct induction of  
apoptosis by viral particles, an indirect pathway of  apop-
tosis play a role in cell death during PRRSV infection. 

Several attempts have been carried out to relate indirect 
apoptosis of  PRRS to the release of  some apoptogenic 
cytokines, such as, TNF-α[61], IL-1 or IL-10[51]. Nonethe-
less, some of  these associations could not be confirmed 
by in vitro studies with recombinant porcine cytokines[51]. 
Other studies have shown an enhanced expression of  
both Fas and FasLigand in PRRSV-2 infected splenic 
macrophages and in co-cultured splenic and periph-
eral blood lymphocytes[62], highlighting the necessity of  
exploring the role of  different apoptotic mediators in 
PRRSV-induced cell death.	

FUTURE ASPECTS AND ADVICES TO 
HEED IN THIS ISSUE 
The expression of  MHC-Ⅱ and CD80/86 has been 
analysed in different in vitro DC-models. However, these 
studies lack of  the co-localization of  PRRSV and the 
molecule involved in. Moreover, strains with different 
profile of  cytokine release lead to different results. There-
fore, co-localization studies, as well as, cytokine analyses 
should be performed in order to obtain clearer results 
on PRRSV modulation of  the host immune response. 
Key cytokines might be interferon (IFN)-α and IFN-γ, 
because of  their antiviral properties; TNF-α, due to anti-
inflammatory, antiviral and apoptogenic functions; and 
IL-10, because of  its immunomodulatory and apopto-
genic properties. By doing so, it will be clarified if  the 
virus itself, different cytokines, or both of  them are able 
to cause a change in the expression of  these molecules.

As above mentioned, TCR-MHC-Ⅱ and CD28-
CD80/86 signals are mandatory to properly activate T 
cells. Thus, it is necessary to study both molecules in ev-
ery conducted experiment to extrapolate and ensure the 
behaviour of  these molecules. 

A decreased expression of  MHC-Ⅱ, CD80/86 or 
both of  them could result in a failure or, at least, a non-
effective immune response. In an in vitro study carried out 
in our group (data not published), it has been observed 
an enhanced expression of  both molecules, MHC-
Ⅱ and CD80/86, in MoDCs infected with a PRRSV-1 
strain which had previously been tested for inducing a 
strong activation of  the immune response. However, no 
proliferation of  T cells was observed in this study and, 
on the contrary, a high rate of  dead cells was detected. 
Therefore, a new strategy of  the virus could be drawn, 
by which, although the virus induces the expression of  
MHC-Ⅱ and CD80/86 in MoDCs, they result ineffective 
since the virus later on induce their cell death. Thus, the 
use of  cell-death markers should be also included in our 
routine experiments.

The same view should be extrapolated to death path-
ways studies. Moreover, future foresight experiments 
should broaden the spectrum of  APC types and PRRSV 
strains in order to generate a clearer picture of  this disease.
The consideration of  these aspects will improve the 
current knowledge on the pathogenesis and immune re-
sponse against this virus, paving the way for its control.
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Abstract
AIM: To probe the organizational structure of the ad-
sorption apparatus of bacteriophage epsilon 15 (E15) 
using genetic and biochemical methodology

METHODS: Hydroxylamine was used to create non-
sense mutants of bacteriophage E15. The mutants 
were then screened for defects in their adsorption ap-
paratus proteins, initially by measuring the concentra-
tions of free tail spike proteins in lysates of cells that 
had been infected by the phage mutants under non-
permissive growth conditions. Phage strains whose 
infected cell lysates contained above-average levels 
of free tail spike protein under non-permissive growth 
conditions were assumed to contain nonsense muta-
tions in genes coding for adsorption apparatus proteins. 

These mutants were characterized by classical genetic 
mapping methods as well as automated sequencing of 
several of their genes. Finally, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and autoradiography 
were used to examine the protein compositions of the 
radioactive particles produced when the various mu-
tants were grown on a non-permissive host cell in the 
presence of 35S-methionine and co-purified along with 
E15wt phage on CsCl block gradients.

RESULTS: Our results are consistent with gp4 forming 
the portal ring structure of E15. In addition, they show 
that proteins gp15 and gp17 likely comprise the central 
tube portion of the E15 adsorption apparatus, with gp17 
being more distally positioned than gp15 and dependent 
upon both gp15 and gp16 for its attachment. Finally, 
our data indicates that tail spike proteins comprised of 
gp20 can assemble onto nascent virions that contain gp7, 
gp10, gp4 and packaged DNA, but which lack both gp15 
and gp17, thereby forming particles that are of sufficient 
stability to survive CsCl buoyant density centrifugation.

CONCLUSION: The portal ring (gp4) of E15 is bound 
to tail spikes (gp20) and the tail tube (gp15 and gp17); 
gp17’s attachment requires both gp15 and gp16.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Epsilon15; Virion structure; Salmonella 
phages

Core tip: Epsilon 15 (E15) is a temperate, serotype-
converting bacteriophage that specifically infects group 
E1 Salmonellae bacteria. This paper presents genetic 
and biochemical evidence regarding the identities and 
positional relationships of the proteins that comprise 
the tail tube structure of E15. As such, it makes a small 
contribution towards what may someday be a fuller 
understanding, not only of how E15 stabilizes its pack-
aged DNA, but also, how it triggers release of its DNA 
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INTRODUCTION
Salmonella bacteria are enteric organisms that constitute 
a serious source of  gastro-intestinal infection in humans 
and agriculturally important animals[1]. Bacteriophages 
provide an important mechanism of  genetic variation and 
gene exchange among Salmonella bacteria (and thus, the 
potential for enhanced pathogenicity) through their abil-
ity to promote lateral transfer of  host cell genes. Under-
standing the structural features of  phage DNA packaging 
and adsorption/DNA ejection apparati is an important 
step in being able to fully assess how phage contribute to 
genetic variation within their Salmonella hosts. 

Bacteriophage epsilon15 (E15) is a temperate, Group 
E1 Salmonella-specific phage that belongs to the Order 
“Caudovirales” and the Family “Podoviridae”[2]. At the 
genomic level[3], it closest relatives are the Salmonella-
specific viruses, SPN1S (NCBI Accession number 
JN391180.1) and SPN9TCW (NCBI Accession number 
JQ691610.1) but it also shares 36 related genes in com-
mon with the E. coli O1H57-specific phage, φV10 (NCBI 
Accession number DQ126339.2). E15 was among the 
first Salmonella-specific phages to be discovered and 
was a popular experimental model for Japanese and US 
investigators in the 50’s, 60’s and 70’s, both because of  its 
ability to cause serotype conversion and because of  its 
enzymatically active tail spikes, which display endorham-
nosidase activity towards the host cell O-polysaccharide 
structure[4-9]. The publication of  the E15 genome se-
quence by our laboratory in 2002 (NCBI Accession num-
ber AY150271.1) stimulated renewed interest in E15, this 
time as a model system for investigating virion structure 
by cryo-electron microscopy (cryo-EM), matrix-assisted 
laser desorption ionization-time of  flight (MALDI-TOF) 
mass spectrometry and other methods[3,10-14]. These stud-
ies, combined with earlier genetic and biochemical inves-
tigations[6], have revealed the following: (1) gp7 and gp10 
together comprise the capsid of  E15; (2) E15’s enzymati-
cally active tail spikes are homotrimers of  gp20; and (3) 
other major proteins in E15 virions include gp4, gp15 
and gp17. Circumstantial evidence, including size, relative 
abundance within virion particles and the position of  its 
gene just downstream of  those coding for the small and 
large terminase subunits in the late transcript are all con-
sistent with gp4 being the portal protein of  E15[3]. 

In addition to being a powerful tool for elucidating 

virion capsid structures, cryo-EM can also be used ef-
fectively to decipher the structure of  a phage adsorption 
apparatus, especially if  the adsorption apparatus can be 
detached intact from the virion capsid and prepared in pu-
rified form.  Such was the case for the Group B Salmonel-
la-specific phage, P22, and the resulting structure that was 
determined by cryo-EM analysis of  these P22 adsorption 
apparati (termed “tail machines”) is, in a word, spectacu-
lar[15,16]. To date, no one has reported having successfully 
purified the intact adsorption apparatus of  phage E15.

In this paper, we present genetic and biochemical data 
that is consistent with gp4 forming the portal ring struc-
ture of  E15; in addition, our data indicates that the cen-
trally-positioned tail tube portion of  the adsorption ap-
paratus is likely comprised of  gp15 and gp17, with gp17 
being more distally positioned than gp15 and dependent 
upon both gp15and gp16 for its attachment. Finally, our 
data indicates that tail spike proteins comprised of  gp20 
can form stable associations with nascent virus particles 
that contain gp7, gp10, gp4 and packaged dsDNA, but 
which lack both gp15 and gp17. This implies that tail 
spikes bind directly to the portal ring during the assembly 
process that leads to the formation of  mature virions.

MATERIALS AND METHODS
Phage and bacterial strains 
Parental phages E15 and E15vir (a clear plaque mutant 
with a missense mutation in gp38, the major repressor 
protein) as well as bacterial host strains Salmonella enterica 
subsp. enterica serovar Anatum A1 and Salmonella enterica 
subsp. enterica serovar Anatum 37A2Su+ all came originally 
from the laboratory of  Dr. Andrew Wright (Tufts Uni-
versity, Boston, MA). E15 (am2) is a nonsense mutant of  
E15 that is unable to produce tail spike proteins[6]. Propa-
gation of  bacteria and phage was in trypticase soy broth, 
unless otherwise indicated.

Isolation of  phage nonsense mutants with adsorp-
tion apparatus defects
Nonsense mutants of  E15vir were generated by hydrox-
ylamine mutagenesis[17] and were detected initially by an 
anaerobic, double layer plating method that dramatically 
increases plaque size[18]. Hydroxylamine-treated phage 
were mixed with an amber suppressor strain (Salmonella 
anatum 37A2Su+) in the bottom LB soft agar layer, then 
overlaid with a second soft agar layer containing the non-
suppressing parental strain Salmonella anatum A1. Turbid-
looking plaques were cloned and re-screened to verify 
their inability to form plaques on Salmonella anatum A1. 

Phage nonsense mutants isolated by the method de-
scribed above were subsequently screened individually for 
potential defects in adsorption apparatus proteins other 
than the tail spike by measuring the level of  free tail spike 
protein in lysates of  non-permissively infected cells. The 
tail spike assay was based on a method developed earlier 
in an investigation involving phage P22 tailspikes[19]; It in-
volved UV-irradiating 10000RPM (10K) supernatant frac-
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tions obtained from lysates of  Salmonella anatum A1 cells 
infected by E15vir nonsense mutants, then incubating the 
irradiated 10K supernatants with E15 “heads” obtained 
by infecting Salmonella anatum A1 with E15 (am2), an E15 
nonsense mutant that is unable to produce tail spike pro-
tein. Following incubation, reaction mixes were plated at 
varying dilutions on the permissive host strain, Salmonella 
anatum 37A2Su+, in order to titer the number of  E15 
(am2) “heads” that were made infectious by the binding 
of  tail spike proteins in vitro. 

Genetic mapping and sequencing of  Epsilon15 non-
sense mutations: E15vir nonsense mutants isolated and 
screened as described above were characterized (along 
with the known tailspike nonsense mutant, am2) using 
classical in vivo complementation and two-factor recom-
bination assay procedures that have been previously 
described[6]. These genetic mapping studies revealed the 
number of  complementation groups (i.e., genes) defined 
by the nonsense mutants and also allowed for an approxi-
mation of  their locations relative to the E15 tail spike 
gene. Shortly after the mapping of  the nonsense muta-
tions using classical methods, the genomic sequence of  
E15 was completed by our lab. Gene 20 was then shown 
by sequencing analysis to contain the am2 nonsense 
mutation (i.e., gp20 is the tailspike protein) and in addi-
tion, was observed to be the distal-most gene in the late 
mRNA transcript of  E15[3]. 

Each E15vir mutant believed to be defective in an 
adsorption apparatus protein was subjected to DNA 
sequence analyses for genes 15, 16 and 17, in an effort 
to assign a gene identity for its nonsense mutation. The 
bracketing, Frwrd and Rvrse primer pairs used for initial 
PCR amplification of  the three genes are shown below, 
with underlined bases representing modifications made 
in order to facilitate cloning of  the PCR products into 
plasmids. Gene 15: E15.Orf15.Frwrd, AGGGATC-
CAAATGCCAGTTGTACCTACAG, E15.Orf15.Rvrse, 
ATACATAAGCTTTTATTCAACCCTCACG; Gene 
16: E15.Orf16.Frwrd, TGGATCCATGGCTGATG-
TATTTTCACT, E15.Orf16.Rvrse, ACACATGCCTG-
CAGCATTATGGATTCCT; Gene 17: E15.Orf17.Frwrd, 
GAGGGATCCATAATGAAACAGGCATGTGT, E15.
Orf17.Rvrse, GTTAAGGGTACCATCATTGTCCTA.

Because of  their large sizes (ranging from 1928 
to 2782 basepairs), the resulting PCR products were 
sequenced not only with the same Frwrd and Rvrse 
primers that had been used to produce them, but also 
with several additional primers known to bind inter-
nally within each PCR product. The internal sequencing 
primers were as follows: Gene 15: E15.g15.W12689:  
GGCGCTGCTCATGGCTGGAGTCATGAACAG, 
E15.g15.W13264: CGCGGCTATCGGTCTTTCT-
CAGTTACCTAC, E15g15.W13879: GGAGGCG-
GCTGCGCTGTCTGAACAGGTAC; Gene 16: E15.
g16.W15213: CGGCAGGCATGGCCCTTCCTGCT-
GCTGTTG, E15.g16:W15689 :TAGCGAACAGC-
CAGCGCATCCTGGATAAC; Gene 17: E15.g17.

W17092 :  GCGGCAAAGTCTGCACAGTTCCA-
GATCCTG, E15.g17.W17717: GACCTGACGCTGC-
GCGAAACTTTTCCCTTG, E15.g17.W18214: GCG-
GCGTTCGGGCTGTTGATGTACAAAAAC.

Taq polymerase is somewhat error-prone[20], so in or-
der to generate PCR products suitable for accurate DNA 
sequencing, PCR reaction mixes were prepared on a large 
scale (250 μL), then separated into five 50 μL aliquots 
prior to commencing the thermocycling reaction. Upon 
completion of  PCR, the five aliquots were recombined 
into a single 250 μL sample and the DNA product was 
purified using a QIAGEN PCR purification column. Au-
tomated DNA sequencing reactions were performed by 
the Microchemical Core Facility at San Diego State Uni-
versity. 

Preparation and analysis of  35S-methionine labeled, 
virion-like particles produced by phage nonsense 
mutants under non-permissive conditions: Prepara-
tions of  35S-methionine labeled, wild type E15vir phage 
particles and non-infectious, virion-like particles pro-
duced by the nonsense mutants were obtained by incu-
bating mid-log phase Salmonella anatum A1 cells grown 
in low sulfate medium with phage (multiplicity of  in-
fection of  10) for ten minutes at 0 °C, then adding 35S-
methionine to a final concentration of  10 uCi/mL and 
shifting the incubation temperature to 37 ℃. At T = 90 
min, cell cultures were lysed with chloroform, then cen-
trifuged for 10 min at 10000 RPM in order to remove 
cellular debris. The resulting 10K supernatant fractions 
were loaded onto CsCl block gradients and centrifuged 
for 30 min at 38000 RPM on a Beckman L8-80M ultra-
centrifuge (an excess of  cold E15wt phage was included 
in each sample as a carrier). Particles displaying virion-
like densities (i.e., the ability to pass readily through a 
1.375 g/cm3 CsCl layer and settle onto a 1.6 g/cm3 CsCl 
layer along with non-radioactive E15wt carrier phage) 
were dialyzed, normalized for cpm and electrophoresed 
on 12% sodium dodecyl sulfate-protective antigen 
(SDS-PA) gels. The gels were subsequently dried on 
Whatman 3M paper and the paper was exposed to Ko-
dak X-Omat X-ray film in order to detect radioactive 
proteins by autoradiography. 

RESULTS
Isolation and mapping of E15 nonsense mutants with 
adsorption apparatus defects
We reasoned that cell lysates produced by infection of  
Salmonella anatum A1 with E15vir phage containing non-
sense mutations in genes coding for adsorption apparatus 
proteins other than the tail spike should contain higher 
than normal levels of  free tail spike protein. Cell lysates 
produced by infection with different E15 nonsense mu-
tants were therefore screened for their ability to provide 
tail spike proteins to E15 (am2) “heads” in vitro, thereby 
rendering the heads infectious. Six E15vir nonsense mu-
tants whose lysates had tail spike levels surpassing that 
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amine-induced C > T transition (either CAG > TAG, or 
TGG > TAG). 

Yields and polypeptide compositions of E15 nonsense 
mutants with adsorption apparatus defects
MALDI-TOF mass spectrometry analyses of  trypsin-
digestion products obtained from purified E15 virion 
proteins[10] indicate that after the tail spike protein, gp20 
(1070 amino acids, 115676 daltons), the next two larg-
est proteins contained in E15 virions are gp17 (918 
amino acids, 100841 daltons) and gp15 (842 amino 
acids, 91012 daltons). When 35S-methionine-labeled par-
ticles produced by the various nonsense mutants under 
non-permissive conditions were co-purified with non-
radioactive, “carrier” E15wt phage on CsCl block gradi-
ents, then analyzed by SDS-PAGE and autoradiography, 
it was observed that the two gene 16 mutants (PCM1 
and BW4) and the gene 17 mutant (LH21) all produced 
good yields of  radioactive particles relative to E15wt 
(118%, 154% and 100%, respectively, with a mean of  
124 ± 28% SD) and that these particles all lacked gp17 
(Figure 2, Lanes 4, 5 and 9). The three gene 15 mutants 
(am32, BW2 and BW5) all produced lower quantities of  
radioactive particles than E15wt (17%, 23% and 44%, 
respectively, with a mean of  28 ± 14% SD). The am32 
and BW2 mutants, whose nonsense mutations mapped 
at codons 101 and 127, respectively, of  gene 15 (845 
codons), produced particles that lacked both gp15 and 
gp17 (Figure 2, Lane 2). Mutant BW5, whose nonsense 
mutation maps at codon 817 of  gene 15, produced par-
ticles lacking gp17 but containing a novel protein with a 
slightly faster mobility than that of  gp15; a protein most 

of  an E15vir lysate were identified, then further analyzed 
using classical genetic mapping methods. The six mutants 
were shown to define three complementation groups (i.e., 
genes), which mapped in close proximity to each other 
as well as to the tail spike gene, defined by nonsense 
mutation am2 (Figure 1A). After confirming by DNA 
sequencing that the am2 mutation lay within gene 20 (the 
last gene in E15’s “late” mRNA transcript), PCR prim-
ers were used to amplify and sequence three genes for 
each of  the six mutants; namely 15, 16 and 17. Genes 15 
and 17 were chosen for sequence analysis because the pI 
values, overall sizes, and tryptic digestion fragment sizes 
of  their inferred polypeptide products closely matched 
those of  E15 virion proteins shown by SDS-PA/auto-
radiography to be missing in virion-like particles formed 
by the various nonsense mutants under non-permissive 
conditions[3]. Gene 16 was included for sequence analysis 
as well because the genetic mapping data showed that 
the collection of  six nonsense mutations with potential 
adsorption apparatus defects defined three different 
genes. Other neighboring genes (i.e., 13, 14, 18 and 19) all 
coded for inferred proteins that were either very small or 
strongly hydrophobic, and were therefore not included in 
the sequencing analysis.

The DNA sequencing data (Figure 1B) revealed the 
presence of  unique amber nonsense mutations in gene 15 
for the three non-complementing phage mutants am32, 
BW2 and BW5. Non-complementing mutants pericent-
riolar material 1 (PCM1) and BW4 both contained unique 
amber nonsense mutations in gene 16, while mutant 
luteinizing hormone 21 (LH21), which the classical map-
ping data showed to be in a complementation group of  
its own, was found to contain a unique amber nonsense 
mutation in gene 17. The positions of  the nonsense mu-
tations determined by DNA sequencing correlated nicely 
with the linear map order that had been established for 
them previously by recombination analysis. In every case, 
the nonsense mutation had resulted from a hydroxyl-
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Figure 1  Genetic mapping and sequencing data showing positions of 
nonsense mutations that affect the protein composition of the epsilon 
15 adsorption apparatus. A: Two-factor recombination values for nonsense 
mutations falling within in vivo complementation groups I through IV; B: Gene 
sequencing data. PCM1: Pericentriolar material 1; LH: Luteinizing hormone.
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Figure 2  Autoradiogram showing compositions of non-infectious epsilon 
15Vir particles. Lanes 1, 3 and 6, E15vir; Lane 2, gene 15 mutant am32 (BW2 is 
not shown but gives an identical pattern); Lanes 4 and 5, gene 16 mutants peri-
centriolar material 1 and BW4; Lane 7, partially suppressed am2 (gp20-) particles; 
Lane 8, gene 15 mutant BW5; Lane 9, gene 17 mutant luteinizing hormone21. 
molecular weight markers are depicted to the right.
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likely comprised of  amino acids 1 through 816 of  gp15 
(Figure 2, Lane 8). The quantity of  the slightly truncated 
gp15 protein in BW5 particles is reduced, relative to the 
quantity of  gp15 observed in E15vir and the various 
gp17-deficient mutants (see Lane 9, for example), thus 
indicating that its ability to assemble onto nascent virion 
particles has been diminished by the loss of  29 C-ter-
minal amino acids, but not entirely eliminated. The 10K 
supernatant fractions obtained from cells infected by the 
three gene 15 mutants (am32, BW2 and BW5) were also 
analyzed by SDS-PAGE and autoradiography. All three 
supernatants contained a protein that co-migrated with 
the gp17 protein of  E15wt (data not shown).

The two gene 16 nonsense mutants analyzed in this 
study (PCM1 and BW4) both produced good yields (118% 
and 154%, respectively, relative to wt E15) of  non-infec-
tious, virion-like particles that are missing gp17 (Figure 
2, Lanes 4 and 5). As was the case for the three gene 15 
mutants, a protein with gp17-like mobility was present in 
the 10K supernatant fractions of  cells infected by PCM1 
and BW4 (data not shown). 

Every nonsense mutant that was studied produced ra-
dioactive particles that contained DNA, as judged by their 
ability to co-sediment with E15wt virions through CsCl at 
1.375 g/mL and layer onto the 1.6 g/mL solution. In ad-
dition, all of  the mutants, whether gp17-deficient or both 
gp15- and gp17-deficient, displayed normal quantities of  
the two known capsid proteins, gp7 and gp10, as well as 
gp4. Yields of  the radioactive particles that lacked both 
gp15 and gp17 were significantly lower than those of  
particles that lacked gp17 only, suggesting that maximum 
stability of  packaged DNA is achieved when both gp4 
and gp15 are present. All of  the mutant phage particles 
contained sufficient gp20 tail spike protein for easy detec-
tion by autoradiography (see lanes 2, 4, 5, 8, 9 of  Figure 2).

DISCUSSION
The complete absence of  both gp15 and gp17 in high-
density particles produced by mutants am32 and BW2, 
whose nonsense mutations both map near the beginning 
of  gene 15, combined with the gp17-only deficiency 
observed in high density particles produced by the gene 
17 nonsense mutant (LH21), argues for a model in 
which gp15 and gp17 occupy penultimate and terminal 
positions, respectively, within a peripheral E15 virion 
structure that we hypothesize is the tail tube. The miss-
ing 29 amino acids at the C-terminal end of  the gp15-
like protein that is produced by BW5 phage under non-
permissive conditions must be critical for gp17 binding 
since no gp17 protein was detected in these particles. 

We currently do not know why gp16 is required for 
gp17’s assembly onto nascent virions. The gp16 protein 
is inferred to have 634 amino acids and our two gene 16 
nonsense mutations, PCM1 and BW4, are positioned at 
codons 14 and 484, respectively. The predicted mass for 
gp16 is 67364 daltons and its inferred overall methionine 
content (2.4%) falls within the range of  methionine con-

tents inferred for the other known virion proteins (from 
as low as 1.3% for gp20 to as high as 5.2% for gp4). In 
other words, if  gp16 is present in E15 virions in appre-
ciable quantities, then it should contain sufficient 35S-me-
thionine to show up in our autoradiogram. Faint protein 
bands were observed above the 78 kDa marker and above 
and below the 55 kDa marker on the gel (Figure 2), but 
none of  these three proteins appeared to be diminished in 
quantity in the gene 16 mutants, relative to the other mu-
tants or to E15vir. It is conceivable that gp16 is a virion 
protein that was not detected in our experiment because it 
co-migrated with gp4 protein (the inferred mass for gp4 
is 61657 daltons). If  that is true, though, one can argue 
that the quantity of  gp16 in virions must be quite small, 
since the intensities of  the gp4 bands in the two gene 16 
mutants do not appear to be diminished, relative to those 
of  E15vir and the other nonsense mutants that were ana-
lyzed. It should be noted that both our lab and at least 
one other have detected gp16 tryptic fragments in puri-
fied E15 virions using MALDI-TOF analysis[10]; the other 
lab has more recently hypothesized that gp16 is a tail tube 
protein[21]. While the data in this paper does not support 
that hypothesis, we remain open to the possibility and 
are continuing to explore the role played by gp16 in E15 
virion assembly. It has also been hypothesized that gp17 
functions as a pilot (or ejection) protein for E15[21]; this 
seems highly unlikely since ejection proteins, as the name 
implies, exit the capsid along with the DNA during the 
infection process[22,23]. Our results clearly show that E15 
particles lacking gp17 retain stably packaged DNA within 
their capsids, as evidenced by their ability to co-purify in 
high yields with E15wt carrier phage on CsCl block gra-
dients; furthermore, the same holds true, albeit to a lesser 
degree, for particles that are lacking both gp15 and gp17.  

Frankly, we were surprised that tail spikes were pres-
ent in all of  the particles produced by our nonsense 
mutants. The initial screening procedure used to identify 
nonsense mutants for this study was based on the as-
sumption that mutations resulting in adsorption appara-
tus defects would hinder tail spike assembly onto the viri-
on, thereby resulting in higher than normal levels of  free 
tail spike protein in the infected cell lysates, as well as the 
production of  phage particles lacking tail spike proteins. 
Our current explanation is that gp4 forms the portal 
ring structure and perhaps, with help from immediately 
adjacent capsid proteins, provides a significant part of  
the binding surface(s) to which gp20 tail spikes normally 
attach during virion assembly. Interestingly, in their first 
cryo-EM paper dealing with E15, Jiang et al[10] reported 
that two of  E15’s six tail spikes occupy positions around 
the tail tube that place them in very close contact with the 
capsid. If  these two tailspikes are more firmly bound in 
gp17- and gp15-/gp17-deficient particles than the other 
four, then that might explain both the presence of  gp20 
in the mutant particles as well as the enhanced levels of  
tail spike protein in their infected cell lysates.  

Figure 3 sums up our current model for the struc-
ture of  the E15 adsorption apparatus: (1) gp4 forms the 
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portal ring structure and perhaps, with help from neigh-
boring capsid proteins, provides a binding surface that is 
sufficient for attachment of  tail spikes (gp20); (2) gp15 
and gp17 form the central tail tube, with gp17 occupying 
the more distal position and interacting with gp15 by 4o 

interactions that cannot occur if  the C-terminal 29 amino 
acids of  gp15 are missing. The association of  gp17 with 
gp15 is also gp16-dependent but we do not know yet 
whether or not gp16 forms part of  the tail tube. We are 
currently continuing our study of  E15 adsorption ap-
paratus structure and function by conducting phenotypic 
suppression experiments with an E15 mutant in our col-
lection that under non-permissive conditions, adsorbs to 
cells and degrades O-polysaccharide normally, but fails to 
eject its DNA[6].

The best understood Salmonella-specific phage in the 
Podoviridae family is P22 and recent X-ray crystallogra-
phy and cryo-EM studies have revealed features of  the 
proteins that comprise its capsid, portal, tail tube, needle 
and tail spikes in exquisite detail[15,16,24,25]. The dodecam-
eric, ring-shaped portal structure of  P22 is comprised of  
gp1; below the portal ring is the tail tube, comprised of  
twelve copies of  gp4 (bound directly to the portal) and six 
copies of  gp10, which are bound to gp4. Attached to the 
distal portion of  gp10 is P22’s “needle” structure, which 
is comprised of  three copies of  gp26. The six laterally-po-
sitioned, homo-trimeric tail spikes of  P22 are comprised 
of  gp9 and are thought to be associated with a binding 
surface generated cooperatively by proteins gp4 and gp10 
at their point of  junction on the sides of  the tail tube[15]. 

Gene homology studies indicate that of  the three 
Podoviridae phages known to infect Group E Salmonel-
lae, namely E15, Epsilon34 (E34) and g341, two (E34 
and g341) likely have adsorption apparatus protein com-
positions and organizations that are similar to that of  
P22[26,27]. Phage E15, on the other hand, has clearly taken 
a different path; Its tail spike protein is gp20, which at 
1070 amino acids (aa) is about 63% larger, on average, 

than those of  E34 (606 aa), g341 (705 aa) and P22 (667 
aa) and is homologous with them only in a short stretch 
of  amino acids at the N-terminal end that are thought to 
be critical for assembly onto the virion. Although they 
appear to occupy similar positions in the tail tube, there 
is no apparent structural homology between the proximal 
tail tube proteins of  E15 and P22 (gp15 and gp4, respec-
tively) or between their distal tail tube proteins (gp17 and 
gp10, respectively). There are stoichiometric similarities, 
though, in that densitometry measurements of  Coomass-
ie Blue-stained proteins of  wild type E15 virions, fol-
lowed by normalization for size differences, indicate that 
tail spikes (gp20), proximal tail tube proteins (gp15) and 
distal tail tube proteins (gp17) are present in E15 virions 
at approximately a 3/2/1 ratio, which matches the well-
established 18/12/6 ratios of  tail spike (gp9), proximal 
tail tube (gp4) and distal tail tube (gp10) proteins known 
to be present in P22 virions. No homolog of  the P22 
“needle” protein (gp26) is present among inferred bacte-
riophage E15 proteins, but that is not surprising since the 
tail tubes of  negatively-stained E15 virions do not display 
the “needle-like” protuberance that is seen in electron 
micrographs of  P22[6]. The “needle” is thought to play 
a role in the movement of  the P22’s genome across the 
bacterial cell envelope during an infection[28]. How E15 
compensates for its lack of  a “needle” protein remains to 
be determined. 
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on Human Health that approximately 1.4 million Americans are infected annu-
ally with foodborne strains of Salmonellae bacteria. He further stated that the 
incidence of antibiotic resistance among isolates of Salmonella strains obtained 
in hospitals, stock animals and the food supply were all on the rise. Generalized 
transduction by bacteriophages is a major method for the horizontal transfer 
of genes between Salmonella organisms and thus, likely plays a role in their 
evolving pathogenicity.
Research frontiers 
The ability of a bacteriophage to infect a bacterium is governed by the nature 
of its adsorption apparatus. The adsorption apparatus is a collection of pro-
teins that cooperate together to maintain the stability of the phage’s packaged 
genome until the moment when a susceptible host cell is encountered. At that 
point, the same sets of proteins interact with each other in an entirely different 
manner to trigger ejection of the phage genome and facilitation of its transport 
into the host cell cytoplasm.
Innovations and breakthroughs 
Recent cryo-electron microscopy studies on virions of the Group E1 Salmo-
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(gp4; 12 copies)

Tail spike (gp20; 
six tail spikes, each 
containing 3 copies  

of gp20)

Distal tail tube protein 
(gp17;  6 copies….gp16 

possibly present as well?)

Proximal tail tube 
protein (gp15; 12 

copies?)

Figure 3  Schematic model for protein positions and interactions within 
the adsorption apparatus of bacteriophage Epsilon 15. The estimates of 12 
and 6 copies for gp15 and gp17, respectively, are based upon stoichiometric 
measurements made relative to the numbers of capsid and tail spike proteins 
present in epsilon 15[13]; tail spike attachment to portal protein may be further 
stabilized by interactions with gp15 and/or capsid proteins.
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nella-specific bacteriophage, epsilon 15 (E15) have yielded highly detailed 
information on the composition and structure of the phage’s capsid. Those 
same investigators have also produced the first close-up view of the adsorption 
apparatus of E15. This paper presents data regarding the identities of the pro-
teins that comprise E15’s adsorption apparatus; in addition, the data presented 
herein provides some insight into the ways these proteins interact with each 
other in order to form the adsorption apparatus.
Applications
Compared with other salmonellae-specific members of the podoviridae fam-
ily, bacteriophage E15 appears to be unique when it comes to the collection 
of proteins that comprise its adsorption apparatus. Perhaps, in addition to the 
uniqueness of their physical characteristics, the manner in which these proteins 
interact with each other to control the stability of packaged DNA as well as its 
release in response to the proper environmental cue will also prove to be novel, 
and thus, worthy of further study. 
Terminology 
Adsorption apparatus pertains to those proteins that are stably associated with 
the mature virion, either through direct binding interactions with the portal ring 
or else, by virtue of their association with other proteins that are bound to the 
portal ring. 
Peer review
The authors used genetic and biochemical methods to examine compositional 
and organizational aspects of the adsorption apparatus of bacteriophage E15. 
Although preliminary, the results are sufficient for establishing a simple model 
that should be possible to refine with further experimentation.
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Abstract
AIM: To investigate the genetic constitution of an es-
cape mutant H5N1 strain and to screen the presence of 
possible amino acid signatures that could differentiate 
it from other Egyptian H5N1 strains.

METHODS: Phylogenetic, evolutionary patterns and 
amino acid signatures of the genes of an escape mu-
tant H5N1 influenza A virus isolated in Egypt on 2009 
were analyzed using direct sequencing and multi-
sequence alignments.

RESULTS: All the genes of the escape mutant H5N1 
strain showed a genetic pattern potentially related to 
Eurasian lineages. Evolution of phylogenetic trees of 
different viral genes revealed the absence of reassort-
ment in the escape mutant strain while confirming close 
relatedness to other H5N1 Egyptian strains from human 
and avian species. A variety of amino acid substitutions 
were recorded in different proteins compared to the 
available Egyptian H5N1 strains. The strain displayed 
amino acid substitutions in different viral alleles similar 
to other Egyptian H5N1 strains without showing amino 
acid signatures that could differentiate the escape mu-
tant from other Egyptian H5N1.

CONCLUSION: the genetic characteristics of avian 
H5N1 in Egypt revealed evidence of a high possibility 
of inter-species transmission. No amino acid signatures 
were found to differentiate the escape mutant H5N1 
strain from other Egyptian H5N1 strains. 

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Chicken; genotyping; H5N1; Influenza; vi-
rus evolution

Core tip: The evolution of phylogenetic trees of differ-
ent viral genes revealed the absence of reassortment in 
the examined escape mutant H5N1 strain; however, a 
variety of amino acid substitutions were recorded. The 
displayed amino acids substitutions in different viral al-
leles denoted considerable possibility of inter-species 
transmission, virulence to mammalian species and cy-
tokine resistance.

Hassanin KMA, Abdel-Moneim AS. Evolution of an avian 
H5N1 influenza A virus escape mutant. World J Virol 2013; 
2(4): 160-169  Available from: URL: http://www.wjgnet.
com/2220-3249/full/v2/i4/160.htm  DOI: http://dx.doi.
org/10.5501/wjv.v2.i4.160

INTRODUCTION
The influenza A viruses belong to the Family Ortho-
myxoviridae. The hemagglutinin (HA) and neuraminidase 
(NA) genes encode viral envelope proteins and there are 
17 HA and 10 NA subtypes[1]. Other influenza genes in-
clude PB2, PB1, PA, NS, M and NP that encode for viral 
internal proteins, are required for viral replication and as-
sembly[2] and play an important role in viral infectivity[3]. 
Reassortments between different influenza A subtypes 
H9N2 and H5N1 or H7N3 have been detected[4,5]. In-
terspecies transmission can lead to catastrophic conse-
quences. Egyptian H5N1 viruses are classified as clade 
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2.2.1, which is further subdivided into two groups: A 
(A1-A5) and B (B1-B2)[6]. The economic consequences, 
in addition to the zoonotic implications, of  highly patho-
genic avian influenza virus H5N1 continue to constitute 
an important problem. According to the recent report of  
the World Health Organization in June 2013, 628 H5N1 
infected cases with 374 fatal consequences were record-
ed. Egypt is among the countries that contain a very high 
number of  the infected human cases (172) with a total of  
62 fatal cases[7]. Endemic situations of  H5N1 in Egypt 
is still an unsolved problem[8]. In Egypt, vaccination of  
poultry with inactivated vaccine preparations is currently 
adopted to combat H5N1; however, vaccination of  
household poultry was suspended in mid 2009 due to the 
limited impact on H5N1 incidence[8]. In turn, so-called 
“escape mutants” resulting from antigenic drift of  the 
viruses are selected[9,10]. Escape mutants are known to be 
less liable to neutralizing antibodies induced by vaccines. 
Influenza viruses showed a considerable capacity to cross 
species barriers and to infect and be transmitted among 
susceptible mammals, including humans. Point muta-
tions and allelic combinations possess a crucial effect on 
the virulence of  HPAI H5N1 isolates and are thought 
to be polygenic[11,12]. Genetic reassortments among avian 
influenza viruses are commonly detected in wild bird 
and poultry isolates[13,14]. The possibility that an avian in-
fluenza virus, H5N1, can evolve to human-to-human or 
mammal-to-mammal transmission through the acquisi-
tion of  genetic material from the other influenza viruses 
subtypes already circulating in human or mammals is not 
weak. The currently studied strain is an escape mutant 
strain that belongs to 2.2.1, B2 sublineage[10]. The current 
study aimed to investigate the genetic constitution of  the 
escape mutant strain and compare it with other influenza 
strains. It also aimed to screen the presence of  possible 
amino acid signatures that could differentiate the escape 
mutant from other Egyptian H5N1.

MATERIALS AND METHODS
Viral RNA extraction and RT PCR 
Viral RNA was extracted from the infective allantoic 

fluid of  A/chicken/Egypt/F10/2009 using a spin col-
umn purification kit (Koma Biotech. Inc., South Korea). 
Amplification of  viral genes was performed with gene-
specific primers for PB2, PB1, PA, NP, NA, M and NS 
(Table 1) using a Koma one step RT PCR kit (Koma 
Biotech. Inc., South Korea). Following electrophoresis in 
a 1.5% agarose gel, bands of  expected sizes were excised 
and purified using a QIAquick gel extraction kit (Qiagen, 
Germany). Purified amplicons were sequenced in both 
forward and reverse directions (Macrogen, South Korea). 
Sequences from different genes were routinely assembled 
and processed. Sequence data of  the current study were 
submitted to the GenBank after removal of  trimming 
primer-linker (Accession No. KC815941-KC815947).

Genetic and phylogenetic analysis 
Sequence analysis of  the viral genes was conducted using 
Mega 4.1 as previously described[15]. Sequence alignments 
of  each of  the seven genomic segments were conducted 
using the partial coding regions. Phylogenetic analyses 
of  the A/chicken/Egypt/F10/2009 strain in the current 
study were conducted with other influenza A viruses to 
screen the possible reassortant allele. All gene sequence 
data were collected from the National Center for Bio-
technology Information flu database. The neighbor-
joining method with Kimura two-parameter distances 
was used for building the phylogenetic trees using the 
Mega 4.1[15]. The consistency of  the internal branches 
was evaluated by the p-distance substitution model and 
1000 bootstrap replications. The influenza A virus geno-
type tool at http://www.flugenome.org/genotyping.
php[16] was used to determine individual genome segment 
lineages. A number of  human, non-human mammalian 
and avian viruses were included in the evolutionary trees 
of  PB2, PB1, PA, NP, NA, M and NS genes with se-
lected sequences from different influenza serotypes in the 
GenBank to investigate relatedness and possible genetic 
reassortment.

Deduced amino acid sequence analysis
The multisequence alignment tool available in the flu 
database was used to compare the deduced amino acid 
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  Locus Name         Primer sequence Length Amplicon size (bp) Location Ref.

  N1 N1-F ATGAATCCAAATCAGAAG 18 1350 21-38 [38]
N1-R TGTCAATGGTGAATGGCAAC 20 1346-1365

  PB2 B2-F GAGGCGATCTGAATTTCG 18   986 1256–1273 [39]
B2-R TATGCTAGAGTCCCGTTTCC 20 2222–2241

  PB1 B1F AGCGAGGAGTATCTGTGAGA 20   601 774–793 [40]
B1R TTCCCTCATGATTCGGTGCA 20 1356–1375

  PA PA-F ATGAAGAGAGCAGGGCAAGA 20   868 491-510 This study
PA-R CAATGGGATACTTCCGCTGT 20 1339-1358

  NP NP-F TGCTTGCCTGCTTGTGTGTA 20   665 823-842 [39]
NP-R TACTCCTCTGCATTGTCTCCGA 22 1466-1487

  M M-F CCCTCAAAGCCGAAATCGCGCA 22   875 56-77 [40]
M-R TGCTGTTCCTGCCGATACTCTTCCC 25 906-930

  NS NS-F CACTGTGTCAAGCTTTCAGG 20   798 23-42 [39]
NS-R TCTCTTGCTCCACTTCAAGC 20 786-805

Table 1  Oligonucleotides used for amplification of the H5N1 genes 



sequences of  the seven genes of  the A/chicken/Egypt/
F10/2009 strain with other H5N1 strains from the 
Egyptian H5N1 isolates available in the flu database in 
order to screen amino acid signature and mutation trend 
change. Amino acid residues that have associated with 

mammalian virulence were also screened.

RESULTS
A/chicken/Egypt/F10/2009 in the current study is re-
lated to B2 sublineage. Eight amino acid substitutions 
were found in the F10 strain at the amino acid positions 
P74S, D 97N, H110R, S123P, R140G, F144Y, N165H 
and A184E. The different alleles of  the F10 isolate were 
located within subtrees of  the majority of  the Egyptian 
strains (Figure 1). The influenza genotyping web tool 
revealed that the alleles of  the F10, PB2, PB1, PA, NP, 
NA, M and NS alleles, are related to K, G, D, F, 1J, F 
and 1E genotypes respectively. Analysis of  the NA gene 
revealed the presence of  the 20-amino acid deletion (data 
not shown) and the presence of  amino acid arginine (R) 
at position 110. The 228 (N to S) substitution is also 
present in the F10. The six internal genes (PB2, PB1, PA, 
NP, M and NS) of  A/chicken/Egypt/F10/2009 showed 
avian like amino acid signatures (Table 2). The polymor-
phic amino acid residues in different protein sequences 
of  the Egyptian human and avian strains in comparison 
to the current escape mutant strain were screened and the 
residues were classified as virulent or nonvirulent (Table 
3). Five virulent residues were detected in the avian 
H5N1 strains in PB2 (K627), M2 (S64, P69) and NS1 (S42, 
E92/97); however, F10 showed only 4 virulent residues 
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  Gene Residue  Avian1 Human Egyptian H5N1 A/CK/Egypt/F10/2009

  PB2 475 L214M1 M839L3        L52M2 L
588 A203/T6/V6 I835/V3/A2        A53/T1 A
613 V212/A3 T816/I16/A8/V1        V54 V
627 E196/K19 K838/R2/E1        K48/E6 K
674 A204/S6/T2/G2/E1 T836/A2/I2/P1        A54 A

  PB1 327 R147/K3 K766/R66        R58 R
336 V142/I8 I773/V59        V58 V

  PA 225 S213C1 C829S10        S S
268 L214 I827K11        L L
356 K212X1R1 R827K11        K K
382 E208D5V1 D824E11V2N1        E E
404 A214 S828A9P1        A A
409 S189N24I1 N830S7I1        S77N1 S

  NP 283 L372/P1 L7/P643        L61 L
293 R371/K2 R28/K622        R60/K1 R
305 R369/K4 K636/R14        R61 R
313 F371/I1/L1 Y642/F8        F61 F
357 Q368/K4/T1 K44/R8/Q1        Q61 Q
372 E357/D15/K1 D630/E23        E61 E
422 R373 K630/R23        R61 R
442 T372/A1 A629/T23/R1        T61 T
455 D373 E630/D22/T1        D60/E1 D

  M1 115 V856/I2/L1/G1 I981/V9        V88 V
121 T840/A19/P1 A988/T2        T88 T
137 T859/A1/P1 A974/T12        T88 T

  M2    11 T434/I11/S2 I911/T44        T90 T
  20 S471/N13 N926/S29        S90 S
  57 Y481/C1/H1 H913/Y33/R2/Q1        Y90 Y

  NS2   70 S453/G21/D1 G903/S2        S61 S

Table 2  Comparison of amino acid signatures in selected genes of avian and human strains to Egyptian H5N1 strains 

1Avian and human amino acid signatures in different viral genes of influenza A viruses as previously determined[20]. Numerical superscripts refer to the 
number of strains that possess those residues.

  Gene Site Residue1 Egyptian A/CK/ Ref.

Virulent Avirulent H5N1 isolates Eg/F10/09
  PB2 627 K E K K [11,27]

701 N D D D [28]
  PB1 317 I M/V M/V M [11,27]
  PA 127 I V V N.I.2 [25]

336 M L L L [25]
  M2   64 S/A/F P S L [17]

  69 P L P P [17]
  NS1   42 S A/P S S [29]

  92 E D D D [27]
97/92 E D E E [23]

127 N T/D/R/V/A T/I I [30]
189 N D/G D D [25]
195 T/Y S S S [31]

  NS2   31 I M M M [25]
  56 Y H/L H H [25]

Table 3  Amino acid site residues associated with virulence in 
mammals in comparison with Egyptian isolates

1Virulent and non virulent amino acid residues refer to the  ability of the 
virus to replicate in mammals as determined by Lycett et al[17]. 2N.I.: Not 
included since it is not flanked by the primers used in the current study.
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K/KC815947/A/chicken/Egypt/F10/2009/H5N1

K/CY126247/A/chicken/Menofia/CAI35/2010/H5N1

K/HQ326955/A/equine/av1/2009/H5N1

K/CY044039/A/chicken/Egypt/083/2008/H5N1

K/CY041297/A/chicken/Egypt/0836/2008/H5N1

K/AB496982/A/duck/Egypt/D1Br22/2007/H5N1

K/CY044047/A/duck/Egypt/0871/2008/H5N1

K/CY016906/A/duck/Egypt/2253-3/2006/H5N1

K/CY041305/A/chicken/Egypt/0891/2008/H5N1

K/AY576380/A/HK/212/03/H5N1

K/CY005506/A/Qua/Nanchang/2-0460/00/H9N2

K/A/mallard/Netherlands/1/2007/H3N8

G/AJ620347/A/Chicken/Germany/R28/03/H7N7

G/CY021372/A/turkey/Italy/1010/2003/H7N3

G/JN828567 A/quail/Egypt/113413v/2011/H9N2

G/JN828567 A/quail/Egypt/113413v/2011/H9N2

G/JQ611701 A/chicken/Egypt/BSU-CU/2011/H9N2

C/EU794492 A/equine/Gansu/7/2008/H3N8

C/EU794556 A/equine/Xinjiang/3/2007/H3N8

C/CY015013/A/Canada/rv504/2004/H7N3

C/CY039908/A/New York/1682/2009/H1N1

C/FJ998206/A/Mexico/InDRE4487/2009/H1N1

C/GQ120442/A/Canada-NS/RV1535/2009/H1N1

99

98

89

100

99

92

79

82

100

100

100

100

PB2

0.005

G/GU050308/A/avian/Egypt/920431/2006/H9N2

G/FJ432768/A/duck/Italy/194659/2006/H3N2

G/GQ240819/A/mallard/Hungary/19616/2007/H3N8

G/HM570064/A/Anas platyrhynchos/Belgium/12827/2007/H3N8

G/CY041344/A/common eider/Netherlands/1/2007/H3N2

G/CY041344/A/common eider/Netherlands/1/2006/H3N8

G/AJ620348 A/chicken/Germany/R28/03/H7N7

G/GU050301/A/avian/Saudi Arabia/910136/2006/H9N2

G/CY043822/A/mallard/Netherlands/1/2007/H3N8

G/JQ611702 A/chicken/Egypt/BSU-CU/2011/H9N2

G/JN828568 A/quail/Egypt/113413v/2011/H9N2

G/HQ326954/A/equine/Egypt/av1/2009/H5N1

G/AB496994/A/duck/Egypt/D2Br111/2007/H5N1

G/CY041296/A/chicken/Egypt/0836/2008/H5N1

G/KC815946/A/chicken/Egypt/F10/2009/H5N1

G/CY126246/A/chicken/Menofia/CAI35/2010/H5N1

D/AF037422/A/Fukushima/140/96/H3N2

D/CY040780/A/New York/3246/2009/H1N1

D/FJ998225/A/Canada-NS/RV1535/2009/H1N1

I/EU794493/A/equine/Gansu/7/2008/H3N8

I/EU794573/A/donkey/Xinjiang/5/2007/H3N8

75

75

94

100

100

88

100

100

100

PB1

0.02

Hassanin KMA et al . H5N1 evolution in Egypt



164 November 12, 2013|Volume 2|Issue 4|WJV|www.wjgnet.com

D/GU050307 A/avian/Egypt/920431/2006/H9N2

D/GU050307/A/avian/Egypt/920431/2006/H9N2

D/FJ432767/A/duck/Italy/194659/2006/H3N2

D/CY043821/A/mallard/Netherlands/1/2007/H3/N2

D/CY041343/A/common eider/Netherlands/1/2006/H3N8

D/GQ240820/A/mallard/Hungary/19616/2007/H3N8

D/HM570063/A/Anas platyrhynchos/Belgium/12827/2007/H3N8

D/AJ619677/A/chicken/Germany/R28/03/H7N7

D/GU050300/A/avian/Saudi Arabia/910136/2006/H9N2

D/CY021370/A/turkey/Italy/1010/2003/H7N3

D/CY034755/A/chicken/Italy/682/2003/H7N3

D/JN828569/A/quail/Egypt/113413v/2011/H9N2

D/JX273137/A/chicken/Egypt/S4456B/2011/H9N2

D/KC815945/A/chicken/Egypt/F10/2009/H5N1

D/CY044045A/duck/Egypt/0871/2008/H5N1

D/CY016904/A/duck/Egypt/2253-3/2006/H5N1

D/CY041303/A/chicken/Egypt/0891/2008/H5N1

D/CY020658/A/turkey/Egypt/2253-2/2006/H5N1

D/EU146856/A/chicken/Egypt/3/2006/H5N1

D/EU146858/A/Egypt/902786/2006/H5N1

E/AF156449/A/Quail/Hong Kong/G1/97/H9N2

E/AF257195/A/Hong Kong/483/1997/H5N1

E/CY015011/A/Canada/rv504/2004/H7N3

E/CY040642/A/New York/3191/2009/H1N1

E/CY040755/A/New York/3243/2009/H1N1

G/EU794558/A/equine/Xinjiang/3/2007/H3N8

G/EU794574/A/donkey/Xinjiang/5/2007/H3N8100

100

100

100

100

100

98

100

84

PA

0.02

F/CY016902/A/duck/Egypt/1/2253-3/2006/H5N1

F/AB497021/A/duck/Egypt/D1Tr8/2007/H5N1

F/HQ326952/A/equine/Egypt/av1/2009/H5N1

F/CY041301/A/chicken/Egypt/0891/2008/H5N1

F/CY041293/A/chicken/Egypt/0836/2008/H5N1

F/CY126243/A/chicken/Menofia/CAI35/2010/H5N1

F/KC815943/A/chicken/Egypt/F10/2009/H5N1

F/CY043819/A/mallard/Netherlands/1/2007/H3N8

F/HM570061/A/Anas platyrhynchos/belgium/12827/2007/H3N8

F/GQ240822/A/mallard/Hungary/19616/2007/H3N8

F/CY041341/A/common edier/Netherlands/1/2006/H3N8

F/CY034753/A/chicken/Italy/682/2003/H7N3

F/CY021368/A/turkey/Italy/1010/2003/H7N3

F/AF156407/A/Quail/Hong Kong/G1/97/H9N2

F/JQ611705 A/chichen/Egypt/BSU-CU/2011/H9N2

F/JX273139 A/chichen/Egypt/S4456B/2011/H9N2

F/AJ620352/A/Chichen/Germany/R28/03/H7N7

F/FJ432765/A/duck/Italy/194659/2006/H3N2

F/GU050305 A/avian/Egypt/920431/2006/H9N2

H/CY015009/A/Canada/rv504/2004/H7N3

C/EU794560/A/equine/Xinjiang/3/2007/H3N8

C/EU794576/A/donkey/Xinjiang/5/2007/H3N8

A/AF038258/A/Fukushima/140/96/H3N2

A/CY040688/A/New York/3219/2009/H1N1

A/FJ998218/A/Canada-ON/RV1527/2009/H1N1

100

99
88

100

100

100

100

100

98

93

95

95

NP

0.01
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JX4456105/A/Egypt/N02137/2012

JQ983351/A/duck/Egypt/1113SD/2011

JX912987/A/duck/Egypt/Q4596C/2012

JX912993/A/duck/Egypt/Q4596D/2012

JX456102/A/Egypt/N00951/2012

JQ983356/A/chicken/Egypt/1158SF/2011

CY062473/A/Egypt/N01982/2010

CY062481/A/Egypt/N02770/2010

CY062475/A/Egypt/N02038/2010

CY041952/A/Egypt/N04823/2009

Gu371912/A/equine/Egypt/av1/2009

CY062445/A/Egypt/N04830/2009

EF382360/A/Egypt/0636-NAMRU3/2007

CY041954/A/Egypt/N04979/2009

FJ461650/A/Egypt/10215-NAMRU3/2007

EF222323/A/Egypt/14724-NAMRU3/2006

EF222322/A/Egypt/14725-NAMRU3/2006

FJ461652/A/Egypt/10217-NAMRU3/2007

CY041300/A/chicken/Egypt/0891/2008

AB497034/A/duck/Egypt/D2Br213/2007

AB601149/A/chicken/Egypt/RIMD17-3/2009

AB497031/A/duck/Egypt/D1Tr220/2007

KC815942/A/chicken/Egypt/F10/2009

CY125963/A/duck/El Fayoum/CAI9/2010

FR687262/A/chicken/Egypt/1/2009

EU717856/A/chicken/Egypt/1709-5/2008

NA

100
98

88

75

99

75

98
9584

91
70

86

95

100

0.005

F/EU599301/A/duck/Egypt/906608/2006/H5N1

F/CY020654/A/turkey/Egypt/2253-2/2006/H5N1
F/HQ326951/A/equine/Egypt/av1/2009/H5N1

F/CY044041/A/duck/Egypt/0871/2008/H5N1
F/CY016900/A/duck/Egypt/2253-3/2006/H5N1

F/AY575893/A/HK/212/03/H5N1
F/CY041291/A/chicken/Egypt/0836/2008/H5N1

F/CY126241/A/chicken/Menofia/CAI35/2010/H5N1
F/CY041299/A/chicken/Egypt/0891/2008/H5N1

F/AY363575/A/swine/Hoong/5212/99/H3N2
F/FJ998212/A/Canada-ON/RV1527/2009/H1N1

F/GQ168849/A/Massachusetts/06/2009/H1N1

F/AJ619676/A/chicken/Germany/R28/03/H7N7

F/CY034751/A/chicken/Italy/682/2003/H7N3
F/CY021366/A/turkey/Italy/1010/2003/H7N3

F/GU050303/A/avian/Egypt/920431/2006/H9N2

F/HM570059/A/Anas platyrhynchos/Belgium/12827/2007/H3N8
F/CY043817/A/mallard/Netherlands/1/2007/H3N2

F/CY043817/A/mallard/Netherlands/1/2007/H3N2
F/GQ240824/A/mallard/Hungary/19616/2007/H3N8

F/CY041339/A/common eider/Netherlands/1/2006/H3N8

F/AF222823/A/Swine/Hong Kong/10/98/H9N2
F/AF156463/A/Quail/Hong Kong/G1/97/H9N2

F/JQ611707/A/chicken/Egypt/BSU-CU/2011/H9N2
F/JN828573 A/quail/Egypt/113413v/2011/H9N2

F/JX273134 A/chicken/Egypt/s4456B/2011/H9N2

B/AF038273/A/Fukushima/140/96/H3N2
A/AF250125/A/Swine/Indiana/9K035/99/H1N2

E/CY015007/A/Canada/rv504/2004/H7N3
E/EU794562/A/equine/Xinjiang/3/2007/H3N8

E/EU794578/A/dinkey/Xinjiang/5/2007/H3N8

99

99
100

99

9394

88

86
92

100
94

100

M

0.01
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in PB2 (K627), M2 (P69) and NS1 (S42, E92/97). The 
mutation of  aspartic acid (D) to glutamic acid (E) at po-
sition 92 (97 in strains with 5 amino acids deletion) was 
observed in this study in the F10 and also in other Egyp-
tian H5N1 strains (Table 3). PB2 of  all Egyptian strains, 
including avian, mammalian isolates, possessed K627 
(Table 3). F10 possessed virulent amino acid substitu-
tions in PB2 (K627), M2 (P69) and NS1 (S42, E97). All 
the detected virulent residues are also found in the other 
Egyptian H5N1 strains. Interestingly, all the Egyptian 
H5N1 strains possess virulent residue S64 in M2 protein 
while F10 possessed non virulent residue (L64) (Table 3). 
The NS1 gene of  F10 and other H5N1 Egyptian strains 
harbored L103F and I106M amino substitutions. The 
Egyptian H5N1 strains also possessed such amino acid 
substitutions (data not shown). Egyptian avian H5N1 
strains including F10 possessed two human specific resi-
dues, E14 and R18 (data not shown). 

DISCUSSION 

Previous studies revealed that the HA genes from H5N1 
Egyptian isolates were subjected to cumulative genetic 

drifts that resulted in further classification of  the Egyptian 
strains into two sublineages [A(A1-A5) and B(B1-B5)][10]. 
A/chicken/Egypt/F10/2009 in the current study is re-
lated to the B2 sublineage. Eight amino acid substitutions 
were found in the Egyptian variants in lineage B, including 
the F10 strain at the amino acid positions P74S, D 97N, 
H110R, S123P, R140G, F144Y, N165H and A184E[10]. 
The deduced amino acid exchanges, as with most H5N1 
Egyptian strains, showed polybasic cleavage motif  con-
sensus for clade 2.2 viruses, PGERRRKKR/GLF, while 
the consensus of  2.2, F10 PQGEGRRKKR/GLF, 
showed (R325G) substitution[10] with unknown signifi-
cance. Lycett et al[17] specified 6 amino acid residues (86V, 
124S, L/N138, T/S156, E/R212, T263) that are linked to 
the virulence of  H5N1 in mammals. T156 and T263 were 
also present in F10 hemagglutinin[10]. 

In the current study, the different alleles of  the F10 
isolate were located within subtrees of  the majority of  
the Egyptian strains. The influenza genotyping web tool 
revealed that the alleles of  the F10, PB2, PB1, PA, NP, 
NA, M and NS alleles, are Eurasian in origin and related 
to K, G, D, F, 1J, F and 1E genotypes respectively[16]. 

Analysis of  the NA gene revealed the presence of  

1E/HM570062/A/Anas platyrhynchos/Belgium/12827/2007/H3N8

1E/GQ240825/A/mallard/Hungary/19616/2007/H3N8

1E/GU050306 A/avian/Egypt/920431/2006/H9N2

1E/CY041342/A/common eider/Netherlands/1/2006/H3N8

1E/FJ432766/A/duck/Italy/194659/2006/H3N2

1E/CY034754/A/chicken/Italy/682/2003/H7N3

1E/CY021369/A/turkey/Italy/1010/2003/H7N3

1E/AJ619678/A/chicken/Germany/R28/03/H7N7

1E/CY043820/A/mallard/Netherlands/1/2007/H3N2

1E/JQ611708 A/chicken/Egypt/BSU-CU/2011/H9

1E/JN828574 A/quail/Egypt/113413v/2011/H9N2

1E/JQ611708 A/chicken/Egypt/BSU-CU/2011/H9N2

1E/CY020649/A/chicken/Egypt/2253-1/2006/H5N1

1E/CY041294/A/chicken/Egypt/0836/2008/H5N1

1E/KC815944/A/chicken/Egypt/F10/2009/H5N1

1E/CY126244/A/chicken/Menofia/CAI35/2010/H5N1

1E/AF156477/A/Quail/Hong Kong/G1/97/H9N2

1D/CY015010/A/Canada/rv504/2004/H7N3

1D/EU794563/A/equine/Xiangjiang/3/2007/H3N8

1D/EU794579/A/donkey/Xiangjiang/5/2007/H3N8

1A/AF038278/A/Fukushima/140/96/H3N2

1A/CY012852/A/New York/554/1996/H3N2

1A/CY040689/A/New York/3223/2009/H1N1

1A/GQ132166/A/Canada-NS/RV1538/2009/H1N1100

100

100

96
99

81

100

100

88

95

100

83

86

76

76

NS

0.01

Figure 1  Phylogenetics of the viral genes of escape mutant H5N1 compared to selected influenza viruses. Escape mutant F10 strain examined in the current 
study was marked by a red color. The selected viruses were chosen to be representative from relevant sequences in GenBank database: H5N1 strains representative 
to the major gene lineages. Serotypes H1N1, H1N2, H3N2, H3N8, H7N3, H7N7 and H9N2 were also included in the phylogenetic trees of PB2, PB1, PA, NP, M and 
NS. For NA, Egyptian N1 sequences from Egyptian H5N1 strains were the only included sequences. The robustness of the individual nodes of the tree was assessed 
using a bootstrap of 1000 resembling in percent (70% and higher). Influenza A virus genotype tool (http://www.flugenome.org/ genotyping.php) was used to determine 
individual gene segment lineage. The genotype of each strain was mentioned in a blue color in the phylogenetic trees of PB2, PB1, PA, NP, M and NS.
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the 20-amino acid deletion, a feature that is frequently 
observed during the process of  adaptation of  influenza 
viruses to poultry that are found to enhance the patho-
genesis in chickens. The presence of  amino acid arginine 
(R) at position 110 and the amino acid deletion in the 
NA are characteristic of  clade 2.2 viruses[18]. The 228 
(N to S) substitution is also present in the F10 and is an 
indication of  2.2.1 virus. Four NA mutations, E119G, 
H274Y, R292K and N294S, have been reported to confer 
resistance to NA inhibitors[19] but none were detected in 
the F10 isolate. 

Chen et al[20] detected amino acid signatures specific 
to avian and human influenza A viruses. The six internal 
genes (PB2, PB1, PA, NP, M and NS) of  A/chicken/
Egypt/F10/2009 and most of  Egyptian H5N1 strains 
showed avian like amino acid signatures. 

Identification of  the host range-specific amino acids 
could assume the functional sites that may mediate a host 
range. In a previous report, the amino acid sequences of  
the internal proteins in the Hong Kong poultry H5N1 vi-
ruses have been compared with those of  other avian and 
human viruses[21]. The polymorphic amino acid residues 
in different protein sequences of  the Egyptian human and 
avian strains, in comparison to the current escape mutant 
strain, were screened and the residues were classified as 
virulent or nonvirulent; such residues have functional sig-
nificance for virulence in H5N1 to mammals[17]. Five viru-
lent residues were detected in the avian H5N1 strains in 
PB2 (K627), M2 (S64, P69) and NS1 (S42, E92/97); how-
ever, F10 showed only 4 virulent residues in PB2 (K627), 
M2 (P69) and NS1 (S42, E92/97). An association be-
tween glutamic acid (E) at position 92 of  the NS1 protein 
and resistance of  H5N1 virus to interferons and TNF-α 
has been reported[22]. The mutation of  aspartic acid (D) to 
glutamic acid (E) at position 92 (97 in strains with 5 amino 
acids deletion)[23] was observed in this study in the F10 
and also in other Egyptian H5N1 strains. However, Seo 
et al[22] 2004 reported that this substitution possesses low 
impact in the virulence in mammals. E627K substitution 
in the PB2 protein is one of  the genetic indicators for the 
adaptation and efficient replication in humans[24,25]. The 
temperature sensitivity of  the virus and the efficacy of  
viral replication depend on the amino acid residue 627 of  
PB2. Viruses showing K627 displayed higher activity of  
the polymerase complex during viral replication at a lower 
temperature in comparison to viruses displaying E627[26]. 
Efficient virus replication may explain the wide host range 
of  subtype H5N1 strains and their high virulence[26]. The 
PB2 of  all Egyptian strains, including avian and mamma-
lian isolates, possessed K627. 

We have compared the amino acid residues associated 
with H5N1 virulence in mammals[11,17,23,25,27-31] to their 
corresponding residues in the A/chicken/Egypt/F10/ 
2009. F10 possessed virulent amino acid substitutions 
in PB2 (K627), M2 (P69) and NS1 (S42, E97). All the 
detected virulent residues are also found in the other 
Egyptian H5N1 strains. Interestingly, all the Egyptian 
H5N1 strains possess virulent residue S64 in the M2 

protein, while F10 possessed non virulent residue (L64). 
P42S and D97E amino acid substitutions in the NS1 are 
responsible for the virulence of  H5N1 in mammalian 
species and cytokine resistance[22]. In addition, amino 
acid substitutions L103F and I106M were found to be 
adaptive genetic determinants for growth and virulence 
in the NS1 gene of  both mammals and avian[32]; F10 and 
other H5N1 Egyptian strain harbored these amino sub-
stitutions. The G184 that was detected in F10 and other 
H5N1 Egyptian strains contributes to the cleavage and 
the polyadenylation specificity factor binding and strongly 
affected the viral virulence[33]. 

Amantadine resistance is associated with one of  the 
following M2 residues: 26, 27, 30, 31, 34, or 38[34,35]; how-
ever, the Egyptian H5N1 strains did possess such amino 
acid substitutions. Human, swine and avian specific 
M2 residues were determined[36]. Egyptian avian H5N1 
strains, including F10, possessed two human specific resi-
dues, E14 and R18[36,37]. 

The genetic characteristics of  the H5N1 virus iso-
lates from chicken in Egypt provided evidence of  a high 
possibility of  inter-species transmission. The examined 
escape mutant H5N1 strain carried no clear amino acid 
signatures from other Egyptian H5N1 strains. 

COMMENTS
Background
Avian influenza viruses showed considerable capacity to cross species bar-
riers to infect susceptible mammals, including humans. Point mutations and 
reassortment possess a crucial effect on the virulence of HPAI H5N1. Escape 
mutants resulting from antigenic drift of the viruses were selected under vac-
cination. The current study aimed to investigate whether the escape mutant 
strain (A/chicken/Egypt/F10/2009) possesses reassortant genes or amino acid 
signatures that differentiate it from other classical strains.
Research frontiers
The high error-prone replication of influenza viruses and vaccination pressure 
unequivocally enhance the robustness of mutation capacity of the influenza 
viruses. The amino acid signatures of the escape mutant strains have not been 
addressed. In this study, the authors demonstrate the genetic constitution of the 
escape mutant strain and the possible amino acid signatures that could differ-
entiate the escape mutant from other Egyptian H5N1.
Innovations and breakthroughs
Recent reports have highlighted critical amino acid substitutions in different al-
leles of influenza viruses that are associated with virulence to mammals. Amino 
acid signatures specific to avian and human influenza A viruses were also 
determined in previous reports.  This study reported the presence of different 
amino acids substitutions in different alleles related to virulence to mammals; 
however, it failed to find the presence of prominent amino acid signatures in the 
examined escape mutant strain.
Applications
By understanding the amino acid substitutions in H5N1 escape mutants, its 
impact on virulence to mammals and how it could be accelerated under vac-
cination pressure, the avian influenza control procedure method based on vac-
cination should be reevaluated.
Terminology
Mutation at the HA epitope region is among the strategies the influenza virus 
uses to escape the immune system and represents the most important hin-
drance to vaccine development. Meanwhile, mutations in the other viral alleles 
play a crucial role in modulating virus pathogenicity to the original hosts and 
inter-species transmission to mammalian species, including humans. 
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in comparison with other influenza viral strains. Possible amino acid signatures 
were explored for identification of the escape mutant from other Egyptian H5N1 
and different proteins with amino acid substitutions were also recorded com-
pared to the available Egyptian H5N1 strains. The paper’s scientific content is 
original and of good quality as a research article. 
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