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During the past 10 years, many new ideas have been 
tried, and the goal of making this technology a more 
effective treatment modality through greater safety and 
control is coming within reach. The first clinical trial of 
iPS cells has begun, and cell mediated gene therapy 
products have reached phase Ⅲ in some countries. The 
potential for tumorigenicity and immunogenicity are 
still concerns with these products, so physicians should 
understand the biological aspects of engineered cells in 
the clinic. In this review article, we attempted to provide 
a summary update of the current state of knowledge 
regarding this technology: that is, we reviewed products 
that have finished clinical trials, are still in clinical trials 
and/or are at the research stage. We also focused on the 
challenges, future directions, and strategies for making 
this technology available in the clinic. In addition, the 
available measures for making gene therapy products 
safer are within the scope of this article. It is also 
important to understand the manufacturing process 
for gene therapy products, because cell characteristics 
can change during the cell expansion process. When 
physicians use gene therapy products in the clinic, they 
should be aware of the viability, temperature sensitivity 
and stability of these cells because biologic products are 
different from chemical products. Although we may not 
be able to answer all possible questions and concerns, 
we believe that this is the right time for physicians to 
increase their interest in and understanding of this 
evolving technology.

Key words: Cell mediated gene therapy; Review; 
Physicians; Clinical and research stage; In the clinic

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: In this review article, the authors attempted 
to provide an up to date summary of the current know­
ledge regarding cell mediated gene therapy that is, we 
reviewed products that have finished clinical trial, are 
in clinical trial and at the research stage. The authors 
also tried to cover the challenges, future directions, 
and strategies to make this technology available in the 
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Abstract
The recent approval of gene therapy products in Europe 
and Asia and the upsurge of gene therapy products 
in clinical trials signal the rebound of this technology 
not only for many orphan diseases but also for non-life 
threatening diseases. Following the success of induced 
pluripotent stem (iPS) cells in research, other modified 
ex vivo  gene therapies are also knocking on the door 
of the clinic. Historically, gene therapy has experienced 
many ups and downs and still faces many challenges. 
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clinic. This is the right time for the physicians to have 
knowledge of this evolving technology that already 
reached the bedside.

Noh MJ, Copeland O, O’Mara M, Lee KH. Cell mediated gene 
therapy: A guide for doctors in the clinic. World J Med Genet 
2015; 5(1): 1-13  Available from: URL: http://www.wjgnet.
com/2220-3184/full/v5/i1/1.htm  DOI: http://dx.doi.org/10.5496/
wjmg.v5.i1.1

INTRODUCTION
When the first gene therapy trial of hematopoietic 
cells and lymphocytes was reported[1], it seemed 
that gene therapy might be the answer to treating 
most orphan diseases without major complications. 
However, in early 2000, after the death of a patient 
during a gene therapy clinical trial[2,3], many rese­
archers became very cautious about this new tech­
nology. The subsequent development of cancer 
as a result of ex vivo gene therapy treatment in 
2003[4,5] made the regulatory authorities even more 
conservative. In 2009, after years of progress, 
the return of gene therapy was declared[6], and 
gene therapy was honored as “twenty-first century 
medicine”[7]. Three products hit the market: p53-
expressing GendicineTM and AdvexinTM, conditionally 
replicating adenovirus OncorineTM and thymidine 
kinase + ganciclovir therapy, CereproTM[8]. In 2012, 
it was reported that over 1800 gene therapy clini­
cal trials had been completed in 31 countries[9]. In 
addition, some countries’ governments have dec­
lared their intention to assist in the development of 
gene-related therapies at the federal government 
level. 

More positive news for the field of gene therapy 
came with the award of the Nobel Prize for research 
on iPS cells in ex vivo gene therapy[10]. This tech­
nology has produced a seismic shift in stem cell 
research[11] and resulted in an increase in research 
for disease modeling of iPS cells[12]. The ultimate 
goal of these studies is the treatment of diseases 
that have not been treatable by conventional 
methods. Safety issues, manufacturing issues 
and product quality issues need to be addressed 
before these products become available in the 
clinic. Genetic engineering can make the cells more 
vulnerable to cancer development and therefore 
alternative engineering methods are needed[13]. To 
address these safety concerns, many papers have 
been published and several clinical trials have been 
performed to develop gene therapy technology 
for diseases in which there is no current available 
treatment. 

Recently, the first clinical trial of iPS cells started in 
Japan[14], and ex vivo gene therapy for degenerative 

arthritis has reached phase Ⅲ clinical trials[15]. In this 
review, we will discuss the status of cell mediated 
(ex vivo) gene therapy, including clinical trials, safety 
issues[16,17], and manufacturing issues for clinical 
applications[18,19]. In the clinic, physicians should 
understand the characteristics of the treatments 
that they are using. Cell-related products are new 
to most doctors, and their use presents a challenge 
because these treatments were not available during 
most doctors’ medical school education and resident 
training programs. In the area of regenerative 
medicine, these treatments cannot be confined to 
their own subspecialty. Understanding the mechanism 
of action of each product at the molecular level is 
necessary for doctors. We acknowledge that doctors 
can resist change, but we believe that understanding 
molecular medicine is similar to understanding new 
electronic technologies in everyday life.

ENGINEERED CELLS FOR CLINICAL TRIAL 
AND RESEARCH
The idea of multiple treatment modalities is familiar 
to physicians. For mesenchymal stem cell (MSC) 
differentiation, different combinations and effects 
of growth factors have been reported[20]. For gene 
therapy, the integration of multiple genes into cells 
(transfection) has been studied in many laboratories. 
The observation that cells into which multiple genes 
have been integrated show the characteristics of 
embryonic stem cells (ESCs) was first reported by 
the Yamanaka group in Japan[21]. This group inserted 
four factors, Oct3/4, Sox2, KLF4 and c-Myc, into 
fibroblasts, making them pluripotent. They showed 
that the engineered cells were similar to ESCs in 
terms of morphology, proliferation, surface antigens, 
gene expression, epigenetic status of pluripotent 
cell-specific genes and telomerase activity. Furth­
ermore, these cells could differentiate into all of the 
cell types of the three germ layers in vitro. Other 
researchers showed the regenerative potential of iPS 
cells, with their ability to differentiate into various 
cell types[22-24]. To improve the safety of treatment 
with these cells, other researchers induced the 
differentiation of these cells without viral vectors[25,26] 
and even with recombinant proteins[27]. These strate­
gies were reported to effectively eliminate any risk 
of modifying the target cell genome with exogenous 
genetic sequences. Consequently, the authors 
demonstrated the possibility of generating safer iPS 
cells. However, the stability of these cells has not 
been reported. 

For clinical applications, the manufacturing 
process should produce batches of cells with the 
same characteristics. If the cells’ characteristics 
change in the presence of different concentrations 
of a protein, the manufacturing process is not 
validated for consistency. Safety analysis should also 
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be performed prior to clinical trials. iPS cell-based 
therapies need to be thoroughly evaluated in pre-
clinical animal models before they can be applied 
to human subjects[28,29]. Since 1998, the Food and 
Drug Administration (FDA) has been regulating cell 
therapies, beginning with “Guidance for human 
somatic cell therapy and gene therapy”. In 2008, 
the FDA released the guidelines “Content and 
Review of Chemistry, Manufacturing, and Control 
(CMC) Information for Human Somatic Cell Therapy 
Investigational New Drug Applications (INDs)”. In 
2011, they released the guidelines “Potency tests 
for cellular and gene therapy products”. If cells are 
engineered to generate a product, the harvesting 
method (Good Tissue Practice), engineering method, 
and potency testing protocols should be clearly 
defined. From the beginning of the development 
process, the investigators should clearly understand 
the mechanism of action of the product to develop a 
manufacturing process with a method for harvesting 
cells and for testing them, to consistently produce 
well characterized, high-quality cell-based products. 
For example, Crook et al[30] (2007) reported on the 
activities and requirements for producing cGMP 
hESC lines including the derivation, banking, and 
characterization of these cells.

In 2014, Nature Medicine, in collaboration with 
the Volkswagen Foundation, organized a meeting 
with a panel of experts in regenerative medicine 
to identify the most pressing challenges, as well 
as to formulate the crucial strategies and stem 
cell concepts that could best help advance the 
field of translational regenerative medicine[31]. The 
panel identified four major issues: first, harnessing 
the potential of endogenous stem cells; second, 
deciphering therapeutic reprogramming; third, 
meeting the challenges of cell integration and 
function; and fourth, removing roadblocks to the 
translation of stem cell therapies. We believe that 
these opinions summarize the present and future 
of cell mediated gene therapy. Researchers have 
begun to address these challenges. In particular, 
one patient-specific pluripotent stem cell therapy 
has been reported to be safe with respect to 
immunogenicity and is nearing clinical trials[32]. 
Neurodegenerative disorders are very interesting 
clinical targets for this technology[33]. 

An enormous number of cell therapies have 
been tested worldwide for the treatment of rare 
diseases[34]. Regenerative medicine cannot be 
defined without MSCs and ESCs; however, gene 
therapy is also an important area in regenerative 
medicine. Many regenerative medicine companies 
have started up, and various umbrella organizations 
such as the Alliance for Regenerative Medicine 
have been formed. In 2009 and 2013, three very 
interesting studies were reported[35,36]. These 

studies integrated a lentiviral vector into patient 
hematopoietic stem cells and showed promising 
clinical results for Wiskott-Aldrich syndrome and 
X-linked adrenoleukodystrophy. In 2013, another 
group reported promising clinical results using len­
tiviral ex vivo gene therapy for metachromatic 
leukodystrophy[37]. These serial successes for rare 
diseases are a hallmark of this technology in the 
clinic. It is clear that this technology is the flag bea
rer for the future of treating rare diseases. It was 
a triumphant success to overcome the pessimistic 
environment that existed after leukemia developed 
in X-linked severe combined immunodeficiency 
(X-SCID) patients treated with retroviral gene 
therapy[38]. In contrast to retroviral gene therapy, 
they extracted hematopoietic stem cells from a 
patient and transduced these cells with a lentiviral 
vector carrying specific genes (Wiskott-Aldrich gene, 
ABCD1 and ARSA), producing cell clones that did not 
carry integrations near oncogenes. Consistent with 
this, the authors did not observe evidence of clonal 
expansions in the patients for up to 20 to 32 mo 
after gene therapy treatment[35].

In 2007, induced pluripotent stem cell lines 
derived from human somatic cells were developed[39]. 
In 2008, it was reported that to better understand 
amyotrophic lateral sclerosis (ALS) and to develop 
a treatment, induced pluripotent stem cells were 
generated from a patient with the disease[23]. The 
authors generated iPS cells from an 82-year-old 
woman diagnosed with a familial form of ALS. These 
patient-specific iPS cells possessed properties of 
embryonic stem cells and were successfully directed 
to differentiate into motor neurons, the cell types 
destroyed in ALS. In 2009, an animal study of 
treating hemophilia A with iPS cells was reported[40]. 
The authors inserted the genes encoding 3 tran­
scription factors, Oct4, Sox2 and Klf4, into somatic 
cells. The plasma FVⅢ levels in these mice incre­
ased to 8% to 12% of wild type, the hemophilia 
A phenotype was corrected. This study shows the 
possibility for future expansion of iPS cells into the 
clinic. Furthermore, Zhang et al[24] differentiated 
iPS cells into mature pancreatic insulin-producing 
cells. This work not only provides a new model with 
which to study the mechanism of human pancreatic 
specialization and maturation in vitro but also en­
ables the possibility of utilizing patient-specific iPS 
cells for the treatment of diabetes[24].

Since the iPS cell researchers won the Nobel Prize, 
Japan has pioneered the clinical application of these 
cells in rare diseases. Previous success at treating 
degenerative disorders with gene therapy led rese­
archers to pursue gene therapy for degenerative 
eye disorders[41,42]. In a proof-of-concept study, they 
showed that iPS cells developed a structured outer 
nuclear layer with complete inner and outer segments 
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interesting study reported modeling the genetic risk 
of schizophrenia by using iPS cells[12]. In addition, 
pathways that are disrupted in motor neurons in 
human ALS were also identified through the genetic 
correction of mutant SOD1[53]. The authors combined 
the reprogramming and differentiation of iPS cells 
with genome engineering and RNA sequencing to 
define the transcriptional and functional changes 
that are induced in human motor neurons by mutant 
SOD1[54,55].

Human pluripotent stem cells hold great potential 
for regenerative medicine, but the available cell 
types have limitations[56]. Recently, an international 
cell bank for iPS cells was created. In addition, Ma 
et al[57]’s approach of genome-wide analysis may be 
the future of iPS cell characterization. These authors 
examined the DNA methylation and transcriptome 
profiles of ESCs and somatic nuclear-transferred 
cells. They observed that the DNA methylation and 
transcriptome profiles of iPS cells retained residual 
DNA methylation patterns typical of parental 
somatic cells. Therefore, they concluded that human 
somatic cells can be accurately reprogrammed to 
pluripotency by somatic cell nuclear transfer and 
are therefore ideal for cell replacement therapy. This 
approach has opened an interesting field for the 
characterization of iPS cells in the future. A summary 
of selected clinical and preclinical research programs 
involving cell-mediated gene therapy is presented in 
Table 1.

SAFETY AND EFFICACY ISSUES
The fact that chondrocytes can be induced to differ­
entiate into fibroblasts during cell culture spurs 
questions about potential differentiation issues. The 
continuation of the cell division process relies on 
the interaction of the cells with a microenvironment 
that consists of other cells and the extracellular 

in 3D sheets. The authors also observed host-graft 
synaptic connections by immunohistochemistry. 
Eventually, they characterized and developed a 
human pluripotent stem cell-derived retinal pigment 
epithelium cell sheet for use in clinical trials. A 
clinical trial on macular degeneration is ongoing in 
Japan[43,44]. In their research on retinitis pigmentosa, 
the authors generated patient-derived iPS cells that 
recapitulated the disease phenotype and expressed 
markers of cellular stress. This research created 
the opportunity for understanding the disease by 
creating iPS cell models of degenerative disorders[45].

Recent trends in iPS cell research have allowed 
a shift to using iPS cells to model disease[46]. Degen­
erative disorders have been the main focus of this 
research. iPS cells use the same transcriptional 
network as ESCs to generate neuro-epithelia. iPS cells 
can be differentiated into functionally appropriate 
neuronal cell types over the same developmental 
time course as human ESCs in response to the same 
set of morphogens[47]. Therefore, researchers have 
suggested the possibility of employing human iPS 
cells in pathological studies, therapeutic screening and 
autologous cell transplantation[48]. Glial progenitor 
cells have also been suggested to be useful for 
modeling neurological diseases[49]. Chung et al[50] 
exploited the mutational correction of iPS cells and 
conserved the proteotoxic mechanisms to reverse the 
phenotypic response to α-synuclein, a key protein 
involved in Parkinson’s disease[50,51]. In 2014, iPS cell-
based in vitro modeling of cardiomyopathy was also 
reported[52]. The authors combined patient-derived 
and genetically engineered iPS cells to elucidate the 
pathophysiology underlying the cardiomyopathy of 
Barth syndrome, a mitochondrial disorder caused by 
mutation of the gene encoding taffazzin (TAZ). Using 
Barth syndrome iPS-cell-derived cardiomyocytes, 
they defined metabolic, structural and functional 
abnormalities associated with TAZ mutation. Another 
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  Target disease Stage Gene modification Target cell Ref.

  Hemophilia A Preclinical Oct4, Sox2, Klf4 Fibroblast Xu et al[40]

  ALS Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast Dimos et al[55]

  Alzheimer Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast Israel et al[46]

  ALS Preclinical Oct4, Sox2, Klf4 Fibroblast Chen et al[54]

  Cardiac failure Preclinical Gata4, Mef2c, Tbx4 Fibroblast Ieda et al[22]

  Diabetes Preclinical Oct4, Sox2, Klf4 Fibroblast Zhang et al[24]

  Schizophrenia Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast with 15q11.2 del Yoon et al[12]

  Barth syndrome Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast Wang et al[52]

  Parkinson’s disease Preclinical Oct4, Sox2, Klf4, c-Myc Fibroblast Chung et al[50]

  Macular degeneration PhaseⅠ Oct4, Sox2, Klf4, c-Myc Fibroblast Kamao et al[14]

  Degenerative arthritis Phase Ⅱ/Ⅲ TGF-β1 Chondrocyte Ha et al[15]

  X-linked adrenoleukodystrophy In the clinic ABCD1 CD34+ Bone marrow cell Cartier et al[36]

  Wiskott-aldrich syndrome In the clinic WASP CD34+ Bone marrow cell Aiuti et al[35]

  Metachromatic leukodystrophy In the clinic ARSA CD34+ Bone marrow cell Biffi et al[37]

Table 1  Current cell mediated gene therapy protocols in clinical and R and D stages

ALS: Amyotrophic lateral sclerosis; TGF-β: Transforming growth factor-beta.
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matrix[58]. Cells respond to a variety of growth fa­
ctors. The autocrine and paracrine modes of cell 
stimulation are key elements in this process. The 
differentiation of murine C3H10T1/2 mesenchymal cells 
into chondrocytes in response to bone morphogenic 
protein has been observed[59]. Similar papers have 
reported on the differentiation of specific cells 
into cells with different characteristics[60]. Dediffe­
rentiation-associated changes in morphology and 
gene expression have also been reported in primary 
human chondrocytes in culture[61]. These observations 
make the transforming growth factor-beta (TGF-β) 
superfamily proteins possible target modifiers of 
cartilage and bone formation. However, there is 
also a concern with regard to safety and efficacy 
because changes in other characteristics can change 
the properties of a cell therapy and therefore make 
the cells unacceptable as a treatment. With respect 
to efficacy, these findings brought forth the need to 
identify clear biomarkers to identify and characterize 
cells for potential transplantation.

Some researchers previously thought that MSCs 
do not induce immunogenicity. A report showing that 
human stem cells modulate the allogeneic immune 
response made people change their view about this 
concept[62]. In 2005, several papers were published 
relating to the immunogenicity of mesenchymal 
stem cells. At this time, there was some confusion 
regarding the immunogenicity of mesenchymal 
stem cells. The T cell response to allogeneic human 
MSCs was evaluated for immunogenicity, tolerance 
and suppression[63]. The authors concluded that 
MSCs can initiate the activation of T cells but do 
not elicit a T cell proliferative response because 
of an active suppression mechanism. These data 
were in support of Aggarwat and Pittenger’s work 
that was previously cited. However, somewhat 
contradictory data were also reported[64,65], namely 
that MSC immunogenicity was increased upon 
differentiation after transplantation into human 
and murine ischemic myocardium. This paper 
indicated that differentiation of cells after injection 
into organs can cause problems, and the authors 
recommended a requirement for immunosuppressive 
therapy. They also indicated that allogeneic MSCs 
are not intrinsically immune privileged and that 
allogeneic MSCs can induce a T-cell response under 
appropriate conditions. In a pig study, intracardiac 
allogeneic porcine MSCs elicited an immune response 
despite their low immunogenic profile in vitro[66]. 
This suggests that the in vivo characteristics of 
allogeneic MSCs might differ and emphasizes the 
importance of pursuing research both in vitro and in 
vivo. More specifically, allogeneic MSCs have been 
shown to induce immunogenicity, which limited 
their long term benefits for myocardial repair[22]. 
The authors of this study concluded that the long-
term ability of allogeneic MSCs to preserve function 

in the infarcted heart is limited by a biphasic immune 
response whereby these cells transit from an immune 
privileged state to an immunogenic state after 
differentiation. We believe that not only the cell type 
but also the injection site is an important factor for 
immunogenicity. 

To determine the potential for the biodistribution 
of gene-modified cells, the FDA recommends 
intravenous administration in an animal study to 
assess systemic distribution and persistence of 
the cells. Transduced genes can be the target for 
determining the distribution in cell-mediated gene 
therapy. After a single intravenous administration, 
the major organs should be checked to review the 
clearance of the cells for at least 30 d and for up 
to three months after injection. At this stage of 
preclinical development, the maximum tolerated 
dose should be calculable[67]. For safety and efficacy 
tests in animals, it is the standard practice to 
perform testing in two animal species. Clinical and 
histological analyses are included among the safety 
and efficacy tests, and treatment-related and dose-
related toxicities can be assessed.

Single and multiple dose toxicity testing with up 
to a 1-year follow-up period may be required de­
pending on the nature of the disease and the mode 
of treatment. The no-observed-adverse-effect level 
can be evaluated with these studies[68]. This can 
be defined as the highest experimental point that 
is without adverse effects, although it does not 
address risk based on toxicologically relevant effects 
nor does it consider the progression of effects with 
respect to the duration or dose. In characterizing 
cell lines, the FDA may request tumorigenicity 
testing in accordance with the “Points to Consider in 
the Characterization of Cell Lines Used to Produce 
Biologicals” guidelines. Further studies of gene-
modified cells may be recommended to assess the 
potential for these cells to adversely differentiate 
for 6 wk or up to 6 mo. Additional studies can be 
requested depending on the characteristics of the 
treatment modality. For allogeneic cells, studies to 
determine immunogenicity are required and may 
include assessing the HLA antigen expression by the 
cells, anti-HLA antibodies, the T cell response and 
multiple cytokines in animals and/or humans.

TUMORIGENICITY
Karyotype analysis by using chromosome banding 
is the standard method for identifying numerical 
and structural chromosomal aberrations. A novel 
karyotyping technique, termed spectral karyotyping, 
was developed to increase the sensitivity of karyo­
typing[69]. After reports of problems with viral vectors 
in gene therapy[70,71], this karyotyping issue becomes 
important in the cell-mediated gene therapy field. 
The FDA had concerns regarding injecting cells 
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with chromosomal abnormalities in human clinical 
trials[72,73]. This concern arose as a result of the leuk­
emia observed in the clinical trial of X-SCID patients. 
Oncogenesis or tumorigenicity has been considered 
a clinical hurdle for pluripotent stem cell therapies 
by certain authors[74,75]. These authors identified the 
seven risks of iPS cell therapy: integration of the 
gene into the host cell, chromosomal damage, clonal 
selection, incomplete programming, failure to silence 
pluripotent networks, DNA damage during cell culture 
and aberrant regulation of the imprinting process[76]. 
Adeno-associated virus was considered a relatively 
safe vector, but several authors still consider that this 
vector can induce chromosomal abnormalities[77,78]. 
For cells in which there is a karyotyping change after 
transfection[79], the FDA recommends rendering the 
cells replication incompetent (e.g., via irradiation) 
prior to their being used in a clinical setting.

In 2003, one of the most successful, problematic 
and influential cases of gene therapy was reported: 
LMO2-associated clonal T cell proliferation in two 
patients after gene therapy for SCID-X1[4,80]. The 
authors previously showed the correction of X-linked 
severe combined immunodeficiency in 9 out of 10 
patients by using retrovirus-mediated gene transfer 
to autologous CD34+ bone marrow cells. However, 
3 years after this gene therapy, uncontrolled, 
exponential clonal proliferation of mature T cells 
occurred in two patients. This incident was reported 
as an occurrence of leukemia following gene ther­
apy[81]. Although these patients overcame the 
problem, the impact of this incident was sufficient to 
change the arena in terms of regulation, investment 
and research effort. Baum et al[38] (2003) reviewed 
the side effects of this technology that are related to 
target cell manipulation, vector production, transgene 
insertion and expression, selection procedures for 
transgenic cells and immune surveillance. This 
unfortunate leukemic side effect of gene therapy can 
be used as a learning tool for developing safer, more 
effective gene therapies in the future. 

To overcome these potential side effects of gene 
therapy, many possible solutions have been dev­
ised[17,82]. Chromosomal insulators, co-transfection 
of suicide genes under control of an inducible pro­
moter, conditional expression of the transgene only 
in appropriate target cells, targeted transduction, 
cell type specific expression, targeted local admi­
nistration, splitting of the viral genome, and site-
specific insertion of the retroviral vector have all been 
proposed. A global iPS cell library has been proposed 
to preselect the donor genotype for immunological 
matching. This approach was proposed for immune 
compatibility[83], and similar approaches to reducing 
the potential for tumorigenicity can be devised. 
Individual cell lines that have undergone insertion 
site[84] and gene expression analyses and have 

otherwise been evaluated for tumorigenicity and 
determined to be non-tumorigenic can be identified 
and used for other clinical trials. To reach this goal, 
more clinical and in vitro and in vivo non-clinical data 
should be generated.

MECHANISM OF ACTION AND 
BIOMARKER
Some mesenchymal stem cell populations are rela­
tively easy to harvest: for example, bone marrow 
MSCs. However, clinical application of these cells 
without preclinical evidence of efficacy and safety 
is unacceptable and will delay the development of 
clinically useful therapies[16]. In particular, we need to 
better understand the mechanisms of action of stem 
cells after transplantation and learn how to control 
stem cell proliferation, survival, migration, and differ­
entiation in pathological environments[33]. Stem cell-
based approaches have received much hype as poten­
tial treatments for neurodegenerative disorders. 
Indeed, they showed that transplantation of stem 
cells in an animal model of neurodegenerative disease 
can improve function by replacing lost neurons and 
glial cells and by mediating remyelination, trophic 
actions and modulation of inflammation. However, 
a clear understanding of the mechanism of action 
and a description of a biomarker for demonstrating 
efficacy should be devised for use in clinical trials. 

Proposals submitted to the FDA for MSC-based 
products are undergoing a rapid expansion and 
are characterized by increased variability in donor 
and tissue sources, manufacturing processes, 
proposed functional mechanisms and characterization 
methods[85]. Mendicino et al[85] attempted to elucidate 
the FDA’s current perspective on the characterization 
of MSC-based products for clinical trials. The FDA 
proposed to characterize cell surface markers for IND 
applications of MSC-based products. Additionally, 
they found significant heterogeneity in the description 
of MSC bioactivity characterization in situations in 
which a candidate marker for a given assay has been 
defined. It remains unclear which particular set of 
markers will be sufficient to describe this complex 
and heterogeneous product class. Markers that can 
predict potential therapeutic benefit may allow the 
correlation of MSC characterization data with clinical 
data as they become available. For iPS cells, it can 
be more complicated.

iPS cells have been enthusiastically presented as a 
tool for aiding drug discovery by drug discoverers and 
commercial reagent and service providers alike[86]. 
The future trend for research in this area relates 
to the maintenance of pluripotency and cellular 
reprogramming[87]. To bring a product to the clinic, 
licensing, intellectual property and legal issues are 
also important. At this time, there may not be enough 
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information for financial and business development 
professionals to evaluate the marketability of these 
products. Issues with developing cellular products 
and related assay development are only some of the 
challenges that are faced when integrating iPS cells 
into drug discovery. However, the potential for these 
cells to markedly improve the symptoms of patients 
motivates those involved in drug discovery to invest 
time and money to advance this technology.

MANUFACTURING OF CELL PRODUCTS
One of the hurdles limiting the development of 
cellular therapies is the difficulty of cell expansion 
and the mass production required for a commercial 
product. The manufacturing technology for these 
products has developed in parallel with research on 
these products. Since the initial reports of the use 
of disposable bioreactors for cell culture that use 
wave-induced agitation[88,89], many innovations in 
single-use bioreactors have been reported[90]. The 
technology ranges from 175 cm2 tissue culture flasks 
to methods for scalable expansion of the cells[91]. 
Routine commercial and clinical applications of 
human cells and their progeny require increasing cell 
quantities that cannot be provided by conventional 
adherent culture techniques. Straightforward protocols 
for the expansion of undifferentiated ESC and iPS 
cells in suspension culture have been developed and 
reported. For ESCs, different methods for expansion 
to improve the culture conditions have been evalu­
ated[92]. A scalable GMP-compliant suspension system 
for human ESCs was reported by Chen et al[18,93]. 
This suspension culture system provides a powerful 
approach for scaling-up the expansion of hESCs 
under defined, serum-free conditions for clinical and 
research applications[94]. 

Disposable bioreactors are already widely accepted 
and in use for protein manufacturing[92,95]. Disposable 
components and systems are increasingly favored, 
both for improved process reliability and for the 
economic advantage they offer. For this reason, 
many biotech producers of protein molecules are 
moving to disposable bioreactor modules that are 
pre-sterilized and meet the applicable regulatory 
requirements. In 2010, Eibl et al[96] published a 
paper regarding disposable bioreactors, including 
the current state-of-the-art and recommended 
applications in biotechnology. In their paper, they 
provided a summary overview of the disposable 
bioreactors that were commercially available and 
described the domination of wave-mixed, orbitally 
shaken and stirred disposable bench top systems. 
They concluded that these novel systems are a viable 
alternative to traditional cell culture bioreactors at 
the bench top scale.

In 1997, Genzyme gained approval for autolo­
gous chondrocyte transplantation. Although this 
technology was not a commercial success, it fuel­

ed the development of mass culture methods for 
chondrocytes. Not only have chondrocytes been 
used for the regeneration of cartilage in the knee 
of patients[97], but they have also been used for 
intervertebral disc regeneration[98]. To expand these 
cells for commercial usage, chondrocytes have 
been cultured and expanded in a microcarrier sys­
tem[60,99,100]. They investigated human chondrocyte 
expansion in four macroporous gelatin microcarriers 
using two manufacturing processes that differed 
with respect to the amount of emulsifier used during 
the initial preparation and the gelatin cross-linking 
medium. The authors observed a strong chondrocyte 
donor effect during the initial expansion phase. The 
final cell yield differed significantly between the 
microcarriers, and the result indicated that man­
ufacturing differences affected chondrocyte densities.

For iPS cells, large-scale culture relies on the 
combined use of multiple growth components, 
including media containing various growth factors, 
extracellular matrices, 3D environmental cues and 
modes of multicellular association[18]. Chen et al[18] 
describe the criteria, considerations and suggestions 
for achieving optimal iPS cell growth. 

RELEASE TEST AND QUALITY CONTROL
As for chemical drugs, biological drugs should be 
consistent, active, pure, toxin-free and stable. 
Growth, harvesting and distribution into vials of cells 
should be conducted in a controlled GMP environment 
(Table 2). Throughout the manufacturing process, 
in-process and release testing should be performed 
to ensure that each batch of product is safe and 
consistently meets the criteria for identity, purity 
and potency prior to administration to humans. 
The characteristics, viability and potency of the 
cells should be evaluated. The identity of the cells 
can be defined by morphologic examination and 
by markers of specific functions. For example, 
Type II collagen and GAG production are relevant 
criteria for cartilage cells. Techniques such as immu­
nohistochemical staining and RT-PCR are also good 
tools for this purpose. Cell potency can be measured 
by a quantitative analysis such as ELISA for specific 
therapeutic protein production, or by other product 
specific assays depending on the therapeutic me­
chanism. Cell viability and proliferation can be 
determined by specific staining (e.g., tryptophan 
blue), MTT assay and/or by automated methods 
using fluoroscopy. For gene-modified cells generated 
with a viral vector, replication-competent retrovirus 
detection may be required as a safety evaluation 
(Table 3). 

The cells should also be tested for contamination 
by checking sterility, detecting mycoplasma and 
measuring endotoxin levels. The long-term stability 
of cells should also be determined under the con­
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ditions of storage, use and shipping. This may 
require testing under different conditions such as 
room temperature, refrigeration, and frozen (at 
temperature ranges corresponding to dry ice and the 
vapor phase of liquid nitrogen storage).

IN THE CLINIC
One of the first routes of delivery of cellular therapy 
was intra-articular because of some inherent adv­
antages[101,102]. Some of the benefits of local deli­
very over systemic delivery include increased bio­
availability, fewer adverse events, and lower total 
drug costs. Additionally, the intra-articular injection 
of cell therapies has advantages over intravenous 
administration in that systemic exposure is reduced 
and exposure to the antigen surveillance system is 
limited[103]. For these reasons, we have developed 
a cell mediated gene therapy for degenerative joint 
disease[104-106] and are currently conducting clinical 
trials with normal and engineered chondrocytes 
(called TG-C) injected into the knee joint for the 
treatment of osteoarthritis (Figure 1). 

We are currently completing a Phase Ⅱ study 
entitled ‘A Phase Ⅱ Study to Determine the Efficacy 
and Safety of Allogeneic Human Chondrocytes 
Expressing TGF-β1 in Patients with Grade 3 Chronic 

Degenerative Joint Disease of the Knee’ in the United 
States. Phase Ⅲ testing of this product is currently 
ongoing in South Korea. To develop this product for 
clinical use, it was necessary to establish the stability 
of the product under frozen storage conditions and at 
room temperature for injection. The temperature of 
the product as it was transferred from manufacturing 
to storage to the clinic and within the clinic was 
carefully controlled and monitored. To date, more 
than 220 patients have been injected with TG-C. 
A schematic diagram of the manufacturing and 
injection processes is presented in Figure 1. The 
gene-modified cells in TG-C are irradiated to render 
them replication incompetent. These cells therefore 
produce the active TGF-β protein for only two weeks. 
These irradiated cells also produce Type-Ⅱ collagen 
and glycosaminoglycan (GAG) by an autocrine mode 
of action and induce normal chondrocytes to produce 
Type II collagen and GAG by a paracrine mode of 
action in response to the TGF-β protein produced. 
The releasing tests during the manufacturing of TG-C 
are described in Table 4.

As TG-C is an allogeneic product; all patients 
in this study are being monitored for an immune 
response. To date, no immune response or serious 
adverse events attributable to TG-C have been 
observed. The decreased HLA-type antigenicity of 
the cells and the relatively immune privileged nature 
of the intra-articular injection site are thought to be 
contributing factors to the lack of immune response. 

CONCLUSION
Our understanding of the nature of cell-based pro­
ducts and the diseases that they are intended to 
treat is being increased empirically: that is, through 
the scientific process of trial and error. Human clin
ical trials with cutting edge technology and novel 
products are part of that process and accordingly 
have their failures and successes, which are necessary 
if we are to learn and improve our understanding. 
Industry’s perspective of cell-based therapy has 
changed in response to scientific developments and 
discoveries[41]. Although there is a long way to go, 
a tremendous amount of clinical data have already 
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  Category Test Key measurement

  Sterility Sterility Microbiological testing
Mycoplasma After pooling of cultures but before washing

  Identity Identity Cell identity and assess heterogeneity
  Purity Impurity Residuals contaminants

Endotoxin Contaminants during the process
  Potency Specific to 

product 
Relevant function of the cells

  Other 
  testing

General safety Cellular therapy products are exempt
Viability Generally > 70%

Cell number Minimum and maximum cell number
  Title 21 of the code of federal regulations applied to cell therapy products
     The tissue rules: Part 1271
     The biologics requirements: Part 600 and 610
     The investigational new drug requirements: Part 312
     The drug manufacturing requirements: Parts 211 and 212

Table 3  Suggested release tests advised by Food and Drug 
Administration for cell product

Noh MJ et al . Cell mediated gene therapy

  Cells/lot (billions) Cell culture Harvest Filling Freezing

  1 T175 flask or hyperflask, 10 layer cell factory Bucket centrifugation Hand/manual fill Bench top control rate 
freezer

  10 10 layer cell factory, hyperstack-12, Xpansion 
systems

Bucket centrifugation Semi automated fill ma-
chine or hand/manual fill

Bench top control rate 
freezer

  50 Hyperstack or Xpansion, cell cube Tangential flow filtration, 
continuous centrifugation

Automated fill machine Large scale control rate 
freezer

  100 Factory automation of Xpansion or Hyper-
stack technologies 

Tangential flow filtration of 
continuous centrifugation

Automated fill machine Large scale control rate 
freezer

  500 Bioreactors using microcarriers Continuous centrifugation Automated fill machine Scale out large scale con-
trol rate freezer

Table 2  Different types of production methods based on cells needed per batch 



been generated. In this review, we summarized the 
ongoing scientific effort to move cell mediated gene 
therapy into the clinic. While some may still believe 
that such therapy is far from the clinic, it is our belief 
that now is the time for physicians to understand and 

embrace this new technology. 
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  Test Method Specification

  Release tests and specifications for hChonJ cell
     Identification
        Cell growth and morphology Visual (test code 30117) Fibroblast-like: spindle shaped/bipolar or 

multipolar cells
     Viability Trypan blue dye exclusion > 70%

(test code 30458)
     Mycoplasma 1993 Points to consider (test code 30055) Negative 
     RAP test In vivo and ELISA (test code 30163) Negative
     Sterility (direct inoculation method) 21 CFR 610.12 (test code 30744) Negative
     Endotoxin LAL (test code 37653) < 5 EU/mL
  Release tests and specifications for hChonJb#7 Cell
     Identity Epithelial-like: fried egg or polygonal-shaped 

appearance        Cell growth and morphology Visual (test code 30117)
        Type II collagen assay RT-PCR (test code 30412) Type II collagen present
        TGF-β1 presence PCR (test code 30959) TGF-β1 present
     Potency (TGF-β1 assay) ELISA (test code 30444) 1-50 ng/105 cells/24 h
     Viability Trypan blue dye exclusion (test code 30458) > 70%
     RCR Co-culture of end of production cells (test codes 30628) Negative

Supernatant amplification (test code 30633) Negative
     Mycoplasma 1993 points to consider (test code 30055) Negative
     Rat antibody production In vivo and ELISA (test code 30163) Negative
     Endotoxin LAL (test code 37653) < 5 EU/mL
     Sterility 21 CFR 610.12 (test code 30744) Negative

Table 4  TG-C release test

Cells from 
hChonJ WCB

Cells from 
hChonJb#7 WCB

Culture hChonJ Culture hChonJb#7

Cell harvest Cell harvest

Cryopreserve Cryopreserve

Release testing In-process testing

Irradiate at 70 Gy

Release testing

Ship to clinical site

Mix at 3:1 ratio

Prepare protocol 
Specified dose (cells/mL) 

and samples

Figure 1  Schematic figure of TG-C manufacturing. WCB: Working cell bank.

RCR: Replication competent retrovirus; LAL: Limulous amoebocyte lysate; RT-PCR: Reverse transcription polymerase chain reaction; CFR: Code of federal 
regulation; RAP: Rat antibody production.
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Abstract
The advent of next generation sequencing (NGS) tech

niques has greatly simplified the molecular diagnosis and 
gene identification in very rare and highly heterogeneous 
Mendelian disorders. Over the last two years, these 
approaches, especially whole exome sequencing (WES), 
alone or combined with homozygosity mapping and 
linkage analysis, have proved to be successful in the 
identification of more than 25 new causative retinal 
dystrophy genes. NGS-approaches have also identified 
a wealth of new mutations in previously reported genes 
and have provided more comprehensive information 
concerning the landscape of genotype-phenotype corre
lations and the genetic complexity/diversity of human 
control populations. Although whole genome sequencing 
is far more informative than WES, the functional meaning 
of the genetic variants identified by the latter can be 
more easily interpreted, and final diagnosis of inherited 
retinal dystrophies is extremely successful, reaching 
80%, particularly for recessive cases. Even considering 
the present limitations of WES, the reductions in costs 
and time, the continual technical improvements, the 
implementation of refined bioinformatic tools and the 
unbiased comprehensive genetic information it provides, 
make WES a very promising diagnostic tool for routine 
clinical and genetic diagnosis in the future.

Key words: Next generation sequencing; Identification 
of novel causative genes; Inherited retinal dystrophies; 
Genetic diagnosis; Whole exome sequencing

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This review focuses on the application of next 
generation sequencing (NGS)-based methods [whole 
genome sequencing, whole exome sequencing (WES), 
targeted exome sequencing] for genetic diagnosis and 
novel gene identification in hereditary retinal dystro
phies. Advances over the last two years concerning NGS 
accuracy, reliability, development of bioinformatics tools, 
together with the drop in costs and time required for the 
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analysis have allowed thirty novel genes to be identified, 
plus a large number of new mutations in previously 
reported genes. NGS techniques (particularly WES) 
are revolutionizing genetic diagnosis and have clear 
applications in clinical practice, helping to pave the way 
for personalized medicine. Present challenges and future 
directions are also discussed.

Marfany G, Gonzàlez-Duarte R. Clinical applications of high-
throughput genetic diagnosis in inherited retinal dystrophies: 
Present challenges and future directions. World J Med Genet 
2015; 5(2): 14-22  Available from: URL: http://www.wjgnet.
com/2220-3184/full/v5/i2/14.htm  DOI: http://dx.doi.org/10.5496/
wjmg.v5.i2.14

INTRODUCTION
Inherited retinal dystrophies (IRDs) consist of a group 
of highly heterogeneous disorders at the genetic and 
clinical level. Until recently, the ever increasing number 
of causative genes (more than 200 so far) and mutations 
(more than 5000) (https://sph.uth.edu/retnet/) posed an 
enormous challenge for molecular diagnosis and limited 
the effectiveness of conventional mutational screening. 
However, the advent of next generation sequencing 
(NGS) technologies has completely revolutionized 
genetic diagnosis[1,2]. Since the first application of exome 
sequencing using NGS to identify the causative gene in 
a very rare autosomal recessive disorder[3], more than 
150 new Mendelian disease genes have been reported 
using similar approaches[4]. Focusing on IRD genes, NGS 
approaches [whole exome sequencing (WES), or whole 
genome sequencing (WGS)] have rapidly identified new 
causative genes, increasing the success rate of molecular 
diagnosis from 40% to almost 80%, depending on the 
number of cases analysed and the informativity of the 
family[5-7]. It is foreseeable that NGS-based methods 
will be the technique of choice for future routine DNA 
diagnosis in IRDs and similar heterogeneous Mendelian 
disorders, since accuracy and efficiency increase while 
costs and time requirements drop continually[8,9].

NGS-BASED DIAGNOSIS
The challenge posed by the molecular diagnosis of hetero
geneous disorders prompted researchers to devise novel 
conceptual and technical approaches to help clinicians 
classify diseases, inform patients and families, and 
offer genetic counselling and prenatal diagnosis. The 
approaches they devised also provide the basis for a 
more efficient molecular-based therapy. Since the draft 
of the human genome was published, several high-
throughput techniques have been devised. In the field 
of IRDs, commercially available microarrays for direct 
mutational screening (http://www.asperbio.com/asper-
ophthalmics), customized resequencing microarrays 

(restricted to several large diagnostic centres/units)[10] and 
whole genome or targeted gene SNP genotyping arrays 
for linkage analysis (cosegregation and homozygosity 
studies) have paved the way either for mutation 
screening in reported known genes, or for the highlighting 
of new loci for candidate causal genes[11]. Diagnostic 
efficiency ranged from 15%-44% in direct mutation 
screening microarrays-depending on the pathogenic 
allelic frequencies in the population, to 30%-70% for 
resequencing microarrays-depending on the number 
of genes included and the sequence quality[12]. Indeed, 
direct analysis of known mutations and genes requires 
constant updating, and even so, many mutations remain 
undetected because they are private[13]. Moreover, SNP 
genotyping for homozygosity mapping and cosegregation 
analysis has become a very informative genetic tool in 
many cases[14,15].

WES EFFICIENCY IN THE DIAGNOSIS OF 
MENDELIAN DISORDERS
A survey of the IRD (syndromic and non-syndromic) 
genes identified in the last two years (up to 29) showed 
that all the approaches used to identify them involved 
NGS. The success of NGS as a diagnostic tool is due to: 
(1) the power of an unbiased genome scale analysis; 
(2) the increasing number of databases containing 
information on SNP allelic frequencies in different 
populations, which allows rare presumptive mutations 
to be discriminated from frequent genetic variants; 
(3) the relative simplicity of the currently standardized 
protocols; (4) powerful bioinformatics analysis; and (5) 
the fact that the data gathered is useful on its own.

Nonetheless, additional genetic information is still 
instrumental to increase the yield of molecular diagnosis 
since, despite the power of WES, gene identification 
in recessive IRDs (24) is far more successful than it is 
in dominant cases (5) (Table 1). The difference in this 
outcome is to be expected, since finding the relevant 
causative mutation in heterozygosis amidst the great 
number of genetic variants identified by WES (more 
than 20.000 on average) is not a straight-forward 
endeavour[16]. In contrast, the requirement of a double 
heterozygous mutation (or even homozygosis) in the 
same gene for recessive cases, greatly diminishes the 
noise associated with such massive collection of data, 
and thus the number of putative causative genes, 
after the data has been filtered. While WES alone has 
pinpointed the causative gene in around 30% of the 
recessive IRD cases (years 2013-2014), adRD causative 
genes have proved to be more difficult to identify and 
require a combination of genetic approaches, such as 
linkage analysis, deletion mapping and targeted capture 
of candidates, to eventually single out the pathogenic 
mutation in a novel gene (10%)[17]. The informativity 
of these genetic approaches has also greatly favoured 
gene identification in recessive cases (60%)[9] (Table 1). 

15 May 27, 2015|Volume 5|Issue 2|WJMG|www.wjgnet.com



WGS VS WES VS TARGETED EXOME 
SEQUENCING IN ROUTINE DIAGNOSIS
At present, many groups rely on NGS-based techniques 
for genetic diagnosis of IRDs (and other Mendelian 
disorders)[18]; WES is the most common of these approa
ches (Table 1). Nonetheless, a few attempts using WGS 
or targeted exome sequencing have also been reported. 
In the latter, long polymerase chain reaction amplimers 
spanning the exons of reported RP genes[17] or lately, 
customized exome capture of the coding exons of a 
selected set of genes, have been developed with a wide 
range of diagnosis success (40%-80%)[19-22]. Customized 
approaches allow different degrees of refinement and are 
dependent on the optimization of the techniques and the 
prioritization of the type of mutations to be identified. For 
instance, if copy number variants (CNVs) are suspected, 
the coverage and high quality of the reads constitute 
one focus of improvements[23]. Nonetheless, the cost of 
customized capture arrays for a list of causative disease 
genes is still much higher than that of conventional 
capture arrays for WES, and the genetic information 
provided is limited to the candidates analysed. Mutations 
in non-selected or previously unreported genes will 

remain undetected. WES is becoming the most popular 
choice, particularly since the reliability of the technique 
and the quality of the analysis software have greatly 
increased (though there is still room for improvement), 
and microRNAs and transcript untranslated regions are 
also included in some exon capture array versions[24]. 
Overall, the reported success rate for IRD diagnosis in 
randomly selected familiar and simplex cases account for 
74%-80% of the mutation pool in some studies[25].

WGS for the molecular diagnosis of retinal dystrophy 
(RD) has been attempted with moderate success (56% 
of molecular diagnosis and the identification of a new 
causative gene)[6]. The main reason behind this massive 
genome sequencing approach was to analyse coding and 
noncoding regions in order to detect structural and copy 
number variants and to evaluate highly polymorphic 
SNPs. Although the WGS reported in this work facilitated 
the detection of two structural pathogenic variants (which 
would probably have escaped detection with WES), the 
fact that no pathogenic mutation in the large noncoding 
fraction of the genome was identified, and that 7 out of 
16 patients remained undiagnosed after the considerable 
effort required to screen the whole genome, pose some 
questions about the suitability of WGS in routine RD 
genetic diagnosis.
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Gene Retinal phenotype Methodological approach

ABCD5 Recessive CRD, spastic parapesis, white matter disease Homozygosity mapping combined with WES[25]

ADAMTS18 arRD early onset Homozygosity mapping combined with WES[43]

ARLBP2 arRP Homozygosity mapping combined with WES[44]

BBIP1 arBBS WES[45]

C12orf65 Recessive optic atrophy, spastic paraplegia and neuropathy Linkage mapping WES[46,47]

C21orf2 Recessive CRD Homozygosity mapping combined with WES[25]

CSPP1 Recessive JS WES[48-50]

DHX38 arRP (early onset with macular coloboma) Homozygosity mapping combined with candidate gene approach[51]

DTHD1 Recessive LCA, myopathy Homozygosity mapping combined with WES[25]

EMC1 arRP Homozygosity mapping combined with WES[25]

GDF6 arRD Candidate gene sequencing[52] 

GPR125 arRP Homozygosity mapping combined with WES[25]

HK1 adRP, nonspherocytic hemolytic anemia, and neuropathy Linkage mapping and WES[53]

IFT27 arBBS Homozygosity mapping combined with candidate gene approach[42]

IMPG1 Dominant MD Linkage mapping
Recessive MD WES and candidate gene sequencing[54-56]

ITM2B Dominant RD, dementia WES combined with linkage mapping[57]

KIAA1549 arRP Homozygosity mapping combined with WES[25]

KIZ arRP, arCRD WES[58]

LRIT3 arCSNB WES[59]

MVK arRP, recessive mevalonic aciduria WES[60]

NEK2 arRP WGS[6]

NR2F1 Dominant optic atrophy, intellectual disability Deletion mapping
WES and deletion mapping[61,62]

PCYT1A arCRD with skeletal disease WES and targeted candidate gene sequencing[63,64]

POC1B Recessive CRD WES[65]

PRPF4 adRP Targeted capture NGS[41]

RAB28 arCRD Homozygosity mapping combined with WES[66]

RDH11 arRP WES[67]

SLC7A14 WES[68]

TUB arRD with obesity Homozygosity mapping combined with WES[69,70]

TTLL5 Recessive cone and CRD WES[71]

Table 1  List of retinal dystrophy causative and candidate genes identified in 2013-2014 and the strategy of identification

ar: Autosomal recessive; ad: Autosomal dominant; CRD: Cone-rod dystrophy; RD: Retinal dystrophy; RP: Retinitis pigmentosa; BBS: Bardet-Biedl 
syndrome; JS: Joubert syndrome; LCA: Leber congenital amaurosis; MD: Macular dystrophy; CSNB: Congenital stationary night blindness; WES: Whole 
exome sequencing; WGS: Whole genome sequencing; NGS: Next generation sequencing.
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human populations provides very valuable clues to help 
successfully identify pathogenic genes[25,29], particularly 
in highly consanguineous cohorts where homozygosity 
by descent is suspected. Current data indicates that this 
assumption should be extended even in the absence 
of a positive family history, where both parents may 
be heterozygous for the same pathogenic allele. Not 
only may the unsuspected homozygosity of pathogenic 
alleles reveal a founder effect-which is informative 
in itself- but it is also one of the most useful genetic 
assumptions that can lead to the identification of novel 
causative alleles after WES[25,30]. 

Notably, the wealth of genome information gathered 
by WES suggests that control individuals carry 10-20 
pathogenic recessive mutations causative of Mendelian 
disorders[3]. RD stands out as one of the most highly 
genetically heterogeneous monogenic disorders, and 
when we focus on the IRD causative genes-even when 
only null alleles are considered-22% of the control 
population (1 in 4-5 individuals) is heterozygous for at 
least one pathogenic mutation[31]. This high prevalence 
is still an underestimate because missense and splicing 
mutations have not been included, and neither have 
all the IRD genes been identified, which overall would 
probably account for 1 in 2 control individuals carrying 
a pathogenic recessive RD mutation. Such a high 
frequency of unaffected carriers has an important 
impact on genetic diagnosis since: (1) consanguinity 
would increase the risk of blindness in the offspring; (2) 
the comparison of a newly identified genetic variant with 
control individuals in databases to assess pathogenicity 
could be misleading; and (3) many patients would by 
chance bear an additional pathogenic allele besides 
the causative mutations, which would hamper the 
molecular diagnosis. This last point would lead to 

PRESENT LIMITATIONS OF WES IN 
GENETIC DIAGNOSIS
Although NGS-based methodologies allow comprehensive 
genomic analysis on an unprecedented scale, none of 
them is free from technical constrains. The conventional 
WES diagnostic strategy is based on exon capture by 
nucleic acid hybridization. Even though continuous 
improvements to the method have continually been 
implemented (capture optimization, and higher coverage 
and sequencing accuracy), not all the pathogenic muta
tions can be detected[26]. One main issue that needs to 
be addressed without delay is the implementation of 
unified bionformatics tools for accurate mapping and 
reliable variant-calling software, particularly for small 
indels (insertions/deletions) and CNVs[8,27]. Other pending 
issues include the detection of mutations in genomic 
regions that escape the capture methods currently 
available, such as small exons, regulatory regions, deep 
intronic variants and chromosomal structural variations 
that do not affect exons (inversions and deletions) (Table 2).

When the main focus is basic research and the 
analysis is restricted to a small genomic region high
lighted by linkage or homozygosity, custom targeted 
genome re-sequencing is a viable alternative to WES[22,28]. 
However, for daily routine diagnosis, standard WES 
offers an appealing compromise between cost, time, 
comprehensiveness of data processing and efficiency. 

UNEXPECTEDLY HIGH NUMBER OF IRD 
RECESSIVE PATHOGENIC VARIANTS IN 
THE CONTROL POPULATION
Knowledge of the underlying genetic structure of 

Genetic variants Technical restrains Alternative approaches

MicroRNAs and lncRNAs Not sequenced Inclusion in the capture
Deep intronic Not sequenced RNASeq

WGS
Targeted re-sequencing

Variants in regulatory regions Not sequenced WGS
Targeted re-sequencing

Large deletions Mostly undetected Detectable in homozygosis 
In heterozygosis can be detected in comparison with controls

 (if high coverage)
WGS

Targeted re-seq 
CNVs Mostly undetected High coverage

WGS
Targeted re-seq

CGH 
Pathogenic trinucleotide repeats Short reads not covering the whole expansion Triple repeat based PCR
Structural chromosomal variants Undetectable FISH

WGS
Targeted Long PCR coupled to NGS

Aneuploidies Undetectable Conventional cytogenetics FISH
WGS

Table 2  Possible genetic cause in undiagnosed patients after whole exome sequencing

lncRNAs: Long non-coding RNAs; CNVs: Copy number variants; RNASeq: RNA sequencing; WGS: Whole genome sequencing; CGH: Comparative 
genome hybrdization; PCR: Polymerase chain reaction; FISH: Fluorescent in situ hybridization; NGS: Next generation sequencing.
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false assumptions of dominant effects of recessive 
alleles, and explain compound heterozygosis in some 
consanguineous pedigrees, and open the can of worms 
of digenic inheritance[31]. In addition, reports of the 
synergic addition of pathogenic alleles in families with 
several phenotypes are now emerging, which would 
seem to call for a new conceptual molecular framework 
for genotype/phenotype correlations. 

Another issue revealed by WES when trios (two 
parental samples in addition to the patient sample) are 
analysed is the unexpectedly high frequency of de novo 
mutations, which strengthens the case for reconsidering 
dominance along side recessivity in simplex cases[22].

PENETRANCE AND EXPRESSIVITY 
REVISITED: MODIFIER GENES AND WES
Incomplete penetrance and variable expressivity are 
two genetic phenomena frequently associated with 
human disease, mainly due to additional genetic factors 
influencing the final phenotype. From the molecular 
point of view, genes and proteins interacting and/or 
regulating the function of the causative gene exert a 
modifying effect, which could enhance or diminish the 
pathological outcome in patients bearing the same 
causative mutation. Identifying the modifier genes has 
been, and still is, one of the most important challenges 
in clinical and genetic diagnosis. WES is instrumental 
in unveiling modifier alleles by direct comparison of 
the DNA sequences of affected members of the same 
family, frequently displaying different phenotype 
severity[6,28,32]. 

As there is a continual increase in WES-generated 

data on genetic variants, the pool of modifier genes 
likewise grows and diagnostic inferences will become 
more accurate, thus providing the grounds for a more 
precise prognosis.

EMPOWERING GENETIC DIAGNOSIS 
OF IRDS BY WES: CANDIDATE 
PRIORITIZATION CRITERIA, GENETIC 
INFORMATION AND INTERACTION 
NETWORKS
So far, NGS-based approaches have mostly been 
considered for the identification of causative genes in 
very rare Mendelian disorders when the gene is unknown 
or mutation screening involves a large number of genes 
and exons, as is the case of highly heterogeneous 
diseases. However, after progressive and substantial 
methodological refining, WES and other NGS-based 
techniques have leapt from bench to bedside, and are 
now feasible and attractive alternatives for routine 
diagnosis. They allow for comprehensive genomic scree
ning, are increasingly affordable and robust, and last but 
not least, the bioinformatics analysis is becoming more 
accurate and user-friendly (even though a common 
standard framework for downstream variant mapping 
and calling analysis is still lacking)[8,33].

Monogenic disorders caused by mutations in a 
major gene also will benefit from WES (NGS)-based 
diagnosis. The costs of Sanger sequencing of a large 
gene (e.g., ABCA4, CEP290, etc.) are no less than 
those of full exome sequencing (WES), but the benefits 
from the comprehensive information gleaned via the 
latter technique are far superior. To mention just a few: 
minor causative genes are included in the analysis, 
additional disease causing alleles in modifier genes will 
be also detected-and so their impact in the population 
genetic reservoir can be assessed; the molecular basis 
of rare clinical entities with ambiguous diagnosis can 
be identified; genotype-phenotype correlations will be 
more precisely defined; and genetic data on the patient 
drug response (pharmacogenetics) will be included. 
Indeed, the analysis of NGS-based data should be 
prioritized for the genes and variants that are most 
prevalent for a particular IRD and pattern of inheritance 
(for instance, in X-linked disorders) (Table 3). If no 
pathogenic variants are identified, the list of candidates 
should be expanded following prioritization criteria 
that include less frequent causative candidates for the 
same (or similar) phenotype, and finally, all the variants 
detected by WES under all possible assumptions of 
Mendelian inheritance should be considered[22,34]. This is 
particularly relevant in simplex cases and pedigrees with 
a small number of patients, where dominant de novo, 
X-linked or very rare recessive mutations should be 
carefully considered. In this context, exhaustive human 
gene mutation repositories will be extremely informative 
tools to perform a rapid screening of reported mutations 

Main candidate gene Disease

CNGB3, CNGA3 Achromatopsia
RHO adRP
VMD2 Best disease
CYP4V2 Bietti crystalline dystrophy
RDS/PRPH2 Central areolar choroidal dystrophy
CHM Choroideremia
LRPO5, FZD4, TSAPN12 Familiar exudative vitreoretinopathy
RDH5, RLBP1 Fundus albipunctatus
NR2E3 Goldman-Favre-Enhanced S-cone syndrome
CEP290 LCA
MFRP Nanophthalmia
NDP Norrie disease
SAG Oguchi disease
RS1 Retinoschisis
RECQL4 Rothmund-Thompson syndrome 
ABCA4, RDS/PRPH2 Stargardt disease
USH2A Usher syndrome
VCN Wagner syndrome 
RPGR XLCD, XLCRD
RPGR, RP2 XLRP, RP simplex

Table 3  List of prioritized candidates according to the clinical 
phenotype or X-linked pattern of inheritance

adRP: Autosomal dominant retinitis pigmentosa; LCA: Leber congenital 
amaurosis; XLCD: X-linked cone dystrophy; XLCRD: X-linked cone-rod 
dystrophy; XLRP: X-linked retinitis pigmentosa.
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and thus, simplify the genomic analysis[35].
Indeed, intersection with previous or parallel genetic 

analysis has been and still is instrumental in pinpointing 
pathogenic alleles. For instance, SNP genotyping 
microarrays (6K Illumina) for linkage or homozygosity 
studies (Table 1 and references therein), or SNP-based 
cosegregation chips[12] highlight the genetic loci where 
the gene/mutation identification efforts should be 
focused. This greatly simplifies matters and provides 
statistical support for the final molecular diagnosis. In 
fact, only one third of the novel IRD genes identified by 
NGS over the last two years (Table 1) were discovered 
without resorting to candidate prioritization using genetic 
data. 

TAKING ON THE FUTURE: PARTS LIST, 
MAP, DIAGNOSIS, THERAPY
How many novel IRD causative genes remain to be 
identified? Based on the latest NGS results where all 
new genes explain either rare syndromic disorders 
with an accompanying IRD phenotype or cases with 
private mutations affecting very few patients, it seems 
very unlikely that any novel gene will account for a 
substantial fraction of unassigned cases[6]. As most 
technical approaches do not cover the whole panoply 
of causative mutations, a percentage of mutations in 
already reported genes might have been overlooked. In 
fact, transcriptome analysis of healthy human retinas 
revealed more than one hundred previously unannotated 
genes, almost 30000 unreported exons (around a 3% 
increase) and over 20000 3’ and 5’ alternative splicing 
sites[36]. This unprecedented transcript diversity is a 
serious challenge for mutation identification, as these 
regions are not yet included in commercial exome 
enrichment kits and RNASeq of patient neural tissues is 
not feasible. Thus, optimization of molecular diagnosis in 
IRD demands, on the one hand, technical improvements 
for easy implementation and accuracy, and on the other, 
the widening of the genomic regions to include novel 
genes, exons and other regions of interest. 

The great wealth of data gathered by conventional 
as well as high-throughput approaches demands a 
framework based on systems biology[37]. To this end, 
unveiling the genetic networks underlying IRDs, although 
still fragmentary, is a valid approach. Ongoing efforts 
to integrate interactomes of photoreceptors[38-40] are 
beginning to show the first promising candidates[41,42]. 
Further work will allow the translation of this genetic 
information to the cellular and tissular contexts. Only a 
comprehensive view of the retinal pathways in health 
and disease can pave the way for effective therapies. 

Finally, although not the main aim of this review, we 
should not overlook that any genetic laboratory working 
on WES and WGS data should abide to strict ethical 
guidelines that concern incidental findings relevant to 
the patient’s health status but unrelated to the focus of 
the genetic testing. 

CONCLUSION
To sum up, the generalized implementation of NGS-
based analysis will foster more reliable genotype/
phenotype correlations and provide a more holistic 
view of the genetic factors that cause and modify the 
severity of the phenotype. Even though 100% diagnosis 
will not be reached soon and there are new challenges 
and questions to address, the comprehensive genetic 
data gathered by NGS will definitely help the clinicians 
and patients in securing diagnosis, improving prognosis 
and recommending therapy. It is foreseeable that in 
the near future, clinical management of the patient will 
become more personalized and thus more effective.
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Abstract
Over the past few years, many researchers have 
attempted to develop non-invasive prenatal testing 
methods in order to investigate the genetic status of the 
fetus. The aim is to avoid invasive procedures such as 
chorionic villus and amniotic fluid sampling, which result 
in a significant risk for pregnancy loss. The discovery 
of cell free fetal DNA circulating in the maternal blood 
has great potential for the development of non-invasive 
prenatal testing (NIPT) methodologies. Such strategies 
have been successfully applied for the determination of 
the fetal rhesus status and inherited monogenic disease 
but the field of fetal aneuploidy investigation seems to 
be more challenging. The main reason for this is that 
the maternal cell free DNA in the mother’s plasma is 
far more abundant, and because it is identical to half 
of the corresponding fetal DNA. Approaches developed 
are mainly based on next generation sequencing (NGS) 
technologies and epigenetic genetic modifications, 
such as fetal-maternal DNA differential methylation. 
At present, genetic services for non-invasive fetal 
aneuploidy detection are offered using NGS-based 
approaches but, for reasons that are presented herein, 
they still serve as screening tests which are not readily 
accessed by the majority of couples. Here we discuss 
the limitations of both strategies for NIPT and the future 
potential of the methods developed.
  
Key words: Next generation sequencing; Differential 
methylation; Epigenetics; Fetal aneuploidy; Methylation 
dependent immunoprecipitation; Non-invasive prenatal 
testing
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for many researchers. Different methodologies have 
been developed, mainly based on next-generation 
sequencing and epigenetic modifications. At present, 
non-invasive prenatal testing services are offered 
using next generation sequencing-based technologies 
which have great potential, but currently they present 
with certain limitations. Epigenetic approaches may 
overcome some of these limitations and seem to have 
promising potential for wider applications. 

Christopoulou G, Papageorgiou EA, Patsalis PC, Velissariou V. 
Comparison of next generation sequencing-based and methylated 
DNA immunoprecipitation-based approaches for fetal aneuploidy 
non-invasive prenatal testing. World J Med Genet 2015; 5(2): 
23-27  Available from: URL: http://www.wjgnet.com/2220-3184/
full/v5/i2/23.htm  DOI: http://dx.doi.org/10.5496/wjmg.v5.i2.23

INTRODUCTION 
Invasive procedures such as chorionic villus sampling 
(CVS) and amniocentesis are a prerequisite for the 
prenatal diagnosis of fetal chromosomal abnormalities, 
either by conventional and/or molecular fetal karyotyping, 
or other molecular cytogenetic methods. Although these 
approaches yield accurate results, the rate of pregnancy 
loss attributed to CVS or amniocentesis is estimated to 
be 1.0% to 2.0%[1]. This considerable procedure-related 
risk of pregnancy loss has motivated researchers to try 
to develop non-invasive approaches in order to provide 
safer healthcare service. 

Since the discovery that fetal cells circulate in the 
maternal blood during pregnancy[2], numerous resear
chers worldwide have put great effort towards exploring 
the possibility of non-invasive prenatal investigation 
of the fetal genetic constitution. Initially, the focus of 
investigation was on circulating fetal nucleated cells, 
where detection of fetal gender and aneuploidies was 
made possible, mainly by applying FISH subsequent to 
cell sorting[3-5]. Even though preliminary results were 
promising, the development of a commercially available 
application has failed to date, mainly due to certain 
inherent limitations of the method. Firstly, the rarity of 
fetal cells in the maternal circulation made it very difficult 
to isolate a satisfactory number for investigation[4-6]. 
Secondly, the poor quality of the isolated fetal cells 
made the application of FISH on the nuclei problematic, 
resulting in less reliable results. Most importantly, the 
observation that fetal cells may remain in the maternal 
circulation for several years after their release, presents 
a serious problem for non-invasive prenatal investigation 
of subsequent pregnancies[7,8]. Nevertheless, researchers 
have not given up this approach entirely and attempts 
are still being made to overcome limitations[9-13]. 

The discovery of cell free fetal DNA (cffDNA) in 
maternal plasma during pregnancy by Lo et al[14] in 
1997, gave rise to a whole new opportunity in the field of 

non-invasive prenatal testing (NIPT). Its origin is proven 
to be either trophoblastic or from embryonic cells in the 
maternal blood which have undergone apoptosis[15]. It 
has also been demonstrated that cffDNA is cleared from 
maternal plasma within a few hours after delivery[16], 
making its study specific to the current pregnancy. 
Although cffDNA is detectable from the early stages of 
pregnancy[17] and increases during its progression[18,19], 
it is demonstrated to account only for 3.0% to 6.0%[14,20] 

of total free DNA in maternal plasma. A more recent 
study utilizing microfluidics, re-estimated the cffDNA 
fraction to a median of 9.7% in the first trimester[21,22]. 
The relatively small amount of fetal DNA in maternal 
plasma presents one of the most serious technical 
challenges for whichever technology is implemented 
for investigation. Furthermore, the fact that fetal DNA is 
50% identical with that of the mother makes the atte
mpts for fetal aneuploidy testing even more challenging.

CURRENTLY APPLIED METHODS
During recent years independent teams from all over 
the world have focused on developing methods for NIPT 
using cffDNA, mainly testing for fetal aneuploidy[23]. 
Despite applying different strategies including SNP and 
allelic ratio analyses, none have managed to produce 
a widely available test, mainly because they depend 
on informative genotypes or fetal gender[24-26]. On 
the other hand, next-generation sequencing (NGS) 
technologies have made great progress in the field, 
resulting in commercially available NIPT services. In 
recent years, the use of commercially available tests 
for NIPT for trisomy 13, 18, 21 and sex chromosome 
aneuploidies has been introduced into routine antenatal 
care. Massively parallel direct sequencing reads from a 
tested chromosome are compared to others with the 
aid of sophisticated bioinformatics software, resulting 
in a relative chromosome dose. NGS-based methods 
are polymorphism independent and have the ability 
to detect aneuploidies. In a recently published meta-
analysis of clinical validation and implementation 
studies the pooled weighted detection rate for trisomy 
21 is reported to be > 99% and the false positive rate 
to be < 0.01%[27]. Commercially available tests based 
on NGS technologies have been validated on large 
numbers of cases and have a very high sensitivity and 
specificity[28-34] as well (Table 1).

Another promising prospective in NIPT is provided 
by methylated DNA immunoprecipitation-based (MeDIP-
based) approaches. The discovery of fetal-maternal 
differentially methylated regions (DMRs)[35] has facili
tated the development of NIPT strategies by combining 
MeDIP with other downstream applications. Using 
the “epigenetic approach”, a NIPT method based on 
MeDIP combined with quantitative polymerase chain 
reaction which proved to be of high precision in a proof 
of principle (100% sensitivity, 100% specificity)[36] and 
larger validation study[37] (100% sensitivity, 99.2% 
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specificity) was developed.

ADVANTAGES AND DISADVANTAGES
Approaches based on NGS are extremely powerful. 
Besides detecting whole chromosome aneuploidy, 
they have the potential to detect smaller chromosomal 
imbalances allowing for microdeletion/microduplication 
syndrome NIPT[38]. However, although NIPT is already 
commercially available for the detection of a certain 
number of microdeletion/microduplication syndromes, 
further validation studies are needed[39]. Taking into 
account the vast amount of data that NGS is capable 
of producing, it could be potentially be combined with 
other methodologies to generate non-invasive fetal 
whole genome sequencing[40]. As impressive as this 
may seem at present, it is quite possible that this will 
materialize in the near future. 

The impressive developments of NGS technologies 
are accompanied however by certain drawbacks. One 
important limitation is the low level of fetal DNA which 
is available for testing. This is overcome in MeDIP-based 
technologies which are based on fetal DNA enrichment, 
which then increases sensitivity substantially. However, 
MeDIP by which cffDNA hypermethylated regions are 
selectively enriched is a stage wherein bias may be 
introduced, influencing the test results. Therefore, it is 
very important to carefully select DMRs, optimize this 
stage and evaluate the overall performance allowing 
for this. Another drawback of NGS-based approaches 
is that the equipment/technology required is still not 
available in all clinical settings, making the service 
feasible only in large centers, such as those in the United 
States and China. Furthermore, the requirements for 
significant infrastructure, complex laboratory procedures, 
highly trained personnel and challenging bioinformatics 
analyses make NGS-based technologies costly and 
complex. In contrast, the “epigenetic approach”, uses 
equipment that is available in most genetic diagnostic 
laboratories offering established genetic services, it is 
considerably cheaper and simpler and therefore it may 
be applied potentially worldwide and offered to a broader 
population. However, current MeDIP-based approaches 
focus mainly on fetal trisomy 21 and at present have 
not yet demonstrated their ability to detect other fetal 
aneuploidies and submicroscopic aberrations that NGS-

based technologies have proven to be capable of detec
ting. Moreover, large validation studies and future clinical 
application feedback data are awaited in order to re
evaluate the advantages and disadvantages of MeDIP-
based NIPT tests.

THE FUTURE OF FETAL ANEUPLOIDY 
NIPT
Both NGS and MeDIP-based approaches yield risk 
classification results at present. This means that a 
probability is given for each condition investigated, and 
depending on whether the pregnancy is assessed as 
being high risk or not, the couples are counseled to 
proceed with confirmatory invasive diagnostic testing, 
usually fetal karyotyping after CVS or amniocentesis. 
False positive results lead to unneeded invasive pro
cedures posing an undesirable risk of pregnancy loss, 
while false negative results may lead to the birth of 
an abnormal child. There is an argument that false 
negative NIPT results for trisomy 18 or 13 are unlikely 
to result in the birth of an abnormal child because both 
syndromes are most likely to present with serious 
ultrasound findings during pregnancy. Conversely, cases 
with trisomy 21 (Down syndrome) may not have any 
indications throughout the pregnancy and consequently, 
NIPT false negative trisomy 21 fetuses are more likely 
to be born[41]. Therefore, NIPT for trisomy 13, 18 and 
21 should be considered as a screening test rather than 
a diagnostic test, which should be robust, rapid and cost 
efficient. We believe that MeDIP-based tests meet these 
requirements for the reasons already presented, and 
moreover have certain advantages compared to NGS-
based methods and therefore show great potential for 
large scale public service access. At present, if treated 
as a replacement for current biochemical screening 
tests, the resulting risk could be combined with that 
derived from ultrasound markers such as nuchal trans
lucency measurement and others. The combined NIPT-U/
S risk for fetal aneuploidy may provide a safer screening 
strategy compared to that offered to most couples 
today[42]. The future aim is to eventually avoid invasive 
procedures and develop NIPT (testing) into NIPD 
(diagnosis).

For any NIPT used caution is needed when it comes to 
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Table 1  Validation and verification comparison of the most widely used commercially 
available non-invasive prenatal testing for trisomy 21

Company Sequenome Verinata (Illumina) Ariosa Natera

Test "Materni T21 PLUS" "Verify" "Harmony" "Panorama"
Sensitivity 99.6%-99% > 99%    100% > 99%

  (209/212) (90/90) (81/81) (25/25)
Specificity 99.8% 99.8% 99.97% > 99%

      (1468/1471)     (409/410)         (2887/2888)     (242/242)
False positive   0.2%   0.2%   0.03% 0

(3/1471) (1/410)   (1/2888)
No result rate   3.4%   5.8% 4.7%-5.7%    5.4%
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genetic counseling, in order to avoid misunderstandings 
concerning diagnosis. There is an ongoing debate on 
ethical and policy issues related to NIPT and the European 
Society of Human Genetics/American Society of Human 
Genetics invite the scientific community to contribute to 
setting future guidelines for NIPT[43]. 

CONCLUSION
During recent years there have been enormous ad
vances in the field of fetal aneuploidy NIPT. Relevant 
genetic services are offered by academic centers and 
commercial companies worldwide, but not all future 
parents have access to this service. Our team is working 
towards developing a commercially available MeDIP-
based test, that will be relatively inexpensive and easy to 
apply and from which more people can benefit. Looking 
ahead, we predict that epigenetic based approaches 
in combination with genetic-based approaches and 
advanced technologies (digital PCR, NGS) will contribute 
to the development of NIPT for more subtle fetal genetic 
abnormalities[44], such as point mutations, microdeletion/
microduplication syndromes, etc. 
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Abstract
Adeno-associated virus (AAV) is a small, non-enveloped 
virus that contains a single-stranded DNA genome. 
It was the first gene therapy drug approved in the 
Western world in November 2012 to treat patients with 
lipoprotein lipase deficiency. AAV made history and put 
human gene therapy in the forefront again. More than 
four decades of research on AAV vector biology and 
human gene therapy has generated a huge amount 
of valuable information. Over 100 AAV serotypes 

and variants have been isolated and at least partially 
characterized. A number of them have been used 
for preclinical studies in a variety of animal models. 
Several AAV vector production platforms, especially 
the baculovirus-based system have been established 
for commercial-scale AAV vector production. AAV 
purification technologies such as density gradient cen
trifugation, column chromatography, or a combination, 
have been well developed. More than 117 clinical trials 
have been conducted with AAV vectors. Although 
there are still challenges down the road, such as cross-
species variation in vector tissue tropism and gene 
transfer efficiency, pre-existing humoral immunity to 
AAV capsids and vector dose-dependent toxicity in 
patients, the gene therapy community is forging ahead 
with cautious optimism. In this review I will focus on 
the properties and applications of commonly used AAV 
serotypes and variants, and the technologies for AAV 
vector production and purification. I will also discuss the 
advancement of several promising gene therapy clinical 
trials.  

Key words: Adeno-associated virus; Adeno-associated 
virus production and purification; Clinical trials; Gene 
therapy; Baculovirus

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Adeno-associated virus (AAV) has become the 
first gene therapy drug approved by the Western world 
and spurred huge excitement in the gene therapy 
field. The gene therapy community is forging ahead 
with cautious optimism despite some challenges down 
the road. A battery of more than 100 AAV serotypes 
and variants are available and AAV production and 
purification technologies have become well established. 
Several clinical trials with AAV vectors have yielded 
exciting results. This paper will give you the information 
needed to understand the current development of the 
gene therapy field with AAV vectors.
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INTRODUCTION
With the approval of first adeno-associated virus (AAV)-
based gene therapy drug, Glybera, to treat lipoprotein 
lipase deficiency (LPLD) by the European Union on 
November 2, 2012[1,2], human gene therapy entered 
a new era. It has been a long march from the first 
discovery of the AAV in the 1960’s, to the final approval 
of the first AAV-based gene therapy drug. The once-
abandoned gene therapy field has now become a 
hotbed, with 11 different companies raising at least $618 
million from venture capitalists and equity markets 
since the beginning of 2013. Top venture capital firms 
are among their backers, and some of the industry’s 
top talent is being attracted to what was once seen as 
a lost cause. The iShares Nasdaq Biotechnology Index 
is up 65% in 12 mo[3]. Basic research on AAV biology, 
vectorology, and gene therapy, since the first discovery 
of AAV, has generated much valuable information. 
More than 100 AAV serotypes and variants have 
been isolated and characterized. Some of them have 
been used for preclinical studies in a variety of animal 
models. Several AAV vector production technologies, 
especially the baculovirus-based technology have 
been established for commercial scale AAV vector 
production. AAV purification methods with density 
gradient centrifugation, column chromatography, or 
a combination of both, have been well developed 
towards commercialization. More than 117 clinical trials 
have been conducted with AAV vectors and yielded 
a vast amount of valuable information regarding the 
safety, efficacy, dosage, toxicity, immune response, 
biodistribution, and tropism of a few key AAV vectors, 
such as AAV2, and some phase Ⅰ/Ⅱ clinical trials have 
yielded promising data. The gene therapy community 
is forging ahead with cautious optimism, although 
there are still challenges down the road, such as cross-
species variation in vector tissue tropism and gene 
transfer efficiency, pre-existing humoral immunity to 
AAV capsids and vector dose-dependent toxicity in 
patients. In this review I will focus on the properties 
and applications of several commonly used AAV 
serotypes and variants, and the technologies for AAV 
vector production and purification. I will also discuss the 
advancement of several promising gene therapy clinical 
trials utilizing AAV vectors. 

AAV SEROTYPES AND VARIANTS
AAV is a single-stranded DNA virus of the Dependovirus 
genus of the parvovirus family with a genome size of 
about 5000 nucleotides. Its shell is about 25 nm in 

diameter, and is composed of 60 viral protein subunits 
arranged on a T = 1 icosahedral lattice[4]. The AAV 
genome encodes three open reading frames (ORFs), 
rep, cap, and AAP, flanked with inverted terminal repeats 
(ITRs) (Figure 1). AAV enters host cells via specific 
receptors on the cell surface. Once inside the cell, AAV 
uncoats and releases its genome, which is transported 
into the nucleus. The AAV genome integrates into the 
host chromosome 19 AAVS1 site[5,6] when no helper 
virus is present, or it replicates to produce progeny 
when a helper virus, such as adenovirus or herpes virus, 
is present. To make an AAV vector, the rep and cap 
sequences are removed and replaced with an expression 
cassette containing the target gene. When the AAV 
vector containing the target gene, together with the 
rep and cap sequences provided in trans, and herpes 
simplex virus (adenovirus, HSV, or baculovirus, etc.) are 
introduced into host cells under proper conditions, AAV 
vectors will be produced (Figure 2). Since the discovery 
of AAV in the 1960’s, now there have been over 100 
AAV serotypes and variants isolated from adenovirus 
stocks or from human/nonhuman primates tissues and 
even some other mammals[7-11]. With their diverse tissue 
tropism, transduction efficiency and immunological 
profiles, these AAV vectors can be used to target various 
tissues for a variety of applications. The properties and 
applications of the commmonly used AAV serotypes and 
variants are summariezed in Table 1. 

AAV1
AAV1 has a genome size of 4718 nucleotides and 
exhibits high homology with those of other AAV sero
types. It appears that AAV6 was actuary generated 
through homologous recombination between AAV1 and 
AAV2. Studies show that sera from nonhuman primates 
with neutralizing antibodies (NAB) against AAV1 are 
more common than those from humans, whereas sera 
from humans with NAB to AAV2 are more common 
than those from nonhuman primates. AAV1 was more 
efficient for muscle[12], whereas AAV2 transduced liver 
more efficiently. High titers of NAB were detected for 
each vector administered to murine skeletal muscle, 
which prevented re-administering the same serotype 
but did not substantially cross-neutralize the other 
serotype. In the context of liver-directed gene transfer, 
similar results were observed except for a significant, 
though incomplete, neutralization of AAV1 from a 
previous treatment with AAV2[13]. Point mutations on 
the AAV1 capsid (S663A, S669A, and K137R) increased 
its transduction efficiency both in vitro and in vivo up 
to 6-fold[14]. Swapping the amino acids of AAV2 VP1 
from 350 to 736 with the corresponding VP1 region 
of AAV1 gave rise to a hybrid vector that exhibited 
very similar properties to AAV1 in muscle both in vitro 
and in vivo. Analyses of smaller regions of the AAV1 
VP1 amino acid sequence corresponding to the AAV2 
capsid protein from additional mutants indicated that 
a small region of VP1 amino acids (from 350 to 430) 
functions as a major determinant of tissue tropism. 
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Figure 1  Diagram of adeno-associated virus genome depicting the inverted terminal repeats, promoters, polyadenylation sequence, and mRNAs coding 
for rep, cap, and assembly-activating protein proteins. The rep open reading frames codes for four rep proteins (Rep78, Rep68, Rep52, and Rep40) that are 
synthesized from mRNAs transcribed from the p5 and p19 promoters. Rep78 and Rep68 have site-specific endonuclease, DNA helicase, and ATPase activities that 
are required for adeno-associated virus (AAV) DNA replication[148-150]. Rep52 and Rep40 contain helicase activity and are required for packaging AAV DNA into the 
capsids[151]. VP1, VP2, and VP3 are synthesized from mRNA transcribed from the p40 promoter. To main a 1:1:10 ratio of VP1:VP2:VP3 for virus particle assembly, 
AAV uses an alternative splicing mechanism for VP1 and a less efficient start codon (ACG) for VP2 to lower their protein levels, yet keeps high efficiency start 
codon for VP3[152]. The N-terminal sequence present in VP1 contains a phospholipase A2 domain that is required for AAV infectivity[114,115,153]. In addition, the VP2/
VP3 mRNA codes for an assembly-activating protein (AAP) from a weak CTG start codon but in a different reading frame[154]. AAP facilitates nuclear import of the 
major VP3 capsid protein and promotes assembly and maturation of the capsid, but AAP is not present in the mature capsid. ITR: Inverted terminal repeat; Poly A: 
Polyadenylation.

Table 1  Properties and applications of the commonly used adeno-associated virus serotypes and variants 

AAV serotypes and variants Target tissues Preclinical applications Clinical applications Ref.

AAV1 Muscle, heart Charcot-Marie-Tooth Neuropathy, 
congestive heart failure, Duchenne 

muscular dystrophy

Glybera, a drug for lipoprotein 
lipase deficiency, congenital 

heart failure

[1,2,11,15-17,19-21]

AAV2 Liver, eye In vitro assays, various animal model 
studies

Cystic fibrosis; hemophilia B, 
Leber’s congenital amourosis, 
Parkinson’s disease; Canavan 

disease

[11,26-36]

AAV3A, 3B Liver cancer Liver cancer [40]
AAV4 Ependyma, astrocyte, retinal 

pigmented epithelium
Mucopolysaccharidosis type Ⅶ, 

Familial amyotrophic lateral sclerosis, 
RPE65-deficient vision loss

RPE65-deficient disease [42,47]

AAV5 Sensor neuron, airway 
epithelia, Dentritic cells

Globoid cell leukodystrophy; human 
immunodeficiency

- [49-52]

AAV6 Airway epithelia, skeletal 
muscle, Dendritic cells, 

pancreatic beta cells

Duchenne muscular dystrophy - [53-56] 

AAV7 Skeletal muscle, liver, central 
nervous system

- - [11,58-60]

AAV8 Liver, skeletal and cardiac 
muscle

Hemophilia A, familial 
hypercholesterolemia, glycogen 

storage disease type Ⅱ

Hemophilia B [11,62-66,143]

AAV9 Cardiac muscle, central 
nervous system

Heart failure, central nervous system 
disorders

Spinal muscular atrophy [70-75]

AAVShH10 Müller cells Retinitis pigmentosa - [76,77] 
AAV7m8 Vitreous humor Retinoschisis, Leber’s congenital 

amaurosis
- [79,80]

AAVDJ Liver, kidney, cervix, retina, 
oveary, skin, fibroblast, lung

- - [81]

AAV: Adeno-associated virus.
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monogenic disorders. The first trial involved airway 
delivery (nasal, endobronchial, sinus and aerosol 
inhalation) of AAV2 vectors carrying cystic fibrosis 
transmembrane conductance regulator (AAV2-CFTR) 
in cystic fibrosis patients with mild lung disease[27]. The 
second set of trials involved intramuscular and hepatic 
delivery of AAV2 vectors carrying factor Ⅸ gene in 
patients with hemophilia B[28]. AAV2 vectors have also 
been utilized in clinical trials for ocular diseases[29-31], 
and diseases involved the central nervous system[32-36].

AAV3
There are two subtypes of AAV3 and they were de
signated as AAV3A and AAV3B. They differ by only 16 
nucleotides or 6 amino acids[37,38]. AAV3 has a genome 
size of 4726 nucleotides and has an overall sequence 
homology of 82% with AAV2. At the amino acid level 
AAV3 has a homology of 88% with the nonstructural 
(rep) proteins and 87% with the capsid proteins of 
AAV2. The major differences between AAV3A and AAV2 
are that AAV3A lacks a typical TATA-box sequence 
at p40 promoter but contains the consensus binding 
sequence within the upstream region of the p5 promoter 
for adenovirus-related transcription factor E4F. These 
results imply that AAV3 contains serologically distinct 
structural proteins and its viral propagation may be 
controlled at the transcription level by different gene 
regulatory elements[37]. AAV3 requires HSPG for cell 
attachment[39]. AAV3 vectors transduce human liver 
cancer cells extremely efficiently because they utilize 
human hepatocyte growth factor receptor (hHGFR) as a 
cellular co-receptor for viral entry and these cells express 
high levels of hHGFR. Both extracellular and intracellular 
kinase domains of hHGFR are required for AAV3 vector 
entry and AAV3-mediated transgene expression. The 
host cell proteasome machinery is responsible for AAV3 
vector degradation and the transduction efficiency of 
AAV3 vectors is greatly improved with surface-exposed 
tyrosine (Y) to phenylalanine (F) mutations such as 
Y701F, Y705F or Y731F. AAV3 vectors with combined 
mutations such as Y705 + 731F show significant higher 
transduction efficiency than each of the single mutants 
in liver cancer cells in vitro. Direct intra-tumoral injection 
of AAV3 vectors in immune-deficient mouse xenograft 
models also result in high transduction efficiency of 
human liver tumor cells in vivo. The optimized AAV3 
vectors carrying tyrosine-mutations result in increased 
efficiency of transduction following both intra-tumoral 
and tail-vein injections in vivo and AAV3 vectors carrying 
proapoptic genes may be useful for gene therapy of 
human liver cancer[40]. 

AAV4
AAV4 has a genome size of 4767 nucleotides in 
length and contains an expanded p5 promoter region 
compared to AAV2 and AAV3[41]. The rep gene product 
of AAV4 shows greater than 90% homology to the rep 
products of AAV2 and AAV3, with none of the changes 

Additional analysis demonstrated that both the major 
antigenic determinants and the heparin binding domain 
in the AAV capsid region were not required for efficient 
transduction of muscle by AAV1[15]. Due to its high 
efficiency in muscle transduction, AAV1 vectors have 
been used to study disease models such as Charcot-
Marie-Tooth Neuropathy[16], congestive heart failure[17], 
Duchenne muscular dystrophy[18], etc., and in clinical 
trials to treat congenital heart failure[19-21]. The first gene 
therapy drug (Glybera) approved by the Western world 
to treat LPLD is based on AAV1[1,2].

AAV2
AAV2 is the most thoroughly characterized serotype. It 
has a genome size of 4675 nucleotides and contains ITRs 
of 145 nucleotides, the first 125 nucleotides of which 
form a palindromic sequence[22]. Nearly all serotypes of 
AAV vectors use the AAV2 ITRs for AAV manufacture[23]. 
AAV2 requires heparan sulfate proteoglycan (HSPG) 
for cell attachment[24]. Among all the AAV serotypes 
discovered, AAV2 has the best transduction efficiency in 
cell culture[12] and therefore is the best tool for in vitro 
studies. The transduction efficiency of AAV2 vectors 
can be improved dramatically by point mutations 
(Y730F and Y444F) on the viral capsid[25]. Even though 
stable transgene expression mainly results from extra-
chromosomal vector genomes in the liver, a series of 
studies has shown that vector genomes integrate into 
host chromosomes of hepatocytes at a low frequency 
preferentially into genes that are expressed in the 
liver[26]. 

All previous gene therapy studies in animal models 
and clinical trials were undertaken with AAV2 vectors. 
The earliest clinical trials with AAV2 vectors were for 

ITR ITR

Promoter      Intron    Target gene    Poly A

p5            p19          p40                        Poly A

AAV

Host cell

Rep                              Cap

Adenovirus, HSV, or baculovirus

Figure 2  Diagram of adeno-associated virus vector production. A: The 
expression cassette containing promoter, intron, target gene, and polya
denylation sequence is flanked with adeno-associated virus (AAV) inverted 
terminal repeats (ITRs); B: AAV rep and cap sequences without ITRs are 
provided in trans; C: helper virus can be adenovirus, herpes simplex virus (HSV), 
or baculovirus depending on the production system used. Once these three 
components are introduced into a host cell under proper conditions, AAV vectors 
will be produced. 
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occurring in regions that had previously been shown to 
affect the known functions of Rep68 or Rep78. Most of 
the differences in the capsid proteins were thought to be 
located on the outer surface of the virus capsid. AAV4 
can transduce human, monkey, and rat cells. A series 
of experiments including comparison of transduction 
efficiencies in a number of cell lines, competition co-
transduction, and the effect of trypsin on transduction 
efficiency all suggest that the cellular receptor for AAV4 
is different from that of AAV2[41]. 

AAV4 transduces ependyma with high efficiency 
when injected into the striata or lateral ventricles of 
adult mice[42]. AAV4 also efficiently transduces type B 
astrocytes in the subventricular zone, and glia overlying 
the rostral migratory stream neural tube[43]. AAV4 
vectors harboring a beta-glucuronidase gene admini
stered unilaterally into the lateral ventricle mediated 
global functional and pathological improvements in 
the mucopolysaccharidosis type Ⅶ murine model that 
was caused by beta-glucuronidase deficiency[44]. AAV4 
vectors carrying insulin-like growth factor-1 or vascular 
endothelial growth factor-165 genes delivered in the 
cellular components of the ventricular system including 
the ependymal cell layer, choroid plexus [the primary 
cerebrospinal fluid (CSF)-producing cells of the central 
nervous system (CNS)] and spinal cord central canal 
lead to trophic factor delivery throughout the CNS, 
delayed motor decline and a significant extension of 
survival in SOD1 (G93A) transgenic mice[45]. AAV4 vectors 
containing RPE65 gene delivered by subretinal injection 
into RPE65-/- purebred Briard dogs restore functional 
vision in the treated eye, with the untreated contralateral 
eye serving as an internal control[46]. A phase Ⅰ/Ⅱ 
clinical trial was conducted to assess the safety and 
efficiency of one subretinal injection with AAV4.rpe65.
hrep65 vectors in the worse eye of patients with rpe65-/- 
retinal dystrophy[47].

AAV5
AAV5 has a genome size of 4642 nucleotides and is 
different from other parvovirus serotypes according 
to serological and DNA hybridization data[48]. Its DNA 
genome is similar to that of AAV2 in length and genetic 
organization. The AAV5 rep gene is 67% homologous 
to the rep gene of AAV2, with changes mainly occurring 
in the carboxyl and amino termini. The AAV5 ITRs are 
also different from the ITRs of other AAV serotypes. 
Though the Rep DNA binding site and the characteristic 
hairpin structure of AAV5 ITRs are retained, there is no 
consensus terminal resolution site. These differences 
in the ITR structures and the Rep proteins lead to the 
failure of cross-packaging between AAV2 and AAV5 
as indicated by the inability to produce recombinant 
AAV particles. Analysis of alignment between the cap 
ORFs of AAV5 and other serotypes identifies both 
variable and conserved regions which could affect 
viral particle stability and tissue tropism. The failure of 
soluble heparin to inhibit AAV5 and the comparison of 
transduction efficiencies between AAV5 and AAV2 in a 

variety of cells lines show that AAV5 may use a different 
mechanism of uptake from AAV2[48].

A comparative in-vivo study with vectors based on 
AAV1, 2, 3, 4, 5, 6, and 8, and lentivirus (LV) indicates 
that AAV5 is the most efficient vector for transducing 
sensory neurons[49]. Even though AAV1, AAV5, and 
AAV6 all showed the most transduction of neurons two 
weeks after injection into the dorsal root ganglia (DRG), 
the time course of GFP expression from these three 
vectors studied from 1 to 12 wk after injection indicates 
that overall AAV5 was the most effective serotype, 
followed by AAV1. These two serotypes exhibited 
increasing rates of neuronal transduction at later time 
points, leading to over 90% of DRG neurons GFP+ at 12 
wk with some injections of AAV5[49]. When delivered to 
the neocortex, hippocampus and cerebellum of twitcher 
mice, AAV5 carrying the galactocerebrosidase cDNA was 
effectively dispersed along the neuraxis of CNS as far as 
the lumbar spinal cord, and reduced the accumulation 
of psychosine in the CNS of Twitcher mice. Most 
importantly, the treated Twitcher mice were protected 
from loss of oligodendrocytes and Purkinje cells, 
axonopathy and marked gliosis, and had significantly 
improved neuromotor function and prolonged lifespan[50]. 

When delivered at low multiplicity of infection to the 
apical surface of differentiated airway epithelia, AAV5 
was 50-fold more efficient than AAV2 to mediate gene 
transfer. In transferring beta-galactosidase cDNA to 
murine airway and alveolar epithelia in vivo, AAV5 was 
also more efficient than AAV2, indicating that AAV5 
vectors are good for mediating gene transfer to human 
and murine airway epithelia[51]. In addition, AAV5 
vectors show a higher tropism for both mouse and 
human dendritic cells than did AAV1, AAV2, AAV7, and 
AAV8 vectors[52]. Scientists at Virovek created a chimeric 
version of AAV5, named AAV5.2, by replacing the 
phospholipase A2 domain of AAV5 with that of AAV2. 
When both are produced in insect cells, the chimeric 
AAV5.2 shows much higher transduction efficiency 
than wild type AAV5 in a number of cell lines in vitro 
(unpublished data).

AAV6
AAV6 has a genome size of 4683 nucleotides in length 
and was isolated as a contaminant in a laboratory 
adenovirus stock, which appears to be related to AAV1 
by sequence analysis[38]. The two ITR’s of AAV6 have 
different sequences, with the right repeat having a 
unique sequence and the left repeat identical to that of 
AAV2. Further analysis of the variable region of the cap 
gene revealed that AAV6 was 96% identical to AAV1 
in that region, with only one amino acid change out of 
the 139-amino-acid translated sequence (a substitu
tion of lysine-to-glutamate at position 531 of AAV6 
VP1). Because of the 99% DNA sequence homology 
between AAV1 and AAV6, and the identical sequence 
of the first 508 nucleotides between AAV6 and AAV2, 
it was speculated that AAV6 may be derived from 
recombination between AAV1 and AAV2[13].
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In-vivo studies show that AAV6 vectors are much 
more efficient than AAV2 in transducing epithelial cells 
in small and large airways, with as much transduction 
as 80% in some airways. This result indicates that AAV6 
may have considerable advantages over AAV2 for gene 
therapy of lung diseases such as cystic fibrosis[53]. In 
addition, AAV6 exhibited body-wide transduction of the 
entire skeletal musculature through a single intraven
ous dose[54] and was used for gene therapy studies of 
Duchenne muscular dystrophy in mice[55]. Most of AAV 
vectors have poor transduction efficiency in blood cells. 
However, AAV6 with mutations on its surface-exposed 
serine (S) and threonine (T) residues (T492V + S663V) 
can efficiently transduce monocyte-derived dendritic 
cells[56], indicating its potential uses in dendritic cell gene 
therapy. AAV6 shows the best transduction efficiency 
in pancreatic beta-cells among AAV1, AAV2, AAV5, and 
AAV8 serotypes tested in this study. Nearly the entire 
islet population was gene transferred but with unique 
gene transfer efficiency and patterns when different 
delivery methods and vectors were used. Remarkably, 
localized gene delivery coupled with an insulin promoter 
allowed robust but specific gene expression in the beta-
cells[57].

AAV7
AAV7 was isolated from rhesus monkeys and has a 
genome size of 4721 nucleotides[58]. Antisera generated 
to the other serotypes are not able to neutralize 
AAV7. AAV7 neutralizing antibodies are not common 
in human serum and low in activity when present. In 
vivo studies in mice indicate that AAV7 can transduce 
skeletal muscle at similar efficiency to AAV1[11]. While 
in mouse liver AAV8 out-performs AAV7, in nonhuman 
primate liver, expression from AAV7 vector stabilized at 
higher levels than AAV8, indicating that AAV7 should 
be considered a preferred vector for gene transfer in 
the primate liver[58]. In nonhuman primates, AAV7 can 
direct as efficiently as AAV9 a robust and widespread 
cellular transduction in the central nervous system and 
other peripheral neural structures[59]. AAV7 has also 
been used to target neurons within the basal and lateral 
amygdala area and shows a trend toward having the 
highest efficiency of transduction[60].

AAV8
AAV8 was isolated from rhesus monkeys and its rep 
and cap coding region was fully sequenced but the 
rest of the genome has not been analyzed. The rep 
and cap sequences of AAV8 are 88% homologous to 
AAV7 and 82% homologous to AAV2 in nucleotides[11]. 
Between AAV8 and AAV2, the most significant structural 
differences are located at protrusions surrounding the 
2-, 3-, and 5-fold axes on the capsid surface. Amino 
acid residues on those axes were reported to control 
antibody recognition and transduction efficiency for 
AAV2. Furthermore, comparing the amino acids on 
capsid surfaces between AAV8 and AAV2 revealed that 
the distribution of basic charge for AAV8 at the region 

corresponding to AAV2 heparin sulfate receptor binding 
motif was reduced. This results were consistent with 
the observation that AAV8 is a non-heparin-binding 
phenotype[61]. 

AAV8 exhibits remarkably greater transduction 
efficiency in liver than those of other serotypes[11]. 
This high transduction efficiency in liver and low cross-
reactivity to antibodies against other human AAV’s 
have led to great efforts in developing AAV8 as a viral 
vector for gene therapy of liver-targeted applications. 
Using AAV8 in mouse models as a gene therapy vector 
for long-term correction of hemophilia A, familial 
hypercholesterolemia, and glycogen storage disease 
type Ⅱ has been reported[62-64]. AAV8 has also been 
used successfully in a canine model for liver-targeted 
gene therapy[65]. In mice and hamsters, AAV8 has been 
shown to be able to cross efficiently the barrier of blood-
vessel to gain systemic gene transfer in both cardiac 
and skeletal muscles[66]. In mouse model, AAV8 has 
also been used successfully to target the pancreas[57]. 
However, recent data indicate that AAV8 vectors, which 
are very effective in many animal models, transduced 
human hepatocytes rather poorly, approximately 20-fold 
less, when compared to its transduction efficiency in 
mouse hepatocytes[67].

Scientists at Virovek created a chimeric version of 
AAV8, named AAV8.2, by replacing the phospholipase 
A2 domain of AAV8 with that of AAV2. When both are 
produced in insect cells, the chimeric AAV8.2 shows 
much higher transduction efficiency than wild type 
AAV8 both in vitro and in vivo (unpublished data).

AAV9
AAV9 was isolated from human tissues and its genome 
was not fully sequenced except the rep and cap coding 
sequences[68]. AAV9 capsid differs from AAV4 in nine 
variable surface regions (VR-Ⅰ to -Ⅸ), but differs AAV2 
and AAV8 in only three (VR-Ⅰ, VR-Ⅱ, and VR-Ⅳ). The 
difference in VR-Ⅰ region modifies the raised region 
of the capsid surface between the 2-fold and 5-fold 
depressions. The difference in VR-Ⅳ produces smaller 
3-fold protrusions in AAV9 that are less “pointed” than 
AAV2 and AAV8. Remarkably, residues in the VRs of 
AAV9 have been identified as important determinants of 
cellular tropism and transduction and distinguish AAV9’s 
antigenic diversity from AAV2[69].

AAV9 was reported to provide global cardiac gene 
transfer stable for up to 1 year in mouse or rat that was 
superior to other serotypes such as AAV1, AAV6, AAV7, 
and AAV8[70]. AAV9 transduced myocardium 5- to 10-fold 
higher than AAV8, resulting in over 80% cardiomyocyte 
transduction after tail vein injection in mice[71]. In 
large animal model such as pigs, treatment with AAV9 
carrying the small calcium-binding protein S100A1 
prevented and reversed functional and structural 
changes by restoring cardiac S100A1 protein levels. 
AAV9-S100A1 treatment normalized cardiomyocyte Ca2+ 
cycling, sarcoplasmic reticulum calcium handling, and 
energy homeostasis[72]. 
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When delivered systemically and intra-cerebros
pinally, AAV9 has also been reported to obtain wide
spread gene delivery to the CNS. Delivering AAV9-GFP 
in the cisterna magna of both newborns and young cats 
indicated that high levels of motor neurons (MNs) from 
the cervical (84% ± 5%) to the lumbar (99% ± 1%) 
spinal cord were transduced, which demonstrates that 
the age at CSF delivery does not affect significantly AAV9 
tropism for MNs[73]. AAV9 can transduce brain’s antigen-
presenting cells and trigger a full immune response that 
mediates significant brain pathology, depending on the 
transgene immunogenicity. These observations raise 
concerns that foreign-proteins expressed at certain level 
may be able to trigger both humoral and cell-mediated 
responses, which may complicate preclinical toxicology 
studies[74].

A clinical trial of AAV9 vectors carrying human spinal 
muscular atrophy (SMN) gene has been initiated in 
early 2014 for treatment of SMN in infants[75]. 

AAVShH10
AAVShH10 is derived from a shuffled library closely 
related to AAV6 and is capable of efficient, selective 
Müller cell infection through intra-vitreal injection. 
Remarkably, AAVshH10 exhibits significantly improved 
transduction efficiency relative to AAV2 (> 60%) and 
AAV6[76]. AAV-ShH10 has been employed to overexpress 
GDNF from Müller cells and thereby significantly slow 
the rate of retinal degeneration in a rat model of 
autosomal dominant Retinitis Pigmentosa[77]. AAVShH10 
delivery through intra-vitreal injection can transduce 
Müller cell in a significantly different pattern in Dp71-null 
mice with a compromised blood-retinal barrier (BRB), 
indicating that there are changes in viral cell-surface 
receptors as well as differences in the permeability 
of the inner limiting membrane in this mouse line. 
However, the compromised BRB of the Dp71-null mice 
does not lead to virus leakage into the bloodstream 
when the virus is injected intra-vitreally - an important 
consideration for AAV-mediated retinal gene therapy[78].

AAV7m8
AAV7m8 was isolated from a mixture of three libraries 
that went through several rounds of in vivo-directed 
capsid evolution. AAV7m8 is a genetic variant of 
AAV2, with a peptide inserted on its heparin-binding 
site[79]. AAV7m8 is able to trasport the gene payload 
to the outer retina after injection into the eye’s easily 
accessible vitreous humor and mediates widespread 
gene expression to the outer retina, which rescued the 
disease phenotypes of Leber’s congenital amaurosis 
and X-linked Retinoschisis in corresponding mouse 
models. In addition, AAV7m8 is able to transduce 
primate photoreceptors when delivered via the vitreous, 
expanding its therapeutic promise[79]. AAV7m8 encoding 
channel rhodopsin under the ON bipolar cell-specific 
promoter mediates long-term gene expression restricted 
to ON-bipolar cells after intra-vitreal administration. 
Channel rhodopsin expression in the ON-bipolar cells 

leads to restoration of ON and OFF responses at the 
retinal and cortical levels. Moreover, light-induced 
locomotor behavior is restored in treated blind mice[80].

AAVDJ
AAVDJ is a chimera derived from AAV2, AAV8, and 
AAV9, differentiated by 60 amino acids from its closest 
natural relative AAV2 in the capsid. It was isolated 
through an adapted DNA family shuffling technology. 
AAVDJ outperformed eight standard AAV serotypes 
(AAV1, 2, 3, 4, 5, 6, 8, and 9) in cultures of 10 cell lines 
and greatly surpasses AAV2 in livers of IVIG-immunized 
and naïve mice[81]. 

Self-complementary AAV genomes
Native AAV packages single-stranded genomes[82,83] 
and requires host-cell factors to synthesize the com
plementary strand before transcription can be initiated. 
However, when the single-stranded genome is less 
than half wild-type size, AAV can package either two 
copies, or dimeric inverted repeat DNA molecules[84]. 
These dimeric inverted repeat DNA molecules can 
spontaneously anneal and form self-complementary 
molecules once uncoated inside the host-cell[85]. Pack
aging of self-complementary AAV (scAAV) or sometimes 
called double-stranded AAV (dsAAV) genomes, can be 
made more efficient by deleting the terminal resolution 
site (trs) or the D-sequence (the packaging signal) 
together with the trs from one AAV terminal repeat[86,87]. 
The important trade-off for scAAV vectors is the loss of 
half the coding capacity. However, small protein-coding 
genes (up to 55 kd), and any currently available RNA-
based therapy can be accommodated. 

These scAAV vectors exhibit fast onset and enhanced 
AAV transduction efficiency and have been widely 
used in many gene therapy studies. Wang et al[87] 
reported that scAAV vectors dramatically improved 
transduction efficiency in more than 20 cell lines of 
human, monkeys and rodent origins and accelerated 
long-term transduction in vivo in mice when delivered 
via intramuscular or tail vein injections. Nathwani et 
al[88] reported a 20-fold improvement in hFIX expression 
from scAAV in mice over comparable ssAAV vectors. It 
has been reported that a single intravenous injection of 
scAAV9 vectors carrying U7ex23 (small nuclear RNAs) 
in the utrophin/dystrophin double-knockout (dKO) 
mouse restored the dystrophin expression to near-
normal levels in all muscles examined, including the 
heart. This resulted in a considerable improvement of 
their muscle function and dystrophic pathology as well 
as a remarkable extension of the dKO mice lifespan[89]. 
Yang et al[90] reported that expression of miRNA from 
scAAV inhibited the replication of cell culture-propagated 
HCV (HCVcc) by 98%, and resulted in up to 93% gene 
silencing of RLuc-HCV reporter plasmids in mouse liver, 
indicating the combination of an AAV vector delivery 
system and exploitation of the endogenous RNAi path
way is a potentially viable alternative to current HCV 
treatment regimens.
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AAV VECTOR PRODUCTION
There are several technologies available for production 
of AAV vectors. These include transient plasmid 
transfection, adenovirus infection, stable-cell lines 
harboring AAV helper functions, HSV infection/trans
fection, and baculovirus infection technologies. All these 
technologies have the common elements for AAV vector 
manufacturing: (1) target gene flanked by ITRs, which 
in most cases are derived from AAV2; (2) AAV rep and 
cap genes provided in trance, in which the rep gene is 
derived from AAV2 while the cap gene can be of any 
serotypes; and (3) helper functions from adenovirus, 
HSV, or baculovirus. When these three components 
are introduced into a host cell under proper conditions, 
AAV vectors will be produced (Figure 2). Each of the 
technologies has unique properties to suit specific 
applications.

Plasmid transfection of mammalian cells 
Initially, AAV vectors were produced by infection of 
mammalian cells with a wild type adenovirus and a 
recombinant adenovirus carrying AAV rep and cap 
genes followed by transfection with plasmid carrying 
the target gene flanked by AAV2 ITRs[91]. This method 
produced large quantities of adenoviruses that had to 
be removed. Although purification removes most of 
the contaminating adenoviruses, and heat treatment 
inactivated the remainder, the AAV vector preparations 
were still contaminated with adenovirus proteins 
capable of causing host immune response. In order to 
eliminate the adenovirus from AAV vector production, 
two groups at about the same time reported the use of 
adenovirus-free system to produce AAV vectors[92,93]. 
They used three plasmids, one harboring adenovirus 
VA, E2A and E4 genes, the second harboring AAV rep 
and cap genes, and the third harboring target gene 
flanked by two AAV2 ITRs. After transfection of these 
plasmids mediated by calcium phosphate into HEK-293 
cells, which contained stably integrated adenovirus E1 
genes, AAV vectors were produced free of adenovirus. 
Later, the method was stream-lined to contain only 
two plasmids, one with the target gene flanked by two 
AAV2 ITRs and the other with AAV rep and cap genes 
as well as the required adenovirus helper genes. AAV 
vectors were produced by transfecting both plasmids 
into HEK-293 cells[94]. The advantages of plasmid 
transfection, whether with two or three plasmids, to 
produce AAV vectors are that it requires substantially 
less time and is fairly easy to perform compared with 
other systems such as recombinant HSV or baculovirus 
systems. It can produce small-scale AAV vectors 
enough for in-vitro assays and small animal studies 
and is still widely used by many academic labs. The 
disadvantages are that it is difficult to scale up due 
to the inherent property of adherent cells and use of 
animal serum, which is not favored by Food and Drug 
Administration. Lock et al[95] reported that typical yield 
of AAV vector production from forty 15-cm plates is 

about 1 to 2 × 1013 vg.
In order to increase production scale, HEK-293 cells 

were adapted to suspension culture and transfection 
was performed with polyethylenimine to produce AAV 
vectors. The AAV vector production yields range from 
5 × 1012 vg/L in serum-containing suspension culture[96] 
to 2.85 × 1013 vg/L in serum-free suspension culture[97].

Stable-cell line harboring AAV helper functions
One of the methods to produce AAV vectors is to 
employ cell line stably harboring AAV helper genes. 
In some cases, only AAV rep/cap genes were stably 
integrated into mammalian cells and AAV vectors were 
produced upon infection of the cell lines with a wild-type 
adenovirus followed by transfection with AAV vector 
plasmid or infection with a second adenovirus carrying 
target gene flanked by two AAV ITRs[98-103]. In one 
case, both AAV rep/cap genes and AAV vector plasmid 
were stably integrated into the cell line for AAV vector 
production[99]. AAV production yield with stable cell 
line system was up to 1 × 104 vg/cell. Stable cell line 
systems require adenovirus co-infection for AAV vector 
production, which is not a desirable feature and posts 
downstream challenges for AAV purification. In addition, 
stable cell lines tend to lose integrated genes after 
frequent passages and AAV production yields tends 
to decrease with the increase of cell passage number. 
Another drawback is that it takes several months to 
establish and characterize a stable cell line. 

HSV-based systems
The first generation HSV-based method for AAV vector 
production was developed by Conway et al[104], which 
depended on an amplicon system. The AAV2 rep and 
cap genes and their native p5, p19, and p40 promoters 
were cloned into a plasmid that carries the HSV origin 
of replication and packaging signal. To produce HSV 
viruses carrying the AAV2 rep and cap genes, Vero cells 
with either wild-type HSV DNA or infected with wild-
type HSV were transfected with the resulting pHSV-
RC plasmid. The missing trans helper genes required 
for HSV amplicon DNA replication and packaging into 
HSV particles were provided by the wild type HSV. 
During this process, HSV particles generated both 
from amplicon and wild-type HSV sources were further 
amplified through serial infection passages. Finally, 
HSV-RC stocks were used to produce rAAV vectors 
by infecting either proviral cell lines that contained an 
integrated rAAV-2 genome or cells transfected with a 
rAAV2 plasmid or infected with rAAV2. This amplicon 
system has disadvantages such as the requirement of 
three components (HSV-RC, wild type HSV, and rAAV), 
the undesirable safety concern of wild-type HSV, and 
the dominant amplification of wild type HSV that is 
toxic to the producer cells. It was reported in the same 
study that use of a mutant HSV instead of wild type 
HSV produced higher titer of rAAV because of its lower 
cytotoxicity.

In order to increase AAV production yield, a second 
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generation of HSV-based system was developed in 
which the AAV rep/cap gene was cloned into one 
replication-deficient HSV and the gene of interest 
flanked by ITRs was cloned into a second replication-
deficient HSV[105]. Upon dual infection of HEK-293 
cells with these two rHSV vectors, AAV vectors were 
produced with yields as high as 1.55 × 1012 vg/flask 
with 1 × 107 cells. This system was further scaled up in 
cell factories to produce AAV-AAT in serotypes 1 and 9. 
This method was able to produce more than 8.5 × 1013 
AAV1 vg (8.5 × 104 vg/cell) from one cell factory[106]. 
The problem with this system is that the production 
of high-titer and infectious replication-deficient HSV 
vectors is very challenging due to the fact that: (1) the 
production efficiency and the profile of product safety 
are usually inversely correlated, since rendering HSV 
vectors replication incompetent by genetic deletions also 
typically reduces rHSV yield; and (2) HSV particles are 
very sensitive to production and processing conditions 
such as temperature, shear, solvents, and detergents 
and can easily be inactivated during manipulation.

Baculovirus-based systems 
Production of AAV vectors in insect cells was first 
pioneered by Urabe et al[107]. In this system, the AAV2 
rep78 was cloned under control of a deleted version 
of baculovirus early promoter (E1) and rep52 under 
control of p10 promoter in a head-to-head orientation. 
The AAV2 capsid gene was cloned under control of 
baculovirus polyhedrin (polh) promoter and the VP1 
start codon ATG was mutated into ACG to diminish the 
translation efficiency so that the ribosome machinery 
can scan down to next low efficiency ACG for VP2 
expression and then scan further down to the start 
codon ATG of VP3 for highly efficient expression[107]. The 
production yield of this system has been reported up 
to 5 × 104 vg/cell. Though the AAV production yield is 
increased compared to plasmid transfection systems, 
there are two flaws with this system: (1) the rep78 
sequence contains 100% of rep52 sequence, which 
renders the rep containing baculovirus unstable due to 
homologous recombination between rep78 and rep52 
as demonstrated by Kohbrenner et al[108]; and (2) the 
VP1 level is lower than normal due to the ATG-to-ACG 
mutation, which results in less infectious AAV vectors. 

In order to make this system more stable, Smith 
et al[109] mutated the rep78 start codon ATG into ACG 
and subsequent nine in-frame ATGs into non-start 
codons, but retained the start codon ATG for rep52. 
This modification enabled the expression of both rep78 
and rep52 from a single rep78 coding sequence and 
made the baculovirus more stable. However, the VP1 
retained the same suboptimal ACG start codon, which 
resulted in suboptimal VP1 expression. This modified 
system produced AAV vectors up to 7 × 104 vg/cell. 
Several research groups reported that the AAV vectors 
produced in insect cells with suboptimal VP1 expression 
were less infectious than that produced in mammalian 
cells and that increasing the VP1 expression improved 

the infectivity of AAV vectors[108,110-112]. Urabe et al[111] 
also reported in their patent (US 8163543 B2) that 
increasing VP1 expression levels improved AAV vector 
infectivity. 

Researchers from both UniQure and NIH scaled up 
this system into 200 L bioreactor using the baculovirus-
infected insect cells method[113]. By using conditions 
established with small-scale cultures, AAV was produced 
in larger volume cultures. Consistent AAV yields were 
attained in cultures ranging from 10 to 200 L. Based 
on the final yield, each cell produced 18000 ± 6800 
particles of purified AAV in 10-, 20-, 100-, and 200-L 
cultures. Thus, with an average cell density of 4.32 × 
106 cells/mL, ≥ 1016 purified AAV particles are produced 
from 100 to 200 L. The downstream process resulted 
in about 20% recovery estimated from comparing 
the quantities of capsid protein antigen in the crude 
bioreactor material and in the final, purified product.

Researchers at Genethon reported a modified 
baculovirus system for AAV vector production (patent 
application WO 2013/014294 A2). They made two 
versions of baculoviruses, one with the cathepsin, 
chitinase, and p10 gene disrupted, and the other with 
the cathepsin, chitinase, p26, p10, and p24 genes 
disrupted. The AAV rep2/cap8 cassette and the murine 
embryonic alkaline phosphatase (mSEAP) reporter gene 
flanked by AAV2 ITRs were respectively cloned into 
the polyhedrin region. Their results showed that, even 
though the disruption of cathepsin, chitinase, p26, p10, 
and p24 genes did not improve the AAV production 
yield, it indeed improved the infectivity of the AAV 
vectors 2- to 4-fold due to the reduction of AAV capsid 
protein degradation possibly caused by the protease 
cathepsin. The AAV vector production yield with this 
modified system ranges from 1.31 × 1011 vg/mL (or 
1.31 × 1014 vg/L) to 2.09 × 1011 vg/mL (or 2.09 × 1014 vg/L).

In our laboratory we made two important modifi
cations to the baculovirus-based system: (1) an artificial 
intron harboring the polh promoter was inserted into 
the AAV rep78 coding sequence at the p19 promoter 
region such that both the rep78 and the rep52 can 
be expressed from a single rep coding sequence; 
and (2) the same artificial intron containing the polh 
promoter was inserted into the AAV VP1 coding 
sequence upstream of the VP2 start codon such that 
all three capsid proteins (VP1, VP2, and VP3) can be 
expressed from a single capsid gene without the need 
to mutate the VP1 start codon ATG into suboptimal start 
codons[112]. This is the only baculovirus-based system 
with VP1 coding sequence that retains the authentic 
optimal ATG start codon. These modifications not only 
make the baculovirus more stable due to the elimination 
of rep sequence repeats, but also restore the infectivity 
of AAV vectors produced in insect cells because of the 
optimal VP1 expression level. It is well known that 
the VP1 protein contains a phospholipase A2 domain 
required for AAV infectivity and that decreased level of 
VP1 protein in the virus particle renders the virus less 
infective[114-116]. 
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We made additional improvement to our baculovirus-
based system in order to produce AAV vectors carrying 
toxic genes at a normal level[117]. Recombinant viruses 
carrying toxic genes such as diphtheria toxin, Ps
eudomonas exotoxin, ricin, and barnase are extremely 
difficult to produce since trace amount of toxin ex
pression can kill the producer cells. We exploited the 
difference in intron splicing machineries between insect 
and mammalian cells. By inserting a mammalian intron 
that is not recognized by insect cells to disrupt the ORF of 
the toxin gene carried by the recombinant virus, we are 
able to abolish toxin expression during virus production 
but restore expression once the recombinant virus 
is introduced into mammalian cells. In this improved 
system, recombinant baculovirus carrying the toxic 
gene can be produced at normal levels. By using this 
recombinant baculovirus harboring the intron-interrupted 
toxin gene, we are able to produce AAV vectors up to 
1.81 × 1015 vg purified from each liter of culture, 10- to 
100-fold higher than with other AAV production systems. 
Recently we performed a 25-L production run in the 
Wave Bioreactor 20/50EH system, and obtained 3.50 
× 1016 vg of total purified AAV6 vectors and the yield 
was independently verified by a third party (unpublished 
data). 

AAV manufacturing technologies have sufficiently 
advanced such that we now have a robust system to 
produce AAV vectors with yields that exceed 1 × 1015 vg/L, 
or 1 × 1018 vg from 1000-L bioreactor, which will be able 
to meet the demand of treating ten thousand patients at 
a dosage of, say, 1 × 1014 vg per patient.

AAV PURIFICATION
There are several methodologies to purify AAV vectors 
from cell cultures. They include density gradient ultra
centrifugation, column chromatography, and chloroform 
extraction/polyethylene glycol (PEG) precipitation parti
tioning. Virus particle purification by density gradient 
ultracentrifugation with cesium chloride (CsCl) has been 
used for more than 50 years[118,119]. When subjected 
to a strong centrifugal field, CsCl in solution forms a 
density gradient and viruses that are centrifuged to 
equilibrium in CsCl are separated from contaminants 
and collected in bands based on their buoyant densities. 
The history of chromatography spans from the mid-19th 
century to the 21st century. Column chromatography 
is a well-established method for efficient and scalable 
purification of biomolecules and has been used for AAV 
vector purification[120-124]. Chloroform extraction/PEG 
precipitation partitioning for AAV vector purification is 
rather new and not widely used yet.

Density gradient ultracentrifugation
The common strategy for AAV purification through 
ultracentrifugation starts with infected cell lysis and DNA 
digestion. The cell lysate is cleared by centrifugation 
to remove cell debris and applied to a discontinuous 
CsCl step-gradient with 1.3 g CsCl/mL on the top and 

1.5 g CsCl/mL on the bottom. Since the AAV particles 
have a buoyant density of 1.4 g/mL, they are able to 
be separated from protein contaminants after the first 
round of centrifugation, and collected as a single band 
in the middle of the gradient. The harvested AAV band 
is then mixed with 1.4 g CsCl/mL and subjected to a 
second round of isopycnic gradient ultracentrifugation. 
Since they all have the same buoyant density, this 
method can be used to purify all different serotypes of 
AAV vectors. In our lab, we have used this method to 
purify many serotypes of AAV vectors ranging from 1 × 
1013 vg to 3 × 1016 vg per production run and obtained 
satisfactory results. The advantage of this method is its 
versatility because this one process can be used for any 
serotype. The recovery rate is generally more than 70% 
and purity is more than 98% as judged by SDS-PAGE 
gel (Figure 3). 

Although some researchers reported that CsCl has 
deleterious effect on AAV vector infectivity[121,125], we 
performed a side-by-side comparison between CsCl and 
iodixanol purified AAV1-GFP vectors and have not seen 
any difference in infectivity (unpublished data). Ayuso 
et al[126] optimized the CsCl protocol by incorporating 
differential precipitation of AAV particles with polye
thylene glycol and produced AAV vectors in higher yield 
and markedly higher vector purity, which correlating 
with better transduction efficiency detected with several 
AAV serotypes in multiple tissues and species. In fact, 
the Center for Cellular and Molecular Therapeutics at 
the Children Hospital of Philadelphia (CHOP) is using a 
combination method to purify AAV vectors under cGMP 
conditions in which a column chromatography is used 
to capture AAV and CsCl ultracentrifugation is used 
to separate the empty from the full AAV particles[127], 
which indicate that AAV vectors purified by CsCl ultra
centrifugation method are acceptable for clinical usage. 

Iodixanol, an X-ray contrast compound, can be 
used as a density gradient medium in place of CsCl. 
Zolotukhin et al[125] reported the use of iodixanol medi
um combined with chromatography for AAV vector 
purification and obtained over 50% recovery with 99% 
purity. Hermens et al[128] reported the use of iodixanol 
to replace CsCl for purification of AAV vectors and 
shortened the centrifugation period to 3 h with repro
ducible concentration and purity of AAV vector stocks. 
In our laboratory, we used iodixanol to replace CsCl for 
AAV purification and obtained similar recovery rates and 
purity as with CsCl. 

Column chromatography
The modes of column chromatography suitable for 
AAV purification include affinity, ion exchange, gel 
filtration and hydrophobic interaction. Several optimized 
chromatographic steps are required to obtain virus 
of high yield and purity. Optimal AAV purification 
protocols generally include two chromatographic steps 
or a combination of chromatography with ultracentrifu
gation/filtration. Because different AAV serotypes have 
different compositions on the surface of viral particles, 
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specific resins should be used for purification. Heparin-
based affinity column chromatography has been used 
for AAV2 vector purification due to the fact that AAV2 
uses heparin sulfate proteoglycan as its receptor[24]. 
Gao et al[121] reported the use of a fully closed two-
column chromatography system to purify AAV vectors. 
Yields of AAV vectors purified by this method are high, 
potency is increased, and the purity of column-purified 
preparations is substantially improved. Brument et al[129] 
developed a two-step chromatography protocol on the 
basis of using ion exchange resins. Average recovery 
rate is 33%. In-vitro and in-vivo data demonstrated 
that this protocol, which does not need any pre-
purification of the cell lysate, can be used to obtain 
highly pure AAV2 and AAV5 stocks. AVB resin has also 
been used to purify AAV vectors[109]. Based on published 
data, on average the recovery rate of AAV purification 
with column chromatography is around 30%, which is 
substantially lower than the recovery rate (70%) of CsCl 
method used in our laboratory. In addition, commonly 
used column chromatography methods cannot remove 
empty AAV capsids from the fully packaged virus 
particles. Though Qu et al[130] succeeded in using ion-
exchange chromatography alone to separate empty and 
full particles from a semi-purified mixture of partially 
purified AAV, co-author Dr. Wright at CHOP has adopted 
a combinational method of column chromatography to 
capture AAV followed by CsCl gradient centrifugation, 
which allows his group to separate empty from full 
particles for their cGMP material purification[127]. 

Chloroform extraction, PEG precipitation and 
partitioning
Alternative methods for AAV vector purification have 
also been developed. Wu et al[131] reported chloroform 
treatment, PEG/NaCl precipitation and a final chloroform 

extraction to purify AAV vectors and obtained greater 
than 95% purity. The whole procedure can be per
formed in 4 h without using ultracentrifugation or chro
matography equipment. Another method was reported 
by Guo et al[132] in which AAV vectors from culture 
media and cleared cell lysate were precipitated with 
PEG8000/NaCl, and the pellet was resuspended in Hepes 
buffer, followed by chloroform extraction and PEG/salt 
partitioning. AAV vectors were purified and showed 
infective in both in vitro and in vivo studies. However, 
these methods have not been widely used yet.

CLINICAL TRIALS 
To date, there have been over 2076 gene therapy 
clinical trials worldwide, in which approximately 5.9% 
(over 127 clinical trials) have used AAV vectors[133]. 
Two general delivery methods have been employed to 
treat diseases with AAV vectors. Local delivery (surgical 
injection) method is used to treat diseases that affect 
specific organs. Systemic delivery (intravenous injection) 
method is used to treat diseases that affect all cells, 
such as lysosome storage diseases[134], and muscular 
dystrophies[54]. Many eye diseases, for example, are 
treated with either intra vitreal injection by primarily 
affecting retinal neurons or sub-retinal injection by 
placing virus in contact with the photoreceptor and 
retinal pigmented epithelial (rpe) layers of the eye[135]. 
Local delivery of AAV into the heart has been used to 
treat cardiac diseases[136]. Similarly, delivering AAV into 
the target region with stereotactic surgery can be used 
to treat some neurodegenerative diseases that primarily 
affect a particular region of the brain (striatum), such as 
Parkinson’s disease[137,138]. As a result, many promising 
data have been obtained from Phase 1 and Phase 2 
clinical trials for a number of diseases in recent years.

Leber’s congenital amaurosis
Leber’s congenital amaurosis is an inherited retinal 
disease that causes severe visual impairment in infancy 
or early childhood. Three groups of investigators 
reported the use of AAV2 to treat homozygous recessive 
rpe65 deficiency successfully in their clinical trials. 
The rpe65 codes for a protein that is responsible for 
regenerating 11-cis retinal in the retinal pigmented 
epithelial cell layer of the eye, and lacking this rpe65 
protein the patient is essentially blind in low light. In 
these three independent phase 1 clinical trials, each 
patient was injected sub-retinally into one of the eyes with 
the rAAV-rpe65 vector[29-31]. Studies of gene expression 
in the portion of the treated eye demonstrated that 
virtually 100% of the remaining photoreceptor cells were 
corrected and remarkable recovery of vision was seen 
in these patients[139]. The positive results from these 
rpe65 clinical trials indicate that essentially any recessive 
genetic defect in the eye with loss-of function should be 
able to be corrected. Studies for a variety of other eye 
diseases with genetic defects, as well as diseases such 
as macular degeneration are now underway.
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Figure 3  SimplyBlue SafeStaining of purified adeno-associated virus 
vectors on SDS-PAGE gel. Seven purified lots of adeno-associated virus (AAV) 
vectors at the amount of 1e + 11 vg per lane were loaded on a 10% Tris-glycine 
gel. The gel was stained with SimplyBlue SafeStain Kit (Invitrogen). Lanes 1, 4-6: 
AAV9; lanes 2 and 3: AAV5; lane 7: AAV8.2. AAV capsid proteins VP1, VP2, 
and VP3 are indicated; M: Protein ladders.

Chen H. AAV for human gene therapy



39 August 27, 2015|Volume 5|Issue 3|WJMG|www.wjgnet.com

Hemophilia B
Hemophilia B is a rare bleeding disorder in which blood 
doesn’t clot normally due to mutations in the gene for 
coagulation factor Ⅸ. A few clinical trials have been 
conducted for this factor Ⅸ deficiency. Patients lacking 
factor Ⅸ, a serum protein that is an essential component 
of the blood clotting cascade, experience increased 
episodes of bleeding in response to mild trauma or 
spontaneous hemorrhage in joints and muscle. The two 
initial hemophilia B phase Ⅰ/Ⅱ clinical trials, injecting 
AAV2 with a factor Ⅸ cDNA to skeletal muscle or liver, 
exhibited no serious adverse events[28,140,141]. Even 
though the muscle trial did not achieve a therapeutic 
level of factor Ⅸ in the circulation, long-term expression 
of clotting factor was detected on muscle biopsies taken 
up to 3 years after vector injection. AAV delivery to 
liver via the hepatic artery determined a therapeutic 
dose, which agreed closely with the doses predicted by 
studies in hemophilic dogs. However, the expression of 
factor Ⅸ in the treated patients lasted for only a period 
of weeks, followed by a gradual decrease in factor Ⅸ 
levels accompanied by a self-limited, asymptomatic 
rise and fall of liver enzymes[142]. The loss of expression 
was associated with a cytopathic T cell response to AAV 
capsid protein but not the transgene. More recently, a 
new phase Ⅰ clinical trial for hemophilia B was conducted. 
This time AAV8 vectors carrying a codon-optimized, 
self-complementary factor Ⅸ cassette were used[143]. 
The AAV8 vectors were delivered intravenously and 
dose-dependent and stable expression of therapeutic 
levels of factor Ⅸ in serum at middle and high vector 
doses were observed. Expression was stable over 6 mo 
of follow-up, and several patients no longer found it 
necessary to infuse factor Ⅸ protein. Similar to earlier 
hemophilia B trials, some patients appeared to mount 
an inflammatory response, as determined by increased 
levels of serum alanine aminotransferase. After a short 
course of an immune modulator (prednisolone), these 
patients recovered a normal enzyme profile and retained 
therapeutic levels of factor Ⅸ after immunosuppression 
was stopped. 

Congestive heart failure
In 2007, the first clinical trial for heart failure was 
launched in the United States[20,21]. This phase 1/2 
multicenter trial was designed into two parts to evaluate 
the safety and the biological effects of AAV1.SERCA2a 
intracoronary delivered into patients with advanced 
heart failure. In part 1 of the trial, a satisfied safety 
profile was observed in the 12-mo follow-up with these 
patients[20,21]. Several patients showed improvement as 
measured by biomarker (two patients), functional (four 
patients), symptomatic (five patients), and LV function/
remodeling (six patients) parameters. These results 
indicated that treatment with AAV1. SERCA2a provides 
quantitative biological benefit. 

Thirty-nine patients with advanced heart failure 
were enrolled in part 2 of the trial and randomly 
divided into four groups, in which three groups received 

intracoronary AAV1.SERCA2a (low dose: 6e + 11 DRP, 
middle dose: 3e + 12 DRP, and high dose: 1e + 13 
DRP) and one group placebo[144]. Over six months of 
the trial, patients’ symptoms including Minnesota Living 
With Heart Failure Questionnaire (MLWHFQ) and New 
York Heart Association (NYHA) score, echocardiographic 
measures, NT proBNP levels, and functional status 
[six-minute walk test (6MWT) and VO2 max], were 
evaluated. Based on the above end-points, clinical 
outcomes and concordant trends among groups and 
patients were compared to determine the success of 
treatment. At the group and individual patient levels, 
the high-dose group met the pre-specified criteria for 
success. Patients treated with AAV1. SERCA2a showed 
improvement or stabilization in MLWHFQ and NYHA 
scores, NT proBNP, 6MWT, and VO2 max levels, and LV 
end-systolic volumes at 12 mo when compared with 
patients treated with placebo. In the placebo group over 
a one-year period, cumulative recurrent cardiovascular 
events (myocardial infarction, cardiac transplantation, 
LV assist device insertion, heart failure admission, and 
death) increased. The patients treated in the high dose 
group continued to perform significantly better at 12 
mo when compared with patients in the rest of groups 
by showing no increase of adverse events, disease-
related events, laboratory abnormalities, or arrhythmias. 
Though the patient groups with low- and middle-dose of 
AAV1. SERCA2a had decreased recurrent cardiovascular 
events for the first six months, they had events that 
were similar to placebo group from 6 to 12 mo[144].

Parkinson’s disease
Since 2003, a total of nine clinical trials have been 
conducted for gene therapy of Parkinson’s disease (PD) 
with AAV vectors[145]. PD is a chronic and progressive 
neurodegenerative disease that is most widely dia
gnosed for the profound degeneration of mid-brain 
dopamine nigrostriatal neurons linked to serious motor 
symptoms. In the hope of preventing neurodegeneration 
and increasing dopamine neuron synapses, Bartus 
et al[137] used AAV2 to deliver a neurotrophic factor, 
neurturin, to striatal tissue of PD patients. Though they 
observed some evidence of improvement, they did not 
reach their primary therapeutic end points due to the 
lack of sufficient nigral neurons to show a significant 
effect. Christine et al[32] overexpressed aromatic amino 
acid decarboxylase, the final enzyme in the dopamine 
synthetic pathway and also observed some improvement 
clinically and demonstrated clearly continuous gene 
expression over time. 

Alzheimer disease
Alzheimer’s disease (AD) is a neurodegenerative 
disorder. Though the cause and progression of AD is not 
fully understood, it is well recognized that the function 
and survival of basal forebrain cholinergic neurons that 
are vulnerable in AD can be enhanced by nerve growth 
factor (NGF). Encouraging clinical trial results have come 
from a study in which AAV2 vectors carrying human NGF 
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gene was used to treat AD through stereotactic surgical 
delivery in the hippocampus[146,147]. The results indicated 
that[147] AAV2-NGF was safe and well-tolerated for 2 
years. No evidence of accelerated decline was observed 
through positron emission tomographic imaging and 
neuropsychological testing. Long-term, targeted, gene-
mediated NGF expression and bioactivity were con
firmed in the brain autopsy tissues. This clinical trial 
provides important evidence that bilateral stereotactic 
administration of AAV2-NGF to the nucleus basalis of 
Meynert is feasible, well-tolerated, and able to produce 
long-term, biologically active NGF expression, supporting 
the initiation of an ongoing multicenter, double-blind, 
sham-surgery-controlled trial.

CONCLUSION
Human gene therapy has advanced into a new stage 
where more and more investments will fuel more research 
and clinical trials. With a battery of AAV serotypes and 
variants and a series of well-established production and 
purification methods available to use, researchers and 
clinicians will be able to accelerate progress in the field. 
Though there are still some challenges ahead, more gene 
therapy drugs with AAV vectors are on the horizon. 
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Abstract
Typically, inherited metabolic diseases arise from point 
mutations in genes encoding metabolic enzymes. 
Although some of these mutations directly affect amino 
acid residues in the active sites of these enzymes, 

the majority do not. It is now well accepted that the 
majority of these disease-associated mutations exert 
their effects through alteration of protein stability, 
which causes a reduction in enzymatic activity. This 
finding suggests a way to predict the severity of newly 
discovered mutations. In silico  prediction of the effects 
of amino acid sequence alterations on protein stability 
often correlates with disease severity. However, no 
stability prediction tool is perfect and, in general, 
better results are obtained if the predictions from a 
variety of tools are combined and then interpreted. 
In addition to predicted alterations to stability, the 
degree of conservation of a particular residue can also 
be a factor which needs to be taken into account: 
alterations to highly conserved residues are more likely 
to be associated with severe forms of the disease. The 
approach has been successfully applied in a variety of 
inherited metabolic diseases, but further improvements 
are necessary to enable robust translation into clinically 
useful tools.

Key words: Genetic disease; Metabolism; In silico  
method; Protein stability; Disease-associated mutation
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Core tip: Bioinformatics and other in silico  methods 
are increasingly being used to predict the severity of 
disease-associated mutations in inherited metabolic 
diseases. In general, severity correlates with altered 
protein stability and the best predictions occur when a 
variety of tools are applied.
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INTRODUCTION
Inherited metabolic diseases result from mutations in 
the genes encoding enzymes involved in intermediary 
metabolism. Well characterised examples include galacto­
semia, lysosomal storage diseases and phenylketonuria. 
Typically these diseases manifest with effects at the 
whole organism level, despite their origins at the 
metabolic pathway level. Physical and cognitive dis­
abilities are associated with many inherited metabolic 
diseases. While individual diseases are generally rare, 
the cumulative effect of many of these diseases has 
a significant effect on societies and economies[1-4]. 
Furthermore, the burdens on patients, their families 
and their immediate communities can be devastating 
since many of these diseases result in progressive 
deterioration of the patient resulting, in some cases, in 
death in childhood or early adulthood. Very few of these 
diseases have effective therapies (i.e., treatments which 
restore normal, or near-normal, functioning to the 
patient). One barrier to the development of therapies is 
the rareness of the diseases: there is limited incentive 
to the development of drugs or other treatments which 
would only be applicable to a small number of patients 
worldwide[2,5,6]. Where therapies do exist, they tend to 
be extremely expensive, often exceeding United States 
$100000 per patient per year (for example, see[7,8]).

Biochemical studies on the underlying molecular 
pathology of a range of inherited metabolic diseases 
have revealed some common themes. In particular, 
mutations associated with these diseases often cause 
changes which destabilise the corresponding protein 
(for examples, see[9-15]). Very few disease-associated 
mutations directly affect the residues in the active site 
of the enzyme; the majority affect residues elsewhere 
in the protein. A common molecular mechanism of 
disease causation is that the altered amino acid residue 
causes a global reduction in the enzyme’s stability 
resulting in reduced catalytic activity[16]. The loss of 
stability can also be associated with reduced affinity 
for essential cofactors or increased aggregation of 
the partially folded protein. It is, of course, the loss of 
enzymatic activity which commonly leads to disease, for 
example by reducing the amount of product made or 
causing a build-up of toxic intermediates. In other cases 
the accumulation of aggregated protein results in a 
breakdown of cellular homeostasis. Nevertheless, partial 
protein misfolding lies at the base of these problems 
and is the fundamental cause of the disease in these 
cases.

It is also apparent that, in many inherited metabolic 
diseases, there is a range of possible symptoms. This is 
particularly stark in diseases like type Ⅲ galactosemia 
and mevalonate kinase deficiency. In these diseases the 
manifestations range from near-normal physiology with 
some alterations in blood chemistry to highly disabling, 
life-threatening conditions[17,18]. The experience of each 
patient will be determined by his/her genetic back­
ground, lifestyle and environment. Critical elements 

include the patient’s diet, activity levels and access to 
good quality medical care. However, the most important 
factor in determining the severity of symptoms is 
normally the exact mutation(s) that the patient has. 
Most inherited metabolic diseases are not caused by 
one, single mutation. The majority have many possible 
mutations which are associated with the disease. For 
example, there are almost 250 mutations in galactose 
1-phosphate uridylyltransferase which are associated 
with type Ⅰ galactosemia[19,20]. Since these mutations 
alter different amino acid residues, it follows that they 
will have different effects on the protein. Some will have 
relatively minor effects on the protein’s overall structure 
and stability whereas others may render the protein 
essentially non-functional.

Novel, disease-associated mutations continue to be 
discovered. Indeed, with the decreasing price of whole 
exome sequencing, we should expect that the rate of 
discovery of novel mutations will increase in the next 
few years[21,22]. In some inherited metabolic diseases 
problems are apparent within a few days of birth; 
however, in other cases, babies are born with near 
normal physiology but progressively decline over the 
following years. Given the range of possible severities 
associated with some inherited metabolic diseases it is 
a challenge to physicians and scientists to predict the 
likely symptoms of an individual patient and to plan 
treatment accordingly. This is particularly the case for 
newly discovered disease-associated mutations.

THE CHALLENGE OF PREDICTION
The link between protein stability and severity of 
disease suggests a way in which predictions might 
be made. There are a variety of software packages, 
many freely available online, which claim to predict the 
stability of proteins (Table 1). In theory if a range of 
disease-associated variant proteins are compared to 
the wild-type in one of these packages then the greater 
the predicted instability, the more severe the disease is 
likely to be. In practice the situation is more complex. 
No prediction software is 100% accurate and different 
packages can give different results for the same variant. 
This problem can be overcome by using a variety of 
different programs and aggregating the results together 
to obtain a consensus. However, problems still remain. 
In some diseases, both decreases and increases in 
stability can be associated with disease (for examples 
see[9,23]). Indeed, it appears that as well as an optimum 
structure for activity, proteins also require an optimal 
degree of flexibility and stability. Protein flexibility is 
inextricably linked to ligand binding and catalysis[24]. 
Thus, increased stability can lead to a more rigidified, 
less flexible protein which is less able to bind substrates 
and catalyse the reaction.

While protein stability is undoubtedly a key factor in 
disease causation, there are other factors which need 
to be considered. Alterations in key residues involved in 
binding substrates or in the chemistry of catalysis will 
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lead to direct loss of activity. A failure to interact with 
cellular chaperones may impede folding. Disruptions to 
other protein-protein interactions may also affect the 
enzyme’s function. Residues involved in catalysis and 
protein-protein interactions are generally well conserved 
through evolution. Therefore, we might expect that 
mutations which alter highly conserved residues might 
also lead to more severe forms of disease. Therefore, 
many predictions incorporate measures of sequence 
conservation and propensity to interact with cellular 
chaperones (Table 1). Overall, it is accepted that the 
best predictions will result from using a variety of 
different software packages which address different 
aspects of the protein’s structure and function[25-27]. 
Furthermore, any output requires intelligent and critical 
analysis by the users.

APPLICATION TO INHERITED METABOLIC 
DISEASES
These approaches have been employed in a number of 
inherited metabolic diseases (Table 2). Typically, a set of 
known mutations and their associated protein variants 
are identified from the literature and classified according 
to their association with different severities of the 
disease. Other information from the literature is required 

- most importantly an experimental demonstration 
that protein misfolding is an important factor in disease 
causation. Using the known variants, a range of pre­
diction tools are applied and the combination which 
best predicts the known outcomes are then selected. 
This can then be applied to uncharacterised mutations 
or to polymorphisms identified through genome and 
exome sequencing projects. In general, the severity of 
disease correlates with the predicted loss of stability of 
the protein. The degree of conservation of the residue(s) 
affected is also important in some conditions (Table 
2). Most studies employ a range of different prediction 
tools and aggregate results together to make informed 
predictions (for example see[28]).

CONCLUSION AND FUTURE 
PERSPECTIVES
To date, no prediction protocol has achieved complete 
accuracy and it is unlikely that physicians would be 
confident to rely on them to guide treatment of their 
patients. In addition, the prediction protocols published 
so far mostly require extensive bioinformatics analysis 
using a number of different tools on separate websites. 
Ideally these would be integrated into a single web-
based package which enabled the user to submit a 
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Table 1  Examples of freely available, online tools for predicting the properties of variant proteins

Category Name Weblink Ref.

Structural analysis YASARA energy minimisation www.yasara.org/minimizationserver.htm [29]
LS-SNP ls-snp.icm.jhu.edu/ls-snp-pdb/main [30]

GETAREA curie.utmb.edu/getarea.html [31]
Stability prediction I-Mutant 3.0 gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi [32,33]

mCSM bleoberis.bioc.cam.ac.uk/mcsm/ [34]
SDM score mordred.bioc.cam.ac.uk/~sdm/sdm.php [35,36]

Mupro mupro.proteomics.ics.uci.edu [37]
iStable predictor.nchu.edu.tw/iStable/ [38]

PredictSNP 1.0 loschmidt.chemi.muni.cz/predictsnp/ [39]
Meta-SNP snps.biofold.org/meta-snp/ [40]

KD4V decrypthon.igbmc.fr/kd4v [41]
Fold-X foldx.crg.es [42]

PoPMuSiC dezyme.com/ [43]
CUPSAT cupsat.tu-bs.de [44,45]

GETAREA curie.utmb.edu/getarea.html [31]
Binding affinity changes BeAtMuSiC babylone.ulb.ac.be/beatmusic [46]
Aggregation tendency, 
amyloid formation and 
chaperone binding

TANGO tango.crg.es/ [47]

WALTZ www.switchlab.org/bioinformatics/waltz [48]
LIMBO www.switchlab.org/bioinformatics/limbo [49]

Sequence conservation Clustal Omega www.ebi.ac.uk/Tools/msa/clustalo/ [50]
Scorecons www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl [51]

SIFT sift.jcvi.org/ [52]
PROVEAN provean.jcvi.org/index.php [53]

LS-SNP ls-snp.icm.jhu.edu/ls-snp-pdb/ [30]
SNPs and GO snps.biofold.org/snps-and-go/pages/help.html [54]

PANTHER www.pantherdb.org/tools/csnpScoreForm.jsp [55]
GenMAPP www.genmapp.org [56]
PolyPhen 2 genetics.bwh.harvard.edu/pph2/ [57,58]

nsSNP Analyzer snpanalyzer.uthsc.edu [59]
FI mutation assessor mutationassessor.org/v1 [60]

YALE MU2A krauthammerlab.med.yale.edu/mu2a [61]
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several of these were predicted to be associated with 
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Table 2  Examples of bioinformatics based predictions of the severity of variants associated with inherited metabolic diseases

Disease Protein Comments Ref.

Alkaptonuria Homogentisate 
1,2-dioxygenase

Combining a variety of computational approaches gave rise to the most accurate predictions [62]

Apparent mineralocorticoid 
excess

11βHSD2 The predicted degree of structural change in the enzyme correlates with disease severity [63]

Fabry disease GLA A purpose built program designed to detect protein instability outperformed existing, generic 
tools

[64]

Fabry disease GLA A purpose built web interface allows prediction of a patient’s responsiveness to
 pharmacological chaperone therapy

[65]

Gaucher disease GBA Slightly different results were obtained with different programs; however, 22 out of 47 
variants were predicted to be harmful by all seven programs used

[28]

Glucose 6-phosphate 
dehydrogenase deficiency

G6PDH A combination of prediction tools suggested that protein stability is an important factor in 
this disease; novel potentially disease-associated variants were identified

[66]

Hyperargininemia ARG1 Mutations affect residues in the active site, or protein stability, or quaternary structure [67]
MODY 2 GCK Variations which decrease protein stability and/or occur in highly conserved regions of the 

protein are associated with disease
[68]

Niemann-pick disease type C NPC1 and NPC2 The majority of disease-associated variants were predicted to be less stable than wild-type [69]
Phenylketonuria PAH Protein stability predicted to be most important factor in disease causation [10]
Pyruvate kinase deficiency PK1 and PK2 A combination of prediction tools suggested that protein stability is an important factor in 

this disease; novel potentially disease-associated variants were identified
[66]

Type Ⅰ galactosemia GALT Main predicted effect is the loss of stability of GALT [70]
Type Ⅲ galactosemia GALE Effects on protein stability and degree of sequence conservation combined were required 

for good predictions
[71]

11βHSD2: 11β-hydroxysteroid dehydrogenase type 2; GLA: α-galactosidase A; GBA: Glucocerebrosidase; G6PDH: Glucose 6-phosphate dehydrogenase; 
ARG1: Arginase 1; GCK: Glucokinase; PAH: Phenylalanine hydroxylase; PK1 and PK2: Pyruvate kinase isoforms 1 and 2; GALT: Galactose 1-phosphate 
uridylyltransferase; GALE: UDP-galactose 4’-epimerase; MODY 2: Maturity-onset diabetes of the young, type 2.
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Abstract
Adolescents and young adults (AYA) with a cancer 
diagnosis or those at risk for cancer due to hereditary 
cancer syndromes may benefit from genetic counseling 
and testing not only to manage personal risk but also to 
address reproductive concerns, especially fertility. The 
opportunity for genetic counselors to provide important 
risk information is relevant to both the newly diagnosed 
as well as to unaffected carriers and survivors. However, 
genetic counselors may need additional training in 
reproductive options related to AYA cancer to provide 
this valuable counsel. This commentary uses hereditary 
breast and ovarian cancer syndrome as a model to 
highlight important considerations when discussing 
preimplanatation genetic diagnosis and prenatal 
diagnosis, particularly in the context of expanded testing 
for hereditary cancer risk including multigene panels 
or whole exome or whole genome sequencing. Other 
hereditary cancers are also addressed; however, less 
is known about the psychosocial and fertility concerns 
in these AYA populations. Additionally, we provide an 
overview of the concept of “oncofertility” - the linkage 
between cancer care and reproductive medicine that 
aims to expand the reproductive opportunities of 
cancer patients - and offer support for the expansion of 
guidelines to include genetic counselors in AYA cancer 
patients’ treatment planning related to reproductive 
health and fertility.

Key words: Fertility; Oncology; Genetic counselors; 
Decision-making; Oncofertility; Adolescent young 
adults; Training; Health professionals
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Core tip: Genetic counseling and testing holds great 
promise for adolescents and young adults (AYA) with 
cancer or potentially at risk for cancer. Oncofertility, 
the connection between reproductive medicine and 
oncology, provides expanded prospects for AYA to 
achieve childbearing and parenting goals. Genetic 
counselors and experts may benefit from expanded 
oncofertility training to provide counsel to AYA and aid 
in improving quality of life. Newer genomic technologies 
available for testing such as multi-gene testing and 
whole exome sequencing combined with advances 
in assisted reproductive technology offer novel 
opportunities for AYA to achieve reproductive goals. 

Quinn GP, Peshkin BN, Sehovic I, Bowman M, Tamargo C, 
Vadaparampil ST. Oncofertility in adolescent and young adult 
hereditary cancer: Considerations for genetics professionals. 
World J Med Genet 2015; 5(4): 52-59  Available from: URL: 
http://www.wjgnet.com/2220-3184/full/v5/i4/52.htm  DOI: http://
dx.doi.org/10.5496/wjmg.v5.i4.52

INTRODUCTION
Every year over 70000 adolescents and young adults 
(AYAs) are diagnosed with cancer in the United States, 
accounting for approximately 6% of all cases of newly 
diagnosed invasive cancers. The incidence of specific 
cancers in the AYA population varies considerably across 
the age continuum typically defined as between 15 and 
39 years[1]. Hodgkin and non-Hodgkin lymphomas, 
melanoma, testicular cancer, female genital tract cancers, 
thyroid cancer, bone and soft tissue sarcomas, leukemia, 
brain and spinal cord tumors, breast cancer, and non-
gonadal germ cell tumors account for 95% of all cancers 
in this age group[2]. Importantly, many AYAs with these 
diagnoses, particularly if they have a family history of 
cancer, are candidates for genetic counseling and possibly 
testing for hereditary cancer risk[3]. Genetic counseling 
typically entails a comprehensive discussion with a 
trained genetics professional (i.e., medical geneticist 
or genetic counselor) to: (1) obtain a risk assessment 
based on personal and family cancer history; (2) 
educate about hereditary cancer risks and management; 
and (3) discuss potential benefits and limitations of 
genetic testing[4-8]. Goals of this initial session are 
to determine the appropriateness of genetic testing 
based on the patient’s history and risk assessment[9], 
increase knowledge about hereditary cancer risks and 
implications, assess and address psychosocial concerns, 
and facilitate patient decision-making about genetic 
testing and risk management[10-12].

One key and highly relevant issue for AYAs is the 
impact of a cancer diagnosis and associated treatment 
on future fertility[13-17]. Numerous organizations includ
ing the American Society of Clinical Oncology (ASCO), 

the Royal College of Physicians in the United Kingdom, 
and the Clinical Oncology Society of Australia have 
developed clinical practice guidelines for fertility 
preservation for patients of reproductive age[18-21]. 
The ASCO guidelines, in particular, recommend that 
in addition to medical oncologists, the responsibility 
for discussion of and referral for fertility preservation 
also extends to other physician specialties and allied 
health care professionals in the oncology care setting[18]. 
However, for the subset of individuals at increased 
risk for hereditary cancer, there may be the additional 
concerns about genetic risk for future offspring. The 
possibility of transmitting a mutation to a child is often 
a concern among individuals affected with hereditary 
cancer, perhaps to the extent that some carriers may 
avoid childbearing[22-28]. To address this important 
concern, the National Comprehensive Cancer Network 
(NCCN) - an affiliation of some of the world’s most 
prominent cancer centers that establishes frequently-
updated, expert-reviewed, evidence-based guidelines 
regarding cancer care and treatment - recommends 
that patients of reproductive age should be counseled 
about the options of prenatal diagnosis (PND) and 
pre-implantation genetic diagnosis (PGD) for several 
hereditary cancer syndromes[4,29,30]. Indeed, genetics 
professionals often see patients at a critical juncture, 
in which AYA patients are not only acclimating to their 
diagnosis and treatment, but are also learning about 
fertility preservation options while considering potential 
risk to offspring that could impact their future parenting 
decisions. 

This commentary uses hereditary breast and ovarian 
cancer syndrome as a model to highlight important 
considerations when discussing PGD and PND, particu
larly in the context of expanded testing for hereditary 
cancer risk including multigene panels or whole exome 
or whole genome sequencing. Other hereditary cancers 
are also addressed; however, less is known about 
the psychosocial and fertility concerns in these AYA 
populations. Additionally, we provide an overview of the 
concept of “oncofertility” - the linkage between cancer 
care and reproductive medicine that aims to expand 
the reproductive opportunities of cancer patients - and 
offer support for the expansion of guidelines to include 
genetic counselors in AYA cancer patients’ treatment 
planning related to reproductive health and fertility[31].

DISCUSSION
Hereditary cancers 
Hereditary cancers are those in which increased 
susceptibility is generally passed down within a family. 
They result from germline gene mutations and comprise 
5% to 10% of all cancers[32]. Most cancers that affect 
the AYA age group, particularly those diagnosed under 
age 30, appear to be “sporadic” - or not arising from 
any recognized inherited susceptibility or environmental 
risk factors[1]. However, AYAs with cancer, and especially 
those with family histories of cancer suggestive of a 
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hereditary cancer syndrome, are good candidates for 
genetic counseling and testing[3]. Characteristics of 
hereditary cancer are dependent upon cancer type and 
include: Premature onset of cancer, multiple primary 
cancers within an individual, bilateral cancer in paired 
organs, rare tumors and uncommon tumor histology, 
and unusual cancer such as male breast cancer[4,33-35]. 
Additional characteristics related to family history 
include: Clustering of matching cancers in immediate 
family members, cancers spanning across generations 
of a family, rare cancers correlated with birth defects, 
and certain ethnic or geographic populations that are at 
particular high risk of hereditary cancers[33,36-38]. Table 
1 highlights the most prevalent AYA hereditary cancer 
syndromes[4,39-45].

Hereditary breast and ovarian cancer 
Hereditary Breast and Ovarian Cancer syndrome (HBOC), 
primarily caused by mutations in the BRCA1 and BRCA2 
(BRCA) genes, is associated with very elevated risks for 
breast, ovarian and other cancers, affecting about 5% 
of women with breast cancer and 10% of women with 
ovarian cancer having HBOC[46,47]. While approximately 
12% of all women will develop breast cancer during 
their lifetimes, the inheritance of a harmful BRCA1 
mutation increases this risk to up to 65% and a BRCA2 
mutation increases it to roughly 45%; these mutations 
increase the likelihood of developing ovarian cancer 
from 1.3% of all women to 39% for BRCA1 and up to 
17% for BRCA2[45]. Because effective management 
strategies exist for breast cancer screening and mortality 
reduction for ovarian and breast cancer vis-à-vis bilateral 
salpingo oophorectomy, many professional associations 
recommend BRCA counseling and testing for women at 
high risk of HBOC Syndrome[4,40,41,48]. For example, the 
National Society of Genetic Counselors (NSGC) identified 
critical components of the testing and counseling 
process that include: The ascertainment of medical and 
family histories, determination and communication of 

cancer risk, assessment of risk perception, education 
regarding the genetics of HBOC, discussion of molecular 
testing for HBOC if appropriate (including benefits, 
risks and limitations) and any necessary follow-up[9,40]. 
Additionally, the United States Preventive Services Task 
Force recommends genetic counseling for women with 
high risk family histories[41].

Management of HBOC risk in women may include 
aggressive and early breast cancer screening with 
breast magnetic resonance imaging beginning at age 
25, mammography starting at age 30, or consideration 
of bilateral risk reducing mastectomies[4]. Bilateral 
salpingo-oophorectomy is recommended by age 35-40 
and when childbearing is completed[4]. These surgeries 
and therapies have implications for future fertility and 
parenting considerations. For example, women facing 
decisions about oophorectomy may wish to know that 
oocytes can be preserved and through the use of assi
sted reproductive technology (ART) such as in vitro 
fertilization (IVF), they can still carry a pregnancy[49-51]. 
For women recommended to use tamoxifen or under
going chemotherapy or other adjuvant therapy to 
manage risk, it is imperative for them to be aware that 
pregnancy is contraindicated during this time[52] and 
oocyte freezing may be a consideration for delayed 
childbearing[53-55]. An emerging ovarian cancer risk 
reduction option includes a two-step surgical strategy 
that includes bilateral salpingectomy prior to menopause 
followed by postmemopausal oophorectomy. Ovarian 
preservation could lead to an opportunity to maintain 
some fertility preservation options for a more extended 
period of time, reduce cardiovascular disease and 
bone loss and improve quality of life. However, this 
relatively new approach for ovarian cancer risk reduction 
must be considered in light of limited data regarding 
optimal timing of the two surgeries and whether timing 
should differ based on the specific cancer predisposing 
mutation. Additionally, the short and long term impact 
of this option on cancer risk reduction, quality of life, 

Syndrome Description Genetic Testing recommendations

HBOC Breast cancer or breast and ovarian cancers among multiple family 
members

Testing for BRCA1 and BRCA2 

LFS Increases risk for many cancers including sarcoma, breast, brain, 
lymphoma, lung, and others

Testing for p53 

Retinoblastoma Intraocular tumors (not always hereditary); nonocular tumors 
common in hereditary retinoblastoma

Testing for RB1

MEN and FMTC Increases risk of endocrine tumors; FMTC is a common type of MEN Testing for MEN1, RET, and CDKN1B 
Lynch syndrome Increases risk for colorectal cancer Testing for MLH1, MSH2, MSH6, PMS2, or EPCAM 
FAP Increases risk for colorectal cancer; existence of multiple adenomas 

is passed down within family members
Testing for APC and MUTYH 

Cowden Syndrome Increased risk for breast, thyroid, endometrial (uterine lining), and 
other cancers

Testing for PTEN

Von Hippel - Lindau Syndrome Increased risk for kidney cancer and multiple noncancerous tumors, 
including pheochromocytoma

Testing for VHL

Familial Melanoma Increased risk for malignant melanoma and pancreatic cancers CDK2NA and CDK4

Table 1  Prevalent adolescents and young adults hereditary cancer syndromes

HBOC: Hereditary breast and ovarian cancer; LFS: Li-fraumeni syndrome; MEN: Multiple endocrine neoplasia; FMTC: Familial medullary thyroid 
carcinoma; FAP: Familial adenomatous polyposis.
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physical and psychosocial functioning, as well as 
other cancer prevention behavior remains largely 
unknown[56,57]. 

Aside from fertility concerns, a woman who has had 
bilateral mastectomies will not be able to breastfeed 
her child. This is an important consideration for women 
who perceive breastfeeding as an essential parenting 
role. These women would benefit from counseling about 
additional ways to establish bonding with their infants 
and to take this information into consideration when 
making decisions about risk management[58]. Each of 
these examples highlights the importance of women 
being aware of how hereditary risk may affect fertility 
and parenting concerns. The genetic counselor is thus 
important in both providing a woman with personal risk 
reduction information, and addressing family planning 
goals with options and strategies.

Fertility and cancer
AYAs with any type of cancer, heritable or not, face 
several challenges including unique psychosocial 
consequences. AYA cancer patients and survivors 
often experience disruption in education, employment, 
relationships, and personal growth[59]. One key quality 
of life issue among this childbearing-aged population is 
the threat to reproductive health, including risks like loss 
of fertility, compromised fertility, and concerns about 
transmission of cancer susceptibility gene mutations 
to future offspring[60]. ASCO, NCCN, the Royal College 
of Physicians, and the European Society for Medical 
Oncology, as well as other prominent organizations, 
have all created guidelines suggesting the most 
effective way to deal with these challenges is to discuss 
options and preservation methods prior to cancer 
treatment and document this discussion in the medical 
record[18-20,61,62]. However, recent research evidences low 
rates of documentation, which may equate to low rates 
of actual discussion[63].

Established options for fertility preservation include 
sperm, oocyte, and embryo cryopreservation. Experi
mental options include testicular and ovarian tissue 
freezing. Still other options, often referred to as 
alternative family building, include the use of donor 
sperm, oocytes or embryos or the use of a gestational 
carrier. While these options are available for AYA 
cancer patients and survivors numerous studies have 
documented poor communication about potential infer
tility risks and preservation or family building options 
between patients and health care providers. Additionally, 
health care providers report discomfort and lack of 
knowledge regarding some assisted reproductive 
technologies, like PGD, which may be an important 
resource for cancer patients concerned about passing 
on cancer-specific gene mutations to their future 
offspring[64-66]. Consequently, many patients do not 
receive timely and accurate information about the impact 
of their diagnosis on future reproductive health[67-70]. 
Even when these risks are communicated, however, 

patients may not be provided with additional resources 
for related issues beyond immediate treatment impact, 
including referrals to specialists like reproductive 
endocrinologists and genetic counselors, who can 
answer important questions and provide individualized 
guidance for AYA cancer patients. While oncologists 
and oncology nurses are necessary primary sources of 
information on cancer diagnosis and treatment impact 
on future fertility, sessions with genetics professionals 
can expand upon this initial information by discussing 
how hereditary cancer risks may affect the patient’s 
childbearing concerns and goals. 

Genetic testing for hereditary cancer syndromes in 
future offspring
Prior reproductive considerations were largely limited 
to hereditary cancer syndromes following an autosomal 
dominant inheritance pattern (e.g., BRCA, PTEN). Thus, 
counseling was focused on reproductive implications 
based solely on the proband’s test results. However, 
with expanded gene panel testing, reproductive 
counseling must also consider genetic disorders that 
follow an autosomal recessive inheritance patterns. For 
example, the addition of the Fanconi anemia (FA) genes 
(FANCD1/BRCA2, FANCJ/BACH1/BRPI1, FANCN/PALB2, 
FACNCO0/RAD51C, and FANCA) to cancer testing 
panels raises the possibility of identifying risk for FA. 
Thus, reproductive implications for offspring are also 
informed by the carrier status of the proband’s current 
(or future) partners. If both are heterozygotes, there 
is a 25% risk that an offspring will be a homozygote 
and have FA. Similar considerations would arise for 
probands carrying mutations in ATM and MYH genes.

For most individuals with autosomal dominant heredi
tary cancer syndromes (e.g., associated with BRCA1/2, 
PTEN, or TP53 mutations), reproductive options exist 
for prenatal and PGD to detect heterozygous offspr
ing. However, with the advent of panel testing, more 
individuals are being identified with heterozygous 
mutations in a broad array of genes that had been 
previously identified primarily in homozygotes. These 
homozygous individuals are biallelic mutation carriers, 
having inherited a mutation from each parent through 
autosomal recessive inheritance. For example, female 
ATM heterozygotes are at increased risk for breast 
cancer, but biallelic carriers have a neurologic condition 
known as ataxia telangiectasia. Similarly, BRCA2 
homozygotes and others with biallelic mutations in 
genes in the FA pathway (e.g., BRIP1, PALB2, RAD51C) 
develop FA. Recently, the rare finding of biallelic 
BRCA1 carriers appears to manifest with a similar FA 
phenotype. Individuals with two mutations in some 
genes associated with Lynch syndrome may develop 
a severe condition known as constitutional mismatch 
repair deficiency. Thus, an individual tests positive 
for one mutation in genes such as these, counseling 
about reproductive implications needs to address. Not 
only the risks associated with autosomal dominant 
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inheritance but also the potential risk to have a child 
with two deleterious biallelic mutations that could 
result in a severe condition. Therefore, assessing the 
tested individual’s partner (i.e., his or her personal and 
family history, as well as ethnicity) is important. In the 
unlikely event that both parents are heterozygous for 
specific mutations, there is a 25% risk that a child will 
be homozygous and could have a severe phenotype. 
Thus, the couple should be made aware of reproductive 
options such as PGD.

Preimplantation genetic diagnosis 
AYAs with hereditary cancers may have concerns about 
future offspring and transmission of the hereditary 
cancer[22-28,66,71,72]. Technologies exist for individuals with 
cancer susceptibility gene mutations to avoid the birth 
of a child with such mutations. PGD is a type of ART 
allowing couples to choose which fertilized embryos, 
created through IVF, are implanted into a woman’s 
uterus for further gestation[73]. These embryos are tested 
for genetic disorders with the intent that the selected 
embryo will result in a child who does not carry the 
genetic mutation[73,74]. To date, over 20000 cases of PGD 
use have been reported in the United States and over 
200 genetic disorders or conditions can be identified 
using PGD[75]. 

PGD is not without its ethical concerns. Studies of 
the general public and families with hereditary cancers 
suggest concerns that PGD is akin to “playing God” and 
a slippery slope for the creation of “designer babies”
[76,77]. Although oncology healthcare providers may be 
willing to discuss PGD with patients, many studies show 
physicians and nurses lack sufficient knowledge and 
confidence to initiate PGD discussions[78]. A study of 373 
gynecologic oncologists and obstetrics and gynecologists 
reported that 68% of participants had incorrect or 
limited knowledge of PGD for hereditary cancer[79]. 
Another study with 201 oncology nurses showed 
more than half of respondents (78%) were unfamiliar 
with PGD and those familiar with PGD had limited 
knowledge[79]. Studies with individuals at increased risk 
for hereditary cancer syndromes reported low levels of 
knowledge about PGD for hereditary cancers, moderate 
rates of acceptability, and high levels of need for 
information about PGD[80]. With respect to patients with 
hereditary cancer, although a few studies indicate some 
would not consider PGD personally, most individuals 

agreed that it is important for health care providers to 
provide information about the option of PGD[64,81-83].

PND 
PND can be used to identify hereditary cancer risks in 
the developing fetus. This process typically includes 
chorionic during the eleventh through fourteenth weeks 
of pregnancy or amniocentesis in later weeks[84]. PND 
has been used to identify gene mutations in RB1, 
which causes retinoblastoma; NF1 and NF2, which 
cause neurofibromatosis; and a host of others that help 
determine cancer predisposition[85]. PND is more likely 
to be used for childhood onset hereditary conditions like 
RB1 and less likely to be used for HBOC, of other adult 
onset cancer syndromes.

Genetic counseling for cancer risk
As defined by the NSGC genetic counseling is “the 
process of helping people understand and adapt to 
the medical, psychological, and familial implications of 
genetic contributions to disease”[86]. Through the cancer 
risk assessment, genetic counselors can navigate 
patients through the process and provide education 
and counseling. This opens the floor for discussions 
regarding potential test results as well as the genetic 
test’s risk and benefits.

Genetic counseling for AYAs at-risk for or with cancer
Although some AYA programs include access to genetic 
services as part of their umbrella of AYA cancer care, 
most institutions do not have a specific AYA program. 
Further, the number of trained oncology genetic 
counselors is low and may not be available to meet the 
needs of this growing population. Thus there is great 
need for genetic counselors in AYA programs and other 
settings who are trained not only in the discussion and 
assessment of risk to the individual but who also can 
discuss fertility, general preservation options for those 
whose fertility is at risk, and the impact the hereditary 
cancer may have on future offspring and ways to 
manage that risk. Expanding the training of genetic 
counselors to include oncofertility knowledge, resources, 
and decision-making tools, may greatly improve the 
quality of life and quality of care for AYA with hereditary 
cancer risk. Using HBOC, Table 2 provides examples of 
pre and post treatment genetic counseling and testing 
options for breast cancer survivors that may have 
reproductive implications for AYAs. 

Genetic counseling needs for AYAs with a new cancer diagnosis Genetic counseling needs for AYA cancer survivors

Surgical treatment (e.g., contralateral prophylactic mastectomy at 
the time of initial diagnosis for BRCA carriers)

Risk reduction surgeries post treatment (e.g., salpingectomy vs bilateral salpingo 
oophorectomy for BRCA carriers)

Chemotherapy (e.g., clinical trials focused on poly ADP ribose 
polymerase inhibitors for BRCA carriers)

Use of Tamoxifen for management of disease recurrence among ER + BRCA carriers. 

Table 2  Hereditary breast and ovarian cancer syndrome pre and post treatment options with reproductive implications

AYA: Adolescents and young adults.
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CONCLUSION
Genetic counselors may benefit from training on commu
nicating about reproductive health risks and options for 
managing risks in AYA populations. This training should 
include not only information on fertility preservation, 
PGD, PND, and ART techniques but also strategies 
to communicate this information to patients in ways 
that facilitate informed decision-making and which 
consider the values and preferences of the patient 
and if applicable his or her family and partner. Genetic 
counseling education programs should consider didactic 
courses for learners on these same reproductive health 
options so that future genetic counselors are trained to 
address these important issues with their AYA patients. 
Improved communication on reproductive health issues 
and options for patients with hereditary cancers will 
greatly improve their future quality of life and expand 
the cadre of oncofertility health care providers. 
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