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were subjected to direct sequencing after PCR amplifi-
cation. The entire coding sequence of SDHB gene was 
screened for the presence of pathogenic mutations by 
PCR-sequencing.

RESULTS: A 45-year-old man presented with abdomi-
nal pain and hypertension over the previous year. The 
patient was a known case of neurofibromatosis type 1 
(NF1) who presented at the age of 15 years with hy-
perpigmented and hypopigmented lesions. After com-
plete evaluation for hypertension, biochemical tests and 
imagings indicated a malignant pheochromocytoma of 
120 mm × 70 mm in size. The patient underwent left 
adrenalectomy, nephrectomy and splenectomy. After 
surgery the symptoms improved and blood pressure 
was controlled. After 5 years he was admitted again 
for evaluation of hypertensive crisis. Biochemical tests 
were again consistent with pheochromocytoma and 
disease relapse. Imaging studies and liver biopsy con-
firmed metastatic pheochromocytoma to the liver and 
para-aortic area. 131 Iodine-metaiodobenzylguanidine 
therapy was carried out. Genetic screening of VHL (exons 
1, 2, 3), RET proto-oncogene (exons 10, 11, 13, 14, 15, 
16) and SDH complex subunits revealed no pathogenic 
mutation. 

CONCLUSION: We conclude that mutations in the 
NF1  gene are responsible for the patient’s clinical find-
ings. However, would be helpful to further examine so-
matic mutations for a more precise study of genotype-
phenotype correlation.

© 2013 Baishideng. All rights reserved.

Key words: Neurofibromatosis; Familial pheochromo-
cytoma; Malignant pheochromocytoma; Metastatic 
pheochromocytoma; RET proto-oncogene; von Hippel-
Lindau; Succinate dehydrogenase complex subunits

Core tip: Malignant pheochromocytoma associated with 
neurofibromatosis (NF) is very rare. We screened for all 
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Abstract
AIM: To investigate pathogenic mutations related to 
malignant pheochromocytoma in neurofibromatosis 
(NF).

METHODS: We present a patient with NF and meta-
static pheochromocytoma in whom genetic screening 
for presence of pathogenic mutations in RET proto-
oncogene, von Hippel-Lindau (VHL) and succinate de-
hydrogenase complex subunits B (SDHB) genes were 
investigated. RET proto-oncogene mutation screening 
for exons 10, 11, 13, 14, 15, 16 were examined by poly-
merase chain reaction (PCR) and direct DNA sequencing 
in patient. Mutation screening for exons 1, 2, 3 of VHL 
gene was carried out. Both forward and reverse strands 

Malignant pheochromocytoma in neurofibromatosis; mutation 
screening of RET proto-oncogene, VHL and SDH gene
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possible mutations related to pheochromocytoma in a 
patient with NF and malignant pheochromocytoma but 
found no mutations. This negative result shows that 
the NF1  gene is responsible for this rare presentation.

Hasani-Ranjbar S, Amoli MM, Noorani M, Ghadami M. Malig-
nant pheochromocytoma in neurofibromatosis; mutation screen-
ing of RET proto-oncogene, VHL and SDH gene. World J Med 
Genet 2013; 3(1): 1-4  Available from: URL: http://www.wjgnet.
com/2220-3184/full/v3/i1/1.htm  DOI: http://dx.doi.org/10.5496/
wjmg.v3.i1.1

INTRODUCTION
Phaeochromocytomas and paragangliomas (PGLs) are 
catecholamine-secreting tumors, which arise from chro-
maffin cells of  the adrenal medulla and extra-adrenal 
sites[1]. Most pheochromocytomas are sporadic tumors. 
However some patients suffer from the disease as part of  
a familial disorder (15%-30%). There are several familial 
disorders associated with pheochromocytoma including 
von Hippel-Lindau (VHL) syndrome, multiple endocrine 
neoplasia type 2 (MEN2), neurofibromatosis type 1 (NF1), 
succinate dehydrogenase (SDH) complex subunit muta-
tion-related tumors and occasionally MEN1 syndrome. 
The approximate frequency of  pheochromocytoma in 
these disorders is 50% in MEN2, 10%-20% in VHL syn-
drome, and 0.1%-5.7% with NF1[2-5].

Malignant forms of  catecholamine-secreting tumors 
are rare. The malignancy rate is variable from 2.4% to 
26%. There are no histological proofs of  malignancy for 
such tumors to date and the only accepted criterion is the 
presence of  metastasis. The distant metastases are usually 
of  hematologic origin, mostly involving bone, liver and 
lung[2,3]. The prevalence of  metastasis is up to 36%-50% 
for extra-adrenal abdominal pheochromocytoma and 10% 
and 5% for adrenal and familial forms respectively[6,7]. 
However, in practice the diagnosis of  malignant pheo-
chromocytoma can only be determined by presence of  
recurrence or metastatic disease at a site where chromaffin 
cells do not normally exist. NF is the term given to two 
neurocutaneous genetic conditions. NF1, also known as 
von Recklinghausen’s disease is the most common type of  
NF, with an incidence of  approximately 1 in 2600 to 1 in 
3000 individuals[8]. Approximately half  of  the cases are fa-
milial while the remainder are new mutations[9]. The hall-
marks of  NF1 are the multiple café-au-lait spots and asso-
ciated cutaneous neurofibromas. Pheochromocytoma has 
been clinically identified in 0.1%-5.7% of  patients with 
NF. The NF1 gene has been mapped to chromosome 
17q11.2 and cloned[10-12]. Since malignant pheochromo-
cytoma is very rare in NF, we present a case with NF and 
metastatic pheochromocytoma in which genetic screening 
in VHL, Ret protooncogene and SDH were carried out to 
investigate the responsible genomic mutation.

MATERIALS AND METHODS
Biochemical testing and Localization Studies
Routine biochemical tests, evaluation of  24 h urine cat-
echolamine metabolites, abdominal computed tomog-
raphy or magnetic resonance imaging and 131 Iodine-
metaiodobenzylguanidine (131I-MIBG) therapy were 
carried out. The malignant pheochromocytoma was diag-
nosed according to the presence or absence of  metastasis 
in radiological or pathological reports. 

Genetic analysis
RET proto-oncogene mutation screening: Genomic 
DNA was extracted from peripheral lymphocytes using 
the salting out technique. RET proto-oncogene mutation 
screening for exons 10, 11, 13, 14, 15, 16 was performed 
polymerase chain reaction (PCR) and direct DNA se-
quencing using the assay described by Alvandi et al[13]. 

VHL gene mutation screening: For VHL gene muta-
tion screening, analysis of  VHL gene was performed 
using the protocol of  Cruz et al[2,14]. Exons 1, 2, 3 of  
VHL gene were amplified by PCR with the following 
primers: 1F - 5' CCATCCTCTACCGAGCGCGCG 3'; 
1R - 5' GGGCTTCAGACCGTGCTATCG 2; 3F - 5' 
TGCCCAGCCACCGGTGTG 2; 3R - 5' GTCTATCCT-
GTACTTACCACAACA; 3F - 5' CACACTGCCACATA-
CATGCACTC 3'; 3R - 5' ACTCATCAGTACCAT-
CAAAAGCTG 3'. Both forward and reverse strands were 
subjected to direct sequencing after PCR amplification[2]. 

SDH complex subunits B gene mutation screening: 
The entire coding sequence of the succinate dehydroge-
nase complex subunits B (SDHB)  gene was screened for 
the presence of  pathogenic mutations by PCR-sequenc-
ing based on the assay described previously[15]. 

RESULTS
Patient
A 45-year-old man presented with abdominal pain and 
hypertension over the previous year. The patient was a 
known case of  NF1 who presented at the age of  15 years 
with hyperpigmented and hypopigmented lesions on the 
trunk, arms, feet and axillary areas. Family history was 
positive for NF in his mother and brother. Biochemi-
cal tests including urine metanephrines and imaging 
were compatible with malignant pheochromocytoma. 
In scans there was a large mass in the left adrenal with a 
size of  120 mm × 70 mm and invasion to left kidney was 
reported. The patient underwent left adrenalectomy, ne-
phrectomy and splenectomy. After surgery the symptoms 
improved and blood pressure was controlled. The patient 
had poor compliance in follow up. After 5 years he was 
admitted again for evaluation of  a hypertensive crisis. 
Biochemical tests were again consistent with pheochro-
mocytoma and disease relapse. Imaging study and liver 
biopsy confirmed metastatic pheochromocytoma in the 
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liver and para-aortic area. 131I-MIBG therapy was car-
ried out.

Genetic analysis
RET proto-oncogene mutation screening: There was 
no pathogenic mutation in the RET proto-oncogene. 
Only three single nucleotide polymorphisms were identi-
fied in this patient as follows: (1) C1866T in exon 10, 
causes no AA change (P622P); (2) G2071A in exon 11, 
causes G691S; and (3) C2712G in exon 15, causes no AA 
change (S904S).

VHL gene and SDHB gene mutation screening: There 
was no VHL gene mutation. In addition, genetic se-
quencing of  8 exons of SDHB gene revealed no patho-
genic mutation in this patient.

DISCUSSION
The family described in this study is comprises individu-
als with NF and one member (a 45-year-old man) with 
hypertension diagnosed as malignant pheochromocytoma. 
Hypertension is a frequent finding in adults with NF1 and 
may develop during childhood although pheochromocyto-
ma is a much less common etiology. In these patients, the 
catecholamine-secreting tumor is usually a solitary benign 
adrenal pheochromocytoma, occasionally bilateral adrenal 
pheochromocytoma, and rarely a peri-adrenal abdominal 
PGL. Although NF1 as an autosomal dominant disorder 
is the most common familial cancer syndrome predispos-
ing to pheochromocytoma, the risk of  pheochromocy-
toma in this disorder is only about 1%[16,17].

Pheochromocytomas in patients with NF1 occur in 
the fifth decade. Our patient was a 45-year-old man with 
an unusual presentation of  pheochromocytoma. Current-
ly, except for the presence of  the SDHB mutation, a large 
or an extra-adrenal primary tumor, there are no reliable 
markers for predicting a high likelihood of  developing 
metastatic disease. Pheochromocytoma in NF is usually 
benign and unilateral. Based on genetic background our 
expectation before surgery was a benign non-metastatic 
tumor. As mentioned before, the patient had a metastatic 
tumor and after 5 years metastasis to liver and para-aortic 
lymph nodes led to deterioration in the clinical course of  
disease. It seems to us that a large mass (as detected in 
this patient initially) as well as local invasion are critical 
factors for predicting malignancy and may have the high-
est impact for detecting metastasis in future.

At first we treated the patient with surgical resection 
of  the adrenal mass, but in follow up treatment of  dis-
tance metastasis the only available modality was MIBG 
therapy. Given the positive MIBG scan, we predicted that 
the tumor would up take iodine. To date, beside surgery, 
131I-MIBG therapy is the single most valuable option 
for malignant pheochromocytomas. Results of  a phase 
Ⅱ trial using high dose 131I-MIBG demonstrated 22% 
partial or complete response and 35% of  patients having 
some degree of  response (i.e., biochemical) without dem-

onstrated progressive disease[18]. After 6 mo follow up our 
patient is alive but needs antihypertentive drugs. In fu-
ture, our plan could be chemoembolization of  the liver if  
there is persistent disease. Mutation screening were nega-
tive in our patient except for three nucleotide changes in 
the RET gene. Among them, nucleotide change C1866T 
is a new SNP, while changes G2071A and C2712G have 
been reported in the literature as SNPs. None of  these 
changes are causative mutations for medullary thyroid 
cancer (MTC) patients although they are more common 
in patients with MTC than in normal population. Wheth-
er there is an interaction between these polymorphisms 
and other genes related to NF is still a matter of  debate.

Mutations in the NF1 gene result in loss of  functional 
protein, causing the wide spectrum of  clinical findings 
with NF1-associated tumors. No obvious genotype-phe-
notype correlation between small mutations (< 20 base 
pairs) of  the NF1 gene and a specific phenotype have 
been demonstrated, with the exception of  the c.2970-2972 
delAAT (p.M990del) mutation that is associated with a 
very mild phenotype in the majority of  cases[19]. Genetic 
testing for NF1 is available but is not routinely performed, 
as the diagnosis is made based upon clinical phenotype.

In addition, epigenetic factors, particularly DNA 
methylation, may also play essential roles in regulation 
of  RET, VHL and NF1 pathways. A recent study has 
identified methylated RET in colorectal cancer[20]. It has 
been observed that the aberrant methylation of  RET 
correlates with decreased RET expression, whereas the 
restoration of  RET in colorectal cancer cell lines results 
in apoptosis[21]. Other studies have found epigenetic regu-
lation of  VHL or NF1 genes in various carcinomas[22,23]. 
Therefore, epigenetic regulation of  involved genes may 
also contribute to the pathogenesis of  disease in this pa-
tient and this requires further investigations.
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COMMENT
Background
Neurofibromatosis (NF), is the term given to two neurocutaneous genetic condi-
tions. NF type 1 (NF1), also known as von Recklinghausen's is the most com-
mon type of NF. 
Research frontiers
Hypertension is a frequent finding in adults with NF1 and may develop during 
childhood but pheochromocytoma is a much less common etiology. In these 
patients, the catecholamine-secreting tumor is usually a solitary benign adrenal 
pheochromocytoma, occasionally bilateral adrenal pheochromocytoma, and 
rarely a peri adrenal abdominal paraganglioma.
Innovations and breakthroughs
At first we treated the patient with surgical resection of the adrenal mass, but in 
follow up for treatment of distance metastasis the only available modality was 
metaiodobenzylguanidine therapy.
Applications
Genetic testing for NF1 is available but is not routinely performed, as the diag-
nosis is made based upon clinical phenotype.
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and triplicated segments of chromosomes. Previously, 
we reported that interstitial duplications were aligned 
in tandem configurations, supporting the hypothesized 
mechanism of non-allelic homologous recombination; 
however, there were rare cases of inverted duplications. 
Further analysis is therefore required to fully elucidate 
the basic mechanisms underlying such duplications/trip-
lications.

Yamamoto T, Shimada S, Shimojima K. Fiber-fluorescence 
in situ hybridization analyses as a diagnostic application for 
orientation of microduplications. World J Med Genet 2013; 3(2): 
5-8  Available from: URL: http://www.wjgnet.com/2220-3184/
full/v3/i2/5.htm  DOI: http://dx.doi.org/10.5496/wjmg.v3.i2.5

COMMENTARY ON HOT TOPICS
Background
Chromosomal microduplication is a type of  chromosomal 
anomaly. Although several chromosomal duplications have 
been reported previously, small microduplications that 
were invisible under the microscope were not recognized 
before chromosomal microarray testing was available. 
The only known microduplications were those involving 
specific genes, such as the peripheral myelin protein 22 
gene (PMP22) and the proteolipid protein 1 gene (PLP1). 
Previously, we knew that patients with PMP22 mutations 
manifest Charcot-Marie-Tooth disease [Mendelian Inheri-
tance in Man (MIM) #118220] and patients with PLP1 
mutations show Pelizaeus-Merzbacher disease (PMD; 
MIM #312080); microduplications of  these genes were 
revealed under the hypothesis that copy number gain of  
these genes may be related to disease occurrence[1]. Be-
fore the availability of  chromosomal microarray testing, a 
targeting system was used to detect such duplications, in-
cluding fluorescence in situ hybridization (FISH), quantita-
tive polymerase chain reaction (PCR) and multiple ligation 
probe amplification (MLPA) (Table 1). 
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Abstract
Microduplications are normally invisible under micros-
copy and were not recognized before chromosomal mi-
croarray testing was available. Although it is difficult to 
confirm the orientation of duplicated segments by stan-
dard fluorescence in situ  hybridization (FISH), our data 
indicates that fiber-FISH analysis has the potential to 
reveal the orientation of duplicated and triplicated seg-
ments of chromosomes. Recurrent microduplications 
reciprocal to microdeletions show tandem orientations 
of the duplicated segments, which is consistent with 
a non-allelic homologous recombination mechanism. 
Several random duplications showed tandem configura-
tions and inverted duplications are rare. Further analy-
sis is required to fully elucidate the basic mechanisms 
underlying such duplications/triplications. 

© 2013 Baishideng. All rights reserved.

Key words: Chromosomal microarray testing; Copy 
number variation; Fiber-fluorescence in situ  hybridiza-
tion; Microduplication; Tandem orientation

Core tip: Fiber-fluorescence in situ  hybridization analysis 
has the potential to reveal the orientation of duplicated 
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It is possible to detect the numbers of  the targeted 
signals by FISH - whole subtelomeres can be analyzed in 
this manner[2]. Specific regions have already been analyzed 
previously using this method; e.g., the 22q11.2 region for 
DiGeorge syndrome and the 7q11.2 region for Williams 
syndrome. Although FISH is a powerful tool for detect-
ing deletions of  targeted regions, the biggest disadvantage 
is that it is difficult to detect small duplications owing to 
overlapping signals. 

Generally, PCR cannot be used to quantify amplified 
fragments owing to saturation of  amplification. However, 
in cases of  linear amplification, quantity can be estimated 
by using a real-time PCR monitoring system. The chief  
feature of  this system is that the target is fixed at the start 
of  analysis[3]. Although MLPA is based on a PCR system, 
the targets of  amplification are fused probes included in 
the buffer. Because various sizes of  the amplicons can 
be included in the same tube, multiplexed targets can be 
measured simultaneously[4] and whole subtelomeric re-
gions can be analyzed comprehensively[5]. 

At present, it is easier to detect genomic copy number 
aberrations by using chromosomal microarray testing as 
a comprehensive method. We subsequently realized that 
there are numerous microchromosomal duplications that 
are genetic causes for various diseases. 

Mechanism of microduplications
We can classify duplications into 2 types: recurrent mi-
croduplications and random microduplications (Table 2). 
Recurrent microduplications are caused by non-allelic ho-
mologous recombination (NAHR) mediated by low-copy 
repeats. Consequently, such microduplications are recipro-
cal to the microdeletions caused by the NAHR mechanism. 
According to this mechanism, chromosomal aberrations 
can occur in 3 ways[6]: (1) inter-chromosomal; (2) intra-
chromosomal; and (3) intra-chromatid (Figure 1). As shown 
in Figure 1, inter-chromosomal and intra-chromosomal 
exchanges can create both deletions and duplications 
equally. However, intra-chromatid exchange only creates 
microdeletion and not microduplication. Thus, microdupli-
cations created by NAHR are definitely a consequence of  
inter-chromosomal or intra-chromosomal exchange. Both 
processes create duplications in tandem orientation. How-
ever, few studies have confirmed the hypothesized tandem 
configurations of  the duplication. 

Standard FISH
Previously, many efforts have been made to detect orien-
tations of  the duplication by FISH. The combined use 
of  2 different colored probes can detect the orientations 
of  the chromosomal fragments. We analyzed the orienta-
tions of  the duplicated segments and many showed tan-
dem configurations. As shown in Figure 2A, an interstitial 
duplication of  2q32.1-q33.3 was inserted in a contiguous 
tandem configuration[7]. 

Compared to such interstitial duplications, subtelo-
mere duplications are different because they are most 
commonly a result of  U-type exchange between the sister 
chromatids during the meiotic process[8]. We observed 
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Figure 1  Schematic representation of the mechanism of non-allelic homolo-
gous recombination. The mechanism can occur in 3 ways. Chromosomal 
duplications can be created by (1) inter-chromosomal exchange; (2) intra-
chromosomal exchange; and (3) intra-chromatid exchange. Although inter-
chromosomal and intra-chromosomal exchanges can lead to deletions and 
duplications equally, intra-chromatid exchange only creates microdeletions and 
not microduplications. Microduplications created by non-allelic homologous 
recombination invariably show tandem orientations. White arrows indicate the 
directions of the segments. This figure is referring the report by Gu et al[6].
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Inverted duplicationD

Tandem triplicationE

Figure 2  Results of fluorescence in situ hybridization in metaphase and 
fiber-fluorescence in situ hybridization. A: Tandem duplication aligned in 
red-green-red-green is shown; B: Inverted duplication aligned in green-red-red-
green is shown; C: Tandem duplication aligned in red-green-red-green is shown 
in a single DNA fiber; D: Inverted duplication aligned in red-green-green-red is 
shown; E: Tandem triplication with 3 repeats of red-green units. Arrows indicate 
the directions of the segments.



inverted duplication and deletion in the 10q26 region[9]. 
Inverted orientation was confirmed by FISH in this case 
(Figure 2B). 

As mentioned above, in the cases of  large duplica-
tions it is possible to determine the orientations of  the 
duplicated segments; however, it is difficult to determine 
orientation for small duplications owing to overlapping 
signals in metaphase spreads. Consequently, interphase 
nuclei were used as an alternative to determine the align-
ments of  the signals. Lee et al[10] analyzed the orienta-
tions of  the duplications involving PLP1 in patients with 
PMD using interphase nuclei. They confirmed that many 
duplications of  this region were aligned in tandem ori-
entations. However, there is the limitation that directions 
cannot be detected accurately. To compensate for this, 
several nuclei from the same patients have to be checked. 

Methods of fiber-FISH
Chromosomes are composed of  3-dimentional structures 
that consist of  DNA and histones. Thus, targeted signals 
can be overlapped. In such cases, fiber-FISH analysis has 
the advantage of  being able to detect the orientations of  
the duplicated segments accurately[11-13] (“fiber” means 
DNA fibers). 

DNA fiber specimens can be prepared after separat-
ing chromatin structures by surfactants. To perform fiber-
FISH analysis, traditional Carnoy fixation can be used. 
The method is as follows: Carnoy-fixed samples should 
be mounted on the surface of  the glass slides and the 
slides should be immediately dipped into sodium dodecyl 
sulfate solution and then slowly pulled out. Consequently, 
the separated DNA fibers can be fixed onto the surface 
of  the glass slides. 

The same probes used for standard FISH can be used 
for fiber-FISH. Compared to standard FISH, targeted 
signal intensity is extremely weak. Because live signals are 
not visible by microscopy, long exposure time is required 

for signal capture. To capture standard FISH pictures, 
interphase nucleus or metaphase labeled by DAPI can 
be used as landmarks; however, there are no interphase 
nucleus and metaphase in fiber-FISH specimens. Thus, 
it is necessary to search the entire surface of  the slide to 
detect signals. 

Not all fibers show the same rate of  extension on the 
same slide. This is dependent on the duration of  the dip 
into the surfactants solution. If  the length of  the targeted 
fiber was too long to be captured in a single field of  view, 
not all the target signals can be captured in the same field 
of  view. It also depends on the size of  the targeted dupli-
cations. If  signals can be successfully captured, the direc-
tions of  the fragments can be determined. 

In terms of  the clinical point of  view, detection of  
microduplication orientation is not a suitable strategy for 
clinical analyses. Thus, fiber-FISH analysis is a specialized 
method for research work.

Orientations of the duplicated segments
Previously, we analyzed the directions of  the duplicated 
segments of  the 22q11.2 region. The 4 duplications of  
the 22q11.2 region, identified by chromosomal microar-
ray testing, showed tandem configurations of  the dupli-
cated segments, supporting the hypothesized mechanism 
of  NAHR[11]. We analyzed 7 and 4 samples with the 
duplications in the region of  PLP1 and the methyl CpG 
binding protein 2 gene, respectively[12-14], and all of  the 
duplications showed tandem configurations as seen in the 
22q11.2 region (Figure 2C), although the duplications in 
the region of  PLP1 are considered to be created by fork 
stalling and template switching and not by NAHR[15]. 

Almost all duplications analyzed previously showed tan-
dem configurations, as seen in cases of  large duplications 
visible by general FISH analysis. The only exception was a 
benign copy number gain identified at the Xp22.31 region 
that included the steroid sulfatase gene (Figure 2D)[12]. This 
may indicate that the mechanism of  the copy number gain 
in the benign region may be different from that of  the 
pathological CNV.

Triplications
Triplications are rare chromosomal aberrations which can 
be classified into 2 types: (1) triplication embedded into 
duplicated segments; and (2) triplications not embedded 
into duplicated segments[16]. Because sufficient data are 
not available owing to the scarcity of  these triplications, 
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Table 1  Characters of the methods to detect genomic copy number variations

Characters Advantages Disadvantages

Fluorescence in situ hybridization Numbers of the signals correspond to the 
genomic copy numbers

Small duplications cannot be detected

Quantitative polymerase chain reaction Wide dynamic range Primer designs are required for each targets
Many samples can be analyzed at once

Multiple ligation probe amplification Multiple targets can be analyzed at once Original primer designs are required for specific regions
Chromosomal microarray testing Accurate and high resolution Chromosomal structures including balanced 

translocations cannot be analyzedComprehensive

Table 2  Characteristics of microduplications

Characteristic Recurrent microduplications Random 
microduplications

Mechanism Non-allelic homologous 
recombination 

Random

Mediated by locus control regions
Characteristics Reciprocal to common deletions Random

Uniformed size

Yamamoto T et al . Fiber-FISH as a diagnostic application



the mechanisms underlying them have seldom been ana-
lyzed. The clearest evidence is that some of  the triplica-
tions embedded into duplicated segments are caused by 
the duplication-inverted triplication-duplication mecha-
nism revealed by Carvalho et al[17] and Shimojima et al[18]. 
Compared to this, a tandem triplication was confirmed 
in another case involving the platelet-activating factor 
acetylhydrolase 1b regulatory subunit gene (Figure 2E)[19].

In conclusion, as a result of  the wider adoption of  
chromosomal microarray testing as a diagnostic tool, 
many genomic copy number gains were found to cause 
multiple congenital anomalies and intellectual impair-
ments. Thus, this is just a starting point to understanding 
the mechanism of  such genomic copy number gains. For 
this purpose, we should accumulate more cases of  dupli-
cations and triplications and analyze the orientations of  
the segments. 
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Abstract
With the surge of genetic tests and technologies, 
genetic counsellors are faced with the challenge of 
translating emerging scientific knowledge into practical 
information for patients, clinicians and public health 
policy makers. The new tests and technologies also 
are associated with new psychosocial and ethical con-
siderations. New guidelines are needed for each new 
discovery of the genomic impact on phenotype, pathol-
ogy and disease while “old” syndromes and “old” pa-
thology, continue to require attention. In the new post-
Human Genome Project era, genetic counsellors will 
be an integral part of translating genomic discoveries 
into beneficial impact on human disease, health care, 
and medical benefits. The needs for genetic counsel-
ling should be designed into genomic research at the 
onset. Genetic counsellors need to handle old while 
rapidly assimilating new information and the principal 
challenge is to be up to date and updated. 

© 2013 Baishideng. All rights reserved.

Key words: Genetic counseling; Clinical application; 
Translating emerging scientific knowledge; Direct-to-

consumer genetic testing; Clinicians and public health 
policy makers  

Core tip: This paper aims at discussing the aspects 
and challenges which have to be faced during genetic 
counselling in the new post-Human Genome Project 
era with beneficial impact on human disease, health 
care, and medical benefits. With the surge of genetic 
tests and technologies, genetic counsellors are faced 
with the challenge of translating emerging scientific 
knowledge into practical information for patients, clini-
cians same as for public health policy makers and the 
needs for genetic counselling should be designed into 
genomic research at the onset. Genetic counsellors 
need to handle old while rapidly assimilating new infor-
mation. 

Nenad B, Maurizio M. Genetic counselling in post-genomic era-
to be or not to be. World J Med Genet 2013; 3(3): 9-13  Available 
from: URL: http://www.wjgnet.com/2220-3184/full/v3/i3/9.htm  
DOI: http://dx.doi.org/10.5496/wjmg.v3.i3.9

INFLUENCE ON GENETIC COUNSELLING/
COUNSELLORS AND OTHER HEALTH 
PROFESSIONALS 
The spectacular progress in understanding the genetic 
nature of  disease has deeply changed the daily practice 
of  medicine. With the surge of  genetic tests and tech-
nologies, genetic counsellors are faced with the challenge 
of  translating emerging scientific knowledge into practi-
cal information for patients, clinicians and public health 
policy makers. The new tests and technologies also are 
associated with new psychosocial and ethical consider-
ations. As reported by Bennett et al[1], the field of  genetic 
counselling arose from the need to educate, manage and 
counsel individuals and their families diagnosed with, 
or at risk for, genetic diseases with respect to how these 
conditions may affect the psychological, medical, finan-
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cial and social aspects of  one’s life. 
Genetic counselling is now a necessary component 

of  the practice of  virtually all medical specialties. Phy-
sicians must help their patients understand a genetic 
diagnosis and assist them in making and coping with 
decisions relating to the diagnosis. As each new genetic 
test is made available in the clinic, developing the appro-
priate counselling for each new diagnosis is necessarily 
a multidisciplinary endeavour that includes involvement 
of  a Specialist of  Medical Genetics[2,3]. This paper aims 
at discussing the aspects and challenges which have to be 
faced during genetic counselling.  

WHAT’S NEW?
The Human Genome Project provide us not only with 
information regarding the basic architecture of  hu-
man genome, it also gave rise to impressive advances 
in molecular technologies. It is now possible to rou-
tinely assess genetic variation at a population level. For 
example, it is routine to assess over a million single 
nucleotide polymorphisms (SNPs) on thousands of  
individuals within a single study and it is routine to 
combine studies into meta-analyses across hundreds 
of  thousands of  individuals[4]. An excellent review 
of  Gao et al[4] discussed the use of  genome-wide as-
sociation studies (GWAS). This strategy is based upon 
the common disease common variant hypothesis[5], 
in which it is proposed that high-prevalence traits are 
determined by high-frequency genetic variants. Some 
successful examples are given by meta-analyses in 
GWAS in Parkinson’s disease[6], type 2 diabetes[7,8], type 
1 diabetes[9], chronic kidney disease[10], retinal microcir-
culation[11], Crohn’s disease[12], and others. Beyond sim-
ply examining nucleotide variations, new technology 
allows researchers to assess other aspects of  genomic 
variations including whole transcriptome profiling and 
genome-wide epigenetic modifications. Now the major 
challenge in genomics is to apply this rapidly expanding 
plethora of  genetic data in meaningful ways-to further 
improve our understanding of  human biology[13] and to 
generate knowledge about the genetic contribution to 
human diseases[14].

While research focuses on how to put the human 
genome in context, it should not be forgotten that it is 
quite “tricky” to translate these research data into ap-
propriate genetic counselling of  each client. Especially 
if  we consider that the next step in personal genomics is 
to associate an individual’s specific variation with clinical 
disease phenotypes, counselling must help individuals 
discriminate between medically important variation and 
benign polymorphic variation. Data of  genomic varia-
tions must be carefully translated by a genetic counsellor 
with care to educate the clients of  the presumed signifi-
cance of  genes and mutations, imprinting, and the likeli-
hood of  benign versus causative genomic changes[15,16]. 
This means that genetic counsellors are at the forefront 
of  introducing and applying the advances from genome 

science to the lives of  individuals and their families, by 
translating the complex language of  genomic medicine 
into terms that are easy to understand[1].  

WHAT HAS BEEN CHANGED AS CON-
SEQUENCE OF NEW DIAGNOSTIC AP-
PROACHES?
The era of  genomic medicine challenges traditional defi-
nitions of  “healthy” and “diseased”. Traditionally, medical 
attention is only sought regarding a present illness. Now 
genetic testing permits the diagnosis of  healthy individu-
als who are expected to develop or have an increased sus-
ceptibility to develop a disorder[17,18]. Testing for suscep-
tibility genes will push into the world of  medicine mil-
lions of  individuals who have no personal experience of  
any disease, as emphasized by Professor Dallapiccola[19]. 
Some of  them will benefit from the information, but 
many will become “unpatients”, i.e., individuals who are 
neither patients under treatment nor healthy individuals 
free of  any medically relevant condition. This new class 
of  individuals (it seems appropriate to call them “clients”) 
who are watching and waiting for a sign of  disease must 
be advised to undertake appropriate systematic clinical 
and instrumental monitoring while avoiding the develop-
ment of  psychosomatic symptoms. It is thus necessary 
to rethink the genetics revolution in medicine in terms 
of  benefits and harm considering that the general rule 
for all physicians is: “Primum non nuocere” (“First, do no 
harm”). After all, when we think about applications of  
genetics in daily practice, genetic counselling included, 
we should take in mind, J. Watson’s observation: “I have 
benefited a lot from being the first human to have his or 
her personal genome made publicly available on the web. 
So far, knowledge of  my personal genetic risks has not 
cost me an hour of  sleep. I doubt, however, whether I 
would feel so positively if  this knowledge had been given 
to me at a much earlier stage of  my life”[16,20]. 

It is necessary to introduce into genomic research con-
sideration of  computational strategies which permit transla-
tion of  genetic information into clinically useful probability 
estimation. Personalized cancer risk assessment is an exam-
ple of  this integration. Algorithms in conjunction with test-
ing have been successfully applied to predict the proba-
bility to carrier germinal at-risk mutations, as BRCAPRO 
for breast and ovarian cancer syndromes[21-24], PancPRO 
for familial pancreatic cancer[25] and MelaPRO for mela-
noma families[26], etc. 

ITALIAN EXPERIENCE
The Italian genetic testing survey 2004[27], could be seen 
as starting point (at least for us who are working in Italy) 
for understanding the necessity to link testing and genet-
ic counselling in order to cut the costs, and to widen the 
number of  available services. This survey also stressed 
the necessity for constant training of  the general practi-
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tioner and education of  the consumer with regard to the 
appropriate use of  genetic tests. A more sparing use of  
genetic tests, which should always follow specific clini-
cal indications, ideally flank and sustain good clinical 
practice. Conversely, inappropriate genetics testing do 
harm by imparting a false sense of  reassurance in indi-
viduals found not to have a gene mutation who are not 
informed of  the limitation of  tests and are major con-
tributors to increasing health care costs[28,29].

“DO-IT-YOURSELF” GENOMIC TESTING
Direct-to-consumer genetic testing (DTC-GT) provides 
personalized genetic risk information directly to con-
sumers. DTC-GT has generated a considerable contro-
versy about its potential benefit, harms, and regulatory 
status since its entry into the mainstream marketplace in 
2006[30,31] largely as a result of  the unclear link between 
DTC-GT results, consumer risk and cost effective health 
care decisions. 

With DTC-GT, clients without the guidance of  ge-
netic counselling will often purchase a genetic test that 
is not clinically indicated. Individuals ordering and inter-
preting genetic tests for tens or hundreds of  conditions 
with varying clinical validity and utility, in the absence of  
a healthcare professional, could lead to unnecessary or 
incorrect healthcare decisions or emotional distress in 
the clients[32]. Furthermore afterwards clients may com-
municate the results to health-care professionals-it is left 
to these professionals to discuss the testing guidelines 
and clinical/diagnostic protocols and the usefulness and 
significance of  the results, opening the door to distrust 
and misunderstandings if  the test results are discounted[33].  

Obviously access to DTC-GT can be seen as a right 
for consumers to purchase the offered product and ser-
vices. However, the open issues about whether and how 
to regulate the new heterogeneous DTC-GT industry 
should be systematically and carefully studied to ascer-
tain the clinical utility, referral patterns and downstream 
costs[32,33]. 

SOME PERSPECTIVES WHICH ARE BECOM-
ING REALITY, IS THIS SCIENCE OR SCI-
ENCE FICTION?
Autism spectrum disorders (ASDs) are an example of  
an emerging area for genomic diagnosis that will require 
parallel development of  genetic counselling. ADS are a 
heterogeneous group of  neurodevelopmental disorders 
affecting social communication, language and behavior. 

There have been reports of  applying panels of  com-
mon SNPs to assess ASD risk[34,35], but these approaches 
require more testing/investigation before SNPs can be 
associated with risk. With rapid emergence of  whole-
genome sequencing studies, there will be an explosion of  
new data leading to more comprehensive genotype and 
phenotype studies[36-38]. In addition to seeking to identify 

genes that influence diseases, scientists are looking for 
genes which influence biological markers of  disease or 
endophenotype. One example of  this approach is the 
emerging field of  imaging genomics which discover 
important variants associated with brain structure and 
function. In these studies, a high degree of  correlation 
has been observed between genome and image-derived 
maps giving some explanation on how these variations 
influence disease risk and fundamental cognitive pro-
cesses[39].

Parents of  children with ASDs are generally aware 
that their subsequent children are at increased risk to be 
‘on the spectrum’, but parents often over- or underesti-
mate this risk. While the studies to date indicate that it 
may be possible, as yet no definitive genomic diagnostic 
or prognostic indicators of  ASD have been found that 
can be used for risk estimation. The genetic testing and 
counselling approach to individuals with ASDs will con-
tinue to evolve as we learn more about the genetic fac-
tors involved and their relative contributions. The next 
step is to interpret this data and translate it in compre-
hensive and useful genetic counselling.

LAST BUT NOT LEAST
The scope of  genomic counselling are growing rapidly. 
New guidelines are needed for each new discovery of  the 
genomic impact on phenotype, pathology and disease while 
“old” syndromes and “old” pathology, for example Downs 
Syndrome, continue to require attention. That is one of  the 
reasons why the guidelines such as those published by Na-
tional Society of  Genetic Counsellors-Sheets et al[40], will be 
always welcomed and “evergreen”. 

In the new post-Human Genome Project era, genetic 
counsellors will be an integral part of  translating genom-
ic discoveries into beneficial impact on human disease, 
health care, and medical benefits. The needs for genetic 
counselling should be designed into genomic research at 
the onset. Genetic counsellors need to handle old while 
rapidly assimilating new information. The principal chal-
lenge is to be up to date and updated. 
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Abstract
The application of microarray-based techniques for the 
diagnosis of genomic rearrangements has been steadily 
growing in popularity since its introduction in 2004. 
Given the many advantages of these techniques over 
conventional cytogenetics, there is increasing pressure 
towards their application in prenatal diagnosis. Howev-
er, there remain several important issues that must be 
addressed. For example, microarray-based techniques 
(comparative genomic hybridization-based arrays and 
single nucleotide polymorphism-based arrays) allow 
detection of even very small genomic imbalances that 
can determine pathological clinical conditions. In addi-
tion, there are other copy number variations which rep-
resent normal variation, with no detectable effects on 
phenotype. Given the still incomplete knowledge of the 
changes in our genome and the associated phenotypes, 
microarray-based diagnosis is likely to find variants of 
uncertain and unknown clinical significance. The inter-
pretation of these variants is now a major challenge 
for the medical geneticist, who often find it difficult to 
establish precise correlations between genotype and 
phenotype. There is sufficient available evidence to 
justify the use of microarray-based diagnostics for a 
select number of specific conditions, but there is also 
an inevitable trend towards ever wider application. It 
is very important that this drift does not progress in an 
unchecked and uncontrolled manner under the thrust 

of commercial interests. Therefore, we recommend that 
scientific societies be vigilant and take an advisory role 
in the adopting of these technologies as new scientific 
knowledge becomes available.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Given its advantages over conventional karyo-
typing, there is an increasing interest in determining 
whether microarray technology will be similarly advan-
tageous for the detection of fetal genomic imbalances 
in a prenatal setting. Several issues remain to be ad-
dressed, such as for which pregnancies comparative 
genomic hybridization-based arrays should be carried 
out (i.e. , whether for all pregnancies or only for those 
with ultrasound abnormalities). Another area of uncer-
tainty is the choice of array platform. This article aims 
to contribute to the discussions on genomic microarrays 
in prenatal diagnosis by examining the literature and 
existing guidelines, and giving an opinion on possible 
future developments and on how best to handle them.
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INTRODUCTION
The objective of  prenatal diagnosis (PD) is to provide 
prenatal diagnostic testing services for genetic conditions 
that enable families to make informed choices consistent 
with their individual needs and values, and to support 
them in deal with the outcome of  such testing.

PD is offered with the intention of  determining the 
presence or absence of  a pathological condition in the fe-
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tus. Prenatal tests may be performed using invasive (such 
as amniocentesis, chorionic villus sampling or fetal blood 
sampling) or non-invasive procedures (such as analysis 
of  cell-free fetal DNA in maternal blood or fetal imag-
ing). PD is mainly offered to pregnant women in one of  
the following four groups: (1) Advanced maternal age; 
(2) Women and/or partners from families known to ge-
netic or other relevant specialist services before pregnancy 
because of  significant family history of  a condition; (3) 
Women who are identified during pregnancy as having a 
fetus at risk of  a genetic condition (for example, through 
disclosure of  family history, possibly including genetic 
test results, during an antenatal consultation or following 
positive prenatal screening); and (4) Women whose fetus 
is identified as at risk of  a genetic condition due to ab-
normal ultrasound findings.

As chromosomal anomalies are a major cause of  
perinatal morbidity and mortality, as well as the most 
frequent cause of  intellectual disability in our population, 
cytogenetic diagnosis using cultured cells obtained by 
prenatal invasive tests has been regarded as the standard 
method for PD since its first application. In 1966, Steele 
et al[1] reported the feasibility of  performing chromosom-
al analysis of  amniotic fluid cells. One year later Jacobson 
et al[2] performed the first PD of  a chromosomal abnor-
mality (a balanced translocation), shortly followed by the 
first PD of  trisomy 21[3].

Karyotyping has proven highly reliable for the genome-
wide detection of  numerical chromosome abnormalities 
(aneuploidies) and large structural rearrangements in fetal 
cells. However, chromosome analysis has some important 
limitations. It takes about 15 d to culture the cells, visual-
ize the chromosomes and perform the analysis, thus lead-
ing to anxiety in the pregnant women. The resolution of  
a karyotype is limited and chromosomal anomalies in the 
grey zone (between 5 and 10 Mb in size) lead to interpre-
tation difficulties. Karyotyping also requires skilled ana-
lysts, which increases costs and can lead to organizational 
difficulties in small laboratories[4].

More recently, molecular cytogenetic methods includ-
ing interphase fluorescence in situ hybridization (FISH), 
quantitative fluorescent polymerase chain reaction (QF-
PCR) and multiplex ligation-dependent probe amplifica-
tion (MLPA) have been introduced for the rapid detec-
tion of  aneuploidies of  chromosomes 13, 18, 21 and sex 
chromosomes. These techniques can provide a result 
in 1-3 d but are disadvantaged by the need to perform 
locus-specific analysis, leaving a residual risk for a clini-
cally significant chromosomal abnormality. In addition to 
the common aneuploidies, many submicroscopic chro-
mosomal rearrangements that lead to copy-number gains 
or losses have been shown to cause distinct and recogniz-
able clinical phenotypes.

The sensitivity in detecting copy-number alterations 
has increased significantly with the advent of  genomic 
microarray analysis (GMA). Together with improved as-
semblies and annotation of  genome sequence data, these 
methods allow rapid identification of  new syndromes 

that are associated with submicroscopic genomic changes 
in children with idiopathic intellectual disabilities (ID), 
autism, developmental delay (DD) and/or multiple con-
genital anomalies (MCA)[5].

Genomic microarrays detect gains and losses of  ge-
nomic regions through the hybridization of  fluorescently 
labeled patient DNA onto targets with known genomic 
coordinates, spotted onto a solid substrate (typically a 
glass slide). By measuring the signal intensity ratio of  
patient DNA to a reference sample, gains or losses of  
genomic material can be identified.

Comparative genomic hybridization-based arrays 
(CGH-arrays) involve hybridization of  a patient’s DNA 
onto predetermined targets representative of  the whole 
genome or of  target regions [bacterial artificial chromo-
somes (BAC) clones of  100-200 kb or synthetic oligo-
nucleotide probes of  25-75 bp] spotted onto glass slides. 
The patient DNA is extracted from the relevant sample, 
labeled with a fluorochrome, mixed with a reference 
DNA pool (labeled with a different fluorochrome) and 
then hybridized on the microarray slide[6].

Single nucleotide polymorphism-based arrays (SNP-
arrays) were originally designed to detect common SNPs (> 
1% in the population) and were mainly used in genotyping 
individuals for genome-wide association studies of  many 
common multifactorial diseases. In addition to SNP typing, 
these platforms can also be used to perform copy number 
analysis. Gains and losses of  genomic regions can therefore 
be detected as is the case for CGH-arrays. SNP arrays also 
detect copy neutral loss of  heterozygosity (or absence of  
heterozygosity), uniparental disomy and regions identical by 
descent. However, although SNP arrays detect uniparental 
isodisomy, parental samples are required for the detection 
of  uniparental heterodisomy. When using SNP-arrays, only 
a single hybridization is performed for the patient DNA 
(single channel or color) and the signal intensities are then 
compared with a reference dataset[7].

Microarray technology has several advantages over 
conventional karyotyping, including improved resolution 
and potentially higher detection rates of  chromosomal 
variation. Using arrays, an additional 15% of  causally 
related chromosomal abnormalities are detected over 
routine microscopic and MLPA or FISH for subtelo-
meric screening in patients with DD and/or MCA[8]. In 
another study performed in postnatal patients (children 
and adults) with a diagnosis of  unexplained neurodevel-
opmental disability, the positive diagnostic yield of  CGH-
array has been reported to be about 10% higher than that 
of  standard karyotyping[9].

In addition to providing higher resolution, the ge-
nomic microarray offers other potential advantages over 
conventional karyotyping, such as automation (and thus 
faster turnaround times) and elimination of  the need to 
culture amniocytes or chorionic villi. Because microar-
ray analysis does not require dividing cells, it is also use-
ful in cases of  fetal death, when it is often not possible 
to culture cells[10]. Given the advantages of  microarray-
based technologies over karyotyping, there is increasing 
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interest in determining whether these technologies will 
offer similar advantages in the detection of  fetal genomic 
imbalances in a prenatal setting.

DATA FROM THE LITERATURE 
Starting in 2004, reports began to appear describing evi-

dence that array CGH could detect causative deletions 
and duplications in children with ID, and other disabili-
ties and congenital malformations[11] (Table 1).

Rickman et al[12] have shown the feasibility of  perform-
ing CGH-array for PD on DNA extracted from AF cells 
with the demonstration that in 29/30 samples, the CGH-
array result was fully concordant with the karyotype.
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Table 1  Data from the literature

Ref. Key results

[11] Array CGH could detect causative CNVs in children with ID, and other disabilities and congenital malformations

[12] Feasibility of performing CGH-array for prenatal diagnosis on DNA extracted from AF cells

[13] Evaluation of the literature up to 2009. Pathogenic CNVs or VOUS were detected in 3.6% of cases with a normal karyotype. Microarrays 
detected an additional 5.2% pathological CNVs or VOUS in pregnancies with fetal anomaly on ultrasound

[14-21] Diagnostic utility of CGH- and SNP-arrays in a prenatal setting

[22] Cohort studies, published from 2009 onwards, have demonstrated an increased detection rate over standard karyotyping ranging from 0.9% to 26.5%

[23] Evaluation of the utility of a 1-Mb BAC and 60-K oligonucleotide array in 3171 pregnancies. The detection rate was low (0.52%) in uneventful 
pregnancies, but increased to 8.2% when a fetus had an abnormality on ultrasound scan

[24] Additional information in 7.7% of cases using a SNP-array with a resolution of 150/200 kb to analyze DNA from 207 cases with fetal anomalies

[25] Comparation of microarray with standard karyotyping in 4406 women undergoing PD for common indications over a period of 3 yr (2008-2011) 
The analysis identified all of the common autosomal and sex-chromosome aneuploidies and the unbalanced rearrangements detected by standard 
karyotyping in the 4282 non mosaic samples. Microdeletions or duplications of clinical significance were found in 96 of 3822 fetal samples with 
normal karyotypes (2.5%), including 6.0% of cases in which fetal anomalies were detected on ultrasonography. There were 94 copy-number 

variants of uncertain clinical significance that required further evaluation. The pathogenicity of 1.5% of CNVs remained uncertain

[26] Exploration of the utility of microarray analysis in groups of pregnancies with a priori low risk for detection of submicroscopic chromosome 
abnormalities. A total of 3000 prenatal samples were processed in parallel using both microarray and conventional karyotyping. Samples 
were processed using a BAC platform with a resolution of about 1 Mb across the genome and about 100 kb in 139 regions associated with 
constitutional disorders. The percentage of detection was 0.5% (6/1118) in advanced maternal age and 0.7% (11/1674) in parental anxiety. No 
genetic imbalances were detected in any of the cases sampled for an abnormal maternal serum screening, nor for a family history of a genetic 
condition or chromosomal abnormality. A total of 24 (0.8%) fetal conditions would have remained undiagnosed if only a standard karyotype 

had been performed. 17 (0.6%) of such findings would have otherwise been overlooked if CMA was offered only to high risk pregnancies

[27] Study on 5003 prospective cases received for a variety of indications. The overall detection rate of clinically significant CNAs was 5.3%. Detection 
rates were 6.5% and 8.2% for cases referred with abnormal ultrasounds and fetal demise, respectively. The overall rate of findings with VOUS was 
4.2% but would reduce to 0.39% if only de novo CNAs were considered. In cases with known chromosomal rearrangements in the fetus or parent, 
41.1% showed CNAs related to the rearrangements, whereas 1.3% showed clinically significant CNAs unrelated to the karyotype. 71% of the 

clinically significant CNAs found by microarray were below the resolution of conventional karyotyping of fetal chromosomes

[28] Evaluation of a multicentric collection of a 1-yr series of fetal samples with indication for prenatal invasive sampling simultaneously using 
three screening methodologies: (1) karyotype and QF-PCR; (2) two panels of MLPA; and (3) microarray-based analysis with a targeted BAC 
microarray. On a total of 900 samples, technical performance was excellent for karyotype, QF-PCR, and GMA (about 1% failure rate) but 
relatively poor for MLPA (10% failure). Mean turn-around time was 7 d for microarray or MLPA, 25 d for karyotype and 2 d for QF-PCR, with 
similar combined costs for each approach. A total of 57 clinically significant chromosomal aberrations were found (6.3%), with microarray 
yielding the highest detection rate (32% above other methods). The identification of VOUS (17, 1.9%) tripled that of karyotype and MLPA, but 

most alterations could be classified as likely benign after proving they were inherited

[29] Evaluation of the results of prenatal microarray analysis on > 1000 fetal samples referred for testing and comparation of these data to published 
reports. Clinically significant CNVs were observed in 85/1115 cases (7.6%). Eighteen of the 1115 cases had VOUS (1.6%). Indications yielding the 
most clinically significant findings were abnormal karyotype/FISH (26/61, 42.6%), family history of chromosomal abnormality (13/137, 9.5%), 
abnormal ultrasound (38/410, 9.3%), abnormal serum screening (2/37, 5.4%) and advanced maternal age (5/394, 1.3%). Of 1075 cases having no 
previously known cytogenetic abnormality or family history, 18 (1.7%) had clinically significant genomic changes undetectable by conventional 

prenatal chromosome analysis

[30-33] Papers reporting experience on a small number of samples and addressing the main issues in this field

[34] Prospective cohort study of 243 women undergoing microarray testing alongside karyotyping when a structural abnormality was detected on 
prenatal ultrasound scan and review and meta-analysis of the literature. The collective number of samples analysed were 17113. The overall 
agreement between the two tests was 93.4% (95%CI: 90.4%-96.5%). The results obtained in attempting to calculate the rate of microarray detection 
over karyotyping were highly heterogeneous, ranging from 0.4% to 50%. When the indication was structural abnormality seen on ultrasound scan the 
detection rate over karyotyping was 10% (95%CI: 8%-13%). A sub analysis performed using cohorts published between 2011 and 2012 showed a lower 
detection rate (7%, 95%CI: 5%-10%). The authors suggest that GMA could have a higher detection rate not just in cases of abnormal scan findings but 
also with other indications for invasive testing, and conclude that it is likely that microarray testing will replace karyotyping in high risk pregnancies

BAC: Bacterial artificial chromosomes; CNAs: Copy number alterations; CGH-arrays: Comparative genomic hybridization-based arrays; CMA: Chromosomal 
microarray analysis; CNVs: Copy number variations; MLPA: Multiplex ligation-dependent probe amplification; PD: Prenatal diagnosis; QF-PCR: 
Quantitative fluorescent polymerase chain reaction; SNP-arrays: Single nucleotide polymorphism-based arrays; VOUS: Variants of uncertain (unknown) 
significance; ID: Intellectual disabilities.
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Hillman et al[13] published a critical appraisal of  the lit-
erature evaluating the use of  CGH-array in PD up to and 
including 2009. When CGH-array was used prenatally for 
any indication (e.g., maternal age, parental anxiety or an 
identified ultrasound abnormality), pathogenic copy num-
ber variations (CNVs) or variants of  uncertain (unknown) 
significance (VOUS) were detected in 3.6% (95%CI: 
1.5%-8.5%) of  cases in which conventional karyotyping 
was considered normal. When the indication for prenatal 
CGH-array was a fetal anomaly on ultrasound, microar-
rays detected an additional 5.2% (95%CI: 1.9%-13.9%) 
pathological CNVs or VOUS over conventional karyo-
typing. Heterogeneity (and hence large confidence in-
tervals) was attributed to the varying resolution of  the 
CGH-array methodology. In addition, there was consid-
erable variation in the literature as to whether an attempt 
had been made to identify and investigate the presence 
of  benign CNVs (by reviewing parental samples).

Other cohort studies, published from 2009 onwards, 
have demonstrated an increased detection rate over stan-
dard karyotyping ranging from 0.9% to 26.5%[14-21]. Some 
of  the studies with much larger detection rates may rep-
resent selection of  patients rather than being a reflection 
of  a true prospective series[22].

More recently, Lee et al[23] looked at the utility of  both 
a 1-Mb BAC and 60-K oligonucleotide array in 3171 
pregnancies. Although the added utility of  CGH-arrays 
over karyotyping was small when there was an uneventful 
prenatal examination (0.52%), the proportion of  cases 
in which additional information was provided by CGH-
arrays increased to 8.2% when a fetus had an abnormality 
on ultrasound scan (USS). 

Srebniak et al[24] used a SNP-array with a resolution of  
150/200 kb to analyze DNA from 207 cases with fetal 
anomalies, and detected additional information in 7.7% 
of  cases, a similar percentage to that in the Lee and col-
leagues’s cohort. 

Over a period of  3 years (2008-2011), Wapner et al[25] 
compared microarray with standard karyotyping in 4406 
women undergoing PD for common indications, includ-
ing advanced maternal age (46.6%), fetal abnormalities 
detected on ultrasonography (25.2%) and positive prena-
tal screening results (18.8%). Microarray analysis was per-
formed using either a customized oligonucleotide-based 
microarray with spacing of  approximately 1 probe per 
75 kb, or a SNP-array with a comparable resolution. The 
analysis was successful in 4340 of  4391 cases with an ad-
equate sample (98.8%), and identified all of  the common 
autosomal and sex-chromosome aneuploidies and the 
unbalanced rearrangements detected by standard karyo-
typing in the 4282 non mosaic samples. As expected, mi-
croarray analysis did not identify balanced translocations 
(0.93% in this sample). The series also included seventeen 
triploid samples (0.4%), none of  which were identified 
on microarray. Microdeletions or duplications of  clinical 
significance were found in 96 of  3822 fetal samples with 
normal karyotypes (2.5%; 95%CI: 2.1%-3.1%), including 
6.0% of  cases in which fetal anomalies were detected on 

ultrasonography. There were 94 copy-number variants of  
uncertain clinical significance that required adjudication 
by a Clinical Advisory Committee, and after discussion 
61 (65%) were classified as pathogenic. A subsequent up-
date of  copy-number variants of  uncertain significance 
resulted in reclassification of  30 copy-number variants as 
pathogenic and 8 as benign. With this additional informa-
tion, the pathogenicity of  1.5% of  copy-number variants 
detected on microarray analysis in karyotypically normal 
samples remained uncertain. 

To assess whether chromosomal microarray analysis 
(CMA) improves the detection rate of  prenatal chromo-
somal aberrations, Fiorentino et al[26] explored the utility 
of  microarray analysis in groups of  pregnancies with a 
priori low risk for detection of  submicroscopic chromo-
some abnormalities (usually not considered an indication 
for testing). A total of  3000 prenatal samples, including 
2650 amniotic fluids (88.3%), 308 chorionic villus sam-
pling (10.3%), 32 cultured amniocytes (1.1%), and 10 
DNAs extracted by other laboratories from uncultured 
amniocytes (0.3%), were processed in parallel using both 
GMA and conventional karyotyping. The indications 
for prenatal testing included: advanced maternal age, 
maternal serum screening test abnormality, abnormal 
ultrasound findings, known abnormal fetal karyotype, 
parental anxiety, family history of  a genetic condition 
and cell culture failure. Samples were processed using 
a whole-genome BAC platform with a resolution of  
about 1Mb across the genome and about 100 kb in 139 
regions associated with constitutional disorders. In high 
risk groups (with abnormal ultrasound findings and fetal 
karyotype) the percentage of  detection was 5.8% (7/120). 
In low risk groups the percentage was much lower: 0.5% 
(6/1118) in advanced maternal age and 0.7% (11/1674) 
in parental anxiety. No genetic imbalances were detected 
in any of  the cases sampled for an abnormal maternal se-
rum screening, nor for a family history of  a genetic con-
dition or chromosomal abnormality. A total of  24 (0.8%) 
fetal conditions would have remained undiagnosed if  
only a standard karyotype had been performed. About 17 
(0.6%) of  such findings would have otherwise been over-
looked if  CMA was offered only to high risk pregnancies.

Shaffer et al[27] reported a study on 5003 prospective 
cases received from 2004 to 2011 for a variety of  indica-
tions. The overall detection rate of  clinically significant 
copy number alterations (CNAs) among unbiased, non-
demise cases was 5.3%. Detection rates were 6.5% and 
8.2% for cases referred with abnormal ultrasounds and 
fetal demise, respectively. The overall rate of  findings 
with unclear clinical significance was 4.2% but would 
reduce to 0.39% if  only de novo CNAs were considered. 
In cases with known chromosomal rearrangements in 
the fetus or parent, 41.1% showed CNAs related to the 
rearrangements, whereas 1.3% showed clinically signifi-
cant CNAs unrelated to the karyotype. Finally, 71% of  
the clinically significant CNAs found by microarray were 
below the resolution of  conventional karyotyping of  fetal 
chromosomes.
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In a comparative study of  currently available method-
ologies for detection of  chromosomal abnormalities af-
ter invasive prenatal sampling[28], a multicentric collection 
of  a 1-year series of  fetal samples with indication for 
prenatal invasive sampling was simultaneously evaluated 
using three screening methodologies: (1) karyotype and 
QF-PCR; (2) two panels of  MLPA; and (3) microarray-
based analysis with a targeted BAC microarray. A total 
of  900 pregnant women provided informed consent to 
participate (94% acceptance rate). Technical performance 
was excellent for karyotype, QF-PCR, and GMA (about 
1% failure rate) but relatively poor for MLPA (10% fail-
ure). Mean turn-around time was 7 d for microarray or 
MLPA, 25 d for karyotype and 2 d for QF-PCR, with 
similar combined costs for each approach. A total of  
57 clinically significant chromosomal aberrations were 
found (6.3%), with microarray yielding the highest detec-
tion rate (32% above other methods). The identification 
of  variants of  uncertain clinical significance (17, 1.9%) 
tripled that of  karyotype and MLPA, but most alterations 
could be classified as likely benign after proving they 
were inherited.

Breman et al[29] evaluated the results of  prenatal micro-
array analysis on > 1000 fetal samples referred for testing 
and compared these data to published reports. Clinically 
significant CNVs were observed in 85/1115 cases (7.6%) 
overall, and in 45/1075 cases (4.2%) if  40 abnormal cases 
with known chromosome abnormalities or familial ge-
nomic imbalances were excluded. Eighteen of  the 1115 
cases had variants of  unclear clinical significance (1.6%). 
Indications yielding the most clinically significant findings 
were abnormal karyotype/FISH (26/61, 42.6%), fam-
ily history of  chromosomal abnormality (13/137, 9.5%), 
abnormal ultrasound (38/410, 9.3%), abnormal serum 
screening (2/37, 5.4%) and advanced maternal age (5/394, 
1.3%). Of  1075 cases having no previously known cyto-
genetic abnormality or family history, 18 (1.7%) had clini-
cally significant genomic changes undetectable by conven-
tional prenatal chromosome analysis.

In 2013 several papers reported experience on a small 
number of  samples and tried to address the main issues 
in this field[30-33]. Finally, Hillman et al[34] quite recently 
reported a prospective cohort study of  243 women un-
dergoing microarray testing alongside karyotyping when a 
structural abnormality was detected on prenatal USS. This 
cohort is presented in the context of  a systematic review 
and meta-analysis of  the literature defining overall detec-
tion rates by microarray over karyotyping. When clinical 
indication for testing was abnormal fetal USS their co-
hort study noted a 4.1% increase in detection rate; lower 
than the rate of  10% (95%CI: 8%-13%) by meta-analysis. 
The VOUS rate was 2.1% (95%CI: 1.3%-3.3%) when the 
indication for GMA was abnormal scan. The VOUS rate 
was 1.4% (95%CI: 0.5%-3.7%) when any indication for 
prenatal GMA testing was meta-analysed. The authors, 
suggest that GMA could have a higher detection rate 
not just in cases of  abnormal scan findings but also with 
other indications for invasive testing, and conclude that it 

is likely that microarray testing will replace karyotyping in 
high risk pregnancies.

GUIDELINES
The accumulated evidence from many studies apply-
ing GMA together with chromosomal analysis in PD, 
demonstrate that there is improved detection of  clini-
cally significant genome imbalances when using GMA; 
proving the usefulness in using this technique in a PD 
setting. However, several issues remain to be addressed 
before implementing CGH-array in PD, such as: (1) in 
which pregnancies should CGH-array be carried out, 
whether for all pregnancies or only for pregnancies with 
ultrasound abnormalities; (2) which array platform to use; 
(3) an appropriate calling criteria must be established; (4) 
which confirmatory methods to use for the CGH-array 
findings; and (5) pretest counseling[30].

Scientific societies have joined the discussions regard-
ing microarray-based technologies in PD. 

The American College of  Obstetricians and Gyne-
cologists stated that, although CGH-array has distinct ad-
vantages over classic cytogenetics in certain applications, 
the technology is not currently a replacement for classic 
cytogenetics in PD[35]. 

The Genetics Committee of  the Society of  Obstetri-
cians and Gynaecologists of  Canada and the Prenatal 
Diagnosis Committee of  the of  the Canadian College of  
Medical Geneticists make three principal recommenda-
tions: (1) Array genomic hybridization is not recommend-
ed in pregnancies at low risk for a structural chromo-
somal abnormality; for example, advanced maternal age, 
positive maternal serum screen, previous trisomy, or the 
presence of  “soft markers” on fetal ultrasound; (2) Array 
genomic hybridization may be an appropriate diagnostic 
test in cases with fetal structural abnormalities detected 
on ultrasound or fetal magnetic resonance imaging and 
could be done in lieu of  a karyotype if  rapid aneuploidy 
screening is negative and an appropriate turnaround time 
for results is assured; and (3) Any pregnant woman who 
qualifies for microarray genomic hybridization testing 
should be seen in consultation by a medical geneticist be-
fore testing so that the benefits, limitations, and possible 
outcomes of  the analysis can be discussed in detail. The 
difficulties of  interpreting some copy number variants 
should also be discussed. This will allow couples to make 
an informed decision about whether or not they wish to 
pursue such prenatal testing[36]. 

The European Society of  Human Genetics stated that 
arrays were of  proven value for investigation of  fetal ab-
normalities and encouraged the establishment of  local 
guidelines for the use of  genome-wide array analysis in 
the prenatal setting. The most important recommenda-
tions helpful when establishing local or national guide-
lines are: (1) Establish the indications for the use of  
genome-wide array analysis in the prenatal setting; (2) 
An array platform with a minimal resolution of  200 kb is 
recommended; (3) Laboratory specialists should have suf-
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ficient experience with the interpretation of  array results; 
(4) Parental blood sampling is highly recommended; (5) 
Pretest counseling, including providing written informa-
tion and parental consent are a prerequisite; (6) The labo-
ratory and the clinicians should agree on what to report 
and what not to report before offering array diagnostics; 
and (7) There should always be optimal communication 
between the laboratory specialists and the clinicians[37].

The cytogenetics working group of  the Italian So-
ciety of  Human Genetics (SIGU) recommended the 
use of  CMA in prenatal testing: (1) never as a substitute 
for conventional karyotyping; (2) for specific diagnostic 
purposes in selected pregnancies and not for general 
screening in all pregnancies; and (3) only in prenatal cases 
with specific indications, such as: (a) single (apparently 
isolated) or multiple sonographic fetal abnormalities; (b) 
de novo chromosomal rearrangements (even if  apparently 
balanced) detected by standard karyotyping to investigate 
the possible presence of  cryptic imbalance(s) related to 
the structural chromosome abnormality; and (c) super-
numerary marker chromosomes in order to characterize 
their origin and genetic content[38].

CONCLUSION
The amount of  information that can be obtained from 
the human fetus is growing at a remarkable rate. Al-
though the times when the fetus was regarded as a mys-
terious object are long gone, the concept that the fetus is 
a genetically distinct entity from the pregnant woman and 
that can be studied on an individual basis is fairly recent.

For both clinical and technical reasons, PD has always 
focused on chromosomal disorders, which represent a 
very important cause of  prenatal morbidity and mortali-
ty[39]. The standard cytogenetic techniques have been used 
for many years for the diagnosis of  chromosomal defects, 
accompanied in recent years by molecular cytogenetic 
techniques. In the postnatal field, other techniques such 
as those based on microarrays have been proposed as a 
first level test in children with ID and MCA[9].

Microarray-based techniques such as CGH-arrays and 
SNP-arrays allow detection of  very small genomic im-
balances (at the level of  genes and even exons) that can 
determine pathological clinical conditions[40-42]. In addition 
to these pathogenetic CNVs, there are other CNVs which 
represent normal variations, without negative effects on 
the phenotype. Moreover, many CNVs are associated with 
variable expressivity and incomplete penetrance, leading 
to a difficult prevision of  the phenotype. Given the still 
incomplete knowledge of  the so-called “variomat” (the 
set of  all the changes in our genome) and the associated 
phenotypes, microarray-based testing is likely to identify 
variants of  uncertain and unknown clinical significance. 
The interpretation of  these variants is a challenge for 
medical geneticists, who often find it difficult to establish 
precise correlations between genotype and phenotype.

These difficulties, already significant in a postnatal 
context, become critical in the prenatal setting, where the 

fetal phenotype is difficult to explore and where there 
are huge dilemmas regarding the advice to be given. For 
these reasons, despite increasing interest in applying these 
techniques in PD, their actual use is as yet not wide-
spread. The use of  microarray-based techniques in PD is 
currently a topic of  much debate, between supporters of  
the technology and its application and those that recom-
mend a more cautious approach.

One of  the most important issues concerns the preg-
nancies to be considered for this test. Is it appropriate and 
convenient to apply the routine examination by microar-
ray in all pregnancies that are subjected to invasive PD 
or it is better to restrict their use to pregnancies that have 
particular characteristics, such as the presence of  fetal ul-
trasound abnormalities? The currently available data does 
not support the implementation of  these methods in low-
risk pregnancies; however, under other conditions they are 
clearly advisable, as indicated in the Position Statement of  
the cytogenetic working group of  the SIGU[38].

Moreover, the number of  chromosome abnormalities 
not detectable by microarray analysis suggests that micro-
array technology should remain a complementary analysis 
and not a replacement for current PD tests[43].

Regarding the choice of  platform, there have been no 
systematic studies to identify a specific platform most suit-
able for PD. The difficulty lies in finding the appropriate 
resolution, which must be high enough to detect small im-
balances (already identified as a possible cause of  disease 
patterns) but not so high as to generate large numbers of  
CNVs of  uncertain significance. To address this problem, 
some groups have opted for the use of  targeted platforms, 
which show only well-characterized imbalances linked to 
specific clinical situations. Although this approach avoids 
many of  the problems presented to the examiner, it se-
verely limits the diagnostic power of  the technique (one 
of  the main arguments for its introduction). In addition, 
the knowledge of  CNVs is rapidly expanding and ever 
new microdeletion/microduplication syndromes are being 
discovered and described. This would involve a continu-
ous update of  the targeted platforms, which is practically 
unfeasible. A fair compromise could be represented by the 
platforms with an acceptably high (but not overly high) 
resolution of  the entire genome (at least 200 kb) with a 
greater number of  probes in regions of  particular clinical 
interest[37,44].

While oligonucleotide arrays with high-density exonic 
coverage remain the gold standard for the detection of  
CNVs, SNP-arrays allow for detection of  uniparental 
disomy and consanguinity, while also providing a higher 
sensitivity in detection of  low-level mosaic aneuploi-
dies[11]. Moreover, SNP-arrays allow identification of  po-
liploidies and chimerisms.

There is increasing interest in the use of  mixed plat-
forms (oligo-SNP), which combine the advantages of  
the oligonucleotides in terms of  diagnostic accuracy of  
CNVs, with those of  the SNPs. These platforms deserve 
a thorough evaluation on a large number of  cases and 
may become the best choice for PD.
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Another important point to consider is the informa-
tion process. PD is an extremely delicate issue, and any 
defect in communication between doctor and patient 
can produce very serious problems. In particular, genetic 
counseling relating to the examination by microarray in 
a prenatal environment is difficult and represents a chal-
lenge for even the most experienced geneticist. There-
fore, there is a clear need for specific training and draft 
guidelines that will help to improve and standardize the 
professional standards in this sensitive area.

In conclusion, genomic rearrangements represent an 
important aspect of  human pathology and the applica-
tion of  microarray-based techniques for diagnosis is likely 
to continue growing in significance. Given the undeniable 
advantages of  these techniques over conventional cytoge-
netics, there is an increasing pressure towards their appli-
cation in PD. However, introduction of  these technolo-
gies into clinical practice should proceed with caution 
and be offered only by experienced laboratories and after 
proper validation, showing robust, reliable and reproduc-
ible results[26]. While there is sufficient evidence in the 
literature to recommend the use of  these technologies in 
specific conditions, it is important to avoid an unchecked 
drift towards widespread use driven by commercial inter-
ests. It is critical that application is tightly regulated and 
that scientific societies remain vigilant and participate in 
the decision making process.
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Abstract
Head and neck squamous cell carcinoma is the sixth 
most common cancer in the world with approximately 
650000 new cases diagnosed annually. Next-generation 
molecular techniques and results from phase 2 of the 
Cancer Genome Atlas becoming available have drasti-
cally improved our current knowledge on the genet-
ics basis of head and neck squamous cell carcinoma. 
New insights and new perspectives on the mutational 
landscape implicated in head and neck squamous cell 
carcinoma provide improved tools for prognostica-
tion. More importantly, depend on the patient’s tumor 
subtypes and prognosis, deescalated or more aggres-
sive therapy maybe chosen to achieve greater potency 
while minimizing the toxicity of therapy. This paper 
aims to review our current knowledge on the genetic 
mutations and altered molecular pathways in head and 
neck squamous cell carcinoma. Some of the most com-
mon mutations in head and neck squamous cell carci-
noma reported by the cancer genome atlas including 
TP53, NOTCH1, Rb, CDKN2A, Ras, PIK3CA and EGFR 
are described here. Additionally, the emerging role of 

epigenetics and the role of human papilloma virus in 
head and neck squamous cell carcinoma are also dis-
cussed in this review. The molecular pathways, clinical 
applications, actionable molecular targets and potential 
therapeutic strategies are highlighted and discussed in 
details. 

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Head and neck squamous cell carcinoma; 
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Core tip: Head and neck squamous cell carcinoma 
(HNSCC) is the sixth most common cancer in the world 
with approximately 650000 new cases diagnosed an-
nually. Understanding the molecular pathways that are 
implicated in the pathogenesis of HNSCC enable clini-
cians to be able to classify and to prognosticate the 
disease based on subtypes, such as human papilloma 
virus (HPV)-positive vs  HPV-negative HNSCC. More 
importantly, patients may be placed on de escalated 
or more aggressive therapies depend on their tumor 
subtypes and prognosis. This paper aims to review our 
current knowledge of the most common genetic altera-
tions in HNSCC. 
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INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) is the 
sixth most common cancer in the world with approxi-
mately 650000 new cases diagnosed annually[1]. Lesions in 
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the head and neck area impair both forms and functions 
significantly. Surgery, one of  the three pillars of  treat-
ments, is not only technically demanding but surgery also 
presents difficult challenges during rehabilitation in the 
postoperative period. On the other hand, radiotherapy is 
associated with significant complications and side effects 
that render the treatments intolerable for many patients. 
Thus, understanding the molecular pathways that are im-
plicated in the pathogenesis of  HNSCC enables clinicians 
to be able to classify the disease based on subtypes, such 
as human papilloma virus (HPV)-positive vs HPV-negative 
HNSCC and to prognosticate better. More importantly, 
patients may be placed on deescalated or more aggressive 
therapies depend on their tumor subtypes and progno-
sis. Moreover, chemotherapy has been useful to prevent 
recurrence in other cancers such as breast and may be-
come relevant in HNSCC when an actionable target is 
discovered. The aim of  this paper is to review our current 
knowledge of  the molecular pathogenesis of  HNSCC- 
knowledge made available by advanced, next-generation 
molecular techniques. We also discuss how this growing 
body of  evidence currently shapes research interests and 
research directions in the quest of  finding better treat-
ments for HNSCC. 

CELLULAR PROLIFERATION
TP53
TP53 encodes for the p53 protein and is widely touted 
as “the guardian of  the genome” due to its master 
regulatory role in monitoring DNA damage, promot-
ing senescence, inducing cell cycle arrest and apoptosis. 
Early studies revealed that somatic mutations in TP53 
are found in 47% to 70% of  HNSCC making TP53 mu-
tations the most commonly mutated genes implicated 
in HNSCC[2-5]. Smoking and alcohol, two well-known 
causes of  TP53 mutations are the leading risk factors in 
HNSCC[6,7]. Furthermore, evidence suggests that these 
mutations occur relatively early in the course of  HN-
SCC development. Premalignant dysplastic lesions for 
HNSCC such as leukoplakia contain TP53 mutations 
in as high as 27% of  cases[8]. Additionally, the presence 
of  p53 mutations in these premalignant lesions also in-
creases the risk of  progression to invasive carcinoma[8,9]. 

It is important to point out that such precursor lesions 
indicate a field defects and that both clonal and non-
clonal TP53 mutations can be found in macroscopically 
normal epithelium[5]. In as high as 35% of  oral and oro-
pharyngeal carcinomas, the primary tumor is surrounded 
by mucosal epithelium that contains TP53 mutations[10].

TP53 is not only a significant determining factor in 
the carcinogenesis but patients with TP53 mutations 
also have worse prognoses. In a study by Poeta et al[11] 
HNSCC patients with disruptive TP53 mutations have 
a decreased survival rate of  more than 1.5 fold when 
compared with TP53 wild-type HNSCC. More specifi-
cally, a truncating TP53 mutation is associated with a 
worse overall survival and progression-free survival[12]. 

These could be due to several factors. Firstly, disruptive 
mutations of  TP53 can lead to a complete shutdown 
of  intracellular restorative processes. TP53 mutants also 
disrupt tissue architecture[13], upregulate angiongenesis[14], 
as well as participate in migration, invasion and metas-
tasis[15,16]. All these factors contribute to a much more 
aggressive tumor biology. Secondly, TP53 mutants are 
extremely resistant to treatments. Several prospective trials 
have shown that patients with TP53 mutations respond 
poorly to cisplatin and fluorouracil[17,18]. Additionally, field 
defects with TP53 mutations are found to often present 
in surgical margins during tumor resection[19]. Retrospec-
tive studies have shown that both local recurrence and 
metachronous primary can arise from within the field can-
cerization[20,21]. Thus, because of  TP53 mutants within the 
field cancerization, an R0 surgical margin may not result 
in improved survival. Both primary and adjuvant radio-
therapy are found to be less effective in HNSCC patients 
with TP53 mutations and have a much higher rate of  lo-
coregional recurrence and failure rate, respectively[22,23]. 

Given the significant role of  TP53 mutations in HN-
SCC and associated clinical implications discussed above, 
considerable efforts have been devoted to explore treat-
ment strategies. This has proven to be challenging due to 
the wide spectrums of  mutation patterns in TP53. Mis-
sense mutations in the DNA binding domain of  the p53 
protein are the most common type of  TP53 mutations 
and account for 50%-70% of  mutations[2,3,24]. Other pat-
terns of  TP53 mutations have also been described, for 
example, 16% nonsense, 16% insertion or deletion and 
8% splice site mutation in one series[1]. Although most 
of  these mutations are loss-of-function mutations, gain-
of-function oncogenic activities associated with TP53 
mutations have also been documented. In fact, for al-
most an entire decade after it was first discovered, TP53 
was considered a proto-oncogene[25]. These gain-of-
function mechanisms remain poorly understood. Loyo 
et al[26] suggest that such gain-of-function activities arise 
from the interactions of  defect p53 with other regulatory 
proteins. Examples of  p53 gain-of-function activities are 
the interactions of  p53 with p63/p73[25], ability of  TP53 
mutants to escape growth arrest induced by v-Ki-ras2 
Kirsten rat sarcoma viral oncogene[27], and the ability to 
promote invasion and metastasis via integrin and EGFR 
upregulations[15]. 

Thus, given such complex and paradoxical activities 
of  p53 mutants, several therapeutic strategies have been 
proposed and tested in clinical trials. One strategy aims to 
restore wild-type p53 functions in tumor cell. This stems 
from an important proof-of-principle in several mouse 
models in which reactivating wild-type p53 functions re-
sults in tumor regression[28]. For example, adenovirus gene 
therapy can reactivate wild-type p53 functions. Clinical 
trials studying adenoviral based treatment such as Advexin 
(Introgen Therapeutics Inc., Austin, TX) and ONYX-015 
(Onyx Pharmaceuticals Inc., San Francisco, CA) have 
yielded some positive results in phase Ⅰ, Ⅱand several 
pending results in phase Ⅲ[29,30]. In a trial that assessed 
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response to the treatment of  ONYX-015 in combina-
tion with cisplatin and 5-fluorouracil, the complete and 
partial response rates were 27% and 36% respectively. 
Patients with ONYX-015 injection also have longer time 
to tumor progression[30]. This trial also yielded some 
other important findings: (1) patients with documented 
chemoresistance have objective tumor regression after 
injection with ONYX-015; and (2) side effects include 
flu-like symptoms, injection site pain and mucous mem-
brane disease. ONYX-015 has recently been approved 
for treatment of  HNSCC in China[31]. Furthermore, 
there are other innovative approaches to reactivate wild-
type p53. These approaches revolve around our progres-
sively expanding knowledge of  the biomechanism within 
the p53 pathway: by targeting the MDMX-p53 ubiqui-
tination pathway[28], by using proteasome inhibitor bort-
ezomib[32], or by using p53 reactivating molecules such as 
PRIMA-1[33,34]. Another avenue of  approach for therapy 
in HNSCC patients with TP53 mutations is to target 
p53 mutants directly. As discussed above, high levels of  
mutant p53 is critical in tumorigenesis. Thus, molecules 
that can destabilize or reduce mutant p53 turnover may 
be beneficial for HNSCC patients with TP53 mutations. 
Li et al[35,36] have shown that p53 mutants level can be 
reduced by inhibiting either Hsp90 or HDAC6. This ap-
proach maybe quickly translated into clinical use with the 
availability of  Vorinostat (Merck & Co., White House 
Station, New Jersey), an FDA-approved HDAC6 inhibi-
tor that is widely used for lymphoma and other solid 
tumors[35].

Rb/CDKN2A (p16)
The Retinoblastoma (Rb) protein, located on chromosome 
13, is a critical regulatory protein of  the G1 checkpoint. 
The Rb pathway is described schematically in Figure 1. 
In healthy cells, hypophosphorylated Rb protein forms a 
complex with the transcription factor E2F to promote G1 
arrest. Cells progress to S-phase after hyperphosphoryla-
tion of  Rb occurs. Thus, epithelial carcinogenesis in HN-
SCC is thought to arise from excessive hyperphosphoryla-
tion of  Rb proteins. This event can occur with mutations 
in several different loci. Rb mutations can happen due to 
loss of  heterozygosity (LOH) or microsatellite instability 
(MI)[37]. LOH has been implicated in many malignancies, 
including HNSCC[38,39]. The rate of  LOH in Rb gene is 
as high as 60% in laryngeal SCC in some series whereas 
MI is reported at 34% in a series of  stage 2 laryngeal SCC 
patients[39]. Although the inactivation of  Rb gene product 
(pRb) due to viral oncogenes in HPV-positive HNSCC 
is well established, the inactivation of  pRb as a result of  
LOH/MI in HPV-negative HNSCC is much more con-
tentious. Recent evidence suggests that a mutation at one 
Rb locus is not enough to stop Rb expression and that 
loss of  pRb expression only arises when there are muta-
tions of  both Rb alleles[37]. This study also suggests that 
despite the high frequency of  LOH or MI in this series, 
such presence does not offer additional information to 
tumor biology or patient prognosis[37]. Rather, a multi-step 

tumorigenesis in which Rb is an intermediary is a more 
likely process in vivo. 

Cyclin-dependent kinase inhibitor 2A (CDKN2A) at 
9p21 locus controls the phosphorylation of  Rb. In the 
presence of  CDKN2A, cyclin-dependent kinases CDK4 
and CDK6 are prevented from phosphorylating Rb. 
Without this regulation, Rb-E2F complexes become de-
stabilized due to hyperphosphorylation and progression 
to S phase proceeds unchecked[40]. The Cancer Genome 
Atlas (TCGA) reported a mutation rate of  21% in the 
CDKN2A locus in HNSCC[4]. LOH at the CDKN2A lo-
cus is common in premalignant oral lesions such as leu-
koplakia and can be found in as high as 80% of  HNSCC 
tumors[41-43]. CDKN2A encodes for two tumor suppres-
sors: p16 and p14. In HPV-negative hypopharyngeal and 
oropharyngeal SCC, p16 downregulation and concurrent 
cyclin D1 overexpression have been linked with poorer 
outcome[44,45]. Furthermore, an alternate reading frame 
p14 has been shown to be associated with a slightly 
higher risk of  developing a second primary malignancy 
after an index HNSCC[46]. Such recent evidence, together 
with the feasibility of  detecting p14 and p16, have led to 
increased interest in detecting p14 and p16 as surrogate 
markers and as prognostication tool in HNSCC[45,46]. 

Evidence of  tumor arrest after transfection of  p16 in 
negative p16 squamous carcinoma cell lines has offered 
some therapeutic directions[47,48]. The demethylating agent 
5-aza-2’-deoxycytidine has been shown to recover p16 
expression[49]. Moreover, 5-aza has also been shown to in-
crease the radiosensitivity of  HNSCC tumors[50].

TERMINAL DIFFERENTIATION
NOTCH1/p63
The discovery of  NOTCH1 as a commonly mutated gene 
in HNSCC owes much to the availability of  next-genera-
tion sequencing. NOTCH 1, a large gene of  34 exons, was 
first shown to be involved in tumorigenesis while studying 
T-cell leukemias[51]. Further evidence emerged and differ-
ent patterns of  NOTCH1 mutations have been found to 
be associated with lung cancer, various forms of  leukemia 
and HNSCC[2,52,53]. TCGA reports a mutation rate of  19% 
for NOTCH1 in HNSCC[4]. Function of  NOTCH1 is 
highly contextual in normal biology as well as in pathol-
ogy. In normal biology, activation of  NOTCH1 causes 
terminal differentiation in some tissues while performs 
stem cell maintenance in other tissues[54]. From studies 
of  T-cell lymphoblastic and chronic lymphocytic leu-
kemia, the NOTCH1 pathway is found to be upregu-
lated and thus becomes oncogenic. However, reduced 
NOTCH1 signaling has been found in HNSCC, suggest-
ing tumor suppressing activities of  NOTCH1 in these 
cell lines[2,3]. Several animal models have also been shown 
to support this paradoxical biological duality of  NOTCH1 
in tumorigenesis[55-57]. Unsurprisingly, NOTCH1 mutations 
in HNSCC are fundamentally distinctive from oncogenic 
mutations found in other types of  cancers. The majority 
of  NOTCH1 mutations in HNSCC were found in N-ter-
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minal of  the transmembrane region or in the N-terminal 
EGF-like ligand binding domain; in contrast, oncogenic 
mutations of  NOTCH1 clustered in the heterodimeriza-
tion domain and the PEST C-terminal domain[2,26]. More 
importantly, the inactivating mutations of  NOTCH1 in 
HNSCC are strongly implicated as the main driver of  
tumorigenesis, rather than being simply passenger muta-
tions[26].

The role of  TP63 in regulating NOTCH1 adds to the 
complexity of  NOTCH1 expression. TP63 is a p53-re-
lated transcription factor that is expressed in keratinocytes 
of  the basal layer and participate in epidermal differentia-
tion and proliferation[58]. In mature epithelium, p63 inhib-
its NOTCH1 expression[59]. Dysplastic mucosa in the head 
and neck as well as HNSCC tumors have been shown 
to harbor cells that overexpress TP63[59,60]. Additionally, 
besides contributing to tumorigenesis via NOTCH1 sup-
pression, evidence suggests that p63 also plays an intricate 
role in the interactions with other cell cycle regulators 
such as p73, p16, and EGFR in solid tumors[60-62]. 

Compared to other mutations in HNSCC, mutations 
in NOTCH1 came under investigation only recently. 
Furthermore, any treatment strategy has to negotiate the 
complexity of  NOTCH1 expression being both onco-
gene and tumor suppressor. In fact, a recent trial inves-
tigating γ-secretase inhibitors (GSI), an agent that can 
shut down constitutively active NOTCH1 pathway, has 
to be halted due to serious adverse events of  patients 
developing skin cancer[63]. On the other hand, combining 
a popular histone deacetylase inhibitors SAHA (suber-
oylanilide hydroxamic acid) with gene therapy of  p63, a 
potent regulator in the NOTCH1 pathway as discussed 

above, has shown promising anticancer effect in HN-
SCC[64]. Thus, whether or not NOTCH1 can be targeted 
as an actionable target in treating HNSCC needs better 
understanding of  its functional pathway. 

CELLULAR SURVIVAL
EGFR
In the wide spectrum of  mutations found in HNSCC cell 
line, EGFR has an interesting role. EGFR expression is 
found to be upregulated in 90% of  HNSCC and is as-
sociated with a poorer disease presentation: higher stage, 
increased relapse rate and lower overall survival[65-67]. More 
importantly, the significance of  EGFR biological func-
tion in HNSCC is further underlined by the success of  
cetuximab, the first ever targeted therapy developed for 
HNSCC[68]. Cetuximab is effective in locally advanced dis-
ease when combined with radiotherapy and in recurrent 
or highly staged disease when combined with cisplatin and 
5-fluorouracil[68,69]. Despite the high incidence of  EGFR 
overexpression in HNSCC, it is very rarely mutated[24,26]. 
In fact, Loeffer-Ragg et al[70] report only one incidence of  
somatic mutation of  the EGFR domain in a series of  100 
Caucasian patients. Thus, unlike other types of  cancer 
such as lung cancer, EGFR mutations are not sensitizing 
mutations for EGFR inhibition.

One current research focus in EGFR targeting thera-
py is to study its mechanism of  resistance to cetuximab. 
Patients who initially showed responses to cetuximab 
eventually become refractory to treatment[71,72]. Early evi-
dence suggested that cross-activations of  other receptor 
tyrosine kinase (RTK) pathways such as c-MET, IGFR1 
and the Her family members confer to resistance[71,73,74]. 
This suggests that EGFR inhibition by itself  is inad-
equate. An irreversible, combined EGFR and HER-2 
inhibitor, afatinib, has been shown to reverse tumor 
development in a xenograft SCC model[71]. Thus, besides 
tyrosine kinase inhibitors (TKIs) that inhibit both EGFR 
and HER2 such as the aforementioned afatinib, dacomi-
tinib, and lapatinib that are currently used in Her2 posi-
tive breast cancers, other Her family receptors inhibitors 
such as Herceptin may be useful when used together 
with cetuximab[75]. Dacomitinib, lapatinib and afatinib 
are currently in phase 1, 2, and 3 trial respectively[76-78]. 
c-MET is also an attractive target to reduce resistance to 
EGFR therapy with the recent approval of  crizotinib for 
use in the treatment of  lung cancer[79]. Another possible 
mechanism of  resistance to cetuximab is via the expres-
sion of  EGFR variant Ⅲ (EGFRvⅢ) as cetuximab 
binds with much less affinity to EGFRvⅢ. This variant 
presents in approximately 42% of  HNSCC and arises 
due to exon 2-7 iframe deletion that makes it resistant 
to ubiquination[80]. Investigators have been hopeful that 
EGFRvⅢ activation can be blocked by either TKIs or by 
a newer generation of  EGFR mAbs. So far, clinical tri-
als results investigating TKIs such as erlotinib have been 
perplexing. A retrospective review of  four clinical trials 
failed to identify any benefits from using erlotinib in 
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HNSCC treatment. Interestingly, it led to a paradoxical 
discovery that EGFRvⅢ was a surprised biomarker of  
improved disease control with a caveat that the sample 
size was small[81]. Successful phase Ⅰ trials for ABT-806, 
a next generation of  EGFR mAbs, have paved way for 
some recent phase Ⅱ trials with pending results[82-84]. 

Understanding the mechanisms of  EGFR resistance 
in both treatment-naïve and treatment-experienced set-
tings holds the key to unlock many translational oppor-
tunities. A phenomenon observed to be highly correlated 
with cetuximab resistance and worse disease progression 
is the epithelial-to-mesenchymal transition (EMT)[85]. 
Interestingly, early evidence suggests that reversing EMT 
will re-sensitize resistant HNSCC cells to cetuximab and 
TKIs such as gefitinib[86,87]. Moreover, agents that spe-
cifically kill EMT transformed cells such as salinomycin, 
may be synergistic with cetuximab[88]. Thus, the EGFR 
pathway remains to be a very promising domain to in-
vestigate for the next generation targeted treatment for 
HNSCC.

Ras/PIK3CA
Conflicting early evidence reported a rate of  mutations 
of  HRAS gene in 35% of  oral cancers from in India but 
none in the United States[89,90]. Recently, with the avail-
ability of  deep sequencing technique, HRAS mutations 
have been shown to be among the most common muta-
tions in HNSCC in the United States with the incidence 
of  3% to 5%[2-4]. HRAS is the only one of  the three Ras 
genes found to be implicated in HNSCC[91]. These three 
isoforms of  Ras proteins exhibit tissue-specific functions 
due to differences in the C-termini that determine their 
lineage-specific roles[92]. Because attempts to directly 
inhibit the Ras signaling in clinical trials have been disap-
pointing, this review will focus on newer research direc-
tion in investigating a major downstream effectors of  
Ras: the Phosphoinositide-3 kinase (PI3K) pathways[93,94]. 
As shown in Figure 2, the PI3K pathway is downstream 
of  Ras and is important for cell growth and survival[95]. 

The PI3K pathway can become over activated by 
PIK3CA mutations or as shown in Figure 2, by a loss 
of  inhibition from phosphatase and tensin homolog 
(PTEN), a negative regulator. Two “hot spot” domains 
in the PIK3CA gene contain activating mutations in 
6%-11% of  HNSCC[96,97]. On the other hand, LOH of  
PTEN is as frequent as 40% of  HNSCC[98]. Evidence 
suggests that LOH alone is adequate to drive tumorigen-
esis[99]. LOH mechanisms can arise from either epigen-
etic or silencing somatic mutations[100]. Regardless of  the 
how, when the PI3K pathway becomes over activated, 
many broad downstream effects occur: angiogenesis, in-
creased metabolism, enhanced proliferation and apopto-
sis inhibition. Akt and its downstream agent mTOR have 
been implicated in these downstream effects[101-103].

Targeting the PI3K/AKT/mTOR axis has been shown 
to show some positive responses of  tumors to treat-
ments[104]. This pathway can be targeted at multiple different 
targets for therapy. Currently, a pilot trial investigating the 

neoadjuvant use of  Rapamycin, a known mTOR inhibitor, 
to treat advanced HNSCC patients is being conducted[105]. 
Other mTOR inhibitors such as everolimus or temsirolimus 
are also available for testing. On the other hand, MK2206, 
an Akt inhibitor, is also being tested in recurrent or meta-
static HNSCC patients[106]. Existing PI3K inhibitors such as 
PX-866 or BKM120 are also being tested alone, or in com-
bination with paclitaxel, docetaxel or cetuximab in recurrent 
and metastatic HNSCC[107-111]. The basis for trials that inves-
tigate PI3K inhibitors together with cetuximab stems from 
an observation that PI3K amplification may have causes 
resistance to EGFR inhibition[101]. 

EPIGENETICS
Deep exome sequencing studies of  HNSCC cell lines 
have found, at considerable frequencies, mutations in 
several genes that act at an epigenetic level. These genes 
are MLL2, NSD1 and SYNE1[2,3]. According to TCGA, 
the rates of  mutation for MLL2 and NSD1 in HNSCC 
are 18% and 11% respectively[4]. Both MLL2 and NSD1 
code for histone methyltransferases. Studies that spe-
cifically investigate MLL2 and NSD1 in HNSCC are 
currently lacking. However, MLL2 have been reported 
to be a major tumor suppressor gene in non-Hodgkin 
lymphoma and inactivating somatic mutation of  MLL2 
is indicated as a driver mutation for this malignancy[112]. 
Other histone modifications enzymes have also been 
found to be associated with solid human cancers such as 
renal cell carcinoma (RCC), breast, gastric and colorectal 
carcinomas[113-115]. Histones acetyltransferases p300/CBP 
mutations are found in solid and hematological tumors, 
also suggesting their involvements in critical tumori-
genic pathways[116]. A study by Yang et al[117] from China 
reported histone modification as a major step in the 
pathogenesis of  laryngeal carcinoma. Histone modifica-
tion enzymes in HNSCC remain to be a new frontier for 
research.

Besides histone modifications, DNA methylation is 
another form of  epigenetic regulation. DNA methyla-
tion blocks transcription factors from binding to initiate 
transcription complex formation. Furthermore, meth-
ylated DNA sequences also have a higher affinity for 
histone modification enzymes and recruitments of  these 
enzymes induce genes silencing[118,119]. Body of  evidence 
that links abnormal DNA methylation to HNSCC is well 
established. Many genes that are involved in cell cycle, 
cell-cell adhesion, migration, angiogenesis and metastasis 
in HNSCC cell lines have been found to be associated 
with DNA methylation. Examples of  these genes are 
p15, p16, cyclin A1, RAR-B2, CDKN2A, E-cadherin, 
DAPK and others[120-124]. Interestingly, DNA hypermeth-
ylation is only one side of  the story: DNA hypometh-
ylation has also been implicated in laryngeal carcinoma 
from investigating S100A4. The gene S100A4 has been 
reported as an important mediator of  EMT and metas-
tasis[125-127]. Recent evidence has suggested that S100A4 is 
also important in the maintenance and development of  
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head and neck cancer-initiating cells (CIC). In this CICs 
population, S100A4 promoter is hypomethylated[127]. 
Other supporting evidence for hypomethylation of  
S100A4 exists as well: demethylating agents induce both 
S100A4 RNAs and proteins expressions[128]. A possible 
explanation for this methylation paradox is that when 
DNA methylation becomes aberrant and an imbalance 
occurs, global hypomethylation could lead to activation 
of  oncogenes whereas focal hypermethylation can si-
lence tumor suppressor gene. 

In the genetic landscape of  HNSCC, activating of  
oncogenes is an exception rather than the norm. In 
principle, the majority of  HNSCC harbored inactivating 
mutations in tumor suppressor genes. Results of  HN-
SCC treated with agents that modulate epigenetic regula-
tions such as histone deacetylase (HDAC) inhibitors and 
demethylation agents are encouraging and lend support 
to this observation. Demethylation treatments have been 
shown to restore tumor suppressor gene functions, ar-
rest tumor growths, and increase readiosensitivity of  
HNSCC cells[49,50,129]. Additionally, HDAC inhibitors have 
also yielded some promising results. Valproic acid (VPA), 
a relatively weak HDAC inhibitors, have been shown 
to inhibit both acute and chronic growth of  HNSCC 
cells[130]. VPA has also been shown to improve tumor ar-
rest when used together with a recombinant adenovirus 
in an HNSCC xenograft mouse model[131]. A phase 2 
trial currently evaluates the addition of  VPA to standard 
platinum-based chemoradiation[132]. Another HDAC 
inhibitor, Vorinostat, is currently in phase 1 for stage Ⅲ 
and Ⅳ SCC of  the oropharynx and in phase 2 for com-
bination with capecitabine in recurrent and metastatic 
HNSCC[133,134].

HPV
Both from a genetic and a clinical perspective, HPV-

positive HNSCC is a distinct entity from HPV-negative 
HNSCC. Most importantly, the overall prognosis of  
HPV-positive HNSCC is much more favorable than 
HPV-negative HNSCC[135,136]. This presents an opportu-
nity to carry out de escalated therapies to minimize treat-
ment related toxicities with ongoing trials investigating 
this strategy[137]. The pathogenesis of  HPV is due to viral 
oncoproteins E6 and E7 inactivating tumor suppressors 
p53 and Rb. E6 targets p53 and E7 targets Rb, as shown 
in Figure 1 and cause ubiquitin-dependent protein deg-
radation[138]. Understanding the mechanism of  E6 and 
E7 has led to some important applications. Because E7 
degrades Rb, it also leads to an upregulation of  p16, an 
upstream regulator of  Rb. Thus, p16 has been used as 
a biomarker to diagnose HPV-positive HNSCC[138,139]. 
Moreover, E6 and E7 are appealing molecular targets for 
therapy. In HPV-positive HNSCC cells lines, short hair-
pin RNAs that target and suppress E6 and E7 have been 
shown to restore the level of  p53 and Rb[140]. Researches 
investigating how E6 and E7 can be inhibited in vitro are 
at early stages. Two strategies currently exist: disruption 
of  E6/E7 binding with its ubiquitin ligase enzyme or 
blocking the activation of  downstream ubiquitin/protea-
some systems (UPS)[141,142]. So far, two trials have shown 
that Bortezomib, an UPS inhibitor, has a very poor 
response rate in locally recurrent or advanced HNSCC. 
However, it must be pointed out that the rate of  HPV-
positive was low in one trial (1 out of  20 tumors) and 
was not reported in the other trial[143,144]. Thus, further 
studies and trials are indeed necessary in this area. Im-
munotherapy for HPV-positive patients with HNSCC 
is another area of  active research. Proof  of  principle 
studies, mainly in mouse models, have demonstrated that 
engaging CD8+ T cell response to target E6/E7-specific 
antigens have led to tumor eradication[145,146]. In HPV-
16-positive oropharyngeal cancers, improved adaptive 
immunity as measured by CD8 cell counts is associated 
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with a better prognosis[147]. Besides immunotherapy, 
vaccination is also gaining traction when HPV vaccines 
are now being recommended by the Center for Disease 
Control and Prevention for the prevention of  anogenital 
and oropharyngeal cancers in male. Thus, the role of  
immunotherapy is becoming more and more relevant in 
HPV-positive HNSCC. 

CONCLUSION
Next-gen sequencing has allowed us to accumulate an 
unprecedented amount of  knowledge about mutations 
found in HNSCC. In summary, we can make the follow-
ing observations. Firstly, inactivation of  tumor suppres-
sor genes is much more common in HNSCC cells than 
activation of  oncogenes. Secondly, it is unlikely that a 
single target therapeutic approach will work and patients 
will benefit more from agents that can target more than 
one receptor or from combination therapy. Thirdly, mu-
tations in HNSCC are heterogenous with complex inter-
play between many different molecular pathways at both 
the genetic and epigenetic levels. In our humble opinion, 
this heterogeneity should be seen as opportunity rather 
than obstacle. It seems inevitable that as our knowledge 
continues to expand and becomes more refined, we will 
be able to classify HNSCC into subtypes based on the 
pattern of  mutations. By classifying into subtypes, we 
will be able to improve our ability to diagnosis, stage, 
and prognosticate. More importantly, we will be able to 
give therapy with greater potency and less toxicity. Cer-
tainly, this is already happening to an extent with HPV-
positive and HPV-negative HNSCC. As we identify more 
biomarkers and invent new therapies to target these 
biomarkers, the trend in management of  HNSCC con-
tinues its shift towards a more personalized therapeutic 
approach. 
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Abstract
In order to provide the means for the design of novel 
rational anti-cancer drug therapies research efforts are 
concentrated on unravelling the molecular circuits which 
induce programmed cell death and block proliferation 
of cancer cells. Modern therapeutic strategies are based 
on the understanding of the complexity of physiological 
functions such as differentiation, development, immune 
responses, cell-cycle arrest, DNA damage repair, apop�
tosis, autophagy, energy metabolism, and senescence. 
It has become evident that this knowledge will provide 
the means to target the components of the pathways in�
volved in these processes in a specific and selective man�
ner thus paving the way for the development of effective 
and personalised anti-cancer therapies. Transcription is 
a crucial cellular process that regulates a multitude of 
physiological functions, which are essential in disease 

progression and cellular response to therapy. Transcrip�
tion factors such as the p53 tumor suppressor and the 
hypoxia-inducible factor-α (HIF-α) are key players in 
carcinogenesis and cellular response to cancer therapies. 
Both of these transcription factors regulate gene expres�
sion of genes involved in cell death and proliferation, in 
some cases cooperating towards producing the same 
outcome and in some others mediating opposing effects. 
It is thus apparent that fine tuning of the activity of 
these transcription factors is essential to determine the 
cellular response to therapeutic regimens, in other words 
whether tumor cells will commit to apoptosis or evade 
engagement with the anti-proliferative effects of drugs 
leading to drug resistance. Our observations support the 
notion that the functional crosstalk between HIF-1α and 
p53 pathways and thus the fine tuning of their transcrip�
tional activity is mediated by cofactors shared between 
the two transcription factors such as components of the 
p300 co-activator multiprotein complex. In particular, 
there is evidence to suggest that differential composition 
of the co-modulatory protein complexes associated with 
p53 and HIF-1α under diverse types of stress conditions 
differentially regulate the expression of distinct subsets 
of p53 and HIF-1α target genes involved in processes 
such as cell cycle arrest, apoptosis, chronic inflamma�
tion, and cellular energy metabolism thereby determin�
ing the cellular fate under particular types of micro-
environmental stress.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Cancer; Transcription; Apoptosis; Inflamma�
tion; Tumor energy metabolism; Glycolysis; Oxidative 
phosphorylation; p53; Hypoxia-inducible factor; p300/
CBP associated factors

Core tip: The results of our work endorse the notion 
that specific features determine targeting of transcrip�
tion factors to distinct clusters of their target genes 
including the nature of the DNA binding sites found 
within the regulatory region of the promoter of each 
one of the target genes, the composition of the cofactor 
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network associated with different transcription factors 
under diverse types of stress conditions and the precise 
posttranslational modifications of each one of the tran�
scription factors linking characteristic PTM codes with 
discrete types of micro-environmental stress. These fea�
tures are essential considerations for the design of ef�
fective therapeutics and individualised cancer treatment.

Rajendran R, Krstic-Demonacos M, Demonacos C. Regula-
tion of the cell fate by DNA damage and hypoxia. World J Med 
Genet 2013; 3(4): 34-40  Available from: URL: http://www.
wjgnet.com/2220-3184/full/v3/i4/34.htm  DOI: http://dx.doi.
org/10.5496/wjmg.v3.i4.34

INTRODUCTION
The transcriptional regulation of  gene expression is a 
crucial mechanism by which cells maintain homeostasis, 
differentiate, survive and proliferate, respond to internal 
signals as well as those they receive from their surround-
ings, and adjust to local environmental conditions[1]. The 
transcription process is regulated mainly at two levels. 
One encompassing transcription factors and the tran-
scriptional machinery, and the other involving chromatin 
which is the packaging structure of  the DNA and con-
sists of  the four histone proteins H2A, H2B, H3 and H4 
forming the nucleosome[2,3]. The two levels of  regulation 
are connected to each other since access of  the transcrip-
tion machinery to the DNA is regulated by molecular 
modifications of  the chromatin structure executed by 
remodelling reactions such as phosphorylation, methyla-
tion, and acetylation[4] which control the binding between 
transcription factors and DNA thereby selectively and 
specifically modulating gene expression of  their target 
genes[5,6]. These modifications represent the so called 
‘‘histone code’’[7], which is a type of  encryption that indi-
cates either open access (euchromatin structure) of  tran-
scription factors to the DNA and transcription initiation 
of  the target genes or closed chromatin conformation 
(heterochromatin) and transcriptional repression[8,9]. In 
this respect transcriptional co-factors, which are proteins 
mediating histone modifications thus determining the 
open or closed chromatin conformation are of  crucial 
importance in the activation or repression of  gene ex-
pression and therefore for the cellular physiology[10-12]. 

The detailed understanding of  the regulation of  gene 
expression has provided the means to comprehend how 
aberrant regulation of  the transcriptional events can lead 
to disease[13]. The role of  DNA binding transcription 
factors and their modulators, of  the non-coding RNAs, 
as well as the effects of  epigenetic changes on the struc-
ture of  the chromatin on transcription regulation and 
the impact of  these events on the cellular physiology has 
been elucidated for many different diseases, for example 
diabetes[14] cardiovascular disease[15], neurological disor-
ders[16], rheumatoid arthritis[17] cancer[18] and conditions 
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such as obesity[19] and ageing[20]. Transcriptional regula-
tion is not only important to understand the initiation, 
development, and prognosis of  the disease but it is also 
imperative in predicting the cellular response to thera-
peutic modalities[21-24].

DNA DAMAGE RESPONSE: THE ROLE OF 
THE p53 TUMOR SUPPRESSOR
A characteristic example of  the importance of  the tran-
scription process in the outcome of  the disease and the 
cellular response to drug treatment has been demonstrat-
ed by the function of  the transcription factor and tumor 
suppressor protein p53[25]. p53 is a transcription factor 
responding alternatively to diverse types of  stress convey-
ing different signals in a manner dependent on the type of  
stress[26] by modulating gene expression of  specific subsets 
of  its target genes involved in vital and sometimes con-
tradicting cellular functions such as cell cycle control[27], 
apoptosis[28], senescence[29,30], autophagy[31], DNA damage 
repair[32,33], and tumor energy metabolism[34]. It is worth 
noting that more than 90% of  p53 mutations in human 
cancers occur in its DNA binding domain[35] hampering 
the ability of  this transcription factor to bind to DNA and 
transactivate its transcription target genes and emphasis-
ing the importance of  transcription in oncogenesis[36]. 
Under mild stress conditions p53 facilitates cell survival by 
activating a set of  genes involved in cell cycle arrest and 
DNA damage repair[37]. In prolonged stress or irreversible 
DNA damage p53 activates programmed cell death[38]. 
Post-translational modifications of  p53 including ubiqui-
tination, phosphorylation, methylation and acetylation are 
also very important in the regulation of  its protein stabil-
ity and transcription target selectivity[39].

HYPOXIA-INDUCIBLE FACTOR-1α 
MEDIATED RESPONSE TO HYPOXIA
Hypoxia is an important pathophysiological state found 
mainly in solid tumors since the rapid growth of  cancer 
tissues is associated with vascularisation deficiency, and 
therefore low oxygen availability which reaches levels be-
low 5%[40]. Hypoxic conditions give rise to the expression 
of  genes encoding proteins which promote angiogenesis, 
invasion and metastasis, and enhanced glycolytic metabo-
lism[41-45]. Major contributing factors to the cellular and 
systemic adaptation in response to hypoxic conditions are 
primarily the hypoxia-inducible factors (HIFs)[45,46]. HIF-1 
is a transcription factor that regulates the induction of  
various genes facilitating adaptation and survival of  cells 
in low oxygen conditions such as erythropoietin[47] vascu-
lar endothelial growth factor[48] glucose transporters, and 
glycolytic enzymes[49,50]. 

CROSSTALK BETWEEN p53 AND HIF-1
The functional crosstalk between HIF-1α and p53 path-
ways at several levels has been extensively studied[51-53] 
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and indicated that under certain conditions p53 and HIF-
1α co-operate in inducing apoptosis whereas they exert 
opposing functions in G1 cell cycle arrest[54,55]. p53 has 
also been shown to be stabilized in hypoxia mimicking 
conditions in a HIF-1α dependent manner[56] although 
its transcriptional activity is attenuated in hypoxia since it 
is incapable to induce the expression of  its transcription 
targets including pro-apoptotic members of  the Bcl-2 
family under these conditions[57]. Although the molecular 
mechanisms involved have not yet been clearly eluci-
dated, it appears that both p53 and HIF-1α regulate cel-
lular energy production pathways by modulating the gene 
expression of  glucose transporters and enzymes involved 
in glycolysis and oxidative phosphorylation. In particular, 
the glucose transporter GLUT-1 is downregulated by p53 
and upregulated by HIF-1α[58-60] and similarly hexokinase 
2 is upregulated by mutated p53[61,62], and induced by HIF-
1α[63]. These contradicting observations are due at least 
in part to the differential interactions of  p53 and HIF-1α 
with their common co-activators or co-repressors[64-67].

ROLE OF THE COFACTORS SHARED 
BETWEEN p53 AND HIF-1α
The p300/CBP transcriptional coactivator assembles a 
number of  diverse cofactor proteins into multicomponent 
complexes[68] and is itself  involved in the regulation of  the 
transcriptional activity of  both HIF-1 and p53[69,70]. The 
steroid receptor coactivator 1 is a component of  the p300/

CBP complex[71] and another common cofactor shared 
between HIF-1[72] and p53[73]. In addition, the nuclear recep-
tor coactivator TIF2 interacts with HIF-1 to potentiate its 
transcriptional activity[74], although it inhibits p53 transcrip-
tion potential when fused with the acetyltransferase MOZ 
associated with acute myeloid leukaemia[75]. 

Our studies investigating the crosstalk between p53 
and HIF-1α[64,65,76] have elucidated an additional molecu-
lar mechanism explaining the inability of  p53 to activate 
its pro-apoptotic targets in hypoxia and implicate p300/
CBP associated factor (PCAF) in the fine-tuning of  the 
transcriptional activity and protein stability of  both p53 
and HIF-1α in DNA damage and hypoxic conditions. 
PCAF is a common cofactor for both p53 and HIF-
1α[64,67] and is recruited to the transcriptional complex of  
the one or the other transcription factor in a tissue and 
type of  stress dependent manner (Figure 1) determining 
the pathway of  energy production (Figure 2) and the cel-
lular fate under diverse stress conditions[64,65] providing an 
additional evidence for the importance of  the co-activa-
tor function in determining the cell fate under hypoxia by 
modulating both p53 and HIF-1α responses.

IMPLICATIONS ON THE EFFICACY OF 
ANTI-CANCER THERAPIES
The therapeutic activity of  many anti-cancer agents de-
pends on their ability to specifically and selectively induce 
apoptotic pathways in cancer cells. Radioactivity and 

Figure 1  p300/CBP associated factor mediates p53 and hypoxia inducible factor-1α transcription target selectivity in a manner dependent on the type of 
stress. In DNA damage conditions the p300/CBP associated factor (PCAF) is recruited to the promoters of pro-apoptotic gene targets thus inducing p53 mediated cell 
death, whereas in conditions of low oxygen availability PCAF mediates p53 and hypoxia inducible factor 1α (HIF-1α) post-translational modifications that selectively 
target both transcription factors to a subset of their transcription target genes with pro-survival activity thereby inducing cell proliferation.
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chemotherapeutic drugs mediate their pro-apoptotic ef-
fects through the induction of  pro-apoptotic pathways 
regulated by transcription factors such as the tumor sup-
pressor protein p53. The tumor suppressor p53 signalling 
pathway is a highly regulated process involving a cascade 
of  events, mediated among other pathways by various 
transcriptional co-factors such as the p300, and other 
p300 associated factors such as the tetratricopeptide do-
main 5 and PCAF[77,78]. These co-factors regulate the p53 
transcriptional activity and protein stability by acetylating 
different lysine residues in its C-terminal region and in 
this way they contribute to the p53 mediated cellular ad-
aptation to diverse types of  stress[79,80]. In addition, it has 
become clear from the studies investigating the molecular 
mechanisms of  the regulation of  HIF-1α protein stability 
and transcriptional activity that p300 is required for the 
trans-activation of  HIF-1α and that there is competition 
for limiting amounts of  this cofactor in hypoxia between 
HIF-1α and p53[69,81-83]. 

Poor response or resistance to anti-cancer chemothera-
peutics by hypoxic tumors has been evidenced and it is 
attributed to the lack of  vascular system that would al-
low efficient drug delivery to these tumors[84]. Likewise, 
radiation therapy requires oxygen radicals for efficient 
production of  DNA strand breaks, and thus hypoxic 
tumor microenvironment contributes to radioresis-
tance[44,84]. Furthermore, repression of  the p53 transcrip-
tional activity and inability of  this transcription factor to 
induce its pro-apoptotic targets in hypoxic conditions is 
an additional mechanism conferring drug resistance to 

hypoxic tumors[85]. 

CONCLUSION AND FUTURE DIRECTIONS
Our observations have provided evidence supporting the 
view that distinct subpopulations of  transcription co-
activator complexes as well as differential posttransla-
tional modifications determine the transcriptional target 
selectivity of  both p53 and HIF-1α under diverse micro-
environmental conditions[64,65,76] resulting in the expres-
sion of  distinct subsets of  genes, which carry out differ-
ent functions, in a type of  stress dependent manner. This 
distinction in the transcriptional cofactors’ function can 
be interpreted in a variety of  ways. Firstly, transcription 
cofactors might facilitate the recruitment of  different 
transcription factors to distinct regions of  the genome[86] 
thus allowing different transcription factors to carry out 
specialised functions determining the cellular fate (sur-
vival or apoptosis) (Figure 1). Secondly, differences in the 
structure of  the promoter between the different targets 
of  various transcription factors could be responsible for 
preferential binding of  particular subsets of  these targets 
by alternatively posttranslationally modified transcription 
factors. For example, PCAF dependent acetylation of  ei-
ther p53 or HIF-1α is a mechanism by which these tran-
scription factors distinguish between their pro-survival or 
pro-apoptotic target promoters[64] or glycolytic or oxida-
tive phosphorylation inducers (Figure 2)[65,87-89]. 

To substantiate this hypothesis we are currently using 
genome wide ChIP-seq approaches to uncover the spe-
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cific transcriptional circuitries that determine the specific-
ity and target selectivity of  several transcription factors 
including p53, glucocorticoid receptor, estrogen receptor, 
HIF-1α and NF-KB which play very important roles in 
carcinogenesis. The ultimate aim of  this investigation is 
to acquire essential knowledge that will guide the identifi-
cation of  new transcriptional targets in the DNA damage 
response and low oxygen availability networks and thus 
facilitate the development of  selective therapeutics for 
potential personalized cancer therapeutics.
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Abstract
AIM: To investigate whether hypoxia induces dedif�
ferentiation of non-small cell lung cancer (NSCLC) cells 
and whether a hypoxia-inducible factor (HIF) inhibitor 
is able to suppress the process.

METHODS: Human lung adenocarcinoma A549 cells and 
squamous carcinoma QG56 cells were cultured under 
normoxic (21% O2) or hypoxic (4% or 1% O2) conditions. 
The expression of the following genes were examined by 

reverse transcription-polymerase chain reaction, Western 
blotting and/or immunofluorescence: HIF-1α and HIF-2α 
subunits; differentiation marker genes, namely surfac�
tant protein C (SP-C) (type Ⅱ alveolar cell marker), CC10 
(type Ⅰ alveolar cell marker) and aquaporin 5 (AQP5) 
(Clara cell marker); and stem cell-associated genes, 
namely CD133 , OCT4 , and Musashi-1  (MSI1). The tu�
mor sphere-forming ability of the cells was evaluated by 
culturing them in serum-free growth factor-rich medium 
containing epidermal growth factor (EGF) and fibroblast 
growth factor (FGF). CD133 expression in hypoxic regions 
in A549 tumors was examined by double-immunostaining 
of tissue cryosections with an anti-2-nitroimidazole EF5 
antibody and an anti-CD133 antibody. The metastatic 
ability of A549 cells was examined macroscopically and 
histologically after injecting them into the tail vein of im�
munocompromised mice. 

RESULTS: A549 cells primarily expressed SP-C , and 
QG56 cells expressed CC10  and AQP5 . Exposure of 
A549 cells to hypoxia resulted in a marked down-
regulation of SP-C  and upregulation of CD133 , OCT4 , 
and MSI1  in a time-dependent manner. Moreover, 
hypoxia mimetics, namely desferrioxamine and cobalt 
chloride, elicited similar effects. Ectopic expression of 
the constitutively active HIF-1α subunit also caused the 
downregulation of SP-C  and upregulation of CD133 and 
MSI1  but not OCT4, which is a direct target of HIF-2. 
Hypoxia enhanced the sphere-forming activity of A549 
cells in serum-free medium containing EGF and FGF. 
Similarly, hypoxia downregulated the expression of 
CC10 and AQP5 genes and upregulated CD133, OCT4, 
and MSI1  genes in QG56 cells. TX-402 (3-amino-2-qui�
noxalinecarbonitrile 1, 4-dioxide), which is a small mol�
ecule inhibitor of the expression of HIF-1α and HIF-2α 
subunits under hypoxic conditions, inhibited the upreg�
ulation of SP-C  and hypoxia-induced down-regulation of 
CD133 , OCT4, and MSI1 . Notably, TX-402 significantly 
suppressed the hypoxia-enhanced lung-colonizing abil�

An inhibitor of HIF-α subunit expression suppresses hypoxia-
induced dedifferentiation of human NSCLC into cancer stem 
cell-like cells

ORIGINAL ARTICLE 

41 November 27, 2013|Volume 3|Issue 4|WJMG|www.wjgnet.com

World Journal of
Medical GeneticsW J M G



Akimoto M et al . HIF inhibitor inhibits dedifferentiation by hypoxia

ity of A549 cells. 

CONCLUSION: Hypoxia induces the de-differentiation 
of NSCLC cells into cancer stem cell-like cells, and HIF 
inhibitors are promising agents to prevent this process. 

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Hypoxia induces the de-differentiation of hu�
man non-small cell lung cancer cells into cancer stem 
cell-like cells, and TX-402, a small-molecule inhibitor of 
hypoxia-inducible factor (HIF)-1α and HIF-2α expres�
sion, suppresses this hypoxia-induced process and, im�
portantly, the metastatic ability of the cells.
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INTRODUCTION
In most solid tumors, hypoxic regions are generated be-
cause of  a shortage in oxygen supply[1-3]. Hypoxia influ-
ences many aspects of  cancer cell biology, including neoan-
giogenesis, energy metabolism, cell survival, radiosensitivity, 
chemosensitivity, differentiation and invasion/metastasis[1-4]. 
Thus, hypoxia correlates with poor patient outcomes[5]. 
Recent preclinical studies have also demonstrated that anti-
angiogenic therapies generate intratumoral hypoxia and, 
thereby, elicit increases in invasiveness and metastasis[6-8].

Hypoxia activates the expression of  hundreds of  
genes in each cell[1-3]. Many of  these genes are regulated by 
hypoxia-inducible factors (HIFs) such as HIF-1 and HIF-2. 
Under normoxic conditions, the α subunit of  HIF-1 (HIF-
1α) is hydroxylated at the proline-402 and proline-564 
residues by specific Fe2+, 2-oxoglutarate, and O2-dependent 
prolyl hydroxylases. The subunit is then recognized and 
ubiquitinated by the von Hippel-Lindau tumor suppressor 
protein complex, leading to degradation via the ubiquitin-
proteasome pathway. Under hypoxic conditions, the HIF-α 
subunit stabilizes and dimerizes with the HIF-β subunit. In 
the nucleus, HIF-1 binds to the hypoxia response element 
(HRE) of  hypoxia-inducible genes and transactivates their 
transcription[9]. Chelating or substituting Fe2+ with desfer-
rioxamine (DFO) or CoCl2, respectively, increases the levels 
of  HIF-1α and HIF-2α[1-3]. Although there are many simi-
larities between HIF-1 and HIF-2, each has common as 
well as different HRE target genes.

Hypoxia influences stem cell self-renewal and multipo-
tency[10]. HIF-2 but not HIF-1 is reported to regulate the 
expression of  OCT4, a POU transcription factor that is 
associated with the self-renewal and pluripotency of  stem 
cells[11]. Hypoxia is also known to induce the dedifferentia-
tion of  neuroblastoma and breast cancer cells[12]. These 
data indicate that hypoxia is involved not only in the de-
differentiation of  tumor cells but also in the maintenance 
of  cancer stem cells (CSCs) with high metastatic potential. 

The lung is composed of  multiple types of  cells such 
as Clara, alveolar type Ⅰ (AT1), alveolar type Ⅱ (AT2), 
and pulmonary neuroendocrine cells[13]. Each cell type ex-
presses lineage-specific differentiation marker gene prod-
ucts. For example, CC10 (also known as CCA or CCSP), 
aquaporin 5 (AQP5), and pro-surfactant protein C (SP-C) 
are the specific markers for Clara, AT1 and AT2 cells, 
respectively[14-16]. A rare population of  progenitor cells, 
referred to as the bronchoalveolar stem cells (BASCs), 
exists in the bronchoalveolar duct junction of  mouse 
normal lung[17]. Lung adenocarcinoma is thought to origi-
nate from BASCs, which frequently co-express SP-C and 
CC10[17-19]. Several recent studies have demonstrated the 
existence of  a rare population of  CD133-positive undif-
ferentiated cells in small cell and non-small cell lung can-
cer (NSCLC) that exhibit CSC characteristics[20-23]. The 
metabolic enzyme, glycine decarboxylase (GLDC), has 
also been reported to be a key characteristic of  CSCs in 
NSCLC[24]. In contrast, it is largely unknown how tumor 
hypoxia affects the differentiation- and stem cell-related 
gene expression in NSCLC cells.

Many small molecule HIF-1 inhibitors have been iden-
tified or developed to inhibit angiogenesis and suppress 
the growth of  a variety of  tumor cells[25]. However, the in-
fluence of  such HIF-1 inhibitors on the hypoxia-induced 
dedifferentiation of  human lung cancer cells to CSC-like 
cells remains unknown. Assuming that HIF-1α and HIF-
2α are necessary for inducing and maintaining CSC char-
acteristics under hypoxic conditions, inhibitors of  their 
expression or activity would have a profound inhibitory 
effect on such hypoxia-induced processes.

TX-402 is a member of  a group of  hypoxia-selective 
cytotoxins, which includes tirapazamine (TPZ), that are acti-
vated by bioreduction to selectively exhibit cytotoxicity under 
severe hypoxia (< 1% O2). TX-402 and its analogs inhibit 
HIF-1α protein synthesis under hypoxia without affecting 
the HIF-1α steady-state mRNA level and the protein deg-
radation rate, and they also reduce the hypoxia-inducible ex-
pression of  vascular endothelial growth factor (VEGF) and 
angiogenesis[26-28]. Although the mechanism by which TX-402 
inhibits HIF-1α protein synthesis is still unclear, TPZ and 
other hypoxic cytotoxins have recently been reported to 
inhibit HIF-1α translation through the phosphorylation of  
translation initiation factor 2α (eIF2α) and/or the dephos-
phorylation of  mTOR and 4E-BP1[29,30]. Of  interest, TPZ 
has been shown to selectively deplete primitive hematopoietic 
stem cell subsets in bone marrow[31]. Therefore, this class of  
bioreductive agents could have a major impact on cancer 
therapy if  developed appropriately. Against this background, 
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in the present study, we primarily employed human lung 
adenocarcinoma A549 cells and investigated the effects of  
hypoxia and TX-402 on differentiation- and stem cell-related 
gene expression and metastasis. 

MATERIALS AND METHODS
Cells and cell culture
Human lung adenocarcinoma cells (A549, PC3, PC9, and 
PC14), squamous cell carcinoma cells (PC1, PC10, and 
QG56), bronchoalveolar carcinoma cells (H358), and 
small cell carcinoma cells (PC6 and QG90) were cultured 
in Dulbecco’s modified Eagle’s medium containing 10% 
heat-inactivated fetal bovine serum supplemented with 
penicillin (100 units/mL) and streptomycin (100 µg/mL) 
in a humidified atmosphere with 21% O2/5% CO2 (nor-
moxia) or 1% O2/5% CO2 (hypoxia) unless otherwise 
stated. In some experiments, the cells were cultured in 4% 
O2/5% CO2. The cells were provided by the Chiba Can-
cer Center Research Institute[32].

Reagents
TX-402 (3-amino-2-quinoxalinecarbonitrile 1,4-dioxide) 
was synthesized according to a previous report[33]. DFO 
and cobalt chloride were obtained from Sigma-Aldrich 
(St. Louis, MO, United States). EF5 was provided by the 
National Cancer Institute (CTEP). 

Antibodies
Mouse monoclonal anti-β-actin antibody was obtained 
from Sigma-Aldrich. Mouse monoclonal anti-HIF-1α and 
rabbit polyclonal anti-HIF-2α antibodies were purchased 

from Novus Biologicals (Littleton, CO, United States). The 
rabbit polyclonal anti-CD133 antibody, goat polyclonal 
anti-OCT4 antibody and rabbit polyclonal anti-E2F-1 
antibody were supplied by Santa Cruz Biotechnology Inc. 
(Santa Cruz, CA, United States), and the rabbit polyclonal 
anti-pro-SP-C antibody and phycoerythrin-conjugated 
mouse monoclonal CD133/2 antibody were obtained 
from Merck Millipore (Billerica, MA, United States) and 
Miltenyi Biotec GmbH (Bergisch Gladbach, Germany), 
respectively. The goat anti-Musashi-1 (MSI1) antibody 
was obtained from R������������������    ��������������  �����������������   �������������� and��������������   ��������������  �������������  �������������� D Systems (McKinley Place, 
MN, United States). The Cy3-labeled mouse monoclonal 
anti-EF5 antibody (ELK3-51) was kindly provided by Dr. 
Koch at Pennsylvania State University. 

Semiquantitative reverse transcription polymerase chain 
reaction
Reverse transcription (RT) was performed in a 10 µL 
reaction mixture containing 1 µg of  total RNA, which 
was extracted with guanidinium thiocyanate, 250 ng of  
oligo(dT), and 100 units of  murine leukemia virus reverse 
transcriptase (Life Technologies, Carlsbad, CA, United 
States) for 1 h at 37 ℃. The resulting cDNA was used 
to amplify target cDNAs using GoTaq DNA polymerase 
(Agilent Technologies, Santa Clara, CA, United States). 
The sense and antisense primers used for polymerase 
chain reaction (PCR) are listed in Table 1. The PCR 
conditions were as follows: 95 ℃ for 5 min; 25-35 cycles 
at 95 ℃ for 30 s, 59 ℃ for 30 s, and 72 ℃ for 30 s; and 
72 ℃ for 7 min. β-Actin was used as a loading control, 
which was run for each sample under the same condi-
tions as those used for the other genes, except that the 
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Table 1  Primers used for reverse transcription-polymerase chain reaction analyses

Gene Forward primer Reverse primer Accession #

CC10 CTTTCAGCGTGTCATCGAAA TTGAAGAGAGCAAGGCTGGT U01101
SP-C TCCACATGAGCCAGAAACAC CTGGCCCAGCTTAGACGTAG NM_003018
AQP5 CTACTTCACTGGCTGCTCCA GTGGTCAGCTCCATGGTCTT NM_001651
CD133 TGGAGTGCAGCTAACATGAG TGCACATGAAAAGACCTGGG NM_006017
4-Oct GAGGAGTCCCAGGACATCAA CTCCAGGTTGCCTCTCACTC NM_002701
MSI1 GTTCAGAGCGTTGGACCTTC AAACCCAAAACACGAACAGC NM_002442
GLDC ATTTCTCGTTGATCCCCGTTGC GCGATGTCTACCCCAAATTCTC NM_000170 
NANOG ACCAGACCCAGAACATCCAG TTCACACGTCTTCAGGTTGC NM_024865
NES AACAGCGACGGAGGTCTCTA TTCTCTTGTCCCGCAGACTT NM_006617
BMI1 AGAGCTGGAAGTCGAGTGT GCACCTTCACATTCCTCTC NM_005180
EGFR GCACGAGTAACAAGCTCACG TTCCTCTGATGATCTGCAGG NM_005228
ERBB2 AGCAGAGGATGGAACACAGCGG CTCCTGGATATTGGCACTGG NM_004448
NOTCH1 TGCTGGACGAGTACAACCTG CGCATTGACCATTCAAACTG AF308602
NOTCH2 ACCCTTGTGAGAATGCTGCT CCATACCACTGAAGCCTGGT NM_024408
CD117 CTATGCTCTCGCACCTTTCC CAATGAAGTGCCCCTGAAGT X06182
MET GGTTTTTCCTGTGGCTGAAA GGCATGAACCGTTCTGAGAT NM_001127500
CD34 ACAACACGTGGTGGCTGATA GAGTTTACCTGCCCCTCCTC NM_001773
CD44 TGGAGCAAACACAACCTCTG TCCACTTGGCTTTCTGTCCT NM_000610
CD45 AGATGCCCAGTGTTCCAC AGGGTTGAGTTTTGCATTGG NM_002838
PCGF2 TTGCAGTGGAAACTTTGTGC AGGTGAGACTCCACCACCAG NM_007144
CDH1 GGTTATTCCTCCCATCAGCT CTTGGCTGAGGATGGTGTA L08599
SOX2 CCCCCCTGTGGTTACCTCTTC TTCTCCCCCCTCC AGTTCG-3 NM_003106 
RUNX3 GCTGTTATGCGTATTCCCGTAG TGAAGTGGCTTGTGGTGCTGAGTGA NM_001031680 
ACTB TGACGGGGTCACCCACACTGTGCCCATCTA CTAGAAGCATTTGCGGTGGACGATGGAGGG NM_001101
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number of  cycles was 23-25. PCR products were sepa-
rated on a 1.2% agarose gel. Quantification of  the density 
of  each band was performed using ImageJ version 1.45 
software (National Institutes of  Health).

Transfection of the plasmid encoding constitutively 
active HIF-1α
To express constitutively active HIF-1α, A549 cells were 
transfected with pcDNA3.1 as a control and pcDNA3.1/
HIF-1αP402A/P564A using Lipofectamine 2000 (Life Tech-
nologies). Two days after transfection, total RNA was pre-
pared as described above and used for RT-PCR analysis.

Western blotting analyses 
Cells were lysed in 1% NP-40.1% sodium deoxycholate, 
0.1% sodium dodecylsulfate, 50 m�������������������  mol/L��������������   Tris-HCl (pH 
7.4), 150 m����������������������������������������      mol/L�����������������������������������       NaCl, 1 m�������������������������   mol/L��������������������    PMSF, and protease 
inhibitor cocktail (Sigma-Aldrich). The cell lysates were 
centrifuged at 15000 g for 10 min at 4 ℃, and the super-
natants were used for detecting SP-C and CD133. Nucle-
ar extracts were prepared by using a Nuclear Extract Kit 
(Active Motif, Carlsbad, CA, United States) and were then 
used for detecting HIFs, OCT4 and MSI1. Proteins were 
resolved by 10% or 15% SDS-PAGE gels and transferred 
to an Immobilon-P membrane (Merck Millipore). The 
membrane was blocked with 5% dry milk in TBS-T and 
incubated with anti-HIF-1α, anti-HIF-2α, anti-SP-C, anti-
CD133, anti-OCT4, anti-MSI1 or anti-E2F-1 antibodies 
followed by incubation with the appropriate horseradish 
peroxidase-conjugated secondary antibody. Proteins were 
detected using ECL Western blotting detection reagents 
(GE Healthcare, Waukesha, WI, United States).

Tumor spheroid (pneumosphere) formation
To evaluate the effect of  hypoxia on pneumosphere for-
mation, cells pre-cultured under 4% O2 for 4 d were sus-
pended at a density of  2000 cells/mL in BEBM (bronchial 
epithelial cell growth) medium (Lonza, Walkersville, MD, 
United States) supplemented with SingleQuots, which con-
tains retinoic acid, bovine pituitary extract, insulin, hydro-
cortisone, transferrin, triiodothyronine, epinephrine, gen-
tamicin, and amphotericin B (Lonza), as well as 10 ng/mL  
human epidermal growth factor (EGF) (PeproTech Inc., 
NJ, United States), and 10 ng/mL human basic fibroblast 
growth factor (bFGF) (PeproTech)[34]. Cells were incu-
bated in PrimeSurface culture dishes (35 mm) (Sumitomo 
Bakelite Co., Tokyo, Japan) under normoxic or hypoxic 
(4% O2) conditions for 10 d. EGF and bFGF were added 
every 3 d. The size of  the spheres was calculated by the 
following equation: size (µm) = (a + b)/2; where a and b 
are the larger and smaller diameters, respectively.

Colony formation assay
The survival of  A549 cells treated with TX-402 under 
normoxic or hypoxic conditions was determined in a 
colony formation assay. For this assay, A549 cells dis-
sociating to single cells were seeded in a 6-well plate at a 
density of  5 × 104 cells per well in 2 mL of  medium. Af-

ter attachment, the cells were cultured under normoxic or 
hypoxic conditions in the presence of  DMSO (0.1%) or 
TX-402 (final concentration of  20 µmol/L��������������    ) for 3 d. Af-
ter the treatment, viable cells were counted and seeded in 
a 10-cm culture dish at a concentration of  100 cells/dish. 
The cells were further cultured for 14 d under normoxic 
conditions, and the colonies that were formed were fixed 
with methanol, stained with 0.05% crystal violet, and 
counted.

Immunocytochemistry
A549 cells on cover slips were washed with Dulbecco’s 
phosphate-buffered saline (DPBS) and fixed for 30 min 
with 4% formaldehyde and 5% sucrose in DPBS. After 
washing with DPBS, the cells were permeabilized in 0.5% 
Triton X-100 in DPBS for 10 min followed by wash-
ing three times with DPBS. In some experiments, this 
permeabilization step was omitted. The cells were then 
treated with 3% bovine serum albumin (BSA) in DPBS 
containing 0.1% glycine for 1 h to block nonspecific 
binding sites. After extensive washing, the cells were in-
cubated with anti-SP-C, anti-CD133, anti-OCT4 or anti-
MSI1 antibodies in DPBS containing 1 mg/mL BSA and 
0.1% (v/v) normal rabbit serum, normal goat serum or 
normal chicken serum depending on the secondary anti-
body at 4 ℃ �������������������������������������������    overnight. Primary antibodies were omitted 
for negative control studies. After washing with DPBS, 
the first antibodies were localized with the appropriate 
secondary antibodies. The secondary antibodies used 
were FITC-goat anti-rabbit IgG, TRITC-goat anti-rabbit 
IgG, Alexa Fluor 488-goat anti-rabbit IgG, and Alexa 
Fluor 488-chicken anti-goat IgG. After rinsing, the cells 
were counterstained with DAPI (1 µg/mL) in DPBS, and 
the coverslips were mounted in 50% glycerol in DPBS 
containing 1 mg/mL p-phenylenediamine to inhibit pho-
tobleaching. The cells were observed under a confocal 
laser microscope (Fluoview, Olympus, Tokyo, Japan). 

Immunohistochemistry
All animal experiments were performed in compliance 
with the institutional guidelines. A549 cells (5 × 106 cells) 
were inoculated subcutaneously into Balb/c nude mice. 
When an estimated tumor volume reached ��������������approximately 
500 mm3, 300 µL of  EF5 solution (3 mg/mL) was ad-
ministered intraperitoneally into the mice. Two hours 
later, subcutaneous tumors were surgically removed 
and frozen in optimum cutting temperature compound. 
Cryostat sections cut at a thickness of  10 µm were fixed 
with 4% paraformaldehyde and washed with DPBS. For 
the detection of  CD133, tissue samples were treated with 
5% donkey serum in DPBS/1% (w/v) BSA/20% (w/v) 
dry milk for 1 h to block nonspecific binding sites. Sec-
tions were then rinsed with DPBS and incubated with an 
anti-CD133 antibody overnight at 4 ℃. After extensive 
washing with DPBS, the sections were incubated with a 
FITC-labeled donkey anti-goat secondary antibody for 
1 h. After fixation with 4% formaldehyde, the sections 
were washed with DPBS, treated with 5% mouse serum 
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in DPBS/20% (w/v) dry milk/0.3% (v/v) Tween 20 
overnight at 4 ℃, rinsed with 0.3% Tween 20 in DPBS, 
and then incubated with Cy3-labeled anti-EF5 antibody 
(ELK3-51) at 4 ℃ overnight to detect hypoxic cells. 
Tissue sections were counterstained with DAPI and 
observed under a confocal laser microscope (Fluoview, 
Olympus). 

Analysis of lung-colonizing potential
For the lung-colonizing assay, A549 cells (2 × 105 cells) 
cultured under normoxic or hypoxic (1% O2) conditions 
for 3 or 5 d were injected into the tail vein of  6-wk-old 
Balb/c nude mice (CLEA Japan, Inc.). The lungs were 
removed 40 d later and fixed in Bouin’s solution, and the 
parietal nodules were counted. For histology, formalin-
fixed, paraffin-embedded lung tissues were sectioned at a 
thickness of  5 µm, mounted, and stained with hematoxy-
lin and eosin.

Statistical analysis
The Mann-Whitney U test and Student’s t-test were used 
to determine statistical significance in metastasis assays 
and other assays, respectively. P values less than 0.05 were 
considered statistically significant.

RESULTS
Expression of lineage-specific differentiation marker 
genes and stem cell-related genes in different types of 
human lung cancer cell lines
We examined the expression of  lineage-specific differ-

entiation marker genes for Clara (CC10), AT1 (AQP5), 
and AT2 (SP-C) cells as well as several stem cell-related 
genes (CD133, OCT4, MSI1, SOX2 and GLDC) in vari-
ous types of  lung cancer cell lines (Figure 1). Among the 
adenocarcinoma cell lines, PC3 and PC14 cells expressed 
CC10, and A549 cells primarily expressed SP-C. PC9 cells 
expressed CC10, SP-C, and AQP5. Among the squamous 
carcinoma cell lines, SP-C was detected only in PC1 cells. 
QG56 cells were positive for CC10 and AQP5, but PC10 
cells expressed none of  the markers. By comparison, 
bronchoalveolar carcinoma H358 cells expressed all of  
the lineage-specific differentiation marker genes. Small 
cell carcinoma PC6 and QG90 cells expressed high lev-
els of  CC10. The stem cell-related gene, CD133, was 
expressed at higher levels in PC3, A549 and QG56 cells 
compared to the other cells. All cell lines were OCT4-
positive/MSI1-positive. The expression of  SOX2 was de-
tected in all cell lines except PC9 cells. GLDC was highly 
expressed in PC14 and A549 cells compared with other 
cell lines. Taken together, these results suggest that there 
is not a simple causal relationship between the expression 
of  the differentiation marker genes and the expression of  
the stem cell-related genes. For subsequent analyses, we 
mostly used A549 and QG56 cells. 

Hypoxia suppresses the expression of lineage-specific 
marker genes
We first confirmed the expression of  HIF-1α and HIF-2α 
in A549 and QG56 cells at the mRNA level (Figure 2A). 
We then cultured these cells under normoxic or hypoxic 
conditions for up to 5 d�������������������������������      ������������������������������    and monitored cell growth and 
viability. The growth of  A549 cells under hypoxic condi-
tions was slightly inhibited by 4 ������������������������     d ����������������������    after the onset of  hy-
poxia compared with their growth under normoxic condi-
tions (Figure 2B). No cell death was observed in hypoxic 
conditions (Figure 2D). Hypoxia also slightly inhibited the 
growth of  QG56 cells but had no detectable effect on vi-
ability (Figure 2C, D). Because these hypoxic conditions 
did not appear to be cytotoxic, we cultured A549 and 
QG56 cells under hypoxia, and we then examined the ex-
pression levels of  SP-C, CC10, and AQP5. As described 
above, normoxic A549 cells primarily expressed SP-C and 
small amounts of  CC10 and AQP5 (Figure 3A). Upon 
hypoxic exposure, the expression level of  these genes 
was greatly reduced in a time-dependent manner (Figure 
3A, B, D). QG56 cells mainly expressed CC10 and AQP5 
(Figure 3A), and the expression level of  these genes was 
greatly reduced in a time-dependent manner after expo-
sure to hypoxia (Figure 3A, C, E).

Hypoxia influences the expression of stem cell-related 
genes
The above results prompted us to compare in detail the 
expression of  a panel of  stem cell-related genes between 
normoxic and hypoxic cells. Among the genes tested, 
the expression levels of  CD133, OCT4, and MSI1 were 
increased by hypoxia in A549 cells (Figure 4A left, B, C)  
in a time-dependent manner (Figure 4F). NANOG and 
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Figure 1  Expression of lineage-specific differentiation- and stem cell-
associated genes in various lung cancer cell lines. Total RNA isolated from 
the cells was subjected to reverse transcription-polymerase chain reaction 
analyses��;� GLDC:� ��������������� �������� Glycine decarboxylase��;� MSI1:� ����������� Musashi-1��;� ACTB:� β-Actin�.
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Figure 2  Expression of hypoxia-inducible factor α subunits and cell growth in A549 and QG56 cells under hypoxic conditions. The cells were cultured under 
normoxic (N) or hypoxic (H) conditions. A: Expression of hypoxia-inducible factor (HIF)-1α and HIF-2α mRNA�� ��� ����� �����������  ����� ��� ����� ����������  ����� ������� ���; ��� ����� �����������  ����� ��� ����� ����������  ����� ������� ���B: Cell growth of A549�� ��� ����� ����������  ����� ������� ���;� ��� ����� ����������  ����� ������� ��� C�� ����� ����������  ����� ������� ���: ����� ����������  ����� ������� ���Cell growth of QG56 cells�� ���;� ��� D: 
Cell viability�� �������������������������������      �� ������ ���� ;��������������������������������       �� ������ ����  The cells were cultured for 5 d�� ������ ���� ; ������ ���� Bars�� ���� ,� ����  SD (n = 3).
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Figure 3  Effect of hypoxia on the expression of differentiation-associated genes. The cells were cultured under normoxic (N) or hypoxic (H) conditions for 5 d��.� 
A: Expression of differentiation-associated genes in A549 and QG56 cells�� ���������� ����� ������������������������    ����������  ����� ���������� ����� ��������������������  ;� ���������� ����� ������������������������    ����������  ����� ���������� ����� ��������������������   B: Normalized expression levels of the genes in A549�� ���������� ����� ��������������������  ; ���������� ����� ��������������������  C��������� ����� ��������������������  : ������������ ��������������������  Normalized expression levels of 
the genes in QG56 cells�� �����������������������    �������������  ���������  ��������� �� ��������  �������������  ����� ����� �������  ����� ������� ����� ������������������������   ; �����������������������    �������������  ���������  ��������� �� ��������  �������������  ����� ����� �������  ����� ������� ����� ������������������������   D: Time-course of the expression of SP-C in A549 cells�� ��������  �������������  ����� ����� �������  ����� ������� ����� ������������������������   ;���������   �������������  ����� ����� �������  ����� ������� ����� ������������������������    E�������  �������������  ����� ����� �������  ����� ������� ����� ������������������������   :� ����� �������������  ����� ����� �������  ����� ������� ����� ������������������������    The expression of CC10 and AQP5 in QG56 cells�� ����� ������������������������   ; ����� ������������������������   The expression level of each 
gene was normalized to that of β-Actin (ACTB)�� ���������������������������    ��������������������   ���������� �������������������    ����� ����; ���������������������������    ��������������������   ���������� �������������������    ����� ����Data are shown as fold-change relative to normoxia (normoxia values set to equal 1)��,� aP < 0.05 (n� =��� �� ���������������   ���� ���������������  3)�� ���������������  ; ���������������  The cells were 
cultured under hypoxic conditions for the indicated periods.
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CD117 were also slightly upregulated by hypoxia. The ex-
pression of  other genes, including SOX2, GLDC, NES, 
BMI1, EGFR, ERBB2, NOTCH1, NOTCH2, CD34, 
CD44, CD45, PCGF2 (MEL18), and CDH1 (E-cadherin), 
was detected in A549 cells and was only marginally af-
fected by hypoxia (Figure 4A, B). Hypoxia also enhanced 
the expression of  CD133, OCT4, and MSI1 in QG56 
cells, but to a lesser extent than in A549 cells (Figure 4A, 
D, E). Time-course experiments revealed that the expres-
sion of  OCT4, CD133, and MSI1 gradually increased un-
der hypoxia (Figure 4G). Unlike in A549 cells, NANOG 
expression was already high in QG56 cells and was not 
affected by hypoxia. The expression of  NES was slightly 
upregulated by hypoxia, but the expression of  SOX2, 

BMI1, EGFR, ERBB2, NOTCH1, NOTCH2, CD34, 
CD44, CD45, PCGF2, and CDH1 was unaffected. The 
expression level of  GLDC was quite low in these cells 
(Figure 4A, D). 

Pneumosphere formation under normoxic and hypoxic 
conditions
The ability to form spheres in serum-free culture condi-
tions has been considered to be an important marker 
that represents the subset population of  CSC-like cells[35]. 
We tested the ability of  A549 and QG56 cells to form 
spheres under normoxic and hypoxic conditions. In this 
experiment, we allowed the cells to form spheres in 4% 
O2 to minimize the inhibitory effect of  hypoxia (1% O2) 
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Figure 4  Effect of hypoxia on the expression of stem cell-associated genes. The cells were cultured under normoxic (N) or hypoxic (H) conditions������  ������. ���� ������A: Expres-
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CD133, OCT4, and MSI1 in QG56 cells (G).������  ������������������������    ����������������  ���������������    ����� ������������������������    ����������������  ���������������   The expression level of each gene was normalized to that of β-Actin (ACTB)�� ���������������������������    ���������������  ;� ���������������������������    ���������������   Data are shown as fold-change relative to 
normoxia (normoxia values set to equal 1). aP < 0.05 (n ���� �� �������������������������������������������������       �=��� �� �������������������������������������������������       � ���� �������������������������������������������������       �3)�� �������������������������������������������������       �;��������������������������������������������������        � The cells were cultured for the indicated periods.

ACTB

A
10
8
6
4
2
0

Fo
ld

N
H

N
O

TC
H

2
N

O
TC

H
1

ER
BB

2
EG

FR
BM

I1
N

ES
G

LD
C

SO
X2

N
AN

O
G

M
SI

1
O

CT
4

CD
13

3

M
ET

CD
11

7
CD

34
CD

44
CD

45
PC

G
F2

CD
H

1

B
10
8
6
4
2
0

N
H

Fo
ld

M
SI

1
O

CT
4

CD
13

3

a

aa

C

10
8
6
4
2
0

Fo
ld

N
H

N
O

TC
H

2
N

O
TC

H
1

ER
BB

2
EG

FR
BM

I1
N

ES
G

LD
C

SO
X2

N
AN

O
G

M
SI

1
O

CT
4

CD
13

3

M
ET

CD
11

7
CD

34
CD

44
CD

45
PC

G
F2

CD
H

1

D
4

3

2

1

0

N
H

Fo
ld

M
SI

1
O

CT
4

CD
13

3

a
a

a

E

MSI1

OCT4

CD133

ACTB

0        1        2        3        4        5

Incubation time (days)F

MSI1

OCT4

CD133

0        1        2        3        4        5

Incubation time (days)
G

Akimoto M et al . HIF inhibitor inhibits dedifferentiation by hypoxia



48 November 27, 2013|Volume 3|Issue 4|WJMG|www.wjgnet.com

on cell growth. Cell growth in complete medium was 
not inhibited in 4% O2 (Figure 5A) and the changes in 
the expression of  SP-C, CD133, OCT4, and MSI1 were 
similar to those observed in 1% O2 (Figure 5B). The abil-
ity of  A549 cells to form spheres was markedly increased 
under hypoxic conditions. Hypoxic cells formed larger 
spheres than normoxic cells (Figure 5C left, D). QG56 
cells formed only loosely attached cell aggregates under 
normoxic conditions, but they formed more compact 
aggregates under hypoxic conditions (Figure 5C right). 
Taken together with the gene expression results, these 
data suggest that hypoxia can strongly induce the dedif-
ferentiation of  A549 cells but can only weakly induce the 
dedifferentiation of  QG56 cells.

Effect of hypoxia on SP-C and CD133 protein expression 
in A549 cells
We examined SP-C and CD133 protein expression in 
A549 cells to examine the effect of  hypoxia on a repre-
sentative differentiation marker and a stem cell-associated 
marker, respectively. Immunofluorescence studies revealed 
that SP-C expression in normoxic A549 cells (some of  
which exhibited plasma membrane staining as indicated by 
arrowheads in Figure 6A), was significantly reduced in hy-
poxic A549 cells (Figure 6A). In contrast, CD133 expres-
sion was enhanced in hypoxic cells compared to normoxic 
cells (Figure 6B). These results were also confirmed by 
immunoblot analysis (Figure 6C, D). To examine whether 
the up-regulation of  CD133 was located in hypoxic re-

gions in tumors, we immunostained cryosections prepared 
from A549 subcutaneous tumors with an anti-CD133 an-
tibody. To detect hypoxic cells in tumors, we injected EF5 
intraperitoneally into tumor-bearing mice 2 h before the 
surgical removal of  the tumor masses. Double-immunos-
taining of  the sections with an anti-CD133 antibody and 
an anti-EF5 antibody revealed that CD133 expression was 
upregulated in some, but not all, hypoxic (EF5-positive) 
cells compared to normoxic (EF5-negative) cells (Figure 
6E). 

HIF-1 induces changes in SP-C and stem cell-related 
gene expression in A549 cells
To investigate whether the hypoxia-induced changes in 
the expression of  SP-C, CD133, OCT4, and MSI1 were 
mediated by HIFs, we treated A549 cells with DFO, a 
hypoxia mimetic. DFO treatment induced a decrease in 
the expression of  SP-C and an increase in the expression 
of  CD133, OCT4, and MSI1 (Figure 7A, B). Cobalt chlo-
ride, which is another hypoxia mimetic, induced similar 
changes in A549 cells (Figure 7C, D). To obtain more 
direct evidence of  the importance of  HIFs in hypoxia-
induced changes, we transfected A549 cells with plasmids 
constitutively expressing CA-HIF-1α (pcDNA3.1/HIF-
1αP402A/P564A). CA-HIF-1α overexpression resulted in a 
decrease in SP-C expression and an increase in CD133 
and MSI1 expression (Figure 7E, F). The expression of  
OCT4 did not change, which was consistent with the re-
port that OCT4 is a direct target of  HIF-2α but not HIF-
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Figure 5  Changes in gene expression and sphere-forming activity of A549 and QG56 cells under hypoxic conditions. The cells were cultured under normoxic 
(N) or hypoxic (4% O2) (H) conditions�����  �����������  �����������  ������ ���� .����  �����������  �����������  ������ ����  A: Growth of A549 cells. Bars, SD (n� =��� �� ��� ���������������������������������������    ������ ��������������  ��������� �� ���������������   ���� ��� ���������������������������������������    ������ ��������������  ��������� �� ���������������  3)�� ��� ���������������������������������������    ������ ��������������  ��������� �� ���������������  ;� ��� ���������������������������������������    ������ ��������������  ��������� �� ���������������   B: Differentiation- and stem cell-related gene expression in A549 cells�� ���������������  ,����������������    the cells were 
cultured for 5 d�� ���������������������������    ��������������������   ���������� �������������������    ����� ����,����������������������������     ��������������������   ���������� �������������������    ����� ���� data are shown as fold-change relative to normoxia (normoxia values set to equal 1)��,� aP < 0.05 (n ���� �� ��� ���������������� �� ��������  ����� ���������� =��� �� ��� ���������������� �� ��������  ����� ����������  ���� ��� ���������������� �� ��������  ����� ���������� 3)�� ��� ���������������� �� ��������  ����� ���������� ; ��� ���������������� �� ��������  ����� ���������� C: Sphere formation�� ��������  ����� ���������� ; ��������  ����� ���������� A549 or QG56 cells pre-
cultured under normoxic or hypoxic (1% O2) conditions for 2 d were reseeded in BEBM supplemented with various additives (see Materials and Methods) and then 
further cultured for 7 d�� �����������������������   ����������������   ���������������������   ����� ������� ���������������   ��;� �����������������������   ����������������   ���������������������   ����� ������� ���������������   �� Left panels represent A549 cells and right panels represent QG56 cells. Scale bars = 200 µm�� ��� �������������������������������������������      ;� ��� �������������������������������������������       D: Size distribution of the spheres formed by 
A549 cells. 
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1α[9]. These results indicate that HIF-1 induces changes 
in the expression of  SP-C, CD133, and MSI1. 

To gain some insight into the mechanism underly-
ing the HIF-mediated suppression of  SP-C expression 
in A549 cells, we examined the effects of  trichostatin 
A (TSA), a histone deacetylase (HDAC) inhibitor, and 
5-azacytidine, an inhibitor of  DNA methyltransferase. 
We showed that TSA but not 5-azacytidine efficiently 
diminished the suppressive effect of  hypoxia on SP-C ex-
pression (Figure 7G, H), thereby suggesting that HDAC 
is involved in hypoxia-induced gene expression changes 
in A549 cells. 

TX-402 inhibits the expression of HIF-1α and HIF-2α and 
restores the hypoxia-induced gene expression changes 
in A549 cells
TX-402 has been shown to inhibit the expression of  HIF-
1α protein[26-28], but its effect on HIF-2α protein expres-
sion remains to be tested. Thus we examined whether 
TX-402 inhibited the expression of  HIF-1α and HIF-2α 
in A549 cells under hypoxic conditions. HIF-1α and HIF-
2α accumulated after incubating the cells under hypoxic 
conditions for 9 h. Treatment with 20 µmol/L��������  TX-402 
significantly suppressed the accumulation of  both sub-

units, but the levels of  HIF-1α and HIF-2α mRNA were 
unaffected (Figure 8A, B).

The proliferation of  A549 cells was inhibited by 
TX-402 (IC50 value of  approximately 20 µmol/L������� ) with-
out any discernible cell killing under hypoxic conditions 
over a culture period of  3 d (Figure 8C). We then treated 
the cells under hypoxic conditions for 3 d in the presence 
of  20 µmol/L���������������������������������������       TX-402 and examined the expression of  
SP-C, CD133, OCT4, and MSI1. We found that TX-402 
restored the expression levels of  SP-C, CD133, OCT4, 
and MSI1 in hypoxia to the normoxic levels (Figure 8D). 
These results were also corroborated by an immunofluo-
rescence study (Figure 8E). We detected nuclear OCT4 
and MSI1 using nuclear extracts and found that TX-402 
restored the levels of  OCT4 and MSI1 in hypoxia to their 
normoxic levels (Figure 8F). 

TX-402 abrogates the hypoxia-induced lung-colonizing 
potential of A549 cells
We examined the lung-colonizing potential of  A549 cells 
that were cultured under hypoxic conditions after inject-
ing them into the tail veins of  nude mice. As evidenced 
by macroscopic and histological observations, hypoxic 
A549 cells formed a larger number of  metastatic foci in 

Figure 6  Expression of SP-C and CD133 proteins in hypoxic A549 cells in vitro and in vivo. A549 cells were cultured under normoxic (N) or hypoxic (H) condi-
tions for 5 d�� ����������������������   ������ ������������������������������   ����������  �������������������������������    �� ���������������  ���������������������������������    ;�����������������������    ������ ������������������������������   ����������  �������������������������������    �� ���������������  ���������������������������������     A: Immunostaining for SP-C�� ������������������������������   ����������  �������������������������������    �� ���������������  ���������������������������������    , ������������������������������   ����������  �������������������������������    �� ���������������  ���������������������������������    arrowheads indicate the localization of SP-C proteins at cell membranes�� ���������������  ���������������������������������    ,����������������   ���������������������������������     NC indicates negative control (normal rabbit se-
rum)�� �������������   ���,� �������������   ��� Scale bars = 50 µm (white bars) and 20 µm (yellow bars)�� ��� ��������������� ���� ������� �������������������� ����������������� �����������  ��������������� ����;� ��� ��������������� ���� ������� �������������������� ����������������� �����������  ��������������� ���� B: Immunostaining for CD133. Formaldehyde-fixed, nonpermeabilized cells were immunostained with 
phycoerythrin-conjugated monoclonal anti-CD133 antibody�� ���������������  �������������� �� ��������������   ��, ���������������  �������������� �� ��������������   ��NC indicates negative control�� ��������������   ��, ��������������   ��scale bars = 20 µm�� ��� �������������������������    ��������������  �����������;� ��� �������������������������    ��������������  ����������� C�� �������������������������    ��������������  �����������: �������������������������    ��������������  �����������Western blot analysis of SP-C protein expression��; 
D�� �������������������������    ���������������  ����������� ���������������������������������������������������������������������            ���������  �������: �������������������������    ���������������  ����������� ���������������������������������������������������������������������            ���������  �������Western blot analysis of CD133 protein expression�� ���������������������������������������������������������������������            ���������  �������,����������������������������������������������������������������������             ���������  ������� ���������������������������������������������������������������������            ���������  �������C and D �������������������������������������������������������������         ���������  �������total cell lysates were subjected to immunoblot analysis for SP-C and CD133��,� β-Actin was used as 
a loading control�� ��� ������� �����������������  ��������������   �����������������������  �� �������������������������������������������������      ����������������  ����������� ;����  ������� �����������������  ��������������   �����������������������  �� �������������������������������������������������      ����������������  �����������  E: CD133 expression in hypoxic cells in A549 subcutaneous tumors�� �������������������������������������������������      ����������������  ����������� ,��������������������������������������������������       ����������������  �����������  tissue sections were double-stained with an anti-CD133 antibody (green) and 
an anti-EF5 antibody (red). Nuclei were stained with DAPI�� ������������������������������    ����������������� ���������������������������������������������       �����������.� ������������������������������    ����������������� ���������������������������������������������       ����������� Upper panels represent the EF-5-negative (normoxic) area and bottom panels represent the EF-5-positive 
(hypoxic) area�� �������������   ����,��������������    ���� scale bars = 100 µm.
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the lungs than did normoxic A549 cells (Figure 9A, B). 
The lung-colonizing ability of  hypoxic A549 cells was 
abolished by TX-402 (Figure 9C, D). To exclude the pos-
sibility that this suppressing effect of  TX-402 was due 
to impaired colony-forming ability and enhanced senes-
cence induction, we examined the effect of  TX-402 on 
the colony-forming ability of  A549 cells. Although the 
colony-forming ability of  the cells that were treated with 
20 µmol/L TX-402 under hypoxic conditions for 3 d 
was slightly but significantly inhibited (Figure 9E, F), the 
inhibitory effect of  TX-402 on the lung-colonizing ability 
was more profound. 

DISCUSSION
Here we show that A549 cells primarily express SP-C, 
which indicates that most of  these cells are in the AT2 
cell lineage. These cells also express the CD133, OCT4, 
MSI1, SOX2, and GLDC stem cell markers, suggesting 
that A549 cells comprise subpopulations of  stem and 
progenitor cells. The exposure of  A549 cells to hypoxia 
had the following effects without any sign of  cell death: 
suppression of  the expression of  SP-C; upregulation of  
the expression of  CD133, OCT4 and MSI1; and slight 
upregulation of  the expression of  NANOG. A549 cells 
have been shown to form iPSC-like colonies when in-
troduced to Oct4, Sox2, Nanog and Lin28 together with 
a non-degradable form of  HIFs[35]. Our results were in 
agreement with these data and further provide important 
information that tumor hypoxia itself  can render CSC-
like NSCLC cells.

Recent studies have shown that CD133-positive tu-
mor cells exhibit higher tumorigenicity, clonogenicity, 
and metastatic ability than CD133-negative cells in dif-
ferent types of  cancers, including primary non-small cell 
and small cell lung cancers[36-41]. Therefore, the hypoxia-
induced expression of  CD133 might partly contribute 
to the CSC-like phenotype of  hypoxic A549 cells. OCT4 
is overexpressed in bladder cancer, and ectopic expres-
sion of  OCT4 blocks progenitor-cell differentiation and 
causes dysplasia in epithelial tissues[42,43]. Furthermore, 
recent reports have demonstrated that OCT4 expres-
sion is associated with the differentiation state of  various 
cancer cells[44,45], and that it is essential for the successful 
reprogramming of  somatic cells to induced pluripotent 
stem cells[46]. NANOG functions to maintain the pluripo-
tency and co-expression of  OCT4, and it is necessary for 
inducing the CSC-like properties of  A549 cells[47]. MSI1 
is an RNA-binding protein that is linked to asymmetric 
cell division[48]. Based on these reports, our results sug-
gest that hypoxia induces the dedifferentiation of  A549 
cells. However, although we found that A549 cells express 
GLDC, its expression was not influenced by hypoxia. 
Because murine BASCs are SP-C/CC10 double-posi-
tive[17,18,48] and the recently identified putative mouse lung 
stem/progenitor cell population is CC10-positive/SP-C-
negative[49], the properties of  hypoxic A549 cells do not 
closely conform to those known to be characteristic of  
stem/progenitor cells. 

The mechanism underlying the hypoxia-induced sup-
pression of  SP-C involves HIF-1α at least in part, because 
the overexpression of  CA-HIF-1α suppressed SP-C ex-
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Figure 7  Hypoxia-inducible factor mediates the expression of differentiation- and stem cell-related genes in A549 cells. A�����  �������������   ����� ���������������   and �������������   ����� ���������������  B: Effect of DFO�� ���������������  ,����������������    the cells were 
cultured with or without 100 µmol/L DFO for 3 d�� ������  �������������   ����;�������   �������������   ���� C and D: Effect of CoCl2,���������������������������������������������������������           �� the cells were cultured in the presence or absence of 200 µmol/L CoCl2 for 3 d�� ������������   ;�������������     E and F: Ef-
fect of the ectopic expression of HIF-1αP402A/P564A, ����������������������������������     ������������  ������������the cells were transfected with pcDNA3.1 or pcDNA3.1/HIF-1αP402A/P564A and allowed to grow for 2 d�� �����������������   ; �����������������   G and H: Effects 
of TSA and 5-azacytidine on the hypoxia-induced repression of SP-C expression�� �����������������������������������     ���������������   �����������������������������������     , �����������������������������������     ���������������   �����������������������������������     the cells were cultured under normoxic (N) or hypoxic (H) conditions in the presence 
or absence of TSA (300 nmol/L) or 5-azacytidine (5-azaC) (4 µmol/L) for 3 d. B, D, F, and H: The expression level of each gene was normalized to that of β-Actin (ACTB)��, 
data are shown as fold-change relative to normoxia (normoxia values set to equal 1).
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pression. Because TSA reversed the suppressive effect of  
hypoxia, HDAC is also likely to be involved in the mecha-
nism. Alternatively, because HIF-1α is post-translational-
ly modified by acetylation of  lysine residues within the N 
terminus leading to the stabilization of  the protein[50], it is 
possible that TSA reduces the level of  HIF-1α by directly 
acting at the protein level, which in turn restores hypoxia-
induced SP-C repression to normal levels. In contrast, 
the upregulation of  CD133, OCT4, and MSI1 in hypoxic 
A549 cells is undoubtedly mediated by HIFs because 
treatment with the hypoxia mimetics, namely DFO and 
CoCl2 (both of  which stabilize HIF-α subunits) upregu-
lated all of  them. Furthermore, we showed that CA-HIF-
1α overexpression up-regulated CD133 and MSI1 but 
not OCT4, which is an HIF-2α-specific target gene[11].

It is thought that CSCs display self-renewing ability, a 
high capacity for tumor initiation, and a high metastatic 
potential. We used sphere formation and lung-colonizing 

assays to examine whether hypoxic A549 cells also have 
these functional phenotypes. The lung-colonizing assay 
can examine the tumor-initiating capacity and growth 
of  a single cell or a small mass of  cells in orthotopic 
sites that mimic the in vivo niche conditions of  CSCs in 
NSCLC. In the present study, we showed that hypoxic 
A549 cells formed larger spheres and more lung nodules 
after intravenous implantation compared to normoxic 
A549 cells. This result suggests that hypoxic A549 cells 
have high self-renewing activity, tumor-initiating capabil-
ity, and/or metastatic ability. Thus, based on the gene 
expression data and functional studies, we conclude that 
hypoxia is able to induce subpopulations of  A549 cells 
with CSC-like phenotypes. 

To determine whether our findings could be general-
ized to other cell types, we also investigated the effect 
of  hypoxia on QG56 cells, and we observed that the 
expression of  the CC10 and AQP5 differentiation marker 

A

150

100

50

0

G
ro

w
th

 (
%

)

0    10    20   40

TX-402 (umol/L)

N

150

100

50

0

G
ro

w
th

 (
%

)

0    10    20   40

H

100
80
60
40
20
0

Vi
ab

ili
ty

 (
%

)

0   10  20  40

100
80
60
40
20
0

Vi
ab

ili
ty

 (
%

)

0   10  20  40

HIF-1α

HIF-2α

E2F-1

N H H
 +

 T
X-

40
2

HIF-1A

HIF-2A

GAPDH

N H H
 +

 T
X-

40
2

MSI1
OCT

4

CD
13

3

6
5
4
3
2
1
0

Fo
ld

N
H
H + TX-402

SP-
C

N H H
 +

 T
X-

40
2

SP-C

CD133

OCT4

MSI1

ACTB

N H H + TX-402
SP-

C
CD

13
3

O
CT

4
M

SI
1

B D

C E
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genes was markedly suppressed under hypoxic conditions. 
Inversely, CD133, OCT4, and MSI1 were up-regulated in 
hypoxic QG56 cells, and hypoxia weakly enhanced the 
sphere-forming capacity of  QG56 cells. These results sug-
gest that hypoxia also induces dedifferentiation of  the cells.

An important finding of  our study is that TX-402 
blocked hypoxia-induced changes in the expression of  
the stem cell-related genes and an increase in the lung-
colonizing ability of  A549 cells, which most likely oc-
curred via inhibition of  the expression of  HIF-α sub-
units. Although we observed a slight reduction in the 
survival of  cells that were treated with TX-402 under 
hypoxic conditions, TX-402 was not cytotoxic at the 
concentration used. Therefore, it is likely that in addition 
to its growth-inhibitory effect in mild hypoxia, TX-402 
inhibited the lung-colonizing ability of  A549 cells by re-
pressing cell dedifferentiation. Further studies using other 
NSCLC cell lines or primary patient samples are required 
to generalize the effects of  TX-402 on dedifferentiation 
and lung-colonizing ability.

In conclusion, our results suggest that hypoxia in-
duces the dedifferentiation of  NSCLC cells into CSC-like 
cells with high metastatic potential and that HIF inhibi-
tors, such as TX-402, may prevent this process. Recent 
studies have demonstrated that hypoxia in tumors can be 
induced by the administration of  antiangiogenic agents, 
such as bevacizumab and VEGF receptor tyrosine kinase 
inhibitors, and that intermittent use of  these drugs ac-

celerates tumor growth and metastasis presumably by 
increasing the CSC population[6-8]. Therefore, combina-
tion therapy where antiangiogenic agents are combined 
with HIF-targeting drugs could be effective in improving 
patient outcomes. Thus, further studies on HIF-targeting 
drugs are warranted to determine their full potential in 
the treatment of  disease.
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Background
Hypoxia influences many aspects of cancer cell biology, including neoangio-
genesis, energy metabolism, cell survival, radiosensitivity, chemosensitivity, 
differentiation and invasion/metastasis, via hypoxia-inducible factors (HIFs). 
Hypoxia also induces the dedifferentiation of some tumor cells, rendering them 
more cancer stem cell (CSC)-like and metastatic.
Research frontiers
The effects of hypoxia on the dedifferentiation and maintenance of CSC pheno-
types of non-small cell lung cancer ��������������  �������������������������  ��(�������������  �������������������������  ��NSCLC��������  �������������������������  ��)�������  �������������������������  �� is largely unknown. Furthermore, 
it remains to be examined whether HIF inhibitors can suppress the hypoxia-
induced process.
Innovations and breakthroughs
In this study, the authors demonstrate that hypoxia induces the dedifferentiation 
of NSCLC and that TX-402, a small-molecule inhibitor of HIF-1α and HIF-2α 
expression, can suppress the hypoxia-induced process and, importantly, meta-
static ability.
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Figure 9  Effect of TX-402 on the lung-colonizing capability of A549 cells cultured under hypoxic conditions. A, B: Macroscopic and histological observa-
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Applications
By understanding how tumor hypoxia induces the dedifferentiation of NSCLC, 
this study could represent a future strategy for therapeutic intervention in the 
treatment of patients with NSCLC.
Terminology
Tumor hypoxia is generated in most solid tumors because of a shortage in oxy-
gen supply. HIF is a transcription factor that is composed of HIF-α and HIF-β 
subunits, and it plays a central role in hypoxia-induced biological processes. 
CSCs are defined as those cells within a tumor that can self-renew, drive tu-
morigenesis, exhibit chemoresistance, exhibit radio-resistance, and have high 
metastatic potential.
Peer review
The authors describe an inhibitor of the HIF-α subunit expression that sup-
presses the hypoxia-induced dedifferentiation of human NSCLC cells into CSC-
like cells. This article was highly evaluated because the authors examined the 
hypoxic effect on NSCLC cells in detail.
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