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Abstract
Ongoing clinical and research efforts seek to optimise the 
use of endocrine therapy in the treatment of breast cancer. 
Accurate biomarkers are needed that predict response 
for individual patients. The presence of the estrogen 
receptor (ER) as the direct (for tamoxifen and fulvestrant) 
or indirect (for aromatase inhibitors) target molecule 
for endocrine therapy remains the foremost biomarker 
and determinant of response. However, ER expression 
only poorly predicts outcome and further indicators of 
response or resistance are required. The development 
and application of molecular signature assays such as 
Oncotype Dx, Prosigna, Mammaprint and Endopredict 
have provided valuable information on prognosis and 
these are being used to support clinical decision making 
on whether endocrine therapy alone alongside surgery 
is sufficient for ER-positive early stage breast cancers or 
whether combination of endocrine with chemotherapy are 
also warranted. Ki67, the proliferation marker, has been 
widely used in the neo-adjuvant (pre-operative) setting 
to help predict response and long term outcome. Gene 
expression studies within the same setting have allowed 
monitoring of changes of potential predictive markers. 
These have identified frequent changes in estrogen-
regulated and proliferation genes. Specific molecules 
such as mutant ER may also prove helpful biomarkers in 
predicting outcome and monitoring response to treatment. 

Key words: Estrogen; IL6ST; Biomarker; Breast cancer; 
Predictive
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therapy in breast cancer. Molecular signatures provide 
increasing confidence for helping identify breast cancers 
for which endocrine therapy alone is likely to be 
sufficient. Estrogen and proliferation related genes have 
come to the fore in many of the molecular signatures. 
In neo-adjuvant studies, Ki67 expression at baseline and 
after 2 wk treatment can provide useful prognostic and 
predictive information. Neo-adjuvant studies continue to 
seek new markers that relate to tumor response.

Mosly D, Turnbull A, Sims A, Ward C, Langdon S. Predictive 
markers of endocrine response in breast cancer. World J Exp Med 
2018; 8(1): 1-7  Available from: URL: http://www.wjgnet.com/2220-
315X/full/v8/i1/1.htm  DOI: http://dx.doi.org/10.5493/wjem.v8.i1.1

INTRODUCTION
Breast cancer is the second most frequently diagnosed 
cancer worldwide with an estimated 1676000 new cases 
each year[1]. Of these cancers, approximately 70%-80% 
will have estrogen receptor (ER) expression and be 
considered candidates for endocrine therapy. Tamoxifen 
and the aromatase inhibitors represent the major endocrine 
treatments in use worldwide. Tamoxifen was first approved 
in 1977 for treatment of breast cancer and continues to be 
used in many post-menopausal women, but is primarily 
recommended for use in pre-menopausal women[2]. The 
3rd-generation aromatase inhibitors (anastrazole, letrozole 
and exemestane) have demonstrated superiority over 
tamoxifen in post-menopausal ER-positive breast cancer 
and have become the preferred option for this group of 
cancers[3]. Fulvestrant, a “pure” anti-estrogen and ER 
down-regulator, is an alternative after treatment failure in 
post-menopausal women and being considered in other 
settings[4]. Meta-analyses of multiple clinical trials have 
demonstrated that these endocrine agents can halve the 
risk of breast cancer relapse and reduce the risk of breast 
cancer death by 40%[5].

With recognition of the molecular heterogeneity 
present both within and between individual breast cancers, 
strenuous efforts have been undertaken to optimise 
individual patient management. This has led to the search 
for predictive biomarkers that might identify ER-positive 
breast cancers which are sensitive to endocrine therapies 
and those in which endocrine therapy is likely to be 
insufficient, hence requiring either chemotherapy or new 
agents. Since prognostic molecular signatures are now 
also helping to stratify patient groups into those for which 
endocrine therapy alone is likely to be sufficient, these will 
be mentioned briefly as well.

ER, PROGESTERONE RECEPTOR AND 
HER2
Foremost and most powerful of the biomarkers identified 
to predict response to endocrine therapy is the ER itself, 
specifically ER-alpha (ESR1)[6]. The routine classification 

of breast cancers into ER-positive and ER-negative 
categories was based on the early identification of the 
requirement for ER expression for response to tamoxifen 
with 60%-70% of ER-positive patients responding to this 
endocrine agent compared to only 5%-10% responding 
with ER-negative metastatic disease[2]. Consistent with 
this, the likelihood of response increased with increasing 
ER concentration with ER-rich tumors responding better 
than ER-poor cancers[7]. However, even for responders, 
up to 50% will eventually relapse hence predictive 
biomarkers are required that will identify ER-positive 
patients most likely to respond to therapy and those for 
whom endocrine therapy is likely to be insufficient[2]. 

Other forms of ER include ER-beta, G-protein coupled 
ER (GPER1) (previously GPR30) and mutated versions 
of ER-alpha and these have all been investigated as 
predictive markers of response to endocrine therapy. 
The role of ER-beta appears complex and dependent on 
whether ER-alpha is present leading to a bi-faceted role[8], 
however several clinical studies have suggested predictive 
effects for specific ER-beta isoforms[8,9]. Low expression 
of the membrane-bound GPER1 is associated with 
favourable outcome to tamoxifen[10] while high expression 
has been associated with tamoxifen resistance[11]. The role 
of ER mutants is discussed below.

The ER is one of 3 markers (ER, PR and HER2) 
routinely measured at diagnosis to help determine potential 
treatment options. Expression of the progesterone receptor 
(PR), an estrogen-regulated protein, is highly estrogen 
dependent and has therefore been regarded as an 
indicator of estrogen-drive and signaling. It has been 
associated with both disease-free as well as overall survival 
in tamoxifen-treated breast cancers with PR-positive 
breast cancers responding better than PR-negative[12] 
cancers, but this is not a universal finding[13]. Breast 
cancers that are both ER-positive and PR-positive have 
> 70% likelihood of response to endocrine therapy and 
these two receptors have become the prototypic predictive 
markers of endocrine response in this disease[14]. The 
third molecule routinely assessed at diagnosis, HER2 
(assessed for amplification or overexpression), while 
developed as a predictor for anti-HER2 targeted therapies, 
e.g., trastuzumab or lapatinib, is generally associated 
with poor response to endocrine therapy[15,16]. One multi-
protein assay tool using immunohistochemistry, the IHC4 
score, combines information from ER, PR, HER2 and the 
proliferation index Ki67 into a score that helps estimates 
the risk of distant recurrence at 10 years in post-
menopausal women with ER-positive breast cancer who 
have received 5 year of endocrine therapy[17]. These same 
4 markers are also components of the Oncotype Dx and 
Prosigna assays which will be described later.

DEVELOPMENT OF ENDOCRINE 
RESISTANCE
A major limitation of endocrine therapy is the development 
of resistance and markers that reflect these resistance 
mechanisms may predict outcome[14]. Resistance may 
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be present at the outset (de novo) or develop on drug 
treatment (acquired) and can arise in multiple ways[18]. 
Two well defined mechanisms of endocrine resistance are 
the loss of ER function and the development of estrogen-
insensitivity. 

ER function can be lost as a result of decreased ER 
expression or ER co-activator expression or function. ER 
expression is lost in approximately 10% or so of breast 
cancers on neo-adjuvant treatment[14], and these cancers 
have a poorer outcome than where ER expression is 
maintained[19]. This would be reflected in reduced down-
stream signalling such as decreased PR expression or 
estrogen-regulated gene expression in the absence of an 
inhibitor and these can be indicative of a lack or loss of 
estrogen signaling.

The development of estrogen-independent signaling 
can lead to insensitivity to estrogen. This can occur via ER 
gain-of-function mutations[19-21] or by indirect activation 
of ER phosphorylation or ER-coactivator phosphorylation 
(hence avoiding the need for estrogen activation) via 
growth factor pathways including EGF receptor, HER2 and 
IGFIR[18]. Gain-of-function mutations in ER may bypass 
inhibition produced by endocrine agents. Although these 
ER mutations are infrequent in initially diagnosed disease, 
a much higher mutation rate has been observed in 
metastases (up to 20%) and circulating tumor DNA (up 
to 40%) in metastatic breast cancers[19-21]. This may be a 
cause of endocrine resistance to aromatase inhibitors (since 
production of estrogen is no longer needed to activate the 
receptor) and tamoxifen or fulvestrant therapy may be 
more effective in these cancers[19]. 

Increased expression of EGFR, HER2 or IGFIR have 
all been associated with reduced or loss of endocrine 
regulation and are potential indicators of endocrine 
resistance[18]. Moreover, the pathways they use, i.e., the 
PI3K/AKT and Ras/Raf/MEK/ERK pathways, may have 
activating mutations, e.g., in components such as PI3K, 
which in turn may lead to ER activation[22]. To date, this 
information has been used to develop combination drug 
approaches that combine an endocrine agent with an 
inhibitor (e.g., HER2, PI3K, mTOR, CDK inhibitor, etc.) 
that targets a component of the growth factor driven 
pathway. Although this has been valuable for the strategic 
development of inhibitory strategies in endocrine-resistant 
disease, it hasn’t yet led to the development of specific 
markers to predict endocrine resistance. Even for ER-
positive/HER2-positive breast cancers, wherein many 
cancers are responsive to endocrine treatment, it remains 
unclear which tumors are sensitive and which are resistant 
indicating the need for further markers of response.

The detection of ER mutations in circulating tumor DNA 
is promising and supports the use of plasma sampling 
to help monitor the changing status of the disease in 
the patient. Retrospective analyses of ER mutations in 
baseline plasma circulating tumor DNA from completed 
clinical trials suggest that these mutations are prognostic 
and predictive of resistance to aromatase inhibitors in 
metastatic disease[23] however prospective studies will be 
needed to validate clinical utility.

MULTIGENE SIGNATURES
It is nearly 20 years since the first detailed molecular 
portrait of breast cancer was published by Perou et al[24] 
that stratified breast cancers into molecular subtypes 
based on gene expression data. Four groups (luminal, 
HER2, basal and normal breast like) were identified with 
the luminal group describing the ERα-positive group. 
Further studies by the same investigators demonstrated 
that the ERα-positive luminal group could usefully be 
sub-divided into luminal A and luminal B cancers[25-27]. 
Luminal A cancers comprise about 40%-75% (cf. large 
geographical variation) of breast cancers with relatively 
higher levels of estrogen signalling and lower proliferation. 
Luminal B cancers represent approximately 10%-20% of 
breast cancers and tend to have lower estrogen signaling 
and higher proliferation or HER2 over-expression. Over 
time further ERα-negative subgroups such as claudin-
low and molecular apocrine clusters have been suggested 
along with the so-called 4-6 Lehman TNBC subtypes[28-30], 
however luminal cancers remain the endocrine-sensitive 
group with luminal A in general being sensitive to 
endocrine therapy alone while luminal B cancers may 
require both endocrine therapy and chemotherapy. As 
further molecular portraits were characterised, a number 
of gene sets were developed as prognostic signatures and 
have been useful to help stratify groups of patients (Table 
1). Several commercial assays have been developed 
that generate risk of recurrence scores that can be used 
to help determine the likely risk of relapse. These have 
been particularly valuable in clinical decision making to 
help identify which early stage ER-positive HER2-negative 
patients without lymph node spread (encompassing over 
half of all breast cancer patients) should receive endocrine 
therapy alone and which should receive chemotherapy or 
novel treatments as well in the adjuvant setting. 

The multigene test most widely used in the clinic to 
date is the Oncotype Dx signature. Oncotype DX is a 
21-gene recurrence score assay initially developed to 
predict likelihood of recurrence of tamoxifen-treated, 
node negative breast cancer[31]. This assay includes 
proliferation-related genes (Ki67, STK15, Survivin, 
CCNB1, MYBL2), estrogen-related genes (ER, PGR, BCL2, 
SCUBE2), HER2-related genes (HER2, GRB7), invasion-
related genes (MMP11, CTSL2) and 3 others (GSTM1, 
CD68, BAG1) alongside 5 reference genes (ACTB, 
GAPDH, RPLPO, GUS, TFRC). Levels of expression of 
these genes are combined into an algorithm to generate 
a recurrence score between 0 and 100 which is predictive 
of overall survival[31]. If the score is high (> 31) then 
chemotherapy has been shown to be beneficial. If the 
score is low (< 10), then this is prognostic of a very low 
rate of recurrence (< 2%) and endocrine therapy alone is 
likely to be sufficient. Until recently, it was unclear whether 
endocrine therapy alone was adequate for patients with 
cancers with intermediate scores (10-25) since these can 
comprise 2/3 of patients, but the TAILORx trial has now 
demonstrated that endocrine therapy alone without added 
chemotherapy produces the same outcome suggesting 
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that endocrine therapy alone is sufficient for this large 
group of patients[32]. The trial results though did not 
exclude a benefit of chemotherapy for patients aged < 50 
years with a high-intermediate score[32].

Several other multigene signatures have been 
shown to produce similar prognostic data for this group 
of ER-positive, HER2-negative patient group. These 
include Prosigna (based on PAM50), Mammaprint and 
Endopredict. 

The Prosigna classifier uses the PAM 50 (Prediction 
Analysis of Microarrays) set of 50 genes together with 
a set of 8 reference genes to identify the intrinsic gene 
expression subtype (i.e., luminal A, luminal B, HER2 or 
basal-like)[33]. This classifier identifies the cancer subtype 
based on comparison of the cancer’s gene expression 
profile to the characteristic subgroup profiles and 
generates a risk of recurrence score. Its prognostic value 
has been demonstrated in multiple cohorts of breast 
cancer patients including those treated with tamoxifen or 
anastrazole alone[34,35] and tamoxifen plus anastrazole[36]. 
A recently developed PAM50-based chemoendocrine 
score has been developed that highlights luminal to basal 
differences and response to treatment[37]. 

The Mammaprint assay is a classifier based on the 
70-gene Amsterdam signature[38] developed to help 
identify early stage breast cancer patients most likely to 
develop distant metastases and therefore benefit from 
adjuvant chemotherapy[39]. Its value has been tested 
in multiple clinical trials, but the largest trial has been 
the 6693 patient MINDACT trial[40]. In this trial, it was 
demonstrated that the group of patients identified as high 
risk for recurrence according to clinical and pathological 
factors but who were classified as Low Risk by MammaPrint 
were unlikely to benefit from chemotherapy[40].

The Endopredict test measures 8 genes of which 3 are 
proliferation associated (BIRC5, UBE2C, DHCR7) and 5 

are estrogen-related genes (RBBP8, IL6ST, AZGP1, MGP, 
STC2) by RT-PCR from fixed tissue and generates a score 
between 0 and 15 (< 5 is low risk; > 5 is high risk)[41]. 
This data is combined with nodal status and tumor size 
information to provide an EPclin score[41,42]. The test has 
been validated within a number of trials[41,42].

DYNAMIC NEO-ADJUVANT STUDIES
Neo-adjuvant (pre-operative) studies, wherein breast 
cancer patients are treated with endocrine therapy prior to 
surgery, have provided opportunities to study and identify 
predictive biomarkers of endocrine response. In these 
studies, tumors have commonly been serially sampled at 
diagnosis, after 14 d and at 3 mo of treatment and assayed 
for gene or protein expression levels[43]. These studies 
have demonstrated that several parameters may be 
informative including the expression level of a biomarker 
at diagnosis prior to treatment, the change in expression 
over time during treatment and the residual level com
pared to baseline value after a period of treatment. 

The most extensively studied pharmacodynamics 
marker in neo-adjuvant endocrine trials is Ki67 (MKI67) 
which is a nuclear protein expressed only in proliferating 
cells[44]. The pre-treatment value of Ki67 reflects 
prognosis, while the change in Ki67 relates to response 
to treatment, hence is predictive[45]. The 14 d value then 
provides an indicator of residual risk[44]. This biomarker 
has already been incorporated into the IHC4, Oncotype 
Dx and Prosigna tests and is currently being studied in the 
POETIC phase III multicentre trial. The POETIC trial is the 
largest study to assess the validity of Ki67 as a marker of 
response and long-term outcome in a pre-surgical window-
of-opportunity setting and has recruited 4500 women 
with early stage ER-positive breast cancer. The study is 
assessing whether time to recurrence and overall survival 

Test name Samples Key references Method Genes No. Genes

Oncotype DX  FFPE tumor 
tissue 

[31,32] QRT-PCR 16 + 5 MKI67, AURKA, BIRC5, CCNB1, MYBL2, ERBB2, GRB7, ESR1, PGR, BCL2, 
SCUBE2, MMP11, CTSL2, GSTM1, CD68, BAG1 (+ ref genes ACTB, GAPDH, 

RPLPO, GUS, TFRC)
MammaPrint Fresh or 

freshly frozen 
breast cancer 

tissue or FFPE 
tissue

[38-40] DNA 
microarray

70 AA555029_RC, ALDH4A1, AP2B1, AYTL2, BBC3, C16orf61, C20orf46, C9orf30, 
CCNE2, CDC42BPA, CDCA7, CENPA, COL4A2, DCK, DIAPH3, DTL, EBF4, 
ECT2, EGLN1, ESM1, EXT1, FGF18, FLT1, GMPS, GNAZ, GPR126, GPR180, 
GSTM3, HRASLS, IGFBP5, JHDM1D, KNTC2, LGP2, LIN9, LOC100131053,

LOC100288906, LOC730018, MCM6, MELK, MMP9, MS4 A7, MTDH, NMU, 
NUSAP1, ORC6L, OXCT1, PALM2, PECI, PITRM1, PRC1, QSCN6L1, RAB6B, 
RASSF7, RECQL5, RFC4, RTN4RL1, RUNDC1, SCUBE2, SERF1A, SLC2A3, 

STK32B, TGFB3,TSPYL5, UCHL5, WISP1, ZNF533
 Endopredict FFPE tumor 

tissue 
[41,42] QRT-PCR   8 + 4 BIRC5, UBE2C, DHCR7, RBBP8, IL6ST, AZGP1, MGP, STC2 (+ ref genes 

CALM1, OAZ1, RPL37A, HBB)
Prosigna (based 
on PAM50)

FFPE tumor 
tissue 

[33-37] Nanostring 50 + 8 MIA, SFRP1, KRT14, KRT17, KRT5, FGFR4, GRB7, ERBB2, BAG1, MDM2, 
ACTR3B, BLVRA, CXXC5, TMEM45B, MMP11, FOXC1, EGFR, CDH3, 

PHGDH, MYC, CCNE1, CDCA1, CDC20, KIF2C, TYMS, KNTC2, UBE2T, 
MELK,PTTG1, CCNB1, CDC6, MYBL2, BIRC5, CENPF, EXO1, ORC6L, 

ANLN, UBE2C, RRM2, MKI67, CEP55, PGR, NAT1, SLC39A6, BCL2, ESR1, 
MAPT, GPR160, MLPH, FOXA1 (+ 8 ref genes)

FFPE: Formalin-fixed paraffin-embedded; qRT-PCR: Quantitative reverse transcriptase-PCR.
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are influenced by 2 wk of aromatase inhibitor therapy prior 
to and after surgery to improve outcome compared to 
standard adjuvant therapy alone[44]. To date, the trial has 
provided evidence that measurement of Ki67 at baseline 
and at 2 wk is informative. If baseline Ki67 is low (value < 
10%), prognosis is good and pre-operative treatment and 
a second measurement aren’t needed. However, if baseline 
Ki67 is high (value > 10%) and stays high at 2 wk, then 
prognosis is poorer and patients should be considered for 
further therapy (chemotherapy or new agents)[46]. 

Gene sets associated with both aromatase inhibitor 
sensitivity and resistance have been identified within 
neo-adjuvant studies and gene expression changes after 
14 d and 3 mo of treatment linked to tumor growth 
response[47,48]. A common finding in many of the gene 
expression changes is that both estrogen-dependent genes 
and proliferation-associated genes can be down-regulated 
on treatment, however there can be discordant patterns 
of change as well. These changes can occur in resistant 
as well as sensitive treated cancers suggesting different 
mechanism of resistance[49]. Higher basal expression of 
certain immune-related genes such as SLAMF8 and TNF as 
well as lymphocytic infiltration have been associated with 
poor anti-proliferative response and resistance[50] while 
high expression of ribosomal proteins is associated with 
response to letrozole[48].

A four-gene classifier of clinical response to the 
aromatase inhibitor letrozole has recently been described 
with an accuracy of 96% based on the expression levels 
of two genes (IL6ST and NGFRAP1) at baseline and two 
proliferation associated genes (ASPM and MCM4) after 2 
wk of therapy[51]. This gene set was then validated in an 
independent group of patients treated with anastrazole[51]. 
This is now being evaluated in prospective studies. It 
will be important to understand the roles and functions 
of these genes if they are to be used alongside more 
traditional markers such as the estrogen-regulated PR or 
proliferation associated Ki67. Measurement of proliferation 
after endocrine treatment is also a component of the 
Preoperative Endocrine Prognostic Index (PEPI), that 
was developed to identify patients at low risk of relapse 
after neoadjuvant endocrine therapy so that adjuvant 
chemotherapy can safely be avoided[52,53].

CONCLUSION
ER expression together with PR expression continues 
to be the major determinant of endocrine response in 
breast cancer, but further markers to more accurately 
guide treatment would be valuable. Markers of endocrine 
sensitivity are helpful to provide confidence that the use of 
endocrine therapy alone is sufficient treatment for a tumor 
and there are now multiple molecular signatures that can 
do this. Markers of endocrine resistance will help direct 
change of therapy and dependent on the marker used may 
provide some insight into potential inhibitory strategies that 
may be helpful. The use of on-treatment sampling (serial 
biopsy or circulating tumor cells) ideally in comparison 
with baseline sampling will provide the best information to 

aid this. 
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Abstract
Most cases of sudden cardiac death are attributed to 
sustained ventricular tachyarrhythmias (VTs), triggered 
by acute coronary occlusion. Autonomic dysfunction, an 

important arrhythmogenic mechanism in this setting, 
is being actively investigated, aiming at the advent 
of preventive strategies. Recent experimental studies 
have shown vagal withdrawal after anterior myocardial 
infarction, coinciding with high incidence of VTs, followed 
by more gradual sympathetic activation coinciding with a 
second arrhythmia peak. This article summarizes recent 
knowledge on this intriguing topic, generating hypotheses 
that can be investigated in future experimental and 
clinical studies.

Key words: Sudden cardiac death; Acute myocardial 
infarction; Ventricular tachyarrhythmias; Ventricular 
fibrillation; Delayed arrhythmogenesis; Ventricular 
tachycardia; Early arrhythmogenesis; Vagal activity; 
Sympathetic activity; Arrhythmogenic mechanisms
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Core tip: Autonomic dysfunction in response to acute 
myocardial infarction is subject of continuous investigation. 
Recent experimental data indicated vagal withdrawal, 
followed by more gradual sympathetic activation, 
coinciding with early and delayed arrhythmogenesis, 
respectively. These findings call for further research on the 
pathophysiologic role of the autonomic nervous system on 
the ischemic ventricular myocardium.
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INTRODUCTION
Sudden cardiac death is a major health-related problem 
worldwide, accounting for more than half of cardiovascular 
mortality[1]. It is invariably caused by sustained ventricular 
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tachyarrhythmias (VTs), occurring in the setting of 
acute myocardial infarction (MI). The high incidence and 
the ominous prognosis of ischemia-related VTs dictate 
ample research efforts toward in-depth understanding 
of the underlying mechanisms, aiming at the advent of 
preventive strategies[2].

During acute-MI, epinephrine is released in the 
ischemic myocardium, followed by activation of chromaffin 
cells in the adrenal medulla[3]; epinephrine, either locally 
released or circulating, alters ventricular electrophysiology 
and has been long known to exert a prominent role in 
genesis of VTs[4]. Acute-MI is also often accompanied 
by marked autonomic dysfunction, but its precise time-
course along the acute phase of MI and the ensuing 
arrhythmogenic effects remain incompletely understood. 
This article briefly summarizes recent knowledge on this 
topic that may offer further insights into the complex 
pathophysiology of sudden cardiac death.

AUTONOMIC DYSFUNCTION DURING MI
Afferent stimuli
Although cardiogenic reflexes were first recognized in 
the mid-19th century, studies on the autonomic effects on 
the ischemic myocardium and their impact on VTs were 
systematically performed only a century later[5]. These led 
to early clinical reports introducing the role of autonomic 
dysfunction on ventricular electrophysiology following acute 
coronary occlusion[6]. The activation of ventricular afferent 
fibers in the ischemic myocardium was subsequently 
demonstrated, mediated by hemodynamic changes induced 
by acute-MI, as well as by the local production of chemical 
stimuli[7]. This process is dynamic, determined by the time-
course of left ventricular hemodynamics and by the balance 
between the rate of production and metabolism of various 
mediators.

Sympathetic afferents are mainly nonmyelinated, 
with only occasional thinly myelinated Aδ-fibers, that 
form a network over the epicardium[8]. Most sympathetic 
afferents are activated by adenosine triphosphate and 
are classified as ischemia-sensitive[7], although the 
pathophysiologic significance of those not responding 
to adenosine triphosphate remains unknown. Afferent 
activation depends on the location of the ischemic 
myocardium, as shown by experimental[9] and clinical[10] 
data; in this regard, vagal Aδ- and nonmyelinated C-fibers, 
located in the inferior left and right ventricular wall, are 
frequently activated during ischemia involving these walls.

Efferent autonomic activation
Afferent stimuli reach the nucleus tractus solitarius, which 
acts as an integrative center, signaling emergency changes 
in the central nervous system. In this structure, a series of 
sensory nuclei, embedded in the medulla oblongata, form 
circuits with other nuclei in the brainstem and with a large 
number of other central regions. The medulla contains 
sympathetic cell bodies, with respective nerves travelling 
along the spinal cord; from there, sympathetic fibers 
synapse with sympathetic ganglia, and postganglionic 

fibers ultimately synapse at their target sites. The 
parasympathetic cell bodies exit the medulla as long 
preganglionic efferent fibers that form synapses with 
postganglionic fibers within the myocardium.

The effects of the autonomic nervous system on 
ventricular electrophysiology during myocardial ischemia 
have attracted rigorous research efforts[11-14]: Sympathetic 
activation shortens the ventricular action potential and 
the refractory period under normal conditions, but these 
actions vary in the ischemic ventricular myocardium. Thus, 
in addition to ionic imbalance, sympathetic activation 
enhances the dispersion of repolarization across the 
energy-depleted ischemic myocardium and lowers the 
fibrillation-threshold[11], perhaps without altering local 
conduction[12]. By contrast, parasympathetic stimulation 
prolongs the action potential duration and the effective 
refractory period[13]; hence, vagal activation exerts potent 
anti-fibrillatory actions on the ischemic myocardium, 
although transmural dispersion of repolarization seems 
unaffected[14].

Early clinical reports have underscored the involvement 
of both arms of the autonomic nervous system post-MI[15]; 
however, the precise time-course of sympathetic and vagal 
alterations and their contribution to arrhythmogenesis 
remain incompletely understood[2]. This can be explained 
by the marked individual variation, attributed to the 
size and location of MI, its hemodynamic sequelae, and 
to the magnitude of the accompanying symptoms of 
pain and anxiety. Moreover, accurate pathophysiologic 
conclusions are hindered by the inevitable delays in 
monitoring patients in coronary care units, coupled with 
the confounding effects of treatment.

VTs during acute MI
In response to acute coronary occlusion, two temporally 
distinct peaks have been described in various species, with 
several lines of epidemiological data pointing towards a 
similar curve in man[1,2]. Although this topic has been long 
debated, classification into VTs linked to reversible ischemia 
versus those occurring during evolving necrosis is based 
on firm pathophysiologic differences; more importantly, 
classification into early and delayed VTs is clinically sound, 
as it corresponds to the pre- and in-hospital phases, 
respectively, carrying profound consequences on survival 
rates and potential treatment strategies. As noted 
above, scarce data exist in humans on the incidence of 
early-phase VTs and concurrent autonomic responses. 
Therefore, the investigation on the underlying mechanisms 
of ischemia-induced VTs relies largely on in vivo animal 
models; indeed, these models offer clear-cut advantages in 
monitoring physiologic parameters during specific periods 
after coronary ligation, in the absence of the confounding 
effects of various interventions. 

ANALYSIS OF RECENT EXPERIMENTAL 
STUDIES 
Our group recently examined the autonomic responses 
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and the incidence of VTs in the in vivo rat-model, by 
comparing sham-operated controls with an animal-group 
post-ligation of the left coronary artery[16]. Continuous 
electrocardiographic recording was performed in 
conscious rats via implanted telemetry transmitters, and 
autonomic indices were derived by heart rate variability 
techniques; specifically, sympathetic activity was assessed 
by detrended fluctuation analysis, and vagal activity by 
time- and frequency-domain analysis. Frequent VTs were 
observed post-ligation, following the typical pattern of 
an early prominent peak and a more prolonged delayed 
arrhythmogenic window. Vagal activity decreased 
markedly immediately post-ligation and remained low 
throughout the 24 h-observational period. The pattern 
of sympathetic activation differed, showing a progressive 
rise; it became significant at a later stage post-MI and 
remained elevated until the end of the recording. Using 
micro-neurographic recordings, such delayed sympathetic 
activation post-MI was also observed by Jardine et 
al[17] in the ovine-model, in which enhanced cardiac 
sympathetic nerve-activity was observed only after the 
first hour post-ligation. These findings support the notion 
of attenuated parasympathetic, rather than enhanced 
sympathetic-inputs, contributing to early-phase VTs, given 
the aforementioned anti-fibrillatory vagal effects on the 
ischemic myocardium[14].

Two recent studies lend further support to this 
hypothesis: in the canine-model[18], no antiarrhythmic 
effect was found after suppression of the left stellate-
ganglion for 60 min post-MI, except from experiments in 
which its action was completely abrogated. Likewise, a 
study from our group[19] examined the incidence of VTs 
post-ligation in rats pretreated with clonidine, a centrally 
acting inhibitor of sympathetic preganglionic-neurons; 
treated rats displayed a lower incidence of VTs occurring 
during the delayed phase post-MI, but early phase 
arrhythmogenesis was unaffected[19]. 

PERSPECTIVE
Autonomic dysfunction, commonly observed during acute 
MI, contributes to the genesis of VTs. Autonomic responses 
vary, depending on several modulating factors, some of 
which remain incompletely understood; hence, the precise 
nature and time-course of such responses during the 
acute phase of MI is subject of continuous investigation. 
Early-stage VTs are at the center of research-efforts, 
because they invariably occur prior to medical attendance 
and they are responsible for most cases of sudden cardiac 
death. Recent in vivo experimental studies have drawn the 
attention toward vagal withdrawal, associated with pro-
fibrillatory effects in the ischemic ventricular myocardium. 
Such decreased parasympathetic inputs appear to occur 
swiftly in response to ischemia, whereas sympathetic 
activation is more gradual and coincides with a second 
cluster of VTs. These studies provide further insights into 
the pathophysiology of acute MI and sudden cardiac 
death. Nonetheless, these findings should be viewed as 
hypothesis-generating research that warrants further 

validation in animal models and, ultimately, in patients. 
The investigation of autonomic dysfunction during acute 
MI is an intriguing topic of high clinical importance that 
may unravel further aspects of the interrelation between 
the brain and the heart. 
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Abstract
Tumor budding, defined as a small number of cancer cells 
observed in pathology sections detached from the main 
tumor mass, is a common phenomenon in cancer. It is 

suggested that cells in buds are in the process of actively 
moving away from the primary tumor in the first step of 
metastasis. Tumor budding has been observed in a variety 
of carcinomas and is best studied in colorectal cancers 
where it portends poor prognosis. More recently, tumor 
budding was found to be of prognostic significance in 
other cancers including breast cancer. Tumor budding in 
breast cancer is associated with other adverse pathologic 
factors, such as larger tumor size and lymphovascular 
invasion, but may have additional independent prognostic 
value. In the future, standardization of the quantification 
criteria for tumor budding may further aid in its adoption 
as a prognostic marker.

Key words: Tumor budding; Infiltration; Metastasis; Breast 
cancer; Prognosis; Epithelial to mesenchymal transition

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Tumor budding, defined as scattered cells or 
small islands of tumor cells in the vicinity but not con
nected to the main tumor mass, is a common occurrence 
in different cancers. In breast cancer, it may portend an 
adverse prognosis.

Voutsadakis IA. Prognostic role of tumor budding in breast 
cancer. World J Exp Med 2018; 8(2): 12-17  Available from: URL: 
http://www.wjgnet.com/2220-315X/full/v8/i2/12.htm  DOI: http://
dx.doi.org/10.5493/wjem.v8.i2.12

INTRODUCTION
Tumor budding is a pathologic phenomenon associated 
with many cancers. Although its specific definition differs 
from study to study, it generally consists of a small number 
of cells, usually up to five cells in the most commonly 
used definition, which have detached from the bulk of the 
tumor and are observed as isolated cells or small clusters 
of cells in histologic sections. Cancers in which tumor 
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budding has been observed and studied include colorectal, 
gastric and esophageal, lung, head and neck, and also 
breast cancers[1]. Tumor buds may be observed in areas 
near the margins of tumors at the invasive tumor front 
and are called peritumoral buds, or inside the tumor mass 
and are thus called intratumoral buds[2]. Identification 
of the tumor buds has been undertaken using plain 
eosin and hematoxylin sections or immunohistochemical 
methods. Although plain section staining is often sufficient 
in order to identify tumor budding, in some occasions 
involving significant inflammatory cell infiltration, im­
munohistochemical methods increase the confidence 
of the assessment and the inter-observer agreement. 
In addition to the area of the tumor where budding is 
observed (intratumoral versus peritumoral) as well as the 
method of staining used, studies have also used differing 
field examinations in quantifying budding. Some studies 
quantify budding in five high-power fields (HPF), while 
others count ten HPF. Some investigators use the areas 
of highest budding observed in order to classify cases, 
while others use mean counts of all fields examined. 
These methodological variations make comparisons 
across studies less straight-forward and hamper adoption 
of tumor budding as a more widely-used histologic 
phenomenon for clinical purposes such as prognostication.

PATHOPHYSIOLOGIC SIGNIFICANCE OF 
TUMOR BUDDING
Tumor budding is believed to represent cancer cells caught 
in the process of invasion[3]. From a pathophysiologic 
perspective, tumor budding has been explained as 
a sign of cancer cell motility and as a first step in the 
metastatic process[1]. The metastatic process begins 
with detachment of cells from the tumor bulk, infiltration 
through surrounding tissues into small blood vessels, 
and travel through the circulation to remote locations 
where they extravasate and may eventually establish 
colonies of metastatic disease. Paramount in metastasis 
is the process of epithelial to mesenchymal transition 
(EMT) and the reverse process of mesenchymal to 
epithelial transition (MET)[4]. These processes, sometimes 
collectively referred to as epithelial mesenchymal plasticity, 
are part of normal embryogenesis and physiologic wound 
healing, and have been usurped by cancer. During 
EMT, detached cancer cells partially or completely lose 
their epithelial characteristics, detach from neighboring 
epithelial cells and gain mesenchymal characteristics, 
including expression of mesenchyme-associated proteins, 
to become motile. In metastatic sites, the reverse process 
takes place when arriving cells, helped by cues in their 
new microenvironment, regain epithelial properties and 
re-establish connections with neighboring cells[5]. EMT/ 
MET associated with cancer may be incomplete, and 
intermediate forms with partial epithelial or mesenchymal 
characteristics may be part of a continuous spectrum[6,7]. 
In fact, cancer-associated EMT/ MET is believed to endow 
cells with stem cell properties, and the plasticity associated 

with this stemness may help motile cells alternate along 
the spectrum between epithelial and mesenchymal states 
during their metastatic journey[8,9]. Partial EMT may be the 
state of cells in tumor buds with two to five cells, where 
connections between them are maintained and the cells 
of the bud are destined to remain connected and move 
together through the circulation to the metastatic site. 
Alternatively, in some instances, buds may represent an 
initial step of detachment and, subsequently, individual 
cells may further detach from the other bud cells and 
move individually. Both scenarios have been observed in 
experimental studies[10,11].

Tumor cells in buds of various epithelial cancers, 
including colorectal, pancreatic, lung and breast adeno­
carcinomas, lose the normal expression of membrane 
E-cadherin, which shows a modified cytoplasmic pattern 
of expression[12]. Subsequently, the mesenchymal 
transcription factor ZEB1 is upregulated in the nucleus. 
These changes are observed in both budding cells within 
protrusions still connected to the main tumor mass 
and in cells of tumor buds already detached from the 
main mass[12]. Budding cells, despite expressing the 
mesenchymal marker vimentin, do not completely lose 
cytokeratin staining, consistent with an incomplete EMT[13]. 
ZEB1, along with the related transcription factor ZEB2, 
as well as other transcription factors such as Snail, Slug, 
Twist1 and FOXC2 constitute the core network of EMT[14]. 
These core factors receive signals from a complement 
of signaling pathways and cooperate with additional 
transcription factors such as NF-κB and c-Myc to influence 
cell fate across the epithelial-mesenchymal continuum[5]. 
Interestingly, NF-κB and Twist1 have been confirmed to be 
expressed in the cells of tumor buds and the surrounding 
stroma[15,16]. Two additional observations, pertaining to 
the biologic implications of tumor budding as a first step 
of the metastatic process and its relationship to EMT and 
stemness properties, have been reported in studies done 
on colorectal cancer. First, cancer cells in tumor buds 
lose expression of the transcription factor CDX2, which is 
a marker of intestinal differentiation expressed in most 
colorectal cancers and associated with improved prognosis 
compared with colorectal cancers that do not express 
it[17,18]. CDX2 is usually observed to be re-expressed 
at metastatic sites. Second, the expression of the pro­
liferation marker Ki67 is low in tumor buds, denoting a 
quiescent state[19]. These observations are consistent with 
the dedifferentiation of tumor cells in tumor buds and low 
proliferation during invasion, suggestive of their acquisition 
of an EMT/stemness phenotype which is reversed at the 
metastatic sites.

PROGNOSTIC IMPLICATIONS OF TUMOR 
BUDDING
The clinical significance of tumor budding has begun to 
be elucidated in recent years with studies associating the 
phenomenon with adverse clinical outcomes[20,21]. The 
cancer location where tumor budding has been initially 
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described and remains still more extensively studied is 
the colon and rectum[2]. A meta-analysis of reports of 
the prognostic role of tumor budding in rejected stage Ⅱ 
colorectal cancers observed worse survival outcomes in 
patients with tumor budding, with an odds ratio for death 
at five years of 6.25 (95% CI: 4.04-9.67) in patients with 
budding compared to those that had no tumor budding 
in their tumors[22]. In rectal cancer, the presence of tumor 
budding in biopsies before neo-adjuvant chemo-radiation 
was associated with poor response to neo-adjuvant 
treatment[23]. No patients among those with tumor 
budding had complete pathologic response rates (pCR) 
to neo-adjuvant treatment, whereas pCR was observed 
in 17% of patients without budding in their pre-treatment 
biopsy.

Tumor budding has also been studied in other gastro­
intestinal cancers. In a series of squamous esophageal 
cancer patients who received neoadjuvant chemotherapy 
with the 5-fluorouracil, cisplatin and doxorubicin regimen, 
tumor budding in the post-treatment surgical specimen 
was the most important predictive factor for overall 
survival (OS) and progression-free survival in multivariate 
analysis[8]. Patients with high-grade budding, defined 
as five or more scattered cell formations (buds) in a 
low power field of maximal budding, had a five-year 
OS of 17% compared with a five-year OS of 49% in 
patients whose tumors had low-grade budding, defined 
as less than five buds in the low power field of maximal 
budding[8].

In patients with gastric adenocarcinoma, high-grade 
tumor budding was a prognostic factor of worse OS[24]. 
High-grade tumor budding was defined in this study as 
five or more tumor buds on average in ten HPF (400
×), and conferred an increased risk of death with a 
hazard ratio of 2.26 (95% CI: 1.61-3.15) compared 
with patients whose tumors had low-grade budding. The 
prognostic value of budding for OS remained significant 
after adjustment for other factors in multivariate analysis. 
In a series of pancreatic cancer patients, tumor budding 
was observed in all cases where patients with high-grade 
budding (defined in this study as more than ten buds per 
HPF) had a worse OS than patients with low-grade tumor 
budding[25]. Additional reports concur with a role of tumor 
budding as an adverse prognostic factor in pancreatic 
adenocarcinoma[26,27].

Beyond gastrointestinal cancers, additional reports 
have shown that tumor budding is a prognostic factor 
in other cancers such as lung cancer and head and 
neck carcinomas. In an extensive study of stage Ⅰ lung 
adenocarcinoma patients, high-grade tumor budding, 
defined as five or more buds in an HPF, was associated 
with a recurrence rate that was worse than low-grade 
tumor budding[21]. This was true for all histologic subtypes 
investigated (acinar-predominant, papillary-predominant 
and solid-predominant), and for stages ⅠA and ⅠB. In 
early-stage oral squamous cell carcinomas, the presence 
of high-grade tumor budding of ten or more buds per 
HPF was associated with a worse disease-free survival 
(DFS) than intermediate level budding (five to less than 

ten buds per HPF), and intermediate-grade budding had 
worse progression-free survival than low-grade budding 
(less than five buds per HPF)[28]. Differences remained 
significant in the multivariate analysis. The study used 
pan-cytokeratin immunostaining to ascertain the iden­
tification of tumor buds.

TUMOR BUDDING IN BREAST CANCER
The above studies suggest that tumor budding is a 
phenomenon observed across cancer types and has 
adverse prognostic significance. Based on this evidence, 
studies have been undertaken to investigate whether 
tumor budding could be of clinical importance in breast 
cancer. Of note, breast cancer-associated tumor budding 
akin to budding observed in other cancers should not be 
confused with the process of tumor cells of the breast 
duct invading the basal membrane, which has also been 
referred to as "budding" by some investigators[29]. In a 
study of 244 estrogen receptor (ER)-positive, human 
epidermal growth factor receptor 2 (HER2)-negative and 
131 triple negative localized breast cancers, tumor budding 
was associated with worse OS in triple negative but not 
in ER-positive, HER2-negative patients[30]. Interestingly, 
tumor budding was not predictive of DFS in either group, 
but it was predictive of a poorer DFS in the sub-group of 
ER-positive, HER2-negative patients with an intermediate 
Oncotype Dx score. This study examined budding in 
areas of maximal presence (termed H-TB) as well as the 
average budding in five HPF (termed A-TB), and supports 
the notion that H-TB is sufficient for prediction while A-TB 
does not add significant information[30]. In another study 
that included localized breast cancers across the sub-type 
spectrum, higher tumor budding (> seven buds per a 200
× power field in a slide with the maximal invasive margin) 
was observed in about two thirds of patients, while 
the remaining one third displayed low tumor budding 
(seven or fewer buds per 200× power field in a slide 
with the maximal invasive margin). High tumor budding 
as well as tumor size, nodal status and the presence of 
lymphovascular invasion were independently associated 
with OS[31]. Immunohistochemical studies showed that 
tumor bud cells had increased vimentin expression and 
decreased E-cadherin expression compared with the 
center of the tumor, suggesting that they had undergone 
an EMT[13]. In addition, they were less positive for the 
proliferation marker Ki67 than the center of the tumor. 
Higher tumor budding (defined in this study as more 
than 20 buds at the field with the highest budding) was 
also independently associated with worse cancer-specific 
survival in a series of over 400 breast cancer patients 
with localized disease[32]. With the definition used in this 
series, 35% of patients had high tumor budding and 
65% had low tumor budding. The hazard ratio for cancer-
specific survival was 2.08 (95% CI: 1.14-3.09) in patients 
with high tumor budding compared with patients with 
low tumor budding[32]. Another series with early breast 
cancer patients across sub-types, but mostly consisting 
of luminal cancers, showed that high tumor budding was 
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associated with lymphatic invasion and positive lymph 
node disease[33].

A series of 146 ductal carcinoma patients with operable 
disease was evaluated for both tumor budding, defined 
as less than five cells per bud, as well as for the presence 
of buds of five or more tumor cells not forming glands, 
termed “poorly differentiated clusters”[34]. Both higher 
levels of tumor budding and poorly differentiated clusters 
were associated with a worse DFS and OS. In multivariate 
analysis, both phenomena remained significant, along with 
tumor size and nodal status. Authors of this study propose 
poorly differentiated clusters to be the preferred marker 
of prognosis, as they consider this easier to evaluate than 
tumor budding[34].

Given the suggested participation of cells of tumor 
buds in EMT and the associated changes in protein 
expression, an interesting question is whether cells in 
the tumor buds of breast cancers maintain the same 
ER, progesterone receptor and HER2 profile as the main 
tumor mass. A study addressing this question showed that 
expression of hormone receptors and of HER2 is mostly 
concordant between the main tumor mass and tumor 
buds in 96.5% of tumors examined[35]. However, another 
study showed that isolated tumor cells at the invasive 
front of ER-positive, HER2-negative luminal cancers co-
expressed HER2 and aldehyde dehydrogenase, in contrast 
to the main tumor mass[36]. Thus, it appears that there 
is heterogeneity in the stability of the profile of tumor 
buds. It is also possible that, at least in some cases, cells 
in buds, despite undergoing a partial EMT, maintain their 
initial hormone receptor and HER2 status. This uncertainty 
could be elucidated by studies examining concomitant 
expression of hormone receptors and the HER2 receptor, 
along with EMT markers at tumor buds from the same 
cancer specimens.

PERSPECTIVES
The association of tumor budding with the pathophy­
siologic correlation between metastasis and EMT is an 
important avenue to further explore in breast cancer 
clinical research. EMT is also associated with stemness 
characteristics, and the status of tumor bud cells across 
the stem cell differentiation axis would thus be interesting 
to define[8,9]. Cancer stem cells are commonly quiescent, 
and this would correlate with the low Ki67 index shown 
in some cases[19]. Further study of stem cell markers in 
tumor buds is warranted.

As mentioned in a previous section, tumor budding 
in biopsies of rectal cancer patients was predictive of 
response to neo-adjuvant chemoradiation[23]. In addition, 
the presence of tumor budding in post-neoadjuvant 
chemotherapy surgical rejection specimens of esophageal 
carcinomas was associated with worse survival out­
comes[20].  Neoadjuvant chemotherapy is increasingly used 
in breast and other cancers in order to down-stage locally 
advanced disease prior to definitive surgical rejection 
of the tumor.  In breast cancer, specifically, it is applied 

when breast conserving surgery is desired but not initially 
technically possible due to the size and extent of the 
tumor. It is also used in node-positive disease, especially in 
tumors with aggressive biology, defined as triple negative 
or HER2-positive. These cancers tend to respond better to 
chemotherapy (or the combination of chemotherapy and 
HER2-targeting treatments in the case of HER2-positive 
cancers) than ER-positive cancers[37]. Complete pCR to 
neoadjuvant chemotherapy range between 30% to 40% 
in triple negative and HER2-positive cancers, but are 
observed only in about 10% of hormone receptor-positive 
cancers[38]. However, the majority of patients will still 
have residual disease after neoadjuvant chemotherapy, 
independent of their cancer subtype. In addition, there 
are no predictive markers for the response of patients 
to neoadjuvant treatment besides tumor subtype. Thus, 
in this scenario, tumor budding could be an additional 
predictive marker to consider in order to better predict 
tumor responses to treatment, should further studies 
confirm its predictive value.

From a therapeutic perspective, the associations 
of tumor budding with EMT and cancer stem cell char­
acteristics may position tumor budding as a predictive 
marker for treatment with specific anti-metastatic 
treatments, and against stemness phenotypes that are 
investigated and may become clinically available in the 
future.
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Abstract
Oxidative stress stemming from tissue exposure to constant hyperglycemia is one
of  the  major  pathogenetic  pathways  of  diabetic  macro-  and  microvascular
complications.  Diabetic  polyneuropathy,  commonly  manifesting  as  distal,
symmetrical  sensorimotor  polyneuropathy,  is  characterized  by  progressive
severity of symptoms, with rates analogous to the quality of glycemic control
achieved by the patients  and physicians.  Palliative care with analgesics  and
aggressive  glycemic  control  often  improve  quality  of  life  in  the  absence  of
causative treatment. Currently, there is a growing body of evidence indicating
the  role  of  microRNAs  in  the  pathogenesis  of  diabetic  complications,  with
emphasis on diabetic nephropathy and neuropathy. Therefore, in this review, we
aim  to  explore  the  role  of  microRNAs  and  their  polymorphisms  in  the
pathophysiology of diabetic polyneuropathy, as well as, the possibility of novel
diagnostic and therapeutic applications by epigenetic profiling and manipulation.

Key words: Diabetic neuropathy; Type 2 diabetes mellitus; Type 1 diabetes mellitus;
Epigenetic; MicroRNAs
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INTRODUCTION
Diabetic neuropathy (DN), a common microvascular complication in type 1 (T1DM)
and type 2 diabetes mellitus (T2DM) and is defined as the presence of signs and/or
symptoms  of  peripheral  nerve  dysfunction  in  patients  with  diabetes  after  the
exclusion  of  other  causes[1,2].  Population  and  clinical-based  studies  suggest  DN
prevalence  rates  of  20%  in  T1DM  following  20  years  of  disease  duration  and
approximately 10%-15% at T2DM diagnosis increasing to as high as 50% at 10 years of
disease[3].  Despite  the  research  conducted  on  the  topic,  the  pathophysiology
underlying the process has not been clearly defined, on account of both the numerous
intertwining  causative  mechanisms  and  the  difficulty  in  establishing  a  definite
diagnosis[4]. Specifically, the diagnostic approach of DN is complicated rather than
standardized, commonly comprising of a combination of various qualitative and
quantitative methods in order to increase the sensitivity and specificity of the results.

Additionally, effective screening for early abnormalities preceding the appearance
of  overt  clinical  manifestations,  patients  with  asymptomatic  disease  course,  or
identification of candidates for the development of DN has not been achieved, to a
satisfactory degree, by use of current methods[5]. In correlation to the lack of a highly
reliable diagnostic method for DN, there is a similar degree of complexity concerning
the treatment regimens currently in use. In the absence of causative treatment for the
development  of  DN,  current  therapeutic  approach  is  often  comprised  of  a
combination  of  glycemic  control  and  pain  management[3].  Both  the  need  for
development  of  a  high  repeatability,  non-invasive,  diagnostic  method  and  the
identification  of  a  possible  causative  therapeutic  approach  for  DN,  allow  for
consideration the possible use of microRNAs (miRNAs), molecules that have been
utilized  as  biomarkers  and  focus  points  of  targeted  therapy  in  numerous
pathophysiological processes[6].

Therefore, in the present review, we attempt to summarize the existing literature
data on the role of miRNAs and their polymorphisms in the pathophysiology of DN,
as well as the possibility of utilizing the aforementioned research for novel diagnostic
and therapeutic applications by means of epigenetic profiling and manipulation.

CIRCULATING MIRNAs AS BIOMARKERS AND
THERAPEUTIC TARGETS
MiRNAs  are  small,  non-coding  RNA  sequences  with  a  regulatory  role  in  post-
transcriptional modification of gene products. Structurally, they comprise of 18-24
nucleotides in length that are organized in a partially complementary manner to
cellular mRNA molecules.  MiRNAs bind to mRNAs via  base pairing and induce
various changes to the latter, ranging from destabilization to cleavage of the molecule.
Alternatively,  the  mRNA-ribosome  complex  formation  is  disrupted  by  miRNA
interference,  resulting into similar deregulation of  the normal protein formation
sequence[7]. Various cellular and tissue types have been shown to express miRNAs as
part of their metabolic, developmental and homeostatic processes[8].

It has long been established that the prospect of utilizing circulating miRNAs as
diagnostic  and  therapeutic  tools  could  provide  substantial  insight  into  the
mechanisms underlining numerous disease processes, as well as become the substrate
for therapeutic advances in multifactorial disease states[6]. Currently, novel prospects
are being explored concerning the utility of  miRNA measurement in the clinical
setting, such as assessing response to treatment or disease activity[7].

Researchers  have  isolated stable  miRNA molecules  from various  tissue  types
including human plasma, indicating the ability for genetic profiling by use of blood
samples,  a  process  far  more  accessible  and  easily  conducted  on  both  in-  and
outpatient setting than tissue biopsy[9]. The possible value of miRNA profiling in DN
is  supported  by  the  fact  that  mapping  of  aberrant  miRNA expression  has  been
performed  in  both  nervous  system  and  metabolic  disorders,  along  with  the
observation that most of the currently discovered miRNAs are located in the brain
and peripheral neural tissue[9].

Simultaneously to new details for miRNA aberrant expression patterns in disease
constantly being unveiled, current methods for epigenetic manipulation of target
genes are being ameliorated. The two main approaches to miRNA centered therapy
are substitution of under-expressed or otherwise modified miRNAs with functional
copies designed ex vivo, termed miRNA mimics, or delivery of small molecules, in
vivo, that disrupt the pathophysiological cellular pathways in which the target genes
participate. Both miRNA mimics and inhibitors have been delivered at the target
tissues by use of numerous conjugate molecules in the experimental setting[9]. The
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main delivery platforms are subdivided into two categories, non-viral and viral, with
the  latter  harboring  many safety  concerns.  Some of  the  non-viral  molecules  are
cationic polymers, various conjugates and liposomes, with neutral lipid particles
having a more balanced organ-wide distribution than cationic complexes, resulting in
less unwanted accumulation in certain tissues. Exosomes and bacteriophages, while
being efficient delivery platforms, have the possibility of triggering adverse events
such as immune dysregulation and are, therefore, not the vectors of choice[10].

The  integration  of  miRNA-centered  treatments  in  real-world  conditions  is
progressing rapidly, with several clinical trials currently underway[11].

MIRNAS IN DIABETES MELLITUS AND METABOLIC
DYSREGULATION
Aberrant expression of miRNAs in tissue and plasma samples has been linked to the
pathogenesis  of  several  metabolic  diseases,  mainly  because  of  their  role  in  the
development and homeostasis of metabolically active tissues.

Ample evidence has suggested the involvement of disrupted miRNA expression
patterns in metabolic dysregulation. While the spectrum of metabolic disease is wide
and includes many, often overlapping, syndromes and pathological  states,  some
prime examples of aberrant tissue miRNA expression include those of miRNA-15b in
non-alcoholic fatty liver disease, miRNA-744 in non-alcoholic steatohepatitis, miRNA-
132-3p in obesity and miRNAs -30b, -455, -491 and -365-3p in pathological adipose
tissue differentiation[12].

MiRNAs from many tissue types involved in diabetes have been linked to many
components of the disease state. Several pancreatic, cardiac, liver, kidney, skeletal,
endothelial  and adipose tissue miRNAs interact directly or indirectly with β-cell
pathophysiology, inducing or suppressing pathways involved in lipid metabolism
and  adipocyte  differentiation  (miRNA-181d,  -27a/b,  -103,  -  107,  -143),  insulin
resistance, glucose-mediated insulin secretion and exocytosis (miRNA-29a/b/c, -375,
-9, -124a, -96, -34a, -30d, -223, -320, -21), β-cell development, apoptosis and function
(miRNA-375, -9, -195, -126, -296, -34a, -146b, -21) cardiomyocyte apoptosis and cardiac
arrythmiogenesis (miRNA-206, -1, -133a), endothelial dysfunction and angiogenesis
(miRNA-93, -320, -125a/b) and glomerular activity (miRNA-192, -216a, -217)[13].

Further, disease-specific research on diabetics and more specifically, profiling of
circulating  miRNAs  as  predictors  for  T2DM  or  prediabetes  in  healthy  subjects
indicated the existence of a link between higher plasma levels of miRNA-150 and
miRNA-30a-5p,  and lower levels of  miRNA-375 and miRNA-15a at  baseline and
disease development after a median follow-up of 60 mo[14].

Similarly, to miRNA-15a, the expression of several other circulating molecules has
been found to be down- or upregulated in plasma samples of T2DM subjects. La Sala
et al[15] note that miRNAs -20b, -21, -24, -126, -191, -197, -223, -320 and -486 in T2DM
plasma samples  are  present  in  lower  concentrations  when compared to  healthy
controls, while miRNA-28-3p in upregulated. Among the aforementioned miRNAs, -
15a, -28-3p, -126, -223 and -320 have been proposed for possible use as biomarkers of
T2DM.

Additionally, recent data acquired from analysis of various expression patterns of
quantitative trait loci in mouse inbred strains with varying susceptibility to metabolic
dysregulation and T2DM development has indicated an upregulation of miRNA-31 in
adipose tissue of obese and type 2 diabetic subjects. MiRNA-31 interacts with genes of
the insulin signaling pathway and adipose tissue proliferation[12].

MIRNAS AS BIOMARKERS IN DIABETIC NEUROPATHY:
WHY, WHICH AND WHEN?
The most important problem posed when discussing a novel treatment possibility in
the  clinical  setting  is  the  clarification  of  the  circumstances  under  which  a  new
interventional approach should be applied, or, in simpler terms, the evaluation of the
cost-effectiveness of the method. In the setting of DN, the two pivotal arguments in
favor  of  epigenetic  modification  are  the  lack  of  causative  treatment  for  a  major
complication of a chronic disease with a high prevalence and the enormous impact of
DN on the patients’  quality of life,  an indisputable fact  that has been repeatedly
documented[3,16].

Researchers on the field of epigenetics have provided insight on some miRNA
molecules that could be evaluated as possible biomarkers or therapeutic targets in
diabetes-induced neuropathy.  A study including 60 diabetic  subjects  revealed a
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correlation between miRNA-199a-3p and reduced expression of extracellular serine
protease inhibitor E2 resulting in DN manifestation and accelerated progression[17]. A
similar pathway has been described, involving miRNA-190a-5p downregulation and
resultant impaired solute carrier family 17 member 6 gene inhibition in painful DN[18].
Conversely,  medically  induced  downregulation  of  miRNA-25  exacerbated  the
development of DN via  an increase of advanced end glycation products and their
receptors in peripheral neural tissue, indicating the neuroprotective attributes of
miRNA-25 molecules[19]. In an experimental model on diabetic rodents, miRNA-9 and
its interaction with calcium homeostasis modulator 1 were suggested to be involved
in the pathophysiological pathway of painful DN[20]. MiRNA-146 located in circulating
mononuclear  cells  modulates  inflammatory  response  in  diabetic  peripheral
neuropathy[21,22].  DN painful  manifestation  and  inflammatory  response  are  also
affected by miRNA-23a via chemokine CXC receptor 4-related signaling[23]. Recent
data indicate that a certain genotype termed “GG” in miRNA499A has been linked to
cardiovascular autonomic neuropathy as well as diabetic polyneuropathy[24]. Finally,
substantial upregulation of miRNA-29c and subsequent protein kinase C iota gene
under-expression have been associated with distal  neural  damage in a  model  of
diabetic rodents[25]. A brief comparison of all relevant to DN miRNAs discussed above
is presented in Table 1. Circulating molecules can be used more readily as biomarkers
when compared to tissue-derived molecules.

Even with the existence of an abundance of possible biomarkers and therapeutic
targets,  as  indicated  by  the  research  described  above,  the  timeframe  in  which
predisposition for DN development can be detected or DN can be treated is yet to be
defined. While it is expected that miRNA aberrant expression patterns precede the
clinical manifestation of DN, the elucidation of the exact timeline describing when
these changes occur and can be detected in the research setting in advance is  of
uttermost  importance  in  the  design  of  effective  intervention  algorithms  for
complication prevention. When miRNA manipulation is examined in the scope of
neuropathy treatment, it should be studied whether miRNA expression normalization
can reverse damage already done to the neural tissue or impede the progression of
sensory  and  motor  deterioration.  Furthermore,  the  particular  points  in  disease
progression appropriate for treatment initiation or termination can be defined, based
on treatment efficacy at different stages and forms of disease.

CONCLUSION
MiRNA-based diagnosis and therapy are highly likely to be the future of treatment
and prevention, especially in multifactorial disease processes. The transition from
theory to practice, while an ongoing process, is rapidly progressing, with several
molecules being used in clinical trials and many more currently on the preclinical-
stage. While DN is the result of several complex pathophysiological processes, several
miRNA molecules involved and their role have been described, setting the stage for
the  practical  application  of  the  aforementioned  information.  A  next  step  in  the
development  of  miRNA-based diagnosis,  staging  and therapy is  examining  the
miRNAs so far associated with neuropathy and diabetes in a prospective cohort study
including diabetic subjects free of complications, with the goal of evaluating miRNA
epigenetic changes accumulating over time in correlation with the appearance and
severity of DN. Current available research data indicate that miRNAs -199a-3p, -146
and -499a can be used as circulating biomarkers, while the aforementioned along with
miRNAs -190a-50, -25, -9, -23a and -29c have potential as therapeutic targets in DN.
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Table 1  Possible biomarkers and therapeutic targets in diabetic neuropathy

MiRNA molecule Mechanism Expression in DN Circulating Citation

miRNA-199a-3p Inhibition of SerpinE2
expression - coagulation in

peripheral circulation

Upregulated Yes
[18]

miRNA-190a-5p Inhibition of SLC17A6 gene Downregulated No
[19]

miRNA-25 Inhibition of oxidative stress,
decreases AGEs and RAGE

production

Downregulated No
[20]

miRNA-9 Interacts with CALHM1 in
neuron-glial signalling

Upregulated No
[21]

miRNA-146 Interacts with NFκB and
inflammatory cytokines

production

Downregulated Yes
[22,23]

miRNA-23a Targets CXCR4 - regulates
neuropathic pain

Downregulated No
[24]

miRNA499A Prevents cardiomyocyte
apoptosis and mitochondrial
fission (impaired in cardiac

autonomic neuropathy);
regulates insulin resistance

Upregulated (GG genotype
with rs3746444)

Yes
[25]

miRNA-29c Inhibits neural axonal growth
via inhibiting PRKCI gene

expression

Upregulated No
[26]

MiRNAs: microRNAs; CALHM1: Calcium homeostasis modulator 1; AGEs: Advanced end glycation products; RAGE: Receptor of advanced end glycation
product; SerpinE2: Serine protease inhibitor E2; SLC17A6: Solute carrier family 17 member 6; PRKCI: Protein kinase C iota.
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