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Abstract
Artificial intelligence (AI) has grown tremendously in the last decades and is 
undoubtedly the future era in medicine. Concerning digestive diseases, 
applications of AI include clinical gastroenterology, gastrointestinal endoscopy 
and imaging, and not least pathological diagnosis. Several gastrointestinal 
pathologies require histological confirmation for a positive diagnosis. Among 
them, celiac disease (CD) diagnosis has been in the spotlight over time, but 
controversy is still ongoing with regard to the so-called celiac-type histology. 
Despite efforts to improve histological diagnosis in CD, there are still several 
issues and pitfalls associated with duodenal histology reading. Several papers 
have assessed the accuracy of AI techniques in detecting CD on duodenal biopsy 
images and have shown high diagnostic performance over standard histology 
reading. We discuss the role of computer-assisted histology in improving the 
assessment of mucosal architectural injury and inflammation in CD patients, both 
for diagnosis and follow-up.
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Core tip: Histology in celiac disease (CD) diagnosis is hampered by several pitfalls, from 
low adherence to biopsy sampling recommendations and reporting of results to significant 
inter-observer variability. A quantitative, computer-assisted histological assessment of 
mucosal biopsies could overcome many of the current limitations of conventional 
histology. We herein discuss the current evidence on artificial intelligence-based histology 
in CD diagnosis and its role in improving histological measurements in CD.
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DIGITAL HISTOLOGY IN CELIAC DISEASE – A PRACTICE CHANGER
Artificial intelligence (AI) has grown tremendously in the last decades and is 
undoubtedly the future era in medicine. From optimizing diagnosis to guiding 
therapy, AI can be a real practice changer in several medical specialties. Concerning 
digestive diseases, applications of AI include clinical gastroenterology, gastrointestinal 
(GI) endoscopy and imaging and pathological diagnosis. It is well known that several 
GI pathologies require histological confirmation for a positive diagnosis. Among them, 
celiac disease (CD) is a well-recognized systemic autoimmune disorder triggered by 
gluten ingestion in genetically susceptible individuals, whose diagnosis in adults is 
based on testing for specific antibodies and histological examination of the small 
bowel mucosa. CD diagnosis has been in the spotlight over time with several guideline 
updates, but controversy is still ongoing with regard to the so-called celiac-type 
histology[1,2]. While significant improvement has been made concerning mucosal 
sampling techniques, site sampling, number and processing of biopsies and 
standardization of histopathology reports, there are still many issues and pitfalls 
associated with duodenal histology reading[3,4]. The issues of bulb biopsies, sampling-
associated artifacts, orientation and readability of biopsy samples, inter-observer 
variability and low adherence to currently available histology reporting systems have 
all been a matter of debate in recent literature and have set the need for optimizing 
histological diagnosis in CD[5,6].

With growing medical data and the need to optimize care in a setting of limited 
human resources, AI has emerged as a breakthrough solution for improving diagnosis, 
treatment selection and even guiding prognosis in various medical fields. Several AI 
techniques have been used, such as machine learning, decision trees, support vector 
machines and artificial neural networks[7]. In gastroenterology, several applications 
have been validated both for the GI tract and hepato-biliary-pancreatic pathology[8-10].

CD has been a good candidate for AI applications, owing to its clear-cut diagnosis 
and the validation of endoscopic markers of villous atrophy[11]. At first, most of the 
interest with AI in CD was oriented on computer-aided detection of villous atrophy[12], 
but recently there has been a switch in focus on digital histology in CD. Several papers 
have assessed the accuracy of AI techniques in detecting CD on duodenal biopsy 
images and have shown high diagnostic performance over the standard histology 
reading. Using a machine learning–based histopathological analysis model, Syed 
et al[13] showed a 93.4% case-detection accuracy on 3118 images from duodenal biopsies 
of patients with environmental enteropathy, CD and controls. A deep learning 
approach on automated detection of CD was described by Wei et al[14] in 212 biopsies 
(1230 slides), which identified CD, normal mucosa and non-specific duodenitis with 
95.3%, 91.0%, and 89.2% accuracy, respectively. A novel, quantitative histology 
algorithm proposed by Das et al[15] has been developed on digitized images of 
duodenal biopsies from a derivation cohort of 261 subjects (137 controls, 124 CD) and 
then validated on 225 subjects (105 controls, 120 CD), discriminating CD from controls 
with 90.3% sensitivity and 93.5% specificity; this Q-histology classification system was 
proven superior to all existing histological classification systems (Marsh, Marsh-
Oberhuber, Corazza-Villanacci, Ensari) with regard to intra- and interobserver 
agreement. Moreover, in a real-world setting, even these qualitative scoring systems 
are rarely used in pathology reports, which are often just descriptive[5,16].

Computer-assisted histological assessment of duodenal biopsy slides overcomes 
many of the issues associated with conventional histology. In contrast with the 
currently available, subjective, qualitative evaluation of slides, digital histology 
provides a quantitative assessment of duodenal mucosal biopsies and could be of great 
use in equivocal cases, in measuring changes on follow-up biopsies and in multicentric 
clinical trials. Besides providing quantifiable measurements, an automated histology 
image analysis could reduce the burden of pathology departments by prescreening 
histology slides and saving only those that are preliminarily classified as diseased 
mucosa to be reviewed by the pathologists[14]. Not least, computer-assisted quantitative 
histology could provide arguments for cases of mild enteropathy that could otherwise 
be mislabeled as normal or for cases of refractory CD.

A large European multicentric study with central pathology reading has shown an 
alarmingly high discordance rate of 7.1% in labelling a case as either CD (Marsh 2/3) 
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or non-CD (Marsh 0/1)[17]. Considering the implications of either missing a diagnosis 
of CD or misdiagnosing a normal individual as CD, there is a promising role for 
computer-assisted histology in CD. AI-techniques can provide objective and accurate 
histological measurements in CD diagnosis and help avoid all the confounding factors 
associated with currently used conventional histology. Also, AI-based histology could 
be used as an alternative to expert pathologists in clinical trials, where small changes 
of the mucosa may occur with different interventions, and precise measurements are 
warranted[16].

At a glance, AI-based diagnosis might seem the perfect practice changer in CD 
management. However, there are some pitfalls with CD diagnostic based on AI 
techniques. On one hand, there is the issue of correctly labelling a histology image as 
appropriate for reading; previous studies have shown that bad orientation of samples 
can require re-cuttings for proper reading and correct diagnosis, and this is currently 
eyed by the pathologist[18]. Moreover, there is the wide-spectrum of non-celiac villous 
atrophy, which can pose diagnostic challenges[19].

At present, we are simplifying the continuum of mucosal injury in CD patients with 
a categorical score, in one of the Marsh-Oberhuber classes. Using computer-assisted 
histology, we can significantly improve the assessment of mucosal architectural injury 
and inflammation in CD patients, both for diagnosis and follow-up.
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Abstract
With the rapid advancements in computer science, artificial intelligence (AI) has 
become an intrinsic part of our daily life and clinical practices. The concepts of AI, 
such as machine learning, deep learning, and big data, are extensively used in 
clinical and basic research. In this review, we searched for the articles in PubMed 
and summarized recent developments of AI concerning hepatology while 
focusing on the diagnosis and risk assessment of liver diseases. Ultrasound is 
widely conducted for the routine surveillance of hepatocellular carcinoma along 
with tumor markers. Computer-aided diagnosis is useful in the detection of 
tumors and characterization of space-occupying lesions. The prognosis of 
hepatocellular carcinoma can be estimated via AI using large-scale and high-
quality training datasets. The prevalence of nonalcoholic fatty liver disease is 
increasing worldwide and pivotal concern in the field is who will progress and 
develop hepatocellular carcinoma. Most AI studies require a large dataset, 
including laboratory or radiological findings and outcome data. AI will be useful 
in reducing medical errors, supporting clinical decisions, and predicting clinical 
outcomes. Thus, cooperation between AI and humans is expected to improve 
healthcare.

Key words: Artificial intelligence; Deep learning; Machine learning; Hepatocellular 
carcinoma; Prognosis; Computer-aided diagnosis
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Core tip: Artificial intelligence (AI) plays a significant role in our daily life and the 
research field. In this review, we summarized the recent findings of AI concerning 
hepatology. AI will be useful in the detection and diagnosis of liver tumors and the 
discrimination of high-risk patients for hepatic decompensation and hepatocellular 
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carcinoma development. Furthermore, AI can be utilized in basic research, such as in the 
interpretation of genomics, transcriptomics, and proteomics. We hope that this review will 
help in future management.
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INTRODUCTION
Recent developments in artificial intelligence (AI)-related techniques have shown a 
remarkable improvement in the field of healthcare[1]. Among others, AI comprises 
search algorithms, expert systems, machine learning, and deep learning[2]. Machine 
learning requires feature characteristics input by a human; however, technical 
advances achieved by innovation in computer science leads to a more sophisticated 
deep learning method[3]. Deep learning provides new insight into existing diseases but 
not into why the chosen parameters cannot be interpreted or understood. The issue of 
ensuring the balance between white box and black box AI is widely debated among 
the research community[4]. Nevertheless, exploration and translation of black box AI 
could lead to a better understanding of the disease mechanism. Moreover, it could 
pave the way for novel discoveries in their treatment.

Such advances in hepatology can be useful for detecting tumors and screening high-
risk populations for hepatocellular carcinoma (HCC) development. A curable 
treatment for HCC can be adopted when the tumors are found in early stages[5]. 
Routine ultrasonography is widely accepted as a screening method for HCC[6]. 
However, an ultrasound (US) is highly dependent on the sonographer’s skill. Thus, AI 
detection systems can be used for efficient detection.

Infections from the hepatitis B virus and hepatitis C virus are well-recognized risk 
factors for hepatic decompensation and HCC development[7-9]. In addition, 
nonalcoholic fatty liver disease (NAFLD) has been recently identified as a risk factor. 
The prevalence of NAFLD is increasing and has been estimated at 24% worldwide. Its 
incidence is observed to be highest in South America and the Middle East followed by 
Asia, United States, and Europe[10,11]. Chronic liver diseases cause liver fibrosis and 
progresses through mild fibrosis to cirrhosis. Liver fibrosis is also one of the well-
known risk factors for hepatic decompensation and HCC development[12,13]. Any 
chronic liver disease could be worse without proper treatments. To determine who is 
at high-risk for HCC development and disease progression in such a population is a 
crucial clinical question. The deep learning methods are expected to be useful in 
identifying high-risk patients. In this review, we summarize the recent advances of AI 
in hepatology and discuss their clinical implications. In this review, we searched for 
the literature in PubMed and summarized recent developments of AI concerning 
hepatology.

CURRENT AI METHODOLOGY
AI systems can be roughly divided into four categories: search algorithm, expert 
system, machine learning, and deep learning. Machine learning generates a 
mathematical algorithm from the training dataset and utilizes it to predict outcomes or 
make decisions[14]. Moreover, machine learning is divided into supervised and 
unsupervised learning. In a supervised learning model, the algorithm learns from a 
labeled dataset (individual parameters and outcomes). Conversely, deep learning is 
based on the neural network structure inspired by the human brain. There are 
different types of neural networks in deep learning, and representative types are 
artificial neural network, convolutional neural network (CNN), and recurrent neural 
network.

Artificial neural network is a computational analysis tool inspired by the biological 
nervous system[15]. It consists of three layers: input, hidden, and output. Each layer 
comprises several “neurons,” and the hidden layer processes the input and the output 
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layer produces the result. Through an appropriate training process, the weights among 
the neural connections are adjusted to optimize the result.

CNN is an image-based machine learning method that is directly inspired by the 
visual cortex of the brain[16]. A basic CNN consists of convolution layers, nonlinear 
layers, and pooling layers. CNNs are currently one of the most successful deep 
learning models because of their unique ability to process spatial information[17].

Recurrent neural network is a type of neural network with feedback 
connections[18,19]. It exhibits great performance in labeling and predicting sequential 
data. A prominent example of sequential data is natural language. Recurrent neural 
network maintains the history of input data within the network, and the output is 
produced from the past input. In the following sections, we discuss related studies 
from the literature. The content is summarized in Table 1.

DIAGNOSIS OF LIVER DISEASES AND TUMOR DETECTION
Currently, imaging examinations are displayed and stored as digital images. 
Furthermore, computer-aided diagnosis/detection (CAD) has already been applied for 
chest nodule detection[20] and cerebral aneurysm detection[21]. Recently, Mei et al[22] 
reported an AI system that used chest computed tomography along with clinical 
symptoms, exposure history, and laboratory testing to enable rapid diagnosis of 
coronavirus disease 19. The results of this AI system depicted an area under the 
receiver operating characteristics (AUROC) of 0.92[22].

However, the CAD system is costly, and regular maintenance is required for its use. 
Nevertheless, it can help healthcare workers in diagnosing and detecting tumors. The 
first CAD system was approved by the Food and Drug Administration for 
mammography in 1998[23]. Nowadays, the CAD system uses deep learning for the 
analysis and classification of medical images[16]. Big data availability and increased 
chip processing capability enable foreseeable advances in deep learning-based 
systems. The following section summarizes the recent AI research on focal and diffuse 
liver diseases.

Detection of focal liver diseases
Hassan et al[24] used the stacked sparse auto-encoder system to detect HCC, 
hemangioma, and liver cysts from US images. They used a four-step framework as 
follows. First, the processing images were enhanced while the background noises were 
reduced. Subsequently, liver segmentation was conducted using the level set method 
and fuzzy c-means clustering algorithm. Next, stacked sparse auto-encoder was 
employed to identify latent features from unlabeled input data in an unsupervised 
manner. Finally, a softmax layer was used to diagnose different focal liver diseases. 
The sensitivity and specificity of the proposed deep learning system were 98.0% and 
95.7%, respectively[24]. Sato et al[25] developed a machine-learning model for predicting 
HCC in 539 HCC-positive and 1043 non-HCC patients at a tertiary referral center, and 
the AUROC of the model for HCC was 0.940 compared to 0.766, 0.644, and 0.683 for 
alpha-fetoprotein, des-gamma-carboxyprothrombin, and Lens culinaris agglutinin-
reactive fraction of alpha-fetoprotein, respectively.

Staging of diffuse liver diseases
Biswas et al[26] reported that deep learning techniques were superior to conventional 
machine learning techniques for detecting fatty liver disease through US examinations. 
The study was based on 63 patients (27 healthy and 36 abnormal), and the AUROCs of 
the support vector machine, extreme learning machine, and deep learning were 0.79, 
0.92, and 1.0, respectively. Byra et al[27] employed an Inception-ResNet-v2 CNN pre-
trained on ImageNet for NAFLD diagnoses using US examinations in 55 obese 
patients admitted for bariatric surgery. They used a wedge biopsy liver sample as the 
reference standard. The AUROC of the approach was 0.9777, compared to 0.9590 for 
the conventional hepatorenal index. The detection of steatosis is beneficial in the field 
of hepatology. However, more data are needed for better AI applications, and 
resources, such as liver biopsy samples, are limited because of their invasiveness.

Recently, US elastography has been widely used in clinical practice for noninvasive 
diagnosis of liver fibrosis stages and as a surrogate marker for clinical outcomes such 
as HCC development, liver failure, and rupture of esophageal varices[28-31]. Wang et al[32] 
reported deep learning radiomics for shear wave elastography, and the AUROC of the 
model for diagnosis of cirrhosis was 0.97 (95% confidence interval: 0.94-0.99), which 
outperformed the biomarkers. Generally, the stiffness value of US elastography is 
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Table 1 Clinical applications of artificial intelligence

Samples Diagnosis AI technique Accuracy, % AUROC Ref.

US Benign tumors DL 97.2 NA [23]Focal liver disease 
detection

Serum tests, clinical data HCC ML (gradient 
boosting)/DL

87.34/83.54 0.940/0.884 [25]

US FLD DL/SVM/ELM 100/82/92 1.0/0.79/0.92 [26]

US NAFLD DL NA 0.9777 [27]

Diffuse liver disease 
staging

Elastography Cirrhosis DL NA 0.97 [32]

Clinical, pathohistological 
data

Poorer survival after 
HCC resection

2 DL models NA 0.78, 0.75 (c-index) [35]

Sequence data Poorer survival after 
HCC resection

DL NA 0.68 (c-index) [36]

Clinical data HCC development ML NA 0.64 (c-index) [37]

Risk assessment

Clinical, histological data 1-yr and 3-yr clinical 
outcomes

ML NA 0.78, 0.76 [38]

AUROC: Area under the receiver operating characteristics; c-index: Confidence interval; DL: Deep learning; ELM: Extreme learning machine; FLD: Fatty 
liver disease; HCC: Hepatocellular carcinoma; ML: Machine learning; NAFLD: Nonalcoholic fatty liver disease; SVM: Support vector machine; US: 
Ultrasonography; NA: Not available.

considered to be affected by inflammation, obstructive jaundice, liver congestion, 
fasting, and steatosis[33,34]. Deep learning methods integrating stiffness values and 
elastograms with other clinicopathological factors will be powerful tools for the 
diagnosis of liver fibrosis.

RISK ASSESSMENT OF LIVER DISEASE
The risk assessment of HCC is crucial for the apt management of patients with chronic 
liver diseases. Saillard et al[35] implemented two deep learning algorithms based on 
whole digitized slides for predicting the survival of HCC patients after hepatic 
resection. They first created a composite score using clinical, biological, and 
pathological factors for survival prediction. However, both deep learning models 
reported higher performance than the composite score. An expert pathologist 
examined the high-risk and low-risk slides obtained from the models. Subsequently, 
the pathologist observed that the high-risk group had cellular atypia, vascular spaces, 
and macrotrabecular architectural pattern. In contrast, the low-risk group had tumoral 
fibrotic stroma, immune cells, and fibrosis in both tumor and nontumor areas[35]. These 
findings will lead to further research focusing on the inflammatory reaction against 
HCC.

The deep learning model proposed by Chaudhary et al[36] integrated RNA 
sequencing (15629 genes), miRNA sequencing (365 miRNA), and methylation data 
(19883 genes) from The Cancer Genome Atlas. The model detected a critical subgroup 
that was associated with frequent TP53 inactivation mutations, higher levels of 
stemness markers (KRT19 and EPCAM), tumor marker (BIRC5) expression, and 
activated Wnt and Akt signaling pathways[36]. Deep learning models regarding the 
prognosis of chronic liver disease patients have not yet been fully evaluated. Thus, 
machine models have been used to determine the prognostic model in several 
studies[37,38]. A deep learning model requires a considerable amount of data than a 
traditional machine learning algorithm. Therefore, machine learning sometimes fits in 
clinical settings with limited datasets. Singal et al[37] used a random forest model to 
predict HCC development in Child A or B cirrhotic patients. The model was validated 
through the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis cohort and 
depicted better performance than the traditional regression analysis. Konerman et al[38] 
used the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial 
cohort to construct a random forest model to predict outcomes of patients with chronic 
hepatitis C and validated it with 1007 patients during a median of 4.9 years of the 
observation period. The AUROC for 1 year and 3 years risk of clinical outcomes was 
0.78 (95% confidence interval: 0.73-0.83) and 0.76 (95% confidence interval: 0.69-0.81).



Masuzaki R et al. AI in hepatology

AIG https://www.wjgnet.com 9 July 28, 2020 Volume 1 Issue 1

LIMITATIONS OF AI TECHNOLOGY
Although the algorithms mentioned above are promising, AI has several 
limitations[39]. First, it may not be possible to understand how and why the model is 
created. Second, AI does not conform to personal preferences and legal responsibility. 
If the AI makes a wrong decision, who will be held accountable for this result? 
Moreover, a biased AI could affect the outcome of several patients. Therefore, careful 
attention should be paid to the interpretation of AI’s decision. Third, to avoid the 
overfitting problem, multicenter studies with high-quality datasets to validate the 
models are required. Fourth, the protection of privacy and security of data is crucial. 
The personal medical history should be protected and hacking or manipulating the 
model should be strictly avoided.

CONCLUSION
Digitalization of image examinations and big data availability has resulted in 
advancements to the AI system represented by deep learning research, especially in 
the detection of liver diseases. There exists a robust gold standard, i.e. histological 
diagnosis obtained by either biopsy or resection for the detection of liver tumors. 
However, for the surveillance of NAFLD patients, the gold standard is not just the 
degree of fat accumulation but also the clinical outcomes of who will develop HCC 
and who will progress to liver failure. The quality of deep learning models highly 
depends on the training dataset. A large volume of high-quality data is required to 
build an accurate and useful AI system for identifying liver diseases.

The application of AI in medical imaging has a good prospect and value. It has been 
reported that successful applications of AI technologies in endoscopic images for 
esophageal cancer[40], gastric cancer[41-43], small intestinal cancer[40], colorectal cancer[44,45], 
analysis of computed tomography for pancreatic cancer[46,47], and others[48-50]. 
Hepatologists should learn from these other areas.

AI will also be an essential element in the management of liver diseases to reduce 
medical errors, select the best treatment, and predict outcomes. Nevertheless, even 
with further advances in computer science, decisions on real clinical practices are 
affected by the patient’s will, treatment availability, and financial issues. Moreover, 
social rapport plays a vital role in building a patient’s trust and satisfaction[51]. Thus, 
cooperation between humans and AI is expected to improve healthcare in the future.
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Abstract
Gastric cancer is the second leading cause of cancer deaths worldwide. Despite 
the great progress in the diagnosis and treatment of gastric cancer, the incidence 
and mortality rate of the disease in China are still relatively high. The high 
mortality rate of gastric cancer may be related to its low early diagnosis rate and 
poor prognosis. Much research has been focused on improving the sensitivity and 
specificity of diagnostic tools for gastric cancer, in order to more accurately 
predict the survival times of gastric cancer patients. Taking appropriate treatment 
measures is the key to reducing the mortality rate of gastric cancer. In the past 
decade, artificial intelligence technology has been applied to various fields of 
medicine as a branch of computer science. This article discusses the application 
and research status of artificial intelligence in gastric cancer diagnosis and 
survival prediction.
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diagnostic tools for gastric cancer, in order to more accurately predict the survival times of 
gastric cancer patients. Artificial intelligence technology has been applied to various fields 
of medicine as a branch of computer science. This article discusses the application and 
research status of artificial intelligence in gastric cancer diagnosis and survival prediction.
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INTRODUCTION
Gastric cancer is a common malignant tumor of the digestive system caused by the 
proliferation of malignant gastric cells. It can spread to every part of the stomach and 
other organs, especially the esophagus, lungs, and liver. Gastric cancer is the fourth 
most common cancer in the world after lung cancer, breast cancer, and intestinal 
cancer[1], and the second leading cause of cancer deaths worldwide[2]. The incidence 
and mortality rates of gastric cancer in China far exceed those of other countries, both 
developed as well as developing. By 2020, death due to gastric cancer will become the 
leading cancer death in China[3]. Due to the lack of specific symptoms and signs of 
early gastric cancer, most patients are already in advanced stages when they are 
diagnosed with gastric cancer. Although the diagnosis and treatment of gastric cancer 
have made great progress, the mortality rate of gastric cancer is still very high. 
Determining how to improve the diagnosis rate of early gastric cancer and accurately 
predict the survival of gastric cancer patients is a major problem facing clinicians.

In November 2015, Google DeepMind’s AlphaGo artificial intelligence (AI) software 
program played a best-of-five match against the European Go champion Fan Hui and 
won easily. Then in March 2016, AlphaGo played another best-of-five match against 
18-time Go world champion Lee Sedol. The program won the first three games to win 
the match. This result made many people realize the impact that AI could have on real 
life. Today, AI is widely used in various fields of medicine, such as diagnosis and 
prediction of related diseases, medical image interpretation and classification, drug 
development, personalized medicine, and genomics. This article focuses on the 
application of AI in gastric cancer diseases and combines the actual cases to determine 
the application and research status of AI in the diagnosis and survival prediction of 
gastric cancer.

ARTIFICIAL INTELLIGENCE
AI is a branch of computer science devoted to enabling machines to perform complex 
tasks that normally require human intelligence. AI in a broad sense includes machine 
learning, robots, and computer vision. AI goes through four stages: Inference period, 
knowledge period, machine learning period, and deep learning period. Using artificial 
neural network (ANN), support vector machine (SVM), convolutional neural network 
(CNN), and fully convolutional networks are represented[4,5]. This article focuses on the 
application of machine learning in the diagnosis and prediction of gastric cancer. 
Machine learning can be divided into three types of training methods: Supervised 
learning, unsupervised learning, and reinforcement learning[6]. Supervised learning 
refers to the training of machines with annotated data and includes random forest, 
SVM, decision tree linear regression, logistic regression, naive Bayes, K-nearest 
neighbor, AdaBoost, and neural network. Unsupervised learning refers to directly 
submitting data lacking manual labeling to a computer for classification. Unsu-
pervised learning includes the K-means method, mean moving method, cluster 
analysis method, Gaussian mixture modeling method, Markov random field method, 
and iterative self-organizing data method. Reinforcement learning refers to 
constructing a computer classifier using artificially labeled datasets and then 
providing a certain amount of unlabeled data training to the constructed system to 
optimize the performance of the mode[7].

APPLICATION OF AI IN THE DIAGNOSIS OF GASTRIC CANCER
The prognosis of patients with gastric cancer depends on the stage of the cancer at the 
time of diagnosis[8,9]. Due to the lack of specific symptoms and signs of early gastric 
cancer, most patients with gastric cancer are already in advanced stages at the time of 
diagnosis. Although the prognosis for patients with advanced gastric cancer is poor, 
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the 5-year survival rate of patients diagnosed with early gastric cancer is greater than 
90%[8-11]. Therefore, improving the diagnosis rate of early gastric cancer is the most 
effective measure to reduce the mortality rate of the disease. Because early gastric 
cancer lacks characteristic morphological changes, its diagnosis generally depends on 
the subjective judgment of doctors. The development of AI technology has brought 
about opportunities to solve these problems.

Application of AI in endoscopic images of gastric cancer
In recent years, CNNs have made great progress in AI image recognition for deep 
learning and as a result are increasingly used in diagnostic imaging in the medical 
field (Table 1). Hirasawa et al[12] developed a CNN diagnostic system that can 
automatically detect gastric cancer in endoscopic images and used 13584 gastric cancer 
endoscopic images as a training set for the CNN diagnostic system. Then, 2296 gastric 
cancer images were used as a testing set to evaluate the accuracy of the diagnosis. The 
results showed that CNN analyzed 2296 test images in only 47 s and correctly 
diagnosed 71 of 77 gastric cancer lesions, with an overall sensitivity of 92.2%. The 
missing lesions were surface depressions and differentiated intramucosal cancers. 
Even experienced endoscopists have difficulty distinguishing these from gastritis. The 
system classified 161 non-cancerous lesions as gastric cancer, with a positive predictive 
value of 30.6%. The reason for the low positive rate could be that the morphological 
characteristics of early gastric cancer are fewer and are similar to gastritis.

To solve the above problems, Sakai et al[13] proposed a transfer CNN model, using 
two types of image datasets for transfer learning. A data enhancement method was 
used to intercept 9587 cancer images and 9800 normal images from the cancer images 
and the normal images as the training set. Similarly, 4653 cancer images and 4997 
normal images obtained from the unused cancer images and normal images were used 
as the testing set. The network accuracy after training was 87.6%, the detection 
accuracy was 82.8%, the sensitivity and specificity achieved a good balance, and the 
candidate regions of early gastric cancer could be presented as heat maps of unknown 
images to reveal the approximate position.

Zhu et al[14] used the most advanced pre-trained ResNet 50 CNN model to construct 
a set of AI-based CNN computer-aided detection systems to analyze the depth of 
cancer cell invasion in endoscopic images, with 790 images as the training set of the 
system and 203 images as the test set. The researchers compared the analysis results of 
the CNN model with the analysis results of the endoscopy doctor. The CNN model 
specificity was 95.56%, and the overall accuracy rate was 89.16%. The specificity of the 
endoscopist was 32.21%, and the accuracy was 17.25%. The study showed that the 
CNN model performs better than the human eye in judging the depth of cancer cell 
infiltration in endoscopic images. Because early gastric cancer lacks specific 
morphological features, even an experienced endoscopist has trouble distinguishing it 
from chronic gastritis. The diagnosis rate of inexperienced young endoscopists will be 
even lower, which will easily lead to missed diagnoses and misdiagnoses.

To more accurately determine early gastric cancer and non-cancerous lesions, Li 
et al[15] developed a CNN system based on narrow-band magnifying endoscopy. By 
observing the microvessels and microsurface structures of the gastric mucosa, the 
narrow-band magnifying endoscopy-based system was able to establish an average 
0.02s/picture speed to screen for early gastric cancer. Comparing the results of CNN 
with those of experts and nonexperts, the sensitivity of the CNN system in the 
diagnosis of early gastric cancer was 91.18%, the specificity was 90.64%, and the 
accuracy was 90.91%. Although there was no significant difference in the specificity 
and accuracy of diagnosis between CNN and the experts, the diagnosis sensitivity of 
the CNN system was higher than that of the experts. In addition, the sensitivity, 
specificity, and accuracy of CNN system diagnosis were significantly higher than 
those of nonexperts. Horiuchi et al[16] conducted a similar study to identify early gastric 
cancer and chronic gastritis and obtained higher sensitivity and accuracy. The reason 
may be that researchers have different interpretations and naming rules for histology.

Application of AI in gastric cancer pathology images
The rapid development of AI in the field of pathological images is also a hot topic in 
current research. Yoshida et al[17] first attempted to screen gastric biopsy specimens 
using an automated image analysis software system called e-Pathologist. They 
analyzed 3062 gastric cancer pathological images and compared the results of the 
automatic image analysis software with those of human pathologists. Classification as 
third grade (positive cancer or suspected cancer; adenoma or suspected neoplastic 
lesion; or negative neoplastic lesion) had a total coincidence rate of 55.6%. A biopsy 
negative specimen had a coincidence rate of 90.6%, and a biopsy positive specimen 
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Table 1 Application of artificial intelligence in endoscopic images of gastric cancer

Ref. Images Sensitivity Specificity Accuracy

Hirasawa et al[12] Endoscopic images with NBI imaging 92.20% - 30.60 %

Zhu et al[14] Endoscopic images 76.47% 95.56% 89.16%

Li et al[15] ME-NBI images 91.18% 90.64% 90.91%

Horiuchi et al[16] ME-NBI images 95.40% 71.00% 85.30%

NBI: Narrow band imaging; ME-NBI: Magnifying endoscopy with narrow band imaging.

had a coincidence rate of less than 50%. The sensitivity of the two-level (negative or 
non-negative) classification of electronic pathology experts was 89.5%, and the 
negative predictive value was 90.6%. However, the specificity (50.7%) and positive 
predictive value (47.7%) were low. The results were encouraging at the time. However, 
at this stage, the tissue slices created by the pathologist cannot be directly used for AI 
analysis. The lack of well-annotated pathological image data has become a major 
limitation to the development of AI in the field of pathological images.

To solve this problem, Qu et al[18] proposed a gradually fine-tuned new deep 
learning CNN for gastric pathological image classifications and introduced the concept 
of target-related intermediate datasets. The research results showed that the use of 
target-related intermediate datasets significantly improves the classification 
performance of CNNs. We hope that the effectiveness of the target-related 
intermediate data applied to deep neural networks can be specifically evaluated in 
future work.

Lymph node metastasis of gastric cancer has always been regarded as the most 
important factor affecting the prognosis of patients, which therefore plays a key role in 
guiding the selection of postoperative treatment options[19]. Traditional pathological 
examination methods are time-consuming and expensive, and it is easy to miss tiny 
lesions. In response to this problem, Wang et al[20] evaluated the clinical application 
value of CNN in the pathological diagnosis of gastric cancer metastatic lymph nodes. 
They divided 124 patients undergoing radical gastrectomy and D2 lymph node 
dissection into training set (80 cases) and testing set (44 cases). The test group 
verification results showed that the accuracy rate was 100% in terms of slice-level 
classification, that 40 normal slices and 38 tumor slices were correctly classified, and 
that the classification results were completely consistent with the pathologist. In terms 
of identifying block-level transfers, the accuracy rate was 0.989, the specificity 0.995, 
the positive predictive value 0.822, and the area under the curve 0.89, which is 
basically consistent with the diagnosis level of the pathologist.

Application of AI in noninvasive examination of gastric cancer
Endoscopy and pathological examination are the gold standard for the diagnosis of 
gastric cancer. Because of their invasiveness, high cost, and low compliance, they are 
generally only suitable for high-risk groups. This is why it is so important to carry out 
early gastric cancer risk screening and find practical gastric cancer biomarkers. 
Compared with invasive examinations, these noninvasive examinations have the 
advantages of simple operation, low cost, and high comfort, and the patient's 
compliance is relatively high. Huang et al[21] made full use of the advantages of 
machine learning to find a set of microRNA combinations with high accuracy and high 
sensitivity for noninvasive prediction of gastric cancer in the serum of patients with 
gastric cancer. From the published miRNA map (GSE23739), we selected miR-21-5p, 
miR-22-3p, and miR-29c-3p as the training sets to train the three classifiers. The areas 
under the characteristic curve were 0.9437, 0.9456, and 0.9563, respectively, and the 
positive predictive value and negative predictive value were both more than 80%. 
Then it was verified in two maps (GSE26595, GSE28700) of the Gene Expression 
Omnibus database and the patient’s serum. Finally, similar results were obtained. 
Quantitative reverse transcription polymerase chain reaction confirmed that the level 
of serum miR-21 in gastric cancer patients was higher than that in healthy controls, 
whereas the levels of miR-22 and miR-29c were opposite. The results of this study 
indicate that miR-21-5p, miR-22-3p, and miR-29c-3p can be used as potential 
biomarkers for detecting gastric cancer. However, the sample size of this study was 
small, and therefore its predictive value requires more research to be confirmed.

Liu et al[3] used data mining methods to establish four classification models for 
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screening early gastric cancer risk. A questionnaire entailing serological examination 
and endoscopy plus pathological biopsy was given to 618 patients with gastric disease, 
with the patients divided into high risk and low risk groups. The accuracy rates of the 
three data mining models were higher than the logistic regression model. The study 
also found that 16 factors, such as occupation, Helicobacter pylori infection, and 
drinking hot water can have a significant impact on the risk of early gastric cancer. The 
discovery of these risk factors helps to evaluate the occurrence of gastric cancer in 
patients and reminds them of the importance of early prevention and detection. The 
study also helps clinical researchers select and implement optimal prediction models.

Mortezag et al[2] conducted a similar study using data mining methods, using SVM, 
decision tree, naive Bayes model and k-nearest neighbor to classify gastric cancer 
patients. A total of 11 features and risk factors were examined, and research showed 
that the SVMs achieved the highest accuracy in the classification results. Dividing 
patients into high-risk and low-risk groups, as done in the above research, can help 
clinicians target high-risk patients for early gastric cancer screening, which can not 
only lead to the use of fewer medical resources but also reduce the workload of 
clinicians.

APPLICATION OF AI IN SURVIVAL PREDICTION OF GASTRIC CANCER
The human body is a complex biological system, and most clinical features exhibit a 
multidimensional, nonlinear relationship. It is difficult to predict the prognosis of 
gastric cancer patients using traditional statistical methods. AI offers a unique 
advantage in evaluating the prognosis of gastric cancer patients. Biglarian et al[1] used 
the Cox proportional hazard model and an ANN to predict the survival rate of gastric 
cancer patients. The accuracy of the ANN model was 83.1%, and the accuracy of the 
Cox regression model was 75.0%. Another study obtained similar results. The 
prediction accuracy of the ANN was 85.3%, and the prediction accuracy of the Cox 
model was 81.9%[22]. Both of the above studies indicate that the neural network model 
is a better statistical tool for predicting the survival rate of gastric cancer patients. 
Because the current tumor, nodes, and metastases (TNM) staging system cannot 
provide enough information to predict the prognosis of gastric cancer and the effect of 
chemotherapy, we need to build a more accurate classifier to predict the prognosis of 
gastric cancer patients.

Oh et al[23] used ANNs to establish a predictive model for the survival outcome of 
gastric cancer patients. The survival curve of the prediction model is better than the 
survival curve of the American Joint Committee on Cancer stage 8, which can 
differentiate the survival results of gastric cancer patients. The predicted lifetime of the 
model is in agreement with the actual lifetime. The immune marker SVM classifier 
established by Jiang et al[24] is more accurate than traditional TNM staging in predicting 
the survival rate of gastric cancer patients and can supplement the prognostic value of 
the TNM staging system. Furthermore, the classifier can predict which patients with 
stage II and III gastric cancer can benefit from adjuvant chemotherapy. Therefore, 
these gastric cancer survival prediction models can be used to classify high-risk gastric 
cancer patients and allocate necessary treatment and health resources to them. At the 
same time, it enables patients with gastric cancer to have more effective consultations 
after surgery. It also helps clinicians design treatment strategies and arrange follow-
ups.

CONCLUSION
The mortality rate of gastric cancer in China is high. Due to the lack of specific 
morphological characteristics and clinical manifestations of early gastric cancer, its 
early diagnosis mainly depends on the personal experience of the doctor, meaning that 
it lacks objectivity and is highly time-consuming. In the diagnosis of early gastric 
cancer, AI has high sensitivity and specificity. Not only can the use of AI reduce 
misdiagnosis and variability among observers, but it can also save clinicians a great 
deal of time. It can also help inexperienced doctors. With AI, clinicians can divide 
patients into high-risk and low-risk groups according to risk factors related to the 
incidence of gastric cancer and certain serological markers so that the clinicians can 
focus on the high-risk patients. Compared with traditional TNM staging, AI is more 
accurate in predicting the survival of gastric cancer patients. This can guide clinicians 
to formulate follow-up treatment strategies and arrange follow-up times, which can 
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help to prolong the survival time of patients with advanced gastric cancer.
However, there are still few articles on the use of AI to guide chemotherapy 

treatment for advanced gastric cancer. We hope that more scholars will engage in 
related research in the future. Of course, the development of AI in the medical field 
also faces many challenges. The training of AI models in order to achieve accuracy 
requires a great deal of manually annotated medical data. Although many scholars 
have abandoned many poor-quality data to obtain high performance of AI models, it 
is still impossible to capture many details of AI for feature extraction and the decision-
making process. However, we believe that with the development of AI in the world of 
medicine, this will soon change.
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Abstract
Pancreatic cancer is a complex cancer of the digestive tract. Diagnosis and 
treatment can be very difficult because of unclear early symptoms, the deep 
anatomical location of cancer tissues, and the high degree of cancer cell invasion. 
The prognosis is extremely poor; the 5-year survival rate of patients with 
pancreatic cancer is less than 1%. Artificial intelligence (AI) has great potential for 
application in the medical field. In addition to AI-based applications, such as 
disease data processing, imaging, and pathological image recognition, robotic 
surgery has revolutionized surgical procedures. To better understand the current 
role of AI in pancreatic cancer and predict future development trends, this article 
comprehensively reports the application of AI to the diagnosis, treatment, and 
prognosis of pancreatic cancer.

Key words: Pancreatic cancer; Artificial intelligence; Robotic surgery; Artificial neural 
network; Machine learning
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Core tip: There are few unified reports on the use of artificial intelligence (AI) with regard 
to pancreatic cancer. By collating information on AI’s application in this field in recent 
years, this article systematically reports the use of AI for the diagnosis, treatment, and 
prognosis of pancreatic cancer. Accordingly, this article fully depicts the current status of 
AI in this field and predicts future development trends.
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INTRODUCTION
Pancreatic cancer has a high degree of malignancy. Given the difficulty of early 
diagnosis, pancreatic cancer often metastasizes after diagnosis. Despite significant 
progress in pancreatic cancer research in the past decade, treatment and prognosis still 
tend to be unsatisfactory[1,2].

Artificial intelligence (AI) has greatly progressed in recent years. AI can avoid the 
influence of subjective thinking; deal with large data volumes; and support diagnosis, 
treatment, and prognosis[3]. Therefore, medical AI is a topic of considerable interest. AI 
is also widely used in the field of pancreatic cancer. Applications include diagnosing 
cancer by processing image data[4] and using machine learning to accurately 
distinguish cancer subtypes[5]. Robotic surgery is also widely applied to make up for 
the shortcomings of traditional laparoscopic surgery[6]. Artificial neural networks 
(ANNs) are able to predict the maximum probability of survival of patients with 
pancreatic cancer 7 mo after surgery[7]. Therefore, AI has great prospects for further 
application in the diagnosis, treatment, and prognosis of pancreatic cancer. This article 
summarizes the current role and application of AI in medical work related to 
pancreatic cancer.

AI’S ROLE IN PANCREATIC CANCER DIAGNOSIS
Application of AI to the molecular diagnosis of pancreatic cancer
In bioinformatics research, researchers often need to collect, screen, process, and 
summarize large amounts of data. As such, the question of whether machine learning 
can simplify the process and achieve good results has been a hot research topic[8]. 
There are many specific molecules related to pancreatic cancer such as microRNA 
(miRNA) 10b[9], cell-free DNA[10], and ZIP4[11]. Research on the molecular mechanism 
and diagnosis of pancreatic cancer has become a mature, standardized field, with a 
large number of relevant articles in recent years[11,12]. However, the need to collect and 
process data manually can consume a great deal of time and energy.

Machine learning helps researchers spend less time on data processing through one-
time modeling. The steps for using machine learning typically include the following: 
Collecting the basic data, dividing data into an experimental group and a verification 
group, establishing a screening and processing model, inputting the experimental 
group data into the model, calculating the output results, and verifying the model’s 
feasibility using the verification group. The verification group can be used to test the 
specificity and sensitivity of the experimental group while the experimental group can 
make the model more intelligent[10]. The steps are illustrated in Figure 1.

Using network representation learning and convolutional neural networks, the 
correlation between miRNA and pancreatic cancer disease can be analyzed, and the 
potential disease miRNA can be found[13]. Machine learning has been used to process 
large exocrine RNA data and generate predictive templates that can identify cancer in 
individuals[14]. An ANN can imitate the human neural meridian system. It is divided 
into three parts: Input layer, hidden layer, and output layer. “Deep learning” 
(Figure 2) refers to an ANN with multiple hidden layers. Using this technique, cyst 
tumor markers, amylase, cytology, and other information are inputted and then 
combined with two data; the output layer outputs whether the pancreatic cystic 
lesions are benign or malignant[15]. Some researchers have also proposed an extensible 
supervised classifier technical framework that can diagnose pancreatic cancer 
provided the expression profile of a single cell can be input to reveal its identity[9].

Although machine learning can save researchers a lot of time on data processing, 
machine learning still has many limitations. The first concerns data collection and 
processing. Specific input projects at the beginning of modeling are needed for 
machine learning and neural network analysis. However, for researchers who have not 
carried out data analysis, it is unknown which raw data are necessary and 
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Figure 1  The common steps in machine learning. A similar pattern was used for prognostic analysis of pancreatic cancer.

Figure 2  Algorithm of deep learning. Data were passed from layer to layer: from the input layer to the output layer.

unnecessary. Useless data simply increase the workload and can also become the 
specificity and sensitivity of the model. Meanwhile, editing the model also poses a 
significant problem. Although AI can save time, the threshold and workload in the 
establishment of AI programs are prohibitive for nonprofessionals who lack a 
foundation in math and programming.

The occurrence and development of pancreatic cancer is complex and changeable, 
and the patient’s condition has a large degree of variability. In this regard, AI can be 
applied to the molecular diagnosis of pancreatic cancer and can obtain objective data 
processing results. However, AI is not independent and mostly can only be used as an 
auxiliary tool. Yet, with continuous development and improvement, AI might 
eventually have a more universal application.

Application of AI in the imaging diagnosis of pancreatic cancer
AI algorithms (especially deep learning) have made great progress in medical image 
recognition; convolutional variational autoencoders and other methods have 
numerous applications in this field[16]. In fact, as early as 2001, neural networks were 
used to analyze endoscopic ultrasound images to distinguish pancreatic cancer from 
focal pancreatitis. A program was designed that could distinguish pancreatitis from 
pancreatic cancer by extracting pixel features from images, showing a high accuracy 
rate of 89%[17]. Given the state of image diagnosis technology at that time, the images 
were relatively simple, but with the help of computer neural networks, differential 
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diagnosis became easier and achieved higher accuracy. Since then, neural network 
analysis images have been used in research to differentiate pancreatic cancer from 
chronic pancreatitis. This method involves collecting image data into a vector form 
and then converting it into a hue histogram. The sensitivity, specificity, and accuracy 
of this method in the differential diagnosis of benign and malignant pancreatic lesions 
were 91.4%, 87.9%, and 89.7%, respectively[18].

Pancreatic cystic lesions are often considered an important sign of pancreatic cancer. 
Machine learning is used to extract the imaging features of these cystic lesions, select 
and classify those features, and then use them to predict benign or malignant 
pancreatic cystic lesions. In this process, first, image acquisition is conducted 
uniformly, the edge of the suspected lesion object is delineated, and the three-
dimensional (3D) shape of the variant is obtained. Then the features of suspected 
diseases in the image are extracted including the structure, density, and shape. AI 
software is used for in-depth learning, the features are screened and analyzed, and the 
imaging output results are obtained. The obtained results, proteomics, and patient 
data are entered into the machine learning model as the input layer to generate a 
predictive model, which can help clinicians in the differential diagnosis of benign and 
malignant pancreatic cysts[19].The entire process is shown in Figure 3.

Over the past 20 years, with the popularization and development of computed 
tomography (CT), magnetic resonance imaging, and positron emission tomography-
CT, medical staff has been able to obtain more clear imaging data. However, because 
of human limitations, they cannot achieve zero errors, and diagnostic efficiency is not 
high. Furthermore, it is time consuming to train professional radiologists. Moreover, 
the image itself can only reflect the internal structure of the patient at a certain time 
and from a certain angle; thus, slight changes can be difficult to be detect with the 
naked eye. As such, reliable AI can improve the accuracy of image diagnosis.

As mentioned above, manual diagnosis has shortcomings such as subjective 
judgment, a lack of repeatability, and low accuracy. Recent research on using 
convolutional layer neural networks to recognize CT in pancreatic cancer diagnosis 
may provide a way to overcome such shortcomings. An AI designed for one related 
study consisted of two parts: training and verification. First, a patient data database is 
established, image data are collected, and an image database is established. Then the 
feature extraction, area generation (RPN), and classification and regression networks 
are established. In the AI network, the input image is first converted into a 
convolutional feature graph, and the RPN parameters are adjusted through the feature 
map to generate the ROI feature vectors. Then the RPN parameters are put into the 
convolutional layer, and a certain model is used for regression and classification. Next, 
the regression parameters are generated into new RPN parameters, and the two RPN 
parameters are updated only for the unique network layer of RPN through machine 
learning. The RPN parameters are then generated by the regression parameters to fine-
tune the unique convolutional layer. Using a reserved verification group input model, 
the Secure Global Desktop network is trained by back-propagation and random 
gradient descent, and the network weights and parameters can be constantly updated 
and optimized. Finally, the final model is obtained as an AI diagnosis system. The 
receiver operating characteristic curve of the experimental results reached 0.9632. The 
AI in that study needed only 20 s to identify images and was more objective and 
effective than traditional diagnosis methods. It was noted, however, that while this 
method showed high accuracy in the diagnosis of pancreatic cancer, it does not mean 
AI can replace specialists; rather, it provides an auxiliary tool for diagnosis[20].

Although AI has good prospects for image diagnosis, it also has limitations, and the 
process of model training is inseparable from the assistance of artificial diagnosis. In 
theory, the ultimate goal of diagnostic accuracy is infinitely close to the imaging 
doctor. Therefore, how to make good use of this to make AI more intelligent may be an 
important problem to be solved in future research. In fact, the application of AI in 
imaging has been investigated by experts in many fields, and it also requires 
knowledge from many fields. Such projects create a platform for imaging experts to 
communicate with computer experts. The result is that an AI system is established that 
uses a deep learning algorithm to collect and analyze CT images of the pancreas. The 
experimental group image data and the normal control image data are imported into 
the program. Through two matrices and the application of a filter, statistics, texture, 
shape, and other data are obtained. Then the pancreatic ductal adenocarcinoma and 
the normal control are distinguished by data processing, statistical analysis, and the 
random forest model.

The relationship between AI and imaging involves knowledge from various fields 
such as pathology, radiology, oncology, and computer science. Thus, a more intelligent 
AI system may be built through the combined work of experts from multiple fields[21]. 
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Figure 3  The entire process. Machine learning is used to extract the imaging features of these cystic lesions, select and classify those features, and then use 
them to predict benign or malignant pancreatic cystic lesions. In this process, first, image acquisition is conducted uniformly, the edge of the suspected lesion object is 
delineated, and the three-dimensional shape of the variant is obtained. Then, the features of suspected diseases in the image are extracted, including the structure, 
density, and shape. AI software is used for in-depth learning, the features are screened and analyzed, and the imaging output results are obtained. The obtained 
results, proteomics, and patient data are entered into the machine learning model as the input layer to generate a predictive model, which can help clinicians in the 
differential diagnosis of benign and malignant pancreatic cysts.

The AI image acquisition discussed above is based on segmenting the pancreas from 
the image. The traditional segmentation method is a top-down simulation fitting 
method based on a large amount of map input and fixed pancreatic label fusion. 
However, there is also a bottom-up pancreatic segmentation method that subdivides 
the aggregated image region into a pancreatic region and a nonpancreatic region. The 
segmentation is based on the visual features of the image itself, which can improve the 
accuracy of pancreatic segmentation. It has been reported that the bottom-up pancreas 
segmentation method has been optimized. With the improvement of deep 
convolutional neural networks, this method can deal with the highly complex 
appearance of the pancreas in CT images[22].

Based on the above, we can see that the application of AI in the imaging diagnosis 
of pancreatic cancer has made considerable advances and is constantly improving.

Application of AI in the pathological diagnosis of pancreatic cancer
Pathologists need to identify diseased tissues in different tissue sections, which is a 
time-consuming and laborious process. Even experienced professionals may have the 
risk of subjective judgment. As with the application of AI in imaging diagnosis, AI is 
also important in the field of pathology, wherein tissue sections are digitized by a 
computer[23]. First, the AI system divides the lumen and nucleus from tissue fragments 
and extracts feature vectors from tenfold epithelial nuclei. Different cells have different 
feature vectors. An epithelial nucleus algorithm is used to identify epithelial nuclei. 
Then, the morphological features of the diseases that can be diagnosed are extracted. 
Finally, AI classifiers are used for classification. These classifiers include Bayesian 
classifiers, k-nearest neighbors, support vector machines, and ANNs[24]. Based on an 
automatic learning framework, cells can be segmented more accurately by combining 
bottom-up and top-down information. After collecting patient tissue samples, the 
tissue photographs are uniformly collected. A convolutional neural network model of 
a deep convolutional neural network is used to generate a probability map of tissue 
nuclear distribution. Then the iterative region merging method is used to initialize the 
shape of the probability graph. Next, combining a sparse shape model with stable 
selection and a local repulsive deformation model, a new segmentation algorithm is 
proposed to separate a single nucleus.

A significant advantage of this framework is that it is suitable for different stained 
histopathological images. Because of the feature-learning characteristics of deep 
cellular neural networks and the characteristics of high-level shape prior modeling, 
this proposed method is sufficiently universal and can be applied to different staining 
specimens and various types of histopathological identification. This model is not only 
less affected by the overlap of pathological tissues and cells but is also relatively 
insensitive to image noise and uneven intensity. Different tissue-staining datasets are 
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tested, which can identify and label the concentrated area of the nucleus[25].
In addition to AI classifiers, neural networks also play an important role in image 

analysis to determine whether the pathology is benign or malignant. After collecting a 
certain amount of fine-needle aspiration pathology of the pancreatic tumor, a 
pathological image is captured for preprocessing (image gray conversion and noise 
reduction). Then, the K-means clustering algorithm is used to extract the highest value 
of pixels until all of the pixels are equal. The part of the image that needs to be 
identified is segmented so the tissue can obtain the basic nuclear features, which can 
be used to evaluate cellular morphological features. These features are input into the 
AI multilayer perceptron (a feedforward nonlinear neural network) as input vectors, 
and the decisions made by this perceptron are sent to the second layer perceptron 
using image evaluation. Because there are a certain number of validated cases, the 
diagnostic accuracy of benign and malignant lesions can be evaluated using statistical 
methods (logistic regression, multiple regression, area under the curve, and R-
squared)[26]. Different from imaging diagnosis, pathological diagnosis pays more 
attention to accuracy. Thus, AI has a lot of room for improvement in the accuracy of 
auxiliary diagnosis, which will inevitably take a long time to develop.

APPLICATION OF AI IN THE TREATMENT OF PANCREATIC CANCER
Application of AI in radiotherapy for pancreatic cancer
It takes a long time to accurately delineate the target area of pancreatic cancer in 
radiotherapy. A recent study used machine learning to target unlabeled pancreatic 
cancer. The deep learning neural network included the following steps. Input of the 
complete X-ray image obtained by the vehicle imager, after which the image was 
processed by the computer. Then changes were simulated between the target tissue 
and normal tissue. Finally, the accuracy of the model was reevaluated through a 
retrospective study of patients with pancreatic cancer. The output was the position of 
the verified plan target in the projected image[27]. Target planning can also be 
conducted by imitating the human brain through AI. This AI is based on abdominal 
magnetic resonance (MR)-ART for automatic contour rendering through two steps. 
The first step is to compare the patient’s MR image with a normal MR image. Because 
of the high MR resolution, it can roughly outline the object. In the second step, 
information is directly obtained from the pixel data through a supervised, adaptive, 
active, learning-based support vector machine, and the target is sketched out from the 
features of the pixels. The information obtained through these two steps is then 
integrated by the AI, resulting in the final output. This approach can obtain data 
science institute values of more than 0.86[28].

Since the pancreas is located deep in the abdomen, radiation therapy requires not 
only a standard and accurate location but also an appropriate dose. An ANN dose 
model can be used to determine the appropriate dose. The data are processed by the 
input + the hidden layer + the output, which is continuously weighted. After training, 
errors are understood, and the weight distribution of the hidden layer is adjusted. The 
inputs in ANN data mining are geometric planning parameters [including CT images, 
treatment plans, structures, and dose distribution calculated by treatment planning 
systems (TPS)]. A single output is a prediction of the dose calculated by TPS for the 
voxel[29].

Application of AI in chemotherapy for pancreatic cancer
Different subtypes of pancreatic cancer cells are sensitive to different chemotherapy 
regimens[30]. The best way to determine cell subtypes is to make a diagnosis through 
pathology. However, invasive access to pathology will undoubtedly cause some pain 
for the patient. Due to the heterogeneity and cystic structure of pancreatic cancer 
tumors, the puncture results are often not ideal, sometimes even producing false-
negative results. Machine learning has been applied for the noninvasive determination 
of pancreatic cancer cell types, including revealing the disease subtypes and molecular 
characteristics of pancreatic cancer. Using machine learning, pancreatic cancer-related 
protein expression, mRNA transcription, DNA methylation, and miRNA are 
integrated. Pancreatic cancer is divided into two categories. The determined subtypes 
have a clear response to the corresponding drug therapy and can therefore guide 
chemotherapy[5].

In a retrospective observation cohort study matched with histopathological tumor 
subtypes, after collecting the patients’ clinical and imaging data, the images were 
classified using a double-blind method. After image processing, feature extraction, 
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feature preprocessing, feature engineering, and machine learning modeling, 70% of the 
queues were used for training, and 30% of the queues were tested. This study showed 
that radiological analysis combined with machine learning modeling can make high-
sensitivity, high-specificity distinctions between the two groups of pancreatic ductal 
adenocarcinoma (PDAC) molecular subtypes defined by histomorphology. The 
analysis of radiological characteristics through machine learning can predict the 
subtypes of PDAC. This is highly related to responses to chemotherapy and patient 
survival[31]. AI can also simulate the effect of tumor targeted therapy drugs on tumor 
targeted genes. By combining machine learning, pharmacogenomics, and 
metabolomics, the efficacy of targeted drugs does not depend solely on the status of 
individual genes. It is also related to the degree of quantification of the Wahlberg 
effect, which leads to the emergence of the treatment window in vivo[32].

Application of AI in the surgical treatment of pancreatic cancer
The first reports of laparoscopic pancreatectomy were published in the early 1990s[33], 
and the first laparoscopic pancreaticoduodenectomy was reported in 1994[34]. 
Laparoscopic distal pancreatectomy (LDP) is feasible and safe. Compared to open 
distal pancreatectomy, LDP has the advantages of less bleeding, shorter hospital stays, 
lower postoperative complication rates, and short-term oncology effects. LDP is also 
increasingly used for patients with high BMI, a history of abdominal surgery, 
complications, and large tumors[35]. Compared to open surgery for pancreatic cancer, 
laparoscopic surgery also has some limitations, such as a two-dimensional surgical 
field of vision, a limited range of motion, the fulcrum effect, and the enhanced tremor 
of effectors[6]. However, robot-assisted pancreatic cancer surgery (RDP) can make 
minimally invasive surgery more effective while maintaining the advantages of 
laparoscopic surgery (e.g., less trauma, rapid postoperative recovery, and little 
bleeding).

There is a question of whether robot-assisted surgery for pancreatic cancer can 
optimize laparoscopic surgery without increasing the side effects. Some studies have 
found that RDP is as safe and feasible as laparoscopic DP. The intraoperative blood 
loss, hospital stay, incidence of postoperative complications, perioperative mortality, 
and incidence of postoperative pancreatic fistula in RDP were similar to those in 
LDP[36-38]. Compared to open distal pancreatectomy, the probability of pancreatic fistula 
in RDP was not increased, and the probability of operative complications, readmission 
rate, mortality, and hospitalization days were similar. Robot-assisted distal 
pancreatectomy and pancreatectomy are comparable to traditional surgery in terms of 
safety and almost all outcome indicators[39,40]. RDP is relatively safe, but compared to 
traditional surgery and laparoscopic minimally invasive surgery, it improves the 
preservation rate of splenic vessels and reduces the risk of conversion to open 
surgery[38,41].

The Da Vinci robotic surgery system has unique characteristics, reflecting the main 
advantages of laparoscopic surgery. There is a stable 3D view, a wrist-like movement 
of the effector instrument (seven degrees of freedom), no fulcrum effect, no tremor, 
and no proportional adjustment of instrument motion[41]. Although robot-assisted 
distal pancreatectomy has potential benefits for spleen preservation, the cost of robotic 
surgery is very high, which is one of the obstacles to its widespread use[42]. Robotic 
surgery also lacks tactile sensory feedback and has a higher learning curve. Studies 
have shown that it takes 80 cases for a chief surgeon to reach a skilled level, and the 
experience of laparoscopic surgery can shorten this process[41,43]. In some complex 
cases, robotic surgery performs better than traditional laparoscopic surgery, such as 
spleen-preserving surgery with the preservation of splenic vessels[37,44]. For example, 
for patients with high BMI, robotic surgery may reduce intraoperative blood loss and 
shorten hospital stay[45]. The summary is revealed in Table 1.

APPLICATION OF AI IN PANCREATIC CANCER PROGNOSIS
Pancreatic cancer is highly malignant. Although it can be cured through radical 
resection, the 5-year survival rate is still very low[46]. One study used population 
models and machine learning algorithms to predict the risk of recurrence in patients 
with pancreatic cancer 2 years after surgical resection. After collecting features 
considered having the most influence on recurrence, the most representative feature 
variables were selected, which were then used to train the machine learning algorithm. 
After repeated training, logistic regression was found to be the best prediction 
algorithm after cross-validation. This model had high accuracy in predicting the 
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Table 1 Comparison of advantages and disadvantages of open distal pancreatectomy, laparoscopic distal pancreatectomy, and robot-
assisted pancreatic cancer surgery

Class ODP LDP RAP

History Oldest Modern Recently

Bleeding More Less Less

Hospital stay Long Short Short

Postoperative 
complication rates

High Low Low

Short-term oncology 
effects

Normal Litter Litter

Trauma More Less Less

Application prospect Patients with high BMI, a history of abdominal surgery, 
complications, and large tumors

Approach to 
ODP

Preserve splenic vessels, for patients 
with high BMI

Vision 3D 2D 3D

Tactile sensory feedback Good Worse None

Learning curve Low High Higher

ODP: Open distal pancreatectomy; LDP: Laparoscopic distal pancreatectomy; RAP: Robot-assisted pancreatic cancer surgery; BMI: Body mass index.

recurrence probability for a patient 2 years after surgery, suggesting that the machine 
learning algorithm may be helpful for identifying high-risk patients and developing 
adjuvant treatment strategies[47]. However, the sample size of that study was small, and 
there was no unified standard for treatment. Thus, this machine learning algorithm 
could be improved in future research by using larger samples and unified treatment.

Machine learning can also be used to develop prognostic classifiers to predict the 
survival of pancreatic cancer patients by integrating multiple DNA methylation 
statuses of pancreatic cancer–related mucin genes[48]. As a nonparametric machine 
learning method, ANN is also used to evaluate the survival rates of patients with 
pancreatic cancer. Similar to the working mode of the brain, patient variables are 
collected as processing elements, and interrelated processing elements are arranged 
and connected layer upon layer. Each connection has a related weight, each weight 
value can be transferred to the next ganglion layer, each lower layer can aggregate the 
input values of the upper layer, and the last layer is the output value. The output value 
is generally binary and can be used to determine whether the patient survives after 7 
mo[7]. The malignancy degree of pancreatic cancer is closely related to the invasiveness 
of its tumor cells. Mathematical modeling represents the growth process of the tumor 
as a physiological and biomechanical model and personalizes the model according to 
the clinical measurements of target patients. The volume of the whole tumor, 
including its size, shape, and involved area, can be predicted[49].

CONCLUSION
Pancreatic cancer is a major cancer that threatens human health. Although there are 
systematic treatment plans, the effect of radiotherapy is poor because of the deep 
location of the pancreas and the tissue characteristics of the cancer. The special 
characteristics of pancreatic cancer also lead to drug resistance after chemotherapy, 
and surgical treatment is difficult because of the large number of important organs 
around the pancreas and its anatomical complexity. AI has the ability to replace or 
assist people in clinical work. It has great application prospects for the diagnosis, 
treatment, and prognosis of pancreatic cancer. Regarding molecular diagnosis, 
imaging diagnosis, and chemotherapy, machine learning can help researchers process 
data, perform analysis, and obtain experimental results. In radiotherapy, AI is mainly 
used for the automatic planning of radiation targets and radiation dose prediction. The 
development of robotic pancreatic surgery has increased the accuracy of pancreatic 
surgery and reduced complications, but automation cannot be fully achieved without 
continuous training and verification. Therefore, for a long time in the future, most AI 
applications for pancreatic cancer will continue to be used as practical auxiliary tools.
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Abstract
BACKGROUND 
The use of machine learning (ML) to predict colonoscopy procedure duration has 
not been examined.

AIM 
To assess if ML and data available at the time a colonoscopy procedure is 
scheduled could be used to estimate procedure duration more accurately than the 
current practice.

METHODS 
Total 40168 colonoscopies from the Clinical Outcomes Research Initiative 
database were collected. ML models predicting procedure duration were 
developed using data available at time of scheduling. The top performing model 
was compared against historical practice. Models were evaluated based on 
accuracy (prediction – actual time) ± 5, 10, and 15 min.

RESULTS 
ML outperformed historical practice with 77.1% to 68.9%, 87.3% to 79.6%, and 
92.1% to 86.8% accuracy at 5, 10 and 15 min thresholds.

CONCLUSION 
The use of ML to estimate colonoscopy procedure duration may lead to more 
accurate scheduling.
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Core tip: Machine learning has been utilized to predict surgical procedure duration and 
enhance operating room proficiency, however its usefulness for predicting colonoscopy 
procedure duration has not been examined. Procedure duration predictions from a machine 
learning algorithm trained on data from the Clinical Outcomes Research Initiative database 
outperformed historical practice.
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INTRODUCTION
Current colonoscopy scheduling models utilize either historical averages or 
predetermined time allotments (usually 30-45 min). Scheduling has not evolved to 
incorporate patient information, case complexity, procedure environment, or operator 
proficiency. Failure to assess for these variables can lead to significant misjudgments 
of procedural duration. These errors can result in both under- and overutilization of 
endoscopy room time leading to increased cost, misappropriation of endoscopy 
resources, delays, and decreases to patient and provider satisfaction[1]. Machine 
learning (ML) has been utilized to predict surgical procedure duration and enhance 
operating room proficiency, however its usefulness for predicting colonoscopy 
procedure duration has not been examined[2,3].

Our aim was to assess if ML and data available at the time a colonoscopy procedure 
is scheduled could be used to estimate procedure duration more accurately than the 
current practice.

MATERIALS AND METHODS
The Clinical Outcomes Research Initiative (CORIv.4) database was queried for all 
colonoscopies with complete procedural duration times from 2008-2014 following 
approval from our institutional review board.

The CORI database is a national central repository of endoscopic procedures from a 
physician network of academic, community and veteran administration 
hospitals/practices. The details of the repository can be found in previous 
publications[4]. ML models were trained on variables with < 20% missing values and 
variables available prior to the procedure. Procedures with duration < 5 and > 280 min 
were excluded. All statistical analyses were performed in R-studio version 3.5.3 
(Boston, Massachusetts). 80% of the cases were used for training data and the 
remaining 20% used to compare the performance of these models. To reduce skew in 
the data, the target variable (procedural duration), was logarithmically transformed in 
line with previous publications[3,5].

Following established methodology[3,5,6], several models were tuned to predict 
procedure-time duration using cross-validation. The various models included random 
forest, gradient boosting machine, least absolute shrinkage and selection operator or 
LASSO, and extreme gradient boosting models (xgboost). The best performing model 
was selected based on lowest root mean squared error of the model and trained using 
historical data (2008-2013) to predict “current” data (2014). Predictions derived from 
the best performing model were compared with the current standard of using 
historical means. Models were evaluated based on accuracy (prediction – actual time) 
within thresholds of 5, 10, and 15 min to account for operational considerations.

RESULTS
Total of 40168 colonoscopies from 75 different sites from 2008 to 2014 with procedural 
duration information were obtained. 32136 (80%) of the cases were used for training 
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the algorithm, with the remaining 8032 (20%) used to compare the performance of 
these models. A total of five patient (age, gender, race, ASA class, pediatric status), 
eight provider (endoscopist ID, degree of performing provider, degree year of 
performing provider, specialty of provider, gender and race/ethnicity of the provider, 
fellow involvement) and twelve procedure specific [(procedure year, procedure order, 
site ID, site type (University vs Community), location of procedure/facility type, 
duration of procedure, primary indication of procedure, depth intended of the 
procedure, sedation type used, state, and region)] variables were all selected for model 
analysis and training.

Table 1 demonstrates background characteristics of the final cohort. The best 
performing machine learning algorithm was the xgboost model. Figure 1 depicts the 
final models accuracy. The percentages of procedures for which the xgboost and the 
historical models generated forecasts within the 5, 10 and 15 min threshold were 77.1% 
vs 68.9%, 87.3% vs 79.6%, and 92.1% vs 86.8% (P < 0.001). The most important features 
of the model were: Patient age, procedure year, and the degree year of provider year 
(Figure 2).

DISCUSSION
We demonstrated that machine learning predicts colonoscopy procedure duration 
more accurately than the currently accepted standard practice and the improvement 
was greater as the tolerance for error decreased.

Our results mimic similar applications of machine learning algorithms. Bartek et al[6] 
compared the standard practice of using average historical procedure duration and 
surgeon estimates of procedural duration compared to predictions derived from a 
machine learning model. Using a 10% accuracy threshold, the machine learning 
algorithm outperformed both traditional practices (39% ML vs 32% surgeon derived 
and 30% historical means). In an analysis of feature importance, the authors noted that 
fundamental case information, such as mean duration of the last ten procedures, was 
the most important predictive feature, with patient health metrics having a smaller 
total impact. However, our results suggest that patient specific factors may play a 
greater role in determining colonoscopy procedure duration. While again provider 
and procedural factors demonstrated high importance, patient specific factors (such as 
age, female sex) factored substantially into our model’s final predictions.

There are several strengths to our analysis. A large number of colonoscopies from a 
national repository of endoscopic procedures composed of a wide array of procedures, 
patients, and providers from an assortment of practice environments were analyzed. 
Inclusion of a national database increases generalizability by limiting regional or 
practice related biases.

However, there are several limitations to our analysis. Procedure reporting to the 
CORI database is voluntary and there may be an inherent selection bias in which 
easier colonoscopies were more likely to be reported to the database. This is supported 
by the relatively short overall procedural duration in our cohort. While the effects of a 
longer average procedure duration on our model are unknown, we anticipate more 
resiliency to increased error in the ML model compared to historical means, further 
enhancing the overall accuracy of the model compared to traditional practice.

While the algorithm was successful, it largely represents a rudimentary proof of 
concept option. Several variables that have been associated with difficult or lengthy 
colonoscopies in previous reports[7] and were either not available or too incomplete in 
this current data set to allow for inclusion into our analysis. Addition of variables 
associated with difficult colonoscopies including body mass index, previous 
abdominal or pelvic surgeries, bowel habits, weight, height etc. would potentially 
improve the models accuracy.

The use of an algorithm trained on prospectively collected data with greater 
provider, environmental, patient, and procedural information may lead to 
improvements in colonoscopy procedure scheduling. Such improvements may 
contribute to improved efficiency, patient and provider satisfaction, and reduced costs. 
Further study is necessary to examine the implications of the deployment of such a 
model in a clinical setting, and assess if such models can be used in other 
gastrointestinal procedures.
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Table 1 Cohort background characteristics

Demographic information

Total patients 40168

Mean age 58.95

Female 17682Sex

Male 22485 (56.0%)

I 7071

II 27699

III 5237

IV 158

ASA Class

V 3

Caucasian 32031

Hispanic 2219

Black 2193

Asian 1140

Native American 679

Race

Other 1906

Procedural information

Median procedure year 2012 (2008-2014)

Total No. of sites 75

Fellow involved 3575

Average risk screening 12687

Surveillance of adenomatous polyps 8213

Hematochezia 3795

High risk screening 3272

Anemia 1508

Diarrhea 1469

Indication for procedure

Other 9224

1st 37864

2nd 2056

Procedure order

Other 248

Mean duration of procedure 23.4 min

Cecum 31745

Terminal Ileum 6798

Ascending colon 570

Ileum 424

Anastomosis site 447

Depth intended

Other 163

Hospital endoscopy suite 15589

Ambulatory surgery center 14730

unknown 5739

Office 2501

Endoscopy suite 1450

Location of the procedure
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ICU 88

North Central 3490

Northeast 11156

Northwest 12329

South Central 776

South East 1466

Region

South West 10947

Community 25133

HMO 1000

University 5676

Site type

VA 8359

None 241

Moderate/Conscious sedation 28009

“Deep” Sedation 7289

General Anesthesia 2510

Sedation

Anxiolytic Sedation 78

Provider information

Female 9881Gender of provider

Male 30287

Median degree year of provider 1989 (1962-2009)

DO 1253

MD 38851

Degree of performing provider

PA 64

Gastroenterology 33059

Surgery 2976

Colorectal surgery 995

Internal medicine 1589

Family medicine 581

Provider specialty

Other 968

Hispanic 419Ethnicity of provider

Non-hispanic 37148

ICU: Intensive care unit; HMO: Health maintenance organization.
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Figure 1  Accuracy of machine learning model vs historical average.

Figure 2  Feature importance of machine learning model.

ARTICLE HIGHLIGHTS
Research background
The usefulness of machine learning (ML) for predicting colonoscopy procedure 
duration has not been examined.

Research motivation
A ML algorithm trained on endoscopic data derived from the Clinical Outcomes 
Research Initiative database predicted colonoscopy procedure duration more 
accurately than the currently accepted standard practice and the improvement was 
greater as the tolerance for error decreased.

Research objectives
The aim of this study was to assess if ML and data available at the time a colonoscopy 
procedure is scheduled could be used to estimate procedure duration more accurately 
than the current practice.

Research methods
Total 40168 colonoscopies were collected. ML models predicting procedure duration 
were developed using data available at time of scheduling. The top performing model 
was compared against historical practice.
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Research results
ML outperformed historical practice with 77.1% to 68.9%, 87.3% to 79.6%, and 92.1% to 
86.8% accuracy at 5, 10 and 15 min thresholds, and the most important features of the 
model were: patient age, procedure year, and the degree year of provider year.

Research conclusions
The use of ML to estimate colonoscopy procedure duration may lead to more accurate 
scheduling.

Research perspectives
Further study is necessary to examine the implications of the deployment of such a 
model in a clinical setting, and assess if such models can be used in other 
gastrointestinal procedures.
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Abstract
Traditional medical imaging, including ultrasound, computed tomography, 
magnetic resonance imaging, or positron emission tomography, remains widely 
used diagnostic modalities for gastrointestinal diseases at present. These 
modalities are used to assess changes in morphology, attenuation, signal intensity, 
and enhancement characteristics. Gastrointestinal tumors, especially malignant 
tumors, are commonly seen in clinical practice with an increasing number of 
deaths each year. Because the imaging manifestations of different diseases usually 
overlap, accurate early diagnosis of tumor lesions, noninvasive and effective 
evaluation of tumor staging, and prediction of prognosis remain challenging. 
Fortunately, traditional medical images contain a great deal of important 
information that cannot be recognized by human eyes but can be extracted by 
artificial intelligence (AI) technology, which can quantitatively assess the 
heterogeneity of lesions and provide valuable information, including therapeutic 
effects and patient prognosis. With the development of computer technology, the 
combination of medical imaging and AI technology is considered to represent a 
promising field in medical image analysis. This new emerging field is called 
“radiomics”, which makes big data mining and extraction from medical imagery 
possible and can help clinicians make effective decisions and develop 
personalized treatment plans. Recently, AI and radiomics have been gradually 
applied to lesion detection, qualitative and quantitative diagnosis, 
histopathological grading and staging of tumors, therapeutic efficacy assessment, 
and prognosis evaluation. In this minireview, we briefly introduce the basic 
principles and technology of radiomics. Then, we review the research and 
application of AI and radiomics in gastrointestinal diseases, especially diagnostic 
advancements of radiomics in the differential diagnosis, treatment option, 
assessment of therapeutic efficacy, and prognosis evaluation of esophageal, 
gastric, hepatic, pancreatic, and colorectal diseases.
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Core Tip: This minireview summarizes the research and application of artificial 
intelligence (AI) technology, radiomics, and texture analysis in gastrointestinal diseases in 
detail and focuses on the diagnostic advances of AI and radiomics in lesion detection, 
differential diagnosis, decision of treatment plans, assessment of therapeutic efficacy and 
tumor response to treatment, and prognosis prediction of gastrointestinal diseases. This 
technology can provide more valuable information to allow clinicians and radiologists to 
understand and perform AI and radiomics in their clinical practice.

Citation: Feng P, Wang ZD, Fan W, Liu H, Pan JJ. Diagnostic advances of artificial intelligence 
and radiomics in gastroenterology. Artif Intell Gastroenterol 2020; 1(2): 37-50
URL: https://www.wjgnet.com/2644-3236/full/v1/i2/37.htm
DOI: https://dx.doi.org/10.35712/aig.v1.i2.37

INTRODUCTION
In the 1980s, with the application of artificial neural network and computer-aided 
diagnosis and detection system software, artificial intelligence (AI) has gradually been 
integrated into the daily workflow of various fields[1]. Since the beginning of the 21st 
century, advances in computer technology have led to the rapid development of AI in 
medical applications. With the rapid development of AI, the combination of medical 
imaging and AI is considered a promising field in medicine and is primarily used for 
image data mining, extraction, searching, and applications, as well as image 
recognition and deep learning[2]. Currently, AI technology has been widely used in 
lung nodule, lung cancer, and breast cancer screening as well as prostate cancer, 
colorectal cancer, and head and neck cancer imaging[3-8]. In terms of gastroenterology, 
the main applications of AI are radiomics and texture analysis. The concept of 
radiomics was formally proposed in 2012 and refers to the process of converting 
digital medical images into mineable high-dimensional data by high-throughput 
extraction and analysis of innumerable quantitative imaging features from medical 
images obtained with imaging modalities, including ultrasound, computed 
tomography (CT), magnetic resonance imaging (MRI), or positron emission 
tomography (PET)[9,10]. Radiomics is a technology that combines multiple images and 
interdisciplinary techniques and primarily includes the following five imaging steps: 
(1) Image acquisition: Acquirement of high-quality, standardized medical images for 
diagnosis and evaluation; (2) Image segmentation: Manual, automatic, or 
semiautomatic segmentation and reconstruction of the image; (3) Feature extraction 
and quantification: This is the core process of radiomics to extract region of interest 
(ROI) texture feature parameters, including shape or size, first-order histogram or 
spherical statistical features, second-order histogram or texture, and higher-order 
statistics features and other special image features; (4) Feature selection: Screening of 
features based on repeatability, correlation with other features, and relationship with 
staging, prognosis, and gene expression; and (5) Model establishment: Incorporation of 
the selected radiomics features into a suitable prediction model[1,2,11]. By extracting 
high-throughput quantitative features, radiomics based on quantitative imaging can 
reflect not only certain components within the tumor but also intratumoral 
heterogeneity by providing supplementary information, thus helping to assess disease 
characteristics in detail[12]. The application of radiomics in gastroenterology is mainly 
focused on lesion recognition, clinical staging, and prognosis analysis. The purpose of 
this minireview is to provide a descriptive overview of diagnostic advances of AI and 
radiomics in gastroenterology.
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DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN ESOPHAGEAL 
CANCER
Esophageal cancer (EC) is the eighth most frequent malignant disease and the sixth 
most prevalent cause of disease-associated deaths worldwide[13]. The selection of a 
therapeutic approach and prognosis of EC are closely associated with preoperative 
tumor stage[14]. Therefore, accurate preoperative staging is of great importance for 
selecting an appropriate treatment plan and predicting prognosis. Traditionally, CT is 
a widely used modality for diagnosis and preoperative staging of EC; however, due to 
limited contrast resolution, CT cannot accurately identify early stage EC (T1-2) and is 
mainly used in the evaluation of regional spread and distance metastasis[15-17]. Recently, 
some studies have reported that radiomics and text analysis can improve the accuracy 
of preoperative tumor staging classification. In a study enrolling 73 patients with 
esophageal squamous cell carcinoma (ESCC), CT texture parameters based on 
unenhanced and contrast-enhanced CT images, kurtosis, entropy, and skew showed 
great potential in differentiating T stages (T1–2 vs T3–4), lymph node metastasis (N- vs 
N+), and overall stages of ESCC[18]. In a study of 154 patients with ESCC, the radiomics 
signature extracted from CT images was significantly associated with ESCC staging, 
yielding a better performance for discrimination of early stage (T1–2) and advanced 
stage (T3–4) ESCC compared to tumor volume, indicating the potential of radiomics in 
staging ESCC preoperatively[19]. F-18-fluorodeoxyglucose (18F-FDG) PET image-derived 
characteristics, including image textural features, standard unit value (SUV), and 
shape features, also allowed for better stratification of American Joint Committee on 
Cancer and tumor-node-metastasis (TNM) than F-18-fluorothymidine (18F-FLT) PET in 
ESCC patients[20]. Radiomics based on MR images (T2-TSE BLADE and contrast-
enhanced Star VIBE) also more accurately distinguished metastatic lymph nodes 
compared with nonmetastatic lymph nodes, yielding an area under the receiver 
operating characteristic curve (AUC) of 0.821 (95%CI: 0.7042 to 0.9376) and 0.762 
(95%CI: 0.7127 to 0.812), respectively[21].

In addition to tumor staging, radiomics and textural analysis have also shown 
significant importance for efficacy and prognosis evaluation. Tixier et al[22] extracted 
gray level cooccurrence matrices (GLCM), gray-level size zone matrix, entropy, long-
run matrix, and other texture features from PET images and found that these texture 
features were more effective (AUC: 0.82-0.89) than SUVmax and SUVmean (AUC: 
0.59-0.7) in predicting the clinical response of chemoradiotherapy for patients with EC. 
In a study on prediction of response after chemoradiation for EC, an integrated model 
combining CT radiomic features and dosimetric parameters for 94 patients with EC 
permitted a prediction accuracy of 0.708 and AUC of 0.689, while using radiomic 
features alone permitted the best prediction accuracy of 0.625 and AUC of 0.412[23]. In 
total, 138 radiomics features extracted from MR T2WI in 68 patients with ESCC 
exhibited potential in distinguishing complete response (CR) from stable disease (SD), 
partial response (PR) from non-response (SD), and response (CR and PR) from SD. 
Moreover, using neural network and support vector machine prediction models, 
features extracted through spectral attenuated inversion-recovery T2WI exhibited 
better performance than those extracted from T2WI in predicting the response to 
chemoradiotherapy in EC[24].

Radiomics also shows potential in the evaluation of disease prognosis. In a study of 
239 patients with EC, a random forest (RF) model based on pretreatment CT radiomics 
features was used to predict 3-year overall survival (OS) following chemo-
radiotherapy. Compared to the model using standard clinical variables that yielded an 
AUC of 0.63 (95%CI: 0.54–0.71), the radiomics-based RF model yielded an AUC of 0.69 
(95%CI: 0.61–0.77), demonstrating better prognostic power of the radiomics model 
compared with traditional clinical variables[25]. Yip et al[26] also analyzed the radiomics 
features extracted from enhanced CT images of 36 patients with T2 or above EC pre- 
and posttreatment of chemoradiotherapy and found that a posttreatment medium 
entropy of less than 7.356, a coarse of less than 7.116, and a median uniformity greater 
than 0.007 were associated with improved survival time. Moreover, the combination of 
pretreatment texture parameters (entropy and uniformity) with maximal wall 
thickness assessment in survival models performed better than morphologic tumor 
response alone with AUCs of 0.767 vs 0.487 and 0.802 vs 0.487[26]. In a study on the 
prediction of therapy response to neoadjuvant chemoradiotherapy in 97 EC patients, 
Beukinga et al[27] constructed a response prediction model based on pretreatment 
clinical parameters and 18F-FDG PET/CT–derived textural features. Compared with 
the current most accurate prediction model with SUVmax, the constructed model had 
higher AUC (0.78 vs 0.58) and discrimination slope (0.17 vs 0.01). In another study of 
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31 patients with primary EC, a significant decrease in entropy and CT tumor 
heterogeneity and increase in uniformity were observed following neoadjuvant 
chemotherapy, indicating that CT texture analysis has the potential to assess prognosis 
and survival of patients with primary EC[28]. In another study of 61 ESCC patients who 
received radical radiation therapy, the survival rate was significantly correlated with 
the change of coarseness (P = 0.0027) and strength (P = 0.0001), which indicated that 
CT features (such as coarseness and strength) could be selected as outstanding 
imaging biomarkers for prediction of RT prognosis of ESC[29].

DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN GASTRIC DISEASE
Radiomics and texture analysis potentially aid radiologists in differential diagnosis of 
gastric tumors. In a study on the utility of texture features of CT images in differential 
diagnosis of gastric tumors, textural features derived from the arterial phase exhibited 
improved accuracy of differentiation between gastric adenocarcinoma (GC) and 
gastric lymphoma as well as gastric stromal tumor (GIST) and lymphoma; however, 
the textural features derived from the venous phase adequately distinguished between 
GC and GIST[30]. Similarly, in a study on the discrimination of Borrmann type IV 
gastric cancer and primary lymphoma, objective feature models including CT objective 
features (stomach wall thickness, infiltration degree, etc.) and clinical features (age, 
gender, etc.), texture feature models, and a combination of these two models were 
established to distinguish these two types of gastric malignancies. A sensitivity of 
86.67% and specificity of 82.5% were found in the texture feature model, and a 
specificity of 100% was noted in the combination model with the highest AUC value 
(0.903), indicating the ability of radiomics in distinguishing gastric tumors from gastric 
primary lymphoma[31].

In addition, radiomics and texture analysis are also helpful for detection of local and 
peritoneal metastases. In a study of 554 patients with advanced gastric cancer (AGC) 
who were initially diagnosed as having no peritoneal metastasis by CT, a nomogram 
of radiomics signatures was developed that reflected primary tumor phenotypes and 
peritoneum region metastasis and demonstrated the best diagnostic accuracy for 
occult peritoneal metastasis[32]. In another study, texture analysis of CT imaging was 
also verified as a useful predictor of occult peritoneal carcinomatosis in patients with 
AGC[33].

Similar to its application in esophageal cancer, radiomics has also been reported to 
be helpful for tumor staging in many studies. CT texture parameters in the arterial 
phase and portal vein phase positively correlated with T stage, N stage, and overall 
stage (P < 0.05) of GC and identified lymph node metastasis of GC[34]. All the entropy-
related parameters derived from whole-volume ADC texture analysis exhibited a 
significant correlation with T, N, and overall stages. Furthermore, significant 
differences in these parameters were found between GCs with and without perineural 
invasion[35].

Regarding preoperative prognosis evaluation, texture analysis has also 
demonstrated good application prospects. Giganti et al[36] analyzed the preoperative 
textural features based on multiple detector CT images of 56 patients with 
pathologically confirmed GC and found that texture parameters, namely, energy, 
entropy, maximum Hounsfield unit value, skewness, root mean square, and mean 
absolute deviation (filter 2), negatively correlated with the prognosis of GC. Moreover, 
these parameters could be used for risk stratification in GC and aid in assessment of 
aggressiveness of GC[36]. A radiomics signature based on CT imaging in the portal 
venous phase was used to predict survival of GC, add prognostic information to the 
TNM staging system, and predict patient benefit from chemotherapy[37]. Moreover, in 
another study of 26 patients with human epidermal growth factor receptor 2-positive 
AGC who received trastuzumab-based combination chemotherapy, heterogeneous 
texture features on contrast-enhanced CT images were associated with better survival, 
demonstrating the potential of an imaging biomarker to provide prognostic 
information on patient selection[38].

DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN HEPATIC DISEASE
Studies on radiomics in hepatic diseases mainly focus on the staging of hepatic 
fibrosis, differential diagnosis of tumor and nontumor lesions, treatment selection, and 
prognosis evaluation. Echegaray et al[39] performed enhanced CT texture analysis in 29 
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patients with hepatocellular carcinoma (HCC) and found that texture features of 
images obtained in the portal venous phase exhibited the lowest misdiagnosis rate 
(13.57%) in the differential diagnosis of focal liver lesions, demonstrating the 
superiority of radiomics compared with traditional imaging in distinguishing hepatic 
disease characteristics[39]. In a study of 164 hepatic lesions, Huang et al[40] extracted the 
autocovariance texture features of lesions and proposed a support vector machine 
classifier system to identify benign lesions from malignant lesions. The system had an 
accuracy of 81.7% in identifying malignant hepatic lesions with a sensitivity of 75.0% 
and specificity of 88.1% and was useful in reducing the needs for iodinated contrast 
agent injection in CT examination[40]. Oyama et al[41] assessed the accuracy for 
classification of HCC, metastatic tumors (MT), and hepatic hemangioma (HH) by 
characterization of non-contrast-enhanced fat-suppressed three-dimensional (3D) T1-
weighted images by using texture analysis and topological data analysis using 
persistent homology. In the classification of HCC and MT, HCC and HH, and HH and 
MT, accuracies of 92%, 90%, and 73% were obtained by texture analysis, showing the 
potential application for computer-aided diagnosis with MR images[41]. In a study on 
the differential diagnosis of neoplastic or bland portal vein thrombosis in 109 patients, 
the mean value of positive pixels (without filtration), entropy (with fine filtration), and 
mean thrombus density values were helpful in the identification of neoplastic and 
bland thrombi with AUCs of 0.97, 0.93, and 0.91, yielding optimal cutoff values of 56.9, 
4.50, and 54.0 HU, respectively (P < 0.001); these findings indicated that CT texture 
analysis and CT attenuation values based on images obtained in the portal venous 
phase could be helpful in differentiating neoplastic thrombi from benign thrombi[42].

In the evaluation of hepatic fibrosis and other nontumor lesions, radiomics also has 
shown good prospects. In a study on staging of hepatic fibrosis in 289 patients, CT 
texture parameters (mean gray-level intensity, kurtosis, and skewness) were helpful in 
the detection and staging of fibrosis[43]. In total, 41 texture features extracted from 
enhanced CT images of 83 patients with pathologically proven hepatic fibrosis offered 
a noninvasive assessment of liver fibrosis[44]. In a study on the texture features of non-
contrast-enhanced CT images of 88 patients with pathologically confirmed 
nonalcoholic steatohepatitis (NASH), the mean texture parameters without a filter and 
skewness with a 2-mm filter were selected for the NASH prediction model for patients 
without suspected fibrosis, yielding an AUC of 0.94 and accuracy of 94% in the 
predictive model for the validation dataset. These results reveal the ability of the 
model to predict NASH[45].

In addition, imaging texture analysis also shows good prospect in the evaluation of 
prognosis, optimization of treatment plans, and prediction of tumor response to 
treatment. Texture analysis exhibited potential in the assessment of prognosis and 
selection of appropriate patients with intermediate-advanced HCC treated by 
transcatheter arterial chemoembolization (TACE) and sorafenib[46]. In another study on 
the prediction of therapeutic response of HCC to TACE, textures derived from 
pretreatment dynamic CT imaging were analyzed in 96 patients with 132 HCCs, and 
increased arterial enhancement ratios and GLCM moments, smaller tumor size, and 
reduced tumor homogeneity were significant predictors of complete response (CR) 
after TACE[47]. A radiomics scoring system based on 18F-FDG PET was generated in a 
study of 47 patients undergoing transcatheter arterial radioembolization using 
Yttrium-90 for unresectable HCC, and statistically significant differences in 
progression-free survival (PFS) and overall survival (OS) between low-risk patients 
and high-risk patients were detected, indicating that pretreatment 18F-FDG PET-
derived radiomics features served as an independent negative predictor of patient 
prognosis[48]. Similarly, preoperative skewness derived from images obtained in the 
portal venous phase was independently associated with OS in patients with resectable 
HCC and might be useful in the selection of patients for resection[49]. In a study focused 
on the prediction of OS and time to progression of 92 patients with advanced HCC 
treated with sorafenib, pretreatment CT texture feature entropy derived from images 
obtained in the portal venous phase was also identified as an independent predictor of 
OS in patients[50].

DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN PANCREATIC 
DISEASES
At present, the applications of radiomics analysis in pancreatic diseases mainly focus 
on the diagnosis and differential diagnosis of pancreatic tumors, biological 
stratification and grading of tumors, prognosis prediction, therapeutic assessment, and 
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efficacy evaluation. Radiomics analysis also aids in preoperative diagnostic accuracy 
and proper management decisions. In a study that enrolled 260 surgically resected 
pancreatic cystic neoplasms, the accuracy rate for serous cystic neoplasms (SCNs) 
before surgery was only 30.4% (102/260), indicating that greater than two-thirds of 
patients with SCN underwent unnecessary surgery. However, using a diagnostic 
model established based on dual-phase pancreatic CT imaging features, the accuracy 
rate of diagnosis significantly improved with an AUC of 0.767, sensitivity of 68.6%, 
and specificity of 70.9%[51]. In clinical practice, imaging findings of pancreatic 
neuroendocrine carcinoma (PNEC) and pancreatic ductal adenocarcinoma (PDAC) 
usually overlap, and the misdiagnosis of these two entities is common. In addition to 
traditional CT imaging features of tumor margin, parenchymal atrophy, and contrast 
ratio in the arterial and portal phases, Guo et al[52] confirmed that texture parameters of 
entropy and uniformity were also valuable for distinguishing PNEC from PDAC. CT 
features and texture analysis were also useful for the classification of pancreatic 
neuroendocrine tumors (PNETs). In a study enrolling 101 patients with PNETs, 
entropy was predictive of Grades (G) 2 and 3 tumors with an accuracy of 79.3% for 
classifying G1, G2, and G3 tumors[53]. D'Onofrio et al[54] also reported that parameters of 
kurtosis and entropy extracted from 3D CT-texture imaging analysis could predict the 
grade of PNETs, distinguishing G1 from G3, G2 from G3, and G1 from G2 tumors.

Promising results of radiomics and texture analysis were reported in the field of 
therapeutic assessment and prognosis prediction of PDAC. Texture parameters from 
preoperative CT images of pancreas head cancer in patients who underwent curative 
resection significantly differed between patients with and without recurrence, and this 
method could be used as an independent imaging tool for predicting prognosis[55]. In 
another study on patients with unresectable PDAC treated with chemotherapy, 
pretreatment CT quantitative imaging biomarkers based on texture analysis were 
associated with PFS and OS, and the combination of pretreatment texture parameters 
and tumor size performed better in survival models than imaging biomarkers alone[56]. 
Cozzi et al[57] also reported that a CT-based radiomics signature correlated with OS and 
local control of PDAC after stereotactic body radiation therapy and allowed for 
identification of low- and high-risk groups of patients.

DIAGNOSTIC ADVANCES OF AI AND RADIOMICS IN COLORECTAL 
DISEASES
At present, research on colorectal tumors mainly focuses on the extraction of texture 
features, identification of neoplastic and nonneoplastic lesions, preoperative staging of 
colorectal cancer (CRC), and evaluation of lymphatic metastasis. In a study on the 
efficiency of texture features by CT colonography in the differential diagnosis of colon 
lesions, combining high-order CT images with CT volumetric texture features yielded 
a significantly increased AUC of 0.85 in distinguishing neoplastic colon tumors from 
nonneoplastic lesions compared with the exclusive use of the parameter of image 
intensity[58]. A CT-based radiomics signature of patients with CRC before surgery 
might be a useful method for preoperative CRC tumor staging given its ability in the 
discrimination of stage I-II from stage III-IV CRC, yielding an AUC of 0.792 with a 
sensitivity of 0.629 and specificity of 0.874[59].

The application of radiomics also showed efficacy in therapeutic evaluation of rectal 
cancer (RC). In a study on the response to neoadjuvant chemoradiation therapy 
(NCRT) in 51 patients with local advanced RC, radiomics based on pretreatment and 
early follow-up MRI could provide quantitative information to differentiate pathologic 
CR (pCR) from non-pCR and good response (GR) from non-GR[60]. Texture parameters 
derived from T2WI of RC also exhibited potential to assess the tumoral response to 
NCRT[61].

Radiomics and texture analysis are also valuable for treatment decisions. In a study 
that enrolled 95 patients with T2-4 N0-1 RC treated with NCRT, a deep neural network 
was proposed to predict the CR of tumor to treatment. The model predicted CR with 
an increased accuracy of 80% compared with the linear regression model (69.5%) and 
support vector machine model (71.58%) after NCRT, demonstrating the potential of 
radiomics in the selection of patients for NCRT rather than radical resection[62]. In 
another study of 326 pathologically proven CRC patients, a radiomics nomogram 
incorporating both the radiomics signature and clinicopathologic risk factors for 
individual preoperative prediction of lymph node metastasis in patients with CRC 
was developed and facilitated the preoperative individualized prediction of lymph 
node metastasis[63].
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CONCLUSION
In conclusion, AI and radiomics have been applied in routine clinical practice, 
including lesion detection, differential diagnosis, therapeutic assessment, prognosis 
prediction and so on (Figure 1). The incorporation of AI into current clinical radiology 
workflow has shown potential to help radiologists improve accuracy of diagnosis, 
evaluate therapeutic effect, and predict prognosis (Tables 1-3). However, at present 
these applications in clinical practice remain in their infancy, and many details of 
workflow need to be improved. First, there is no uniform standard for image 
acquisition at present. Different types of scanners and imaging acquisition protocols 
vary across institutions, and the image quality and stability of features also need to be 
improved. Second, although a majority of models could be built for radiomics analysis, 
it is still difficult to decide the best one for different clinical issues. Third, till now, 
most studies were retrospectively designed and the reliability of these research 
conclusions still needs to be tested. In order to overcome these barriers, it is of great 
importance to establish a unified labeling database, develop automatic standardized 
ROI mapping software, and select multiple machine learning methods for 
optimization. Moreover, for more applications and development of AI and radiomics 
in gastroenterology, multicenter cooperation is also an inevitable trend to verify large 
sample data from various institutions. Given the continuous accumulation of data, 
standardization of work processes, and continuous improvement of computer 
technology, AI and radiomics will make a major breakthrough in the field of precision 
medicine for gastroenterology in the future.
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Table 1 Application of radiomics in qualitative diagnosis in gastroenterology

Classification of 
disease

Imaging 
modality Features evaluated and methods Outcomes Ref.

Gastric disease

AC; GIST; 
lymphoma

CECT RLM; GLCM; absolute gradient; 
autoregressive model; wavelet 
transformation

Texture-based lesion classification in arterial phase differentiated 
between AC and lymphoma, and GIST and lymphoma, with 
misclassification rates of 3.1% and 0%, respectively Texture-based 
lesion classification in venous phase differentiated between AC 
and GIST, and different grades of AC with misclassification rates 
of 10% and 4.4%, respectively

[30]

Borrmann type IV 
GC; PGL

CECT A total of 485 3D features, divided into four 
groups: First order statistics, shape and size 
based features, texture features, and wavelet 
features

The subjective findings model, radiomics signature, and combined 
model showed a diagnostic accuracy of 81.43% (AUC, 0.806; 
sensitivity, 63.33%; specificity, 95.00%), 84.29% (AUC, 0.886; 
sensitivity, 86.67%; specificity, 82.50%), and 87.14% (AUC, 0.903; 
sensitivity, 70.00%; specificity, 100%), respectively, in the 
differentiation of Borrmann type IV GC from PGL

[31]

Hepatic disease

Neoplastic and 
bland portal vein 
thrombus

CECT Mean; entropy; SD of pixel intensity; 
kurtosis; skewness

In the discrimination of neoplastic from bland thrombus, the 
AUCs were 0.97 for mean value of positive pixels, 0.93 for 
entropy, 0.99 for the model combining mean value of positive 
pixels and entropy, 0.91 for thrombus density, and 0.61 for the 
radiologist's subjective evaluation

[42]

HCC; MT; HH MRI GLCM; GLRLM; GLSZM; NGTDM Texture analysis in differential diagnosis: HCC and MT: accuracy 
92%, sensitivity100%, specificity 84%, AUC 0.95 HCC and HH: 
accuracy 90%, sensitivity 96%, specificity 84%, AUC 0.95 MT and 
HH: accuracy 73%, sensitivity74%, specificity72%, AUC 0.75

[41]

Pancreatic disease

PSCN CECT A total of 385 radiomics high-throughput 
features: Intensity; wavelet; NGTDM

The accuracy rate of SCNs before surgery was only 30.4% (31/102) 
while the diagnostic model established based on dual-phase 
pancreatic CT imaging features had an improved accuracy rate of 
diagnosis, showing an AUC of 0.767, sensitivity of 68.6%, and 
specificity of 70.9%

[51]

PNEC; PDAC CECT Filtration-histogram approach and 
Laplacian-of-Gaussian band-pass filters 
(sigma values of 0.5, 1.5, and 2.5) were used 
and texture parameters under different 
filters, including: Kurtosis, skewness, 
entropy, and uniformity

PNEC showed a lower entropy and a higher uniformity compared 
to PDAC in the portal phase with an acceptable AUC of 0.71-0.72

[52]

Colorectal disease

Neoplastic and 
non-neoplastic 
lesions

CECT 78 features for each lesion in total Combining high-order CT images with CT volumetric texture 
features allowed a significantly higher AUC of 0.85 in 
distinguishing neoplastic colon tumors from non-neoplastic ones 
than only using the image intensity (AUC of 0.74)

[58]

CECT: Contrast-enhanced computed tomography; AC: Adenocarcinoma; GIST: Gastrointestinal stromal tumors; PGL: Primary gastric lymphoma; MT: 
Metastatic tumor; HH: Hepatic hemangioma; AUC: Area under the curve; GLCM: Grey level cooccurrence matrices; GLSZM: Gray-level size zone matrix; 
PSCN: Pancreas serous cystic neoplasms; SCN: Serous cystic neoplasm; PNEC: Pancreatic neuroendocrine carcinoma; PDAC: Pancreatic ductal 
adenocarcinoma.
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Table 2 Application of radiomics in disease staging in gastroenterology

Classification 
of disease

Imaging 
modality Features evaluated and methods Outcomes Ref.

Esophageal disease

ESCC Unenhanced 
CT and CECT

Six parameters based on HU values: 
Mean; 10th percentiles; 90th percentiles; 
kurtosis; entropy; skew

Kurtosis and entropy based on unenhanced CT were an independent 
predictor of T stages, lymph node metastasis (N- vs N+), and overall 
stages Skew and kurtosis based on unenhanced CT images showed 
significant differences among N stages as well as 90th percentile 
based on contrast-enhanced CT images; entropy and 90th percentile 
based on CECT images showed significant correlations with N stage 
and overall stage

[18]

ESCC CECT A total of 9790 radiomics features were 
extracted including the following four 
categories: First-order histogram 
statistics, size and shape-based features, 
texture features, and wavelet features

The radiomics signature significantly associated with ESCC staging 
and yielded a better performance for discrimination of early and 
advanced stage ESCC compared to tumor volume

[19]

Gastric disease

GC MRI Entropy-related parameters based on 
ADC maps including: (1) First-order 
entropy; (2–5) second-order entropies, 
including entropy(H)0, entropy(H)45, 
entropy(H)90, and entropy(H)135; (6) 
entropy(H)mean; and (7) entropy(H)range

All the entropy-related parameters showed significant differences in 
gastric cancers at different T, N, and overall stages, as well as at 
different statuses of vascular invasion Entropy, entropy(H)0, 
entropy(H)45, and entropy(H)90, showed significant differences 
between gastric cancers with and without perineural invasion

[35]

GC CECT Mean; maximum frequency; mode; 
skewness; kurtosis; entropy

Maximum frequency in the arterial phase and mean, maximum 
frequency, mode in the venous phase correlated positively with T, N, 
and overall stage of GC; entropy in the venous phase also correlated 
positively with N and overall stage; skewness in the arterial phase 
had the highest AUC of 0.822 in identifying early from advanced GCs

[34]

Hepatic disease

Hepatic fibrosis CECT Mean gray-level intensity; entropy; 
kurtosis; skewness

Mean gray-level intensity, mean, and entropy increased with fibrosis 
stage; kurtosis and skewness decreased with increasing fibrosis

[43]

Pancreatic disease

PNET CECT Positive pixels; SD; kurtosis; skewness; 
entropy

Entropy was predictive of Grades 2 and 3 tumors with an accuracy 
rate for classifying G1, G2, and G3 tumors of 79.3%

[53]

PNET CECT Mean value; variance; skewness; 
kurtosis; entropy

Kurtosis was significantly different among the three G groups, giving 
an AUC value of 0.924 for the diagnosis of G3 with a sensitivity and 
specificity of 82% and 85%, respectively; entropy differed 
significantly between G1 and G3 and between G2 and G3 tumors, 
giving an AUC value of 0.732 for the diagnosis of G3 with a 
sensitivity and specificity of 82% and 64%, respectively

[54]

Colorectal disease

CRC CECT The 16-feature-based radiomics 
signature was generated using LASSO 
logistic regression model

The 16-feature-based radiomics signature was an independent 
predictor for staging of CRC and could categorize CRC into stage I-II 
and stage III-IV Compared with the clinical model, the radiomics 
signature showed significantly better performance either in the 
training dataset (AUC: 0.792 vs 0.632; P < 0.001) or in the validation 
dataset (AUC: 0.708 vs 0.592; P = 0.037)

[59]

ESCC: Esophageal squamous cell carcinoma; CECT: Contrast-enhanced computed tomography; GC: Gastric carcinoma; PNET: Pancreatic neuroendocrine 
tumor; CRC: Colorectal cancer; AUC: Area under the curve.
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Table 3 Application of radiomics in evaluation of therapeutic efficacy and prognosis in gastroenterology

Classification 
of disease

Imaging 
modality Features evaluated and methods Outcomes Ref.

Esophageal disease

EC 18F-FDG 
PET

A total of 38 features (such as entropy, size, and 
magnitude of local and global heterogeneous 
and homogeneous tumor regions) extracted 
from 5 different textures

Tumor textural analysis provided non-responder, partial-
responder, and complete-responder patient identification with a 
higher sensitivity (76%-92%) than any SUV measurement

[22]

ESCC MRI 138 radiomic features were extracted from each 
image sequence based on three principal 
methods: Histogram-based (IH, GH), texture-
based (GLCM, GLRLM, and NIDM), and 
transform-based (GWTF)

Radiomic analysis showed that CR vs SD, PR vs SD, and 
responders (CR and PR) vs non- responders could be 
differentiated by 26, 17, and 33 features, respectively; the 
prediction models (ANN and SVM) based on features extracted 
from SPAIR T2W sequence (SVM: 0.929; ANN: 0.883) showed 
higher accuracy than those derived from T2W (SVM: 0.893; ANN: 
0.861)

[24]

Gastric disease

GC CECT Histogram features: Kurtosis, skewness; GLCM: 
ASM, contrast, entropy, variance, correlation

Contrast, variance, and correlation showed fair accuracy for the 
prediction of good survival with all AUCs being over 0.7, and all 
were statistically significant

[38]

Hepatic disease

HCC CECT 21 textural parameters per filter were extracted 
from the region of interests delineated around 
tumor outline by application of a Gabor filter 
and wavelet transform with 3 band-width 
responses (filter 0, 1.0, and 1.5)

Texture analysis was observed to have potential in assessment of 
prognosis and selection of appropriate patients with 
intermediate-advanced HCC treated by TACE and sorafenib

[46]

HCC CECT First order statistics; geometry; texture analysis; 
GLCM

Textures derived from pretreatment dynamic CT imaging were 
analyzed, higher arterial enhancement ratio and GLCM moments, 
smaller tumor size, and lower tumor homogeneity were 
significant predictors of CR after TACE

[47]

Pancreatic disease

Pancreas head 
cancer

CECT Laplacian of the Gaussian band-pass filter was 
applied to detect intensity changes within the 
images smoothened by Gaussian distribution 
based on the filter sigma value of 1.0 (fine 
texture, filter width 4 pixels), 1.5 to 2.0 (medium 
texture, filter width 6-10 pixels), and 2.5 (coarse 
texture, filter width 12 pixels)

Texture parameters of average, contrast, correlation, and standard 
deviation with no filter, and fine to medium filter values, as well 
as the presence of nodal metastasis were significantly different 
between recurred and non-recurred patients; lower standard 
deviation and contrast and higher correlation with lower average 
value representing homogenous texture were significantly 
associated with poorer DFS, along with the presence of lymph 
node metastasis

[55]

PDAC CECT Mean gray-level; intensity; entropy; MPP; 
kurtosis; SD; skewness

Tumor size, tumor SD, and skewness were significantly and 
independently associated with PFS, while tumor size and tumor 
SD were significantly and independently associated with OS

[56]

Colorectal disease

LARC MRI 18 features extracted using the Haralick's GLCM 
and 12 parameters calculated for the histogram-
based analysis

Radiomics based on pre-treatment and early follow-up MRI could 
provide quantitative information to differentiate pCR from non-
pCR, and GR from non-GR.

[60]

Rectal cancer MRI Kurtosis; entropy; skewness; MPP The change in kurtosis between midtreatment and pretreatment 
images was significantly lower in the PR + NR subgroup 
compared with the pCR subgroup; pretreatment AUROC to 
discriminate between pCR and PR + NR, was significantly higher 
for kurtosis (0.907, P < 0.001)

[61]

EC: Esophageal cancer; ESCC: Esophageal squamous cell carcinoma; PET: Positron emission tomography; MRI: Magnetic resonance imaging; CR: 
Complete response; SDs: Stable diseases; PRs: Partial responses; GLCM: Gray level cooccurrence matrices; GC: Gastric carcinoma; ASM; Angular second 
moment; AUC: Area under the curve; HCC: Hepatocellular carcinoma; CECT: Contrast enhanced computed tomography; TACE: Transcatheter arterial 
chemoembolization; DFS: Disease free survival; PFS: Progression-free survival; OS: Overall survival; PDAC: Pancreatic ductal adenocarcinoma; LARC: 
Local advanced rectal cancer; GR: Good response; MPP: Mean value of positive pixels.
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Figure 1  Overview of the workflow of artificial intelligence and radiomics in clinical practice.
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Abstract
Artificial intelligence (AI) is gaining incredible momentum as a companion 
diagnostic in a number of fields in oncology. In the present mini-review, we 
summarize the main uses and findings of AI applied to the analysis of digital 
histopathological images of slides from colorectal cancer (CRC) patients. Machine 
learning tools have been developed to automatically and objectively recognize 
specific CRC subtypes, such as those with microsatellite instability and high 
lymphocyte infiltration that would optimally respond to specific therapies. Also, 
AI-based classification in distinct prognostic groups with no studies of the basic 
biological features of the tumor have been attempted in a methodological 
approach that we called “biology-agnostic”.

Key Words: Artificial intelligence; Colorectal cancer; Digital pathology; Deep learning; 
Machine learning; Tumor-infiltrating lymphocytes
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INTRODUCTION
Artificial intelligence (AI) refers to any form of machine activity that attempts to mimic 
human intelligence. The main abilities of the human intelligence objective of AI 
research are performing complex tasks and achieving goals through processes that are 
typical of the human cognitive functions, such as “learning” [which in this case is 
termed “machine learning” (ML)] and “problem solving”[1-4].

“Deep” learning (DL) is a basic method of ML. It is based on specific computer 
algorithms that recall neural networking and that try to model data-rich input for the 
identification of general and meaningful features/patterns or for the prediction of 
specific outcomes[5]. The term “deep” refers to the organization in layers of the artificial 
neural network, with deep layers of analysis being crucial to infer more complex and 
higher-level characteristics up to the final layer of the label/output that is pursued 
(Figure 1 and Figure 2).

ML has been successfully applied in the so-called digital pathology[6-8], where 
histological images are deeply analyzed in every single pixel for color and light 
intensity by computer algorithms, to deduce a final diagnosis or prognostic/predictive 
feature.

The use of AI in cancer histopathology has been possible since the advent of 
histologic images digitalization[6]. Widely available image scanners are currently used 
in clinical practice, also for the acquisition of initial hematoxylin and eosin (HE) 
stained slides. Mukhopadhyay et al[9] performed a comparison between digital 
pathology and classical microscopy in a large multi-center cohort of patients and 
confirmed the exceptional utility of the digital support. Early studies were based on 
the analysis and segmetation of specific slide regions, such as the tumor center, 
margins, stroma or others, mainly in order to recognize specific objects and 
structures[10]. More recently, with the ability of the computational analysis of higher 
digital dimension, automated analysis of whole HE-stained tumor tissue slides has 
been possible and inference of patient outcome and prognosis has been attempted[11,12]. 
In the present mini-review, we summarize the latest findings for the application of AI 
tools for the digital pathology of colorectal cancer (CRC). In general, two research 
fields have been identified: AI instruments for identification of specific biologic 
features and AI instruments for prediction of patient outcome independently of the 
cancer biology.

ML FOR DETECTION OF SPECIFIC BIOLOGIC FEATURES
One typical approach of AI in pathology is to use pre-defined key image features as 
building block for AI-algorithm development. These are usually termed “hand-
crafted” features and are engineered based on biological insights. Typical examples of 
“hand-crafted” features are shape and orientation of the cell nuclei[13], that can be used 
to recognize cancer cells or tumor infiltrating lymphocytes or other cell types.

Assessment of shape and organization of cancer cells
Shape and orientation of cancer cells are among the most commonly assessed variables 
to predict patient outcome[14]. A predictive, ML-based algorithm for lymph node 
metastasis (LNM) on whole slide images in early CRC with pathological submucosal 
invasion (pT1) has proven useful when using data from cancer cell morphology[16]. 
After delineating cancer cell regions by using immunohistochemistry for cytokeratins, 
Takamatsu et al[15] analyzed tissue slides from over 300 CRC patients diagnosed as pT1, 
looking for predictors of LNM. They used the popular ImageJ software, released by 
the United States’ National Institutes of Health, and JPEG images. Digital parameters 
extracted from the slides essentially referred to shape, circularity, orientation and 
organization of cancer cells (e.g., Feret’s diameter), and these were used to feed a 
supervised ML algorithm based on random forest classifier. AI prediction was proved 
to be superior to human conventional assessment, with a discriminatory power of area 
under the curve (commonly known as AUC) 94% vs 83%, respectively.

Sailem et al[16] proposed a data-rich integrated platform that utilized a ML approach 
to conjugate high-throughput gene perturbation analysis with morphological features 
of CRC and, in particular, single cell morphology and cell population organization. 
After identification of TGFβ and WNT signaling genes and olfactory receptors genes 
as key altered genes in CRC, they validated their association with single cell and cell 
population morphology and grade of differentiation in CRC. Those specific gene 
alterations were associated to abnormal organization of HCT116 CRC cell cultures and 
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Figure 1  Exemplified representation of hand-crafted feature-based machine learning.

Figure 2  Exemplified explanation of deep learning for tumor tissue slide analysis.

also to specific CRC molecular subtypes (the well-known consensus molecular 
subtypes – CSM[17]) in over 550 patients from The Cancer Genome Atlas (referred to as 
TCGA) database.

Assessment of tumor infiltrating lymphocytes
In recent years, the development of immunotherapy has revolutionized the care of 
cancer[18], and great attention has been placed upon assessment of the immune 
response surrounding the tumor tissue[19]. Most reports are focused on specific 
immune cells and chiefly on tumor-induced cytotoxic T cells. Indeed, a high T-cell 
infiltration appears to be associated with a decreased risk of tumor dissemination and 
improved survival in most solid tumors. Väyrynen et al[20] have recently proposed an 
AI-based assessment of CRC slides, simultaneously evaluating different cell 
populations involved in immune response against the tumor. Scanned HE-stained 
images of CRC cases from two United States’ prospective cohorts [the Nurses’ Health 
Study (referred to as NHS), and the Health Professionals Follow-up Study (referred to 
as HPFS)] were analyzed with an open source software (QuPath v0.1.2), enabling the 
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recognition of cancer epithelial cells and four immune cell types with distinct 
morphological features: lymphocytes, plasma cells, eosinophils, and neutrophils. 
Moreover, QuPath v0.1.2 was able to distinguish between two tissue regions: the 
intraepithelial region and stromal region[21]. Densities of immune cells in the 
intraepithelial and stromal regions, together with a function (G-cross function) 
measuring the proximity of immune cells to cancer cells (expressed as AUC within a 
distance of 20 μm) were calculated. Findings from NHS and HPFS cohorts were 
validated in a set of 570 CRC from TGCA with available digitalized pathological 
images in the data portal. Automated quantification of immune cells was compared to 
manual count by pathologists.

A high correlation between measurement of immune cell densities performed by 
automated AI classifiers and manual counts performed by experienced pathologist 
was found (Spearman’s rho 0.71-0.96). Moreover AI-determined stromal density of 
lymphocytes and eosinophils were independently correlated with survival in a 
multivariable Cox regression analysis, with higher densities associated with longer 
cancer-specific survival (P for trend across quartiles of density < 0.001 for both cell 
types). The multivariate analysis included very important molecular factors which 
were available for the post-hoc analysis of NHS and HPFS populations and partly 
associated with immune response, such as microsatellite instability (MSI), CpG island 
methylator phenotype, KRAS, BRAF, and PIK3CA mutations, and LINE-1 methylation 
level. High G cross function for Tumor: Lymphocyte and Tumor: Eosinophil proximity 
was also associated with longer cancer-specific survival (Ptrend 0.002 and < 0.001, 
respectively). High stromal eosinophil density was associated with better cancer-
specific survival also in the TGCA cohort (Ptrend < 0.001).

AI can also improve CRC cancer staging and, consequently, patient prognosis. 
Reichling and co-workers[22], using a LASSO algorithm, DGMate (DiGital tuMor 
pArameTErs), combined the analysis of tumor stroma and tumor cell intrinsic 
variables, in association with immune cell infiltrate of tumor samples from stage III 
CRC patients of the PETACC8 study cohort, and were able to detect digital parameters 
within the tumor cells related to patients’ outcomes[23]. Similarly, clinically relevant 
information were gained in the study of Yoo et al[24], in which ML-based analysis was 
applied to study the quantitative parameters of immune infiltrate within the tumor 
immune microenvironment. By quantifying intraepithelial tumor-infiltrating 
lymphocytes, stromal tumor-infiltrating lymphocytes, and the tumor-stroma ratio 
from CD3 and CD8 immunohistochemical stained whole-slide images, the authors 
classified five CRC subgroups with distinctive biological features and different 
prognostic behaviors. Indeed, the CD3+ and CD8+ T-cell infiltration is considered an 
important independent prognostic factor predicting CRC patient survival[25]. An 
automated image analysis–based workflow quantifying the tumor-infiltrating immune 
cells and tumor budding, at the invasive front, combined with a ML approach, 
demonstrated that the spatial association of lymphocytes and tumor buddings could 
provide a high prognostic significance in stage II CRC patients[26].

AI for identification of peculiar molecular subgroups
MSI-high (MSI-H) tumors are a peculiar molecular subgroup of CRC characterized by 
deficient expression of mismatch repair proteins (dMMR phenotype)[27]. MSI-H is 
associated with the inherited Lynch syndrome and found to be a marker of increased 
tumor mutational burden, neoantigen generation and exceptional sensitivity to 
immune checkpoint inhibitors[28]. It accounts for 4%-5% of metastatic CRC and its early 
recognition is now crucial to avoid useless treatment with conventional chemotherapy 
and to tailor adequate and effective immunotherapy. Kather et al[29] have recently built 
an AI-classifier of conventionally HE-stained slides of gastric and CRC for the 
detection of MSI-H. The model used Resnet18, a residual learning convolutional 
neural network (CNN), which was trained and validated, both internally and 
externally, in a very large cohort of gastrointestinal cancer. In particular, Resnet18 was 
initially trained to automatically identify tumor areas within the normal tissue 
background in common histological slides. In a second step, it was trained to define 
the degree of MSI using TCGA bank, and specifically 315 and 360 formalin-fixed 
paraffin embedded gastric and CRC specimens, respectively, and 378 snap-frozen CRC 
samples. TGCA of stomach cancer was 80% from non-Asian patients, and authors 
tested the possible influence of ethnicity on the model performance by validating the 
AI classifier in an external cohort of 185 Japanese patients.

The discriminatory power of the AI tool for the MSI-H status identification was 
impressively high (AUC around 80% in almost all experiments) across all the different 
sets: gastric vs CRC tissues, Asian vs non-Asian patients, and formalin-fixed paraffin 
embedded vs snap-frozen samples. Moreover, it was found that minimal required 



Formica V et al. AI in CRC

AIG https://www.wjgnet.com 55 September 28, 2020 Volume 1 Issue 3

number of histological “tiles” on which to train and interrogate the algorithm (the ML 
process starts by fragmenting the entire histologic digital image in multiple 
elementary color-normalized slide tiles) was as small as those encompassed in a 
common core needle biopsy (performance plateaued at approximately 100 “slide tiles” 
of 256 μm edge length). The logical next step in this field will be to test the predictive 
value of AI-based MSI-H diagnosis for immunotherapy efficacy.

In another study by the same research group, a DL model for MSI definition was 
trained and validated in a cohort of nearly 9000 patients from Germany, Netherlands, 
United Kingdom and United States by using standard HE-stained slides and 
immunohistochemistry for mismatch repair proteins or conventional genetic test of 
microsatellite regions as ground truth for MSI status. In the validation step, the DL 
tool demonstrated an impressively high ability to correctly classify MSI-H patients 
with a discriminatory power > 95% (AUROC 0.95-096)[30].

AI for the quantification of stromal tissue
In CRC, the so-called desmoplastic reaction, i.e. a pronounced stromal tissue growth 
within the tumor mass, has been associated with reduced prognosis[31]. Desmoplastic 
reaction is driven by differentiated cells responsible for the deposition of extracellular 
fibrotic material, the cancer-associated fibroblasts (CAFs). Kather et al[32] have used DL 
for automatic quantification of stromal tissue proportion in CRC tissues and set up a 
“deep stroma score”. They first trained the DL instrument with over 100000 digital 
image patches of HE-stained tumors from 86 CRC patients where stromal and non-
stromal areas were hand-delineated. The DL tool so obtained was then tested in an 
independent set of over 7000 images from 25 patients, where it demonstrated an 
accuracy of > 94%.

The tool, that was able to recognize tissue-specific features, was finally used to 
produce the “deep stroma score” which was calculated for a cohort of 500 colorectal 
patients from the TCGA repository and correlated with survival. The stroma score 
significantly and independently associated with overall survival with a hazard ratio of 
1.99, P = 0.003. In the same patient group, manual stroma quantification by 
experienced pathologists or stromal assessment by means of gene expression profiles 
attributable to CAFs had an inferior performance in terms of survival prediction across 
the different tumor stages (from I to IV). The DL stroma score yielded similar 
prognostic efficacy in an independent validation cohort of over 400 patients from 
Germany: hazard ratio for overall survival 2.29, P = 0.0004.

BIOLOGY-AGNOSTIC ML
DL is a novel type of ML that uses a more “blind” approach to analyze the input data 
with no pre-definition of hand-crafted features to train the model. An extreme way to 
apply DL is the direct correlation of the digital input data to the final outcome, for 
example risk of disease relapse vs definitive care after surgical removal of the tumor, 
with no specific “biological insights” fed into the machine. Skrede et al[33] have applied 
an advanced DL method to analyze whole-slide image, using CNN. CNN makes use 
of mathematical convolutions, i.e. resulting mathematical functions obtained by 
combining more primary functions reversed and shifted in time. In Skrede et al[33]’s 
experiment, no clinical or biological information (such as grade of histological 
differentiation, neurovascular invasion, depth of tumor infiltration within the colon 
wall, or others) was fed into the model, and the final objective was to identify 
“biology-agnostic” digital image profiles (purely based on patterns of pixel color or 
intensity of the digital images) predictive of CRC specific survival in surgically-
resected patients (stages II and III). Four large cohorts of approximately 1000 patients 
each were used (training, tuning, test and validation cohorts). The CNN-based 
automatic prognostic classifier, that authors called DoMore-v1-CRC, was initially 
trained for outcome prediction in a cohort of patients constituted of two subgroups 
with “pre-labeled” distinct outcomes: good (survival > 2 years) vs poor (relapse within 
6 mo) outcome. DoMore-v1-CRC was then tuned, tested and validated in cohorts with 
non-prelabeled outcome to define its prognostic ability. The DoMore-v1-CRC had an 
output of three possible classes, good vs uncertain vs poor prognosis. The DoMore-v1-
CRC–based classification had an independent prognostic value in a multivariable 
survival analysis that included and adjusted for well-known and broadly-used clinical 
and biological factors, such as pN stage, pT stage, lymphatic invasion, and venous 
vascular invasion (hazard ratio for DoMore-v1-CRC-defined poor vs good prognosis 
3.04, P < 0.0001). Accuracy in predicting cancer-specific survival was around 70% in all 
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cohorts. The prognostic power remained high for both stage II and stage III tumors, 
and for groups of slides prepared in different laboratories, thus confirming its 
robustness against inter-laboratory variability in tissue preparation and staining. 
Moreover, the prognostic yield remained high when two different image scanners 
were compared (NanoZoomer XR vs Aperio AT2 scanner). Interestingly, even though 
derived from a biology-agnostic approach, DoMore-v1-CRC significantly correlated 
with clinical and biological markers, such as age, pN stage, pT stage, histological 
grade, tumor sidedness, BRAF mutation, and microsatellite instability.

CONCLUSION
Even if still at the early stages, AI in digital pathology is increasingly gaining 
momentum, for a number of reasons: (1) worldwide transferability; (2) high-dimension 
of analyzable data; and (3) automated procedural approaches. Far from being 
conceived as substitutive of human intelligence, it can be seen as a useful companion 
diagnostic in oncology and as pre-screening/pre-selection tool. Both biology-driven 
and biology-agnostic algorithms have been pursued in the implementation of AI in the 
CRC pathology field (Table 1).

The main challenges for AI-supported digital pathology are currently to 
demonstrate that can diffusely be applied and significantly help in the clinical 
decision-making especially as predictor of efficacy of specific therapeutic options. Such 
a demonstration can only come with an enhancement of the AI application itself to 
different cancer patient settings and different clinical scenarios and problem-solving 
tasks. Future directions rely on the prospective validation of AI-based tools in 
randomized phase III trials, which delineates the so-called “IA level” of evidence.
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Table 1 Summary of main applications and findings of artificial intelligence in colorectal cancer digital pathology

Target Description Ref.

Cancer cell shape and 
organization to predict N+

Digital assessment of cancer cells using Feret’s diameters allows to predict lymph node metastasis in pT1 colon 
cancer

[11]

Assessment of anti-cancer 
immune response

Simultaneous assessment of all immune cell subpopulations and demonstration that eosinophils, other than T cells, 
may play a role in CRC immune response

[12,14,
15,17]

Identification of 
Microsatellite instable 
tumors

Rapid and large size screening of histopathologic features in conventional HE-stained slides increasing the 
probability of being a MSI-H tumor, without the need of specific immunohistochemical or molecular testing

[18]

Quantification of stroma 
within the tumor

Algorithms for tissue –specific recognition, even when sparse within the tumor mass have been development. 
These algorithms have allowed the validation of “deep stroma score” which is significantly associated with 
survival in CRC

[20]

Biology-agnostic prediction 
of survival

Development of tissue “digital” profiles without specific underlying biologic background or significance that are 
predictive of distinct survivals, bad vs good outcome

[21]

CRC: Colorectal cancer; MSI-H: Microsatellite instability high.
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Abstract
The pursuit of health has always been the driving force for the advancement of 
human society, and social development will be profoundly affected by every 
breakthrough in the medical industry. With the arrival of the information 
technology revolution era, artificial intelligence (AI) technology has been rapidly 
developed. AI has been combined with medicine but it has been less studied with 
gastric cancer (GC). AI is a new budding star in GC, and its contribution to GC is 
mainly focused on diagnosis and treatment. For early GC, AI’s impact is not only 
reflected in its high accuracy but also its ability to quickly train primary doctors, 
improve the diagnosis rate of early GC, and reduce missed cases. At the same 
time, it will also reduce the possibility of missed diagnosis of advanced GC in 
cardia. Furthermore, it is used to assist imaging doctors to determine the location 
of lymph nodes and, more importantly, it can more effectively judge the lymph 
node metastasis of GC, which is conducive to the prognosis of patients. In surgical 
treatment of GC, it also has great potential. Robotic surgery is the latest 
technology in GC surgery. It is a bright star for minimally invasive treatment of 
GC, and together with laparoscopic surgery, it has become a common treatment 
for GC. Through machine learning, robotic systems can reduce operator errors 
and trauma of patients, and can predict the prognosis of GC patients. Throughout 
the centuries of development of surgery, the history gradually changes from 
traumatic to minimally invasive. In the future, AI will help GC patients reduce 
surgical trauma and further improve the efficiency of minimally invasive 
treatment of GC.
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Core Tip: Artificial intelligence (AI) is an important part of the information technology 
revolution. AI can be used in the following three aspects: (1) Gastroscopy for gastric 
cancer (GC) can improve the diagnostic accuracy of early GC and reduce the missed 
diagnosis of atypical parts of advanced GC; (2) Imaging doctor determination of the 
location of the lymph nodes. More importantly, it can more effectively determine 
lymph node metastasis of GC; and (3) Improving robotic surgical systems and further 
reducing patient injuries, by advancing from minimally invasive to nearly non-invasive 
surgery.

Citation: Wang WA, Dong P, Zhang A, Wang WJ, Guo CA, Wang J, Liu HB. Artificial 
intelligence: A new budding star in gastric cancer. Artif Intell Gastroenterol 2020; 1(4): 60-70
URL: https://www.wjgnet.com/2644-3236/full/v1/i4/60.htm
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INTRODUCTION
Gastric cancer (GC) is the fifth most common cancer and the third leading cause of 
cancer death worldwide. The incidence of GC in East Asia has increased significantly 
in recent years[1], ranking second in incidence in China, representing the most common 
cause of cancer death[2]. In recent years, with the transformation of information 
technology, AI (AI) technology is gradually becoming an alternative to traditional 
technology or an integral part of an integrated system. AI has been used to solve 
complex practical problems in various fields and is becoming more and more popular 
today[3]. AI can learn from examples, has certain fault tolerance, can deal with noisy 
data and incomplete data, can deal with nonlinear problems, and can be predicted and 
summarized at high speed once it has been trained. AI-based systems are being widely 
developed and deployed worldwide, mainly because of their symbolic reasoning, 
flexibility, and interpretation capabilities. Thanks to the rapid development of large 
amounts of labeled data and computers, AI, especially deep learning, has begun to 
penetrate the medical field. AI is of great significance to medicine and has been 
partially applied in clinic. Topol[4] enumerates and analyzes the main aspects and 
functions of AI in clinical application at present (refer to Figure 1 for details). AI can 
make accurate judgments on diseases through large-scale learning, and can assist 
clinicians in the diagnosis and treatment of GC. As such, AI-assisted diagnosis has 
become an important direction for the diagnosis of GC.

APPLICATION OF AI IN GASTROSCOPE
Gastrointestinal endoscopy is the most important and potential direction for AI-
assisted diagnosis. In previous studies, much of the initial work of endoscopic AI 
technology has focused on the detection and optical diagnosis of colonic polyps[5]. 
Esophagogastric duodenoscope (EGD) is widely regarded as one of the standard 
methods for diagnosing gastric diseases. However, a study[6] has shown that the 
missed rate of endoscopy in the 3 years before diagnosis of gastrointestinal tumors is 
11.3%. Two other studies[7,8] showed that the proportion of missed GCs was 9.4% and 
25.8%. AI-based detection’s potential usefulness in GC was first reported by Hirasawa 
et al[9]. For gastroenterology, AI is another important direction for the diagnosis of GC.

Application of AI in the diagnosis of early GC by endoscopy
Topol[4] thinks that AI can be help make clinical diagnosis fast and accurate, 
optimizing processes in the health-care system to reduce diagnostic errors and 
malpractice. More than this, it can benefit the patient's daily life, helping in observing 

https://www.wjgnet.com/2644-3236/full/v1/i4/60.htm
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Figure 1  Artificial intelligence applied to the clinic.

and analyzing their health data to accelerate rehabilitation. Gastrointestinal endoscopy 
is an important and rapidly developing research field in the application of AI in 
gastrointestinal surgery, specifically in the diagnosis and treatment of early cancer. 
Endoscopic submucosal dissection (referred to as ESD) and endoscopic mucosal 
resection (referred to as EMR) are considered to be the most beneficial procedures for 
patients with early GC (EGC), and surgical treatment is considered when endoscopic 
treatment is not possible. The risk of lymph node metastasis in the mucosal layer 
(referred to here as “M”)/shallow submucosal layer (referred to here as “SM1”; < 500 
mm from the muscularis mucosa) is very low but the potential of metastasis in the 
deep submucosal layer (referred to here as “SM2”; > 500 mm invasion) is quite high. 
As usual, for patients with EGC and an infiltration depth greater than 500 mm, 
surgery is considered the first choice. However, for patients with EGC whose depth of 
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invasion is limited to the M or superficial submucosa (~ 500 mm from the muscularis 
mucosa), ESD/EMR should be provided.

The accuracy of endoscopists in using endoscopy, endoscopic ultrasonography, or 
both to predict the depth of invasion was only 69% to 85% in previous studies[10]. 
Therefore, it is an important clinical problem to accurately predict the invasion depth 
of EGC. Research has shown that machine vision can interpret specific medical images 
more accurately and faster than humans using high magnification[11]. In a separate 
study that is more accurate, Zhu et al[12] report significant progress in the use of 
endoscopy in EGC. They developed and validated an AI system model that uses deep 
learning algorithms to determine the depth of invasion of EGC. The model is called a 
convolutional neural network computer-aided detection (CNN-CAD) system, which 
can determine whether the intrusion depth is "M/SM1" and "SM2" or deeper. In the 
research results of Zhu et al[12], the AI machine learned a total of 790 GC images and 
tested 203 GC images, which are different and independent of the learning images. 
The result is that when the threshold of CNN-CAD system is 0.5, the sensitivity is 
76.47%, the specificity is 95.56%, and the accuracy is 89.16%. The positive and negative 
predictive values were 89.66% and 88.97%, respectively. The sensitivity of the 
endoscopist was 87.80%, the specificity was 63.31%, the accuracy was 71.49%, and the 
positive and negative predictive values were 55.86% and 91.01%, respectively.

For experienced endoscopists, the CNN-CAD system has once again achieved 
higher accuracy and specificity. High specificity of 96% will help to enhance the 
accurate diagnosis of the depth of invasion, distinguishing EGC from deeply invasive 
submucosal layer cancer. However, there are still some limitations in the research of 
Zhu et al[12]. First there are relatively few materials for deep learning. Second, in AI 
learning algorithms, only high resolution and clear images are selected as learning and 
testing materials. These two points lead to a serious defect whereby AI models may 
show excellent performance in clean and clear images of GC, but the diagnostic 
accuracy may be greatly affected when faced with poor quality images which 
endoscopists often encounter in clinical practice. This disadvantage can be overcome 
by enabling AI to learn a large number of images which are common among clinical 
gastroscopic pictures, such as mucus on the surface of the lesion, the lesion not being 
concentrated, or the location being too narrow to be seen clearly.

On colonoscopy, it is considered very difficult to find small adenoma or pedicleless 
polyps. In a first prospective clinical trial of AI, in a real-time routine colonoscopy, a 
total of 466 images of 466 tiny polyps were analyzed, with an accuracy of 94% and a 
negative predictive value of 96%. The speed of AI optical diagnosis is 35 s, which is 
faster than that of clinical endoscopists[11]. The algorithm is equally effective for novices 
and gastroenterologists and does not require dye injection. This study and Zhu et al[12] 
reached similar conclusions and revealed the application potential of AI in 
gastrointestinal endoscopy.

With AI, it's like opening a third eye to an endoscopist. AI for the diagnosis of 
disease, especially for EGC, is not only reflected in high accuracy but also it the quick 
training of junior doctors, improved diagnosis rate of EGC, and reduced missed cases.

Application of AI in endoscopic diagnosis of advanced GC
Gastroscopy easily detects advanced GC but there is also a certain risk of missed 
diagnosis. Korean scholars[13] prospectively collected undiagnosed cases of advanced 
GC with recent endoscopies, from 1997 to 2008, and reviewed the medical records of 
advanced GC diagnosed before 1991 to 1996. In total, 2310 cases of GC were analyzed. 
In that study, more than one-third of patients with advanced GC were not found in the 
previous endoscopy and they were located around the cardia.

Wu et al[14] has developed a new deep (D)CNN for endoscopic vision. This DCNN 
system is used to screen for EGC without blind spots during gastroenteroscopy (i.e. 
EGD). As a result, DCNN identified EGC from non-malignant tumors with an 
accuracy of 92.5%, sensitivity of 94.0%, specificity of 91.0%, positive predictive value of 
91.3%, negative predictive value of 93.8%; these results were better than any achieved 
by an endoscopist. The accuracy of EGC detection by endoscopists is surpassed by the 
DCNN system of Wu et al[14], and that can better identify the location of the stomach. 
The advantage of the system is that it can detect EGC actively and track suspicious 
cancer lesions during EGD. Although the above study was aimed at EGC, we can see 
that an AI system has great potential for accurate diagnosis of advanced GC. The 
accuracy of GC diagnosis will be improved because of the intervention of an AI 
system. The high rate of missed diagnosis of advanced GC in the cardia will also be 
overcome by an AI system.

The prevalence and incidence rates of advanced stage GC are high, and the 
diagnosis rate is about 2/3. This has prompted doctors and researchers from all over 



Wang WA et al. AI: A new budding star in GC

AIG https://www.wjgnet.com 64 November 28, 2020 Volume 1 Issue 4

the world not only to improve the detection rate of EGC but also to optimize the 
clinical management of advanced GC[15].

Perspectives
Ishioka et al[16] believe that the application of a CNN system in video should be 
expanded, and the image is expected to improve the standard of early detection of GC. 
Luo et al[17] developed a gastrointestinal-AI diagnostic system. Seven validation sets 
were used in their multicenter study, with accuracy ranging from 91.5% to 97.7%. The 
diagnostic sensitivity of “griaids” was higher than that of endoscopists (85.8%) and 
interns (72.2%). Kanesaka et al[18] collected and randomly selected 66 EGC magnifying 
narrow-band imaging (m-Nbi) images and 60 non cancer m-Nbi images as training 
sets, and 61 EGC m-Nbi images and 20 non cancer m-Nbi images as test sets. The test 
shows that the cadx system has great potential in the real-time diagnosis and sketching 
of EGCS in m-Nbi images. The study by Horiuchi et al[19] also supports this conclusion.

Whether it is EGC or advanced GC, the invasion depth of the tumor is related to the 
prognosis of the patients. Accurate determination of the invasion depth is beneficial to 
the patients. The overall accuracy rate of using “WLis” to evaluate the invasion depth 
of Zhu et al[12] was 89.16%, which was significantly higher than that of endoscopists

Many research studies on AI and the stomach have been focused on Japan, China 
and South Korea. At present, the combination of GC and AI mainly focuses on the 
detection and diagnosis of GC. In addition, AI systems may have potential 
applications in other areas. There are also many research studies on the application of 
AI technology in the detection and diagnosis of GC.

AI has great potential in the field of digestive diseases. Using AI for accurate 
diagnosis can make more accurate optical biopsy and reduce unnecessary biopsy or 
endoscopic resection, which is beneficial to patients. This can reduce the risk of 
bleeding, the incidence of complications, and the economic expenditure caused by the 
disease.

APPLICATION OF AI IN LYMPH NODE METASTASIS OF GC
Just as AI is gradually changing gastroenterology and endoscopy, it has also changed 
imaging doctors greatly. Preoperative localization diagnosis of lymph nodes is an 
ongoing and substantial challenge for radiologists. At present, the detection of lymph 
nodes is mainly achieved by imaging methods, which extracts a variety of diagnostic 
features. Some feature extraction methods are used to extract the effective diagnosis 
features, and then to realize the diagnosis of lymph node metastasis. Lymph node 
metastasis is an important independent factor affecting the prognosis of GC. Before 
medical and surgical treatment, lymph nodes must be understood as accurately as 
possible to determine treatment options and evaluate prognosis. Lymph node 
metastasis is an important independent factor affecting the prognosis of GC. Some 
studies have shown that the diagnosis of lymph node metastasis is of great 
significance[20-22]. AI and the diagnosis of GC lymph nodes can be divided into two 
aspects. The former is the application of AI in the diagnosis of lymph nodes, and the 
latter is the application of AI in the diagnosis of lymph node metastases. Because 
artificial detection is time-consuming and laborious, AI detection of abdominal lymph 
nodes is considered to be one of the development trends.

Barbu et al[23] propose an automatic detection method based on learning, which can 
detect and segment axillary and pelvic lymph nodes at the same time. First, the 
learning-based method is used to detect the suspected lymph nodes; then, the 
segmentation model is used to extract the boundary of each suspected lymph node. 
Finally, some features of the lymph nodes are used to score all the suspected lymph 
nodes; ultimately, the portion with the highest score is the lymph nodes. Although 
there has been some work to achieve automatic or semi-automatic detection of lymph 
nodes, so far few have detected gastric lymph nodes in the treatment of GC. Due to the 
different structure of different parts of the gastric system, it is difficult to detect gastric 
lymph nodes, so it is necessary to use AI technology to detect gastric lymph nodes.

Application of AI in lymph node detection
Lymph nodes are mainly detected by the observation of radiologists. Although this 
method has high clinical value, it takes a lot of time to detect every lymph node, so it is 
difficult to detect every lymph node in clinical application. In addition, radiologists 
need continuous training to detect lymph nodes accurately. In order to improve the 
efficiency of imaging doctors, it is a potential direction to detect lymph nodes with the 
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help of computer.
In the treatment of GC, it is necessary to resect the metastasis and the lesion at the 

same time. The abdominal lymph node is one of the main metastasis routes of GC. It is 
very important for the prognosis of patients to accurately determine the resection area.

AI can learn to distinguish lymph nodes better and greatly reduce the work burden 
of imaging doctors. There are few reports about the use of AI technology to locate 
lymph nodes in GC. However, lung cancer, breast cancer, prostate cancer[24-28] and 
other reports are more common.

Application of AI in detection of lymph node metastasis
The medical decision-making method mainly depends on the clinical practice 
experience of doctors, their own medical knowledge, and various kinds of doctors. The 
therapeutic instrument diagnoses the patient's examination results. On the one hand, 
this traditional decision-making method depends on the professional level and 
subjective factors of doctors, which will lead to misdiagnosis, missed diagnosis, and 
other wrong decisions. On the other hand, modern diseases usually have the 
characteristics of multi-attribute, instability, complexity and time-varying, which 
require the information in medical diagnosis to have the characteristics of timeliness, 
accuracy, acceptability and traceability. With the development of computer technology 
and the production of a large amount of medical data, it is imperative to use 
computers to realize auxiliary decision-making, which has a positive role in improving 
the accuracy of medical diagnosis, reducing missed diagnosis and improving work 
efficiency.

The most common path of GC metastasis is lymph node metastasis, which is due to 
the abundance of lymphatic vessels and lymph nodes around the stomach[29]. In most 
studies, lymph node metastasis has been judged by size alone[30,31]. However, large 
lymph nodes may be caused by inflammation, and small lymph nodes may also have 
metastases. In addition, some studies have shown that lymph node metastasis is 
related to multiple characteristics[32-34]. However, it is difficult for doctors to make final 
diagnosis with multiple features at the same time, so it is necessary to introduce a 
clinical decision support system[35].

According to National Comprehensive Cancer Network (commonly known as 
NCCN) guidelines[36], preoperative evaluation of metastatic lymph nodes is considered 
to be an indication of neoadjuvant chemotherapy. In our opinion, surgery is still the 
most effective way to treat GC. Radical resection of metastatic lymph nodes is 
recommended by NCCN guidelines and Japanese GC guidelines as the key to the 
success of radical gastrectomy[36,37]. In this regard, accurate standard dissection and 
dissection of metastatic lymph nodes can greatly improve the 5-year survival rate of 
patients[38]. Until now, enhanced computer tomography (CT) has been used to judge 
gastric lymph node metastasis and tumor stage, which is the most reliable and 
commonly used method for evaluating lymph nodes in GC[39]. However, for the CT 
diagnosis of GC lymph nodes, the false negative and false positive of perigastric 
metastatic lymph nodes are inevitable technical problems[40]. Gao et al[41] found that, 
through in-depth study, faster region-based CNNs have higher judgment efficiency 
and recognition accuracy for CT diagnosis of perigastric metastatic lymph nodes.

Perspectives
The number of gastric lymph node dissections has been shown to be an independent 
predictor of the prognosis of GC by most studies. Many guidelines and studies have 
recognized that the minimum standard is to clear more than 15 lymph nodes during 
operation[42-44]. An AI system is helpful to reduce the imbalance of image source 
distribution, to the diagnosis and treatment of GC, and to determining the location of 
lymph nodes and lymph node metastasis.

AI AND ROBOTIC SURGERY
During the operation of the robotic surgery system, the doctor controls the bedside 
robotic arm system through the console. There are a total of three robotic arms through 
which the surgery is completed; the imaging system follows the robotic arm to enter 
the body for imaging, providing a field of vision for the doctor's surgery. Compared 
with traditional surgical operations, the surgical trauma performed by surgical robots 
is less invasive and basically minimally invasive. In recent years, with the rise of rapid 
rehabilitation surgery and the popularization and application of the Leonardo da Vinci 
robotic surgery operating system in China, many medical institutions have carried out 
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robotic surgery. For example, minimally invasive robotic surgery is used increasingly 
in interventional therapy of urinary tumors[45,46]. In the field of gastrointestinal surgery, 
robotic radical gastrectomy has also become one of the minimally invasive radical 
methods commonly used in central hospitals specializing in GC[47]. The 
implementation of robotic surgery emphasizes the concept of "precise surgery"[48]. 
Robotic surgery uses a technologically advanced platform, with the chief knife doctor 
sitting at the console and operating in the operating room or by remotely controlling 
the robot. With the increasing complexity of mechanical surgery technology, the 
accuracy and proficiency of robotic surgery will be increased only by developing 
advanced training modes[49,50].

AI in Da Vinci robotic GC surgery
Traditional laparotomy, laparoscopic surgery and robotic surgery are considered as 
three surgical treatments for GC. Laparoscopic surgery was first performed in 1991[51] 
because it caused less trauma to patients than traditional surgery, gradually replacing 
the former. Robotic surgery has the advantages of using wristed instruments, tremor 
filtering, and high-resolution 3D images over laparoscopic surgery[52], which were also 
reported in another article first[53].

Robot-assisted applications in minimally invasive surgery were first described in 
1985, and this technology has evolved to its current state in the form of a Da Vinci 
surgical system (Intuitive Surgery, Sunnyvale, CA, United States)[54]. Studies have 
shown that prediction by deep learning systems combined with diagnosis by human 
pathologists has reduced the error rate by about 85%. It was demonstrated that 
medical professionals and machine deep learning significantly improved decision-
making[55].

Machine learning (ML) is widely used in many fields, such as communication and 
engineering manufacturing, but rarely be used in medicine, especially in surgery[56]. 
The efficiency of doctors can be improved by ML. With the continuous development of 
medicine, efficiency is also increasingly valued by the public[57]. Before the birth of the 
laparoscopic technique, the surgeon's operation often brought great trauma to the 
patient, and it is a long process for a young doctor to accumulate experience and learn 
through laparotomy. Especially in some operations with high accuracy requirements, 
although the surgeons have undergone long professional training and repeated 
operations, there is also a risk of errors and the efficiency of doctors' diagnosis and 
treatment is a little low. However, after the birth of endoscopic technology, traditional 
laparotomy was gradually replaced because of its high trauma, and after learning the 
endoscopic surgical technology, the surgeon's clinical treatment efficiency has been 
greatly improved. The robotic surgery technology born after the endoscopic 
technology is even more so. Robotic surgery technology can greatly enhance the 
surgical efficiency of doctors who are lacking surgical experience and further reduce 
the trauma suffered by patients.

In addition to the above points, the robot can also be combined with AI in the 
following aspects. First of all, the level of operator can be distinguished by AI 
combined with robot. Fard et al[57] extracted eight global motion features for surgeons 
at novice and expert levels. The ability of AI to automatically classify experts and 
novice surgeons has been proved by research. Dai et al[58] developed and validated an 
integrated system to alert operators before suture breaks. The results show that this 
system can improve the results related to knotting tasks in robotic surgery and can 
reduce suture failure without reducing the quality of the resulting knots. Iranian 
scholars[59] used the Cox proportional hazard model and artificial neural network 
model to predict the survival rate of Iranian GC patients, and found that the prediction 
accuracy of the neural network was 83.1%, and that of the Cox regression model was 
75.0%. Compared with the Cox proportional hazard regression model, the neural 
network model was deemed a more powerful statistical tool to predict the survival 
rate of GC patients.

Perspectives
Robotic surgery provides a good platform for the application of AI in surgical systems 
(gastrointestinal surgery). It is possible for a large number of clinical data to be 
evaluated and interpreted by ML methods. The rapid acquisition of surgical 
technology by junior doctors, the efficiency of a surgeons' operation, and the small 
trauma to patients are the results of the combination of ML method and robotic 
operation for the prognosis judgment and prediction of GC patients. However, there is 
a big flaw in this, which is the standardization of data.

AI affects and narrows the training growth cycle of robotic GC surgeons, reduces 
patient injury, changes the surgical results, and may even make GC surgery a robotic 



Wang WA et al. AI: A new budding star in GC

AIG https://www.wjgnet.com 67 November 28, 2020 Volume 1 Issue 4

automated surgery in the future. To be honest, it is still difficult to do this, but we 
firmly believe that when surgeons, GC patients, robotic engineers and AI 
programmers cooperate in multiple disciplines, advanced robotic AI surgery for GC 
will be realized.

CONCLUSION
The problem of population aging has been increasing in East Asian countries in recent 
years, especially in China, where the incidence of cancer has increased year by year. As 
a new and comprehensive subject, AI will become an important means to promote the 
development of the medical industry. The application of AI in GC is mainly focused 
on digestive endoscopy, lymph node image positioning diagnosis, and working in 
combination with a robotic surgery system. In terms of gastrointestinal endoscopy, AI 
can detect EGC earlier and faster, with higher accuracy than clinical endoscopists. For 
advanced GC, AI can increase the detection rate of cancers in areas where gastroscopy 
is performed, such as pump-door cancer, which reduces the missed diagnosis rate. In 
the face of GC lymph nodes, the intervention of AI not only reduces the burden of 
radiologists, but also increases the accuracy of lymph node localization. Just as for the 
location of lymph nodes, it is also of great significance for detection of lymph node 
metastasis with higher accuracy. It also has important potential for robotic surgery of 
GC. AI has further revolutionized GC surgery by training young doctors to perform 
robotic GC surgery, improving surgical trauma of patients and predicting patient 
prognosis in timely and accurate manners - precision surgery was gradually promoted 
by AI to improve the relevant outcomes of GC disease and surgery without affecting 
patient survival and safety.

In addition to gastroscopic detection of GC or precise localization of lymph nodes, 
as well as use of Da Vinci robotic surgery to improve the patient's intraoperative 
experience and prognosis, the aim is to minimize trauma suffered by patients. The 
development of technology is constantly being updated, and the invention of 
laparotomy has saved the lives of many patients with GC but also brought great 
trauma to these patients. After the advent of endoscopic techniques, the concept of 
minimally invasive surgery began to gain popularity, and laparoscopic surgery 
gradually replaced open surgery because of its smaller damage. However, in the 
development of technology and times, the limitations of its operation are also 
increasingly exposed.

With the arrival of the big data era, AI technology has gradually matured, and its 
combination with robotic surgical systems has become a research hotspot. Robotic 
surgery, boasting accuracy that laparoscopic surgery does not have, is an emerging 
surgical system for the future. Through the deep integration of this system with AI, the 
trauma of the patient's operation is further reduced. In the future, there may even be a 
fully automated robotic surgical system controlled by AI, in which case the trauma of 
GC surgery will be very small and can be considered noninvasive. In other words, the 
change that AI will bring to GC is that the surgical treatment of GC will change from 
greater trauma to minimally invasive, and from minimally invasive to nearly 
noninvasive.
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Abstract
Artificial intelligence (AI) using machine or deep learning algorithms is attracting 
increasing attention because of its more accurate image recognition ability and 
prediction performance than human-aid analyses. The application of AI models to 
gastrointestinal (GI) clinical oncology has been investigated for the past decade. 
AI has the capacity to automatically detect and diagnose GI tumors with similar 
diagnostic accuracy to expert clinicians. AI may also predict malignant potential, 
such as tumor histology, metastasis, patient survival, resistance to cancer 
treatments and the molecular biology of tumors, through image analyses of 
radiological or pathological imaging data using complex deep learning models 
beyond human cognition. The introduction of AI-assisted diagnostic systems into 
clinical settings is expected in the near future. However, limitations associated 
with the evaluation of GI tumors by AI models have yet to be resolved. Recent 
studies on AI-assisted diagnostic models of gastric and colorectal cancers in the 
endoscopic, pathological, and radiological fields were herein reviewed. The 
limitations and future perspectives for the application of AI systems in clinical 
settings have also been discussed. With the establishment of a multidisciplinary 
team containing AI experts in each medical institution and prospective studies, 
AI-assisted medical systems will become a promising tool for GI cancer.
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Core Tip: Artificial intelligence (AI) is attracting increasing attention because of its 
more accurate image recognition ability and prediction performance than human-aid 
analyses. The application of AI models to gastrointestinal clinical oncology has been 
investigated, and the findings obtained indicate its capacity for automatic diagnoses 
with similar accuracy to expert clinicians and the prediction of malignant potential. 
However, limitations in the evaluation of gastrointestinal tumors by current AI models 
have yet to be resolved. The limitations of and future perspectives for the application of 
AI-assisted systems to clinical settings have been discussed herein.
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INTRODUCTION
Recent advances in diagnostic technology and treatment strategies for gastrointestinal 
cancer have improved clinical outcomes. Even with the development of novel imaging 
modalities with high accuracy and resolution, image reading, and novel biomarkers, 
such as the genetic screening of tumors, circulating tumor DNA, and micro RNA, the 
diversity and quantity of data on tumor malignant potential is beyond the limits of 
human interpretation[1-8]. Therefore, the establishment of more accurate diagnostic 
methods with high objectivity using computer-aided diagnosis systems (CAD), such as 
technologies involving artificial intelligence (AI), is needed in clinical settings[9-11].

AI is defined by the intelligence of machines in contrast to the natural intelligence of 
humans. It is generally applied when a machine mimics the cognitive functions of 
humans, such as learning and problem solving[12]. The concept of AI was initially 
advocated in 1956 by McCarthy et al[13], and the development of machines with the 
ability to think like humans with intelligence was anticipated. However, machines or 
computer programs that function as classifiers or detectors, such as image 
classification and recognition and the prediction of characteristics in populations, are 
currently regarded as AI.

Recent AI technologies were developed due to technical advances in machine 
learning and deep neural network algorithms[14-17]. Convolutional neural networks 
(CNN) are one of the deep neural networks that are useful for image analyses. 
Algorithms using CNN models have been applied to many research fields in 
gastrointestinal cancer, such as the automatic endoscopic detection of tumors, the 
automatic diagnosis of cancer in pathological specimens, and image analyses of 
radiological modalities[10,18]. In endoscopic research, CNN are trained using thousands 
of endoscopic images to detect tumors, differentiate between benign and malignant 
tumors, and predict tumor invasion depth[9,19-22]. In recent years, a real-time CAD 
endoscopic system was developed using trained CNN. In the area of pathology, deep 
learning has been performed using non-cancerous and cancer images to automatically 
identify and segment the cytoplasm, nucleus, and stromal cells. CNN and machine 
learning models with image analyses, such as a texture analysis, were subsequently 
built to identify cancerous regions or diagnose cancer[23]. In the field of radiology, a 
CAD system of image modalities, such as X-ray, computed tomography (CT), and 
magnetic resonance images (MRI), was developed using a deep learning model 
constructed using cancer and non-cancer images to recognize anatomy and detect and 
segment tumors[24]. The malignant potential of tumors has been analyzed using a 
radiomics approach, which aims to quantitatively assess tumor heterogeneity by an 
analysis of medical images through the deep or machine learning of histograms, 
textures, and shapes[25-27]. AI models of gastrointestinal cancer are summarized in 
Figure 1.

AI with strong analytical power has attracted the attention of many researchers; 
therefore, the number of studies on diagnostic AI systems in gastrointestinal cancer 
has rapidly increased in the past decade. We herein investigate recent advances and 
future perspectives through a review of the literature.

In this minireview, the bibliographic search was performed using the database 
MEDLINE (through PubMed) for identifying studies published on AI technology in 
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Figure 1 Clinical research using artificial intelligence in gastrointestinal cancer. Deep learning based on convolutional neural networks showing the 
input layer with raw data of the image, such as endoscopic, pathological, and radiological images, the hidden layer with a series of convolutions computed for each 
layer and the classification of the image, the prediction of malignant potentials, and the segmentation of tumor in the output layer.

the endoscopy, pathology, and radiology of gastric and colorectal cancer between 2016 
and 2020. We summarized the application of AI in each area according to the extracted 
49 Literatures; subsequently, the consideration about current issues and future 
perspectives of AI in gastrointestinal cancer was stated with some literature review.

APPLICATION OF AI TO ENDOSCOPY IN GASTROINTESTINAL CANCER
Previous studies on the endoscopic diagnosis of gastric cancer (GC) and colorectal 
cancer (CRC) using AI between 2016 and 2020 were summarized in Tables 1 and 2.

Gastric cancer
The purposes of the studies reviewed on AI for GC were (1) tumor detection; (2) the 
diagnosis of malignancy; (3) real-time detection; and (4) the prediction of tumor 
invasion depth. The basic method of these studies was as follows: Endoscopic images 
of GC, gastritis, and non-cancerous mucosae, which were diagnosed pathologically or 
by an expert endoscopist, were captured and CNN was subsequently trained using 
these images. Diagnostic and detection accuracy were then assessed using the 
constructed CNN models.

Yoon et al[28] attempted to develop CNN models with the ability to detect early GC 
and predict invasion depth. The areas under the curves of receiver operating 
characteristic curves (AUC) for early GC detection and depth prediction were 0.981 
and 0.851, respectively. Moreover, the diagnostic accuracy of invasion depth was 
lower for undifferentiated GC than for differentiated GC[28]. Zhu et al[29] also trained a 
CNN model to predict the invasion depth of GC. The AUC, positive predictive value 
(PPV), and negative predictive value (NPV) of their model were 0.94, 89.6%, and 
88.9%, respectively. The CNN-CAD system achieved significantly higher accuracy and 
specificity than a human endoscopist. Li et al[30] also developed CNN models for the 
detection of GC with high diagnostic accuracy (sensitivity: 91.1%, specificity: 90.6%, 
and PPV: 90.9%). Hirasawa et al[31] reported that CNN models exhibited difficulties 
distinguishing between differentiated-type intramucosal cancers with a diameter of 6 
mm or less and gastritis. Ishioka et al[32] examined the detection accuracy of a real-time 
endoscopic diagnosis of GC using CNN models that they had constructed; the 
detection rate of GC using these models was 94.1%. CNN identified the region of GC 
that had been difficult to distinguish from background gastritis, even by experienced 
endoscopists. Luo et al[33] developed a gastrointestinal AI diagnostic system (GRAIDs) 
and compared its diagnostic accuracy with that of expert and trainee endoscopists. 
PPV was 0.814 for GRAIDs, 0.932 for the expert endoscopist, and 0.824 for the trainee 
endoscopist, while NPV was 0.978 for GRAIDs, 0.980 for the expert endoscopist, and 
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Table 1 Previous studies on upper endoscopy of gastric cancer using artificial intelligence

Ref. Targets Sample sizes Inputs Tasks Analysis 
method

Diagnostic 
performance

Yoon et al[28] GC 
(ESD/surgery)

800 cases GC/non-GC images in 
close-up and distant views

Detection and invasion 
depth prediction

CNN AUC: detection, 0.981; 
depth, 0.851

Zhu et al[29] GC 993 images GC images Diagnosis of invasion 
depth

CNN Sensitivity: 76.4%, PPV: 
89.6%

Li et al[30] GC and healthy 386 GC and 1702 NC 
images

NBI images Diagnosis of GC CNN Sensitivity: 91.1%, PPV: 
90.6%

Hirasawa 
et al[31]

GC 13584 training and 
2296 test images

GC images Diagnosis of GC CNN Sensitivity: 92.2%, PPV: 
30.6%

Ishioka 
et al[32]

EGC 62 cases Real-time images Detection CNN Detection rate: 94.1%

Luo et al[33] GC 1036496 images GC images Detection CNN PPV: 0.814, NPV:0.978

Horiuchi 
et al[34]

GC and gastritis 1492 GC and 1078 
gastritis images

NBI images Detection CNN Sensitivity: 95.4%, PPV: 
82.3%

GC: Gastric cancer; CNN: Convolutional neural network; AUC: Area under the curve; PPV: Positive predictive value; NC: Non-cancer; NBI: Narrow-band 
image; EGC: Early gastric cancer.

Table 2 Previous studies on colonoscopy using artificial intelligence

Ref. Targets Sample sizes Inputs Tasks Analysis 
method Diagnostic performance

Akbari 
et al[35]

Screening 
endoscopy

300 polyp images Polyp 
images

Auto segmentation of 
polyps

CNN Accuracy: 0.977, Sensitivity: 74.8%

Jin et al[36] Screening 
endoscopy

Training: 2150 polyps, 
test: 300 polyps

NBI 
images

Differentiation of adenoma 
and hyperplastic polyps

CNN The model reduced the time of 
endoscopy and increased accuracy by 
novice endoscopists

Urban 
et al[37]

Screening 
endoscopy

8641 polyp images and 
20 colonoscopy videos

Polyp 
images

Detection of polyps CNN AUC: 0.991, Accuracy: 96.4%

Yamada 
et al[38]

Screening 
endoscopy

4840 images, 77 
colonoscopy videos

Real-time 
images

Differentiation of the early 
signs of CRC

CNN Sensitivity: 97.3%, Specificity: 99.0%

CNN: Convolutional neural network; NBI: Narrow-band image; AUC: Area under the curve.

0.904 for the trainee endoscopist. These findings demonstrated that the diagnostic 
accuracy of GRAIDs for the detection of GC was similar to that of the expert 
endoscopist and superior to that of the trainee endoscopist. CNN models of narrow-
band imaging (NBI) for GC have been reported, with sensitivity and PPV of 91.1-95.4% 
and 82.3-90.6%, respectively[34].

Colorectal cancer
The purposes of the studies reviewed on AI for CRC were (1) the segmentation and 
detection of polyps; and (2) the diagnosis of polyp pathology. In the development of 
efficient automatic diagnostic models, models need to automatically segment polyps 
and extract their features. Akbari et al[35] attempted to construct CNN models of 
colonoscopy for automatic segmentation and feature extraction. The accuracy, 
specificity, and sensitivity of the model for automatic segmentation were 0.977, 0.993, 
and 0.758, respectively. An ideal CAD system of colonoscopy needs to have the ability 
to predict the pathological diagnosis of an automatically detected tumor and 
subsequently recommend appropriate treatment strategies for lesions. Jin et al[36] 
reported a CNN model for predicting the pathological diagnosis of small lesions (≤ 5 
mm) using NBI data from colonoscopy. The accuracy, sensitivity, specificity, PPV, and 
NPV of their model for predicting the pathological diagnosis of polyps, adenoma vs 
hyperplasia were 86.7%, 83.3%, 91.7%, 93.8%, and 78.6%, respectively. On the other 
hand, the accuracies of polyp diagnoses by novices, experts, and NBI-trained expert 
endoscopists were 73.8%, 83.8%, and 87.6%, respectively. Using CNN-processed 
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results, overall accuracy by novice endoscopists significantly increased to 85.6%. A 
real-time diagnostic system in colonoscopy was developed using CNN models. Urban 
et al[37] constructed CNN models to identify polyps, which were subsequently adapted 
to colonoscopy videos, and these models exhibited the ability to detect either type of 
polyp equally well and identify polyps with an ROC value of 0.991 and accuracy of 
96.4%. Yamada et al[38] applied their CNN model, which was developed to detect early 
signs of CRC, to colonoscopic videos. The sensitivity and specificity of their AI system 
for detecting the regions of CRC were 97.3% and 99.0%, respectively, while the 
sensitivity and specificity of endoscopists were 87.4% and 96.4%; respectively. 
Therefore, the AI system may be used to alert endoscopists in real-time to overlooked 
abnormalities, such as non-polypoid polyps, during colonoscopy, thereby increasing 
the early detection of this disease.

APPLICATIONS OF AI TO THE PATHOLOGICAL DIAGNOSIS OF 
GASTROINTESTINAL CANCER
Previous studies on the pathological diagnosis of GC and CRC using AI between 2016 
and 2020 are summarized in Tables 3 and 4. An automatic pathological diagnosis of 
gastrointestinal cancer generally involves the following processes: (1) Automatic 
segmentation: Distinguishing various structures, such as the cytoplasm, nuclei, and 
stoma, and the recognition of atypia; (2) The diagnosis and grading of carcinoma; (3) 
The diagnosis of malignant potential, such as invasion depth and lymphovascular 
invasion; and (4) The prediction of survival. Therefore, previous studies aimed to 
develop a CAD system with the ability to perform these processes.

Gastric cancer
Qu at al[39] attempted to develop CNN models for (1) and (2), proposed a novel 
stepwise fine-tuning-based deep learning scheme for gastric pathology image 
classification, and established a novel protocol to further boost the performance of 
state-of-the-art deep neural networks and overcome the insufficiency of well-
annotated data. In their proposed two-stage method, CNN was initially trained using 
tissue-wise data on the background, epithelium, and stoma as well as cell-wise data on 
nuclei and the cytoplasm, and was then tuned using well-annotated data from benign 
or malignant data sets. The diagnostic accuracy of their constructed two-stage CNN 
models was higher than that of one-stage models. Yoshida et al[40] attempted to develop 
CNN models for (1) and (2) with the ability to automatically segment malignant 
regions in full-slide images of biopsy samples and subsequently diagnose histological 
classifications through a nuclear analysis at high magnification. In negative biopsy 
specimens, the concordance rate between their AI system and expert pathologists was 
90.6%; however, the concordance rate for positive biopsy specimens was less than 50%. 
Mori et al[41] trained CNN models for (3) to discriminate the tumor invasion depth of 
gastric signet-ring cell carcinoma. Their models exhibited the ability to diagnose 
intramucosal or advanced histological characteristics with an accuracy of 85%, 
sensitivity of 90%, specificity of 81%, and AUC of 0.91. The prediction of survival in 
GC patients using the deep learning method has also been examined. Jiang et al[42] 
investigated the efficacy of deep learning models for (4) using a support vector 
machine (SVM). They classified GC patients into two groups using SVM based on 
patient characteristics and immunohistochemistry (IHC) data on the following 
immunomarkers: CD3, CD8, CD45RO, CD45RA, CD57, CD68, CD66b, and CD34. The 
findings obtained revealed that the classifier of SVM was a stronger prognostic factor 
than the TNM stage or CA19-9.

Colorectal cancer
Numerous studies on the pathology of CRC using AI were reported compared to GC, 
are classified as follows.

Studies on AI models for automatic segmentation: Van Eycke et al[43] and Graham 
et al[44] developed CNN models to segment the glandular epithelium. The F1 values of 
these models ranged between 0.9 and 0.912. Abdelsamea et al[45] developed tumor 
parcellation and quantification (TuPaQ), which is a tool for refining biomarker 
analyses through the rapid and automated segmentation of the tumor epithelium. 
Tissue microarray (TMA) cores from CRC were manually annotated and analyzed to 
provide the ground truth, epithelial or non-epithelial tissue. CNN (TuPaQ) was 
trained using these data. The accuracy, sensitivity, and specificity of TuPaQ were 
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Table 3 Previous studies on the pathology of gastric cancer using artificial intelligence

Ref. Targets Sample size Input Task Analysis 
method Diagnostic performance

Qu et al[39] GC 15000 images Pathological images Evaluation of stepwise 
methods

CNN AUC: 0828-0.920

Yoshida 
et al[40]

GC 3062 biopsy 
samples

Pathological images stained by 
H&E 

Automatic segmentation, 
diagnosis of carcinoma

CNN Sensitivity: 89.5%, specificity: 
50.7%

Mori 
et al[41]

GC 
(surgery)

516 images 
from 10 GC 
cases

Pathological images stained by 
H&E 

Diagnosis of invasion 
depth in signet cell 
carcinoma

CNN Sensitivity: 90%, Specificity: 
81%

Jiang 
et al[42]

GC 
(surgery)

786 cases IHC (CD3, CD8, CD45RO, 
CD45RA, CD57, CD68, CD66b, 
and CD34)

Prediction of survival SVM The immunomarker SVM was 
useful for predicting survival

GC: Gastric cancer; AUC: Area under the curve; H&E: Hematoxylin eosin staining; CNN: Convolutional neural network; IHC: Immunohistochemistry; 
SVM: Support vector machine.

0.939, 0.779, and 0.946, respectively. Yan et al[46] examined the diagnostic accuracy of 
their AI models for the classification, segmentation, and visualization of large-scale 
tissue histopathology images. The accuracies of their models ranged between 81.3 and 
93.2%. Haj-Hassan et al[47] attempted to develop CNN models for the automatic 
segmentation of benign hyperplasia, intra-epithelial neoplasms, and carcinoma, and 
the findings obtained showed that the models segmented tumors with a high accuracy 
of 99.1%.

Diagnosis and grading of carcinoma: Rathore et al[48] reported deep learning models 
for cancer detection and grading. The features of CRC biopsy samples were extracted 
based on pink-colored connecting tissues, purple-colored nuclei, and white-colored 
epithelial cells and lumina. The extracted features, particularly white-colored epithelial 
cells and lumina, were classified using SVM and classification performance was 
subsequently assessed. The accuracies of cancer detection and grading by their model 
were 95.4 and 93.4%, respectively. Yang et al[49] proposed a combination of SVM and 
color histograms to classify pathological images. The AUC of the model for diagnosing 
carcinoma was 0.891. Chaddad et al[50] reported that the classification of images using a 
texture analysis effectively diagnosed carcinoma (accuracy: 98.9%). Yoshida et al[51] 
showed that a CAD system using a previously described CNN model for GC was 
useful for diagnosing adenoma and carcinoma (undetected rate of carcinoma and 
adenoma: 0-9.3% and 0-9.9%, respectively).

Diagnosis of malignant potential: Takamatsu et al[52] reported the prediction of lymph 
node metastasis using a machine learning analysis of morphological parameters (such 
as shape and roundness) in cytokeratin-stained T1 CRC images. The AUC of the model 
was 0.94. The automatic evaluation of tumor budding in IHC with CNN and machine 
learning was previously performed[53]. Models were constructed to assess tumor 
budding using TMA on pan-cytokeratin-stained tumors, and the R2 value of the 
correlation of the models with manual counting for the diagnosis of tumor budding 
was 0.86.

Prediction of survival: Bychkov et al[54] proposed AI models for the automatic 
prediction of survival in CRC patients using the TMA of CRC pathological images. 
The automatic detection of tumors was initially achieved using CNN; CNN cases were 
subsequently classified by a recurrent neural network. Predicted survival by their 
model correlated with actual clinical outcomes. Kather et al[55] reported automatic 
models for discriminating structures in tissue samples and then predicting survival. 
Their models predicted the survival of CRC more accurately than the TNM stage or 
manual evaluations of cancer-associated fibroblasts. Moreover, survival prediction 
SVM models using immunomarkers evaluated by IHC, such as CD3 and CD8, have 
been developed[56], and the classifier correlated with patient survival.
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Table 4 Previous studies on the pathology of colorectal cancer using artificial intelligence

Ref. Targets Sample 
size Input Task Analysis method Diagnostic performance

Van Eycke 
et al[43]

CRC H&E staining, 
IHC image

Segmentation of the glandular 
epithelium

TMA, CNN F1 value: 0,912

Graham 
et al[44]

CRC H&E staining Differentiation of intratumor 
glands 

CNN F1 values: 0.90

Abdelsamea 
et al[45]

CRC 333 
samples

H&E staining, 
IHC (CD3)

Differentiation of the tumor 
epithelium

TMA, CNN Accuracy: 0.93-0.94

Yan et al[46] CRC H&E staining Tumor classification,segmentation 
of tumors, 

CNN Accuracy: Classification, 97.8%; 
segmentation, 84%

Haj-Hassan 
et al[47]

CRC Multispectral 
images

Segmentation of carcinoma CNN Accuracy: 99.1%

Rathore 
et al[48]

CRC Biopsy 
samples 

H&E staining Detection and grading of tumors Texture and 
morphology patterns, 
SVM

Recognition rate: Detection, 
95.4%; grading; 93.4%

Yang et al[49] CRC 180 
samples

H&E staining Diagnosis of benign tumors, 
neoplasms, and carcinoma

SVM, histogram, 
texture 

AUC: 0.852

Chaddad 
et al[50]

CRC 30 cases H&E staining Diagnosis of carcinoma, adenoma, 
and benign tumors

Automatic 
segmentation, texture

Accuracy: 98.9%

Yoshida 
et al[51]

CRC 1328 
samples

H&E staining Diagnosis of benign tumors, 
neoplasms, and carcinoma

CNN, automatic 
analysis of structure

Undetected rate of carcinoma 
and adenoma: 0-9.3% and 0-
9.9%, respectively

Takamatsu 
et al[52]

CRC 
surgery

397 
samples

H&E staining Prediction of lymph node 
metastasis

LR, shape analysis AUC: 0.94

Weis et al[53] CRC 596 cases IHC (AE1/AE3) Automatic evaluation of tumor 
budding

TMA, CNN Correlation; R2 value: 0.86

Bychkov 
et al[54]

CRC 
surgery

420 cases H&E staining Prediction of survival TMA, CNN Good biomarker for predicting 
survival

Kather et al[55] CRC 973 slides H&E staining Prediction of survival Stromal pattern, 
CNN

Good biomarker for predicting 
survival

Reichling 
et al[56]

CRC 
surgery

1018 cases HE, IHC (CD3, 
CD8)

Prediction of survival RF, monogram Good biomarker for predicting 
survival

CRC: Colorectal cancer; H&E: Hematoxylin eosin staining; IHC: Immunohistochemistry; TMA: Tissue microarray; CNN: Convolutional neural network; 
SVM: Support vector machine; AUC: Area under the curve; LR: Linear regression.

APPLICATIONS OF AI TO A RADIOLOGICAL DIAGNOSIS OF 
GASTROINTESTINAL CANCER
Previous studies on the radiological diagnosis of GC and CRC using AI between 2016 
and 2020 were summarized in Tables 5 and 6.

Gastric cancer
Regarding GC, many researchers have attempted to develop AI models using (1) a 
radiomics approach; or (2) CNN models predicted malignant potential, such as 
survival, lymph node metastasis, and post-operative recurrence, through analyses of 
the radiological image features of GC.

Radiomics approach: Li et al[57] developed a survival prediction model involving a 
general radiomics analysis of CT. The region of interest was manually drawn along the 
margin of the tumor on CT images, and radiological features were extracted. After 
manual image segmentation, the heterogeneity of the extracted feature was quantified 
using an image analysis, such as texture and histogram analyses. Analyzed cases were 
then classified based on the risk score (R-signature) evaluated using the least absolute 
shrinkage and selection operator method. The performance of a radiomics nomogram, 
including factors correlating with survival, was then evaluated. The findings obtained 
showed that the R-signature correlated with the survival of GC patients. Furthermore, 
the prediction of survival by the radiomics monogram including the R-signature was 
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Table 5 Previous studies on the radiological diagnosis of gastric cancer using radiomics or artificial intelligence

Ref. Targets Sample 
size Input Task Analysis method Diagnostic performance

Li 
et al[57]

GC, radical 
surgery

181 cases Primary tumor, 
preoperative CT

Prediction of survival Manual segmentation, 
radiomics, 
Nomograms

The TNM stage and radiomics signature 
were good biomarkers 

Zhang 
et al[58]

GC, radical 
surgery

669 cases Primary tumor, 
preoperative CT

Predication of early 
recurrence

Manual segmentation, 
radiomics, 
Nomograms

AUC: 0.806-0.831

Li 
et al[59]

GC, radical 
surgery

204 cases Primary tumor, pre-
operative dual-
energy CT

Pre-operative 
diagnosis of LNM

Manual segmentation, 
radiomics, Nomogram

AUC; 0.82--.84

Li 
et al[60]

GC, radical 
surgery

554 cases Primary tumor, 
preoperative CT

Prediction of a 
pathological status, 
survival

Semi-automatic 
segmentation, 
radiomics

AUC for prediction of the pathological 
status: 0.77, the TNM stage and radiomics 
signature were good biomarkers

Wang 
et al[61]

GC, radical 
surgery

187 cases Primary tumor, 
preoperative 
dynamic CT

Pre-operative 
prediction of 
intestinal-type GC

Manual segmentation, 
radiomics, 
Nomograms

AUC: 0.904 

Jiang 
et al[62]

GC, 
surgery

214 cases Primary tumor, 
preoperative PET-CT

Prediction of survival Manual segmentation, 
radiomics, 
Nomograms

C-index: DFS, 0.800; OS, 0.786

Chen 
et al[63]

GC, 
surgery

146 cases Primary tumor, 
preoperative MRI

Pre-operative 
diagnosis of lymph 
node metastasis

Manual segmentation, 
radiomics analysis

AUC: 0.878

Gao 
et al[64]

GC, 
surgery

627 cases, 
17340 
images

Lymph nodes, 
preoperative CT

Pre-operative 
diagnosis of lymph 
node metastasis

Manual segmentation, 
deep learning

AUC: 0.9541.

Huang 
et al[65]

GC, 
surgery

Primary tumor, 
preoperative CT

Pre-operative 
diagnosis of 
peritoneal metastasis

Manual segmentation, 
CNN

Ongoing, retrospective cross-sectional 
study

GC: Gastric cancer; CT: Computed tomography; AUC: Area under the curve; LNM: Lymph node metastasis; DFS: Disease-free survival; MRI: Magnetic 
resonance imaging; CNN: Convolutional neural network.

more accurate than that by normal nomograms (T and N stages and differentiation). 
Previous studies investigated the prediction of malignant potential using a radiomics 
approach. Zhang et al[58] evaluated the diagnostic accuracy of CT radiomics models for 
predicting post-operative recurrence in GC patients, and the AUC of the models were 
0.806-0.831. Li et al[59] reported CT radiomics models for predicting lymph node 
metastasis, with an AUC of 0.82-0.84. Li et al[60] also developed CT radiomic models 
with the ability to predict the pathological status and survival with high accuracy. 
Wang et al[61] analyzed primary tumors on CT images of the arterial phase, portal 
phase, and delay phase for the discrimination of intestinal-type GC by a radiomics 
approach. The AUC of their model was 0.904. Jiang et al[62] described a radiomics 
model of PET-CT for predicting survival. The C-indexes of this model for overall 
survival and disease-free survival were 0.786 and 0.800, respectively. A radiomics 
analysis of MRI for GC has also been conducted. Chen et al[63] examined the 
heterogeneity of primary tumors on MRI using a radiomics approach, and showed 
that the model was useful for predicting the N stage.

CNN model: Gao et al[64] developed a CNN model of CT for predicting lymph node 
metastasis. Radiologists initially labeled upper abdominal-enhanced CT images of 
metastatic lymph nodes. CNN models were then constructed using the labeled image 
data, and the AUC of the model was 0.954. Huang et al[65] described a protocol for 
predicting peritoneal metastasis using CNN models, and this research is ongoing.

Colorectal cancer
Treatment strategies for lower rectal cancer (LRC) have recently been attracting 
increasing attention because of the difficulties associated with achieving curative 
treatment. Therefore, many researchers have targeted LRC patients for the 
development of AI models for radiological diagnoses. The aims of a recent AI study on 
CRC were (1) the automatic detection or segmentation of primary tumors; (2) the 
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Table 6 Previous studies on the radiological diagnosis of colorectal cancer using radiomics or artificial intelligence

Ref. Targets Sample 
size Input Task Analysis method Diagnostic 

performance

Trebeschi 
et al[66]

LRC 140 cases Primary tumor, MRI Automatic detection, 
segmentation 

CNN DSC: 0.68-0.70, AUC: 
0.99

Wang et al[67] LRC 568 cases Primary tumor, MRI Automatic segmentation CNN DSC: 0.82

Wang et al[68] LRC 93 cases Primary tumor, MRI Automatic segmentation Deep learning DSC: 0.74

Men et al[69] LRC 278 cases Primary tumor, CT Automatic segmentation CNN DSC: 0.87

Shayesteh 
et al[70]

LRC, NCRT followed 
by surgery

98 cases Primary tumor, pre-
treatment MRI

Prediction of CRT 
responses

Manual segmentation, 
radiomics, machine 
learning

AUC: 0.90

Shi et al[71] LRC, NCRT followed 
by surgery

45 cases Primary tumor, pre-
treatment MRI, mid-
radiation MRI

Prediction of CRT 
responses

Manual segmentation, 
CNN

AUC: CR, 0.83; good 
response, 0.93

Ferrari 
et al[72]

LRC, NCRT followed 
by surgery

55 cases Primary tumor, MRI 
before, during and after 
CRT

Prediction of CRT 
responses

Manual segmentation, 
radiomics, RF

AUC: CR: 0.86, non-
response: 0.83

Bibault 
et al[73]

LRC, NCRT followed 
by surgery

95 cases Primary tumor, pre-
operative CT

Prediction of CRT 
responses

Manual segmentation, 
radiomics, CNN

80% accuracy

Dercle 
et al[74]

CRC, FOLFILI 
with/without 
cetuximab

667 cases Metastatic tumor, CT Prediction of tumor 
sensitivity to 
chemotherapy

Manual segmentation, 
radiomics, machine 
learning

AUC: 0.72-0.80

Ding et al[75] LRC, radical surgery 414 cases Lymph nodes, pre-
operative MRI

Pre-operative diagnosis 
of lymph node 
metastasis

Manual segmentation, 
CNN

AI system > 
radiologist 

Taguchi 
et al[76]

CRC 40 cases Primary tumor, CT Prediction of the KRAS 
status

Manual segmentation, 
radiomics

AUC: 0.82

LRC: Lower rectal cancer; MRI: Magnetic resonance imaging; CNN: Convolutional neural network; DSC: Dice similarity coefficient; AUC: Area under the 
curve; NCRT: Neoadjuvant chemoradiotherapy; CR: Complete response; RF: Random forest; CT: Computed tomography; CRC: Colorectal cancer.

prediction of treatment responses; and (3) the prediction of malignant potential.

Automatic detection or segmentation of primary tumors: Trebeschi et al[66] reported a 
CNN model for the automatic segmentation of primary tumors on MRI. CNN models 
were trained using T2-weighted images (T2WI) and diffusion-weighted images with 
primary tumor labeling by expert radiologists. The CNN model showed high 
segmentation accuracy, with a dice similarity coefficient (DSC) of 0.68-0.70. The AUC 
of the resulting probability maps was 0.99. Two CNN models were also developed for 
the automatic segmentation of primary tumors on T2WIs, with DSC of 0.82 and 0.74, 
respectively[67,68]. Men et al[69] attempted to develop CNN models for automatic 
segmentation on CT images with an application to the delineation of the clinical target 
volume (CTV) and surrounding organs for radiotherapy. The mean DSC values of the 
models were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 
92.3% for the right femoral head, 65.3% for the intestines, and 61.8% for the colon.

Prediction of treatment responses: Shayesteh et al[70] reported radiomics models 
predicting treatment responses to neo-adjuvant chemoradiotherapy. Primary tumors 
on MRI T2WI were manually segmented and an image analysis of the data, shape, 
texture as well as a histogram analysis were performed. The relationship between the 
pathological features and treatment responses to CRT was assessed by a machine 
learning approach, which revealed that the AUC and accuracy of the model were 95 
and 90%, respectively. Shi et al[71] and Ferrari et al[72] also described the efficacy of 
radiomics models for predicting CRT responses using pre-treatment, mid-radiation, 
post-treatment MRI (AUC for predicting a complete response (CR): 0.83 and 0.86, 
respectively). Bibault et al[73] compared the diagnostic accuracy of several models, 
Cox’s regression, CNN, and SVM for predicting CR in pre-operative CRT using CT 
data. CNN exhibited the ability to predict CR with the highest accuracy (80%). A 
radiomics model for predicting chemotherapeutic responses has also been reported. 
Dercle et al[74] demonstrated that their radiomic model using CT images successfully 
predicted sensitivity to anti-EGFR therapy (AUC: 0.80).
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Prediction of malignant potential: Ding et al[75] developed AI models to predict 
lymphatic node metastasis using pre-operative MRI. CNN models were constructed 
using MRI lymph node images manually labeled by radiologists. They compared the 
diagnostic accuracy of CNN and a radiologist for predicting lymph node metastasis. 
As a result, CNN was more accurate than radiologists in identifying pelvic metastatic 
lymph nodes. A model for predicting gene profiles was also reported. These research 
methods are generally called radiogenomics. Taguchi et al[76] showed that a machine 
learning model using a texture analysis of CT images and SUV values of PET-CT 
predicted KRAS mutations with high accuracy (AUC: 0.82).

CURRENT ISSUES AND FUTURE PERSPECTIVES
AI research for endoscopy
The majority of studies previously reported that a CAD system using AI for 
endoscopy had the ability to diagnose gastrointestinal tumors with high accuracy; 
however, there were many limitations. Researchers were more likely to use high-
quality endoscopic images to construct AI models, which cannot always be acquired in 
clinical settings[9]. Furthermore, outcome indicators for clinical applications have not 
yet been defined. Therefore, parameters to assess the functional performance of AI 
models need to be established[19]. In addition, the majority of studies have been 
retrospective in nature using still images from non-clinical settings. These conditions 
do not mimic real-time clinical settings, in which endoscopists often encounter 
difficult-to-analyze images in daily practice. Moreover, it currently remains unclear 
whether AI models will enhance medical performance, reduce medical costs, and 
increase the satisfaction of patients and medical staff in clinical settings. Another 
limitation is that many clinicians and clinical researchers do not have sufficient 
knowledge to understand AI systems; therefore, non-AI experts as well as medical 
journal reviewers may encounter difficulties when assessing research on AI and its 
applications. Furthermore, the number of medical staff with the skill to educate 
physicians on AI is very limited[19].

Nevertheless, once these limitations are resolved, CAD systems using AI will 
markedly improve diagnostic quality in endoscopic examinations. CAD systems for 
endoscopy are expected to serve as a second observer during real-time endoscopy, 
facilitating the detection of more neoplasms by endoscopists. Some CAD systems may 
also provide “optical biopsies” to differentiate the types of colon polyps[9]. Therefore, 
CAD systems have a promising future in the effective training of junior endoscopists 
as assistant observers.

AI research for pathology
Previous studies reported that AI models distinguish structures in tissues and detect 
cancerous regions with high accuracy. Furthermore, survival may be predicted using 
image analyses by AI. However, there are also a number of limitations in research. AI 
models are educated using pathological images of cancer tissue labeled by 
pathologists. However, interobserver disagreement in pathological diagnoses 
commonly occurs between pathologists[77,78]. Therefore, the quality of teaching data 
varied in each study. Furthermore, the majority of AI models were constructed using a 
small cohort. It might be possibility non-reproducible laboratory-specific machine 
learning methods. In addition, the clinical use of AI models requires a digital slide 
scanner, image storage, maintenance contracts, image analysis software, and IT 
support systems, which may be expensive in clinical settings. Moreover, many 
pathologists and technicians do not have sufficient knowledge to understand AI 
systems. Therefore, the recruitment of AI experts to introduce AI systems into clinical 
settings is needed for education and the adjustment of systems to different clinical 
settings.

Despite these limitations, whole-slide scanning using AI models, such as the TMA 
method, is advantageous for pathologists and clinicians. This method may be a second 
observer in the prevention of false diagnoses by pathologists and the teaching of 
trainees. Furthermore, the heterogeneities of cancer tissue cannot be precisely 
evaluated by the human eyes of pathologists. Therefore, the assessment of cancer 
tissue using AI models is a novel research method beyond human cognition that is 
expected to predict proteomics, genomics, and the molecular signaling pathways of 
tumors as precision medicine by cancer genome sequencing.
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AI research for radiology
Previous studies reported the efficacy of automatic segmentation or diagnosis in solid 
malignant tumors[77-79]. However, difficulties are associated with automatic 
segmentation by AI models in the field of gastrointestinal cancer because of large 
individual differences in imaging features of the gastrointestinal tract, except for the 
rectum. The radiomics approach represents an attractive method for detecting 
malignant potential and imaging biomarkers for precision medicine through image 
analyses of intratumor heterogeneity. However, a number of limitations need to be 
considered. The manual or semi-automatic segmentation of tumors is generally 
needed in the radiomics approach. Interobserver variability in manual segmentation 
often occurs in this process, resulting in the poor reproducibility of data by the 
radiomics model. Furthermore, previous studies demonstrated that radiomic features 
may be affected by a number of parameters, such as the scanning equipment[80], image 
pre-processing[81], acquisition protocols[82,83], image reconstruction algorithms[84,85], and 
delineation. In addition, although researchers of radiology or AI experts are 
knowledgeable about radiomics and AI models, they often cannot target the clinical 
task that needs to be improved for clinicians or patients in clinical settings. However, 
clinicians are not sufficiently aware of AI, and few reviewers of scientific literature on 
clinical medicine often are developing AI models or are able to judge research 
involving AI. Therefore, a multidisciplinary team needs to be introduced into research 
and medical teams to promote AI-supported medicine.

Despite these limitations, radiomic models for the image diagnosis or prediction of 
malignancy have the potential to support clinical teams for more accurate and rapid 
diagnoses. These models may increase patient satisfaction levels for homogenized 
diagnostic accuracy. Moreover, radiogenomics may have a major impact on precision 
medicine. Non-invasive assessments of the entire tumor tissue may be possible, 
without having to rely on a single biopsy to represent all cancer lesions within a 
patient. As further information becomes available on these imaging markers, the 
characteristics of cancers will be elucidated in more detail. Therefore, the radiomics 
approach will enhance the treatment effects of molecular biological approaches for 
oncological precision medicine.

DISCUSSION
AI will be an important component of diagnostic methods to diagnosis patient disease, 
determine most appropriate treatments, and predict prognosis and drug resistance. A 
lot of research methods have been developed with the aims and found to have varying 
levels of performance. For clinical use of disease diagnosis, AI seems valuable for use 
in endoscopy, where it could increase detection of benign polyp and malignant tumor. 
Meanwhile, AI may be useful to analysis intratumor heterogeneity of radiological and 
pathological images in order to predict malignant potentials, such as the prognosis of 
patients and therapeutic effects. Our minireview covered only articles listed in 
MEDLINE, and might have missed some literatures in medical image analysis journals 
and computer science. Despite of the limitation, AI has become an important part of 
clinical cancer research in recent years.

There is no turning back for the development of AI in gastrointestinal cancer, and 
future implications are large. However, some limitations that require caution should 
be recognized. Most studies were performed using low-quality datasets from pre-
clinical studies. Furthermore, AL algorithms are often considered to be black-box 
models. The difficulty in understanding the process of AI decision may prevent 
physicians from finding the potential confounding factors. Ethical challenge is one of 
the problems to be considered. In the present AI system, AI is not aware of the human 
preferences or legal liabilities. Therefore, medical staff will have to make decisions for 
patients according to their preferences, environment, and ethics. AI will not 
completely replace doctors, and computer technology and medical staff will always 
have to work together. However, the diagnostic accuracy of AI systems has markedly 
increased and may detect novel biomarkers that cannot be identified by the human eye 
or in human-aid analyses. AI systems will be introduced into general hospitals in the 
near future under the management of multidisciplinary teams consisting of medical 
staff and AI experts.
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CONCLUSION
We reviewed the recent published literatures on AI in gastrointestinal cancer, 
suggesting that AI may be used to accurately diagnose clinical images, identify new 
therapeutic targets, and process clinical data from large patient datasets. Although the 
physicians must recognize the limitations of AI diagnostic system, AI-assisted medical 
systems will become a promising tool for gastrointestinal cancer.
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