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Abstract
The recognition mechanism of artificial intelligence (AI) is an interesting topic in 
understanding AI neural networks and their application in therapeutics. A 
number of multilayered neural networks can recognize cancer through deep 
learning. It would be interesting to think about whether human insights and AI 
attention are associated with each other or should be translated, which is one of 
the main points in this editorial. The automatic detection of cancer with computer-
aided diagnosis is being applied in the clinic and should be improved with feature 
mapping in neural networks. The subtypes and stages of cancer, in terms of 
progression and metastasis, should be classified with AI for optimized 
therapeutics. The determination of training and test data during learning and 
selection of appropriate AI models will be essential for therapeutic applications.
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Core Tip: Recently, rapidly growing advances in deep learning have enabled cancer 
recognition by artificial intelligence (AI). Differences between human insights and AI 
attention may exist, and the interpretation of the modeling would lead to the further 
progression of AI-oriented therapeutics. The massive ability of AI is useful for cancer 
recognition.
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INTRODUCTION
The automatic detection of cancer has already been in practice and will become 
generalized[1]. Computer-aided diagnosis (CAD) is growing, and the detection and 
classification of cancer has been achieved in the identification of the subtypes of 
leukemia with dense convolutional neural networks and residual convolutional neural 
networks[1]. A CAD system with a massive artificial neural network based on the soft 
tissue technique detected lung cancer in X-ray images[2]. Infection of Helicobacter pylori 
was predicted with endoscopic images by artificial intelligence (AI)[3]. A faster region-
based convolutional neural network was applied to diagnose the T stage of gastric 
cancer in enhanced computed tomography (CT) images of gastric cancer[4]. Digital 
images of pathological data in cancer have been utilized in cancer diagnosis[5]. Digital 
pathology using whole-slide images may contribute into the “remote” assessment[6]. 
Automated image analysis and AI applications are increasing in the field of thyroid 
pathology[7]. Cancer recognition by AI has become more accurate and precise, 
accompanied by the progress of neural networks and calculation capacity[8]. It is time 
to think of ways to manage teaching AI in cancer therapeutics[9].

RECOGNITION AND AI APPLICATION
It may be possible that deep learning approaches such as a pretrained biomedical text 
mining model in natural language corpora apply to the recognition of cancer by AI[10]. 
The concept of the adversarial nets framework has advanced the field of 
recognition[11]. The recognition mechanism of AI application can be translated to 
human language via the indication of attention[12]. Future perspectives on cancer 
recognition in AI may need to focus on the translation of AI and human languages. 
Liver cancer survival can be predicted with deep learning-based multiomics 
integration[13]. Autoencoder architecture was used to integrate RNA sequencing (RNA-
Seq) data, DNA methylation data and microRNA sequencing (miRNA-Seq) data of 
hepatocellular carcinoma in the cancer genome atlas (TCGA) database[13,14]. Data 
coordination with TCGA-Assembler was the first step to provide proper data for AI[14]. 
A similarity network fusion approach predicted cancer subtypes and survival[15]. A 
gene signature for the metastasis-related recurrence of hepatocellular carcinoma was 
identified with a classifier model consisting of class prediction algorithms, support 
vector machine (SVM), nearest centroid, 3-nearest neighbor, 1-nearest neighbor, linear 
discriminant analysis, and compound covariate prediction, to assess the risk of cancer 
recurrence in the early stage[16]. Gene mutation sets were identified in liver cancers, 
including hepatitis-positive samples[17]. SVM learning is useful for classifying and 
subtyping cancer[18]. Tumor pathology, such as subtyping, grading and staging, can be 
predicted by deep learning-based AI[19]. Clustering and machine learning methods 
have been used to classify immunotherapy-responsive triple-negative breast cancer 
patients[20]. Progressive non-muscle-invasive bladder cancer and muscle-invasive 
bladder cancer were classified based on the molecular subtype of immunotherapy 
responsiveness[21]. An interesting classifier model called cancer of unknown primary-
AI-Dx predicted the tumor primary site and molecular subtype in RNA profiling[22].

APPLICATION OF AI TECHNOLOGY IN CANCER TREATMENT
Enhanced clinical workflow with AI interventions has been suggested in cancer 
treatment, which includes AI-guided detection and characterization, AI-guided 
treatment planning and monitoring, and AI-oriented optimization of the outcome[23]. 
AI tools can be used in detection of abnormalities, characterization of suspected lesion, 
and determination of prognosis or response to the treatment[23]. AI technology 
provides robust tumor descriptors in segmentation, diagnosis, staging and imaging 
genomics[23]. Radiomic feature extraction from CT images of lung cancer patients was 
successful to show association with gene expression and prognostic performance[24]. 
CT-based radiomic features may predict distant metastasis for lung adenocarcinoma 
patients[25]. The approach in evaluation and validation of novel biomarkers incor-
porates modified criteria in image data into Response Evaluation Criteria in Solid 
Tumours in cancer therapy[26]. The results of clinical study in metastatic non-small- cell 
lung cancer demonstrated that the treatment of pembrolizumab in combination with 
chemotherapy showed longer overall survival and progression-free survival than 
chemotherapy alone in the patients without epidermal growth factor receptor or 
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anaplastic lymphoma kinase mutations[27]. The AI application in medical fields such as 
early detection, diagnosis, and treatment of diseases is expanding[28]. Clinical data is 
processed with natural language processing and machine learning of AI, which would 
be important components in clinical decision making on treatment strategy[28,29] 
(Figure 1, Table 1).

CONCLUSION
The utilization of AI for cancer recognition is rapidly increasing. The traditional 
approach may evolve with AI neural networks to create a future field for the planet. 
The recognition of image data, as well as translated and untranslated transcripts of 
genes in cancer, will deepen the AI universe.
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Table 1 Artificial intelligence application in cancer recognition and treatment

Step AI application Recognition/treatment

Early Natural language 
processing

Clinical data in human language are translated into AI language to allow AI to recognize cancer

Middle Machine learning AI learns the feature of the data to generate the recognition model

Late Deep learning AI modeling is further evaluated and modified. Human interprets the results of the AI modeling prediction and 
decides the clinical treatment strategy

AI: Artificial intelligence.

Figure 1 Artificial intelligence application and cancer recognition in clinic. Artificial intelligence is utilized for cancer recognition, which contributes in 
clinical decision such as the treatment strategy. AI: Artificial intelligence.
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Artificial intelligence is an emerging technology whose application is rapidly 
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summarize the research progress and clinical application value of artificial 
intelligence in the diagnosis, treatment, and prognosis of colorectal cancer to 
provide evidence for its use as a promising diagnostic and therapeutic tool in this 
setting.
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INTRODUCTION
Colorectal cancer (CRC) is a major healthcare concern worldwide. It is the third most 
common cancer in males, the second most common cancer in females and the fourth 
leading cause of cancer death worldwide[1-3]. Furthermore, up to 60%-70% of recog-
nized cases in symptomatic patients are diagnosed at an advanced stage[4-6].

Artificial intelligence (AI) is a form of machine technology in which intelligent 
agents perform functions associated with the human mind, such as learning and 
problem solving[7-9]; AI algorithms are primarily used for disease diagnosis, 
treatment and prognosis[10,11].

In the setting of endoscopic diagnosis, AI has been primarily evaluated in 3 clinical 
scenarios: Polyp detection, polyp characterization (adenomatous vs nonadenomatous), 
and the prediction of invasive cancer within a polypoid lesion[12].

With regard to polyp detection, the adenoma detection rate (ADR), defined as the 
proportion of patients with at least one colorectal adenoma detected at the first scree-
ning colonoscopy among all the patients examined by an endoscopist, represents a 
pivotal quality measure for colonoscopy[6,13]. In fact, it has been reported that a 1% 
increase in the ADR is associated with a 3% decrease in interval CRC inciden-
ce[6,14,15].

The outcomes reported by different mono- and multicenter randomized clinical 
trials are highly promising; the overall ADR of these studies was significantly higher 
when computer-aided diagnosis (CAD) systems were incorporated (up to 80%)[16-20].

With regard to polyp characterization, CAD systems can achieve thresholds of 
preservation and incorporate valuable endoscopic innovations for diminutive, nonneo-
plastic rectosigmoid polyps according to various studies[6,21-25].

With regard to differentiation between invasive cancer and nonmalignant adenoma-
tous polyps, an accuracy of 94.1% and 81,2%, respectively, was achieved in two recent 
studies[26,27].

AI has also been evaluated in the classification and diagnosis of biopsy samples. In a 
recent systematic review performed by Thakur and coworkers, the authors concluded 
that artificial intelligence showed promising results in terms of accuracy in diagnosing 
CRC with regard to tumor classification, tumor microenvironment analysis, and 
prognosis prediction. However, the scale and quality of the training and validation 
datasets of most of these studies are insufficiently adequate, limiting the applicability 
of this technique in clinical practice[28].

With regard to surgical approaches, robot-assisted colorectal surgery has shown 
better performance than human-alone surgery, in terms of short- and long-term 
outcomes[10,29].

Additionally, with regard to the pharmacological approach, some studies evaluated 
targeted drug delivery[30], drug pharmacokinetics[31] and prediction of the rate of 
drug toxicity[32].

Furthermore, the personalization and precision of cancer treatments have become 
major themes in oncology research. For example, “Watson for Oncology” is an AI 
system that can assist in the precision medicine-based treatment of tumors[10,33]. It 
can automatically extract medical language from doctors’ records and translate them 
into a practical language for learning[10]. This model can be used to identify new 
cancer sub-populations, analyze their genetic biomarkers, and find effective drug 
combinations[10].

Finally, the emergence of AI has allowed clinicians to predict the prognoses of CRC 
patients more easily and precisely by using several approaches. For example, in one 
study, genetic markers of CRC were used to train a model based on different algori-
thms[34]. In another study, a computer-aided analysis method for tissue sections 
based on multifractal analyses of cytokeratin-stained tumor sections was proposed to 
evaluate the complexity of tumor-stroma interfaces[35]. Other studies have evaluated 
cytokeratin immunohistochemical images to predict lymph node metastasis[36,37] and 
the infiltration of immune cells in influencing CRC prognosis[38].

In the near future, AI technology will help doctors diagnose and treat their patients 
and provide CRC patients with personalized and accurate prognosis evaluations.

CONCLUSION
In conclusion. AI could play a pivotal role in gastrointestinal oncology, especially in 
the setting of CRC, for tailoring patient treatments and predicting their clinical 
outcomes[9].
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Table 1 Application of artificial intelligence in colorectal cancer

Setting Application Ref.
Diagnosis Polyp identification [16-20]

Polyp characterization [21-25]

Prediction of invasive cancer within a polypoid lesion [26,27]

Search for new diagnostic biomarkers [10]

Pathologic biopsy [28]

Treatment Preoperative evaluation [10]

Robot-assisted surgery [29]

Drug delivering in a targeted manner [30]

Evaluation of drugs pharmacokinetic [31]

Prediction of the rate of toxicity [32]

Watson for Oncology project [33]

Prognosis Search for new prognostic biomarkers [38]

Evaluation of tumour-stroma ratio [35]

Prediction of lymph-node metastasis [36,37]

Future randomized studies could directly increase the overall value (quality and 
costs) of AI by examining its effects not only in diagnosis (by evaluating colonoscopy 
findings, endoscopy durations, polyps and ADRs) but also in prognosis and therapy.

Since AI science continues to grow and evolve, the current limitations must be 
considered as a future challenge; these limitations are also inherited by the medicine 
applications of AI, including the difficult predictability of situations characterized by 
some degree of uncertainty[6]. Table 1 shows the applications of AI in CRC.

Future applications of AI could be implemented in all the settings of CRC 
management, such as the determination of the potential role of noncoding RNAs in 
tumor diagnosis and treatment[10].

Finally, the integration of AI in human-based medicine has to considered. AI has 
never been nor will ever be considered a substitute for the physician; on the contrary, 
it seems to be an extremely helpful tool to be used by the physician who, given his or 
her ability and skills, is the only one able to process and interpret all the information 
extracted by the AI to make decisions on patient management.
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Abstract
Early diagnosis and timely treatment are crucial in reducing cancer-related 
mortality. Artificial intelligence (AI) has greatly relieved clinical workloads and 
changed the current medical workflows. We searched for recent studies, reports 
and reviews referring to AI and solid tumors; many reviews have summarized AI 
applications in the diagnosis and treatment of a single tumor type. We herein 
systematically review the advances of AI application in multiple solid tumors 
including esophagus, stomach, intestine, breast, thyroid, prostate, lung, liver, 
cervix, pancreas and kidney with a specific focus on the continual improvement 
on model performance in imaging practice.

Key Words: Artificial intelligence; Oncology; Imaging; Model performance
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Core Tip: Many reviews have summarized artificial intelligence applications in the 
diagnosis and treatment of a single tumor type. However, this is the first review to 
systematically review how artificial intelligence relieves clinical workloads and 
changes the current medical workflows while maintaining high quality to provide 
precision medicine in multiple solid tumors. Due to its clear advantage in imaging 
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practice, patients will benefit from early diagnosis and appropriate treatment.
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INTRODUCTION
Cancer is currently a worldwide health problem. Early diagnosis and timely treatment 
are crucial in reducing cancer-related mortality. Medical imaging is a common 
technique used to guide the clinical diagnosis of solid tumors. Accurate interpretation 
of imaging data has become an important but difficult task in the diagnosis process.

Artificial intelligence (AI) refers to an information science that researches and 
develops theories, methods, technologies and application systems used to simulate, 
expand and extend human intelligence[1]. With the rapid development of machine 
learning, deep learning and other crucial AI technologies in the field of image 
processing in recent years, these approaches have made great contributions to disease 
classification, prognosis prediction and therapy evaluation and can identify patterns 
that humans cannot recognize[2-4] (Figure 1). Here, we review the advantage of AI 
applications in imaging examinations of multiple solid tumors and highlight its great 
benefits in optimizing the clinical work process, providing accurate tumor assessment 
for current precision medicine and achieving better diagnosis and treatment results 
based on its practical data and literature reports.

APPLICATION OF AI IN GASTROINTESTINAL TUMORS
Gastric cancer is one of the most common gastrointestinal malignancies at present, 
with a poor prognosis and high mortality. Endoscopy and pathological biopsy are still 
the “gold standard” for the diagnosis of gastric cancer, but they have shortcomings[5]. 
For example, the sensitivity of endoscopic diagnosis of atrophic gastritis is only 42%, 
so the rate of missed diagnosis is relatively high[6]. Multipoint biopsy sampling 
increases the risk of tissue injury and gastrorrhagia[7,8]. Some advanced endoscopic 
techniques, such as color endoscopy combined with magnification endoscopy and 
laser confocal microscopy, can provide only images of the mucosal surface of the 
gastrointestinal tract[7-9]. Billah et al[10] used capsule endoscopy along with a convo-
lutional neural network (CNN) and color wavelet features to identify gastrointestinal 
polyps. Urban et al[11] applied deep neural networks to identify colonic polyps from 
colonoscopy. Lahner et al[12] established a decision support system (DSS) for the 
diagnosis of atrophic gastritis without endoscopy. The diagnostic accuracy of these 
three protocols was above 96%, which supports the promising generalization of AI-
based technologies.

Esophagus squamous cell cancer
Narrow-band imaging (NBI) is an emerging advanced, noninvasive endoscopic 
technology that can strengthen the evaluation of the surface structure and microvas-
cular morphology of the esophagus and improve the accuracy rate of endoscopic 
diagnosis[13]. Using NBI to diagnose squamous cell carcinoma can lead to various 
results due to different judgments from doctors[14,15]. Fukuda et al[16] applied a deep 
CNN model to examine NBI endoscopy video images of squamous cell carcinoma, 
showing higher detection sensitivity (91.1%) than experts and high detection accuracy 
(88.3%). Those authors suggested that the AI system can discover tumors > 30 mm or 
with muscularis mucosa invasion that were missed diagnosis by experts. Compared to 
endoscopic experts, AI has a better diagnostic performance.

Atrophied gastritis
The CNN-chronic atrophic gastritis approach developed by Zhang et al[7] has a good 
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Figure 1 A flowchart of artificial intelligence model construction. AI: Artificial intelligence.

classification performance for recognizing chronic atrophic gastritis based on gastric 
antrum images whose area under the curve (AUC) was close to 0.99. The accuracy, 
sensitivity and specificity of CNN-chronic atrophic gastritis in the field of atrophic 
gastritis diagnosis are all above 0.94. In this study, 1458 mild cases, 1348 moderate 
cases and 38 severe cases of atrophic gastritis were tested by the CNN model, and the 
accuracy rates were 0.93, 0.95 and 0.99, respectively, indicating good consistency of the 
CNN model recognition with the clinical diagnosis of atrophic gastritis.

However, the literature has reported that AI technology used for stomach cancer or 
esophageal stomach adenocarcinoma is susceptible to problems related to tumor 
morphology, atrophic change, uneven mucosal background, etc., which leads to low 
specificity and high false positive rate (FPR)[17]. Several studies indicated that the 
application of AI in the clinic has high accuracy. If AI technology is combined with 
endoscopy doctors, then endoscopy can help doctors better diagnose atrophic gastritis, 
increase the rate of early gastric cancer diagnosis and avoid unnecessary pathological 
biopsy[18,19].

Early gastric cancer
Regarding small early gastric tumors, Abe et al[18] showed that AI technology can find 
anomalies faster than endoscopy doctors (45.5 s vs 173.0 min), and it also shows higher 
sensitivity (58.4% vs 31.9%). However, the positive predictive value (PPV) and 
specificity of AI technology were relatively lower than those of endoscopy doctors 
(26.0% vs 46.2% and 87.3% vs 97.0%, respectively)[18]. A computer-aided design 
(CAD) system is used in stationary images of magnifying endoscopy combined with 
NBI, which have an accuracy rate for early gastric cancer diagnosis of 85.3%[20]. When 
endoscopy cannot identify and capture images of lesions, magnifying endoscopy 
combined with NBI video in the CAD system can help the real-time clinical diagnosis 
of early gastric cancer. Horiuchi et al[19] proposed that the diagnostic performance of 
the CAD system using magnifying endoscopy combined with NBI video is equal to or 
better than that of 11 experienced endoscopic experts in early gastric cancer. The AUC 
was 0.8684, and its accuracy, sensitivity, specificity, PPV and negative predictive value 
were 85.1%, 87.4%, 82.8%, 83.5% and 86.7%, respectively[19].

Colorectal cancer
Colorectal colonoscopy is the key technique for the diagnosis of colorectal polyps. 
However, several studies have shown that 15.4% of colorectal lesions (≤ 3 mm) were 
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diagnosed as adenomas under endoscopy but were judged as normal mucosa via 
pathological examination[21]. Intraobserver and interobserver discrepancies are the 
main problem[22]. Therefore, some studies have suggested that using AI techniques 
combined with endoscopy and imaging may help physicians identify colorectal lesions 
and perform pathological classification and prognosis prediction[22].

Shahidi et al[21] established a real-time AI-based clinical DSS to assess the diffe-
rences between results from endoscopy and pathology in lesions ≤ 3 mm. Of the 644 
lesions, 458 lesions reached agreement, while significant differences were found in 99 
cases (adenoma under endoscopy but normal mucosa by pathologic examination). 
When using the clinical DSS for further evaluation, they found that the clinical DSS 
data of 90 cases conformed to those from endoscopy (coincidence rate was 90.9%), 
supporting AI objectivity prior to pathological examination and interpretation[21]. 
Yang et al[22] proposed a CNN model whose diagnosis accuracy was better than or 
similar to that of endoscopic experts (71.5% vs 67.5%), and applications that support 
the CNN model can help endoscopic physicians identify colorectal lesions to reduce 
the misdiagnosis rate. The CNN model can also extend the discrimination ability 
between advanced colorectal cancer and noncancerous lesions, helping endoscopy 
doctors choose the best treatment strategy effectively[22]. Randomized clinical trials 
are needed to determine if the CNN model applied to real-time endoscopic video can 
help endoscopic doctors detect tiny or negligible lesions in the examination.

Wang et al[23] explored the feasibility of faster region-based CNN technology. They 
used transfer learning technology and images and features of the ImageNet VGG16 
model to automatically identify the positive circumferential resection margin in high-
resolution magnetic resonance imaging (MRI) of rectal cancer, and the accuracy, 
sensitivity and specificity were 93.2%, 83.8% and 95.6%, respectively[23]. The use of 18F 
fluorodeoxyglucose-positron emission tomography (PET)/computed tomography 
(CT) to assess early changes in glucose metabolism parameters during neoadjuvant 
chemotherapy can predict treatment efficacy[24,25]. Traditional 18F fluorodeoxyglu-
cose-PET/CT cannot accurately and safely select patients for organ preservation 
strategies[26]. Williams et al[27] suggested that random forest is one type of AI 
technique used for tumor classification and regression evaluation. Shen et al[28] used 
random forest to demonstrate that the radiomics obtained from baseline 18F 
fluorodeoxyglucose-PET could accurately predict pathological complete response with 
95.3% accuracy.

APPLICATION OF AI IN BREAST TUMORS
Ultrasound and radiology are common imaging techniques in breast examination for 
cancer screening, diagnosis and treatment. Ultrasound is important for the nonin-
vasive measurement of cancer lesions and lymphatic metastasis, increasing the posi-
tive diagnostic rate for tiny, aggressive and lymph node-negative breast cancer[29]. 
However, ultrasound has lower diagnostic specificity and PPV for breast cancer[30]. 
For example, the axillary positive detection rate of pathological biopsy is 15% to 20%, 
which is often neglected by ultrasound, especially in those with unspecific charac-
teristics, such as unclear, irregularly shaped edges or fat loss[31]. Although MRI is 
highly sensitive for the diagnosis of breast cancer, its FPR is as high as 74%[32]. 
Molybdenum target X-rays are sensitive to microcalcification with the advantage of 
high cost performance. However, regarding dense breasts where lesions are probably 
hidden, molybdenum target X-ray has limitations with a lower detection rate[33].

Zhou et al[29] proposed a CNN-based deep learning model to predict lymph node 
metastasis according to the characteristics of primary breast cancer under ultrasound. 
The data showed that its AUC was approximately 90%, and the sensitivity and 
specificity were above 80% and 70%, respectively. Mango et al[30] integrated their AI-
based decision support system into ultrasonic images, and the results showed that this 
technique is helpful in Breast Imaging Reporting and Data System classification, 
reducing the intraobserver and interobserver variabilities. The variability incidence of 
ultrasound only in Breast Imaging Reporting and Data System 3 to Breast Imaging 
Reporting and Data System 4A or above was 13.6%, and it decreased to 10.8% when 
ultrasound was combined with decision support.

Spick et al[34] showed that adding diffusion-weighted imaging into MRI-guided 
vacuum-assisted breast biopsy could reduce the FPR by more than 30%. Penco et al[32] 
verified the accuracy of MRI-guided vacuum-assisted breast biopsy in comparison 
with histopathological results. The results exhibited 94% accuracy, 84% sensitivity and 
77% specificity, with a negative predictive value of up to 97%. Adachi et al[31] com-
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pared the diagnostic performance in dynamic contrast-enhanced magnetic resonance 
for breast cancer detection of AI using RetinaNet to that of expert readers; the former 
had a higher diagnostic performance than the latter (AUC 0.925 vs 0.884). With the 
support of AI, the diagnostic performance of expert readers was significantly 
improved (AUC was 0.899). The sensitivity and specificity of independent AI, experts 
not using AI and experts using AI in breast cancer diagnosis were 0.926, 0.847, 0.889 
and 0.828, 0.841, 0.823, respectively. However, AI may misdiagnose normal breast 
tissue as malignant due to background parenchymal enhancement or tissue density or 
misdiagnose invasive ductal carcinoma near the axilla as normal axillary lymph 
nodes[31].

Sasaki et al[35] proposed that AI-based Transpara systems reduced the differences 
between computers and experts in the detection sensitivity to breast cancer via molyb-
denum targets. The expert detection sensitivity was 89%; with the Transpara system, 
the detection sensitivity for malignant lesions was increased to 95%[35]. When 
interpreting breast images, the Transpara system can significantly increase AUC and 
diagnostic sensitivity without increasing reading time[36].

In summary, AI technology increases the detection sensitivity of latent breast lesions 
while maintaining higher specificity. This technology also reduces the variability in 
interpretation and helps to improve the clinical diagnostic performance.

APPLICATION OF AI IN THYROID TUMORS
In recent years, with the increasing incidence rate of thyroid cancer, the accurate classi-
fication of thyroid lesions and the prediction of lymph node metastasis have been 
prioritized to be the core of clinical intervention[37,38]. Ultrasound is a noninvasive, 
easily accessible and economical examination tool, but its accuracy may vary accor-
ding to the different professional backgrounds of the readers.

Barczyński et al[39] verified that the S-DetectTM model in real-time CAD system had 
no significant difference from experienced radiologists in sensitivity, accuracy and 
negative predictive value of thyroid tumor classification. The overall accuracy of 
disease evaluation was 76% for surgical doctors who had basic ultrasonic skills not 
using the CAD system but 82% for doctors with experience using the CAD 
system[39]. The sensitivity and negative predictive value of lesion classification by the 
CAD system was similar to those by ultrasonic experts. It further helped to locate the 
thyroid nodules for further puncture cytology. Nevertheless, the S-DetectTM model had 
defects in identifying calcifications[40].

Postoperative lymph node metastasis is a key factor in the local recurrence of 
thyroid carcinoma. It is necessary to use CT or ultrasound to judge whether lymph 
node metastasis is present before surgery[37,38]. A study conducted by Lee et al[41] 
confirmed that the AUC of the CAD system based on deep learning in the classifi-
cation of thyroid neck lymph node metastasis from preoperative CT images was 0.884, 
and its diagnostic accuracy, sensitivity, specificity, PPV and negative predictive value 
were 82.8%, 80.2%, 83.0%, 83.0% and 80.2%, respectively.

APPLICATION OF AI IN PROSTATE CANCER
Serum prostate specific antigen (PSA), digital rectal examination and transrectal 
prostate ultrasound-guided prostate puncture are the main methods for the early 
diagnosis of prostate cancer[42]. High-level PSA (> 2 ng/mL) is an important indicator 
of postoperative monitoring and identifying the recurrence of prostate cancer[43].

Biopsy technology guided by MRI/ultrasound improves the clinical detection of 
prostate cancer[44,45]. MRI detects pathological changes of Prostate Imaging Repor-
ting and Data System classification is affected by poor intrareader and inter-reader 
consistency, leading to a 40% difference in targeted biopsy. By adding AI, it will 
converge Prostate Imaging Reporting and Data System and improve reader consis-
tency, achieving a better (86%) agreement of detected results and pathological 
diagnosis[46].

Deep learning applications in the field of prostate malignant tumors have been 
widely used with MRI[47,48]. Although some patients were treated with radical 
prostate surgery and serum prostate specific antigen < 1, 11C-choline PET/CT still 
showed a 20.5% positive rate[49]. Prostate uptake of 18F-choline is associated with the 
overall survival rate, making it as important as serum prostate specific antigen and 
Gleason scores in identifying high-risk and low-risk patients. Polymeri et al[50] used 
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an automatic estimation method based on deep learning, and the obtained 18F-choline 
uptake value (71 mL) could reach radiologists’ visual estimates (65 mL and 80 mL) 
within seconds. This approach significantly improved the accuracy and precision of 
PET/CT imaging in the diagnosis of prostate cancer.

Raciti et al[43] used the software Paige Prostate Alpha to significantly increase the 
detection rate of prostate cancer while maintaining high specificity. Especially for 
small, poorly differentiated tumors, the sensitivity can be increased to 30% up to 90%. 
Similar AI systems can also be used to detect micrometastases in prostate cancer.

APPLICATION OF AI IN LUNG CANCER
When using CT to screen pulmonary nodules, lung-Reporting and Data System can 
increase sensitivity, but its FPR is also high[51]. The CAD method has 100% sensitivity, 
but its specificity is extremely low (up to 8.2 false positive nodules per scan)[51]. The 
negative predictive value of PET/CT for lymph node lesions of peripheral T1 tumors 
(≤ 3 cm) is as high as 92%-94%[52].

Chauvie et al[51] attempted to apply new methods to digital tomosynthesis: (1) 
Binomial visual analysis, PPV (0.14) and sensitivity (0.95); (2) Pulmonary-Reporting 
and Data System, PPV (0.19) and sensitivity (0.65); (3) Logistic regression, PPV (0.29) 
and sensitivity (0.20); (4) Random forest, PPV (0.40) and sensitivity (0.30); and (5) 
Neural network, PPV (0.95) and sensitivity (0.90). These data indicated that the neural 
network was the only predictor of lung cancer with a high PPV value and no loss in 
sensitivity. Tau et al[52] used CNN to analyze the characteristics of the primary tumor 
based on PET and to evaluate the existence of lymph node metastasis in newly 
diagnosed non-small cell lung cancer patients. The sensitivity, specificity and accuracy 
of predicting positive lymph nodes were 0.74 ± 0.32, 0.84 ± 0.16 and 0.80 ± 0.17, 
respectively; those of predicting distal metastasis were 0.45 ± 0.08, 0.79 ± 0.06 and 0.63 
± 0.05, respectively. The sensitivity of predicting distant lymph node metastasis was 
low (24% at prophase and 45% at the end of the monitoring period). CNN had high 
specificity (91% in the M1 group and 79% in the follow-up group), but the PPV and 
negative predictive value in class M were lower at the end of follow-up (54.5% and 
68.6%).

AI APPLICATION IN OTHER SOLID TUMORS
Hepatocellular carcinoma
The texture analysis of contrast-enhanced magnetic resonance is considered an image 
tag for predicting the early reaction of hepatocellular carcinoma patients before 
transarterial chemoembolization (TACE) treatment[53]. Its accuracy for the evaluation 
of complete remission and incomplete remission was 0.76. Preoperative dynamic CT 
texture analysis in the prediction of hepatocellular carcinoma response to TACE 
treatment has certain value. Peng et al[54] used a CT-based deep learning technique 
(transfer learning) that compensated for the inaccuracy of the result caused by 
insufficient image information. Further studies showed that the three groups (one 
training set and two validation sets) of data showed a high AUC for predicting the 
response to TACE treatment: complete response (0.97, 0.98, 0.97), partial response 
(0.96, 0.96, 0.96), stable condition (0.95, 0.95, 0.94) and disease progression (0.96, 0.94, 
0.97); simultaneously, the accuracy reached 84.0%, 85.1% and 82.8%[54]. Therefore, the 
CT-based deep learning model helps physicians preliminarily estimate the initial 
response of hepatocellular carcinoma patients to TACE treatment and helps to predict 
the therapeutic effect of TACE.

Cervical cancer
Colposcopy is widely used in the detection of cervical intraepithelial neoplasia, and it 
can guide cervical biopsy in women suspected of having cytological abnormalities or 
human papillomavirus infection[55,56]. In low- and middle-income countries with a 
lack of tools for colposcopy, the diagnostic accuracy of cervical biopsy to detect 
cervical intraepithelial neoplasia is quite low (30%-70%)[57]. The development and 
application of AI-guided (e.g., support vector machine) digital colposcopy helped 
solve the bottlenecks and improved the screening effectiveness of cervical cancer to 
better understand the characteristics of cervical lesions[58]. Another advantage of AI is 
the “real-time” diagnosis report, which continues to optimize clinical workflows[58].
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Pancreatic cancer
Accurate segmentation of the pancreas is important to AI training and AI assisted 
guidance. Wolz et al[59] used multi atlas technology, which only achieved a dice 
similarity coefficient (DSC) of 0.70. Summers et al[60] used deep learning technology, 
which reached a DSC of 0.78%. Wang et al[61] proposed that interactive fully convo-
lutional network for the segmentation of the pancreas did not achieve satisfactory 
results. Boers et al[62] assumed that the latest interactive U-Net neural structure is 
better than interactive fully convolutional network because it can produce a better 
initial segmentation (DSC 78.1% ± 8.7% vs DSC 72.3% ± 11.4%), achieving expert 
performance faster than artificial division (interactive U-net 8 min to 86% DSC, 
artificial segmentation 15 min to 87.5% DSC). The average time cost fell 48.4%, but 
simultaneously due to the low content of visceral fat in some patients, the boundary 
between the pancreas and surrounding tissues was not clear, which may lead to poor 
segmentation performance.

Renal cancer
Histopathology is the gold standard for clear cell renal cell carcinoma evaluation[63]. 
The World Health Organization/International Society of Urological Pathology grading 
system is used to predict the prognosis of renal clear cell carcinoma[64-66]. Using CT 
or MRI indications to describe the grading of clear cell renal cell carcinoma is often 
influenced by subjective factors[67-70]. Cui et al[71] studied the machine learning 
algorithm to extract and analyze the profiles of tiny tumors. Further grading predic-
tion of clear cell renal cell carcinoma by multiparameter MRI or multiphase CT-based 
machine learning provides a valuable noninvasive assessment for clinicians in the 
preoperative treatment of renal tumors[71].

CONCLUSION
AI has clear characteristics of high efficiency, specificity and sensitivity in the classi-
fication, identification and diagnosis of solid tumor. After its integration into imaging 
technology, AI optimizes clinical workflows, decreases the discrepancy between the 
readers and reduces the misdiagnosis rate, which helps clinicians effectively choose 
appropriate therapeutic strategies and accurately predict the prognosis (Table 1). All 
these improvements bring great advantages and convenience to current precision 
medicine. Nevertheless, problems still exist. For example, the FPR increases due to the 
morphology of the tumors or the uneven mucosal background and the identification 
failure of calcification because of technical defects. Therefore, AI cannot be a complete 
replacement of humans in the contemporary situation. We believe that with the 
continuous improvement of AI technology, the application of AI in tumor diagnosis 
and treatment will have better prospects in tumors not limited only to solid tumors.
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Table 1 Summary of artificial intelligence application in clinical imaging examination

Publish 
date Ref. AI Application 

scenarios Sensitivity Accuracy Specificity PPV NPV Detection 
time Variation Volume AUC DSC

10/2020 Fukuda 
et al[16]

CNN Diagnosis of 
esophagus 
squamous cell 
cancer

91.1% 88.3%

05/2020 Zhang 
et al[7]

CNN Diagnosis of 
chronic 
atrophic 
gastritis

94.5% 94.2% 94.0% 0.99

10/2020 Horiuchi 
et al[19]

CAD Diagnosis of 
early gastric 
cancer

87.4% 85.1% 82.8% 83.5% 86.7% 0.8684

02/2020 Wang 
et al[23]

Faster R-
CNN

Circumferential 
resection 
margin of 
rectal cancer

83.8% 93.2% 95.6%

03/2020 Shen 
et al[28]

RF Pathological 
complete 
response of 
rectal cancer

95.3%

01/2021 Abe 
et al[18]

CNN Diagnosis of 
gastric cancer

58.4% 87.3% 26.0% 45.5 s

01/2020 Zhou 
et al[29]

CNN Lymph node 
metastasis 
prediction from 
primary breast 
cancer

> 80% > 70% 0.9

03/2020 Penco 
et al[32]

DWI MRI-guided 
vacuum-
assisted breast 
biopsy

84.0% 94.0% 77.0% 97.0%

RetinaNet 92.6% 82.8% 0.925

Readers 
without 
RetinaNet

84.7% 84.1% 0.884

05/2020 Adachi 
et al[31]

Readers with 
RetinaNet

Diagnosis of 
breast cancer

88.9% 82.3% 0.899

Experts 89.0%02/2020 Sasaki 
et al[35]

Experts with 
Transpara 
system

Diagnosis of 
breast cancer

95.0%

US 13.6%06/2020 Mango 
et al[30]

US+DS

Diagnosis of 
BI-RADS 3 to 
BI-RADS 4A or 
above of breast 
cancer

10.8%

Doctors 
without 
CAD

76.0%02/2020 Barczyń
ski 
et al[39]

Doctors with 
CAD

Classification 
of thyroid 
tumor

82.0%

06/2020 Lee 
et al[41]

CAD Diagnosis of 
thyroid neck 
lymph node 
metastasis

80.2% 82.8% 83.0% 83.0% 80.2% 0.884

03/2020 Polymeri 
et al[50]

CNN Prostate gland 
uptake in 
PET/CT

71 mL

Paige 
Prostate 

10/2020 Raciti 
et al[43]

Diagnosis of 
prostate cancer

90.0%
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Alpha

Binomial 
visual 
analysis

95.0% 14.0%

Pulmonary-
RADS

65.0% 19.0%

Logistic 
regression

20.0% 29.0%

RF 30.0% 40.0%

07/2020 Chauvie 
et al[51]

Neural 
network

Lung DTS

90.0% 95.0%

Diagnosis of 
lymph node 
metastasis of 
lung cancer

74% ± 32% 80% ± 17% 84% ± 16%07/2020 Tau 
et al[52]

CNN

Predicting of 
distal 
metastasis of 
lung cancer

45% ± 8% 63% ± 5% 79% ± 6% 54.5% 68.6%

01/2020 Peng 
et al[54]

Transfer 
learning

Predicting of 
TACE 
treatment 
response of 
hepatocellular 
carcinoma

> 82.8% > 0.94

09/2013 Wolz 
et al[59]

Multi atlas 
technology

70.0%

08/2020 Gibson 
et al[62]

Deep 
learning 
technology

78.0%

iFCN 72.3% 
± 
11.4%

Artificial 
segmentation

Segmentation 
of the pancreas

15 
min 
to 
87.5% 
DSC

AI: Artificial intelligence; PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under the curve; DSC: Dice similarity coefficient; CNN: 
Convolutional neural network; Faster R-CNN: Faster region-based convolutional neural network; RF: Random forest; DWI: Diffusion-weighted imaging; US: 
Ultrasound; DS: Decision support; CAD: Computer-aided design; DTS: Digital tomosynthesis; TACE: Transarterial chemoembolization; iFCN: Interactive fully 
convolutional network; BI-RADS: Breast Imaging Reporting and Data System; MRI: Magnetic resonance imaging; PET/CT: Positron emission 
tomography/computed tomography; RADS: Reporting and Data System.
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Abstract
Malignant tumors are still a worldwide threat to human health. Tumor treatment 
strategies are constantly evolving, and the advent of tumor immunotherapy has 
brought up hope to many types of tumors, especially for those that are refractory 
to conventional therapies including surgery, radiotherapy, and chemotherapy. 
Tumor vaccines can initiate or amplify an anti-tumor immune response in tumor 
patients through active immunization, and therefore occupy an important 
position in tumor immunotherapy. The main types of tumor vaccines include 
tumor cell vaccines, dendritic cell vaccines, polypeptide vaccines and nucleic acid 
vaccines. Due to factors such as poor antigen selection and suppressive tumor 
microenvironment, earliest tumor vaccines on clinical trials failed to achieve 
satisfactory clinical effects. However, with the development of second-generation 
genome sequencing technologies and bioinformatics tools, it is possible to predict 
neoantigens generated by tumor-specific mutations and therefore prepare person-
alized vaccines. This article summarizes the global efforts in developing tumor 
vaccines and highlights several representative tumor vaccines in each category.

Key Words: Tumor vaccines; Tumor cell vaccines; Dendritic cell vaccines; Peptide 
vaccines; Nucleic acid vaccines
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Core Tip: There are many advancements in the field of cancer immunotherapy in the 
past decade such as the application of immune checkpoint blockade and adoptive cell 
therapy. Tumor therapeutic vaccines have emerged as an additional effective treatment 
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strategy due to their ability to trigger potent immune response. Typically, they are 
tumor cell vaccines, dendritic cell vaccines, peptide vaccines or nucleic acid vaccines. 
This article mainly reviews the current clinical status as well as research and 
development status of these four types of therapeutic tumor vaccines for those who are 
interested.
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INTRODUCTION
Exploratory research on tumor vaccines can be traced back to 1891 when Dr. William 
B. Coley first proved that heat-inactivated Streptococcus pyogenes and Serratia marcescens 
(Coley toxin) are effective treatments for inoperable tumors[1]. Coley toxin is 
especially effective for osteosarcoma and soft tissue sarcoma, thus inspiring the 
subsequent development of various tumor vaccines. While Coley toxin has faded out 
of clinical application, its pioneering role cannot be erased. Therapeutic tumor 
vaccines represent a viable option for tumor immunotherapy, which aims to stimulate 
the patient's immune system to specifically kill tumor cells without damaging normal 
cells[2]. Therapeutic cancer vaccines are designed to induce enduring anti-tumor 
immunity, which enables active immunity to systematically prevent tumor recurrence 
or metastatic disease. Research on the exploration of approaches to therapeutic tumor 
vaccines has been ongoing and has been achieving varying degrees of success[3]. So 
far, the United States Food and Drug Administration (FDA) has approved the 
following two types of preventive tumor vaccines: Hepatitis B virus (HBV) vaccine-a 
recombinant HBV vaccine Recombivax HB® approved in 1983 and Engerix-B® 
approved in 1989, and human papillomavirus (HPV) vaccine: Recombinant HPV type 
6, 11, 16, 18 (Gardasil®), recombinant HPV 9-valent vaccine (Gardasil® 9) and recombi-
nant HPV type 16, 18 (Cervarix®).

Compared with preventive tumor vaccines, therapeutic tumor vaccine development 
has lagged significantly. In terms of therapeutic tumor vaccines, the United States FDA 
so far only approved sipuleucel-T (Provenge®) in 2010 for the treatment of asymp-
tomatic or minimally symptomatic metastatic castration-resistant prostate cancer 
(CRPC) and an oncolytic virus-based vaccine talimogene laherparepvec for the 
treatment of advanced melanoma in 2015[4,5]. Other countries have also approved 5 
therapeutic tumor vaccines, which are DCVax®-Brain and M-VaxTM approved by 
Switzerland, HybriCell approved by Brazil, Oncophage® approved by Russia and 
CIMAVax EGF® approved by Cuba and Peru[6]. However, 4 out of these 5 tumor 
vaccines (DCVax®-Brain, M-VaxTM, HybriCell and CIMAVax EGF®) had simply 
completed phase I and II clinical trials by the time of approval. The main goal of 
Oncophage®'s phase III clinical trial is to prolong relapse-free survival (RFS) and 
overall survival (OS) instead of efficacy. According to the data retrieved from Clinical-
Trials.gov, there are 439 “therapeutic cancer vaccines” under development worldwide, 
of which North America accounts for the largest proportion of 301 (Figure 1, Source: 
https://ClinicalTrials.gov). This article mainly summarizes some tumor vaccines that 
have entered phase III clinical trials. Some tumor vaccines that are currently under 
recruitment in early clinical trials phase I and II are listed in Table 1.

TUMOR CELL VACCINES 
The original tumor cell vaccine tends to fail to induce a strong immune response. In 
order to change this deficiency, molecular modification techniques have been 
employed to change the immune characteristics or genetic background of tumor cells 
to improve their immunogenicity and generate a stronger immune response. Tumor 
cell vaccine is a whole tumor cell vaccine containing a series of antigens prepared from 
surgically removed tumor tissues. The removed tumor tissues are minced to tumor 
cells which are usually inactivated by radiation in the laboratory so that they no longer 
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Table 1 Selected list of tumor vaccine under recruitment in clinical trials

Vaccine type Disease Combination Phase NCT ID

Neuroblastoma. Pediatric Solid Tumor Nivolumab. Ipilimumab Phase I NCT04239040

Locally Advanced Pancreatic Ductal 
Adenocarcinoma

Nivolumab CCR2/CCR5 dual 
antagonist

Phase I; 
Phase II

NCT03767582

Metastatic Pancreatic Adenocarcinoma Epacadostat. Pembrolizumab 
CRS-207 CY

Phase II NCT03006302

GVAX

Colorectal Cancer Phase I NCT01952730

Pancreatic Cancer Cyclophosphamide 
Nivolumab

Phase II NCT03161379GVAX Pancreas Vaccine

Pancreatic Cancer Cyclophosphamide 
Nivolumab Urelumab

Phase I; 
Phase II

NCT02451982

Tumor 
cell 
vaccine

GM-CSF vaccine Multiple Myeloma Lenalidomide Prevnar13 Phase II NCT03376477

AST-VAC2 NSCLC in the Advanced and Adjuvant Settings Phase I NCT03371485

MIDRIXNEO NSCLC Antigen-specific DTH. 
Control DTH

Phase I NCT04078269

Autologous Dendritic Cell-
Adenovirus CCL21 Vaccine

NSCLC Stage IV, IVA, IVB Lung Cancer AJCC v8 Pembrolizumab Phase I NCT03546361

Autologous DCs: MESOVAX Mesothelioma. Malignant PD-L1 Negative 
Advanced Cancer Progressive Disease

Pembrolizumab. Interleukin-2 Phase I NCT03546426

PEP-DC vaccine Pancreatic Adenocarcinoma Phase I NCT04627246

ME TARP vaccine Prostate Cancer Phase II NCT02362451

Acute Myelogenous Leukemia Decitabine Phase I NCT03679650DC/AML Fusion Vaccine

Acute Myelogenous Leukemia Phase II NCT03059485

mDC3/8-KRAS Vaccine Pancreatic Ductal Adenocarcinoma Phase I NCT03592888

Autologous DC vaccine: 
RaC-Ad

Head Neck Tumors, Neuroendocrine Tumors, Soft 
Tissue Sarcoma Rare Cancer

Interleukin-2 Phase II NCT04166006

COREVAX-1 Stage IV Colorectal Cancer Curative Resection Interleukin-2 Phase II NCT02919644

Autologous DCs + Prevnar 
13

Stage III, IIIA, IIIB, IV, IVA, IVB Hepatocellular 
Carcinoma AJCC v8, Stage III, IIIA, IIIB, IV 
Intrahepatic Cholangiocarcinoma AJCC v8, 
Unresectable Hepatocellular Carcinoma, 
Unresectable Intrahepatic Cholangiocarcinoma

Radiation: External Beam 
Radiation Therapy

Early 
Phase I

NCT03942328

DC Tumor Cell Lysate 
Vaccine: ATL-DC

Recurrent Glioblastoma Pembrolizumab poly-ICLC Phase I NCT04201873

Dendritic Cell/Tumor 
Fusion Vaccine

Glioblastoma, Neuroectodermal Tumors Interleukin-12 Temozolomide Phase I; 
Phase II

NCT04388033

DC1 Vaccine+ WOKVAC 
Vaccine

Female Breast Cancer, Male Breast Cancer, Stage I, II, 
III Breast Cancer, HER2-positive Breast Cancer

Phase II NCT03384914

neoantigen-primed DC 
vaccine

Gastric Cancer, Hepatocellular Carcinoma, NSCLC, 
Colon Rectal Cancer

Phase I NCT04147078

MG-7-DC vaccine Later stage of gastric cancer Sintilimab Phase I; 
Phase II

NCT04567069

DC 
Vaccine

IKKb matured, RNA-loaded 
DC vaccine

Melanoma, Uveal Metastatic Phase II NCT04335890

UCPVax: VolATIL Squamous Cell Carcinoma of the Head and Neck, 
Anal Canal Cancer, Cervical Cancer

Atezolizumab Phase II NCT03946358

UCPVax-Glio Glioblastoma Phase I; 
Phase II

NCT04280848

UCPVax Metastatic NSCLC Phase I; 
Phase II

NCT02818426

MUC1 NSCLC PolyICLC Phase I; 
Phase II

NCT01720836

Peptide 
vaccine
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SVN53-67/M57-KLH Lung Atypical Carcinoid Tumor, Lung Typical 
Carcinoid Tumor, Metastatic Pancreatic 
Neuroendocrine Tumor

Incomplete Freund's 
Adjuvant Octreotide Acetate 
Sargramostim

Phase I NCT03879694

NSABP FB-14/AE37 Triple-negative Breast Cancer Pembrolizumab Phase II NCT04024800

KRAS peptide vaccine Colorectal Cancer, Pancreatic Cancer Nivolumab Ipilimumab Phase I NCT04117087

da VINc/OTSGC-A24 Gastric Cancer Nivolumab Ipilimumab Phase I NCT03784040

ARG1-18, 19, 20 NSCLC, Urothelial Carcinoma, Malignant 
Melanoma, Ovarian Cancer, Colorectal Cancer, 
Breast Cancer, Squamous Cell Carcinoma of the 
Head and Neck, Metastatic Cancer

Phase I NCT03689192

Personalized peptide vaccine Stage IV, IVA, IVB Colorectal Cancer AJCC v7, Stage 
IV Pancreatic Cancer AJCC v6 and v7

Imiquimod Pembrolizumab Phase I NCT02600949

WT1/NY-ESO-1 Ovarian Cancer, Fallopian Tube Primary Peritoneal 
Cancer, Recurrent Ovarian Cancer

Nivolumab Phase I NCT02737787

IMU-131/HER-Vaxx Gastrointestinal Neoplasms, Adenocarcinoma Cisplatin and either 
Fluorouracil (5-FU) or 
Capecitabine or Oxaliplatin 
and capecitabine

Phase I; 
Phase II

NCT02795988

ESR1 Breast Cancer Phase I NCT04270149

DNAJB1-PRKACA Fibrolamellar, Hepatocellular Carcinoma Nivolumab Ipilimumab Phase I NCT04248569

H3.3K27M Diffuse Intrinsic Pontine Glioma, Diffuse Midline 
Glioma, H3 K27M-Mutant

Nivolumab Phase I; 
Phase II

NCT02960230

H2NVAC Ductal Breast Carcinoma In Situ Granulocyte Macrophage 
Colony Stimulating Fator

Phase I NCT04144023

IDH1R132H/AMPLIFY-
NEOVAC

Malignant Glioma Avelumab Phase I NCT03893903

pTVG-HP/pTVG-AR CRPC, Metastatic Cancer Pembrolizumab rhGM-CSF Phase II NCT04090528

Mammaglobin-A Breast Cancer Phase I NCT02204098

pTVG-HP Prostate Cancer Nivolumab GM-CSF Phase II NCT03600350

pNGVL4a-
Sig/E7(detox)/HSP70

Cervical Cancer, Precancerous Condition, HPV 
Disease, Human Papilom-virus

Imiquimod Phase I NCT00788164

DNA 
Vaccine

Salmonella oral vaccine Relapsed Neuroblastoma Lenalidomide Early 
Phase I

NCT04049864

NSCLC: Non-small cell lung cancer; CRPC: Castration-resistant prostate cancer; AJCC: American Joint Committee on Cancer; GM-CSF: Granulocyte-
macrophage colony stimulating factor.

have proliferative activity even after being imported into the human body. Tumor cell 
vaccines are basically divided into two types, namely autologous tumor cell vaccines 
and allogeneic tumor cell vaccines[7,8]. Autologous tumor cell vaccines are prepared 
by extracting tumor cells from the tumor tissues of patients receiving treatment. They 
have the advantages of carrying relatively complete known and unknown tumor 
antigens and not being restricted by major histocompatibility complex (MHC), thus 
avoiding the immune escape of tumor cells caused by the loss of certain antigens 
during the process of tumor progression. However, the vaccine made by inactivating 
tumor cells is extremely weak in immunogenicity and incapable of inducing sufficient 
anti-tumor immune effects. Allogeneic tumor cell vaccines are prepared using specific 
types of tumor cells from some other patients instead of the tumor cells from the 
patients receiving treatment themselves. These allogeneic tumor cell vaccines are more 
often used as off-the-shelf medicines. Some allogeneic tumor cell vaccines are 
prepared from mixed tumor cells extracted from tumor cells of several patients[8].

OncoVAX®

OncoVAX® is an autologous tumor cell vaccine developed using patients' autologous 
colorectal cancer cells and is used for adjuvant treatment of patients after colorectal 
cancer resection. The vaccine is a patient's autologous tumor cell vaccine that combines 
non-proliferative and non-tumorigenic autologous tumor cells with metabolic activity 
after irradiation and adjuvant of live attenuated TICE strain of bacillus Calmette-
Guerin. The company Vaccinogen uses a patented method to extract and purify tumor 
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Figure 1 According to resources downloaded from the open access website (https://ClinicalTrials.gov, cited April 9, 2021), clinical trials of 
tumor vaccines are unevenly distributed in the world, with the United States occupying the largest proportion, followed by Europe and 
East Asia. Overall, the number of North America far exceeds that of the rest regions in the world. There is little difference in the number of clinical trials conducted in 
other regions.

cells from the resected colorectal cancer tissue, and then undergo radiation treatment, 
and then inoculate them to the patient to produce an effective and personalized 
immune response to the residual cancer cells that may still exist in the patient after the 
operation.

Vermorken et al[9] investigated the effect of OncoVAX® on 254 patients with stage II 
and III colon cancer in a randomized phase III clinical trial, and they published their 
results on the lancet. The patients were randomly divided into surgery group (control 
group, 126 cases) and surgery + vaccine group (treatment group, 128 cases). The 
median follow-up period was 5.3 years (8-107 mo). Among the tested patients, 65 
patients relapsed, including 25 patients in the treatment group and 40 patients in the 
control group; the risk of recurrence of patients in the treatment group was reduced 
[risk ratio (RR) = 44%, 95% confidence interval (CI): 7%-66%, P = 0.023]. In the patient 
staging analysis, OncoVAX® had no significant effect on patients with stage III colon 
cancer, but it could significantly prolong the recurrence-free period of patients with 
stage II colon cancer (P = 0.011), and the overall risk of recurrence was reduced (RR = 
61%, 95%CI: 18%-81%), the RFS of patients in the treatment group was significantly 
prolonged [the risk of recurrence or death was reduced (RR = 42%, 95%CI: 0%-68%, P 
= 0.032)].

5 clinical studies of OncoVAX®, including the study above, which established 
optimum dose and regimen, have been completed by 2014. 757 subjects with colorectal 
cancer, of which 720 had colon cancer, have been enrolled in OncoVAX® trials[10]. In 
addition, the results of the follow-up bioequivalent study (NCT00016133) involving 15 
subjects with cGMP-level manufacturing standard concluded the immunogenicity of 
OncoVAX® was unaffected by the sterilization process[11]. OncoVAX® has reached a 
Special Protocol Assessment with the FDA and has been granted Fast Track status by 
the FDA. The phase IIIb clinical trial (NCT02448173) is under recruitment currently 
which is expected to be completed in July 2022.

Gemogenovatucel-T
Gemogenovatucel-T (FANG, Vigil™) is a whole autologous tumor cell vaccine 
developed by Gradalis Inc., which incorporates plasmid-encoded granulocyte-
macrophage colony stimulating factor and a bifunctional small hairpin RNA 
interference vector targeting furin converting enzyme. Senzer et al[12] conducted a 
phase I clinical trial on patients with advanced tumors and demonstrated the long-
term safety of the vaccine and the effect of inducing circulated and activated T cells 
against tumor cells during a 3-year follow-up.

Based on its safety, immunoeffectiveness, and suggested benefits previously 
verified, Nemunaitis et al[13] provided a follow-up study of a subset of 8 advanced 
hepatocellular carcinoma patients and demonstrated that no obvious toxicity was 
observed and a significant induction of systemic immune response. In the phase II 
clinical trial of patients with advanced ovarian cancer, the reaction with interferon-γ 
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(IFN-γ) enzyme-linked immunospot assay (ELISPOT) before Gemogenovatucel-T 
vaccination serves as the baseline [negative rate: About 97% (30/31)]. In contrast, the 
IFN-γ ELISPOT reaction of the patient after vaccination was 100% (31/31) positive, 
and the circulating activated T cell population that induced by the autologous tumor 
cells was significantly expanded. In addition, the average RFS of the vaccinated group 
was 826 d with a median of 604 d, while the control group had an average RFS of 481 d 
with a median of 377 d (P = 0.033)[14].

Rocconi et al[15] has carried out a study (ClinicalTrials.gov, NCT02346747), in which 
91 eligible patients with stage III or IV high-grade serous, endometrioid, or clear cell 
ovarian cancer were randomly assigned to receive Gemogenovatucel-T (n = 47) or 
placebo (n = 44). Recurrence-free survival was 11.5 mo (95%CI: 7.5-not reached) for 
patients assigned to Gemogenovatucel-T vs 8.4 mo (7.9-15.5) for patients assigned to 
placebo [hazard ratio (HR) 0.69, 90%CI: 0.44-1.07; one-sided P = 0.078]. According to 
the results, no grade 3 or 4 toxic events was reported among the Gemogenovatucel-T 
arm. Serious adverse events were reported in 4 patients in the placebo arm and 3 
patients in the Gemogenovatucel-T arm. No treatment-related deaths occurred in 
either group[15].

Rocconi et al[16] posted the data of the double-blind, placebo-controlled trial in 
phase IIb. Patients were in complete response with Stage III/IV high grade serious, 
endometroid or clear cell ovarian cancer. Results demonstrated clinical benefit in 
homologous recombination proficient (HRP) ovarian cancer. RFS was improved with 
Vigil (n = 25) in HRP patients compared to placebo (n = 20) (HR = 0.386; 90%CI: 0.199- 
0.750; P = 0.007), results were verified by Rhabdomyosarcoma 2-Associated Transcript 
(RMST) (P = 0.017). Similarly, OS benefit was observed in Vigil group compared to 
placebo (HR = 0.342; 90%CI: 0.141-0.832; P = 0.019). Results with OS were also verified 
with RMST (P = 0.008)[16].

DENDRITIC CELL VACCINES 
Dendritic cell (DC) is widely recognized as the most powerful full-time antigen-
presenting cell since its antigen-presenting ability is hundreds of times higher 
compared with other antigen presenting cells. The development of DC vaccines is still 
at an early stage, but a large amount of valuable experimental data has been obtained 
showing that DC exerts a powerful function in antigen presentation and initiating anti-
tumor immunity. DC-based immunotherapy has been used to generate tumor 
cytotoxic T cells, which is an effective means to fight tumor cells[17-20]. So far, the 
United States FDA has only approved one DC vaccine sipuleucel-T for the treatment of 
metastatic CRPC; Switzerland and Brazil approved two DC vaccines- DCVax®-Brain 
for the treatment of brain tumors and HybriCell for the treatment of kidney cancer and 
melanoma[6].

Stapuldencel-T
Stapuldencel-T (DCVAC/PCa) is a vaccine which a Czech biotech company (Sotio a.s.) 
uses autologous leukocytes obtained from prostate cancer patients during the 
leukapheresis process as raw material to grow immature DCs in vitro. The high 
hydrostatic pressure kills the immunogenic tumor cells which sensitize the immature 
DCs and make them mature. The loaded mature DCs are then be inoculated into 
prostate cancer patients. Podrazil et al[21] conducted a phase I/II clinical trial 
(EudraCT 2009-017295-24) of combining DCVAC/PCa and docetaxel to treat 25 
patients with metastatic CRPC, the median OS (mOS) of the subjects was 19 mo, which 
is obviously longer than the mOS of 11.8 and 13 mo predicted by Halabi nomogram 
and MSKCC nomogram, respectively. There were no DCVAC/PCa-related adverse 
reactions. Long-term vaccination with DCVAC/PCa can induce and maintain the 
growth of prostate-specific antigen (PSA)-specific T cells. Fucikova et al[22] conducted 
a phase I/II trial (EudraCT 2009-017259-91) involving 27 patients with rising PSA 
levels. The median PSADT (PSA doubling time) in all treated patients increased from 
5.67 mo prior to immunotherapy to 18.85 mo after 12 doses (P < 0.0018). Moreover, 
specific PSA-reacting T lymphocytes were increased significantly already after the 4th 
dose.

Sotio has accomplished 5 earlier trials of DCVAC/PCa in prostate cancer at varying 
stages namely SP001 (NCT02105675), SP002 (NCT02107391), SP003 (NCT02107404), 
SP004 (NCT02107430), SP010 (NCT02137746). Based on previous trials, it launched an 
extensive global multi-center phase III clinical trial studying DCVAC/PCa in prostate 
cancer (SP005:NCT02111577) to determine whether DCVAC/PCa added onto 
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standard of care (SOC) therapy can improve survival rate. The VIABLE study (actiVe 
ImmunotherApy using DC-Based treatment for late stage prostatE cancer) enrolled 
1182 prostate cancer patients across 21 European countries and the United States. As of 
January 21, 2021, results of VIABLE study were submitted to United States trial 
registry but have not yet been announced. However, SOTIO terminates the phase I/II 
SP015 trial (NCT03514836; EudraCT2015-004314-15) in prostate cancer in Czech 
Republic owing to insufficient patient accrual.

Rocapuldencel-T
Rocapuldencel-T (AGS-003) is a mature monocyte-derived DC vaccine developed by 
Argos Therapeutics, Inc. using patients’ own amplified tumor RNA plus synthetic 
CD40L RNA for electroporation, which induces the activation and expansion of new T 
cells (including persistent memory cells and killer cells) based on Arcelis technology 
platform, specifically attacking the unique antigens of each patient’s tumor. Amin et al
[23] carried out a phase II clinical trial that combined AGS-003 and sunitinib in 21 
patients with advanced renal cell carcinoma (RCC). The results showed that 13 
patients (62%) were effective in this therapy (9 patients responded and 4 patients were 
in stable condition), but none of the patients achieved complete remission. The median 
progression-free survival (PFS) of all patients was 11.2 mo (95%CI: 6.0-19.4), and the 
mOS was 30.2 mo (95%CI: 9.4-57.1); 7 patients (33%) survived at least 4.5 years, 5 cases 
(24%) survived for more than 5 years, including 2 cases in the continuous response 
period without disease progression at the completion of the report; the patients 
tolerated AGS-003 well, and only mild adverse reactions occurred at the vaccination 
site.

The ADAPT trial recruited 462 patients that were randomized 2:1, 307 to the 
combination group and 155 to the SOC group between 2013 and 2016. mOS in the 
combination group was 27.7 mo (95%CI: 23.0-35.9) and 32.4 mo (95%CI: 22.5-not 
reached) in the SOC group HR of 1.10 (95%CI: 0.83-1.40). PFS was 6.0 mo and 7.83 mo 
for the combination and SOC groups, respectively [HR = 1.15 (95%CI: 0.92-1.44)]. The 
ORR was 42.7% (95%CI: 37.1-48.4) for the combination group and 39.4% (95%CI: 31.6-
47.5) for the SOC group. Median follow up was 29 mo (0.4-47.7 mo). On account of the 
lack of clinical efficacy, the ADAPT trial was terminated on February 17, 2017. 
Immune responses were detected in 70% of patients treated with Rocapuldencel-T, 
and the magnitude of the immune response positively correlated with OS. Figlin et al
[24] has conducted the phase III trial to investigate the safety and efficacy of a 
combination therapy dosing regimen of Rocapuldencel-T plus sunitinib in patients 
with metastatic RCC. The results indicated that the combination therapy did not 
improve the patient's OS. Nevertheless, the phase III trial identified two potential 
survival-predictive biomarkers namely interleukin (IL)-12 produced by the DC vaccine 
and higher numbers of T regulatory cells present in the peripheral blood of advanced 
RCC patients.

DCVax®–L
DCVax® was developed and is being commercialized by Northwest Biotherapeutics, 
Inc. (MD, United States), serving as a platform technology that uses activated 
autologous DCs to reinvigorate and educate the immune system to attack cancers. 
DCVax®-L) is designed to cover all solid tumor cancers in which the tumors can be 
surgically removed. Theoretically, DCVax®-L induces the differentiation and 
maturation of peripheral blood mononuclear cells into DCs, which are activated and 
loaded with biomarkers (specific antigens) obtained from the patient's own tumor 
tissue. Antigens can be derived from autologous tumor lysates as in DCVax®-L for 
glioblastoma multiforme (GBM) or specific recombinant antigenic epitopes[25,26]. The 
loading of biomarkers into the DCs “educates” them about what the immune system 
needs to attack. The activated, educated DCs are then isolated with very high purity 
and comprise the DCVax®-L personalized vaccine[26].

A 348-patient double blind, randomized, placebo-controlled phase III clinical trial 
(NCT00045968) with DCVax®-L for newly diagnosed GBM is being implemented, 
whose enrollment completed in 2015. The primary endpoint of the trial is PFS, and 
secondary endpoints include OS and other measures. The trial is under way at 51 sites 
(medical centers) across the United States. Liau et al[27] posted its first results on 
survival indicating that addition of DCVax®-L to standard therapy is feasible and safe 
in glioblastoma patients and may extend survival. mOS was 23.1 mo from surgery 
without DCVax®-L. As of this analysis involving 331 patients in 2018, 223 patients are 
≥ 30 mo past their surgery date; 67 of these (30.0%) have lived ≥ 30 mo and have a 
Kaplan-Meier-derived mOS of 46.5 mo. 182 patients are ≥ 36 mo past surgery; 44 of 
these (24.2%) have lived ≥ 36 mo and have a KM-derived mOS of 88.2 mo[27].
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PEPTIDE VACCINES
Peptide vaccines that initially targeted tumor enriched antigens can be classified into 
two distinct categories: Tumor-associated antigens (TAA) and tumor-specific 
neoantigens antigens[28,29]. Tumor neoantigen is a specific peptide epitope of tumor 
cells that can be recognized by T cells due to gene mutations in tumor cells, which can 
activate T cells and exert anti-tumor immune responses. Currently, Peptide vaccines 
are mainly used in patients with advanced tumors, and clinical trials have been carried 
out for patients with CRPC, lung cancer, gastrointestinal tumors, cholangiocarcinoma, 
pancreatic cancer and GBM. Most of the peptide vaccine research is currently in phase 
I and phase II clinical trials.

Seviprotimut-L
Seviprotimut-L (POL-103A) is currently in orphan drug status and developed by 
Polynoma Lewis Lung Carcinoma (LLC), which is a combination of shed antigens 
produced by three proprietary melanoma cell lines. Polynoma LLC announced the 
start of Melanoma Antigen Vaccine Immunotherapy Study (MAVIS), the company’s 
phase III trial of POL-103A vaccine for melanoma in June 2012. MAVIS 
(NCT01546571), a global, multi-center, double-blind, placebo-controlled study, is 
expected to recruit 1224 participants with resected stage IIb, IIc or III melanoma and a 
high risk of recurrence. The trial is expected to be initially completed on January 1, 
2025[30].

Tedopi® (OSE-2101, EP-2101, IDM-2101)
Tedopi® is a synthetic peptide vaccine developed by the French company OSE 
Immunotherapeutics, which is a specific treatment for HLA-A2+ patients, a key 
receptor for the cytotoxic T-immune response, through its proprietary combination of 
9 optimized neo-epitopes plus one epitope giving universal helper T cell response 
targeting T cell activation. Currently, Tedopi® is being investigated in two major 
cancer indications: Non-small cell lung cancer (NSCLC) with an ongoing phase III trial 
and pancreatic cancer with an ongoing phase II trial[31].

In February 2016, OSE Immunotherapeutics launched the phase III clinical trial 
(NCT02654587) named Atalante 1 that compared OSE-2101 as a second and third-line 
drug with docetaxel or pemetrexed for HLA A2+ IIIB or IV NSCLC patients after 
immune checkpoint inhibitor (CPI)s [programmed death 1 (PD1)/programmed death-
ligand 1] failure. The trial included 99 HLA-A2-positive patients with stage IIIB or 
metastatic stage IV. They were randomly divided into Tedopi® vaccine treatment 
group or chemotherapy group (pemetrexed or docetaxel) at a ratio of 2:1. The trial is 
expected to be completed in December 2021 and was initially completed in February 
2020. According to the positive step-1 phase III results announced at the European 
Society for Medical Oncology Virtual Congress 2020, among the 63 patients in the 
Tedopi® group, 29 patients survived at least 12 mo and the 12-mo survival rate was 
46% higher than expected 25%. In the chemotherapy control group, 13 of the 36 
patients survived at least 12 mo, which is equivalent to a 12-mo survival rate of 36%
[32].

In previous phase II clinical trials of IDM-2101, this vaccine also achieved promising 
data.

IDM-2101 (previously EP-2101) was administered for a total of 63 patients positive 
for HLA-A2 every 3 wk for the first 15 wk, then every 2 mo through year 1, then 
quarterly through year 2, for a total of 13 doses. Results showed that one-year survival 
in the treated patients was 60%, and median survival was 17.3 mo[33-35].

NUCLEIC ACID VACCINES
Nucleic acids have been well acknowledged as potent adjuvants[36,37]. Nucleic acid 
vaccines include plasmid DNA vaccines, RNA vaccines and viral vector vaccines. Both 
RNA and DNA have been utilized as adjuvants, meanwhile they take the respons-
ibility to code for TAA[38]. RNA is transcribed in vitro (IVT) by a DNA template 
encoding the antigen and bacteriophage RNA polymerase; RNA vaccines can release a 
large number of tumor-derived specific antigens and induce humoral and cellular 
immune responses, provide costimulatory signals, and are well tolerated without 
carcinogenic potential[39,40].
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VGX-3100
VGX-3100 is a DNA vaccine developed by INOVIO Pharmaceuticals, Inc. in the United 
States. The vaccine contains two DNA plasmids targeting E6 and E7 oncogenes 
associated with HPV-16 as well as HPV-18, which are responsible for transforming 
HPV-infected cells into precancerous lesions or cancer cells. Therefore, the vaccine is 
designed to increase the T cell immune response to eliminate infections caused by 
HPV-16 and HPV-18 and to destroy precancerous cells or lesions, without the 
associated risk of losing the patient’s reproductive function[41,42].

Trimble et al[43] conducted a randomized, double-blind, placebo-controlled phase 
IIb clinical trial in patients with high-grade cervical squamous intraepithelial lesions 
(HSIL) related to HPV types 16 and 18, and 125 patients were divided into the VGX-
3100 group; 42 patients were assigned to the placebo group. Results showed that 55 
out of 114 patients in the VGX-3100 group (48.2%) and 12 out of 40 patients in the 
placebo group (30.0%) had histopathological regression [percentage difference 
between the two groups was 18.2% (95%CI: 1.3%-34.4%), P = 0.034)]. Patients in the 
treatment group were well tolerated, and the most common adverse reaction was 
erythema at the vaccination site, and no serious adverse events were reported.

The company launched the VGX-3100 critical phase III trial (REVEAL 1: 
NCT03185013) in June 2017 and completed the initial goal of recruiting 198 
participants in June 2019. On March 1, 2021, INOVIO announced that the REVEAL 1 
study has reached the primary and secondary clinical endpoints, thus being the first 
DNA medicine to achieve efficacy endpoints in a phase III trial. The REVEAL 1 study 
enrolled 201 patients with HPV-16/18-related HSIL. Among the 193 patients with 
evaluable efficacy, 23.7% (31/131) of the these in the treatment group reached the 
common primary endpoint of achieving histopathological regression of HSIL 
combined with virologic clearance of HPV-16 and/or HPV-18 at week 36, while the 
placebo group was 11.3% (7/62) and results were statistically significant (P = 0.022; 
95%CI: 0.4-22.5). The study reached all secondary endpoints as well.

ProstAtak® (AdV-tk+valacyclovir, CAN-2409)
ProstAtak® is an adenovirus vector tumor vaccine developed by Advantagene, Inc. in 
the United States to prevent and treat recurrence of prostate cancer. It utilizes a gene 
transfer method to directly deliver a vaccine containing the herpes simplex virus 
thymidine kinase gene (aglatimagene besadenovec, AdV-tk) followed by an anti-
herpetic prodrug valacyclovir into the prostate tumor via trans-rectal ultrasound 
guided injection, and then the patient continuously takes valacyclovir for 14 d. 
Theoretically, the initial local cytotoxicity is mediated by nucleoside analogues 
produced by valacyclovir phosphorylation, which activates the immune system by 
stimulating T-cell proliferation and IL-2 production therefore generates a systemic 
anti-tumor immune response. Advantagene Biotech launched a randomized, 
completely blind, placebo-controlled phase III clinical trial of ProstAtak® (PrTK03; 
NCT01436968) combined with radiotherapy in 711 patients with moderate to high-risk 
localized prostate cancer in September 2011. The subjects were randomly divided into 
treatment group and control group at a ratio of 2:1. The trial is expected to be initially 
completed in September 2023. Additionally, the company's phase II clinical trial of 
ProstAtak® (ULYSSES; NCT02768363) for patients with localized prostate cancer was 
also launched in May 2016. The trial has recruited 187 participants and its primary 
completion time was estimated to be March 2021.

FixVac (BNT111)
It has been well-acknowledged that mRNA has the potential to be promoted as an 
important character in therapeutic regimens since over 20 years ago. Since the 
successful development and current massive use of mRNA vaccines for coronavirus 
disease 2019 (COVID-19) immunization, more mRNA-based tumor immunotherapies 
have been under-developed. Some typical mRNA-based tumor vaccines and COVID-
19 vaccines are listed in Tables 2 and 3. FixVac (BNT111) is an intravenously 
administered liposomal RNA (RNA-LPX) vaccine developed by Biopharmaceutical 
New Technologies (BioNTech), which comprises RNA-LPX encoding 4 TAAs—NY-
ESO-1, melanoma-associated antigen A3, tyrosinase, and trans-membrane phospha-
tase with tensin homology[44]. These 4 antigens are non-mutated antigens quite 
common in melanoma and highly immunogenic but are barely expressed in normal 
tissues. The mRNA is enveloped by lipid nanoparticles to increase its stability, 
improve its transfection efficiency and avoid degradation[44,45]. With regard to the 
FixVac platform, its product candidates feature the proprietary immunogenic mRNA 
backbone optimized for encoding specific shared antigens; and RNA-lipoplex, or 
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Table 2 Typical mRNA-based tumor vaccines

Vaccine mRNA-encoded 
antigen Formulation type Disease NCT ID Phases Status Sponsor/collaborator Results

mRNA-2416 OX40L LNP Relapsed/Refractory Solid Tumor 
Malignancies or Lymphoma Ovarian 
Cancer

NCT03323398 Phase 
I/II

Recruiting ModernaTX, Inc. Any dose of intratumoral injection is tolerable 
when mRNA-2416 is administered alone. Results 
indicate increased OX40L protein expression, 
elevated PD-L1 levels and pro-inflammatory 
activity after mRNA-2416 injection

mRNA-2572 OX40L, IL-23, IL-
36γ

LNP Dose Escalation: Relapsed/Refractory 
Solid Tumor Malignancies or 
Lymphoma Dose Expansion: Triple 
Negative Breast Cancer, Head and 
Neck Squamous Cell Carcinoma, Non-
Hodgkin Lymphoma, and Urothelial 
Cancer

NCT03739931 Phase I Recruiting ModernaTX, Inc., AstraZeneca Any dose of intratumoral injection is tolerable 
when mRNA-2572 is administered alone or in 
combination with PD-L1 inhibitor. IFN-γ, TNF-α, 
and PD-L1 levels increased

mRNA-4157 
KEYNOTE-603

Neo-Ag LNP Solid Tumors NCT03313778 Phase I Recruiting ModernaTX, Inc., Merck Sharp & 
Dohme Corp.

All tested doses is tolerated, and clinical 
responses were observed when mRNA-4157 is 
combined with Pembrolizumab

KEYNOTE-942 Neo-Ag LNP Melanoma NCT03897881 Phase II Recruiting ModernaTX, Inc., Merck Sharp & 
Dohme Corp.

Not available

mRNA-
5671/Merck V941

KRAS mutations: 
G12D, G12V, G13D, 
G12C

LNP NSCLC, Pancreatic cancer, Colorectal 
cancer

NCT03948763 Phase I Recruiting Merck Sharp & Dohme Corp. Not available

FixVac (BNT111); 
Lipo-MERIT

NY-ESO-1, 
MAGEC3, 
tyrosinase, TPTE

Lipo-MERIT, LNP Melanoma NCT02410733 Phase I Active, not 
recruiting

BioNTech SE BNT111 alone or in combination with PD1, 
mediates durable objective responses in CPI-
experienced patients with unresectable 
melanoma. Durable clinical responses in both 
monotherapy and combination with CPI are 
accompanied by the induction of strong CD4+ 
and CD8+ T cell immunity. BNT111 vaccination 
was safe and well tolerated with no dose limiting 
toxicity

RO7198457 
(BNT122)

Neo-Ag Lipo-MERIT, LNP Melanoma, NSCLC, Bladder Cancer, 
CRC, Breast Cancer etc.

NCT03289962 Phase I Recruiting BioNTech, Genentech The combination of RO7198457 and 
atezolizumab is generally well tolerated. 
RO7198457 combined with atezolizumab can 
induce pro-inflammatory cytokine release and 
peripheral T cell response in most patients

Neo-Ag Lipo-MERIT, LNP Advanced Melanoma NCT03815058 Phase II Recruiting Genentech, Inc., BioNTech SE Not available

Neo-Ag Lipo-MERIT, LNP Stage II and III CRC (surgically 
resected)

NCT04486378 Phase II Recruiting BioNTech SE Not available

Neo-Ag Lipo-MERIT, LNP Pancreatic Cancer (surgically resected) NCT04161755 Phase I Recruiting Memorial Sloan Kettering Cancer 
Center, Genentech, Inc.

Not available
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Neo-Ag Lipo-MERIT, LNP NSCLC NCT04267237 Phase II Withdrawn Hoffmann-La Roche Not available

SAR441000 
(BNT131)

IL-12sc, IL-15sushi, 
IFNα and GM-CSF

Various formulations advanced melanoma NCT03871348 Phase I Recruiting Sanofi, BioNTech RNA 
Pharmaceuticals GmbH

Not available

RiboMab 
(BNT141)

mRNA encoding 
secreted IgG 
antibodies that 
target multiple 
epithelial solid 
tumors

Various liver-
targeting LNP 
formulations

CLDN18.2-positive Solid Tumors NCT04683939 Phase 
I/II

Not yet 
recruiting

BioNTech SE Not available

IVAC 
MUTANOME, 
RBL001/RBL002

Neo-Ag/TAA naked mRNA Advanced Melanoma NCT02035956 Phase I Completed BioNTech RNA Pharmaceuticals 
GmbH, BioNTech SE

CV8102 TLR7/8/RIG-1 
agonist based on 
noncoding single 
stranded RNA

RNActive, 
(Protamine)

Melanoma (Skin), Squamous Cell 
Carcinoma of the Skin Carcinoma, 
Squamous Cell of Head and Neck 
Carcinoma, Adenoid Cystic

NCT03291002 Phase I Recruiting CureVac AG, Syneos Health Not available

Peptide vaccine and 
mRNA

IMA970A plus 
CV8102 and 
Cyclophosphamide

Hepatocellular carcinoma NCT03203005 Phase 
I/II

Completed National Cancer Institute, Naples, 
immatics Biotechnologies GmbH, 
CureVac AG, European 
Commission-FP7-Health-2013- 
Innovation-1

Not available

BI-1361849 
(CV9202)

NY-ESO-1, MAGE-
C2, MAGE-C1, 
survivin, 5 T4, 
MUC1

RNActive, Protamine Metastatic NSCLC NCT03164772 Phase 
I/II

Active, not 
recruiting

Ludwig Institute for Cancer 
Research, Cancer Research Institute, 
New York City; Boehringer 
Ingelheim, MedImmune LLC, 
CureVac AG, PharmaJet, Inc.

CV9202 was well-tolerated, and antigen specific 
immune responses were detected in majority of 
patients (84%)

CV9201 MAGE-C1, MAGE-
C2, NY-SEO-1, 
survivin,5 T4

RNActive, Protamine Stage IIIB/IV NSCLC NCT00923312 Phase 
I/II

Completed CureVac AG CV9201 was well-tolerated and results indicated 
immune responses after vaccination. Median PFS 
and OS were 5 and 10.8 mo, respectively

CV9103 PSA, PSCA, PSMA, 
STEAP1

RNActive, Protamine Prostate cancer NCT00831467 Phase 
I/II

Completed CureVac AG CV9103 is well tolerated and immunogenic

CV9104 PSA, PSCA, PSMA, 
STEAP1, PAP, 
MUC1

RNActive, Protamine Prostate cancer NCT01817738 Phase 
I/II

Terminated CureVac AG Terminated due to insufficient activities

LNP: Lipid Nanoparticle; Neo-Ag: Neoantigen; IFN-γ: Interferon-γ; TNF-α: Tumor necrosis factor-α; PD-L1: Programmed death-ligand 1; IL: Interleukin; GM-CSF: Granulocyte-macrophage colony stimulating factor; NSCLC: Non-small 
cell lung cancer.

RNA-LPX, the delivery formulation, meant to enhance mRNA’s stability and 
translation, targeting DCs in lymphoid compartments body-wide and to stimulate 
potent immune responses[44,46]. BNT111 is an off-the-shelf mRNA vaccine product 
from the FixVac platform and not individualized for particular patients, but its 
proprietary RNA-LPX formulation with the general utility of these 4 non-mutant 
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Table 3 Typical mRNA-based coronavirus disease 2019 vaccines have entered phase III or IV clinical trials

Vaccine NCT ID Title Phase Status
Estimated 
number of 
participants

Sponsor/collaborator

BNT162b2 NCT04816669 Study to Evaluate the Safety, Tolerability, and 
Immunogenicity of a Lyophilized Formulation 
of BNT162b2 Against COVID-19 in Healthy 
Adults

Phase 
III

Recruiting 550 BioNTech SE, Pfizer

NCT04713553 A Phase 3 Study to Evaluate the Safety, 
Tolerability, and Immunogenicity of Multiple 
Production Lots and Dose Levels of BNT162b2 
Against COVID-19 in Healthy Participants

Phase 
III 

Recruiting 1530 BioNTech SE, Pfizer

NCT04754594 Study to Evaluate the Safety, Tolerability, and 
Immunogenicity of SARS-CoV-2 RNA Vaccine 
Candidate (BNT162b2) Against COVID-19 in 
Healthy Pregnant Women 18 Years of Age 
and Older

Phase 
II/III

Recruiting 4000 BioNTech SE, Pfizer

NCT04775069 Antibody Response to COVID-19 Vaccines in 
Liver Disease Patients

Phase 
IV

Not yet 
recruiting

900 Humanity & Health Medical 
Group Limited

mRNA-1273 NCT04860297 A Study to Evaluate Safety and 
Immunogenicity of mRNA-1273 Vaccine to 
Prevent COVID-19 in Adult Organ Transplant 
Recipients and in Healthy Adult Participants

Phase 
III 

Recruiting 240 ModernaTX, Inc.

NCT04796896 A Study to Evaluate Safety and Effectiveness 
of mRNA-1273 Vaccine in Healthy Children 
Between 6 Months of Age and Less Than 12 
Years of Age

Phase 
II/III

Recruiting 6750 ModernaTX, Inc.

NCT04470427 A Study to Evaluate Efficacy, Safety, and 
Immunogenicity of mRNA-1273 Vaccine in 
Adults Aged 18 Years and Older to Prevent 
COVID-19

Phase 
III 

Active, not 
recruiting

30420 ModernaTX, Inc., Biomedical 
Advanced Research and 
Development Authority, National 
Institute of Allergy and Infectious 
Diseases (NIAID)

NCT04649151 A Study to Evaluate the Safety, 
Reactogenicity, and Effectiveness of mRNA-
1273 Vaccine in Adolescents 12 to <18 Years 
Old to Prevent COVID-19

Phase 
II/III

Active, not 
recruiting

3000 ModernaTX, Inc., Biomedical 
Advanced Research and 
Development Authority

CV-NCOV-
011

NCT04848467 A Trial Studying the SARS-CoV-2 mRNA 
Vaccine CVnCoV to Learn About the Immune 
Response, the Safety, and the Degree of 
Typical Vaccination Reactions When CVnCoV 
is Given at the Same Time as a Flu Vaccine 
Compared to When the Vaccines Are 
Separately Given in Adults 60 Years of Age 
and Older (CV-NCOV-011)

Phase 
III 

Not yet 
recruiting

1000 Bayer, CureVac AG

CVnCoV NCT04860258 A Study to Evaluate Safety, Reactogenicity 
and Immunogenicity of the SARS-CoV-2 
mRNA Vaccine CVnCoV in Adults With Co-
morbidities for COVID-19

Phase 
III 

Not yet 
recruiting

1200 CureVac AG

NCT04838847 A Study to Evaluate the Immunogenicity and 
Safety of the SARS-CoV-2 mRNA Vaccine 
CVnCoV in Elderly Adults Compared to 
Younger Adults for COVID-19

Phase 
III 

Not yet 
recruiting

180 CureVac AG

NCT04652102 A Study to Determine the Safety and Efficacy 
of SARS-CoV-2 mRNA Vaccine CVnCoV in 
Adults for COVID-19

Phase 
II/III

Recruiting 36500 CureVac AG

NCT04674189 A Study to Evaluate the Safety and 
Immunogenicity of Vaccine CVnCoV in 
Healthy Adults in Germany for COVID-19

Phase 
III 

Recruiting 2520 CureVac AG

SARS-CoV-
2 mRNA 
Vaccine

NCT04847102 A Phase III Clinical Study of a SARS-CoV-2 
Messenger Ribonucleic Acid (mRNA) Vaccine 
Candidate Against COVID-19 in Population 
Aged 18 Years and Above

Phase 
III 

Not yet 
recruiting

28000 Walvax Biotechnology Co., Ltd., 
Abogen Biosciences Co. Ltd., Yuxi 
Walvax Biotechnology Co., Ltd., 

CoVPN 
3006

NCT04811664 A Study of SARS CoV-2 Infection and 
Potential Transmission in University Students 
Immunized With Moderna COVID-19 Vaccine 
(CoVPN 3006)

Phase 
III 

Recruiting 37500 National Institute of Allergy and 
Infectious Diseases (NIAID)
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KYRIOS NCT04869358 Exploring the Immune Response to SARS-
CoV-2/COVID-19 Vaccines in Patients With 
Relapsing Multiple Sclerosis (RMS) Treated 
With Ofatumumab (KYRIOS)

Phase 
IV

Not yet 
recruiting

40

ENFORCE NCT04760132 National Cohort Study of Effectiveness and 
Safety of SARS-CoV-2/COVID-19 Vaccines 
(ENFORCE) (ENFORCE)

Phase 
IV

Recruiting 10000 Jens D Lundgren, MD, Ministry of 
the Interior and Health, Denmark; 
Rigshospitalet, Denmark

AMA-
VACC

NCT04792567 Exploring the Immune Response to SARS-
CoV-2 modRNA Vaccines in Patients With 
Secondary Progressive Multiple Sclerosis 
(AMA-VACC) (AMA-VACC)

Phase 
IV

Recruiting 60

COVAXID NCT04780659 COVID-19 Vaccination of Immunodeficient 
Persons (COVAXID) (COVAXID)

Phase 
IV

Recruiting 540 Karolinska University Hospital, 
Karolinska Institutet

DemiVac NCT04852861 Safety and Immunogenicity of Demi-dose of 
Two Covid-19 mRNA Vaccines in Healthy 
Population (DemiVac)

Phase 
IV

Not yet 
recruiting

200 Sciensano, Mensura EDPB, 
Institute of Tropical Medicine, 
Belgium; Erasme University 
Hospital

COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

shared tumor antigens turned out to be effective.
Sahin et al[47] has conducted the clinical trial named Lipo-MERIT (NCT02410733), 

which is a multicenter, open-label, dose-escalation phase 1 trial to evaluate the safety 
and tolerability of vaccinated patients with stage IIIB-C and stage IV melanoma. 
According to the interim analysis as of July 29, 2019 of 89 patients who was 
intravenously administered BNT111 ranging from 7.2 μg to 400 μg, BNT111 alone or in 
combination with blockade of the CPI PD1, mediates durable objective responses in 
CPI-experienced patients with unresectable melanoma. Durable clinical responses in 
both monotherapy and combinatory therapy were accompanied by the induction of 
strong CD4+ and CD8+ T cell immunity. BNT111 vaccination was safe and well 
tolerated with no dose limiting toxicity. Most common adverse events were mild to 
moderate, transient flu-like symptoms, such as pyrexia and chills. Mostly they are 
early-onset, transient and manageable with antipyretics, and could be resolved within 
24 h.

Based on the promising results of Lipo-MERIT, BioNTech launched the randomized, 
multi-site, phase II trial (NCT04526899) designed to evaluate the efficacy, tolerability, 
and safety of BNT111 combined with cemiplimab (Libtayo®) in anti-PD1-refractory/ 
relapsed patients with unresectable Stage III or IV melanoma. The trial was scheduled 
to recruit 120 participants and estimated to start in May 2021[48]. In addition, iNeST is 
another typical platform in BioNTech and represents the pioneer in developing fully 
individualized cancer immunotherapies, which utilizes optimized mRNA encoding 
neoantigens identified on particular patients and features proprietary size- and 
charge-based RNA-LPX targeting DCs formulation[44]. There are four ongoing clinical 
trials based on its product candidate RO7198457 (BNT122), two of which has entered 
phase 2.

CONCLUSION
The pursuit of tumor vaccines has been for more than a century. In the field of 
immunotherapy, the past decade has witnessed tremendous progress in the usage of 
immune checkpoint blockades and the adoptive cell therapy, although still many 
patients fail to benefit from the immune therapies alone. Such effectiveness of novel 
immune therapies has greatly motivated people to revisit the concept of tumor 
vaccines. At present, one of the main restricting factors of tumor vaccines is the weak 
immunogenicity of the tumor antigens, which poses tumor immune tolerance or 
immune escape. Moreover, since the tumors in patients are highly heterogeneous, the 
development of tumor vaccines is undergoing a transition from universality to 
individualization, so that the treatment is more tailored to individual patient. Different 
types of vaccines have their own distinct advantages and disadvantages. Tumor cell 
vaccine contains the full spectrum of tumor antigens and it is simple to prepare. 
However, it requires a large amount of autologous tumor tissues or allogeneic tumor 
cell lines, and their immunogenicity is usually weak. DC vaccine can stimulate a wide 
range of immune responses and can be loaded with antigens in diverse ways, but DC 
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cell culture in vitro is challenging, and the vaccine preparation process may generate 
immature DCs which may induce immune tolerance. Peptide vaccine has strong 
specificity and high safety, and is not restricted by MHC haplotype and easy to 
modify, but it tends to provoke a weak immune response and is prone to tumor 
antigen modulation. With regard to the nucleic acid vaccine, it is easy to produce, 
economical and safe, and can elicit a wide range of immune responses, but it requires 
to be used in a large amount so that it can be taken up by cells in sufficient amount to 
stimulate effective immunity. It is also worth noting that storage, stability and delivery 
techniques of nucleic acid vaccine are also issues to be overcome.

The past 20 years have witnessed the application of mRNA technology in multiple 
indications and its transition from theory to vaccine products and clinical treatments. 
Before the global health pandemic COVID-19, mRNA technology had already been 
regarded as the most advanced in the area of cancer immunotherapy but its full 
potential remains latent. The efforts made to the recent fast approval of two mRNA-
based COVID-19 vaccines, mRNA-1273 (Moderna) and BNT162b2 (Pfizer/BioNTech), 
definitely promotes the mRNA vaccine development in every aspect, such as its 
modification strategy to stabilize and to control its immunogenicity, cell delivery 
strategy and transportation and maintenance strategy. Undoubtedly, this will be a 
huge push to apply mRNA technology in additional infectious disease prevention and 
in the area of cancer treatment. We envision mRNA technology is poised to be the next 
generation cancer immunotherapy in the near future.

In summary, we are experiencing an outbreak of different types of tumor vaccines, 
and we are making every effort to transform the idea of therapeutic tumor vaccines 
into a standard clinical application. Many pending questions remain to be addressed. 
However, with the advancement of new technologies and deepened understanding of 
tumor immunology, the joint efforts of scientific researchers from all over the world 
will certainly make the development of therapeutic tumor vaccines a good prospect.
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Abstract
As a surgical method for the treatment of adrenal surgical diseases, laparoscopy 
has the advantages of small trauma, short operation time, less bleeding, and fast 
postoperative recovery. It is considered as the gold standard for the treatment of 
adrenal surgical diseases. Retroperitoneal laparoscopy is widely used because it 
does not pass through the abdominal cavity, does not interfere with internal 
organs, and has little effect on gastrointestinal function. However, complex 
adrenal tumors have the characteristics of large volume, compression of adjacent 
tissues, and invasion of surrounding tissues, so they are rarely treated by 
retroperitoneal laparoscopy. In recent years, with the development of laparo-
scopic technology and the progress of surgical technology, robotic surgery has 
been gradually applied to the surgical treatment of complex adrenal tumors. This 
paper reviews the clinical application of retroperitoneal laparoscopic surgery and 
robotic surgery in the treatment of complex adrenal tumors.

Key Words: Retroperitoneal laparoscopic; Robotic surgical procedures; Complex adrenal 
tumors; Clinical application; Robotic
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Core Tip: The posterior laparoscopy does not interfere with the internal organs and has 
little effect on the function of the gastrointestinal tract, thus widely being used. 
However, complex adrenal tumors are characterized by large volume, compression of 
adjacent tissues, and invasion of surrounding tissues. Therefore, they are rarely treated 
by retroperitoneal laparoscopic surgery. Recently, with the development of laparo-
scopic techniques and advances in surgical techniques, reports about retroperitoneal 
laparoscopic adrenalectomy have gradually increased. This article reviews the clinical 
application of laparoscopy in complex adrenal tumors.
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INTRODUCTION
Adrenal tumors are one of the most common tumors in the urinary system, and 
surgery is the main method of treatment. Gagner et al[1] first reported transabdominal 
laparoscopic surgery for Cushing syndrome. With the progress of laparoscopic 
surgery technology and the improvement of equipment, laparoscopic surgery for 
adrenal diseases has been widely used by urologists. Because of the small space of the 
retroperitoneum, laparoscopic surgery for the treatment of complex adrenal tumors 
requires a highly skilled technique. There are few reports regarding retroperitoneal 
laparoscopic surgery for complex adrenal tumors. Recently, there are more and more 
reports on robot assisted laparoscopic technology. The Da Vinci surgical robot system 
provides articulated instruments, three-dimensional (3D) vision, tremor filtering, and 
stable cameras. It can make up for the defects of traditional laparoscopy.

RETROPERITONEAL LAPAROSCOPY IN ADRENAL TUMORS
In 1992, Gagner et al[1] first reported laparoscopic adrenalectomy. Compared with 
open surgery, laparoscopic adrenalectomy has the advantages of less bleeding, less 
trauma, faster recovery, and fewer intraoperative and postoperative complications, 
and soon has been promoted and applied all over the world. Retroperitoneal 
laparoscopy was first reported by Walz et al[2] in 1996. This technology became 
popular because it can directly and quickly expose the adrenal gland without going 
through the peritoneal cavity, and does not need to dissect the intraperitoneal 
structures. In the same year, Mercan et al[3] performed eight cases of adrenalectomy 
and the average operation time was about 150 min. In 2011, Shi et al[4] elaborated the 
surgical methods and skills of anatomical retroperitoneal laparoscopic adrenalectomy. 
In recent years, with the development of endoscopic technology, robot assisted 
retroperitoneal laparoscopic technology is gradually increasing. Robot surgery system 
has the advantages of clear operation field, flexible operation, and fine action and is 
gradually welcomed[5].

ANATOMIC PATHWAY AND OPERATIVE TECHNIQUE OF RETROPE-
RITONEAL LAPAROSCOPY
However, there are disputes about complex adrenal tumors. It has been found that 
retroperitoneal laparoscopic anatomical three-layer method has the advantages of less 
blood loss and shorter operation time in surgery for huge adrenal masses[6].

During the retroperitoneal laparoscopical surgery, the patient usually lies on the 
healthy side. First, the skin is cut at 1.5 cm above the iliac crest of the midaxillary line, 
the subcutaneous tissue and fat are separated by fingers, and then an artificial balloon 
is inserted into the retroperitoneum. After being filled with 500 mL of gas for about 5 
min, the balloon is withdrawn, and trocars are inserted for laparoscopy under 
monitor. After entering the retroperitoneal cavity, the location of Gerota's extrafascial 
cavity is identified, and the adipose tissue outside the Gerota's fascia and peritoneum 
is sharply separated from the inferior edge of diaphragm to the iliac fossa with an 
ultrasonic scalpel.

At the first level, the relatively avascular space between the perirenal fat sac above 
the medial side of the kidney and the anterior layer of Gerota fascia is separated to 
find the adrenal tumor and expose its anterior surface. At the second level, the 
relatively avascular space between the perirenal fat sac and the posterior layer of 
Gerota fascia can be separated to expose the lateral and dorsal side of adrenal tumor. 
At the third level, the adipose tissue at the bottom of adrenal gland and the surface 
tissue of renal parenchyma are separated, and the bottom of tumor is exposed by 
separation of tissue[4].

https://www.wjgnet.com/2644-3228/full/v2/i3/42.htm
https://dx.doi.org/10.35713/aic.v2.i3.42
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The right central adrenal vein starts from the apex of the adrenal gland and flows 
into the back of the inferior vena cava, and attention should be paid to the protection 
of the inferior vena cava when handling the right vein. The left central adrenal vein 
starts from the bottom of the left adrenal gland and flows into the left renal vein, and 
attention should be paid to the protection of the left renal vein[7]. The central adrenal 
vein and other blood vessels are isolated and ligated with hemo-lock.

DEFINITION AND CLINICAL TREATMENT OF COMPLEX ADRENAL 
TUMORS
Due to the deep location, complex adrenal tumors are closely related to large blood 
vessels, the tumor diameter is large, and the pathology is diverse. In recent years, 
some literature calls adrenal tumors with the following characteristics as complex 
adrenal tumors: (1) Large adrenal tumors (> 6.0 cm); (2) Adrenal pheochromocytoma; 
(3) Adrenal tumors with compression or invasion of peripheral blood vessels; (4) 
Obesity combined with suprarenal gland tumors (body mass index [BMI] ≥ 25 kg/m2); 
(5) The tumors that need to preserve adrenal tissue during operation; (6) Adrenal 
malignant tumors; and (7) Having a history of retroperitoneal surgery[8,9].

The growth of the tumor is accompanied by the increase of the degree of 
malignancy, as well as the internal bleeding and necrosis of the tumor, resulting in the 
adhesion of the tumor and the surrounding organs, tissues, and blood vessels, which 
increases the difficulty of operation[10]. Gong et al[11] found that all operations were 
not converted to open surgery by using retroperitoneal laparoscopic technique to 
remove adrenal tumors larger than 8 cm. At the same time, they temporarily blocked 
the renal artery to reduce tumor bleeding. After 7-30 mo of follow-up, there was no 
tumor metastasis and recurrence, which proved that temporary blocking of the renal 
artery was a feasible and safe method in the treatment of huge adrenal tumors[11].

The pathology of pheochromocytoma can be divided into benign and malignant. 
Most of them are benign. Benign tumors are round or oval with a smooth surface. 
Pheochromocytoma can secrete catecholamines, causing hypertension, headache, 
sweating, palpitation, and other symptoms. Patients usually have persistent or 
paroxysmal hypertension before treatment. Therefore, perioperative management is an 
important part of laparoscopic resection of pheochromocytoma[12]. Recently, with the 
development of laparoscopic technology, the reports of retroperitoneal laparoscopic 
resection of benign and malignant pheochromocytoma gradually have increased. 
Costa et al performed retroperitoneal laparoscopic surgery on ten cases of adrenal 
tumors, including two cases of pheochromocytoma and one huge cystic pheochromo-
cytoma (diameter: 14 cm). There were no complications during and after the operation, 
and the tumor did not recur during the follow-up[13].

Giant pheochromocytoma (> 6 cm) usually has a high degree of malignancy and 
easy to cause changes in the circulatory system of patients during the operation, 
resulting in blood pressure fluctuations. Similarly, the advantage of retroperito-
neoscopy for giant pheochromocytoma is better than that of laparoscopy[14,15]. 
Shiraishi et al[14] found that in patients with huge pheochromocytoma, compared with 
laparoscopy, retroperitoneoscopy has obvious advantages in operation time and 
intraoperative bleeding. No recurrence or metastasis was found in postoperative 
follow-up. Laparoscopic surgery may be a safe and feasible method for pheochromo-
cytoma treatment, preoperative preparation, intraoperative blood pressure, and 
postoperative active care.

Because of the hypertrophy of abdominal muscle and fat around the adrenal gland 
in obese patients, laparoscopic surgery was often contraindicated in the past. In recent 
years, studies have reported that single obesity is no longer a taboo for laparoscopic 
surgery[16,17]. When comparing the patients with a BMI > 40 kg/m2, bilateral adrenal 
tumors, and abdominal surgery history who underwent laparoscopy and retroperito-
neoscopy in the early stage, Arezzo et al[18] found that there was no significant 
difference in operation time, blood loss, or ambulation time between the two methods, 
and the eating time and recovery period after retroperitoneoscopy were significantly 
shortened. When comparing 41 obese patients with adrenal tumor (BMI ≥ 30 kg/m2) 
and 96 non-obese patients (BMI < 30 kg/m2) who underwent retroperitoneal laparo-
scopic surgery, it was found that the operation time for obese patients was 
significantly prolonged, and other parameters had no significant difference. The 
results showed that retroperitoneal laparoscopic surgery could be performed in obese 
patients with short recovery time and less bleeding[19]. Dickson et al[20] performed 
retroperitoneal laparoscopic adrenalectomy on 118 patients, 48% of whom had a BMI ≥ 
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30 kg/m2, and the patients recovered well without obvious intraoperative and 
postoperative complications. The above studies show that retroperitoneal laparoscopy 
is a safe and effective treatment for obese patients with adrenal tumors, which can be 
carried out in patients according to the clinical experience of surgeons.

Adrenal malignant tumors include adrenal cortical carcinoma, malignant 
pheochromocytoma, adrenal metastatic carcinoma, and adrenal lymphoma[21]. Most 
adrenocortical carcinomas are larger than 5 cm in diameter, with hemorrhage and 
necrosis. At the same time, with the tumor volume increasing, tumor cells are easy to 
invade the surrounding tissues, blood vessels, and nerves, increasing the difficulty of 
surgery. In the past, open surgery was recommended for adrenocortical carcinoma, 
with wide field of vision and complete exposure of tumor tissue, which was 
convenient for complete resection of the whole tumor tissue. With the development of 
laparoscopic technology, laparoscopic technology has been applied to adrenal cortical 
carcinoma. Ma et al[22] performed anatomical retroperitoneal laparoscopic surgery on 
75 patients with adrenal metastasis. The pathological results showed that clear cell 
carcinoma and small cell lung cancer were the majority, and the local recurrence rate 
was 5.3%. Studies have found that BMI, tumor type, and positive margin are 
independent prognostic factors. Retroperitoneal laparoscopic technique is a safe and 
effective treatment for adrenal metastases[22].

Adrenal lesions are diverse, including adrenal adenoma, adrenal neuroblastoma, 
schwannoma, cyst, and other malignant lesions. Most adrenal lesions can be removed 
by laparoscopic technique[23]. Adrenal lymphangioma is another kind of benign 
adrenal tumor. Gao et al[24] found that no intraoperative or postoperative complic-
ations occurred in all patients through retroperitoneal laparoscopic technique for 
adrenal lymphangioma, and no tumor recurrence occurred during follow-up. 
Retroperitoneal ectopic pheochromocytoma is an-extra adrenal pheochromocytoma 
below the diaphragm and above the iliac fossa. It has abundant blood supply and is 
closely related to the peripheral blood vessels. Cai et al[25] performed retroperitoneal 
laparoscopic resection on four cases of retroperitoneal ectopic pheochromocytoma, of 
which one case was converted to laparotomy. All patients were operated successfully, 
without obvious intraoperative and postoperative complications, and the postope-
rative symptoms were significantly improved[25].

RECENT PROGRESS IN SURGICAL TREATMENT OF COMPLEX 
ADRENAL TUMORS
Recently, there are more and more reports on robot assisted laparoscopic technology. 
The disadvantages of traditional laparoscopic technology are the limited range of 
operation, the limited depth perception of 2D video image, and the unstable control of 
laparoscopic lens. The Da Vinci surgical robot system provides articulated 
instruments, 3D vision, tremor filtering, and stable cameras. It can make up for the 
defects of traditional laparoscopy. Surgeons can carry out operations under 
comfortable conditions[26,27]. In a recent meta-analysis, 1162 patients underwent 
adrenalectomy (747 patients received robotic adrenalectomy and 415 patients received 
conventional laparoscopic adrenalectomy). The study found that there were no 
significant differences in intraoperative and postoperative blood loss or mortality 
between the two groups. However, the hospital stay associated with robotic surgery 
was significantly shortened, and the operation time was significantly prolonged. The 
results showed that robotic surgery was a safe operation[28]. In another meta-analysis, 
232 cases and 297 controls were included, including six prospective studies and two 
retrospective studies. The analysis showed that there was no difference in intraop-
erative and postoperative complications or mortality between the two groups, while 
the blood loss was significantly less and hospital stay was significantly shorter in the 
robot group[29]. Research shows that robotic laparoscopic surgery may be a safe and 
feasible surgical method for adrenal tumors, but further research is needed to prove it.

Robotic adrenalectomy can be divided into transperitoneal and retroperitoneal 
approaches. The preoperative preparation, patient position, and instrument channel 
placement of transperitoneal approach are similar to those of laparoscopic surgery. 
Transperitoneal approach has larger operation space and obvious anatomical 
landmarks. Lateral position can push the abdominal viscera to the opposite side, so as 
to better expose the surgical area. In the supine position, both adrenal glands can be 
easily found. In the published studies[30,31], most of the patients were in lateral 
position through the abdominal approach, and the patients were inclined 30-60 
degrees. The procedure of transperitoneal approach is similar to that of open surgery. 
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Table 1 Important papers cited in this manuscript

No. Ref. Title Journal

1 Gagner et al[1], 
1992

Laparoscopic adrenalectomy in Cushing’s syndrome and pheochromocytoma N Engl J Med

2 Walz et al[1], 
1996

Posterior retroperitoneoscopy as a new minimally invasive approach for adrenalectomy: Results of 30 
adrenalectomies in 27 patients

World J Surg

3 Simone et al[5], 
2019

Robot-assisted partial adrenalectomy for the treatment of Conn’s syndrome: Surgical technique, and 
perioperative and functional outcomes

Eur Urol

4 Jiang et al[12], 
2020

Comparison of the retroperitoneal versus transperitoneal laparoscopic adrenalectomy perioperative 
outcomes and safety for pheochromocytoma: A meta-analysis

BMC Surg

5 Shiraishi et al
[14], 2019

Transperitoneal versus retroperitoneal laparoscopic adrenalectomy for large pheochromocytoma: 
Comparative outcomes

Int J Urol Off J 
Japanese Urol Assoc

6 Bai et al[15], 
2019

Comparison of transperitoneal laparoscopic versus open adrenalectomy for large pheochromocytoma: A 
retrospective propensity score-matched cohort study

Int J Surg

7 Dickson et al
[20], 2011

Posterior retroperitoneoscopic adrenalectomy: A contemporary American experience J Am Coll Surg

8 Abraham et al
[23], 2014

Laparoscopic extirpation of giant adrenal ganglioneuroma J Minim Access Surg

9 Ji et al[26], 2020 Retrospective comparison of three minimally invasive approaches for adrenal tumors: perioperative 
outcomes of transperitoneal laparoscopic, retroperitoneal laparoscopic and robot-assisted laparoscopic 
adrenalectomy

BMC Urol

10 Conzo et al
[28], 2016

Minimally invasive approach for adrenal lesions: Systematic review of laparoscopic  versus 
retroperitoneoscopic adrenalectomy and assessment of risk factors for complications

Int J Surg

The operation does not enter the abdominal cavity, so many intra-abdominal complic-
ations are avoided, such as pleural injury, abdominal visceral organ injury, 
postoperative adhesion, and so on. Therefore, this approach is more suitable for 
patients with a history of abdominal surgery. But the disadvantage is that the 
operation space is limited, which increases the difficulty of operation. Kim et al[32] 
found that retroperitoneal robotic adrenalectomy has a shorter learning curve, and for 
huge adrenal tumors, retroperitoneal robotic adrenalectomy has shorter operation 
time and less postoperative pain than laparoscopic surgery.

Single port laparoscopic surgery (LESS) is a minimally invasive surgery that is being 
explored and optimized, that is, the lens and operating instruments are put into the 
abdominal cavity at the same time through an incision. The utility model has the 
advantages of small skin trauma, good aesthetic effect, less pain, and less incision 
complications. The disadvantage is that the cross use of single hole instruments 
increases the difficulty of the operation[33]. Including a total of 704 cases, a meta-
analysis comparing laparoscopic single point adrenalectomy (LESSA) with conven-
tional laparoscopic adrenalectomy. It was found that there were no significant 
differences in operation time, blood loss, eating time, analgesic dose, perioperative 
complications, or analgesic drugs between the two techniques, and LESS had a shorter 
hospital stay and lower postoperative pain score[34]. In another cohort study, 51 obese 
patients underwent LESS for retroperitoneal laparoscopic adrenalectomy, and the 
surgical results were compared with those of 65 obese patients who received standard 
retroperitoneal adrenalectomy by the same surgeon. The study found that there was 
no significant difference in hospital stay or surgical complications between the two 
groups, and there was also no significant difference in incision recovery time, 
postoperative pain requirements, or operation time. However, there were obvious 
advantages in satisfaction with incision appearance[35]. The results show that single 
port laparoscopic surgery is a feasible and safe method among experienced surgeons.

CONCLUSION
Laparoscopic adrenalectomy is the gold standard for the treatment of adrenal surgical 
diseases. At present, there is no unified standard for the surgical treatment of complex 
adrenal tumors. More and more studies have reported that retroperitoneal laparo-
scopic adrenalectomy for complex adrenal tumors has good postoperative recovery, 
exact surgical effect, and increasing application (Table 1). Robot assisted laparoscopy is 
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a minimally invasive technology developed in recent years. The combination of 
laparoscopy and robot not only has the advantages of minimally invasive laparoscopy, 
but also has the characteristics of flexible robot, which has a huge advantage in the 
treatment of adrenal tumors. However, there are few reports on the treatment of 
complex adrenal tumors by robot. Further research is needed to determine the role and 
efficacy of robot in complex adrenal tumor resection. With the progress of science and 
technology and the continuous improvement of surgeons' technical level, the surgical 
treatment of complex adrenal tumors will have more obvious advantages and curative 
effect in the future.
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Abstract
How is artificial intelligence (AI) applied in solid tumor imaging? What is the 
essential value of AI for tumor precision diagnosis and can it wholly replace the 
human beings? Some opinions in this letter should be considered.
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Core Tip: Artificial intelligence has been widely applied in tumor diagnosis due to its 
precise recognition and big-data handling properties, which can relieve the clinicians 
from the diagnostic workloads. However, this model, to some extent, is rigid, and 
cannot completely replace the human beings eventually. How to promote and optimize 
it with real intelligence has a long way to go.
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TO THE EDITOR
We have read the review article by Shao et al[1], who described that artificial 
intelligence (AI) has greatly relieved clinical workloads and changed the current 
medical workflows, and summarized its application outlines and priorities compared 
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area. This aim is proper, but the authors have not done it well.
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This topic is of great interest, and needs to be further investigated for a long period 
of time in the future. However, the authors have not outlined and described it in a 
rational way. The obvious shortcomings of this review are described as follows:

Given that the authors aimed to discuss the application of AI in solid tumor 
imaging, they should have depicted all types of solid tumors as systematically as 
possible, in that the solid tumors present diverse characteristics in terms of their 
physical and chemical nature, which are the bases that AI works on. However, the 
authors have failed to provide readers with enough systematical information, and 
with a holistic vision of AI working on solid tumors.

A review article should not only describe the phenomena alone, but it should also 
discuss the potential mechanism. The common mechanisms of AI seem to be well-
known, but there is a lack of description for interactive episode in this review.

Concise and precise graphs will inevitably improve the quality of the article, but the 
authors have not made use of these.

AI, sometimes, can resolve the difficulties that other advanced technologies or 
human beings could not do. Thus, in this review, the authors should have made great 
efforts to describe how AI processes images. Whether AI can recognize the diversity of 
the graphic grayscale, special molecules, or even some metal ions, and how it works? 
How does AI distinguish the tumor from the surrounding tissues? All of these 
principles and advancements should be clarified as detailed as possible.

Additionally, although the authors wanted to describe and summarize the advances 
and advantages of AI, they failed to provide more information systematically, but only 
listed amounts of dispersive works, without any graphs highlighting the AI character-
istics.
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Abstract
Acute kidney injury (AKI) has serious consequences on the prognosis of patients 
undergoing liver transplantation (LT) for liver cancer and cirrhosis. Artificial 
neural network (ANN) has recently been proposed as a useful tool in many fields 
in the setting of solid organ transplantation and surgical oncology, where patient 
prognosis depends on a multidimensional and nonlinear relationship between 
variables pertaining to the surgical procedure, the donor (graft characteristics), 
and the recipient comorbidities. In the specific case of LT, ANN models have been 
developed mainly to predict survival in patients with cirrhosis, to assess the best 
donor-to-recipient match during allocation processes, and to foresee postoperative 
complications and outcomes. This is a specific opinion review on the role of ANN 
in the prediction of AKI after LT for liver cancer and cirrhosis, highlighting 
potential strengths of the method to forecast this serious postoperative 
complication.

Key Words: Liver transplantation; Acute kidney injury; Artificial neural network; 
Prediction; Hepatocellular carcinoma; Postoperative
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Core Tip: This opinion review aims to explore the potential benefits of artificial neural 
network models in predicting the occurrence of acute kidney injury in the postoperative 
period of liver transplantation for cirrhosis and hepatocellular carcinoma.
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INTRODUCTION
Liver transplantation (LT) is the best treatment option for patients with early stages of 
hepatocellular carcinoma (HCC) and cirrhosis[1-4]. Mainly, the use of LT depends on 
maintaining a balance between patient-specific survival benefit, the availability of 
alternative treatment modalities[5,6], and the equitable distribution of donor organs[5,
7-12]. Current selection criteria aim to avoid transplant futility by excluding patients at 
a high risk of tumor recurrence[10,11]. Selecting patients with HCC within Milan 
criteria has been shown to provide excellent patient outcomes[13-15].

Among the possible complications related to LT for cirrhosis and HCC, acute 
kidney injury (AKI) is a common complication, with extremely variable reported 
incidence rates (4% to 94%)[16-22], and is associated with several immediate complic-
ations, including volume overload, metabolic acidosis and electrolyte disturbances. 
Although most patients eventually recover after an episode of AKI, many patients may 
not return to baseline renal function, and the occurrence of AKI has been shown to be 
an independent risk factor for the development of chronic kidney disease and death, 
as well as for the reduction of survival rates of liver receptors[23]. In addition, 
transplant patients who require temporary renal replacement therapy (RRT) have a 
prolonged hospital stay, with subsequent need for more resources and higher costs 
related to LT[24].

Artificial neural network (ANN) is commonly used to solve complex problems, 
where the behavior of variables is not rigorously known. One of its main character-
istics is the ability to learn through examples and generalize the information learned, 
generating a non-linear model, making its application in spatial analysis very efficient
[25]. ANN can be an alternative with high performance to the logistic regression (LR) 
model, where the relative risk term is parameterized by an ANN instead of regression, 
enabling the application of deep learning. ANN models have been developed mainly 
to predict survival in patients with cirrhosis, to assess the best donor-to-recipient 
match during allocation processes, and to foresee postoperative complications and 
outcomes[26-32], but studies evaluating such a promising tool, as ANN, for predicting 
AKI following LT for cirrhosis and HCC, are scarce.

The multifactorial origin of AKI after LT makes it complex to predict which 
candidate for the procedure has an increased risk of this complication[33,34]. In the 
face of this complexity, ANN would be a very reliable prognostic tool for AKI risk 
assessment, enabling, therefore, early or even prophylactic therapies for AKI, 
improving patients outcomes[35]. This is a specific opinion review on the role of ANN 
in the prediction of AKI after LT for liver cancer and cirrhosis, highlighting potential 
strengths of the method to forecast this serious postoperative complication.

OVERVIEW OF RISK FACTORS FOR AKI AFTER LT
The etiology of AKI after LT is multifactorial and not fully understood, with several 
risk factors related to the organ receptor[20,22,24,35], graft-related characteristics[36], 
and finally some perioperative have been identified over the past few years[20,33,34]. 
Similarly, the use of postoperative nephrotoxic immunosuppression can further 
provoke or aggravate kidney damage[20].

Based on these risk factors, various models have been developed using LR for 
predicting AKI after LT. However, because several of these models address 
postoperative parameters, their utility in predictive modeling appears to be of 
questionable relevance. Regardless of the variability of the triggering factors, it is of 
fundamental importance to identify patients at risk ideally by the set of preoperative 
clinical assessment and complementary information of the intraoperative period, thus 
enabling the adoption of preventive measures or early therapies for AKI, such as 
reduced doses and postponing postoperative patients immunosuppression, and also 
early RRT, thus reducing mortality and accelerated recovery of renal function[20].
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Among the potential AKI predictors that can be evaluated at the time of transplant 
indication, the severity of the recipient’s liver disease stands out[20-37], expressed by 
the Model for End-Stage Liver Disease (MELD) score. The MELD score determines the 
allocation of the organ prioritizing the "sickest first" patient, with high values of the 
score conferring a greater risk for the occurrence of ARF after TH, thus reflecting an 
interrelationship between liver and renal functions in cirrhotic patients[38]. Similarly, 
another predictors related to the recipient have been identified, such as high levels of 
pre-transplant serum creatinine, high body mass index (BMI) of the recipient (BMI 
values above 30 kg/m2), and the presence of pre-existing diabetes mellitus[33,35,37].

In addition to the clinical characteristics of the recipient, there are predictive factors 
of AKI that are related to the functional quality of the graft. The first situation refers to 
the modality of TH performed, as living-donor LT, in general, offers a graft that is 
functionally superior to deceased-donor LT, where the critical clinical conditions of the 
donor confer a greater potential risk to the occurrence of postoperative AKI[20]. 
Moreover, "marginal grafts" from "extended criteria donors" have increasingly been 
used, including steatotic grafts, grafts from clinically critical donors, grafts with high 
ischemia time, both “warm ischemia time” and “cold ischemia time”[20,37,39].

There are some intraoperative events that can be crucial for the occurrence of AKI. 
The main factor concerns the occurrence of intraoperative arterial hypotension (IOAH) 
with consequent renal hypoperfusion during LT[22]. Patients undergoing LT often 
experience IOAH as a result of several factors, including the duration of surgery, the 
severity of bleeding, the severity of post-reperfusion syndrome of the graft, and the 
severity of liver disease[33,35,39]. On some occasions, this renal hypoperfusion occurs 
in patients with previous renal dysfunction[34], and can often be aggravated by the 
deleterious renal effects of blood transfusion[22,34,37] and the use of vasoactive drugs 
in the intraoperative period[40].

BASICS OF ANN
An ANN lies under the umbrella of reinforcement machine learning, and comprises 
‘units’ arranged in a series of layers, each of which connects to layers on either side. 
ANNs are inspired by biological systems, such as the brain, and how they process 
information. The original concept of ANNs is derived from neurobiological models. 
ANNs are massively parallel, computer-intensive and data-driven algorithmic system 
that is composed of multitude of highly interconnected nodes (neurons). Each 
elementary node of a neural network is able to receive an input from external sources, 
according to the relative importance and different weight, which transforms into an 
output signal to other nodes by different activation function[25].

In terms of topology, to implement an ANN, different variables must be defined, 
among which: (1) the number of nodes in the input layer (such variable corresponds to 
the number of variables that will be used to feed the neural network, being normally 
the variables of greater importance for the problem under study); (2) the number of 
hidden layers and the number of neurons to be placed in these layers; and (3) the 
number of neurons in the output layer[41].

The process of learning of an ANN is a process where free parameters are adapted 
through a process of stimulation by the environment in which the network is inserted. 
With this, the type of learning is determined based on the way in which the 
modification of the parameters takes place. In summary, there is the following 
sequence of events: (1) the neural network is stimulated by an environment; (2) the 
neural network undergoes modifications in its free parameters as a result of this 
stimulation; and (3) the neural network responds in a new way to the environment, 
due to changes in its internal structure[25].

Considering the interactions of linked nodes, an output obtained from one node can 
serve as an input for other nodes, and the conversion of inputs into outputs is 
activated by virtue of certain transforming function that is typically monotone. The 
specified working function depends on parameters determined for the training set of 
inputs and outputs. The network architecture is the organization of nodes and the 
types of connections permitted. The nodes are arranged in a series of layers with 
connections between nodes in different layers, but not between nodes in the same 
layer[42].

ANNs can be classified into feedforward and feedback networks categories, and 
back-propagation updating algorithm with adjustment of connection weights between 
the neurons during the training process, is a widely used feedforward networks. 
Feedforward networks is included within the supervised learning network, essentially 
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using a gradient descent-training algorithm[43,44].

Multilayer perceptron
The perceptron, introduced by Rosenblatt in 1958, is a simple form of RNA whose 
main application is in pattern classification problems. The single-layer perceptron is 
only capable of classifying linearly separable patterns. In practice, the problem to be 
worked on does not admit an exact linear separation, making it necessary to use a 
multilayer perceptron. Multilayer perceptron (MLP)-type architectures are the most 
used and known artificial neural models. An MLP network is subdivided into layers: 
input layer, intermediate or hidden layer(s) and output layer. In the multilayer ANN 
architecture, inputs are extended from the input layer to the output layer, passing 
through one or more hidden layers. In this same sense, a multilayer neural network is 
typically composed of aligned layers of neurons. The input layer distributes the input 
information to the hidden layer(s) of the network. At the output layer, the solution to 
the problem is obtained. Hidden layers are intermediate layers, whose function is to 
separate the input and output layers. Neurons in one layer are connected only to 
neurons in the immediately posterior layer, with no feedback or connections between 
neurons in the same layer. Also, characteristically, the layers are fully connected[45].

In Figure 1 it is possible to observe an MLP-type architecture with two intermediate 
layers. The presented network has all connections, which means that a neuron in any 
layer of the network is connected to all other neurons in the previous layer. Signals 
flow through the network positively, from left to right, layer by layer.

The learning process of MLP networks by back-propagation consists of two steps: 
propagation and back-propagation. In the propagation step, an activation pattern is 
applied to the nodes of the network’s input layer and its effect propagates through the 
network, layer by layer. In the last layer, a set of outputs is produced, configured as 
the real network response. In the and back-propagation step, all synaptic weights are 
adjusted according to an error correction rule. The error signal is propagated 
backwards through the network, against the direction of the synaptic connections, the 
synaptic weights being adjusted to make the actual response of the network approach 
the desired response, in a statistical sense[25]. An important characteristic of MLP 
networks is the non-linearity of neuron outputs. This nonlinearity is obtained using a 
sigmoid-type function as an activation function, usually the logistic function[25].

ANNS FOR AKI PREDICTON AFTER LT FOR CIRRHOSIS AND HCC
Over the past two decades, machine learning algorithms have been increasingly 
applied for cancer diagnosis, prognostication, and treatment outcome prediction[46-
49]. For example, recently, an MLA approach based on a random forest workflow has 
been developed by a group in Germany to predict disease-free survival after liver 
resection for HCC[50].

Studies regarding ANNs in the field of LT for cirrhosis and HCC, researchers[26-31] 
have already conducted studies with LR models and ANN for the prediction of 
survival of these patients (Table 1). In 1992, Doyle et al[26] introduced a 10 feed 
forward back-propagation ANN model to predict LT survival. Marsh et al[27] 
presented a three layer feed forward fully connected ANN model to predict the 
survival analysis and time to recurrence of HCC after LT. Parmanto et al[28] conducted 
a study with time series sequence of medical data of patients that undergone LT with 
ANNs using back-propagation through time algorithm, and their results were 
compared with 6-fold cross validation. Cucchetti et al[29] proposed an ANN survival 
prognosis model for patients with cirrhosis at a LT unit, and proved that ANN is 
better than MELD for this proposal. Zhang et al[30] proposed a MLP model of patients 
with cirrhosis and compared the performance of the model with MELD and Sequential 
Organ Failure Assessment score. In 2013, Cruz et al[31] conducted a study with radial 
basis function ANNs using multi-objective evolutionary algorithm in order to match 
the donor-recipient pairs.

The results of the researchers above demonstrate that the ANNs predictive models 
can be capable of using live data of cirrhotic patients with or without HCC, and 
perform both diagnostic and predictive tasks[32]. Because of the simplicity in 
structure, ability to do parallel processing tasks, having long term memory, having 
fault tolerant ability and getting collective output, ANN models can do better than LR 
models[51].

In the specific scenario of AKI after LT for cirrhosis and HCC, in 2018, Lee et al[52] 
compared the performance of machine learning approaches with that of LR analysis to 
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Table 1 Studies with artificial neural networks and logistic regression models for the prediction of survival of patients in the field of 
cirrhosis and liver transplantation

Ref. Year Model and endpoint

Doyle et al
[26]

1992 10 feed forward back-propagation  ANN model to predict LT survival

Marsh et al
[27]

1997 ANN for  survival analysis and time to recurrence of HCC after LT

Parmanto et 
al[28]

2001 Back-propagation through time ANN algorithm to predict outcomes after LT

Cucchetti et al
[29] 

2007 ANN for survival prognosis of patients with cirrhosis 

Zhang et al
[30]

2012 MLP model for predicting outcomes of patients with cirrhosis and compared the performance with MELD and SOFA scores

Cruz et al[31] 2013 Radial basis function ANNs using multi-objective evolutionary algorithm to match the donor-recipient pairs

Lee et al[52] 2018 Compared the performance of ML approaches (decision tree, random forest, gradient boosting machine, support vector machine, 
naïve Bayes, MLP, and deep belief networks) with that of LR analysis to predict AKI after LT for cirrhosis and HCC (49%)

He et al[53] 2021 LR analysis as a conventional model, and random forest, support vector machine, classical decision tree, and conditional inference 
tree algorithms to predict AKI after LT for cirrhosis and HCC (40.7%)

ANN: Artificial neural network; LR: Logistic regression; LT: Liver transplantation; HCC: Hepatocellular carcinoma; MLP: Multilayer perceptron; MELD: 
Model for end-stage liver disease; SOFA: Sequential Organ Failure Assessment; AKI: Acute kidney injury.

Figure 1 Multilayer perceptron-type architecture with two intermediate layers.

predict AKI after LT for cirrhosis and up to 49% of total patients with HCC. This huge 
analysis of 1211 patients adopted preoperative and intraoperative input variables. The 
primary outcome was postoperative AKI defined by Acute Kidney Injury Network 
criteria. The following machine learning techniques were used: decision tree, random 
forest, gradient boosting machine, support vector machine, naïve Bayes, MLP, and 
deep belief networks. These techniques were compared with LR analysis regarding the 
area under the receiver operating characteristic (AUROC). AKI incidence was 30.1%. 
The performance in terms of AUROC was best in gradient boosting machine among all 
analyses to predict AKI of all stages (0.90, 95%CI: 0.86–0.93), and decision tree and 
random forest techniques showed moderate performance (AUROC 0.86 and 0.85, 
respectively). The AUROC of the MLP was 0.64 (0.59–0.69), vector machine was 0.62 
(0.57–0.67), naïve Bayes was 0.60 (0.54–0.65), and deep belief network was 0.59 
(0.53–0.64). The AUROC of LR analysis was 0.61 (95%CI: 0.56–0.66), concluding that 
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MLP model showed best performance than LR analysis, with a slight higher, but 
significant, AUROC.

He et al[53] evaluated a total of 493 patients (40.7% of patients with HCC) with 
donation after cardiac death LT. In this study, AKI was defined according to the 
clinical practice guidelines of Kidney Disease Improving Global Outcomes, and the 
clinical data of patients with AKI and without AKI were compared through LR 
analysis as a conventional model, and four predictive machine learning models were 
developed using random forest, support vector machine, classical decision tree, and 
conditional inference tree algorithms. The predictive power of these models was then 
evaluated using the AUROC. The reported incidence of AKI was 35.7% (176/493) 
during the follow-up period. Compared with the non-AKI group, the AKI group 
showed a remarkably lower survival rate (P < 0.001). The random forest model 
demonstrated the highest prediction accuracy of 0.79 with AUROC of 0.850 (95%CI: 
0.794–0.905), which was significantly higher than the AUCs of the other machine 
learning algorithms and LR models (P < 0.001).

As the standard ANN workflow involves model performance monitoring and re-
training to account for model drift, a multidisciplinary partnership between clinicians 
and data scientists is required, with a commitment to the curation and iterative 
maintenance of datasets to allow for the development of meaningful decision-support 
tools[54]. This process should involve, first and foremost, a robust, consistent, and 
objective means of collecting data. The data in the case of postoperative AKI, are 
mainly laboratorial and clinicopathologic characteristics from electronic medical 
records, and clinicians and surgeons must to establish interdisciplinary partnerships 
that strive towards a common goal and synergism. For instance, clinicians and 
surgeons help provide a clinically relevant outcome, and data scientists can identify 
the optimal methodology to make predictions for the outcome based on the available 
data.

CONCLUSION
The reported high incidence of AKI after LT for cirrhosis and HCC in numerous 
studies highlights the importance of this issue. The prediction of this complication may 
provide a focus for further research, mainly in the development of ANNs predictive 
models that may be applied immediately after LT.

ANNs are essentially a large number of interconnected processing elements, 
working in unison to solve specific problems, and its use for this specific purpose is 
directly related to the efficiency with which it provides responses close to real output 
data. ANN methods may provide feasible tools for forecasting AKI after LT in this 
population, and perhaps provide a high-performance predictive model that may 
ultimately improve perioperative management of these patients at risk for this serious 
complication.
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INTRODUCTION
The flourishing proliferation of artificial intelligence (AI) worldwide over the last 
decade has disrupted the way oncologists face cancer. More and more every day, the 
contribution of AI-based models to different axes of cancer research is not only 
improving their ability to stratify patients early on or discover new drugs but also 
influences its fundamentals. By integrating novel structures of data organisation, 
exploitation, and sharing of clinical data among health institutions, AI is achieving in 
the short-term to successfully accelerate cancer research. Medical practitioners are 
becoming familiar with some few mathematical concepts, such as machine learning 
(ML) or (un/semi) supervised learning. The former is a collection of data-driven 
techniques with the goal of building predictive models from high-dimensional 
datasets[1,2], while the latter refers to the grade of human intervention that these 
models require to make predictions.

These methods are being successfully used in cancer at many levels by simply 
analysing clinical data, biological indicators, or whole slide images[3-5]. Their 
application has revealed themselves as an effective way to tackle multiple clinical 
questions, from diagnosis to prediction of treatment outcomes. For instance, in Morilla 
et al[3], a minimal signature composed of seven miRNAs and two biological indicators 
was identified using general linear models trained at the base of a deep learning model 
to predict treatment outcomes in gastrointestinal cancer. In Schmauch et al[4], 2020, the 
authors predicted the RNA-Seq expression of tumours from whole slide images using 
a deep learning model as well.

Indeed, in this particular discipline, ML algorithms have evolved faster. Several 
approaches have succeeded in the classification of cancer subtypes using medical 
imaging[6-8]. Mammography and digital breast tomosynthesis have enabled a robust 
breast cancer detection by means of annotation-efficient deep learning approaches[9]. 
Epigenetic patterns of chromatin opening across the stem and differentiated cells 
across the immune system have also been predicted by deep neural networks in 
ATAC-seq analysis. In Maslova et al[10], solely from the DNA sequence of regulatory 
regions, the authors discovered ab initio binding motifs for known and unknown 
master regulators, along with their combinatorial operation.

Another domain where the application of AI-based models has largely been used is 
single-cell RNA sequencing (sc-RNAseq) analysis. In Lotfollahi et al[11] (2020), a new 
method based on transfer learning (TL) and parameter optimisation is introduced to 
enable efficient, decentralised, iterative reference building, and the contextualization of 
new datasets with existing single-cell references without sharing raw data. In addition, 
few methods have emerged around genetic perturbations of outcomes at the single-
cell level in cancer treatments[12,13].

Finally, some computational topology techniques grouped under the heading of 
“topological data analysis” (TDA) have also been successfully proven as efficient tools 
in some cancer subtype classifications[14].

Thus, AI has turned the oncologists and co-workers’ lives around providing them 
with a new perspective, which was once developed by only a bulk of specialists and is 
rapidly becoming a reference in the domain. This work revisits, then, most of those 
techniques and provides a quick overview of their applications in cancer research.

AI OR ML
ML or AI models, sometimes a philosophical matter, is a branch of mathematics 
concerned by numerically mimicking the human brain reasoning as it resolves a given 
problem. There are many examples of this practice; from those most classic techniques 
of regression or classification of dataset[15] to the current ground-breaking algorithms 
as “Deep-Mind, Alpha Fold” for protein-folding prediction[16]. In any case, all of these 
methods share a common objective: the ML problem. This problem can be mathemat-
ically expressed as: $$\hat{C}=\underset{C\in\mathcal{M}}{argmin}\math-
bb{E}_{x,y\in\mathcal{X}\times\mathcal{Y}} [\mathcal{B}_{l} (C(x),y)]$$.

For example, if we select the particular loss function binary cross entropy, –Bl–, this 
equation describes the parameter misapplication of the neural network C by 
diminishing the expected value of the loss function between the output of this network 
C(x) and the true label y.
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INTERPRETABLE AI MODELS
Frequently, the intricate design of models based on any ML technique (i.e., neural 
networks) makes them more difficult to interpret than simpler traditional models. 
Hence, if we want to fully exploit the potential of these models, a deeper 
understanding of their predictions would be advisable in practice. Thus, the predicted 
efficacy of a personal therapy on a cancer must be well explained, since its decisions 
directly influence human health. From a methodological point of view, we need to 
ensure model development with proper interpretations of their partial outputs in 
order to prevent undesirable effects of the models[17,18]. The two main streams of this 
discipline are the so-called “feature attribution” and “feature interaction” methods. 
The former[19-22] individually rewards input features depending on its local causal 
effect in the model output, whereas the latter examines those features with large 
second-order derivatives at the input or weight matrices of feed-forward and convolu-
tional architectures[23,24]. However, the robustness of all these approaches may be 
compromised by the presence of specific types of architecture.

DEEP LEARNING
One class of ML models broadly used in current computational cancer research is deep 
neural networks. Overall, they have succeeded over other non-linear models[25] in the 
analysis of pathologic image recognition and later patient stratification based on the 
learned models[26,27]. In brief, deep neural models work in a large number of layers 
of information that is progressively passing by from one layer to another (i.e., the 
backpropagation algorithms) to extract relevant features from the original data 
according to a non-linear model, which is associated with the selected optimisation 
problem. Their designs can encompass a wide range of algorithms from the classic 
multiple perceptron networks[28-30] and convolutional neural networks[31-36] to the 
most recently established long short-term memory (LSTM) recurrent neural networks 
(RNNs) that are put into the spotlight in the next section[37,38].

RNNs: A different and convenient design other than the more classical neural 
networks in which the information flows forward are the RNNs. These are computa-
tionally more complex models with the skill of capturing hidden behaviours other 
methods in cancer studies cannot do[39-41]. Recurrent models exhibit an intrinsic 
representation of the data that allows the exploitation of context information. 
Specifically, a recurrent network is designed to maintain information about earlier 
iterations for a period that depends only on the weights and input data at the model’s 
entrance[42]. In particular, the network’s activation layers take advantage of inputs 
that come from chains of information provided by previous iterations. This influences 
the current prediction and enables the gathering of network flops that can retain 
contextual information on a long-term scale. Thus, by following this reasoning, RNNs 
can dynamically exploit a contextual interval over the input training history[43].

LSTM: An improvement in of RNNs is the construction of LSTM networks. LSTMs 
can learn to sort the interexchange between dependencies in the predictive problems 
addressed by batches. These models have had a major impact on the biomedical 
domain, particularly in cancer research[44-48]. LSTMs have been successfully proven 
in analysis where the intrinsic technical drawbacks associated with RNNs have 
prevented a fair performance of the model[49]. There are two main optimisation 
problems that must be avoided during the training stage when applying LSTM to 
solve a problem, namely: (1) vanishing gradients; and (2) exploding gradients[50]. In 
this sense, LSTM specifically provides an inner structural amelioration concerning the 
units leveraged in the learning model[51]. However, there is an improvement in the 
LSTM network calibration that is increasingly used in biomedical research: LSTM 
bidirectional networks. In these architectures, a bidirectional recurrent neural lattice is 
applied in order to be able to separately pass by two forward and backward recurrent 
nets sharing the same output layer during the training task[51].

TL
Recycling is always a significant issue! In ML, we can also reuse a model that was 
originally envisaged for solving a different task other than the problem that we might 
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be currently facing, but both share a similar structural behaviour. This practice is 
called TL in ML. Its usage has been progressively increasing in problems whose 
architecture can consume huge amounts of time and computational resources. In these 
cases, pre-trained networks are applied as a starting learning point, which largely 
boosts the performance of new models to approach related problems. Then, TL should 
ameliorate the current model in another setting if such a model is available for 
learning features from the first problem in a general way[52,53]. Regarding its benefits 
in oncology, we can outstand its usage in large datasets of piled images to be 
recognised for patient stratification, as previously described in the following works[54-
61].

REINFORCEMENT LEARNING
Reinforcement learning (RL) is one of the latest ML extensions that ameliorates the 
global performance of learning models when making decisions. In RL, a model learns 
a given objective in an a priori fixed uncertainty by means of trial and error 
computations until a solution is obtained. Then, to guide the model, the AI algorithm 
associates rewards or penalties with the local performance of the model. The final goal 
was to maximise the amount of rewards obtained. Remarkably, the ML architecture 
provides no clues on how to find the final solution, even if it rules the reward 
conditions. Thus, the model must smooth the optimisation problem from a totally 
random scenario to a complex universe of possibilities. However, if the learning 
algorithm is launched into a sufficiently powerful computational environment, the ML 
model will be able to store thousands of trials to effectively achieve the given goal. 
Nevertheless, a major inconvenience is that the simulation environment is highly 
dependent on the problem to be computed.

To sum it up, although RL should not be taken as the definitive algorithm, it 
promises to blow up the current concept of deep learning in oncology[62-64]. An 
example with no precedents is the DeepMind algorithm very famous nowadays by 
performing alpha protein folding[16] predictions at a scale ever done before.

FEDERATED LEARNING
A simple description of federated learning (FL) could be a decentralised approach to 
ML. Thus, FL boosts and accelerates medical discoveries on partnerships with many 
contributors while protecting patient privacy. In FL, we only improve and calibrate the 
results and not the data. Thus, what FL really promises it is a new era in secured AI in 
oncology: Training, testing, or ensuring privacy that way of learning is an efficient 
method of using data from a comprehensive network of resources belonging each time 
to a node of many interconnected hospital institutions[65-68].

TOPOLOGICAL ML
Topological ML (TML) is an interaction that has been recently established between 
TDA and ML. Owing to new advances in computational algorithms, the extraction of 
complex topological features, such as persistence homology or Betti curves, has 
become progressively feasible in large datasets. In particular, TDA is commonly 
referred to as capturing the shape of the data. This method fixes their topological 
invariants as hotspot to look up relevant structural and categorical information. 
Indeed, TDA provides ideal completeness in terms of multi-scalability and global-
isation missed from the rigidness of their geometric characteristics. In that sense, the 
use of this tool has been growing in cancer research until it is considered as contex-
tually informative in the analysis of massive biomedical data[69-74]. Multiple studies 
have exploited the complementary information that emerged from different prisms to 
gain new insights into the datasets. Its association with ML has enhanced both classical 
ML methods and deep learning models[75,76].
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Figure 1 Relational overview of the artificial intelligence-based models introduced in this work. To solve any given complex problem in cancer 
research by means of machine learning models we can use many deep layers. Then, depending on the particular structures of data, we can empower the 
performance of the selected architecture, i.e., multilayer perceptron, convolutional or recurrent networks by adding learning strategies such as transfer, federated or 
topological learning. These strategies are interchangeable (double banded black arrows). As well, we can directly go directly from the selected architecture to the 
problem’s solution using reinforcement learning. AI: Artificial intelligence; MLPs: Multi-layer perceptrons; CNNs: Convolutional neural networks; RNNs: Recurrent 
neural networks.

CONCLUSION
In this work, we summarise the conclusions of some major references of AI in cancer 
research (Figure 1). Overall, we wanted to point out the rapid AI outgrowth in the 
biomedical domain and how AI has systematically become familiar to anyone in the 
domain, expert, or not. This is possibly due to recent advances in learning-oriented 
algorithms, which have enabled the transformation of data analysis to any scale and 
complexity provided a suitable environment is available. We have provided many 
examples of a varied set of learning models (Multi-layer perceptron, convolutional 
neural networks, RNNs, etc.) that have been successfully proven for related cancer 
problems such as patient stratification, image-based classification, or recording-device 
optimisation[77,78]. We have compared different approaches to solve similar 
questions, and we have introduced novel concepts such as TL, FL, or RL that prevent 
some of the most classical constraints regarding network architectures or information 
privacy on high dimensional datasets. Finally, the combination of TDA and ML has 
also been shown to be a promising discipline where to exploit extra topological 
features extracted at a higher level. Such tandem promises to contribute to the 
improvement of the AI algorithm’s performance from a totally different perspective. 
Although data-driven based AI models have the potential to change the world of 
unsupervised learning, some limitations could endanger a promising future. The three 
major issues that hamper a better optimisation and general performance in AI models 
are related to: (1) the high dependency of the model on the data scale; (2) choice of a 
proper computational environment, and (3) practical problems of time or computa-
tional cost should be assumed. Thus, the future challenges in this discipline begin by 
smoothing such obstacles as much as possible, which will ultimately end up with AI as 
the tool of reference in healthcare institutions for a much broader analysis in oncology.
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INTRODUCTION
Colorectal cancer (CRC) continuously receives public and academic attentions due to 
its high prevalence and mortality rate[1]. Understanding the genetic mechanisms 
behind CRC initiation and progression is important to the development of early 
diagnosis and new therapy for CRC and its recurrence. The concept of the adenoma-
carcinoma sequence, which refers to a sequential activation of oncogenes and 
inactivation of tumor suppressor genes, is well recognized for CRC progression[2,3]. 
The adenoma-carcinoma sequence involves genetic mutations and epigenetic 
modification of human genome in vivo, which have been believed to be caused by 
exogenous and endogenous mutagens for decades[4-6]. However, it is still not fully 
understood which exogenous mutagens induce cancers and the induction mechanisms 
behind them remain largely unknown, especially when the questions go deep to a 
defined type of cancer.

Growing evidences indicate that gut mucosal microbiota is strongly linked to CRC 
development and may serve as a primary driver to induce inflammation in the human 
colon[7-13]. High-throughput sequencing (HTS) of 16S ribosomal RNA (rRNA) gene 
fragments is widely applied to profile microbial communities and used to study the 
composition structures of gut mucosal microbiota associated with human CRC 
(Figure 1)[14-17]. Moreover, metagenome sequencing of gut mucosal microbiomes 
coupled with binning strategies and other downstream analysis are able to reveal 
metabolism pathways in potential pathogenic bacteria at lineage levels, which are 
critical to screening microbial biomarkers (e.g., taxa and gene) for CRC and 
understanding the microbe-host interactions (Figure 1)[18-20]. Emerging meta 
transcriptomic sequencing, which examines large-scale gene expressions in microbial 
communities, is able to provide comprehensive insights into microbial population 
activities in host. Based on these in silico analyses and following wet-lab validations, 
species such as Fusobacterium nucleatum, Peptostreptococcus anaerobius, pks+ Escherichia 
coli and Eubacterium rectale have been identified as pathogenic drivers responsible for 
CRC progression[9,10,12,21]. However, due to the expensive and time-consuming wet-
lab experiments, a list of CRC-associated species is on the way to be examined for the 
physiological roles in CRC progression. Instead, AI approaches can serve as efficient 
methods to detect potential roles of these microbes in microbe-host interactions and 
provide clues for wet-lab validation.

With its increasingly wide applications in our everyday life, e.g. self-driving cars, 
facial recognition, and medical diagnosis, AI becomes one of the most popular fields 
that are heavily invested and supported in a number of countries. AI is capable of 
mimicking and going beyond human capabilities. In some biological fields such as 
genomics and transcriptomics, AI is able to complete the complex tasks that are 
impossible for human to finish[22]. AI technique encompasses machine learning (ML) 
as a major branch that includes deep learning as a subset of ML[23,24]. In essence, ML 
are computing algorithms that are either supervised by training datasets or designed 
as unsupervised algorithms. They are widely applied in gut microbiome field. Here I 
review the current progresses of AI applications in detection of pathogenic drivers for 
CRC and prediction of their driving roles in CRC evolution.

TAXONOMIC PROFILING OF GUT MICROBIOMES BASED ON 16S RRNA 
GENE SEQUENCING
Classification algorithms to categorize operational taxonomic unit
To understand the roles of pathogenic bacterial species in initiating and driving CRC 
progression, the first and most important step is to identify the spectrum of 
indigenous bacterial taxonomy in human gut. Current HTS technology has developed 
sufficiently mature methods and is able to extensively characterize bacterial taxonomy 
in samples collected from diverse environments and various hosts, including human 
gut mucosal[14-20,25,26]. As a key step for taxonomic assignment, classification of 
operational taxonomic units (OTUs) from large datasets of HTS 16S rRNA sequencing 
reads employs various AI algorithms. Classical algorithms for OTU classification 
include long-sequence-fist list removal algorithm[27,28], uclust algorithm[29], random 
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Figure 1 Schematic of artificial intelligence applications in characterizing the traits of gut microbiota associated with colorectal cancer. 
OTU: Operational taxonomic unit.

forest algorithm[30], and RDP naïve Bayesian classifier algorithm[31]. Because the 
datasets are usually generated in large scales, both accuracy and computation speed 
must be considered for trade off. Long-sequence-fist list removal algorithm 
implements a super-fast heuristic to identity DNA segments with high identity 
between sequences, to avoid costly computational alignments of full sequences[27,28]. 
Uclust algorithm sorts k-mer of sequencing reads to rapidly identify sequences in 
common[29]. Random forest algorithm builds an ensemble of decision trees that are 
trained with a combination of learning models[30]. RDP naïve Bayesian classifier 
algorithm classifies based on the multinomial model in both training and testing for 
computing classification probabilities[31]. However, challenges still remain to 
accurately determine the species using 16S rRNA sequences. Errors introduced due to 
experimental limitations such as polymerase chain reaction amplification and HTS 
sequencing need to be considered. In addition, although hypervariable regions in 16S 
rRNA sequences were used for taxonomic assignment, some sequences from bacterial 
species within the same genus are highly homologous or identical, leading to 
problems for taxonomic assignment. To solve these issues, new algorithms are also 
developed. For example, Bayesian-like operational taxonomic unit examiner algorithm 
employs a grammar-based assignment strategy to deal with sequencing reads errors, 
in which unsupervised Bayesian models are built based on k-mers split from 
sequencing reads[32]. To solve homology issues of hypervariable regions in 16S rRNA, 
Gwak and Rho used a k-nearest neighbor algorithm and the species consensus 
sequence models to determine species-level taxonomy[33]. Further development of AI 
methods for OTU classification will help improve the accuracy for taxonomic 
assignment and speed for dealing with large-scale dataset.

Neighbor-joining and maximum-likelihood based phylogenetic trees
Since gut microbiome OTUs may represent novel species/strains, placing them on a 
phylogenetic tree can shed light on their taxonomic positions. The computation of 
phylogenetic likelihood for reconstruction of evolutionary tress from sequence data is 
both memory and computing consuming. Both Neighbor-Joining (NJ) and maximum-
likelihood algorithms are the most popular methods in resolving topology of OTU 
sequences[34-38]. The NJ tree inference method belongs to distance-based method and 
takes a matrix of pairwise distance between the sequences to build evolutionary tree. 
The maximum-likelihood algorithm calculates all the possible tree topologies based on 
the probability.

Principal component analysis based dimension reduction of big data
The composition structure of gut microbiome is highly complex, containing high-
dimensional information for hundreds of bacterial species and their abundances[39]. 
To apply data mining strategies on looking for critical factors that distinguish gut 
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microbiomes, large numbers of samples were usually collected from patients in 
different CRC conditions, such as various intestinal locations and CRC stages. To 
examine the differences among samples that belong to specific conditions, the high-
dimensional information from each sample need to be reduced and presented on a 
two-dimensional space. As an unsupervised algorithm, principal component analysis 
is a dimensionality reduction algorithm that transforms and compresses matrix 
consisting of high-dimensional interrelated variables to a new set of two-dimensional 
variables[40,41]. By plotting the compressed two-dimensional variables, the 
microbiome patterns of gut mucosal samples collected from different conditions can be 
evaluated.

CLINICAL MICROBIAL GENOMIC ASSEMBLY ALGORITHM
To understand gut microbiome functions, bacteria residing in gut mucosal ecosystem 
need to be isolated and cultivated in laboratory for experimental validation[42]. 
Sequencing the genomes of these bacteria can reveal their metabolism traits and guide 
downstream functional analyses. For whole genome shotgun sequencing, bacterial 
genomic DNA is fragmented into small pieces for 2 × 100 or 2 × 150 bp paired-end 
sequencing. Various de novo assemblers, including Velvet, SPAdes and SoapDeNovo, 
have been designed to assemble a large number of short sequence reads to form a set 
of contiguous sequences representing the genome[43-45]. Because the reads are short, 
they are usually generated in large quantities with a high coverage depth. To deal with 
such a large dataset, the assemblers are not designed to assemble the short reads 
directly. Instead, the reads are splitted to form a set of k-mers and then mapped 
through de Bruijn graph. Although de Bruijn graph is suggested for short read 
assembly (100-200 bp), it is not recommended to assemble very short reads (25-50 bp). 
Velvet was designed to manipulate de Bruijn graph algorithm efficiently for very short 
reads assembly[43]. Elimination of errors and resolving repeats regions were 
considered in Velvet[43]. Reconstruction of consensus sequences from k-mers based on 
de Bruijn algorithm may lead to fragmented assembly. To deal with the issues, paired 
de Bruijn graphs using read-pairs (bireads) was designed. Inspired by paired de Bruijn 
graphs, SPAdes uses paired assembly graph algorithm by introducing k-bimer 
adjustment that reveals exact distances for the adjusted k-bimers[44]. SOAPdevo2, as 
the version 2 of SOAPdenovo, also utilizes de Bruijn graph algorithm but is designed 
to reduce memory consumption in de Bruijn graph constructions[45]. The algorithm 
supports error correction for long k-mers to improve accuracy and sensitivity during 
the assembly process. Moreover, the program benefits the assembly of repeat regions 
with high coverage depth and regions with low coverage depth via application of a k-
mer size selection strategy. Therefore, these assembly algorithms have their specific 
advantages and are widely utilized in practical applications.

METAGENOMICS ASSEMBLY AND BINNING
Gut mucosal microbiomes comprise hundreds of bacterial species, of which some are 
uncultivable in laboratory conditions[46,47]. Sequencing these mixed bacterial 
populations facilitates discovery of the genomic traits of these uncultivable bacteria. 
Although assembling the reads and reconstructing genes from these complex mixtures 
are challenging, metagenomic assembly algorithms and downstream binning 
strategies are under developing progresses to solve the technique problems.

Metagenomic assembly algorithms
Genome assembly for sequencing reads from a single species assumes that all the 
reads are sequenced from the same genomic DNA and contaminations can be screened 
out during quality control process[48]. The genome size of single species can be 
estimated based on the sizes of close phylogenetic neighbors and k-mer counting, and 
the required sequencing depth can be calculated according to the genome size. During 
assembly process, de Bruijn algorithm is designed to simply consider nodes or edges 
with low coverage depth as contamination and remove them[48,49]. In the same way, 
nodes with high coverage depth are considered by the algorithm as repetitive regions 
in the genome sequence. In contrast, metagenomic assembly cannot make such a 
simple assumption to decide nodes with low and high coverage depths to be from 
contamination sequences or repetitive regions. This is because metagenomic 
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sequencing reads are generated from mixed bacterial populations, in which certain 
species grow better than the rest and show high abundances in the mixed 
communities, whereas rare species show low abundances. Therefore, the coverage 
depths of heterogeneous reads cannot facilitate the assumption of their origins.

Currently, the most popular assemblers for metagenomics assembly include 
MEGAHIT and metaSPAdes[50,51]. MEGAHIT utilizes a fast parallel algorithm for 
succinct de Bruijn graphs to assemble k-mers from metagenomics reads[50]. To avoid 
k-mer singletons caused by sequencing error, MEGAHIT sorts and counts all (k + 1)-
mers splitted from the sequencing reads and only counts (k + 1)-mers with > 2 
occurrences[50]. In addition, MEGAHIT utilizes a mercy-kmers strategy to recover 
low-depth edges for the assembly of rare species[50]. MetaSPAdes uses de Bruijn 
graph of all reads using SPAdes, transforms it into the assembly graph using various 
simplification procedures[51]. The algorithm works across a wide range of coverage 
depths.

Binning strategy
Since assembled metagenomic scaffolds/contigs are derived from each species and 
show sequence composition characteristics such as GC content and coverage depth, 
various binning strategies are designed for the reconstruction of metagenome-
assembled genome (MAG). MAGs represent genomes from monophyletic lineages and 
can be used to analyze taxonomic and metabolic potentials. A number of programs 
have been designed for MAG binning, including MetaBat2, Maxbin2, CONCOCT, 
MyCC, and BinSanity[52-56]. MetaBat2 is a user-friendly program that does not need 
to tune the parameters for its sensitivity and specificity[52]. It utilizes a new adaptive 
binning algorithm to tune these parameters automatically, and uses a graph based 
structure for contig clustering. MetaBat2 is optimized for extensive low-level 
computation and works very efficiently for very large datasets. MaxBin 2.0 employs an 
Expectation-Maximization algorithm to recover draft genomes from metagenomes
[53]. It measures the tetranucleotide frequencies of the contigs and their coverages and 
then classifies the contigs into each bins. CONCOCT uses Gaussian mixture models to 
cluster contigs into bins[54]. Sequence composition and coverage are considered for 
assigning contigs to bins. A variational Bayesian approach is used to determine the 
number of clusters. MyCC works in a way using metagenomics signatures, 
contig/scaffold coverage depths, and Barnes-Hut-SNE-based dimension reduction
[55]. MyCC predicts genes in metagenomic contigs using Prodigal and then identifies 
single-copy marker genes using Hidden Markov Model trained FetchMG along with 
UCLUST. The reduced genomic signatures via Barnes-Hut-SNE algorithm are then 
clustered using affinity propagation for binning. Similarly, BinSanity utilizes affinity 
propagation algorithm to generate bins based on coverage depth, tetranucleotide 
frequency, and GC content[56]. Although these bin extraction algorithms are designed 
based on their own specific principles, the resulted bins from the same dataset can be 
combined, evaluated, modified, and improved to generate high-quality final set of bins 
using metaWRAP[57].

Quality checking and taxonomic inference for MAGs
Quality evaluation of the assembled MAGs determines the reliability of downstream 
annotation analyses. Because the concept of metagenome sequencing is quite new, not 
many programs have been developed with matured principles to determine MAG 
qualities. Currently, the most popular program is CheckM, which uses a set of lineage-
specific marker genes within a reference genome tree[58]. By this way, CheckM 
estimates the completeness and contamination of the assembled MAGs and 
determines which MAGs are useful for downstream analyses. To determine the set of 
marker genes, CheckM reconstructed a genome tree based on 5656 reference genomes 
and then inferred the marker gene set using HMMER based on hidden Markov models 
and FastTree based on WAG and GAMMA models. To evaluate a MAG, the marker 
gene set is identified in the MAG using hidden Markov models. The identified 
homologous genes of the marker genes are further aligned, concatenated, and then 
placed into the reference genome tree using pplacer for taxonomic inference and 
quality checking[59]. Another evaluation method for the assembled MAG is 
MetaQUAST, which aligns contig sequences of MAG to a close reference genome[60]. 
This program is able to detect potential taxonomic position of MAG by BLASTN 
searches against 16S rRNA sequences from the SILVA database[61,62]. Then it 
automatically downloads close reference genomes from the on-line NCBI database and 
aligns them against MAG for evaluation.
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Different from the taxonomic assignment based on 16S rRNA sequencing, 
metagenome sequencing and assembly contain much more information than 16S 
rRNA sequences. Data mining strategies to obtain taxonomic information from large-
scale metagenome assembly need to be considered and designed. As discussed above, 
both CheckM and MetaQUAST provide lineage hints for taxonomic assignment of 
MAGs[58,60]. Additionally, PhyloFlash maps sequencing reads to small-subunit rRNA 
(SSU rRNA) database for taxonomic assignment and can be performed before the 
metagenomes are assembled[63]. FOCUS uses non-negative least squares algorithm to 
compare k-mers between references genomes and MAGs, and determine taxonomic 
position for contigs binned in MAGs[64].

PREDICTION OF MICROBE-HOST INTERACTIONS
Gut microbes living in intestine mucosal, including commensals and pathogens, 
regulate homeostasis of host immunity[65]. Their activities are able to alter host 
signaling and immunity by interacting with the host proteins. Deciphering how 
microbe and host interact via protein-protein interactions and through which microbial 
and host proteins they work are important to development of novel strategies for 
prevention of CRC. Since wet-lab experiments are time-consuming and laborious, 
experimentally determining the microbe-host interactions is still challenging. On the 
other hand, genome-wide computational methods can efficiently provide hints to 
enhance our understanding of this challenging task[66-71]. One category of these 
computational methods are AI based methods for determining protein-protein 
interactions (PPI) between microbes and host[69,70]. Currently, AI based methods for 
PPI predictions are still new and only a few of them have been developed. Most of 
them are supervised methods, which utilizes well-recognized datasets as standards to 
train AI models and determine parameters. These training datasets are either collected 
from high-throughput experiments or obtained from literatures by text mining. 
Supervised PPI methods utilize various AI models such as logistic regression, random 
forests, support vector machine, artificial neural networks, and K-nearest neighbors
[72-76]. However, these AI-based PPI methods are designed for the PPI relationship 
between specific pathogen and human such as human-Bacillus anthracis, human-
Yersinia pestis and human-Fusobacterium nucleatum[67,77-79]. Because high abundances 
of F. nucleatum are associated with CRC patients and especially associated with 
specific CRC stages, F. nucleatum is proposed for its causal role in CRC development. 
Computational scanning of F. nucleatum genome and human proteins identified 
FusoSecretome proteins and their targets in the host network[67]. PPI-coupled 
network analysis identified that F. nucleatum perturbed host cellular pathways 
including immune and infection response, homeostasis, cytoskeleton organization, 
and gene expression regulation[67]. However, AI-based PPI studies for human-
microbiome interactions still need more efforts due to the complex mixed-population 
of species within gut microbiome.

CONCLUSION
Rapid development of high-throughput sequencing and high-throughput screening 
experiments generate large-scale datasets and largely improve our understanding of 
functional roles of gut microbiomes in CRC evolution. Using AI-based analyses, 
potential pathogenic species from gut microbiome have been identified to play critical 
roles in driving CRC. However, there are still limitations in current methods and 
challenges remain for them to be improved. These include but not limited to the 
questions as follows. How to accurately identify bacterial species/strains that reside in 
gut mucosal? How to use metagenomics sequencing data to assemble complete or 
nearly complete MAGs for bacterial single species? How to build AI models to 
interpret human-microbiome interactions under different environmental conditions? 
And many more challenges remain to be solved. I believe that continuous 
improvement of AI technology in CRC diagnosis as well as many more diseases will 
facilitate answering the above questions and help develop clinical treatment and 
prevention of CRC in advance.
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these new technologies, which seem to be able to offer valuable help in the near future.
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INTRODUCTION
Colorectal cancer (CRC) is a growing disease around the world. It represents the third 
leading cause of cancer in males, the second in female patients, and fourth in the world 
for the cause of cancer death[1,2]. In 2015, 777987 new cases and 352589 deaths due to 
CRC were estimated in developed countries[3,4]. According to the Surveillance, 
Epidemiology, and End results  program, the 5-year relative survival rate is between 
63% and 67% for colon and rectal cancer, respectively[5]. Although important progress 
has been made in terms of understanding and treating CRC, morbidity and mortality 
rates based on recurrence and metastasis in therapy remain high[6-8]. The estimate of 
cases diagnosed at an advanced stage in asymptomatic patients is about 60%-70%[9-
11]. High incidence, high mortality, and often poor prognosis make this disease not 
only a major health problem but also a social and economic one. For some years, early 
diagnosis and treatment of CRC patients have been the main clinical commitment. The 
research on the application of artificial intelligence (AI) in the treatment of CRC is still 
in its initial phase; however, with its continuous development and its major applic-
ations in the field of medicine, it is now taking off, also in the management of 
malignant colorectal disease. AI refers to a type of intelligence exhibited by machines 
that are able to perceive their environment and act autonomously in achieving their 
goals[12]. AI technology has been used extensively in medicine, business, and 
relationship life. In health science, AI is used especially for the diagnosis, treatment, 
and prognosis of diseases. In medicine, AI is divided into two sectors: Virtual and 
physical. The former includes imaging techniques, clinical assistant diagnosis, 
treatment, research, and drug development. The latter includes surgical and nursing 
robotic automation[13] (Figure 1). The continuous expansion and application of AI in 
the medical field are increasing its applicative prospects for the diagnosis and 
treatment of tumors. Recent studies have shown that AI can play an important role in 
the diagnosis and treatment of CRC patients, and it can not only improve the 
efficiency of screening, but can also improve the 5-year survival rate of CRC patients 
after treatment. This mini-review covers a period of 20 years with particular attention 
to the last decade, and intends to open a window on the attempts being made on the 
application of AI in the scientific and clinical research of the CRC by summarizing the 
most evident results. Our aim is not to draw definitive conclusions but to stimulate the 
interest of researchers in the application of these new technologies, which seem to be 
able to offer valuable help in the near future.

EPIDEMIOLOGY
AI is an operative modality that can improve the collection of medical data for 
epidemiology purposes. Its predictive value is one of the most practical applications of 
this technology[14], already verified in areas such as public health and safety; on the 
other hand, it has not shown the same results when applied to the management of 
malignant diseases such as cancer. In 2016, CRC was responsible for approximately 
8.2% of all cancer deaths in the United States, ranking as the third leading cause of 
cancer deaths regardless of gender[15]. In fact, we wonder how AI can positively 
influence the epidemiology of CRC. The first steps in epidemiology concern general 
measures such as the interpretation of research and data. There are often some 
difficulties regarding access to data and their categorization, and these methods are 
still under development[16-19]. Regarding CRC, an aspect of AI called GeoAI is a tool 
that can potentially help health care, and it is a system that collects information and 
data from a specific geographic area (food, type of soil, health system available, etc.) 
allowing them to be retrieved in a more specific and detailed form on the basis of what 
is desired[20]. Hungary and South Korea are the countries with the highest incidence 
of CRC[21], and CRC, like other gastrointestinal cancers, involves a complex and 
multifactorial process that is also influenced by geographic location, genetic predis-
position, nutrition, lifestyles, and specific habits[22]. Due to this multifactoriality, 
systems such as GeoAI could have a great utility in defining more precisely the 
epidemiology of CRC by providing increasingly specific data sets in order to improve 
knowledge even at a local level. The hope is that specific areas with a high incidence of 
CRC will benefit from this type of information collection. Another application of AI is 
digital epidemiology which deals with the collection of information such as the 
collection of epidemiological data from social media and digital devices which are 
then quantified by AI[23]. Digital epidemiology has the great advantage of collecting 
huge amounts of data that have not been previously planned, but are instead 
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Figure 1 Artificial intelligence in medicine.

voluntarily provided by people online[24]. This provides a huge pool of information 
that was not previously available to physicians and can aid in the early diagnosis of 
disease and health surveillance of the general public[25]. The disadvantage is the risk 
of violation of the patient's privacy which can bring out issues on information security 
and confidentiality[19,26]. Although the collection of information sets is considered 
tedious and not very useful, an advantageous tool for collecting and ordering them in 
order to produce something relevant is the data mining[27] that uses AI to collect 
much information, related or unrelated, trying to create a useful order to propose 
models and find facts[28]. This process involves the creation of databases, with 
selection and integration of data, storage and extraction of the most relevant ones, and 
proposal of models with subsequent evaluation and knowledge deriving from this 
information[28]. Therefore, medical data on CRC can come from different sources 
(social web, tertiary or research centers, etc.), but what is considered useful is the 
knowledge that they can bring and the use that can result from it. For CRC, data 
mining can represent a technological tool capable of implementing and promoting the 
discovery of relationships, new associations and other factors never even considered 
before which nevertheless may play a role in this multifactorial disease.

DIAGNOSIS
For many researchers, AI is seen as an approach that will help to better understand 
diseases and facilitate their management, and in this discourse it could not be 
excluded that slowly implemented ways can better diagnose cancer and treat patients 
with greater accuracy and precision[29]. Deep learning has attempted to examine how 
medical imaging can be improved and how to find cancer using imaging, and ranges 
from tools that enable a greater ability to scan and interpret images faster, high 
workflow, and better definition or improve image quality and its extraction with 3D 
technology[30-33]. Diagnosis is the integration of multi-source data analysis and 
clinical experience. Cancer manifests a wide variety of symptoms, rapid progression, 
drug susceptibility, and individual reactions, and for these reasons it is difficult to 
make an accurate diagnosis. AI has been shown to help clinicians in the qualitative 
diagnosis and staging of CRC[34].

Endoscopy is used to directly observe lesions in the intestinal wall, and 
endoscopists through images can assess whether the lesions are related to CRC. Lefere 
et al[35] in 2006 introduced the concept of virtual colonoscopy. This innovative 
examination is based on computed tomography colonography[36], in which the 
images are processed into three-dimensional cavity images. The images thus produce 
simulated optical colonoscopy with the aim of detecting CRCs and their adenomatoid 
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polypoid precursors, or other neoplastic lesions. The advent of AI has made 
colonoscopy a convenient and accurate examination for CRC screening. In 2016, 
Fernandez-Esparrach et al[37] designed a method that automatically detected colon 
polyps. Their work achieved a sensitivity of 70.4% and specificity of 72.4%, and 
consisted of inserting 31 types of information about polyps into a computerized 
learning system. In 2012, Takemura et al[38] used narrow band imaging (NBI) and 
support vector machine (SVM) technology to distinguish neoplastic polyps from non-
neoplastic polyps, resulting in a detection accuracy of 97.8%. Urban et al[39] designed 
and trained a convolutional neural network (CNN) system to improve adenoma 
recognition rate for colonoscopy. They collected images from over 2000 colonoscopy 
results for machine learning. Their assistant system achieved an accuracy of 96.4%. 
Mori et al[40] mixed NBI with staining image technology to recognize images of small 
malignant polyps being screened in real time. The final pathological forecast that they 
obtained was 98.1%. Akbari et al[41] used polyp segmentation during colonoscopy to 
recognize tumors using a CNN. During the testing phase, they conducted effective 
post-processing of a probability graph extrapolated from their CNN, reaching a 
specificity of 74.8%, sensitivity of 99.3%, and accuracy of 97.7%. Renner[42] have 
structured a computer-assisted optical biopsy system. They uploaded 602 images to 
the deep learning system for each colorectal tract examined endoscopically. By 
processing the information contained in the images, they were able to distinguish the 
neoplastic polyps with a diagnostic accuracy and sensitivity of 78.0% and 92.3%, 
respectively. Other authors[43], according to available evidence, conclude that the 
incorporation of AI as an aid for detection of colorectal neoplasia results in a 
significant increase in the detection of colorectal neoplasia, and such effect is 
independent from main adenoma characteristics. EndoBRAIN is an AI-assisted 
endoscopic diagnosis system that analyzes cell nuclei, crypt structures, and 
microvessels, with the aim of identifying colonic neoplasms. In 2020, Kudo et al[44] 
performed a retrospective comparison between the diagnostic capabilities of the 
EndoBRAIN system and those of 30 endoscopists. During the analysis, EndoBRAIN 
showed a sensitivity of 96.9%, specificity of 94.3%, and accuracy of 96.0% in distin-
guishing neoplastic from non-neoplastic lesions. The endoscopists' values were lower. 
Blanes-Vidal et al[45] extended the use of AI for capsule endoscopy through the use of 
a CNN for the detection and localization of colon polyps. The results of their algorithm 
were excellent, reaching an accuracy of 96.4%, while the sensitivity and specificity 
were 97.1% and 93.3%, respectively. During colonoscopy, the mucosa of malignant 
colon tumors is characterized by irregular and discontinuous crypt structures, and 
help in diagnosis can be provided by computer-assisted diagnosis (CAD). In 2015, the 
Infocus-Breakpoint was designed, which is a method that can directly detect the length 
and area of a neoplasm by transforming it into a 2D colonoscopic image, with great 
precision[46]. CAD was used by Ştefănescu[47] for processing images from confocal 
laser endomicroscopy and training the model using a two-layered feed forward neural 
network for diagnosing malignant samples based on seven parameters tested. The 
diagnostic error obtained was 15.5%. NBI magnification (M-NBI) can be employed for 
detailed observations of microvascular structures. In this regard, Tamai et al[48] used 
M-NBI-based CAD to classify and list mucosal lesions in the colon, including 
hyperplastic polyps, adenoma/adenocarcinoma lesions, and deep submucosal lesions, 
with an accuracy of 83.9%, 82.6%, 53.1%, 95.6%, and 82.8%, respectively. The 
development of CRC is a process consisting of many steps, and the transformation 
from adenoma to carcinoma[49] can take a very long time. Therefore, the importance 
of early screening and detection of lesions to reduce the incidence of this disease is 
intuitive[50]. In this regard, Ito et al[51] developed an AI system applied to endoscopy 
for diagnosis, and this system was based on a CNN using machine learning images. 
The authors analyzed protruding, flat, and sunken lesions and found improvement for 
colon cancer detection. The sensitivity, specificity, and accuracy found for cT1b were 
67.5%, 89.0%, and 81.2%, respectively. Subsequently, several CAD systems were 
developed to screen patients at risk for CRC prior to colonoscopy. Some authors have 
developed AI systems with the aim of analyzing patient information comprehensively 
to predict the onset of CRC. The variables selected were gender, age, and blood test 
data. In this case, the objective in addition to the scientific purpose represented an 
encouragement for patients with positive results in order to induce them to accept 
periodic checks[52]. In 2018, Xu et al[53] assembled a team that designed an early 
screening method for CRC based on plasma copy number variation. They sequenced 
entire genomes and then trained an SVM to make the diagnosis. The results obtained 
by this method were an 88.9% specificity and a sensitivity of 91.7%. Recently, Graham 
et al[54] proposed MILD-Net, a CNN composed of a completely convolutive network, 
and this system has reintroduced the original images at multiple points within their 
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network in order to reduce diagnostic uncertainty. Other authors such as Wan et al[55] 
designed an AI program with the intent of improving the sensitivity of the extraction 
of plasma cell-free DNA for CRC patients. For a weighted early (stage I/II) CRC 
cohort, they achieved an average sensitivity of 85%. Wang et al[56] has designed 
several artificial neural networks (ANN) models that are biologically inspired 
computer programs designed to simulate the way in which the human brain processes 
information. Using a vector quantization neural network, they structured four models 
for qualitative diagnosis, M0/M1 discrimination, carcinoembryonic antigen testing, 
and clinical staging. Shahbazy et al[57] have included some classification factors in his 
algorithm, concerning a case-control study, demonstrating greater accuracy in the 
early diagnosis of CRC. The 5-year disease-free survival rate was 84%. Tumor budding 
is considered a sign of cancer cell activity and the first step of tumor metastasis. In 
accordance with this concept, Liu[58] in 2021 established an automatic diagnostic 
platform for rectal cancer budding pathology by training a faster region-based CNN 
(F-R-CNN) on the pathological images of rectal cancer budding.  He analyzed 
postoperative pathological section images of 236 patients with rectal cancer. The 
conclusions were that F-R-CNN deep neural network platform for the pathological 
diagnosis of rectal cancer tumor budding can help pathologists make more efficient 
and accurate pathological diagnoses. Gupta et al[59] proposed a study on over 4000 
CRC patients, using machine learning algorithms to predict the stage of the tumor. 
They postulated that tumor budding may be an additional prognostic factor to the 
TNM staging system. To overcome the problem of the poor reliability of tumor 
budding, Weis et al[60] introduced a different automatic image processing tool to 
quantify it in immunohistochemistry sections. Detections of tumor buds in CRC 
patient samples were reliable. To increase the results of AI against CRC, 
histopathology and genetics may not be enough, in fact, as shown by a study by 
Borkowski et al[61] who compared different AI platforms to detect adenocarcinoma in 
the veteran population. They found significant difficulty, on the part of machine 
learning tools, in differentiating adenocarcinoma with KRAS mutation from those 
without KRAS mutation. These difficulties may suggest the need for a more unified 
approach. Environmental causes should not be underestimated in the formation of 
CRC cancer. However, the study of tumor suppressor genes and oncogenes such as 
APC, KRAS, and MTHFR occupy a no less important role[62]. This has led to a 
dramatic increase in the number of potential biomarkers and indicators that can be 
linked to cancer growth. Some success has been achieved through AI training to 
classify tumors based on histopathology alone. Some authors[63] have trained an 
algorithm to classify gastric and epithelial tumors into adenocarcinoma, adenoma, or 
non-neoplastic lesions. They compared a type of CNN that uses smaller tile sizes to 
RNN (recurrent neural network) to observe and then classify the images. The RNN 
was more accurate and no statistical difference was demonstrated. Ciompi et al[64] 
postulated that CNNs need better image quality and this could help AI approach. Late 
diagnosis of CRC can lead to other problems and we are nowhere near the solution, 
but AI could help in other ways for CRC diagnosis at a later stage. A study by 
Dimitriou et al[65] sought to increase the accuracy in prognosis for stage II cancers, 
ultimately arguing that more attention should be paid to traits such as textures, spatial 
relationships, and morphology, all of which can be better managed by machine 
learning. Another tool that could be useful in diagnosing CRC is represented by fuzzy 
systems[66], and these allow any number between 0 and 1 to exist. This scope can be 
applied to any form of pathology and can help identify aberrations or predict the 
likelihood of cancer based on predetermined parameters. In the case of colorectal 
polyps, fuzzy parameters can be easily applied to match various characteristics as a 
stock of polyps in pedunculate or mucous lesions, if the indentations on hyperplastic 
polyps will become advanced lesions and specific sizes or forms, and to categorize 
low-risk injuries or if an adenomatous polyp is at risk of canceration.

GENETIC TESTING
AI can also be important in genetic testing for CRC. Hu et al[67], based on gene 
expression, compared the accuracies of three different neural networks for cancer 
classification. On a sample of 53 patients, they found that the most accurate classi-
fication was obtained with the S-Kohonen neural network. In 2017, Xu et al[68] 
structured an SVM system to identify differentially expressed genes with the purpose 
of distinguishing patients with high risk and predicting prognoses. Fifteen genetic 
markers were identified as predictors of recurrence risk and prognosis for colon cancer 
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patients. Zhang et al[69] developed a counter-propagation ANN for the detection of 
the BRAF gene mutation in CRC using near-infrared testing. Their model achieved a 
diagnostic sensitivity of 100%, specificity of 87.5%, and accuracy of 93.8%, and it can 
distinguish the BRAF V600E mutation from the wild type.

Methylated DNA has been widely used in AI diagnosis as a biomarker for early 
CRC. Coppede et al[70] in 2015 structured an ANN to explore the association between 
CRC-related genes and environmental factors. They concluded that ANNs revealed 
the complexity of the interconnections among factors linked to DNA methylation in 
CRC, and also observed an intricate network of interconnections between dietary and 
lifestyle factors and the methylation profiles of the studied genes. Kel et al[71] 
developed an analytical method to diagnose early CRC by extracting human 
methylated cytosine and guanine separated by a phosphate (CpG) from blood and 
feces. This study involved 300 CRC patients and identified six potential epigenetic 
biomarkers of DNA methylation that may lead to rapid tumor development.

MANAGEMENT AND TREATMENT
In 2019 Ferrari et al[72] reported that AI, based on the analysis of the texture of MR 
images, would be able to settle the complete therapeutic response of rectal cancer 
previously subjected to neoadjuvant chemotherapy. Their results have been 
encouraging. Indeed, the proposed AI model allows the distinction between complete 
response to therapy and non-response in neoadjuvant treatment of rectal cancer. The 
role of AI in drug metabolism in the treatment of CRC is not to be neglected, and it can 
allow a better understanding of the transformation and metabolism that drugs induce 
towards cancer progression. Tools that assist AI provide reliable information on the 
metabolism of these drugs in the treatment of CRC, leading to a better understanding 
of their biological behavior and specific metabolic pathways[73]. The predictive power 
of AI in CRC through the use of the ANN algorithm is increasingly appreciated. 
Indeed, the ANN uses non-linear models with particular flexibility regarding medical 
research and clinical practice[74,75]. An advantage could be to optimize the process 
through flexible models with good value for money, and for large data collections. The 
ANN has proven to be an accurate and reliable tool for clinical decision making. 
Lastly, academic dissemination of knowledge is facilitated by these models[74-78]. 
According to a systematic review of 27 studies that used ANNs as diagnostic or 
prognostic tools, 21 of these showed health care benefits, while the others showed 
similar results to models already in use[74]. In this regard, other authors reported that 
the ANN applied to the prediction of distant metastasis of CRC showed a better 
outcome[79]. Traditionally, the treatment of CRC is multimodal, integrating surgery, 
chemotherapy, radiotherapy, and immunotherapy, and aims to offer together a 
complete and more effective cure. AI can be an extra help for patients to choose the 
treatment methods that are appropriate for them and improve the healing effects of 
the protocols in use by designing more individualized and precise therapies.

PERSONALIZATION AND DIVERSIFICATION OF THERAPEUTIC MAN-
AGEMENT
Cancer research is moving towards the personalization of cancer treatments. 
Healthcare is rapidly moving toward precision or personalized medicine. Machine 
learning models have the potential to contribute to individual-based cancer care and 
transform the future of medicine[80]. The Watson for Oncology system was developed 
at Memorial Sloan Kettering Cancer Center. This AI-based system, by automatically 
extracting medical information from medical records and translating it into a practical 
language for learning, improves personalized and precision medical treatment for 
cancer therapy. This tool has been evaluated by various authors. Kim in 2019[81] 
analyzed the concordance rate between different chemotherapy regimens in the 
treatment of CRC, and the data were compared between those determined by a 
multidisciplinary team and those suggested by the recommendations of the Watson 
for Oncology: In 61 CRC samples, the rate of initial agreement was 46.4%, but after 
inclusion of other recommendations, it increased to 88.4%. It would appear that this 
system can be improved through continuous adjustments. Miyano[82] has also used 
the Watson for Oncology system for the genetic sequencing of cancer patients, and the 
results obtained in a very rapid time have produced a reduction in waiting times, 
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which is very useful when the topic under discussion is cancer. Akturk and Erci[83] 
experimented with this model applied to human care, finding more individualized 
and caring nursing services with patient satisfaction. With regard to these pathologies, 
medicine is becoming more and more personalized and also for the drugs used. In this 
sense, Keshava et al[84] proposed a method that can identify subpopulations that have 
different reactions towards inhibitors of the same target and can help to understand 
the mechanisms of resistance. With a system in continuous information enrichment, 
new subpopulations of cancer could be identified, and old and new genetic 
biomarkers were analyzed in order to find more effective combinations of drugs. Still 
with regard to the application of AI on targeted drugs, Ding et al[85] created a system 
for screening molecular markers at the system biology level by integrating transcrip-
tomics and proteomics data. The identified markers were integrated to develop 
targeted drugs useful for the clinical treatment of CRC. Nowak-Sliwinska et al[86] 
proposed a study using existing anticancer drugs to treat new indications. They 
combined specific phenotypic studies with mechanistic studies to create AI models 
capable of predicting disease-drug pairs. Finally, clinical management also cannot be 
neglected. Horta et al[87] in 2018 collected information from CRC surgical patients, 
and then instructed a model to support decisions regarding selection of patients who 
should be offered co-management services.

LIMITS AND FUTURE PERSPECTIVES
With regard to new technologies such as AI, there is often a doubtful attitude, and the 
health staff bases their work and commitment on certain and verified information. 
However, in the era of big data, it will be necessary to address these issues and 
certainly deepen them in order to understand how reliable they are and the help that 
these methods can give us. The next step should be the creation of medical ethics 
guidelines, in order to regulate the scope of the use of these new technologies. It is 
necessary to understand the data in order to draw firm conclusions. The limit of all 
this technology is the insufficiency of aggregate and understandable data that allow us 
to draw advantageous conclusions. Taking the studies on the subject of CT imaging 
and AI as an example, the input data can be manifold, and this can represent a 
problem when definitive answers must be given for the diagnosis and treatment of the 
general population. The data optimization that the new technologies offer us requires 
and will require an investment of more and more time and money, but this will allow 
us to build systems that will allow better data collection and that will allow better and 
more accurate decision-making processes. The more institutions that start accumu-
lating data, the greater their quantity and quality. The creation of public databases for 
information such as symptomatology, different imaging modalities, or geographic 
distribution can be a great strength that could benefit researchers by having access to 
more and more information. Free access to this data represents another obstacle that 
should not be underestimated, and underdeveloped and poor countries may not be 
able to have access to this technology. The further on we will go with the experi-
mentation and application of AI, the more costs will decrease and the greater will be 
the benefits that can be felt by everyone and not only by those in certain geographical 
areas. It is critical for the global health community that these countries have access to 
technology to better treat and address diseases in their area and improve the quality of 
life in their local communities.

CONCLUSION
All new technologies can represent the beginning of a new era and their applications 
in daily use take time to be slowly incorporated. AI is certainly a promise of a new 
scientific season, but it remains at an early stage for its true application. Several 
researches on their use are slowly moving in a good direction. To date, it is clear that 
the methods of information gathering, diagnosis, and treatment of CRC will greatly 
improve through the use of deep learning tools. While the methods of obtaining 
medical information may be controversial, we can say with certainty that early 
detection of CRC will gain a great deal when appropriate methods for data collection 
are found. Ultimately, AI shows great promise in clinical and therapeutic management 
for CRC, and this could indicate better and more personalized treatments for patients 
with this disease.
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